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Abstract

4D reconstruction of non-rigidly deforming scenes has numerous applications in computer
vision, virtual/augmented reality, and robotics, etc. With the latest advancements of consumer-
level depth sensors, such as Microsoft Kinect, Intel RealSense, and even smartphone mounted
cameras, non-rigid reconstruction using a single RGB-D camera has gained momentum.
However, due to the high complexity and non-convexity of the problem and the limitation
of range sensors, a robust reconstruction system for generic non-rigidly deforming scene
remains a challenge. This thesis aims to develop a single movable RGB-D camera based
non-rigid reconstruction system that can 1) handle large non-rigid motion, 2) simultaneously
reconstruct both the static background and the dynamic foreground objects of a given scene, 3)
handle scene occlusion, and 4) yield global consistent camera pose tracking. We achieve this
system by combining the classic tracking and reconstruction method with spatial-temporal
priors that are learned from data. Specifically, to satisfy 1), we redefine the non-rigid tracking
energy using the distance function that is defined in learned feature space. The feature is
trained in the way that it can alleviate the non-convexity of this problem. To satisfy 2),
we propose SplitFusion which first split the scene into rigid or non-rigid surfaces and then
simultaneously performs tracking and dense reconstruction for both rigid and non-rigid
components of the scene. To satisfy 3), we propose a completion approach to jointly recover
the occluded structure and motion from partial RGB-D camera observation. To satisfy 4), we
propose a self-supervised monocular VO that uses a pose graph optimization back-end to
guarantee global camera pose consistency. Thorough experiments demonstrate the advantage
of the proposed system in terms of tracking robustness and reconstruction quality in non-rigid
scenes.
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Chapter 1

Background

We live in a 4D world with three spatial dimensions and one temporal dimension. The ability
to understand the 3D structure of the environment and how the structure evolves in the time
axis is crucial for successful interaction with the outside world. For instance, as a nursing
robot, to safely take care of an aged person in a house (i.e. predict the person’s action and
react accordingly), it needs to 1) know the 3D map of the house, 2) localize itself w.r.t the
static part of the house, and most importantly 3) understand both the complete 3D shape of
the person’s body and how the whole body moves along time. This task refers to two main
topics in computer vision: Simultaneous Localization and Mapping (SLAM) and Non-Rigid
4D Reconstruction. The former mainly emphasis on tracking and mapping of static/rigid
scene, the later focus on reconstruction of the scene that is non-rigidly deforming.

With the arrival of Microsoft Kinect, and several other devices, e.g. such as the RealSense,
Primesense, Google Tango, or even the recent smartphone mounted camera, RGB-D cameras
have become available at a low price. These RGB-D cameras capture per-pixel color and
depth images at adequate resolution and at real-time rates. The potential of these sensors
has been quickly recognized in the visual computing community. They have boosted the
development of both SLAM and non-rigid reconstruction algorithms.

KinectFusion [42, 66] is the first dense SLAM system that permits real-time, dense
reconstruction of complex room-sized scenes using a single handheld Kinect depth sensor.
The dense 3D reconstruction is done by tracking and incremental integration of consecutive
overlapping depth maps into a volumetric representation [17] that is continuously refined.
KinectFusion has demonstrated compelling real-time reconstructions results using a com-
modity GPU. However, like most SLAM methods, KinectFusion is designed based on the
rigid environment assumption. They can not reconstruct a non-rigidly deforming scene.
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Background

Figure 1.1 Microsoft Kinect (left), and capturing rigid scene using KinectFusion [42, 66]
(right).

1.1 Non-rigid 4D reconstruction

The first approach that tackled the template-free reconstruction problem at real-time frame
rates was the DynamicFusion approach by Newcombe et al. [67]. This approach enables the
joint reconstruction of the geometry and motion of non-rigidly deforming objects based on a
single commodity RGB-D camera. For each new input depth frame, a model-to-frame non-
rigid tracking approach is used to estimate a deformation field based on a latent deformation
graph [88] model. Based on the estimated deformation field, the 3D model can be non-rigidly
transformed to the space of the input depth frame, which enables the update of the model
based on the volumetric fusion method [17].

