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Abstract

The commercial success of wearable cameras allows people to acquire

a huge quantity of data about their daily lives and activities from a

first-person point of view: being able to observe what camera wearers

see and where they are looking. This human-centric perspective is

naturally suited to gathering visual information about our everyday

observations and interactions, which in turn can reveal our attention

and activities. Augmenting the wearable camera with eye-trackers,

we can furthermore consider using the measured human gaze to bet-

ter understand the user’s activities and even intention. Such unique

characteristics of videos captured by wearable cameras facilitate the

automatic modeling of human behavior in the first-person point-of-

view paradigm, which has a wide range of applications from human-

to-robot imitation learning to developmental psychology.

In this thesis, I present machine learning based models for auto-

matic human behavior modeling that focus on two types of human

behavior: human gaze and human action. These models learn to

leverage the rich high-level semantic information enclosed in the first-

person videos to tackle several major challenges such as occlusion and

rapid head motion. The thesis work is composed of three main com-

ponents that address the modeling of human behavior from different

aspects: (1) A graph-based method for localizing and recognizing hu-

man actions from videos using the temporal relation among actions;

(2) A gaze prediction approach for first-person videos that uses task-

dependent attention transition; (3) A unified framework for jointly

recognizing human action and predicting human gaze, since human

action and gaze are deeply correlated.

The modeling of human actions has always been one of the fun-

damental research problems of computer vision. Different from the

third-person perspective, actions from the first-person perspective are

more difficult to capture due to the camera motion and limitations on

the field of view. To alleviate these problems, I design a method based

on Graph Convolution Networks (GCNs) to leverage the relation of

multiple action segments in various time spans to help with better
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localization and classification of human actions. By applying graph

convolution, we can update each node’s representation based on its

relation with neighboring nodes. The updated representation can be

used for improved action segmentation.

The study of human gaze plays a vital role in understanding the

attention mechanism of humans since gaze is one of the most direct

representation of human attention. Since human gaze is not always

attracted by the salient regions but also dependent on the undergoing

task, I propose a hybrid model for gaze prediction based on deep

neural networks that integrates task-dependent attention transition

with bottom-up saliency estimation.

Building on the work of human gaze prediction and action seg-

mentation, a further step is taken to study the mutual influence of the

two human behaviors. My assumption is that during the procedure

of performing a manipulation task, on the one hand, what a person is

doing determines where the person is looking at. On the other hand,

the gaze location reveals gaze regions that contain important and in-

formation about the undergoing action and also the non-gaze regions

that include complimentary clues for differentiating some fine-grained

actions. To validate the assumptions, I use a mutual context network

(MCN) that jointly learns action-dependent gaze prediction and gaze-

guided action recognition in an end-to-end manner. Experiments on

multiple public first-person video datasets demonstrate that our MCN

achieves the state-of-the-art performance of both gaze prediction and

action recognition. Our experiments also show that action-dependent

gaze patterns could be learned with our method.

ii



iii



Acknowledgements

I could never have completed this work without the support and assistance

of many people. First and foremost, I would like to express the deepest

gratitude to my adviser, Prof. Yoichi Sato, for his kind advising, valuable

suggestions, and good-hearted encouragement in academics. Without his

tolerant and open-minded style, I could not have a chance to start my Ph.D.

pursuit in computer vision without any experience. With his help, I learned

how to read an academic paper; how to formalize a research problem; and

how to write a paper and present the work. His wide curiosity inspires me to

think about what a researcher really is. I also would like to express grateful

thanks to Prof. Yusuke Sugano and Prof. Minjie Cai. With their help, I

learned how to tackle research problems, how to compose and express an

idea more logically, and most importantly how to think like a scientist rather

than an engineer. Their insight and passion for the research encourage me to

face and overcome difficulties and setbacks with perseverance and optimism.

Once again, I thank them from the bottom of my heart for their consistent

and generous support which helps me grow as a researcher.

This thesis would not have been possible without generous financial sup-

port from the Graduate Program for Social ICT Global Creative Leaders

(GCL) of The University of Tokyo by MEXT (Ministry of Education, Cul-

ture, Sports, Science and Technology). GCL program also provides a chance

for me to make good friendships with other recipients, which makes my life in

Japan happy and memorable. These supports are gratefully acknowledged.

I would also like to thank all members of the Sato lab. The time I spent

in Sato lab was very exciting and wonderful thanks to them. I learned a

lot of things through weekly meetings and everyday discussions with them.

Last but not least, I would like to express my deepest love and gratitude to

iv



my parents and all my family members. This thesis would not have been

possible without their continued patience and endless support.

December 2020

v



Contents

Abstract i

Acknowledgements iv

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Human Action and Human Reasoning Modeling from First-

Person Perspective 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Action Segmentation . . . . . . . . . . . . . . . . . . . 11

2.2.2 Graph Convolution Networks . . . . . . . . . . . . . . 12

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Overview of the Model . . . . . . . . . . . . . . . . . . 13

2.3.2 Representation-to-Graph (R2G) Mapping . . . . . . . . 15

2.3.3 Graph-to-Representation (G2R) Mapping . . . . . . . . 17

2.3.4 Training and Loss Function . . . . . . . . . . . . . . . 18

2.3.5 Implementation Details . . . . . . . . . . . . . . . . . . 19

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Comparison with the State of the Art . . . . . . . . . . 21

2.4.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Results on Third-Person Datasets . . . . . . . . . . . . 24

vi



2.4.4 Comparison with 1D Convolution . . . . . . . . . . . . 26

2.4.5 Comparison with Other Alternatives Tools for Model-

ing Relation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.6 Influence of Edge Weighting . . . . . . . . . . . . . . . 29

2.4.7 Qualitative Results . . . . . . . . . . . . . . . . . . . . 30

2.4.8 Limitations and Future Work . . . . . . . . . . . . . . 30

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Human Attention Modeling from First-Person Perspective 33

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Visual Saliency Prediction. . . . . . . . . . . . . . . . . 36

3.2.2 First-Person Gaze Prediction . . . . . . . . . . . . . . 37

3.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Model Architecture . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Feature Encoding . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Saliency Prediction Module . . . . . . . . . . . . . . . 40

3.3.4 Attention Transition Module . . . . . . . . . . . . . . . 40

3.3.5 Late Fusion . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.7 Implementation Details . . . . . . . . . . . . . . . . . . 43

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 45

3.4.3 Results on Gaze Prediction . . . . . . . . . . . . . . . 46

3.4.4 Examination of the Attention Transition Module . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Joint Modeling of Human Attention and Actions 54

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 First-Person Gaze Prediction . . . . . . . . . . . . . . 57

4.2.2 First-Person Action Recognition . . . . . . . . . . . . . 58

4.2.3 Gaze and Actions . . . . . . . . . . . . . . . . . . . . . 59

vii



4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Action Context for Gaze Prediction . . . . . . . . . . . 60

4.3.2 Gaze Context for Action Recognition . . . . . . . . . . 62

4.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Feature Encoding Module . . . . . . . . . . . . . . . . 65

4.4.3 Saliency-Based Gaze Prediction Module . . . . . . . . 65

4.4.4 Action-Based Gaze Prediction Module . . . . . . . . . 65

4.4.5 Gaze-Guided Action Recognition Module . . . . . . . . 67

4.4.6 Implementation and Training Details . . . . . . . . . . 68

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Dataset and Evaluation Metric . . . . . . . . . . . . . 70

4.5.2 Results of Gaze Prediction . . . . . . . . . . . . . . . . 70

4.5.3 Examination of Action-based Gaze Prediction Module . 74

4.5.4 Results of Action Recognition . . . . . . . . . . . . . . 76

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Model Convergence . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion and Future Directions 82

Bibliography 88

Publications 109

viii



ix



List of Figures

1.1 (a) Examples of first-person cameras: (1) Google glasses [goo],

(2) Gopro Hero7 [gop], (3) Tobii Pro 2 [tob], (4) ETMobile

[etm]. (b) Examples of first-person videos. (c) Examples of

third-person videos. Compared with third-person videos, first-

person videos recorded by first-person cameras naturally rep-

resents the camera wearer’s view, which is an ideal perspective

for analyzing and modeling human behaviors. . . . . . . . . . 2

1.2 Structure of the thesis work. Human behavior modeling is

studied under the first-person vision paradigm and plays a

central role in this thesis. Human gaze behavior and human

actions are separately explored, which is followed by a study

of their mutual correlation. . . . . . . . . . . . . . . . . . . . . 4

2.1 This figure showcase an example first-person video. Using

the backbone model, since the action of drink water cannot

be directly observed within the field of view, it detects the

segment after pour water to be background. In this work, we

propose a module called GTRM that can be built on top of

the backbone model to refine the action segmentation. The

result after refinement can successfully detect this segment to

be drink water. This is because the proposed GTRM learns

the temporal relation between the actions. In this figure, we

also show that our proposed GTRM can adjust the temporal

localization of actions by changing the action boundaries. . . . 9

x



2.2 Illustration of our proposed Graph-based Temporal Relation

Module (GTRM) built on top of a 3-layer GRU backbone

model. Our GTRM construct graph nodes by mapping the

backbone encoded representation of each segment in the initial

segmentation. The two graphs have different types of edges

and are respectively responsible for the segment boundary re-

gression task and the segment classification task. After rep-

resentation refinement by the GCNs, the node features are

mapped back to frame-wise representations for an improved

action segmentation. . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dataset comparison by average action instances per video (blue)

and average video length (orange, right axis). . . . . . . . . . 20

2.4 Qualitative comparison of results for action segmentation task

on (a) EGTEA, and (b) EPIC dataset. Only part of the whole

video is shown for clarity. We can see in (a) that the take, put

and close actions are correctly detected by adding GTRM. . . 23

2.5 Performance gain compared with the m-GRU backbone model

with different values of k. k = ∞ denotes the case that all

nodes are connected. . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Qualitative results on the Breakfast dataset. Result is shown

in full video length. Corresponding results are: (a) Ground

truth, (b) MS-TCN, (c) MS-TCN + GTRM. . . . . . . . . . . 30

2.7 Qualitative results on the 50Salads dataset. Result is shown

in full video length. Corresponding results are: (a) Ground

truth, (b) MS-TCN, (c) MS-TCN + GTRM. . . . . . . . . . . 31

3.1 Our proposed gaze prediction model is mainly composed by

these components: a feature encoding module, a saliency pre-

diction module, an attention transition module and a late fu-

sion module. We represent ground truth gaze positions as red

cross. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The attention transition module is composed of a channel-

weight extractor, an LSTM and a fixation predictor. . . . . . . 41

xi



3.3 Visualization of predicted gaze maps from our model. Each

group contains two images from two consecutive fixations,

where a happens before b. We show the output heatmap from

the saliency prediction module (SP) and the attention transi-

tion module (AT) as well as our full model. The ground truth

gaze map (the rightmost column) is obtained by convolving

an isotropic Gaussian on the measured gaze point. . . . . . . . 49

3.4 AUC and AAE scores of cross task validation. Five different

experiment settings (explained in the text below) are com-

pared to study the differences of attention transition in differ-

ent tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Qualitative results of attention transition. We visualize the

predicted heatmap on the current frame, together with the

current gaze position (red cross) and ground truth bounding

box of the object/region of the next fixation (yellow box). . . 52

4.1 The network structure of our proposed mutual context net-

work (MCN). The MCN takes first-person video frames as

input to estimate both what action is happening and where

the person is looking at. Motivated by the assumption that

the human gaze and actions can provide useful information

for guiding the modeling of the other, we design the MCN

to take advantage of the mutual context between first-person

gaze and action. For instance. we show a concept example in

this figure. The desired action class will influence the position

of the gaze. The positions of gaze will be more likely to be

on the table if the camera wearer is going to put the pan on

the table (first row). In another case, the gaze positions would

be more likely on the bread if the undergoing action is “take

bread” (second row). . . . . . . . . . . . . . . . . . . . . . . . 55

xii



4.2 The difference between saliency maps (overlayed on images)

and gaze regions (red cross, also enlarged above). The saliency

maps are obtained using PiCANet [LHY18] pretrained on the

DUTS dataset [WLW+17]. We can see that the gaze region is

more action-dependent and can be significantly different from

the visually salient regions. . . . . . . . . . . . . . . . . . . . . 61

4.3 Gaze context for different actions. In (1a) and (1b), gaze fo-

cuses on the regions of bowl which help to recognize Put bowl

and Wash bowl from other actions. With additional features

from surrounding background, it is able to further differen-

tiate the two actions. Similarly, in (2a) and (2b), it is eas-

ier to recognize Close condiment container and Take condi-

ment container by extracting features from both gaze regions

and background. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Architecture of our proposed mutual context network (MCN).

MCN consists of 5 sub-modules: the feature encoding mod-

ule which encodes input video frames into feature maps F ,

the gaze-guided action recognition module which uses gaze as

a guideline to recognize actions, the action-based gaze pre-

diction module which takes predicted action likelihood l as

input and outputs an action-dependent gaze probability map

Ga, the saliency-based gaze prediction module which outputs

a saliency map Gs, and finally the late fusion module to get

the final gaze probability map G. . . . . . . . . . . . . . . . . 64

4.5 Qualitative visualizations of gaze prediction results on EGTEA

dataset. We show the output heatmap from our full MCN and

several baselines. Ground truth action labels and gaze points

(GT) are placed on the leftmost columns. . . . . . . . . . . . 73

xiii



4.6 Affinity matrix of the top 20 frequent actions in EGTEA

dataset. Actions are re-ordered for the ease of viewing. Each

row of the matrix represents the “affinity score” of one ac-

tion against all the 20 actions. Darker indicates higher “affin-

ity” between corresponding actions. We mark several darker

groups of similar action with high “affinity” for the ease of

reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Gaze prediction AUC and action recognition accuracy with

respect to inference iteration on the EGTEA dataset. Blue

curve with circle markers correspond to action recognition ac-

curacy on the left axis, and orange curve with square markers

correspond to gaze prediction AUC on the right axis. . . . . . 78

4.8 Failure cases of our MCN on gaze prediction. In the first

row, failed action recognition misleads gaze prediction. In

the second row, although the action recognition is correct,

the camera wearer shifts the gaze fixation onto the region of

future destination when he/she has already finished the action

of grabbing the bread. . . . . . . . . . . . . . . . . . . . . . . 79

xiv



List of Tables

2.1 Quantitative comparison with state-of-the-art models on the

EGTEA dataset (left) and EPIC-Kitchens dataset (right). . . 22

2.2 Ablation study of our model. We replace GCN with fully

connected network (FCN) and report the performance gain in

absolute values relative to the m-GRU backbone model. . . . . 24

2.3 Results on the 50 Salads dataset. Performance gain in absolute

values by adding our GTRM on top is shown in dark rows. . . 26

2.4 Result on the Breakfast dataset. Performance gain in absolute

values by adding our GTRM on top is shown in dark rows. . . 27

2.5 Changing GCN operation to 1D convolution. . . . . . . . . . . 27

2.6 Number (and added number) of parameters, added FLOPs of

different variants of GTRM on the EGTEA dataset. . . . . . 28

2.7 Changing edge weight to uniform weight. . . . . . . . . . . . . 29

3.1 Performance comparison of different methods for gaze predic-

tion on two public datasets. Higher AUC (or lower AAE)

means higher performance. . . . . . . . . . . . . . . . . . . . . 47

3.2 Results of ablation study . . . . . . . . . . . . . . . . . . . . . 48

4.1 Comparison of gaze prediction performance on two datasets.

Results of previous methods are placed on top. Results of our

full MCN and the subsets of MCN are placed on the bottom.

Lower AAE and higher AUC indicate better performance. ∗

denotes using ground truth action label as input. . . . . . . . 72

xv



4.2 Quantitative comparison of action recognition. We report

recognition accuracy in %. Values in brackets indicate the

methods that rely on ground truth gaze. . . . . . . . . . . . . 77

xvi



Chapter 1

Introduction

Recently, with the rapid development of modern technology, wearable cam-

eras have become affordable and user-friendly for a mass amount of peo-

ple. The increase of wearable cameras brings out a large collection of first-

person videos, for example, life-logging videos. Different from traditional

third-person videos that are taken by a fixed camera, first-person videos

recorded by wearable or head-mounted cameras capture human behavior

from a natural, egocentric perspective: they capture exactly what the cam-

era wearers see (Figure 1.1). Since this unique perspective reflects the way

humans observe and interact with the surrounding, the modeling of human

behavior in first-person videos has attracted a great deal of interest from re-

searchers as a new research paradigm on exploring how humans process the

rich and complex environmental information as intelligent creatures. Fur-

thermore, the knowledge of human behavior can be valuable for HCI appli-

cations [DDMF+18] and could be transferred to robots via techniques such as

imitation learning [NCA+17], which are both indispensable prerequisites for

the next-generation intelligent robots. Thus, in this thesis I aim to automate

the modeling of human behavior in daily activities using videos taken from

first-person wearable cameras.

Human behavior can be decomposed as a series of perceptions and ac-

tions: people first perceive the world using receptors such as eyes and ears,

and then take actions based on their goal and the analysis of the surrounding

environment. Based on this phenomenon, this thesis first addresses the auto-

1



Figure 1.1: (a) Examples of first-person cameras: (1) Google glasses [goo],

(2) Gopro Hero7 [gop], (3) Tobii Pro 2 [tob], (4) ETMobile [etm]. (b) Exam-

ples of first-person videos. (c) Examples of third-person videos. Compared

with third-person videos, first-person videos recorded by first-person cameras

naturally represents the camera wearer’s view, which is an ideal perspective

for analyzing and modeling human behaviors.

matic modeling of the two types of human behaviors separately: and (1) the

automated modeling of human actions, as actions can be seen as the most

explicit demonstration of human behavior, and (2) the automatic modeling

of human gaze, since gaze is one of the most important manners that human

visually perceive the world, Building upon the knowledge of modeling human

gaze and actions separately, this thesis takes a further step to consider their

mutual context for jointly modeling human gaze and actions.