Figure 1.2 Capturing non-rigidly deforming scene using DynamicFusion [67]. Top row
shows the noisy input depth map sequence. Bottom row show the reconstructed 3D model
that is deformed to the corresponding depth frame.
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1.1 Non-rigid 4D reconstruction

In Figure. 1.3 we show the processing pipeline of RGB-D based non-rigid reconstruction.
DynamicFusion and many other reconstruction methods basically follow this processing
pipeline. Given a real-time depth map observation from a RGB-D camera, the Non-Rigid

Tracking stage estimate the deformation that best align the 3D model and the current frame.
This can be achieved in a frame-to-frame, frame-to-model, or global fashion. After the
deformation is estimated, all the points from the current input frame are transformed with
the estimated deformation field and are merged into the common model in the Depth Map

Fusion stage.

Figure 1.3 Overview of the typical RGB-D non-rigid reconstruction pipeline: first, the
non-rigid tracking method aligns the input depth frame with respect to the current surface
reconstruction; second, given the tracking results, the input data is integrated/fused into the
current 3D model of the reconstruction.

In the rest of this section, we briefly explain the key components for dense RGB-D
non-rigid reconstruction: the non-rigid tracking algorithm (cf. 1.1.1) and the depth map
fusion method (cf, 1.1.2), and then discuss the fundamental challenges of this task (cf. 1.2).

1.1.1 Non-rigid tracking

At the core of the non-rigid reconstruction is the non-rigid tracking problem. The objective
of non-rigid tracking is to determine the 3D motion of all points on the model given a live
depth map observation. Since it is not computationally inefficient to directly model the 3D
motion of all points in the scene, existing tracking algorithms usually represent the non-rigid
scene with a deformable model called Deformation Graph. Fig. 1.4 shows an example of
using deformation graph to represent a deformable scene.

Typically, non-rigid tracking is performed by a Non-Rigid Iterative Closest Point (N-
ICP) algorithm [1, 72, 51, 114]. This algorithm iteratively minimizes the distance functions
between correspondences points between a 3D model and a live observation. N-ICP usually
employ point-to-point (euclidean distance between two points) or point-to-plane (euclidean

3



Background

Figure 1.4 Using the deformation graph (right) to represent a deformable scene (left). The
nodes of the graph are evenly sampled on the scene surface. The sampling method ensures
q -coverage of the scene, i.e., the distance of every foreground point to the nearest graph node
is at most q > 0. Edges are computed between nodes based on geodesic connectivity. The
figures are borrowed from [51].

Figure 1.5 Example of performing frame-to-frame N-ICP. N-ICP iteratively deforms the
source frame until the deformed source frame and the target frame are best aligned. The
figures are borrowed from [51].

distance between a point and a plane) as the distance function. Besides the distance function,
to prevent uncontrolled deformations and resolve motion ambiguity, the N-ICP optimization
usually employ As-Rigid-As-Possible (ARAP) [85] or embedded deformation [88] as motion
regularization. Such regularizers enforces the graph vertices locally move in an approximately
rigid manner. Fig. 1.5 shows an example of performing N-ICP between a pair of depth frames.

1.1.2 Depth map fusion

The representation of the reconstructed model needs to be very efficient in integrating a large
number of incoming depth maps. Beyond this, frame-to-model tracking requires an efficient
way to generate virtual views of the model from arbitrary viewpoints to align the incoming
range maps with the model, mostly using projective data association. There exist mainly two
different representations to accumulate the observed RGB-D data in one common 3D model.
The most commonly used way is to store the information in a regular or hierarchical 3D voxel
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1.2 Challenges of non-rigid 4D reconstruction

grid, which refers to the volumetric method. Alternatively, the model can be stored as an
accumulated 3D point cloud. In this thesis, we mainly consider the volumetric representation
for its efficiency in extracting the scene surface.

In the volumetric representation, the voxels are associated with a distance value represent-
ing its distance to the nearest surface, where the sign of the distance indicates if the voxel is
inside (-) or outside (+) of the object. The distance values that are beyond some threshold are
truncated. This is the so-called Truncated Signed Distance Function (TSDF) [17]. Fig. 1.6
shows an example of using a TSDF to represent the reconstructed human model. The depth
map integration is formed by the weighted average of all individual TSDFs computed for
each depth map, which can be seen as de-noising the global TSDF from multiple noisy TSDF
measurements. The final mesh surface of the model can be extracted using Marching Cubes.

Figure 1.6 Example of volumetric truncated signed distance function with truncation of 3.
Here we show a cropped TSDF of a person from side view (left) and top-down view (middle).
The color of the voxeles indicate their truncation value.

1.2 Challenges of non-rigid 4D reconstruction

Although the method like DynamicFusion has shown promising results on non-rigid scene
reconstructions, there are several fundamental challenges:

• Topological Change & Scalability: DynamicFusion parameterizes the entire scene
with a single latent deformation graph as shown in Fig. 1.4. However, such a graph
model inherently can not handle the topological change of the scene. Moreover, since
the complexity of non-rigid tracking grows quadratically with the deformation graph’s
size, i.e. the number of nodes, it does not scale well to larger scenes beyond a single
object.

• Tracking failure: At the core of non-rigid tracking is a non-linear optimization
problem. However, the energy landscape of non-rigid tracking is highly non-convex.

5
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The optimization can easily fall in undesired local minima when the target scene
undergoes large non-rigid motion, which we call it as tracking failure. In theory, a
perfect non-rigid tracker is sufficient for perfect non-rigid reconstruction. The other
way around, bad tracking usually causes artifacts in the reconstruction.

• Occlusion: The fundamental limitation is that one can only obtain partial and incom-
plete reconstructions of a given scene because a single RGB-D camera suffers from
occlusions and the physical limitations of range sensors.

6



Chapter 2

Toward a Versatile and Robust

Non-Rigid 4D Reconstruction System

In this chapter, we clarify the scope, objective and contribution, and structure of this thesis
before going into the details. In Section. 2.1, we clarify the scope of this thesis while focusing
on the robustness of non-rigid reconstruction. We also show the objective reconstruction
system, including 4 key properties, and our contributions toward building this system. In
Section. 2.4, we show the contents of each chapters.

2.1 Scope & Objective of thesis

In this thesis, we especially tackle the task of online reconstruction of a scene that is non-
rigidly deforming from a single RGB-D camera, where the camera is movable and provides
real-time scene observation, and the scene is at room-scale.

Figure. 2.1 demonstrate the key directions of single RGB-D non-rigid reconstruction,
while this work mainly focuses on the Robustness aspect of this task. More specifically, we
aim to increase the reconstruction robustness under the four challenging situations: scene
occlusion; large deformation; camera trajectory drift; and scene level topology change.

The goal of this thesis is to build a system that can reconstruct the room-scale environment
where there are static backgrounds like walls and furniture and multiple non-rigidly deforming
foreground objects such as humans and animals, using a single movable RGB-D camera.
This reconstruction system should has the following features:

(i) It is robust to large non-rigid motion.

(ii) It can simultaneously reconstruct both the static background and the dynamic fore-
ground objects.

7
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Figure 2.1 The scope of this thesis. Specifically, we aim to increase the reconstruction
robustness under the four challenging situations: scene occlusion; large deformation; camera
trajectory drift; and scene level topology change.

(iii) It can reconstruct the occluded part of the scene.

(iv) It can track the camera’s movement w.r.t the static background, and correct the camera’s
trajectory drift along time.

2.2 Leveraging Spatial-Temporal Learning

In this thesis, we achieve this system by enhancing the classic tracking and reconstruction
system with the deep learning-based method.

In recent years, the deep learning-based method especially the Convolutional Neural
Networks (CNN) has revolutionized the field of computer vision. CNN has shown an
extraordinary capacity for scene understanding from image content such as detecting and
segmenting objects. It has also shown its advantage in the 3D vision and graphics field, such
as tracking camera poses and predicting depth from monocular sequence [113], reconstruct
3D information from 2D image [63], and complete geometry from partial RGB-D scans [84].
Though, in theory, these tasks are all ill-posed and potentially have infinite possible solutions,

8



2.2 Leveraging Spatial-Temporal Learning

the learning-based method solves these challenging tasks by learning prior knowledge from
a large amount of training dataset. Since the learning-based method always finds solutions
that are consistent with the data-driven knowledge, they are usually robust to outliers.

While existing methods mainly learn the representations for the static scene. We observe
the fact that to leverage the learning-based method in the dynamic 4D reconstruction task, it
is necessary to also learn the evolution of the data in the temporal domain. Learning from
both the spatial and temporal domain, in this thesis, we refer to as spatial-temporal learning.