When we humans want to achieve our goals, we take actions, which are

of the most explicit human behaviors, based on our perception and goals.

From the first-person perspective, actions could be interpreted as: “what am

I doing?”. The modeling of human actions can have increasingly important

consequences such as automatic video labeling [MMH+08], highlight extrac-

tion [YMR16], augmented reality [SR17], robotics [KKUG07], etc. Therefore,

in this thesis the first focus is on the action modeling from first-person per-

spective. The objective is to not only detect when the action happens but

also what kind of action happens.

When we humans perceive the surrounding scene using our eyes, we can

quickly process visual information by focusing only on a small region of the

whole scene. This is known as the attention mechanism and is mainly driven

2



by the human gaze. The knowledge of the human gaze, i.e., where people

look, is extremely important for various fields both in the research commu-

nity and in industry. For example, human gaze information can be used for

explainable AI [TG20] and improving the performance of multiple research

tasks like zero-shot learning [KASB17] and video summarization [XML+15].

The knowledge of human gaze behavior can also be applied in skill assess-

ment [DPSCRDS17] and autism diagnosis [BHL+10]. Although the pupil

movement seems subtle from a third-person perspective, in the first-person

perspective the gaze movement is enlarged: even a small change in the look-

ing direction could be reflected saliently from the first-person view. Thus,

here I also target the automatic modeling of first-person human gaze.

Meanwhile, different kinds of human behavior are not independent of each

other but in fact deeply correlated. For example, human take actions based

on what they perceive, and meanwhile, the actions alter the environment

and thus will affect human perception behavior. To further promote the

automatic modeling of human behaviors, it is necessary to consider not only

one but multiple kinds of behaviors jointly. Keeping this in mind, in this

thesis I also explore the mutual influence of human gaze behaviors and human

actions.

1.1 Overview

Figure 1.2 illustrates the structure of this thesis. Under the first-person

computer vision paradigm, this thesis work starts with the introduction to

first-person videos and the motivation of modeling human behavior using

first-person videos. Then this thesis introduces approaches developed to

model various aspects of human behavior. Specifically this thesis is organized

as the following chapters:

Chapter 2 presents a method for modeling human action in the form of

action segmentation. Human action is one of the most explicit forms of

human behavior. Other than its applications in augmented reality, human-

computer interaction and surveillance, the ability to automatically modeling

human actions from the first-person perspective can further be used to enable

3



First-person human behavior understanding

Human gaze 
prediction

Human action 
segmentation

Mutual 
influence 

between gaze 
and action

Figure 1.2: Structure of the thesis work. Human behavior modeling is studied

under the first-person vision paradigm and plays a central role in this thesis.

Human gaze behavior and human actions are separately explored, which is

followed by a study of their mutual correlation.

the machine to make its own decisions by techniques such as reinforcement

learning, which could pave the way for the future strong artificial intelligence.

Although the automatic segmentation of human actions has been well stud-

ied, most previous works [CZ17, CHEGCN15] focus on analyzing the videos

of third-person perspective, where actions could usually be clearly seen in

the video. However as first-person videos naturally record what the camera

wearer sees, the action taking place does not always happen within the vis-

ible portion of the video, due to the limited field of view and occlusions by

unrelated objects. This prevents previous works to achieve optimal perfor-

mance. Another underlying challenge is that first-person videos are usually

natural life-logging videos which tend to be long and complex. To solve the

aforementioned challenges, this chapter first describes the observation that

we humans can pinpoint the action even if it is not directly visible by reason-

ing about the previous and the following actions. Based on this observation

this chapter presents the idea of a graph-based reasoning module for refining

the segmentation result. The module can be built on most existing models

for action segmentation and is also computationally friendly when applied

to long videos. Experiments on first-person video datasets prove that the

proposed module can improve the performance of action segmentation when

4



applied on most backbone models.

Chapter 3 develops an approach for modeling human gaze behavior in

the form of gaze prediction, which is the first ever work to automatically

predict human’s task-dependent attention transition. Human gaze allows

us efficiently perceive the complex visual world by selectively attending to

important parts of the scene. This phenomenon can reflect the inner state

and intention of human [HUB+19] and thus is one essential part of human

behavior. Since human naturally look at visually salient stimuli as it allows

us to rapidly detect potential prey, predators, or mates in a cluttered visual

world, most prior works use different cues of visual saliency such as color,

contrast, and objectness for the automatic prediction of human gaze [PLN02].

Different from previous works, in this chapter I introduce a hybrid method

for gaze prediction that incorporates not only visual saliency but also the

task-dependent influence on human gaze. Experiments on multiple datasets

demonstrate that this method can significantly outperform previous gaze

prediction models by a large margin.

Chapter 4 extends the previously presented methods in Chapter 2 and

Chapter 3 by jointly modeling human gaze and actions. In a natural dy-

namic scene, the human perception via gaze and the human actions are not

isolated but deeply correlated: human actions alter the environment which

requires gaze to dynamically change [Vic09], while human gaze highlights

the important regions for more precise action recognition. Based on this ob-

servation, this chapter proposes to solve the coupled task of gaze prediction

and action recognition jointly by a mutual context network, such that the

knowledge of one task can improve the performance of the other. Using the

proposed model trained in an alternative fashion, we can get improved per-

formance in both tasks in multiple datasets, which strongly supports that the

mutual influence of human gaze action could be leveraged for better human

behavior modeling.

Chapter 5 first summarizes the contributions of this thesis and then offers

discussion on the vision of future work. Other than improving the robustness
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and efficiency of the existing works, this chapter further discuss the feasible

applications and use cases for human behavior modeling in various scenarios.

The vision of research theme to facilitate the applications is also presented

in this chapter.

Finally, a chapter of publications concludes this thesis.
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Chapter 2

Human Action and Human

Reasoning Modeling from

First-Person Perspective

2.1 Background

In the previous chapter, I introduced the background knowledge of first-

person human behavior modeling. To begin with, in this chapter I introduce

the method for modeling human actions from the first-person perspective.

For human action modeling, it is important to know what action is happen-

ing in a video, as well as when the action is happening. The task of knowing

when and what type of action is observed in a given video is called action seg-

mentation. In this chapter, I introduce the method for action segmentation

from the first-person perspective.

Because of the various potential applications such as human behavior

analysis [VW87], anomaly detection [CBK09] and robot learning [KKUG07],

the study of video action segmentation has attracted increasing research at-

tention [RAAS12, SMJ+16]. Video action segmentation aims at both tem-

porally locating each foreground action segment in the full untrimmed video

and recognizing the action category of each segment. Since it can be seen as a

combination of action localization [PCF19] and action recognition [TCSU08],

most early approaches address this problem by first try to segment the video
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into slices and then apply temporal classifiers on top of the video features of

each slice. The methods for slicing the videos can be divided into several cat-

egories: The first type is sliding window [KSDB14]. These methods typically

have very limited temporal receptive fields and thus cannot capture the full

pattern of action and non-action. The second group of works designs segmen-

tal models [LRVH16, PR14] however these methods often fail in capturing

the action patterns of a longer range since one action is only conditioned on

its previous action. Another type of work makes use of the recent recurrent

networks [SMJ+16, HFFN16]. These methods are proved to have only limited

span of attention [SMJ+16] which could be harmful to performance. Recent

works leverage temporal convolutional networks [LT18] to capture the long-

range dependency within the frames of the video [DX18, LFV+17, FG19], and

demonstrated promising results especially on the third-person videos taken

from a fixed viewpoint.

However, if the video contains partially occluded actions or the action is

beyond the video’s field of view, it remains difficult for existing methods to

perform well in such cases [ZAOT18]. For example, in Fig. 2.1 we showcase

an example video from the EPIC-Kitchens dataset [DDMF+18]. This video

is a first-person video and thus the field of view is changing. Nevertheless, we

as human beings can easily infer the action after take bottle and pour water

to be drink water by observing the sample images, although this drinking

action is not directly shown. The major cause for this is our ability of reason-

ing: based on our observation that the camera wearer first takes the bottle

to fill the glass and then puts down an empty glass after an up-and-down

head motion, we can reason about the relation of actions to find out what

happens in the middle. Without this reasoning ability, existing methods

based on convolutional neural networks cannot perform well in these limited

observation cases.

In this chapter, we target the task of modeling human action and human

reasoning, by enabling the reasoning ability of machines for the task of action

segmentation. As for the machine reasoning part, we use Graph Convolu-

tional Networks (GCNs) [KW17, DBV16] as a key tool to perform reasoning.

With the help of GCNs, we propose a novel model called Graph-based Tem-

poral Reasoning Module (GTRM) that can be built on top of most existing
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Figure 2.1: This figure showcase an example first-person video. Using the

backbone model, since the action of drink water cannot be directly observed

within the field of view, it detects the segment after pour water to be back-

ground. In this work, we propose a module called GTRM that can be built

on top of the backbone model to refine the action segmentation. The result

after refinement can successfully detect this segment to be drink water. This

is because the proposed GTRM learns the temporal relation between the ac-

tions. In this figure, we also show that our proposed GTRM can adjust the

temporal localization of actions by changing the action boundaries.

deep-learning based action segmentation models (we call it backbone models

in the following of this chapter) to refine a better action segmentation result.

The proposed GTRM learns to explicitly leverage the relation among multi-

ple actions for the refinement of the initial action segmentation result of the

backbone model. In the GTRM we first represent each segment as a node

of the graph and then construct two types of graphs dedicated to refining

the features of the nodes. The refinement is done by training the graphs

on node classification task and the node temporal boundary regression task

using GCN. One good property of this graph construction scheme is that

since a node can represent an action segment of arbitrary length. This al-
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lows the GCNs to operate on a flexible temporal receptive field, which makes

it possible to model both short and long-range temporal relations.

We choose to use two publicly available dataset for validating the effec-

tiveness of our proposed method: the EGTEA dataset [LLR18] and the

EPIC-Kitchens dataset [DDMF+18], mainly based on two reasons. Firstly,

compared with other datasets for action segmentation where the videos are

captured from a fixed, third-person point of view, the videos from these

two datasets are all first-person videos which makes the action segmentation

problem a lot more challenging. The major challenge lies in the limitation

of observation: the limited and moving field of view results in the invisibil-

ity of many actions. Also, severe occlusions caused by the camera wearer’s

hand or other interacting objects further aggravate the limitation in obser-

vation. Secondly, these datasets contain long videos (e.g .> 30000 frames)

and large numbers of action instances (e.g .> 100) appear in one video. This

severely affects the existing action segmentation models to function properly

and accurately and also enlarged the demand for capturing long-range tem-

poral relations between actions. Extensive experiments on the two datasets

strongly demonstrate that our GTRM is capable of refining the performance

of multiple backbone action segmentation models. We additionally show by

experiments that our model cooperates better with recurrent backbones. To

further test the usefulness of our GTRM, we also conduct experiments on

general third-person datasets that are widely used for action segmentation,

i.e.the 50Salads [SM13] dataset and the Breakfast [KAS14] dataset. The

results demonstrate that our proposed model is also helpful on the general

datasets, although the increase brought by our proposed model is not as

large as that in first-person datasets. The main contributions of this chap-

ter are summarized as follows: Firstly, this chapter is the first work that

explicitly leverages the relations among more than two actions for the task

of action segmentation. Secondly, we propose a novel method for modeling

the relation and do the reasoning, by constructing graphs using the back-

bone output and applying GCNs for reasoning on the graph. The GCNs are

trained to update the node representation based on the relations with its

neighbors to predict a better action segmentation. Lastly, our experiments

on two first-person datasets prove that our GTRM can strongly improve the
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action segmentation result of several state-of-the-art backbone models. Our

additional experiments on third-person datasets also supplement our claim.

The following content of this chapter is organized as follows: In Section 2.2

I introduce some related work. Section 2.3 offers the proposed graph-based

method GTRM on action segmentation. Experiment evaluation of the pro-

posed method is shown in Section 2.4. Finally, Section 2.5 concludes this

chapter and points out some future directions.

2.2 Related Works

2.2.1 Action Segmentation

Action segmentation methods predict a dense action label at every frame of

the video [LFV+17], which is different from action detection methods that

focus on outputting only a sparse set of foreground actions. The topic of

action segmentation has attracted much research attention [BKSS14, DX17,

LFV+17, GYDD18] because of the potential segmentation range from hu-

man computer interaction to anomaly detection [CBK09]. Early work of

action segmentation can be traced back to the line of work by Fathi et

al . [FFR11, FRR11, FR13] that used the cue of object state changes. They

design segmental models to ensure the temporal consistency between ac-

tions. After that, Cheng et al . [CFPC14] represent the video features as

bag of visual words and use hierarchical Bayesian non-parametric model as

a key tool for segmenting events in videos. One major drawback of the

previously mentioned works is that the optimization of the segmental mod-

els is typically slow, which makes these works inappropriate for process-

ing long videos. If it is safe to assume a strict ordering of actions, several

works [KRG17, DX18, RKG17, SY18] focus on weakly supervised temporal

action segmentation. But the assumption of ordering harms the generaliza-

tion of the models.

Since frame-wise features can result in fragmented output results, many

approaches apply classifiers with temporal smoothing. For example, some

works [KGS16, TFFK12, VB14] used probabilistic models to refine the bound-

aries of the segmented actions. Recently, temporal convolution networks
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(TCN) are proposed for action segmentation by Lea et al . [LFV+17] and have

shown very promising results. Because of the large temporal receptive field

brought by stacking temporal convolution layers, methods based on TCNs

surpass the traditional sliding window based methods [KSDB14, RAAS12].

Lei et al . [LT18] further ensembles deformable convolution and residual con-

nections on TCNs and achieves better performance. However, these two

models [LFV+17, LT18] only work on a downsampled temporal resolution.

Recently, Farha et al .proposed a modified version of TCN using dilated con-

volution kernels. They further stack multiple TCN blocks and showed that

the dilated TCN with multi-stage refinement is able to capture longer range

temporal dependencies [FG19]. The use of dilated convolution can avoid the

video to be downsampled by temporal pooling operations and thus could

operate on full temporal resolution. This method benchmarks the state-of-

the-art performance in action segmentation of third-person videos. While

remarkable progress has been made, all of the existing approaches are still

difficult in capturing the actions without direct observation, since none of the

existing methods have the relational reasoning ability to explicitly leverage

the relations among more than two actions for action segmentation.

In this work, we address this problem by assembling the human reason-

ing ability into the task of action segmentation. We propose to use graph

convolution network for reasoning by constructing the segmented video into

two graphs, in which each action segment represents a node in the graph.

With the graph representation, the node features can be fine-tuned based on

their neighbors connected by the graph edges. Therefore, the relation among

multiple actions is leveraged for a better action segmentation.

2.2.2 Graph Convolution Networks

Graph convolution networks (GCNs) are first proposed in [KW17] and soon

dominate the research field of reasoning because of their effectiveness in mod-

eling relation via their non-grid structures [LG18, LHZ+18]. After that,

GCNs are widely applied in various computer vision topics such as image

captioning [YPLM18], video action recognition [WZKX18, WG18, YXL18,

ZTHS19, ZSXS19] and semi-supervised learning [LHW18]. For instance,
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Pan et al . [PGZ19] used the natural graph structure of human joints and ap-

plied GCN for the task of action assessment. Zeng et al . [ZHT+19] proposed

a model using GCN for finding more accurate action localization. Techni-

cally our method is inspired by these works. Our proposed GTRM exploit

the reasoning ability of GCNs to explicitly model the temporal relations of

multiple actions for improving video action segmentation.

2.3 Proposed Method

Given an untrimmed video containing a total of T frames, action segmen-

tation targets to infer one action label for each frame. The ground-truth

of frames can be represented as Y gt = {ygt1 , · · · ,y
gt
T }, in which each element

ygtt ∈ {0, 1}C is given as an one-hot vector where the 1 in the vector indicates

the human labeled action class. Including the background class, we denote

C as the total number of classes. Our proposed module can be built on top

of most backbone model for action segmentation for fine-tuning the output

of the backbone model using graph-based temporal reasoning. We name our

proposed Graph-based Temporal Reasoning Module (GTRM).

We will explain the details of our proposed GTRM in the following part

of this section together with its training process and the implementation

details. Before going into technical details of the model we would like to first

describe the notations of the graph. In the following of this chapter, G(V , E)

denotes a graph with a set of N nodes V . As for the weight of the edge that

connects the nodes i and j, we denote it as e(i, j) ∈ E .

2.3.1 Overview of the Model

We illustrate the architecture of our GTRM in Fig. 2.2. In the figure we

show the backbone model as a three layer GRU, but it can be replaced by

most existing models for action segmentation. The backbone model takes

the frame-wise features F = {f1, · · · ,fT} extracted by feature extractors

like TSN [WXW+16] as input, and it will output a initial action segmen-

tation result represented by frame-wise class predictions Y = {y1, · · · ,yT}
where yt ∈ [0, 1]C . The input to our model is both the final output of the
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Figure 2.2: Illustration of our proposed Graph-based Temporal Relation

Module (GTRM) built on top of a 3-layer GRU backbone model. Our GTRM

construct graph nodes by mapping the backbone encoded representation of

each segment in the initial segmentation. The two graphs have different types

of edges and are respectively responsible for the segment boundary regression

task and the segment classification task. After representation refinement by

the GCNs, the node features are mapped back to frame-wise representations

for an improved action segmentation.

backbone model Y and the frame-wise d-dimensional hidden representations

R = {r1, · · · , rT} encoded by the backbone model.

The proposed GTRM is inspired by the recent success of using GCNs

for relational reasoning [ZHT+19, CRY+19, HGS19, HCK+17]. To learn the

temporal relations of actions, our proposed module makes use of two GCNs

called R-GCN and C-GCN. The nodes of the two graphs are identically

created using the hidden representations R from the backbone model. We

use the consecutive predictions in Y with the highest likelihood on the same

action category to construct one node in the graph. The graph edges and loss

on the graph training differentiate the two graphs by forcing the two graphs to

learn different relations between the nodes. For R-GCN, a segment boundary

regression loss is applied and a node classification loss is applied for C-GCN.