Spatio-temporal learning is becoming growingly important in the computer vision field
with the increasing availability and importance of large spatial-temporal datasets such as
RGB videos, lidar sequences, GPS trajectories of vehicles, etc. Spatio-temporal learning
also has broad applications in various domains including environment and climate (e.g. wind
prediction and precipitation forecasting), public safety (e.g. crime prediction), intelligent
transportation (e.g. traffic flow prediction), human mobility (e.g. human trajectory pattern
mining).

While the above applications focus on future prediction, in the non-rigid 4D reconstruc-
tion task, the objective of spatial-temporal learning to establish the correspondence of data
given already observed RGB-D frames. More specifically, at the core of our system, we
want to achieve the association of spatial scene observations across the temporal domain
by tracking the motion of the scene. As shown in Fig. 2.2, in this thesis, we use neural
networks to extract spatial-temporal embeding for learning non-rigid motion (c.f. Chapter. 4),
semantics (c.f. Chapter. 5), shape and motion completion (c.f. Chapter. 6), and rigid motion
(c.f. Chapter. 7).

Figure 2.2 We employ spatial-temporal learning to address the four key problems in the
system.

9
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2.3 System Overview

Figure 2.3 The overview of the objective system. First, the input scene is decomposed into
rigid or non-rigid part in the “Scene Decomposition” block (c.f. Chapter 5), the “Non-Rigid
Tracking” block leverages robust learning-based tracker to align the input frame with the
model data (c.f. Chapter 4), the “Occlusion Recovery” block jointly recovers the complete
geometry and motion field from partial depth scans and thus also provides usefull information
for both rigid and non-rigid tracking (c.f. Chapter 6), finally, the input frame is integrated
into the model data (c.f. Chapter 5).

As shown in Fig. 2.2, specifically, we leverage spatial-temporal learning to achieve the
system’s properties (i), (ii), (iii), and (iv) in Chapter. 4, Chapter. 5, Chapter. 6, and Chapter. 7
respectively. The full pipeline of the system in shown in Figure 2.3

Chapter. 4: Learning based Optimization for Robust Non-Rigid Tracking

we change the energy function of non-rigid tracking from the classic data fitting
terms to a deep non-rigid feature fitting term. The deep non-rigid feature is learned
end-to-end by convolutional neural networks through a large amount of training data.
By leveraging the large receptive field of convolutional kernels and the nature of the
data-driven method, the learned feature can capture the global deformation which helps
to alleviate the non-convexity of the non-rigid tracking problem. The experiments
show that compared to DynamicFusion, our method yield more robust tracking on
large non-rigid motion.

10



2.3 System Overview

Chapter. 5: SplitFusion

We developed a novel dense RGB-D SLAM framework called SplitFusion that simul-
taneously performs tracking and dense reconstruction for both rigid and non-rigid
components of the scene. SplitFusion first adopts deep learning based semantic instant
segmentation technique to split the scene into rigid or non-rigid surfaces. The split
surfaces are independently tracked via rigid or non-rigid ICP and reconstructed through
incremental depth map fusion. We found that semantic instance information informs
SplitFusion to handle object-level topology change of the scene, and also make the
system more scalable than DynamicFusion.

Chapter. 6: Structure and Motion Completion

we propose a data-driven completion method to jointly recover the occluded structure
and their motion field from partial RGB-D frame observation. Our method not only
generates good quality geometry but also yields reasonable motion fields for the
occluded part of the scene.

Chapter. 7, Global consistent tracking for learned VO

we picked up the monocular visual odometry (VO) problem, for which we propose
a self-supervised monocular VO that uses a pose graph optimization back-end to
guarantee global camera pose consistency. We demonstrate the advantage of our
method on handling camera trajectory drift. We demonstrate that spatial-temporal
constraints combined yield better VO estimation. This method is useful for large scale
reconstruction, this will be demonstrate in the System Demonstration chapter.

Putting all the features together in Table. 2.1, we compare our method with the state-of-
the-art RGB-D based dense reconstruction method for static scene: KinectFusion [42, 66],
and dynamic scene: DynamicFusion [67]. We demonstrate the full system in Chapter. 8.

KinectFusion DynamicFusion Ours
Rigid tracking & Reconstruction X X

Non-Rigid tracking & Reconstruction X X
Semantic instance understanding X

Handle scene level topology change X
Scalable X X

Robust to large deformation X
Handle Occlusion X

Table 2.1 Comparison with the main-stream RGB-D camera based scene reconstruction.

We propose the following contributions toward building this system:
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• A learning-based non-rigid tracking method that is robust to large non-rigid motion.

• A framework that simultaneous reconstruct both rigid and non-rigid scene elements.

• A completion method that joint recover occluded geometry and motion field from
partial RGB-D observation.

• An unsupervised monocular tracking system that has a pose graph optimization back-
end to ensure global pose tracking consistency.

2.4 Structure of thesis

In Chapter 1, we describe the standard pipeline of non-rigid tracking and reconstruction, and
we also state the key fundamental limitations of single RGB-D camera based non-rigid scene
reconstructions. In Chapter 2, we clarify the scope, objective, contribution, and structure of
this thesis. In Chapter 3, we have a more comprehensive discussion on existing works. In
Chapter 4, we employ learnable optimizations to improve non-rigid tracking robustness for
large non-rigid motion. In Chapter 5, We present SplitFusion, a novel dense RGB-D SLAM
framework that simultaneously performs tracking and dense reconstruction for both rigid and
non-rigid components of the scene. In Chapter 6, we propose a completion method to handle
occlusion problem. In Chapter 7, We propose an unsupervised learning based monocular
visual odometry called NeuralBundler, and an Efficient loop closing procedure to correct
the global camera tracking drift along time. In Chapter 8, we demonstrate the full system
on a real-world sequence. Finally, in Chapter 9, we conclude this thesis and remark future
directions.
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Chapter 3

Related work

This chapter presents related work on static, and non-rigid tracking and reconstruction.

3.1 Rigid reconstruction using RGB-D camera

Online rigid reconstruction is directly related to Simultaneous Localization and Mapping
(SLAM), which focuses on the problem of robot navigation in unknown environments;
e.g., [65] [27] and many others. Dense SLAM require tracking and incremental integration
of consecutive overlapping depth maps into a 3D representation that is continuously refined.
Typically, camera tracking is usually performed by an Iterative Closest Point (ICP) algo-
rithm [5]. Divided by the 3D representation types, online dense 3D reconstruction has two
main groups: the Surfel-Based method and the Volumetric method. A Surfel [74] is a isolated
3D primitive with 3D coordinate, shape, and rendering attributes. For its simplicity and light
computation, it has been applied in many reconstruction frameworks [46][99]. In Volumetric

method, depth maps are converted into truncated signed distance function (TSDF) [17] and
cumulatively averaged into a regular voxel grid. The final surface is usually extracted as the
zero-value set of the implicit function using ray-casting [71]. KinectFusion [66] is the first
volumetric method that demonstrated compelling real-time reconstructions using a commod-
ity GPU. However, the use of a regular voxel grid imposes a large memory footprint, making
KinectFusion impractical for large scale scene reconstruction. Nießner et al.[69] addressed
the memory issue by introducing the hierarchical spatial voxel hashing method. Dai et

al. [19] extends volumetric method into a complete SLAM system called BundleFusion, with
a loop-closure, global pose optimization, and model update back-end.

13



Related work

3.2 Non-rigid tracking and reconstruction with RGB-D cam-

era

The SLAM methods assume that scenes are static. However, dynamic elements in the scene
can cause trouble for camera 6-dof pose tracking, leading to artifacts in the reconstruction.
The straightforward solution is to remove the dynamic objects based on object detection
and then apply the static SLAM solutions. For instance, PoseFusion uses skeleton tracking
and geometry clusters to segment out humans; DS-SLAM [103] applied SegNet to detect
and remove foreground humans and then estimate the camera motion with ORB-SLAM2
[64].R. Martin et al.proposed Co-Fusion [77] and MaskFusion [78] which apply object-level
labels to track and reconstruct rigid objects, but they cannot handle non-rigid objects. Some
researchers insisted to find out the dynamic clusters from the dense RGB-D point clouds.
StaticFusion [80] jointly refine the Visual Odometry (VO) and dynamic segmentation using
intensity and depth residuals. Zhang et al.[110] proposed to involve optical flow residuals to
segment non-rigid clusters from the dense point cloud clusters. Although these approaches
show improvements in ego-motion estimation and background reconstruction, in many
practical applications, the dynamic elements are the most important targets in the scene. In
particular, humans are widely encountered and can change the state of the scene in many
ways. As such, in scenarios such as autonomous driving or the deployment of robots in areas
with many humans, it would not be appropriate to discard moving elements.