The two GCNs will refine the node representation by graph convolution

operations. After the refinement, we use the nodes to form a new frame-wise
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representation R̂, and combine with the backbone representation R to predict

a better frame-wise segmentation. There are in total three loss functions for

the proposed framework. The first is the cross-entropy segmentation loss on

the overall segmentation outputs. As stated before, there is one loss for each

of the GCN so we jointly train the whole framework including the backbone

model using the combined loss functions. We offer the details of the proposed

GTRM in the following of this section.

2.3.2 Representation-to-Graph (R2G) Mapping

The outputs of the backbone model are the action class likelihood Y and the

hidden representation R. Using Y and R for the graph construction is the

key step in our proposed model. We aim to map the representation R of the

backbone model to the graph nodes and refer this step Representation-to-

Graph (R2G) mapping for simplicity. The number of nodes N is determined

by the number of temporally ordered segments in Y . Let (ti,s, ti,e) repre-

sent the i-th action segment, where ti,s and ti,e respectively represent the

timestamp of the starting and ending frames of this segment. Each seg-

ment of Y is summarized into one node in the graph and the node feature

ai is obtained by using pooling operation (max pooling used in this work)

over the set of hidden representations corresponding to the action segment

{rti,s , · · · , rti,e}. In addition, since the temporal location of each segment

contains useful information such as ordering, we also encode the time infor-

mation to a dt-dimensional vector ui by feeding the time vector (ti,s, ti,e) to

a multi-layer perceptron. The representation xi for the i-th node is obtained

by concatenating ai and ui in a channel-wise manner.

Defining fully connected graph edges to model the temporal relations of

all action segments [WG18] can potentially result in noisy message passing

between unrelated actions that are temporally far apart. To better address

the action segmentation task, which essentially can be viewed as finding

the class label and temporal boundary of all action instances including the

background (no action), we construct different types of edges for the two

graphs where the edges of R-GCN correspond to the boundary regression

task and the edges of C-GCN to the classification task.
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R-GCN The target task of the R-GCN is segment boundary regression,

and its edges are defined to model the relation between neighboring segments

which directly determine the temporal boundary (i.e.the start and the end

frames) of the corresponding action segment. To this end, we only connect

each segment with the segments right next to it by computing the temporal

proximity between two segments. Defining p(i, j) as the temporal proximity

(inverse of the distance) between the middle frames of the i-th and j-th

segment normalized by the length of the video, the edges er(i, j) between the

i-th and j-th nodes in R-GCN are defined as

er(i, j) =

p(i, j) |i− j| ≤ 1

0 otherwise.
(2.1)

C-GCN In contrast, the target task of the C-GCN is segment classification,

and the edges have to take into account the relations among multiple actions

as they influence or condition on each other. For example, if we see a take

knife action and then a take potato action, it is highly likely that a cut

potato action will happen in the next few segments. We can infer the cut

potato action even when the potato is occluded by leveraging such temporal

relations. However, if two actions have a long temporal gap, they are unlikely

to influence each other. Thus, we define edges ec(i, j) in C-GCN based on

temporal proximity between the two nodes as

ec(i, j) =


p(i, j) |j − i| ≤ 1, ci ∨ cj = bg

p(i, j) |j − i| ≤ k, ci 6= bg, cj 6= bg

0 otherwise,

(2.2)

where bg represents the background class where no action happens. In other

words, each background node is linked only to its nearest neighbors, while

each of other nodes is also linked to k neighboring nodes.

Reasoning on Graphs

In both GCNs, all of the edge weights form the adjacency matrix Ac or Ar

with N × N dimensions. Following [WG18], we normalize the adjacency
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matrix by using the softmax function as

A(i, j) =
exp g(i, j)

ΣN
j=1 exp g(i, j)

. (2.3)

For reasoning on the graphs, we perform M -layer graph convolution for re-

fining the node representation. Graph convolution enables message passing

based on the graph structure, and multiple GCN layers further enable mes-

sage passing between non-connected nodes [KW17]. In an M -layer GCN,

the graph convolution operation of the m-th layer (1 ≤ m ≤ M) could be

represented as

X(m) = σ(AX(m−1)W (m)), (2.4)

where X(m) are the hidden representation of all the nodes with N × dm

dimensions at the m-th layer. W (m) is the weight matrix of the m-th layer,

and σ denotes the activation function. Following prior work [WG18], we

apply two activation functions namely Layer Normalization [BKH16] and

ReLU after each GCN layer. After the graph convolution operations, we

obtain updated node representations x̂ci and x̂ri for nodes in the C-GCN and

R-GCN, respectively.

We apply an FC layer on each node after the final GCN layer to perform

segment classification on the C-GCN and segment boundary regression on

the R-GCN. This operation is also known as readout operation [QWJ+18,

WLS+19] as it maps the refined node representation to the desired output.

The output of each C-GCN node is the class likelihood ĉi for the correspond-

ing segment. Following previous works on boundary regression [RHGS15,

GYN17], the output of each node in R-GCN is an offset vector ô = (ôi,c, ôi,l)

relative to the input segment. ôi,c is the offset of the segment center (nor-

malized by the length of the segment), and ôi,l is the offset of the length

of a segment in log scale. Given these offsets, it is trivial to compute the

predicted boundary t̂i,s, t̂i,e.

2.3.3 Graph-to-Representation (G2R) Mapping

After the graph convolution operations, the representation of each node is

updated by information propagation from its neighboring nodes. To perform
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action segmentation based on the updated representations, we inversely map

the updated graph node representations to frame-wise representations R̂ =

{r̂1, · · · , r̂T}. We fuse the representations from two GCNs via node-wise

summation, and then reconstruct r̂ by mapping the node representation to

all of the corresponding frames:

r̂t = x̂ci + x̂ri , ∀t ∈ {t̂i,s, · · · , t̂i,e}, (2.5)

where t̂i,s, t̂i,e are the temporal starting and ending frames of the i-th segment

predicted by the R-GCN. Similarly to previous work [ZXW+17, ZHT+19],

we concatenate r̂ with the original latent representation r from the backbone

model for obtaining the final action segmentation results. We apply a 1× 1

convolution layer on the concatenated representation followed by softmax as

activation function to obtain the final frame-wise action likelihood ŷ.

2.3.4 Training and Loss Function

We train the whole network including both the backbone model and our

GTRM using a combination of multiple loss functions. As for the action

segmentation outputs yt, ŷt, we apply the same loss function as [FG19] which

is a combination of cross entropy loss Lcls and a truncated mean squared

error Lt-mse designed to punish local inconsistency by encouraging adjacent

predictions to be similar:

Lseg = Lcls + λtLt-mse. (2.6)

We use the same cross entropy loss Lcls for C-GCN. The ground truth action

category of a segment is defined by the category of the closest ground truth

segment measured by temporal intersection over union (tIoU).

For R-GCN, we use smooth L1 loss as the regression loss Lreg. Similarly

with the C-GCN, the ground truth time information of a node is defined by

the temporally closest segment to this node. Denote ti,c = (ti,s + ti,e)/2 and

ti,l = ti,e− ti,s as the center and length of a segment, respectively, the ground

truth offset ogti = (ogti,c, o
gt
i,l) could be represented as:

ogti,c = (ti,c − tgti,c)/ti,l, ogti,l = log(ti,l/t
gt
i,l), (2.7)
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The combined loss function thus can be defined as

L =
T∑
i=1

Lseg(ygti ,yi) +
T∑
i=1

Lseg(ygti , ŷi)

+ λ1

N∑
i=1

Lcls(c
gt
i , ĉi) + λ2

N∑
i=1

Lreg(ogti , ôi).

(2.8)

2.3.5 Implementation Details

We implement our model using the Pytorch [PGC+17] library. We choose

to use d = 64 as the dimension of hidden representations. The multi-layer

perceptron for encoding the time representation ut is a fully connected layer

with sigmoid activation and 16 output channels. We use 2 layer GCNs in

all of our experiments, since we do not observe obvious performance increase

when adding more layers.

We adopt the Adam optimizer [KB14] with its default hyper-parameters

for training the proposed framework. The training process can be described

as follows: we first initialize the backbone model for 50 epochs with learning

rate 5× 10−4, without other parts of the model. We then fix the backbone

and train the GTRM for 50 epochs. After this, we finetune the whole network

for 100 epochs with a reduced learning rate of 1× 10−4. More details about

training can be found in the supplementary material. In all experiments, we

set λt = 0.15, λ1 = λ2 = 0.5 for loss functions.

2.4 Evaluation

In this section, we compare the performance of our proposed module built on

top of state-of-the-art models on challenging large-scale first-person datasets.

We also conduct ablation studies to examine the impact of each part of our

model. To further understand our we examine the performance of our GTRM

when built on top of existing backbone models on more general third-person

datasets.

Datasets Figure 2.3 compares different commonly-used video datasets based

on average action instances per video and average video length (in minutes),
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Figure 2.3: Dataset comparison by average action instances per video (blue)

and average video length (orange, right axis).

in which we divide them into three groups. The leftmost group are the THU-

MOS14 [IZJ+17] and ActivityNet [CHEGCN15] dataset. These datasets con-

tain one or two action instances per video and are usually used for the task

of action proposal [LLL+19], localization [PCF19] or detection [MJY+19,

XGC+19]. The Breakfast [KAS14] and 50Salads [SM13] dataset contain less

than 20 actions per video, and are the standard datasets for evaluation of ac-

tion segmentation methods [LT18]. The rightmost group contains two recent

large-scale datasets containing natural daily living activities from an first-

person perspective, EGTEA [LLR18] and EPIC-Kitchens [DDMF+18]. Due

to the unique perspective of egocentric recording, the actions sometimes hap-

pen out of the camera’s field of view (e.g .in Fig. 2.1), or critical informative

region is occluded by the hand. These characteristics make many actions in

EGTEA and EPIC-Kitchens not directly observable and they have to be in-

ferred from temporal relations. In the following sections, we mainly conduct

the experiments on these two datasets, while later we also show experimental

results on the Breakfast and 50Salads datasets.
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Evaluation Metrics For evaluating our model, we adopt several evalua-

tion metrics commonly used in action segmentation [LFV+17, LT18, FG19]:

frame-wise accuracy, segmental edit score, and the segmental F1 score at

overlapping thresholds τ/100 denoted by F1@τ . Frame-wise accuracy is one

of the most widely used metrics for evaluation of action segmentation. How-

ever, long actions tend to have a higher impact on this metric, while there

is no strong penalty on over-segmentation. In contrast, segmental edit score

and F1 score are evaluation metrics presented in [LRVH16, LFV+17] and

penalize over-segmentation errors. The segmental edit score penalizes the

case of over-segmentation, and the segmental F1 scores measure the quality

of the prediction.

2.4.1 Comparison with the State of the Art

In this section, we compare our model with several state-of-the-art models

on EGTEA and EPIC-Kitchens datasets (Table 2.1). The EGTEA dataset

contains 86 videos and has a total length of 29 hours. We focus on the

segmentation of the 19 action classes (i.e.verbs). For the EGTEA dataset we

perform a four-fold cross validation by randomly splitting the videos into four

partitions. The EPIC-Kitchens dataset contains 55 hours of daily living non-

scripted activities with 125 classes of actions. Since the ground-truth labels

of the test set are not publicly available, we follow [BNW+18] to split part of

the training set as train-test set. The video features for EGTEA and EPIC-

Kitchens are extracted by using I3D pretrained on Kinetics dataset [CZ17].

We down-sample the videos to 15 fps.

We use four closely related methods as baseline models. FC is a sim-

ple baseline that directly add a frame-wise classifier on the I3D-extracted

features. Bi-LSTM [SMJ+16] is a bi-directional temporal LSTM for ac-

tion segmentation. EDTCN [LFV+17] and MSTCN [FG19] are two of the

recent competitive models using temporal convolution networks to capture

long term frame dependencies.

We also include our own backbone using multi-layer GRU (m-GRU) in

the comparison. We report the performances of our GTRM built on top of

different backbone networks, by adding “+GTRM ” as the notation. Since
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EGTEA F1@{10,25,50} Edit Acc

FC [CZ17] 8.7 6.7 3.1 9.4 65.4

Bi-LSTM [SMJ+16] 27.0 23.1 15.1 28.5 70.0

EDTCN [LFV+17] 31.1 27.7 19.6 28.6 70.1

MSTCN [FG19] 32.1 28.3 18.9 32.2 69.2

m-GRU 32.6 27.7 17.6 36.0 67.1

Bi-LSTM+GTRM 33.3 29.2 19.9 32.1 70.7

EDTCN+GTRM 34.6 31.2 20.7 34.8 70.1

MSTCN+GTRM 36.6 29.7 18.6 32.2 68.4

m-GRU+GTRM 41.6 37.5 25.9 41.8 69.5

EPIC F1@{10,25,50} Edit Acc

FC [CZ17] 9.3 5.6 2.2 20.0 42.2

Bi-LSTM [SMJ+16] 19.0 11.7 5.0 29.1 43.3

EDTCN [LFV+17] 21.8 13.8 6.5 27.3 42.9

MSTCN [FG19] 19.4 12.3 5.7 25.3 43.6

m-GRU 20.2 15.2 7.7 30.5 40.3

Bi-LSTM+GTRM 25.1 17.3 8.8 35.9 43.5

EDTCN+GTRM 24.2 15.9 7.2 33.1 42.8

MSTCN+GTRM 24.4 15.4 7.2 32.5 43.7

m-GRU+GTRM 31.9 22.8 10.7 42.1 43.4

Table 2.1: Quantitative comparison with state-of-the-art models on the

EGTEA dataset (left) and EPIC-Kitchens dataset (right).

no previous results on EGTEA and EPIC-Kitchens datasets are available for

baseline models, all the reported results are based on our implementation.

As can be seen from and Table 2.1, comparing our model with the back-

bone models (without adding our GTRM), our model outperforms backbone

models by a large margin on F1 score and edit score, while performing compa-

rably well with respect to the frame-wise accuracy metric. The lower parts of

Table 2.1 summarize the performance of our proposed GTRM when built on

top of different backbones. As can be seen, the performance of all backbone

models mostly increases by adding GTRM, except the F1@50 and accuracy

of MSTCN in the EGTEA dataset. This shows that our GTRM is capable

of refining the backbone results in most cases. Interestingly, we find that

the gain of adding our GTRM is the largest with recurrent backbone models

(Bi-LSTM and m-GRU). This is possibly because the recurrent backbones

have a smaller span of attention, while our GTRM can work complementary

since the reasoning is performed with a larger temporal receptive field.

From the qualitative comparison in Fig. 2.4 (a), we can see that the

“take”, “put” and “close” actions are correctly detected by adding our GTRM.

Especially, due to the viewpoint limitation, the “close (fridge)” action is al-

most not observable in the video (since the camera wearer quickly turns his

attention to the location of the next step). The fact that this action is being

correctly detected by our model strongly supports our claim that our GTRM

can capture the relation of actions (as there is an “open (fridge)” action hap-

pened before) for better action segmentation. On the other hand, we can also
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Figure 2.4: Qualitative comparison of results for action segmentation task on

(a) EGTEA, and (b) EPIC dataset. Only part of the whole video is shown

for clarity. We can see in (a) that the take, put and close actions are correctly

detected by adding GTRM.

see weakness of our model in Fig. 2.4 (b) is that our GTRM depends on the

initial backbone output. The backbone model could not detect the “read”

action, and the “take”, “put” actions are predicted as a single “cut” action.

Conditioning on this output, it is still difficult for our GTRM to correctly

identify those actions. More qualitative results of different backbone models

with and without our proposed GTRM are in the supplementary material.

2.4.2 Ablation Studies

To fully understand the effect of each component of our model, we conduct

ablation studies on the EGTEA dataset by changing or deleting part of our

model and compare their performances. We first examine the impact of each

of the graphs in our model. For fair comparison, we replace each of the C-

GCN and R-GCN with a small 2 layer fully connected network (denoted by

FCN). In this case, each graph node is processed individually by the FCN

without considering the relations brought by the graph edges. We also exam-

ine the usefulness of time vector ut. Table 2.2 shows the relative performance

gain compared with using the m-GRU backbone alone. In the table, C-GCN
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Gain F1@{10,25,50} Edit Acc

C-GCN + FCN (w/o ut) 4.6 4.4 1.8 4.4 2.5

FCN only 6.2 6.1 4.7 4.5 3.3

R-GCN + FCN 6.8 6.8 4.8 6.0 2.1

C-GCN + FCN 6.4 6.0 4.7 3.5 2.7

C-GCN + R-GCN 10.0 9.8 6.8 7.5 2.8

Table 2.2: Ablation study of our model. We replace GCN with fully con-

nected network (FCN) and report the performance gain in absolute values

relative to the m-GRU backbone model.

+ FCN is the case where R-GCN is replaced by the fully connected network

and others follow the same rule. We can see that the performance using

GCN in general favors than that without GCN, which validates the useful-

ness of using relations between actions for action segmentation. Additionally,

we find that the time vector ut provides necessary information to the net-

work as adding ut improves the performance while without ut the task for

boundary regression cannot converge.

We also investigate the selection of parameter k, which is related to the

number of neighbors for each segment to aggregate information from. We

variant the value of k and show the experiment result on EGTEA dataset

in Fig. 2.5. Overall, the best performance is achieved with k = 8, while the

performance gain decreases starting from k = 16. We suspect this is be-

cause of irrelevant information propagation through the edges by connecting

the action segments that are too temporally distinct. Further ablation stud-

ies on the influence of edge weight and tools for modeling relation (e.g .1D

convolution on nodes) can be found in the supplementary material.

2.4.3 Results on Third-Person Datasets

To test the effectiveness of our proposed model on other general cases, we also

test our model performance on the 50Salads [SM13] and Breakfast [KAS14]

datasets. The 50Salads dataset contains 50 videos of salad making activities

with 17 action classes. We follow [SM13] to use a 5-fold cross validation
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Figure 2.5: Performance gain compared with the m-GRU backbone model

with different values of k. k = ∞ denotes the case that all nodes are con-

nected.

and report the average performance. The Breakfast dataset contains 1712

videos with a total length of 65 hours. There are 48 different actions while

on average 6 actions per video. We use the standard 4 splits [KAS14] and

report the average. For a fair comparison, we adopt the features from [FG19]

in the following experiments.

We build our GTRM on top of the current state-of-the-art approach

MSTCN [FG19]. Since MSTCN is based on temporal convolution networks,

we further test the model performance combined with a recurrent backbone

Bi-LSTM [SMJ+16]. The performance comparison on 50Salads dataset is

shown in Table 2.3, including both the result reported in [FG19] and result

with our implementation. Since there are on average 20 actions per video,

we adjust the parameter k to be 4. As can be seen, the performance of both

backbone models got improved by adding our GTRM. While the performance

gain of the MSTCN backbone is relatively marginal, the gain of Bi-LSTM

backbone is still significant. This phenomenon is the same as observed in the
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50Salads F1@{10,25,50} Edit Acc

MSTCN [FG19] 76.3 74.0 64.5 67.9 80.7

MSTCN(our impl.) 73.4 71.0 61.5 67.2 80.2

MSTCN+GTRM 75.4 72.8 63.9 67.5 82.6

Gain 2.0 1.8 1.4 0.3 2.4

Bi-LSTM [SMJ+16] 62.6 58.3 47.0 55.6 55.7

Bi-LSTM (our impl.) 62.2 61.3 53.7 53.5 70.1

Bi-LSTM+GTRM 70.4 68.9 62.7 59.4 81.6

Gain 8.2 7.6 9.0 5.9 11.5

Table 2.3: Results on the 50 Salads dataset. Performance gain in absolute

values by adding our GTRM on top is shown in dark rows.

EGTEA dataset, which shows that our GTRM works better with recurrent

backbones.

Since there was no previously reported results from Bi-LSTM, we only

use MSTCN as the backbone model for the Breakfast dataset. The per-

formance is summarized in Table 2.4. The breakfast dataset only contains

6 action instances per video, far less than the 50Salads dataset. Similarly

with the 50Salads dataset, the performance gain is relatively marginal. Also,

modeling relations among more neighbors by increasing k does not improve

the segmentation performance.

There could be mainly two reasons why the benefit of our GTRM is

limited on these two datasets. Firstly, as the 50Salads and Breakfast dataset

are taken from a fixed view camera capturing most of the human activities,

there are less cases of unobservable actions due to, e.g ., occlusions. Secondly,

the number of action instances is relatively small so that temporal patterns

can be captured to some extent by only using the backbone model.

2.4.4 Comparison with 1D Convolution

In our GTRM, we use GCN as a way to perform reasoning on the graph

structure. An alternative approach to perform reasoning on the temporal re-
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Breakfast F1@{10,25,50} Edit Acc

MSTCN [FG19] 52.6 48.1 37.9 61.7 66.3

MSTCN (our impl.) 57.3 53.4 41.4 58.8 60.0

MSTCN+GTRM (k = 2) 57.5 54.0 43.3 58.7 65.0

Gain 0.2 0.6 1.9 -0.1 5.0

MSTCN+GTRM (k = 4) 57.3 53.6 42.9 58.5 63.8

Gain 0.0 0.2 1.5 -0.3 3.8

Table 2.4: Result on the Breakfast dataset. Performance gain in absolute

values by adding our GTRM on top is shown in dark rows.

lation of segments is to perform 1D convolution on the sequence of segments.

While it can increase the computational cost and potentially aggregate irrel-

evant information (from, e.g ., background segments containing no action),

1D convolution can still gather information from the neighbourhood nodes

for updating the hidden representation of each node.

EGTEA F1@{10,25,50} Edit Acc

m-GRU 32.6 27.7 17.6 36.0 67.1

C-conv + R-conv 41.5 35.9 24.2 40.7 68.2

C-conv + R-GCN 41.4 35.7 23.2 41.2 68.2

C-GCN + R-conv 41.7 36.3 24.2 42.4 67.9

C-GCN + R-GCN 41.6 37.5 25.9 41.8 69.5

Table 2.5: Changing GCN operation to 1D convolution.

In this experiments, we replace either of R-CGN and C-GCN with 1D

convolution and compare the performances on the EGTEA dataset. Results

are shown in Table 2.5. C-conv + R-conv corresponds to the model where

both C-GCN and R-GCN are replaced with 1D convolution. C-conv + R-

GCN and C-GCN + R-conv denote the cases where either the C-GCN or

R-GCN is replaced with 1D convolution, respectively. C-GCN + R-GCN

corresponds to our originally reported result.
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Despite the fact that 1D convolution increases the computational com-

plexity especially with larger kernel sizes, the overall performance change

remains small. This illustrates the benefit of using GCN rather than 1D

convolution on nodes for reasoning the temporal relations of the action seg-

ments.

2.4.5 Comparison with Other Alternatives Tools for

Modeling Relation

Similarly with the previous section, the GCNs in our GTRM could be also

changed to other alternatives (e.g .LSTM). In this section we discuss the

effect on result and computational cost when GCNs are replaced by other

alternatives. These include bi-LSTM [SMJ+16], dilated convolution (dil.-

conv) [FG19] and 1D-convolution (1D-conv) introduced above. We also com-

pare the number of parameters, number of added parameters, and the FLOPs

added for each alternative.

variants F1@{10,25,50} Params ∆ Params ∆ FLOPs

None 32.6 27.7 17.6 1.53M 0 0

LSTM 28.1 18.0 1.95M 0.42M 18%

bi-LSTM [SMJ+16] 33.7 28.5 17.9 2.38M 0.85M 23%

dil.-conv [FG19] 39.8 34.0 22.6 2.50M 0.97M 20%

1D-conv 41.5 35.9 24.2 3.79M 2.26M 47%

GTRM 41.6 37.5 25.9 1.85M 0.32M 8%

Table 2.6: Number (and added number) of parameters, added FLOPs of

different variants of GTRM on the EGTEA dataset.

Table 2.6 shows the number of parameters and its increase from the base-

line (None), together with the increase in FLOPs. Overall, GCN not only

achieves the best performance but is also significantly faster and requires

much fewer parameters than other methods such as 1D convolution and re-

current network. As shown in the table, our GTRM uses much fewer pa-

rameters and is significantly faster than the best baseline (1D-conv). All the
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other baselines mentioned in the previous paragraph also take up much more

(∼ 3× more) computational time than our proposed model (except FCN).

2.4.6 Influence of Edge Weighting

In this section we discuss the influence of different edge weight designs in

R-GCN and C-GCN. While in our GTRM edges are weighted according to

the temporal distances, it is also possible to use uniform weights on each

edge which still enables message passing between connected nodes.

We replace the edge weight of either C-GCN or R-GCN to uniform weight-

ing and compare the performance on the EGTEA dataset. Experimental

results are summarized in Table 2.7. C-Uni+R-Uni is the case where both

GCNs use uniform weight. C-Uni+R-GCN and C-GCN+R-Uni indi-

cates the cases where only edges in C-GCN or R-GCN is changed to uniform

weight, respectively. C-GCN+R-GCN is our reported result.

Gain F1@{10,25,50} Edit Acc

m-GRU 32.6 27.7 17.6 36.0 67.1

C-Uni + R-Uni 39.6 34.2 23.2 41.3 67.4

C-Uni + R-GCN 40.9 35.9 24.8 41.4 67.4

C-GCN + R-Uni 40.6 35.8 24.1 41.2 67.4

C-GCN + R-GCN 41.6 37.5 25.9 41.8 69.5

Table 2.7: Changing edge weight to uniform weight.

We can see that, even with the uniform edge weights, the performance

is far better than the baseline m-GRU. This demonstrates the importance

of modeling temporal relations among action segments for a better action

segmentation. The performance is further improved with our proposed edge

weighting scheme, and supports the effectiveness of the distance-based weight

design.
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2.4.7 Qualitative Results

In this section, we show more qualitative results on the Breakfast dataset

(Fig 2.6) and the 50Salads dataset (Fig 2.7). In both figures, we show the

ground truth segmentation results in the first row (a), results of MS-TCN

in the second row (b), and the result of MS-TCN with our proposed GTRM

on top in the third row (c). We can see that in these two datasets, while

adding our proposed GTRM on top of MS-TCN improve the overall result,

the influence is relatively small.
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Figure 2.6: Qualitative results on the Breakfast dataset. Result is shown in

full video length. Corresponding results are: (a) Ground truth, (b) MS-TCN,

(c) MS-TCN + GTRM.

2.4.8 Limitations and Future Work

As discussed in Section 2.4.1, one of the limitations of our model is that it

relies on the backbone model. If the backbone model output a poor result,

our model can only slightly improve the segmentation performance.

Another limitation is that, if the backbone outputs are heavily frag-
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Figure 2.7: Qualitative results on the 50Salads dataset. Result is shown in

full video length. Corresponding results are: (a) Ground truth, (b) MS-TCN,

(c) MS-TCN + GTRM.

mented, the constructed graph would be large and the optimization becomes

very inefficient. This also prevents us from building our model on top of the

FC baseline. While it is possible to filter the action segments and ignore the

small segments in the graph construction step, it is still an important fu-

ture work to examine approaches to process the graph convolution in a more

efficient way. Using additional information like eye-tracker or depth sen-

sor, or using techniques such as adaptive sampling [HZRH18] or stochastic

training [CZS17], will be promising candidates for future investigation.

2.5 Conclusion

This chapter aim to enhance the automatic modeling of human actions in

long and complex first-person videos. In this chapter, we presented a novel

approach for modeling action relations aiming at the task of action segmen-

tation which can be built on top of most existing neural networks for action
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segmentation. To model the temporal relations, we construct two graphs

and use GCNs to perform reasoning on the graphs based on two different

criteria. After updating the node representations, they are mapped back to

individual frames as an updated representation for final action segmentation.

Extensive experiments demonstrate that our model can effectively learn to

use relations for better action segmentation, and demonstrated performance

improvements brought by our model.

There still exists a lot of work to do for human behavior modeling. I will

address the human attention modeling and explore the correlation of human

gaze and actions in the next chapters.
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Chapter 3

Human Attention Modeling

from First-Person Perspective

In the previous chapter, I introduced the modeling of human action and hu-

man reasoning from the first-person perspective. Since humans take actions

based on their perception of the surrounding environment, the way of hu-

mans perceive the world is also an important perspective of human behavior.

If the knowledge of human perception can be transferred to the machines, it

could enable a lot of applications such as efficient computation and medical

robots. In this chapter, I focus on the modeling of human attention via the

task of first-person gaze prediction. Since gaze is one of the primary forms

of human attention and could be measured by eye-trackers, it is a good early

step toward understanding the general human attention. In this chapter, I

introduce my work that uses the cue of attention transition for the task of

first-person gaze prediction.

3.1 Background

With the cameras and batteries becoming more and more portable, wearable

cameras are receiving increasing popularity in the past few years. Accompa-

nied by the increase of wearable cameras, the demand for automatic analysis

of videos captured from a first-person perspective is also rising, which makes

first-person (or egocentric) vision an emerging field in computer vision. One

33



specific characteristic of first-person vision is the modeling of the camera

wearer’s point-of-gaze, as gaze contains not only important information about

the objects being interacted with but also the intent of the camera wearer.

The automatic modeling of the human gaze can be used to infer impor-

tant regions in images and videos for reducing the computational cost in the

learning and inference procedures of various applications [FLR12, XML+15].

Given a first-person video, the goal of this chapter is to develop a com-

putation model for predicting the camera wearer’s point-of-gaze, i.e., gaze

prediction. Gaze prediction has been extensively studied during the past few

decades, but most previous works formulated it as a saliency detection prob-

lem to find image or video regions that are likely to attract human attention.

This saliency-based paradigm is based on the nature that the human visual

system are naturally evolved to be sensitive to visually salient regions such

as color, motion, or contrast, such that humans can easily find the predators

or preys. However, it is hard for the saliency-based gaze prediction models

to generalize to natural dynamic scenes, e.g. cooking in a kitchen, where

high-level knowledge of the task has a strong influence on human attention.

Humans use series of gaze fixations to perceive the surrounding environ-

ment in a natural dynamic scene. Since the gaze naturally points to the

objects/regions related to human interactions, the transition of human at-

tention is profoundly related to the undergoing task. Especially in object

manipulation scenarios, the task carried out by the camera wearer will de-

termine a certain flow of objects or places being attended on so there will

be a certain pattern of attention transition. For instance, to take a bottle of

water out of the fridge, a person would first fixate at the door of the fridge,

opens the fridge door, and then change the attention to the bottle in the

fridge so as to grasp it. Therefore, we argue that to achieve a more accurate

gaze prediction, it is necessary to explore the use of task-dependent patterns

in attention transition.

In this chapter, we propose a hybrid deep-learning based model for the

task of human gaze prediction to fuse the information of both bottom-up

visual saliency and task-dependent attention transition learned from consec-

utively attended image regions. Three modules contribute to the proposed

model: (1) The first module is a two-stream Convolutional Neural Network
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(CNN) that generates saliency maps directly from video frames in a bottom-

up fashion, and (2) the second module aims to generate gaze prediction in

a top-down manner using the information from task-related attention tran-

sition. It includes a recurrent neural network and a fixation state predictor

and generates an attention map for each frame based on the previously fix-

ated regions and head motion. It is built based on two assumptions. The

first assumption is that a person’s gaze tends to be established on the same

object during each fixation, and a large gaze shift is almost always accompa-

nied with a large head motion [Lan04]. The second assumption is that the

patterns in the temporal shift between regions of attention can be learned

from training data since they are dependent on the performed task. (3) The

last module is a small fully convolutional network to fuse the output of the

previous two modules and generate a final gaze prediction map, from which

the final prediction of 2D gaze position is made.

The main contributions of this chapter are: (1) To the best of our knowl-

edge, this is the first model that leverages both bottom-up visual saliency

and task-dependent attention transition for the task of gaze prediction from

first-person videos. (2) We propose a novel recurrent network based module

for learning the patterns of attention transition: the temporal shift of gaze

fixations. This attention transition module can be used alone to predict the

region of attention based on the video and the previous fixations. (3) The

proposed approach achieves state-of-the-art gaze prediction performance on

multiple public first-person activity datasets.

The remaining content of this chapter is organized as follows: Section

3.2 briefly reviews the related works about saliency prediction and gaze pre-

diction. Section 3.3 describes the architecture and main components of our

proposed hybrid model. We demonstrate the performance evaluation on two

datasets in Section 3.4. Finally, the conclusions are given in Section 3.5.
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3.2 Related Works

3.2.1 Visual Saliency Prediction.

Visual saliency is a quality of image regions that are more likely to attract

human attention or gaze fixations than their neighbors [BI13]. One direc-

tion of visual saliency research used the feature integration theory [TG80]

to distinguish the image region from its neighbors by some distinct visual

features like brightness, contrast, and color. Itti et al . [IKN98] lead the

research of computationally modeling visual saliency in bottom-up fashion,

which is followed-up by various works such as a spectral clustering-based

model [HHK12] and a graph-based saliency model [HKP07]. Recently Con-

volutional Neural Network (CNN) has made remarkable progress on model-

ing bottom-up visual saliency [LKWZ14, HSBZ15, PSGiN+16] and the CNN

based saliency models greatly improved the performance. However, all of the

pre-mentioned methods do not only used bottom-up visual saliency as the

main cue and ignore the high-level task-related attention information such as

the focus on a certain task-dependent object. Therefore, these models often

fail to model natural human gaze in dynamic scenes.

Other than the aforementioned bottom-up visual saliency models, ex-

ploiting high-level information using top-down mechanisms for visual saliency

prediction is receiving an increasing amount of research attention. For in-

tegrating top-down knowledge, some methods tried to guide the bottom-up

features using high-level context of the goal and objects [FBR05, WK06], and

others [PI07, BSI12] constructed a separate top-down visual saliency model

and fused the two outputs in the final step. For example, in [TOCH06], the

high-level scene context is integrated into the low-level features for saliency

modeling. Very recently, researchers begin to use high-level semantic infor-

mation in saliency models based on deep neural networks. Since the CNNs

are trained by calculating partial derivatives of the prediction and the labels,

some works [SVZ13, CLY+15] trace the partial derivatives with respect to

input image regions and use the derivatives to generate a saliency map of

each class. Zhao et al . [ZOLW15] designed a model for detecting the salient

object by combining the local context of image pixels and the global infor-
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mation of the whole image. In [RDZS17], the authors used image captions

as high-level information to construct a region-to-word mapping for learning

the visual saliency.

However, none of the previous methods explored the temporal patterns

of human attention transition inherent in a complex task. In this chapter, we

propose to learn the task-dependent attention transition on how gaze shifts

between different objects/regions to better model human attention in natural

dynamic scenes.

3.2.2 First-Person Gaze Prediction

First-person vision (a.k.a, egocentric vision) focuses on automatic analysis of

first-person videos recorded with wearable cameras and is a rapidly emerg-

ing research area because of the commercial success of wearable cameras. A

unique and significant component of first-person vision is egocentric gaze (or

first-person gaze), since it can play an important role in multiple applica-

tions such as first-person action recognition [FLR12] and video summariza-

tion [XML+15]. Although previous works revealed the correlation between

bottom-up saliency and the spatial region of gaze fixation [PLN02], it has

been found that only using bottom-up visual saliency based models can result

in bad performance in modeling human gaze in first-person videos [YSO+10].

Thus, previous works on first-person gaze prediction focus on integrating dif-

ferent cues to best model human gaze. For example, Yamada et al. [YSO+11]

presented exploited the correlation between gaze and head motion for pre-

dicting gaze. In their model, a bottom-up saliency map is combined with an

attention map obtained based on camera rotation and translation to infer

the final egocentric gaze position. Li et al. [LFR13] explored using different

cues specific for first-person videos for modeling gaze in hand manipula-

tion tasks. These cues include the position of hand and the motion of the

head/hand. They built a graphical model for leveraging the cues and mod-

eled the temporal behavior of gaze as latent variables to improve the gaze

prediction. However, their model may not generalize well to other activities

where hands are not always involved, because of the dependency on hand-

crafted pre-defined first-person cues. Recently, Zhang et al. [ZTMHL+18]
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Figure 3.1: Our proposed gaze prediction model is mainly composed by these

components: a feature encoding module, a saliency prediction module, an

attention transition module and a late fusion module. We represent ground

truth gaze positions as red cross.

proposed a Generative Adversarial Network (GAN) based model for model-

ing current human gaze and forecasting future gaze positions in first-person

videos. They first generate future frames using the current video frame via

GAN, and then predict gaze positions on the generated future frames using

a saliency-based CNN with 3D convolution.

In this chapter, we propose a new hybrid model to predict gaze in first-

person videos, which combines bottom-up visual saliency with task-dependent

attention transition. To the best of our knowledge, this is the first work to

explore the patterns in attention transition for first-person gaze prediction.

By learning task-dependent attention transition, our model can exploit the

temporal context of gaze fixations which greatly improves gaze prediction

accuracy.

3.3 Proposed method

In this section, we first present the overview of the proposed gaze prediction

model and then explain in detail about each component. We offer the details

of training the model at the end of this section.
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3.3.1 Model Architecture

Our model takes as input consecutive video frames and output a gaze po-

sition in each frame. To leverage both bottom-up visual saliency and task-

dependent attention transition, we propose a hybrid model that 1) predicts

a saliency map from each video frame, 2) predicts an attention map by ex-

ploiting temporal context of gaze fixations, and 3) fuses the saliency map

and the attention map to output a final gaze map.

The model architecture is depicted in Figure 3.1. The feature encod-

ing module is a two-stream encoder [SZ14a] assembled from a spatial Con-

volutional Neural Network (S-CNN) and a temporal Convolutional Neural

Network (T-CNN). The S-CNN and T-CNN extract latent representations

from a single RGB image and a stack of optical flow images respectively.

The saliency prediction module (SP) generates a saliency map based on the

extracted latent representation. The attention transition module generates

an attention map based on previous gaze fixations and head motion. The

late fusion module combines the results of saliency prediction and attention

transition to generate a final gaze map. The details of each module will be

described in the following part.

3.3.2 Feature Encoding

At time t, the current video frame It and stacked optical flow Ot−τ,t are fed

into S-CNN and T-CNN to extract latent representations F S
t = hS(It) from

the current RGB frame, and F T
t = hT (Ot−τ,t)from the stacked optical flow

images for later use. Here τ is fixed to be 10 following [SZ14a].

The feature encoding network of S-CNN and T-CNN follows the archi-

tecture of the first five convolutional blocks in Two Stream CNN [SZ14a],

while omitting the final max pooling layer. We choose to use the output

feature map of the last convolution layer from the 5-th convolutional group,

i.e., conv5 3. Further analysis of different choices of deep feature maps from

other layers is described in Section 3.4.4.
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3.3.3 Saliency Prediction Module

Biologically, human tends to gaze at an image region with high saliency, i.e.,

a region containing unique and distinctive visual features [SMS13]. In the

saliency prediction module of our gaze prediction model, we learn to generate

a visual saliency map which reflects image regions that are likely to attract

human gaze. We fuse the latent representations F S
t and F T

t as an input

to a saliency prediction decoder (denoted as S) to obtain the initial gaze

prediction map Gs
t (Eq. 3.1). We use the “3dconv + pooling” method of

[FPZ16] to fuse the two input feature streams. Since our task is different

from [FPZ16], we modify the kernel sizes of the fusion part, which can be

seen in detail in Section 3.3.7. The decoder outputs a visual saliency map

with each pixel value within the range of [0, 1]. Details of the architecture

of the decoder is described in Section 3.3.7. The equation for generating the

visual saliency map is:

Gs
t = S(F S

t , F
T
t ) (3.1)

However, a saliency map alone does not predict accurately where people

actually look [YSO+10], especially in first-person videos of natural dynamic

scenes where the knowledge of a task has a strong influence on human gaze.

To achieve better gaze prediction, high-level knowledge about a task, such as

which object is to be looked at and manipulated next, has to be considered.

3.3.4 Attention Transition Module

During the procedure of performing a task, the task knowledge strongly influ-

ences the temporal transition of human gaze fixations on a series of objects.

Therefore, given previous gaze fixations, it is possible to anticipate the im-

age region where next attention occurs. However, direct modeling the object

transition explicitly such as using object categories is problematic since a

reliable and generic object detector is needed. Motivated by the fact that

different channels of a feature map in top convolutional layers correspond well

to spatial responses of different high-level semantics such as different object

categories [CZX+17, ZKL+16], we represent the region that is likely to attract

human attention by weighting each channel of the feature map differently.

We train a Long Short Term Memory (LSTM) model [HS97] to predict a
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Figure 3.2: The attention transition module is composed of a channel-weight

extractor, an LSTM and a fixation predictor.

vector of channel weights which is used to predict the region of attention at

next fixation. Figure 3.2 depicts the framework of the proposed attention

transition module. The module is composed of a channel weight extractor

(C), a fixation state predictor (P), and a LSTM-based weight predictor (L).

The channel weight extractor takes as input the latent representation F S
t−1

and the predicted gaze point gt−1 from the previous frame. F S
t−1 is in fact

a stack of feature maps with spatial resolution 14 × 14 and 512 channels.

From each channel, we project the predicted gaze position gt−1 onto the

14×14 feature map, and crop a fixed size area with height Hc and width Wc

centered at the projected gaze position. We then average the value of the

cropped feature map at each channel, obtaining a 512-dimensional vector of

channel weight wt−1:

wt−1 = C(F S
t−1, gt−1) (3.2)

where C(·) indicates the cropping and averaging operation, wt−1 is used as

feature representation of the region of attention around the gaze point at

frame t− 1.

The fixation state predictor takes the latent representation of F T
t−1 as

input and outputs a probabilistic score of fixation state fpt−1 = P (F T
t−1) ∈

[0, 1]. Basically, the score tells how likely fixation is occurring in the frame

t − 1. The fixation state predictor is composed by three fully connected

layers followed by a final softmax layer to output a probabilistic score for

41



gaze fixation state.

We use a LSTM to learn the attention transition by learning the tran-

sition of channel weights. The LSTM is trained based on a sequence of

channel weight vectors extracted from images at the boundaries of all gaze

fixation periods with ground-truth gaze points, i.e. we only extract one chan-

nel weight vector for each fixation to learn its transition between fixations.

During testing, given a channel weight vector wt−1, the trained LSTM out-

puts a channel weight vector L(wt−1) that represents the region of attention

at next gaze fixation. We also consider the dynamic behavior of gaze and

its influence on attention transition. Intuitively speaking, during a period

of fixation, the region of attention tends to remain unchanged, and the at-

tended region changes only when saccade happens. Therefore, we compute

the region of attention at current frame wt as a linear combination of previ-

ous region of attention wt−1 and the anticipated region of attention at next

fixation L(wt−1), weighted by the predicted fixation probability fpt−1:

wt = fpt−1 · wt−1 + (1− fpt−1) · L(wt−1) (3.3)

Finally, an attention map Ga
t is computed as the weighted sum of the

latent representation F S
t at frame t by using the resulting channel weight

vector wt:

Ga
t =

n∑
c=1

wt[c] · F S
t [c] (3.4)

where [c] denotes the c-th dimension/channel of wt/F
S
t respectively.

3.3.5 Late Fusion

We build the late fusion module (LF) on top of the saliency prediction module

and the attention transition module, which takes Gs
t and Ga

t as input and

outputs the predicted gaze map Gt.

Gt = LF (Gs
t , G

a
t ) (3.5)

Finally, a predicted 2D gaze position gt is given as the spatial coordinate of

maximum value of Gt.
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3.3.6 Training

For training gaze prediction in saliency prediction module and late fusion

module, the ground truth gaze map Ĝ is given by convolving an isotropic

Gaussian over the measured gaze position in the image. Previous work

used either Binary Cross-Entropy loss [KWW16], or KL divergence loss

[ZTMHL+18] between the predicted gaze map and the ground truth gaze

map for training neural networks. However, these loss functions do not work

well with noisy gaze measurement. A measured gaze position is not static

but continuously quivers in a small spatial range, even during fixation, and

conventional loss functions are sensitive to small fluctuations of gaze. This

observation motivates us to propose a new loss function, where the loss of pix-

els within small distance from the measured gaze position is down-weighted.

More concretely, we modify the Binary Cross-Entropy loss function (Lbce)
across all the N pixels with the weighting term 1 + di as:

Lf (G, Ĝ) = − 1

N

N∑
i=1

(1+di)
{
Ĝ[i] · log(G[i])+(1− Ĝ[i]) · log(1−G[i])

}
(3.6)

where di is the euclidean distance between ground truth gaze position and

the pixel i, normalized by the image width.

For training the fixation state predictor in the attention transition mod-

ule, we treat the fixation prediction of each frame as a binary classification

problem. Thus, we use the Binary Cross-Entropy loss function for training

the fixation state predictor. For training the LSTM-based weight predictor in

the attention transition module, we use the mean squared error loss function

across all the n channels:

Lmse(wt, ŵt) =
1

n

n∑
i=1

(wt[i]− ŵt[i])2 (3.7)

where wt[i] denotes the i-th element of wt.

3.3.7 Implementation Details

We describe the network structure and training details in this section. Our

implementation is based on the PyTorch [PGC+17] library. The feature en-

coding module follows the base architecture of the first five convolutional
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blocks (conv1 ∼ conv5 ) of VGG16 [SZ14b] network. We remove the last

max-pooling layer in the 5-th convolutional block. We initialize these convo-

lutional layers using pre-trained weights on ImageNet [DDS+09]. Following

[SZ14a], since the input channels of T-CNN is changed to 20, we average the

weights of the first convolution layer of T-CNN part. The saliency prediction

module is a set of 5 convolution layer groups following the inverse order of

VGG16 while changing all max pooling layers into upsampling layers. We

change the last layer to output 1 channel and add sigmoid activation on top.

Since the input of the saliency prediction module contains latent representa-

tions from both S-CNN and T-CNN, we use a 3d convolution layer (with a

kernel size of 1×3×3) and a 3d pooling layer (with a kernel size of 2×1×1)

to fuse the inputs. Thus, the input and output sizes are all 224 × 224. The

fixation state predictor is a set of fully connected (FC) layers, whose output

sizes are 4096,1024,2 sequentially. The LSTM is a 3-layer LSTM whose input

and output sizes are both 512. The late fusion module consists of 4 convolu-

tion layers followed by sigmoid activation. The first three layers have a kernel

size of 3 × 3, 1 zero padding, and output channels 32,32,8 respectively, and

the last convolution layer has a kernel size of 1 with a single output channel.

We empirically set both the height Hc and width Wc for cropping the latent

representations to be 3.

The whole model is trained using the Adam optimizer [KB14] with its

default settings. We fix the learning rate as 1e-7 and first train the saliency

prediction module for 5 epochs for the module to converge. We then fix the

saliency prediction module and train the LSTM-based weight predictor and

the fixation state predictor in the attention transition module. Learning rates

for other modules in our framework are all fixed as 1e-4. After training the

attention transition module, we fix the saliency prediction and the attention

transition module to train the late fusion module in the end.

3.4 Evaluation

We first evaluate our gaze prediction model on two public first-person ac-

tivity datasets namely GTEA Gaze and GTEA Gaze Plus. We com-

pare the proposed model with other state-of-the-art methods and provide
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detailed analysis of our model through ablation study and visualization of

outputs from different modules. Furthermore, to examine our model’s ability

in learning attention transition, we visualize output of the attention transi-

tion module on a newly collected test set from GTEA Gaze Plus dataset

(denoted as GTEA-sub).

3.4.1 Datasets

We introduce the datasets used for gaze prediction and attention transition.

GTEA Gaze contains 17 video sequences of kitchen tasks performed by

14 subjects. Each video clip lasts for about 4 minutes with the frame rate of

15 fps and an image resolution of 480 × 640. We use videos 1, 4, 6-22 as a

training set and the rest as a test set as in Yin et al. [LFR13].

GTEA Gaze Plus contains 37 videos with the frame rate of 24 fps

and an image resolution of 960 × 1280. In this dataset each of the 5 sub-

jects performs 7 meal preparation activities in a more natural environment.

Each video clip is 10 to 15 minute long on average. Similarly to [LFR13],

gaze prediction accuracy is evaluated with 5-fold cross validation across all

5 subjects.

GTEA-sub contains 227 video frames selected from the sampled frames

of GTEA Gaze Plus dataset. Each selected frame is not only under a gaze

fixation, but also contains the object (or region) that is to be attended at

the next fixation. We manually draw bounding boxes on those regions by

inspecting future frames. The dataset is used to examine whether or not our

model trained on GTEA Gaze Plus (excluding GTEA-sub) has successfully

learned the task-dependent attention transition.

3.4.2 Evaluation Metrics

We use two standard evaluation metrics for gaze prediction in first-person

videos: Area Under the Curve (AUC) [BTSI13a] and Average Angular Error

(AAE) [RDM+13a]. AUC is the area under a curve of true positive rate

versus false positive rate for different thresholds on the predicted gaze map.

It is a commonly used evaluation metric in saliency prediction. AAE is the

45



average angular distance between the predicted and the ground truth gaze

positions.

3.4.3 Results on Gaze Prediction

Baselines

We use the following baselines for gaze prediction:

• Saliency prediction algorithms : We compare our method with several

representative saliency prediction methods. More specifically, we used

Itti’s model [IK00], Graph Based Visual Saliency (GBVS [HKP07]),

and a deep neural network based saliency model as the current state of

the art (SALICON [HSBZ15]).

• Center bias : Since first-person gaze data is observed to have a strong

center bias, we use the image center as the predicted gaze position as

in [LFR13].

• Gaze prediction algorithms : We also compare our method with two

state-of-the-art gaze prediction methods: the first-person cue-based

method (Yin et al. [LFR13]), and the GAN-based method (DFG

[ZTMHL+18]). Note that although the goal of [ZTMHL+18] is gaze

anticipation in future frames, it also reported gaze prediction in the

current frame.

Performance Comparison

We first give the quantitative comparison of the results of different methods

on two datasets in Table 3.1. Clearly, our method significantly outperforms

all baselines on both datasets, particularly on the AAE score. Although

there is only a small improvement on the AUC score, it can be seen that

previous method of DFG [ZTMHL+18] has already achieved quite high score

thus the space of improvement is limited. Besides, we have observed from ex-

periments that high AUC score does not necessarily mean high performance

of gaze prediction partly because the computation of AUC score is based on

the similarity of two probability maps and our goal is to predict a 2D gaze
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Table 3.1: Performance comparison of different methods for gaze prediction

on two public datasets. Higher AUC (or lower AAE) means higher perfor-

mance.

Metrics
GTEA Gaze Plus GTEA Gaze

AAE (deg) AUC AAE (deg) AUC

Itti et al. [IK00] 19.9 0.753 18.4 0.747

GBVS [HKP07] 14.7 0.803 15.3 0.769

SALICON [HSBZ15] 15.6 0.818 16.5 0.761

Center bias 8.6 0.819 10.2 0.789

Yin et al. [LFR13] 7.9 0.867 8.4 0.878

DFG [ZTMHL+18] 6.6 0.952 10.5 0.883

Our full model 4.0 0.957 7.6 0.898

position. Since our goal is to predict a 2D gaze position on each frame and

AAE measures the average angular distance between the predicted and the

ground truth gaze positions, we believe that the AAE score is a more appro-

priate metric for gaze prediction. The overall performance on GTEA Gaze is

lower than that on GTEA Gaze Plus. The reason might be that the number

of training samples in GTEA Gaze is smaller and over 25% of ground truth

gaze measurements are missing. It is also interesting to see that the center

bias outperforms all saliency-based methods and works only slightly worse

than Yin et al. [LFR13] on GTEA Gaze Plus, which demonstrates the strong

spatial bias of gaze in first-person videos.

Ablation Study

To study the effect of each module of our model, and the effectiveness of our

modified binary cross entropy loss (Equation 3.6), we conduct an ablation

study and test each component on both GTEA Gaze Plus and GTEA Gaze

datasets. Our baselines include: 1) single-stream saliency prediction with

binary cross entropy loss (S-CNN bce and T-CNN bce), 2) single-stream

saliency prediction with our modified bce loss (S-CNN and T-CNN), 3)
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Table 3.2: Results of ablation study

Metrics
GTEA Gaze plus GTEA Gaze

AAE (deg) AUC AAE (deg) AUC

S-CNN (bce) 5.61 0.893 9.90 0.854

T-CNN (bce) 6.15 0.906 10.08 0.854

S-CNN 5.57 0.905 9.72 0.857

T-CNN 6.07 0.906 9.6 0.859

SP (bce) 5.63 0.918 9.53 0.860

SP 5.52 0.928 9.43 0.861

AT 5.02 0.940 9.51 0.857

Our full model 4.05 0.957 7.58 0.898

two-stream saliency prediction with bce loss (SP bce), 4) two-stream in-

put saliency prediction with our modified bce loss (SP), 5) the attention

transition module (AT), and our full model.

Table 3.2 shows the results of the ablation study. The comparison of

the same framework with different loss functions shows that our modified

bce loss function is more suitable for the training of gaze prediction in first-

person video. The SP module performs better than either of the single-stream

saliency prediction (S-CNN and T-CNN), indicating that both spatial and

temporal information are needed for accurate gaze prediction. It is important

to see that the AT module performs competitively or better than the SP

module. This validates our claim that learning task-dependent attention

transition is important in first-person gaze prediction. More importantly,

our full model outperforms all separate components by a large margin, which

confirms that the bottom-up visual saliency and high-level task-dependent

attention are complementary cues to each other and should be considered

together in modeling human attention.
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Figure 3.3: Visualization of predicted gaze maps from our model. Each group

contains two images from two consecutive fixations, where a happens before

b. We show the output heatmap from the saliency prediction module (SP)

and the attention transition module (AT) as well as our full model. The

ground truth gaze map (the rightmost column) is obtained by convolving an

isotropic Gaussian on the measured gaze point.
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Visualization

Figure 3.3 shows qualitative results of our model. Group (1a, 1b) shows a

typical gaze shift: the camera wearer shifts his attention to the pan after

turning on the oven. SP fails to find the correct gaze position in (1b) only

from visual features of the current frame. Since AT exploits the high-level

temporal context of gaze fixations, it successfully predicts the region to be

on the pan. Group (2a, 2b) demonstrates a “put” action: the camera wearer

first looks at the target location, then puts the can to that location. It is

interesting that AT has learned the camera wearer’s intention, and predicts

the region at the target location rather than the more salient hand region

in (2a). In group (3a, 3b), the camera wearer searches for a spatula after

looking at the pan. Again, AT has learned this context which leads to more

accurate gaze prediction than SP. Finally, group (4a, 4b) shows that SP and

AT are complementary to each other. While AT performs better in (4a), and

SP performs better in (4b), the full model combines the merits of both AT

and SP to make better prediction. Overall, these results demonstrate that

the attention transition plays an important role in improving gaze prediction

accuracy.

Cross Task Validation

To examine how the task-dependent attention transition learned in our model

can generalize to different tasks under same (kitchen) scene, we perform a

cross validation across the 7 different meal preparation tasks on GTEA Gaze

Plus dataset. We consider the following experiment settings:

• SP: The saliency prediction module is treated as a generic component

and trained on a separate subset of the dataset. We also use it as a

baseline for studying the performance variation of different settings.

• AT d: The attention transition module is trained and validated un-

der different tasks. Average performance of 7-fold cross validation is

reported.

• AT s: The attention transition module is trained and validated on two

splits of the same task. Average performance of 7 tasks is reported.
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Figure 3.4: AUC and AAE scores of cross task validation. Five different

experiment settings (explained in the text below) are compared to study the

differences of attention transition in different tasks.

• SP+AT d: The late fusion on top of SP and AT d.

• SP+AT s: The late fusion on top of SP and AT s.

Quantitative results of different settings are shown in Figure 3.4. Both

AUC and AAE scores show the same performance trend with different set-

tings. AT d works worse than SP, while AT s outperforms SP. This is prob-

ably due to the differences of gaze behavior contained in different tasks.

However, SP+AT d with the late fusion module can still improve the per-

formance compared with SP and AT s, even with the context learned from

different tasks.

3.4.4 Examination of the Attention Transition Module

We further demonstrate that our attention transition module is able to learn

meaningful transition between adjacent gaze fixations. This ability has im-

portant applications in computer-aided AR system, such as implying a person

where to look next in performing a complex task. We conduct a new exper-

iment on the GTEA-sub dataset (as introduced in Section 3.4.1) to test the

attention transition module of our model. Since here we focus on the mod-

ule’s ability of attention transition, we omit the fixation state predictor in

the module and assume the output of the fixation state predictor as ft = 0

in the test frame. The module takes wt calculated from the region of current

fixation as input and outputs an attention map on the same frame which rep-

resents the predicted region of the next fixation. We extract a 2D position
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Figure 3.5: Qualitative results of attention transition. We visualize the pre-

dicted heatmap on the current frame, together with the current gaze position

(red cross) and ground truth bounding box of the object/region of the next

fixation (yellow box).

from the maximum value of the predicted heatmap and calculate its rate of

falling within the annotated bounding box as the transition accuracy.

We conduct experiments based on different latent representations ex-

tracted from the convolutional layer: conv5 1, conv5 2, and conv5 3 of S-

CNN. The accuracy based on the above three convolutional layers are 71.7%,

83.0%, and 86.8% respectively, while the accuracy based on random position

is 10.7%. We also tried using random channel weight as the output of channel

weight predictor to compute attention map based on the latent representation

of conv5 3, and the accuracy is 9.4%. This verifies that our model can learn

meaningful attention transition of the performed task. Figure 3.5 shows some

qualitative results of the attention transition module learned based on layer

conv5 3. It can be seen that the attention transition module can successfully

predict the image region of next fixation.

3.5 Conclusion

This chapter presents a hybrid model for gaze prediction in first-person

videos. Task-dependent attention transition is learned to predict human

attention from previous fixations by exploiting the temporal context of gaze

fixations. The task-dependent attention transition is further integrated with
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a CNN-based saliency model to leverage the cues from both bottom-up visual

saliency and high-level attention transition. The proposed model achieves

state-of-the-art performance in two public first-person datasets. As for the

future improvements, we plan to explore the task-dependent gaze behavior

in a broader scale, i.e. tasks in an office or in a manufacturing factory, and

to study the generalizability of our model in different task domains.

This chapter and Chapter 2 depict methods for automatic modeling of hu-

man gaze and human actions. However the human as a whole coordinates his

behavior globally and dynamically. The separate knowledge of each individ-

ual type of behavior does not help to get a comprehensive understanding of

human behavior. The correlation between multiple types of human behavior

should be considered.
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Chapter 4

Joint Modeling of Human

Attention and Actions

4.1 Background

Building on the prior work of human gaze prediction and human action seg-

mentation introduced in previous chapters, this work takes a further step

to study the mutual influence of gaze and actions. In particular, I consider

both the task of first-person action recognition and first-person gaze predic-

tion. Recently, many works have been done on the two tasks separately and

remarkable progress has been made. However, to the best of our knowledge,

although these tasks are profoundly correlated with each other, hardly any

attention has been paid to leveraging their relationships to enhance the two

tasks simultaneously.

In this chapter, our goal is to jointly model first-person gaze and first-

person action since they are deeply correlated. Previous studies have revealed

that the knowledge of the human gaze could be incorporated in the task of

first-person action recognition since gaze can highlight the important action

related regions. Thus, these methods design models that use machine atten-

tion mechanism to use gaze to suppress the irrelevant background information

for more accurate action recognition. While it is proved that the human gaze

can provide critical information on determining the human action, there is

no previous effort on investigating the other side of the story, i.e., “does the
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human action contain information for the human gaze?”

Take 
bread

Put 
pan

Take oil 
container

Gaze-guided Action 
Recognition

Action-based
Gaze Prediction

Action 
Likelihood

Gaze
positions

Mutual Context Network

Figure 4.1: The network structure of our proposed mutual context network

(MCN). The MCN takes first-person video frames as input to estimate both

what action is happening and where the person is looking at. Motivated by

the assumption that the human gaze and actions can provide useful infor-

mation for guiding the modeling of the other, we design the MCN to take

advantage of the mutual context between first-person gaze and action. For

instance. we show a concept example in this figure. The desired action class

will influence the position of the gaze. The positions of gaze will be more

likely to be on the table if the camera wearer is going to put the pan on the

table (first row). In another case, the gaze positions would be more likely on

the bread if the undergoing action is “take bread” (second row).

When performing a task (especially a hand manipulation task), human

gaze and actions of hand-object interaction are mutually correlated. While

the image regions around a person’s gaze point explicitly reveal important

and discriminative information about the undergoing action, the action per-

formed by a person implicitly affects where the person is looking [TLB92,

Vic09, SKS15]. For example, to wipe the kitchen table, a person will first

move his/her focus to the table cloth and then keeps gaze fixation on the
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table when wiping it. Besides, similar gaze patterns happen when different

persons performing the same daily action (e.g .“put cup”). Therefore, we

argue that to take a further step in increasing the performance of model-

ing human gaze and first-person actions, we should jointly harness the gaze

context for actions and the action context for gaze.

In this chapter, to jointly predict human gaze predictions and recognize

human actions, we propose a novel framework to model the mutual context

between human gaze and actions. We name our framework Mutual Context

Network and will refer to it as MCN in the following of this chapter for sim-

plicity. An illustration of the overview of our MCN is depicted in Figure 4.1.

The proposed MCN uses two core modules to take video frames as input and

output the likelihood of action classes of the video clip and the gaze positions

on each frame. The two core modules are respectively responsible for using

gaze for action recognition and integrating action information for enhancing

gaze prediction. The action based gaze prediction module utilizes the esti-

mated action likelihood as context and the gaze-guided action recognition

module leverages the estimated gaze for improving action recognition. We

do not discuss the motivation in detail here but offer detailed motivation of

the two modules in Section 4.3.

The first module called the action-based gaze prediction module takes the

predicted action likelihood as input and produces a set of convolutional ker-

nels that are relevant to the action being performed. The generated action

kernels are then used to convolve the input feature maps for locating action-

related regions. It is built based on the assumption that the intent of per-

forming an action determines which object/place to look at during the action,

and therefore the information about the undergoing action should be taken

into consideration for predicting human gaze. The second module called

the gaze-guided action recognition module uses the estimated gaze point as

a guideline to spatially aggregate the input features for action recognition.

Rather than only using the region around the gaze point as in previous work,

the features are aggregated both in the gaze region and the non-gaze region

separately and then used as input to the gaze-guided action recognition mod-

ule, while the relative importance of the two regions is learned automatically

during training. Our motivation is to treat the gaze region and the non-gaze
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region separately in action recognition, as the non-gaze region also provides

supplementary evidence for some actions like “put” and “take”. We use two

widely used public datasets of first-person videos for evaluation: the EGTEA

dataset [LLR18] and the GTEA Gaze plus dataset [LFR13]. We demonstrate

via experiments that our method can achieve state-of-the-art performance on

both first-person gaze prediction and first-person action recognition.

Here is the summarization of the major contribution of this chapter:

Firstly, in this chapter, we propose a new framework based on deep neu-

ral networks for leveraging the mutual context between human gaze and

actions. Secondly, a novel module for gaze prediction using action context

is developed in this chapter that explicitly utilizes the estimated action like-

lihood. To the best of our knowledge, this is the first work that considers

action context for first-person gaze prediction. Thirdly, our proposed frame-

work achieves state-of-the-art performance on two public datasets GTEA

Gaze plus and EGTEA on both first-person gaze prediction and first-person

action recognition tasks.

4.2 Related Works

4.2.1 First-Person Gaze Prediction

Gaze prediction from first-person video is a well-established research topic

[LFR13] and can benefit a diverse range of applications such as joint at-

tention discovery [HCK+17, KYHS16, PJS12], human computer interaction

[FTT17, KAH+16, KFJ+16], action recognition [FLR12] and video summa-

rization [XML+15]. Also, the analysis of first-person gaze can provide signif-

icant cues in the research of cognitive science [LAL+17] and developmental

psychology [VSC+18, EGCSB17]. Previous works tried to leverage differ-

ent kinds of cues for gaze prediction, and perhaps the most famous cue for

gaze prediction is visual saliency [PLN02]. Since only by using the visual

saliency cannot predict accurate gaze position in natural dynamic scenes,

the following works tried to use various additional cues for gaze prediction in

first-person videos [LFR13, TRKB19, YSO+10, ZTMHL+18, ZBYC18]. For

example, Li et al .[LFR13] hand-crafted multiple first-person features such
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as head motion and hand position and use a graphical model for predicting

gaze prediction on first-person videos of cooking dishes in a kitchen. How-

ever, the hand-crafted first-person cues may harm the performance of their

model applied in other scenarios. With the development of the recent deep

learning techniques, Zhang et al .[ZTMHL+18] first designed deep convolu-

tional neural networks for predicting and forecasting gaze. Their method is

based on 3D convolution and the model is trained in a bottom-up manner

for directly construct a mapping between RGB values of image pixels and

pixelwise likelihood of gaze position. However, these works only rely on the

image appearance for gaze prediction, which turns to be challenging with-

out high-level information especially when multiple salient objects appear

simultaneously in the field of view. Our previous chapter is the first work to

assimilate high-level information with bottom-up appearance based informa-

tion. The high-level information we used is the temporal task-dependent gaze

shift patterns. However, in the previous chapter we considered the general

action transition which is action agnostic. Here in this chapter we consider

the more detailed gaze patterns with respect to the ongoing actions.

In this chapter, we propose the first work for the gaze prediction task that

explicitly associates the contextual influence from the undertaking actions.

We use the action likelihood as the contextual information for gaze prediction.

4.2.2 First-Person Action Recognition

Within the field of first-person vision, action recognition is almost the most

focused research direction with a reasonable number of studies in the past

few years [FBF18, LLWP19, PEPA16, PR12, SPL+07, YYJ+17, YKS16,

CTRD18]. Separating by the target, the action recognition of first-person

videos can be divided into two categories: the first category aims to recognize

the motion of the camera wearer, e.g ., “take” or “wash” [KOSS11, SAJ16],

while the second category target recognizing actions in a finer level, i.e.,

recognizing both the motion and the object related with the motion such

as “take pencil” or “wash dishes”. Earlier works mostly fall into the first

group. For example, Kitani et al .[KOSS11] recognized the first-person mo-

tion by grouping global camera motion in an unsupervised manner. In the
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work of Singh et al .[SAJ16], a deep neural network with image, optical flow

and hand segmentation mask as input is designed and proved to be effective

in action recognition. Poleg et al .[PEPA16] aim to recognize the long-term

actions and designed a 3D CNN with optical flow images as input. The work

on the second category can also trace back to a decade before, where Fathi

et al .[FFR11] adopted a graphical model to jointly model the objects, hand

and head motion for inferring the first-person actions. More recently to-

gether with the rise of deep learning, Ryoo et al .[RRM15] proposed a novel

pooling method for improving the performance of action recognition. In

[MFK16] the authors described a two-stream model for jointly recognizing

action and the action-object. Sudhakaran et al .[SL18] proposed a novel at-

tention block equipped on LSTM networks for spatially localizing the dis-

criminative regions for action recognition. Recently, researchers [WFF+19]

further leveraged supportive information extracted over a longer video span

named long-term feature bank to augment the receptive field of the mod-

els. In this chapter, we focus on the second category of fine-grained action

recognition. Different from previous works, our method recognizes actions

with the contextual information from gaze by modeling actions and gaze in

a unified framework.

4.2.3 Gaze and Actions

Only a few works connected the tasks of first-person gaze prediction and

action recognition, and most of which only considered using gaze for action

recognition [FLR12, SNLZ18, ZYP+18] but not counter-wisely, despite that

human gaze and actions are deeply correlated in first-person videos. For

example, Li et al .[LYR15] used hand-crafted features extracted from only

the gaze region and found these features are more discriminative for the

task of action recognition. Shen et al .[SNLZ18] encoded gaze positions using

bounding boxes obtained by an extra object detection model. They define

an “event” to be the case that gazes temporally go inside and then outside

of a bounding box, and designed an event-based recurrent neural network for

action recognition and achieved promising performance. However, very few

works have jointly modeled the human gaze and human actions in a unified
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framework. Li et al .extended from their previous work of [FLR12] to a deep

model [LLR18] for jointly modeling gaze and actions. They integrated the

probabilistic nature of gaze into the convolutional layers for the prediction

of gaze and used the probabilistic distribution of gaze for improving action

recognition result. However, their work only implicitly modeled action and

gaze in a neural network like a black box. We in this chapter explicitly

leverage the mutual contextual information of gaze and actions and found in

the experiment that gaze prediction could be greatly improved and influenced

by the contextual information of the likelihood of actions.

In this chapter, we demonstrate our model that leverages the mutual

contextual information between gaze and actions for jointly modeling gaze

and actions and improving the gaze prediction and action recognition per-

formance. We use the action likelihood as a conditional input for guiding

the gaze prediction, and in the meantime use the gaze as a threshold factor

for supporting the action recognition. We show using experiments that our

proposed framework for explicitly exploring such mutual context can obtain

state-of-the-art performance in both first-person action recognition and gaze

prediction.

4.3 Motivation

4.3.1 Action Context for Gaze Prediction

The key to accurate prediction of gaze in a first-person video is to locate the

regions of human attention. While this step is usually done by estimating

the visual saliency based on the image appearance, this often fail especially

in first-person videos of daily activities where multiple salient objects or

regions may exist simultaneously. We believe that top-down information

should be amalgamated in the gaze prediction model for determining the

real gaze position when the salient regions are ambiguous. By observing

first-person videos of natural daily living, we discovered that a semantic

connection exists between gaze region and the action of the camera wearer.

It is possible for this semantic information to be used in the gaze prediction

framework so as to improve its performance. We find that the fine-grained
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Open fridge_drawer Take bell_pepper Take cutting_board Squeeze condiment

Figure 4.2: The difference between saliency maps (overlayed on images) and

gaze regions (red cross, also enlarged above). The saliency maps are obtained

using PiCANet [LHY18] pretrained on the DUTS dataset [WLW+17]. We

can see that the gaze region is more action-dependent and can be significantly

different from the visually salient regions.

first-person actions comprised of a verb and one or several nouns, encodes

semantic information that is critical for locating the region of attention. For

example, the nouns encode the region which is highly likely to be attended.

An example is shown in Figure 4.2, where the gaze regions at the top row

match well with the semantic information involved in the performed actions,

but do not necessarily match the visually salient regions. For example, in

the action of Open fridge drawer, the object of fridge drawer, as well as the

hand, are contained in the real gaze region, while visual saliency is mainly

distributed on other salient regions irrelevant to the performed action.

Motivated by this semantic connection between the gaze region and the

performed action, we propose a framework that could incorporate contextual

information from action for gaze prediction. In the proposed framework, in-

formation about the performed action (e.g ., represented by the softmax vec-

tor of action recognition) is used to produce intermediate information which

is semantically meaningful and could be directly utilized for gaze prediction.
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(1a)
Put bowl

(1b)
Wash bowl

(2b)
Take

condiment
container

(2a)
Close condiment

container

Figure 4.3: Gaze context for different actions. In (1a) and (1b), gaze focuses

on the regions of bowl which help to recognize Put bowl and Wash bowl from

other actions. With additional features from surrounding background, it is

able to further differentiate the two actions. Similarly, in (2a) and (2b), it is

easier to recognize Close condiment container and Take condiment container

by extracting features from both gaze regions and background.

4.3.2 Gaze Context for Action Recognition

Human attention mechanism functions via gaze focus on the action-related

object when executing an action [HB05]. Thus, one important characteristic

of human gaze is that it highlights critical regions or indicates important in-

formation about the objects being manipulated. Based on such motivation,

previous works [FFR11, LYR15, LLR18] have shown that giving more weight

to the visual features from gaze regions, can lead to better performance of
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action recognition. While information from the gaze regions is useful for rec-

ognizing many actions, the information from the surrounding background is

also needed for differentiating some fine-grained actions with similar objects.

As shown in (1a) and (1b) of Figure 4.3, it is hard to distinguish the actions

only with information from gaze regions. The information from the surround-

ing background, in other words, the “non-gaze” regions, helps to distinguish

these two actions, since the existence of the sink in (1b) strongly indicates

the action to be wash bowl rather than put bowl. Similarly in (2a) and (2b),

the fridge and the containers around the gaze region help for the recognition

of take condiment container rather than close condiment container.

Thus, motivated by the usefulness of the regions guided by gaze in ac-

tion recognition, we propose to make use of information from both the gaze

regions and the non-gaze regions in a complementary way for better action

recognition.

Overall, in this chapter we propose an MCN to model the mutual context

of action and gaze. The proposed MCN jointly solves the two coupled tasks

of first-person gaze prediction and first-person action recognition by using the

context from one task to help the other. We will then describe the details of

the proposed framework.

4.4 Approach

In this section, we first introduce an overview of the proposed MCN followed

by details of each of its modules. We then provide the training strategy of

MCN and finally the details of the model architecture at the end of this

section.

4.4.1 Overview

In this work, we propose a mutual context network (MCN) that leverages the

mutual context of action gaze for joint gaze prediction and action recognition.

The MCN uses the estimated action to predict the gaze point while in the

mean time uses gaze as a guidance for action recognition.
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Figure 4.4: Architecture of our proposed mutual context network (MCN).

MCN consists of 5 sub-modules: the feature encoding module which encodes

input video frames into feature maps F , the gaze-guided action recognition

module which uses gaze as a guideline to recognize actions, the action-based

gaze prediction module which takes predicted action likelihood l as input

and outputs an action-dependent gaze probability map Ga, the saliency-

based gaze prediction module which outputs a saliency map Gs, and finally

the late fusion module to get the final gaze probability map G.

Figure 4.4 depicts the architecture of our MCN. A feature encoding mod-

ule consist of 3D convolution blocks first encode the RGB frames and optical

flow images of a trimmed video snippet into a feature map F . F is then used

as input to the following modules. One of the key components in our model is

the action-based gaze prediction module that learns to predict gaze Ga using

the predicted action likelihood l as a conditional input. As complementary

information for gaze prediction, we also obtain a saliency map Gs with the

saliency-based gaze prediction module. The outputs from the two modules

are then fused by the late fusion module to get the final gaze probability map

G = {g1, g2, · · · , gN}. Another component in our MCN is the gaze-guided

action recognition module which takes the predicted gaze G as guidance to

selectively filter the input features for action recognition. The output of ac-
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tion likelihood l is then used as conditional input to the action-based gaze

prediction module, thus a loop of mutual context is constructed.

4.4.2 Feature Encoding Module

We adopt the first four convolutional blocks of the resnet50 version I3D net-

work I3D-resnet [WGGH18] for feature encoding. Following [LLR18], we fuse

the RGB stream and optical flow stream at the end of the 4th convolutional

block by element-wise summation. With this 3D encoder, the output fea-

ture map F is of size (c, t, h, w), where c is the number of channels, t is the

temporal dimension, and (h,w) are the spatial height and width.

4.4.3 Saliency-Based Gaze Prediction Module

Image regions with high saliency tend to attract human attention. For in-

stance, regions with unique and distinguishing features such as a moving

object or high contrast of brightness are more likely to be looked at than

other regions. Therefore, we use a saliency-based gaze prediction module

to learn the image regions that are more likely to draw human attention.

For this, we use a 3D decoder that takes the encoded feature map F as in-

put and outputs a series of gaze probability maps Gs with each pixel value

within the range of [0, 1]. While this bottom-up approach provides informa-

tion about salient regions in the image, it is not sufficient to reliably identify

the attended region when multiple salient regions exist, which is common in

first-person video.

4.4.4 Action-Based Gaze Prediction Module

As different actions are associated with different objects and motion, peo-

ple’s gaze patterns when performing different actions are different. As stated

in Section 4.3.1, motivated by the connection between the region of atten-

tion and the performed action, we propose an action-based gaze prediction

module to leverage action information for more reliable gaze prediction. The

proposed module is expected to be able to extract semantically meaningful
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information that could be used for locating gaze regions. To this end, in-

spired by [XWBF18, CYL+17], we use the estimated action likelihood from

the action recognition module to generate a group of convolutional kernels

(called as “action kernels”) which encode the semantic information of the

performed action. The generated action kernels are then used to convolve

with the input features in order to locate the action-related regions. Fi-

nally, gaze probability maps that have the same size with input frames are

generated by a decoder consisting of deconvolutional layers.

More formally, given action likelihood l ∈ Rn estimated by the action

recognition module and the input feature maps F ∈ Rc×t×h×w with c channels

(t and h,w are temporal and spatial dimension), the gaze probability map

Ga is generated through the following procedure:

K = A(l) (4.1)

F̃ = K ⊗ F (4.2)

Ga = Decoder(F̃ ) (4.3)

where A is the action kernel generator, K ∈ Rk×c×kt×kh×kw is a group of k

kernels, and F̃ ∈ Rk×t×h×w is the filtered feature maps. ⊗ denotes the oper-

ator of convolution. The kernel generator contains one fully connected layer

and two convolutional layers. The output of the first fully connected layer

is first reshaped into size (k, kt, kh, kw) and then forwarded to the following

convolution layers.

We also adopt the saliency-based gaze prediction module which can be

seen as a complementary to the action-based gaze prediction module. Finally,

we use a late fusion module to combine the outputs Gs and Ga from the

previous modules:

G = LF (Gs, Ga) (4.4)

Late fusion technique has been proved to be effective in previous work of

gaze prediction [HCLS18]. Following previous works [ZTMHL+18, LFR13],

we take the spatial location with maximum likelihood on G as the predicted

gaze point.
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4.4.5 Gaze-Guided Action Recognition Module

Here we describe the gaze-guided action recognition module in our MCN that

uses the predicted gaze point as a guide to exploit discriminative features for

action recognition. Previous works [FLR12, LLR18] mostly used gaze as a

filter to remove features of image regions far from the gaze point. However,

focusing only on the region around the gaze point might lose important infor-

mation about the action. We observed that when performing certain actions

such as “put an object”, the person may fixate on the table on which to place

the object instead of looking at the object in hand which contains critical

information about the action. Therefore, we think that while the gaze region

is important, the region outside the gaze (non-gaze region) might also con-

tain complementary information about the action. In this work, we develop

a two-way pooling structure to aggregate features in the gaze and non-gaze

regions separately and use both as input for action recognition.

As shown in Figure 4.4, we first forward F to the fifth convolutional block

of I3D to encode more compact features F ′ ∈ Rc′×t′×h′×w′
. On each temporal

dimension of F ′, we locate the corresponding spatial gaze point (xt̄, yt̄) on

the feature map by selecting the spatial location of the maximum value in

the 3d max-pooled gaze map G′. Then we split spatial dimensions of the

feature map into two parts: gaze region and non-gaze region. Gaze region on

a feature map (dark green region of F ′ in the figure) is the locations whose

spatial positions are within range ([xt̄−r, xt̄+r], [yt̄−r, yt̄+r]), and non-gaze

region is the left-out region (light green region of F ′ in the figure). We pool

the two regions separately on the spatial dimensions, generating two feature

tensors vg and vn:

vg[c, t] =

∑xt̄+r
i=xt̄−r

∑yt̄+r
j=yt̄−r F̄

′[c, t, i, j]

4r2
(4.5)

vn[c, t] =

∑
i

∑
j F̄
′[c, t, i, j]− 4r2vg[c, t]

h′ × w′ − 4r2
, (4.6)

where F̄ ′x[c, t, i, j] denotes the c-th channel and position (t, i, j) of the feature

map F ′x, similarly for v[c, t].

The pooled feature tensors vg and vn are fed into two 1x1x1 convolution

layers (denoted as Fg,Fn), and the outputs are channel-wise concatenated
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and forwarded into the final 1x1x1 convolution layer (denoted as Flogit) for

predictions. We average the predictions on temporal dimension to get the

action likelihood l:

v′g ∈ Rs×t = Fg(vg) (4.7)

v′n ∈ Rs/2×t = Fn(vn) (4.8)

l = Softmax(Average(Flogit({v′g; v′n}))) (4.9)

Here {; } denotes channel-wise concatenation. We set the output channel of

v′g to be s and v′n to be s
2

since the modeling of non-gaze region is empirically

simpler than that of the gaze region, so we limit its channel size to prevent

over-fitting.

4.4.6 Implementation and Training Details

The whole framework is implemented using Pytorch framework [PGC+17].

The feature encoding module is identical to the first 4 convolutional blocks of

the I3D-resnet [WGGH18] network without the last pooling layer. With our

input of 24 stacked images of size 320× 240, the output of feature encoding

module is of size c = 1024, t = 6, h = 14, w = 14. The 3D decoder contains a

set of 4 transposed convolution layers, with kernel sizes 4, 4, (3, 4, 4), (3, 4, 4),

and stride 2, 2, (1, 2, 2), (1, 2, 2) respectively. Padding 1 is added on all lay-

ers. Each layer is followed by batch normalization and ReLU activation.

We add another convolution layer with kernel size 1 and a sigmoid layer on

top of the 3D decoder for outputting values within [0, 1]. The action kernel

generator takes the input vector l ∈ Rn where n is the number of action

categories, and firstly encoded to a latent size of R4800 and reshaped into

(64, 3, 5, 5). The two convolutional layers output channels 256 and 1024,

with kernel size 3, stride 1 and padding 1. The output size of the action

kernel generator is (k, c, kt, kw, kh) = (64, 1024, 3, 5, 5). For the gaze guided

action recognition module, the convolution block is identical to the 5-th con-

volution block of the I3D-resnet network. Thus the output size of F ′x is

(c′, t′, h′, w′) = (1024, 3, 7, 7). The 3d max-pooling layer therefore has kernel

size (8,32,32). We set r = 1 and s = 256. The late fusion module is com-

posed of 4 convolutional layers with output channels 32,32,8,1, in which the
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first 3 layers have a kernel size of 3 with 1 zero padding and the last layer

has a kernel size of 1 with no padding.

For training the whole network, we first train the gaze-guided action

recognition module and the saliency-based gaze prediction module using

ground truth action labels and gaze positions. We use Adam optimizer

[KB14] in all experiments. The base I3D weights are initialized from weights

pretrained on kinetics dataset [KCS+17]. We then use the result of action

recognition to train the action-based gaze prediction module and then the

late fusion module. We use cross entropy loss for action recognition and

binary cross entropy loss for gaze prediction. We apply a Gaussian with

σ = 18 on the gaze point for generating ground truth images for gaze predic-

tion. The learning rates for action recognition module and all gaze prediction

modules are fixed as 10−4 and 10−7 respectively. We first resize the images

to 256× 256 and then random crop images into 224× 224, random flip with

probability 0.5 for data augmentation during training. Ground truth gaze

images perform the same data augmentation. When testing, we resize the

image and send both the images and their flipped version and report the

averaged performance.

Algorithm 1 Alternative inference procedure

1: Using the saliency-based gaze prediction module to initialize gaze prediction

G:

G← Gs;

2: Denote action likelihood vectors as l.

3: while e > 0.1 and #iteration ≤ max iter do

4: Update l from gaze-guided action recognition module based on G;

5: Get Ga from action-based gaze prediction module using l;

6: Update G using the previous G and Ga:

Gnew ← LF (G,Ga);

7: Compute the AAE of G and Gnew:

e← AAE(G,Gnew);

8: G← Gnew

9: end while

We iteratively infer gaze positions and action likelihood vectors in an

alternative fashion as described in Algorithm 1. The iteration terminates
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when the variation (measured by average angular error AAE) of current gaze

prediction from the previous prediction is below a threshold or the number

of iteration surpasses an upper bound. We empirically set this upper bound

max iter to be 10.

4.5 Evaluation

4.5.1 Dataset and Evaluation Metric

Our experiments are conducted on two public datasets: EGTEA [LLR18] and

GTEA Gaze+ [LFR13]. The GTEA Gaze+ dataset consists of 7 activities

performed by 5 subjects. Each video clip is 10 to 15 minutes with resolution

1280 × 960. We do a 5-fold cross validation across all 5 subjects and take

their average for evaluation as [LFR13]. The EGTEA dataset is an extension

of GTEA Gaze+ which contains 29 hours of first-person videos with the

resolution of 1280 × 960 and 24 fps, taken from 86 unique sessions with 32

subjects performing meal preparation tasks in a kitchen environment. Fine-

grained annotations of 106 action classes are provided together with measured

ground truth gaze points on all frames. Following [LLR18], we use the first

split (8299 training and 2022 testing instances) of the dataset to evaluate the

performance of gaze prediction and action recognition. We use the trimmed

action clips of both datasets for training and testing unless otherwise noted.

We compare different methods on both tasks of gaze prediction and action

recognition. For gaze prediction, we adopt two commonly used evaluation

metrics: AAE (Average Angular Error in degrees) [RDM+13b] and AUC

(Area Under Curve) [BTSI13b]. For action recognition, we use classification

accuracy as the evaluation metric.

4.5.2 Results of Gaze Prediction

We compare our method with the following baselines:

• Saliency prediction methods: we use two representative traditional

methods GBVS [HKP07], Itti’s model [IK00] as our baseline. We

also re-implement the deep FCN based model SALICON [HSBZ15]
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as another baseline and train on the same dataset with gaze as ground

truth saliency map.

• First-person gaze prediction methods: We also compare with three

first-person gaze prediction methods closely to our work: coarse gaze

prediction method (Li et al .[LLR18]), the GAN-based method (DFG

[ZTMHL+18]), and the attention transition-based method (Huang et

al . [HCLS18]). Since [LLR18] only outputs a coarse gaze prediction

map (of resolution 7 × 7), we resize their output using bilinear inter-

polation. For Li et al . and DFG we report the results based on our

implementation as no code is publicly available. For Huang et al . we

use the author’s original implementation.

• Subsets of our full MCN: We also conduct ablation study using sub-

sets of our full model. These include the saliency-based gaze prediction

module (Saliency-based), the action-based gaze prediction module

(Action-based). In addition, we also test the action-based gaze pre-

diction module with ground truth action labels (Action-based∗). To

further validate that the action-based gaze prediction module can pro-

vide useful information, we change the action-based gaze prediction

module to center-bias and feed them into the late fusion module, which

forms the ablation baseline Saliency-based + center bias.

Table 4.1 shows the quantitative comparison of different methods on gaze

prediction performance. We first analyze the performance comparison with

previous methods shown on the top part of the table. Our method out-

performs state-of-the-art first-person gaze prediction methods ([ZTMHL+18]

and [HCLS18]) on both datasets with the same experimental setting. It is

important to notice that even our action-based gaze prediction module alone

could achieve comparable performance with [HCLS18], which verifies the ef-

fectiveness of action context on gaze prediction.

We also conduct ablation study by comparing different subsets of our

MCN. As shown in the lower part of Table 4.1, the action-based module

performs better than the saliency-based module, verifying the effectiveness

of action context in gaze prediction. When feeding the action-based mod-

ule with ground-truth action labels, the performance is further improved.
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Method
EGTEA GTEA Gaze+

AAE AUC AAE AUC

GBVS [HKP07] 12.81 0.707 12.68 0.829

Itti et al .[IK00] 12.50 0.717 12.73 0.801

SALICON [HSBZ15] 11.17 0.881 12.34 0.867

Li et al .[LLR18] 8.58 0.870 8.97 0.889

DFG [ZTMHL+18] 6.30 0.923 6.39 0.910

Huang et al .[HCLS18] 6.25 0.925 6.23 0.924

Saliency-based 6.36 0.922 6.57 0.929

Saliency-based + center bias 6.30 0.924 6.51 0.930

Action-based 6.20 0.928 6.35 0.923

Action-based∗ 6.04 0.927 6.20 0.933

Our full MCN 5.79 0.932 5.74 0.945

Table 4.1: Comparison of gaze prediction performance on two datasets. Re-

sults of previous methods are placed on top. Results of our full MCN and

the subsets of MCN are placed on the bottom. Lower AAE and higher AUC

indicate better performance. ∗ denotes using ground truth action label as

input.

To examine the effectiveness of late fusion, we first tried the the fusion of

saliency-based module with center bias and found that it only slightly im-

proves the performance of saliency-based module alone. However, the fusion

of saliency-based module with action-based module (our full MCN) greatly

improves the performance of two individual modules, as demonstrated by

the decrease of AAE score from 6.36/6.20 to 5.79 on EGTEA dataset and

from 6.57/6.35 to 5.74 on GTEA Gaze+ dataset. This indicates that an ideal

gaze prediction method should consider information from both low-level vi-

sual saliency and high-level action context.

Qualitative results are shown in Figure 4.5. It can be seen that with the

help of the action-based gaze prediction module, our full MCN can better

locate the action, thus giving better gaze prediction results. For example,
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GT Ours Ours w.o action Huang et al DFG SALICON GBVS IttiAction

Take 
paper towel

Put 
bread container

Put 
trash

Put
paper towel

Put
eating utensil

Take
lettuce

Clean/wipe
counter

Close
cabinet

Figure 4.5: Qualitative visualizations of gaze prediction results on EGTEA

dataset. We show the output heatmap from our full MCN and several base-

lines. Ground truth action labels and gaze points (GT) are placed on the

leftmost columns.

in the first row, our MCN successfully recognizes the action as “take paper

towel”, thus finds the paper towel in the hand. Other baseline methods

mostly focus on the stove or other salient regions. In the second row, while

other methods are distracted by the plates and food on the counter, our

MCN successfully locates the hand with dishrag on the bottom right corner

and a part of the counter which will be cleaned in the next few frames.

More interestingly as shown in the fourth row, the lettuce of ground-truth

gaze fixation is placed on a cluttered kitchen table, which is challenging for

other methods to locate. Still, our full MCN correctly predicts gaze to be on

the lettuce with the help of context from the action “take lettuce”. Similar

situations can be found in other rows of the figure.
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4.5.3 Examination of Action-based Gaze Prediction Mod-

ule

We further demonstrate that our action-based gaze prediction module is able

to learn meaningful gaze patterns relevant to different actions. Intuitively,

the gaze patterns for similar actions should also be similar: for example, for

the action “take bowl”, the gaze prediction performance should not decrease

obviously if we use a label of “take plate” as input to the action-based gaze

prediction module, but should decline sharply if it is given the label of “cut

tomato” as input. Thus we conduct a new experiment on the top 20 frequent

actions in test set of EGTEA dataset to examine our action-based gaze pre-

diction module. We feed the module with action label representing each of

the 20 action classes and examine how gaze prediction performance (AAE

score) varies when the module is tested on each of these actions. For exam-

ple, we feed the action-based gaze prediction module with the action label

of “take plate” and test the AAE scores on the videos of all 20 actions. As

a result, we obtain a matrix of AAE scores with the size of 20× 20, denoted

by M , in which Mi,j is the AAE score of the action-based gaze module fed

with the action label of the i-th action and applied to the videos of the j-th

action.

We found that the average AAE on the diagonal of M is 6.21, while the

average AAE of M without diagonal is 6.87. This indicates that correct ac-

tion label can benefit the predictions of action-based gaze prediction module.

To better understand the effect of different action labels on the action-based

gaze prediction module, we visualize an “affinity matrix” A with the following

equation:

Ai,j = 1− Mi,j −min(Mi,∗)

max(Mi,∗)−min(Mi,∗)
, (4.10)

where Ai,j can be seen as the “affinity score” between the measured ground

truth gaze pattern of the i-th action and the learned gaze pattern of the j-th

action. We normalize each number to have numeric range of [0,1].

We visualize the affinity matrix in Figure 4.6. We can see from several

dark blocks along the diagonal (marked by boxes) that there exist several

groups of actions of which the learned gaze patterns are similar to each other,

for example, the action group of “put” in the middle and the action group
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Figure 4.6: Affinity matrix of the top 20 frequent actions in EGTEA dataset.

Actions are re-ordered for the ease of viewing. Each row of the matrix rep-

resents the “affinity score” of one action against all the 20 actions. Darker

indicates higher “affinity” between corresponding actions. We mark several

darker groups of similar action with high “affinity” for the ease of reading.

of “cut” on the bottom-right of the figure. The obtained affinity matrix is

actually consistent with our common sense of these actions. For the action

group of “put”, persons tend to fixate on a table which is often the destina-

tion of placement. For the action group of “cut”, the gaze is often fixated

on a knife. More importantly, the results show that our action-based gaze

prediction module has learned meaningful action-based gaze patterns. We

think these patterns might be used to study the similarity between different

actions from the perspective of human attention in future works.
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4.5.4 Results of Action Recognition

As for the task of action recognition, we compare our method with the fol-

lowing methods:

• I3D [CZ17] is one of the state of the art models for action recognition.

We refer to [LLR18] for the accuracy of this baseline method.

• Methods using measured gaze: I3D+Gaze is to use a ground truth

gaze point as a guideline to pool feature maps from the last convolution

layer of the fifth convolutional block. EgoIDT+Gaze [LYR15] is a

traditional method which uses dense trajectories [WKSL11] selected

by a ground truth gaze point for action recognition.

• State-of-the-art first-person action recognition methods: Li et al .

[LLR18] uses a estimated gaze probability map as soft attention to

perform a weighted average on top I3D features. Sudhakaran et al .

[SL18] adopts attention mechanism in a recurrent neural network to

recognize actions. LSTA [SEL19] is a recent RNN based first-person

action recognition method that models action related attention for bet-

ter action recognition. We also compare our method with Ma et al .

[MFK16] and Shen et al . [SNLZ18] that use additional annotations of

object locations and hand masks during training. [SNLZ18] even uses

ground-truth gaze positions as input during testing. We compare the

performance as reported in their original papers.

• Baselines of our model: MCN (w/o gaze) is the baseline that does

not use gaze information and is constructed to validate the effectiveness

of the gaze-guided action recognition module. It performs a direct

average pooling as in [CZ17, WGGH18]. The MCN (center bias) is

the baseline that uses the image center as the predicted gaze position.

We construct this baseline to validate the usefulness of better gaze

prediction on action recognition. MCN (gaze region) is a baseline of

our MCN that uses only the gaze-centered region for pooling. We use

this baseline to validate the usefulness of information from the non-gaze

regions. MCN (soft gaze) is a baseline that uses the predicted gaze
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probability map as a soft attention map on the features of the final

convolutional block as in [LLR18].

Method EGTEA GTEA Gaze+

EgoIDT + Gaze [LYR15] 46.50 60.50

I3D [CZ17] 49.79 57.64

I3D [CZ17] + Gaze 51.21 59.72

Li et al .[LLR18] 53.30 N/A

Sudhakaran et al .[SL18] N/A 60.13

Ma et al .[MFK16] N/A 66.40

Shen et al .[SNLZ18] N/A (67.10)

LSTA [SEL19] 61.86 N/A

MCN (w/o gaze) 55.59 59.88

MCN (center bias) 53.22 59.59

MCN (gaze region) 56.43 61.12

MCN (soft gaze) 60.83 65.52

Our full MCN 62.58 67.36

Table 4.2: Quantitative comparison of action recognition. We report recog-

nition accuracy in %. Values in brackets indicate the methods that rely on

ground truth gaze.

Quantitative comparison of different methods on two datasets is shown in

Table 4.2. The deep learning method I3D [CZ17] outperforms EgoIDT+Gaze

[LYR15] that uses handcrafted features on EGTEA dataset but not on GTEA

Gaze+ dataset. This is possibly due to the smaller number of training sam-

ples in GTEA Gaze+ dataset. With the use of measured gaze, the per-

formance of I3D+Gaze is improved compared with I3D. On both datasets,

our MCN outperforms state-of-the-art methods ([MFK16, SNLZ18, SEL19]),

including [SNLZ18] that relies on ground-truth gaze positions during testing.

We also conduct ablation study to examine the effectiveness of different

components of our model. The baseline of (MCN w/o gaze) takes whole

images as input without considering distinct information from gaze or non-
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gaze regions. It performs better than the similar method of I3D [CZ17] and

shows the advantage of more advanced base network (I3D-resnet [WGGH18])

adopted in our model. The comparison between MCN (center bias) and (gaze

region) indicates the usefulness of predicted gaze for action recognition. The

superiority of our full model over MCN (gaze region) indicates the useful-

ness of the non-gaze regions, and validates our thought that the non-gaze

regions should be considered together with gaze regions in action recogni-

tion. Although MCN (soft gaze) partly considers regions distant from gaze

with less weight, our full model outperforms MCN (soft gaze) by explicitly

incorporating information from gaze and non-gaze regions.

4.6 Discussion

4.6.1 Model Convergence
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Figure 4.7: Gaze prediction AUC and action recognition accuracy with re-

spect to inference iteration on the EGTEA dataset. Blue curve with circle

markers correspond to action recognition accuracy on the left axis, and or-

ange curve with square markers correspond to gaze prediction AUC on the

right axis.

In the proposed method, the network inference is conducted in an alterna-

tive manner. Here, we show the performance of two tasks on EGTEA dataset
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with our method at different iteration of inference in Figure 4.7. Note that

at the stage of initialization, only saliency-based module is used. Then gaze-

guided action recognition and action-based gaze prediction are conducted

alternatively from the first iteration. It can be seen that the performance

of both gaze prediction and action recognition increases dramatically at first

and converges after about two iterations. This strongly supports our hypoth-

esis that the mutual context of gaze and action can be beneficial for both

tasks. In addition, the performance of gaze prediction converges faster than

that of action recognition. We think the reason might be that even coarse

information of actions (e.g ., the object or verb of an action) is sufficient as

context for gaze prediction. Actually this is also demonstrated as in Figure

4.6 that several groups of actions have learned similar gaze patterns.

4.6.2 Failure Cases
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Figure 4.8: Failure cases of our MCN on gaze prediction. In the first row,

failed action recognition misleads gaze prediction. In the second row, al-

though the action recognition is correct, the camera wearer shifts the gaze

fixation onto the region of future destination when he/she has already fin-

ished the action of grabbing the bread.

Here we discuss several failure cases of gaze prediction with our method.

One failure case happens when critical information of an action is incorrectly
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predicted. As shown in the first row of Figure 4.8, the wrong prediction of

“take cup” as “take plate” causes our model to focus on the region of the

plate while true gaze is on the region of the cup. Still, the impact of failed

action recognition is limited in our model. We have analyzed gaze prediction

results in two opposite cases and found that: among all the testing data of

the EGTEA dataset, our model achieves an AAE score of 6.01 when action

recognition fails, and an AAE score of 5.68 when action recognition is correct.

Another failure case comes from the circumstances when a person begins

to shift the gaze fixation between consecutive actions. An example is shown

in the second row of Figure 4.8. After grabbing the bread, instead of keeping

fixation on the bread, the person’s attention goes to the plate on which he’s

planning to put the bread. Our current method is trained based on trimmed

action sequences and could not identify such circumstances, thus fails to

predict the true gaze positions at the boundaries of consecutive actions. This

reveals the necessity of taking attention transition into consideration for our

current gaze prediction model.

To further analyze the effect of learning attention transition with untrimmed

video, we also compared the performance of the original version of [HCLS18]

(denoted as Huang et al .†) which is trained based on untrimmed videos

on the GTEA Gaze+ dataset. By learning attention transition, Huang et

al .† achieves performance of 4.83 in the AAE metric and 0.939 in the AUC

metric, and outperforms our method by the metric of AAE (4.83 versus

5.74). Meanwhile, when trained with the same trimmed videos, Huang et

al . [HCLS18] clearly performs worse than our method (as shown in Table

4.1), possibly due to the lack of consideration for action context. Overall,

the comparison between our method and the two variants of [HCLS18] shows

that while our method can benefit from action context and achieves state-

of-the-art performance on the trimmed dataset, its current version could

not fully explore the useful information from additional data in untrimmed

videos. We think the combination of action-based gaze prediction and atten-

tion transition between consecutive actions could be a good research direction

to explore and would leave it as our future work.
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4.7 Conclusion

This chapter aims to explore the mutual influence between human gaze and

human actions. In this chapter, we proposed a novel deep model for both

first-person gaze prediction and action recognition. Our model explicitly

leverages the mutual context between the two tasks. Within our model, the

action-based gaze prediction module predicts gaze positions using the a set

of convolutional kernels generated based on the action likelihood. The gaze-

guided action recognition module selectively aggregates the features of gaze

region and non-gaze region for better action recognition. Experiments show

that our model achieves state-of-the-art performance for both tasks on two

public first-person video datasets.

Although our model outperforms previous methods in trimmed action

sequences, gaze prediction performance still needs further improvement, es-

pecially for the transition periods between consecutive actions in untrimmed

videos. As for the future work, We think it would be an interesting direction

to explore the gaze transition patterns in a broader activity scope which in-

volves multiple consecutive fine-grained actions. Another possible direction

of future work is to study the ways of mitigating the negative influence of

failed action recognition on gaze prediction. We think considering the likeli-

hood of the top-5 action and their relations might be a promising direction

to explore. The biggest obstacle for deploying the system into real-world

applications is the high computational cost of the proposed framework. In

the future it would be promising to improve the efficiency of the proposed

model to enable wider applications such as skill assessment. Also, since eye-

trackers on wearable cameras are often costly and hard to use, replacing

the eye-trackers with build-in algorithms is another interesting direction to

improve this work.
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Chapter 5

Conclusion and Future

Directions

In this thesis, I present methods for automatically modeling human behavior

from two aspects: modeling the human gaze and modeling human actions,

under the first-person paradigm. Chapter 1 explains the motivation of this

work, describing the importance of the first-person human behavior model-

ing and the different types of human behaviors to model. For modeling each

type of human behavior, we propose methods that leverage various novel

cues that are introduced in the following chapters. Chapter 2 introduces a

new model for the task of action segmentation in first-person videos. It is

targeted to solve the problem of observation limitation in first-person videos.

A graph-based temporal reasoning module is proposed to model the tempo-

ral relation among multiple action segments. The proposed module can be

applied on top of most existing action segmentation models and is proved by

experiments to be effective on both first-person and third-person videos. In

Chapter 3, a first-person vision model is proposed to predict where people

look (gaze prediction) in everyday manipulation tasks. The model takes as

input the videos recorded by a wearable camera and outputs the likelihood

map indicating the possibility of the point (pixel) to be looked at by the

camera wearer. Advances of deep learning techniques are incorporated in

the model to combine the saliency cue and task-related attention transition

cue together. The model achieves state-of-the-art performance and is ahead
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of other methods by a large margin. In Chapter 4, a further step is taken

for human behavior modeling by jointly considering the human behaviors of

gaze and action. Based on the hypothesis that the knowledge of action can

improve the performance of human gaze prediction and vice versa, a mutual

context network is designed to simultaneously predict gaze and recognize

the observed action. Experiments on first-person video datasets strongly

prove the hypothesis. As a whole, the methods presented in this thesis offer

a computational way of studying the behavior of humans in natural daily

manipulation tasks.

The main contributions of this work are summarized as follow:

• This thesis proposes a lightweight module for action segmentation in

long and complex first-person videos. Temporal relations among mul-

tiple neighboring actions are leveraged to overcome the challenge of

limited observations in the first-person perspective. Furthermore, the

proposed module is shown to be able to cooperate with multiple back-

bone models for action segmentation and can perform well on both

first-person and third-person videos.

• This thesis proposes a first-person vision model for human gaze pre-

diction. The model is capable of predicting where humans look during

everyday manipulation tasks with a single wearable monocular camera

with state-of-the-art performance. The work shows the potential for

using computer vision techniques to replace the use of eye-trackers for

enabling more real-life settings.

• This thesis proposes a method for jointly estimating the human gaze

and recognizing the observed action given first-person videos. The task

of gaze prediction and action recognition mutually improves each other,

and consequently lead to better performance of both tasks. The exper-

iments demonstrate that different human behaviors should be jointly

considered for more thorough and accurate modeling of human behav-

ior.
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Future Work

The majority of this thesis has focused on advancing the frontier of human

behavior modeling using deep neural networks. I would like to conclude this

thesis with the future direction. My future work involves developing general-

ized and robust systems for human behavior modeling, and the applications

of human behavior modeling in various scenarios. My research will progress

along the following paths:

Generalized Gaze Prediction

In Chapter 2, the proposed model leverages high-level attention transition

cues for gaze prediction. However, the model is only trained and validated in

indoor kitchen scenes. Since the model relies on a saccade prediction module,

its performance could be affected by the scene changes. I will work on gaze

prediction in more generalized settings, including both indoor and outdoor

videos. I will leverage the commonalities of human dynamics to link human

gaze behavior in different environments. I also consider to use other sensors

such as stereo camera, RGB-D camera, accelerometer, or EMG sensor for

improving the gaze prediction performance and enabling the gaze prediction

to be in 3D space.

Detecting Overlapping Actions

In Chapter 3, a graph-based temporal reasoning module is proposed for seg-

menting first-person perspective actions from long and complex videos. One

drawback of the proposed module is that it cannot detect the action when it

overlaps. Overlapping actions can frequently happen especially in the first-

person perspective, where people sometimes do two actions simultaneously

(e.g .drinking water while typing). I recently started investigating the use of

action detection in solving the problem of overlapping actions. I will explore

the solution to model the large diversity of first-person videos captured in

different domains for better detecting the subtle or short actions. I will also

investigate the network architecture design so that the model can effectively

diversify the action snippets and the non-action snippets.
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Other Future Directions

As discussed in the previous chapters, the modeling of human behavior can

facilitate a wide range of applications such as autism diagnosis and human-

computer interaction. However, there still exist obstacles for directly apply-

ing the methods in the current form. Here I list several future directions to

be explored for the deployment of my previous works into real-world appli-

cations.

Chapter 2 and Chapter 4 both introduce methods for first-person gaze

prediction. However, the efficiency of the proposed modules is still sub-

optimal. The encoder-decoder style of neural networks used in these two

chapters is computationally costly and not real-time, which could harm the

real-world deployment especially when we want to replace the burdensome

eye-tracker with built-in software. Making the models more lightweight or

using parallel computing techniques might be a good starting point. Other

directions include but not limit to applying neural architecture search, using

compression techniques to directly process the videos, and take advantage of

quantized neural networks.

Since the video data of human behavior often involves privacy concerns,

an important question for us is how to learn the modeling of human behavior

without violating privacy. For example, when we want to develop a system

based on gaze prediction for assisting the autism diagnosis [BHL+10], it may

be difficult to acquire enough data for centralized training. This could be

solved by using a line of rapidly emerging research called federated learn-

ing [LSTS20]. I am fascinated by investigating the use of federated learning

in first-person human behavior modeling.

The modeling of human attention can benefit an interesting application

towards the next-generation intelligent robot. By utilizing imitation learn-

ing [LMM07], robots can learn to behave like humans in the real world with-

out direct instruction from human by just analyzing first-person videos. I

will investigate developing new methods to transfer the knowledge of human

behavior to robots, especially focusing on relieving the burden of human la-

beling during the robot training. Through these efforts, I hope to contribute

to the development of intelligent robots that could quickly understand the
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environment and complete tasks by imitating the learned human behavior.
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