The general solution for reconstruction in dynamic environments is to explicitly model
the scene non-rigidity. The reconstruction of general non-rigidly deforming objects/scenes
based on real-time depth sensor data has a long tradition [94]. One of the traditional methods
use the pre-scanned template and transforming the template to live frames from RGB-D
or stereo camera data. The first approach that tackled the template-free reconstruction
problem at real-time frame rates was the DynamicFusion approach by Newcombe et al. [67].
This approach enables the joint reconstruction of object geometry and motion based on a
single commodity depth camera, e.g. the Microsoft Kinect. Zollhöfer et al. [41] proposed
VolumeDeform, which employs a flip-flop data-parallel optimization schema that tackles
the non-rigid registration at real-time rates. Besides, they improve tracking robustness using
global sparse correspondence from hand-engineered feature matching. SurfelWarp [30]
reduced the memory and computation cost by employs Surfel rather than a volume as the
3D representation. Using multiple RGB-D cameras, Fusion4D [25] achieves high quality
reconstruction results at the cost of the more complicated hardware setup.

The core of non-rigid reconstruction method is the non-rigid tracking algorithm. Typically,
non-rigid tracking is usually performed by a Non-Rigid Iterative Closest Point (N-ICP) algo-
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3.3 Deep learning for non-rigid tracking and reconstruction

rithm [1, 72, 51, 114], where the point-to-point or point-to-plane distance of correspondences
points are iteratively minimized. To prevent uncontrolled deformations and resolve motion
ambiguity, the N-ICP optimization usually employ As-Rigid-As-Possible (ARAP) [85] or
embedded deformation [88] as motion regularization. The seminal DynamicFusion and Vol-
umeDeform tipically employ the classic N-ICP algorithms for tracking. DoubleFusion [104]
demonstrated the advantage of using a shape prior (i.e.the SMPL [58] model) in human
tracking. Physical constraints have also been explored in [105, 98]. KillingFusion [83]
directly estimate the motion field given a pair of Signed Distance Field (SDF).

3.3 Deep learning for non-rigid tracking and reconstruc-

tion

This line of research focuses on solving motion tracking and reconstruction tasks from a
deep learning perspective. One of the promising ideas is to replace the hand-engineered
descriptors with the learned ones. For instance, the Learned Invariant Feature Transform
(LIFT) is proposed in [102], the volumetric descriptor for 3D matching is proposed in
[106], and the coplanarity descriptor for plane matching is proposed in [81]. For non-rigid
localization/tracking, Schmidt et al. [79] use Fully-Convolutional networks to learn the dense
descriptors for upper torso and head of the same person; The recent works DeepDeform [9]
replaces the noisy hand-engineered feature correspondence by more robust neural network
based correspondence matching that is learned from a large amount of labeled non-rigid
sequence. Regression networks have also been used to directly map input sensor data to
motions, including the camera pose tracking [112], the dense optical flow tracking [24], and
the 3D scene flow estimation [55].

The problem of motion regression is that the regressors could be overwhelmed by the
complexity of the task, therefore, leading to severe over-fitting. A more elegant way is to let
the model focus on a simple task, such as feature extraction while using classic optimization
tools to solve the rest. This resulted in the recent works that combine Gauss-Newton
optimization and deep learning to learn the most suitable features for image alignment [14],
pose registration [39, 61], and multi-frame direct bundle-adjustment [90]. Optical/scene
flow [24, 92, 89, 96, 55, 100, 56, 37, 60] is a closely related technique. They have been used
to generate initial guess for non-rigid tracking in [25, 30, 8, 26, 97]. Among these works,
FlowNet3D [55] is the first method that directly estimates scene flow from two sets of point
clouds.
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Chapter 4

Learning based Optimization for Robust

Non-Rigid Tracking

Figure 4.1 The focus of this chapter and its position in the entire system.

As shown in Figure. 4.1, this chapter focuses on the core problem of the 4D reconstruction
system: non-Rigid tracking. Here we aim to develop a non-rigid tracking algorithm that is
robust to large deformation. One of the widespread solutions for non-rigid tracking has a
nested-loop structure: with Gauss-Newton to minimize a tracking objective in the outer loop,
and Preconditioned Conjugate Gradient (PCG) to solve a sparse linear system in the inner
loop. In this chapter, we employ learnable optimizations to improve tracking robustness
and speed up solver convergence. First, we upgrade the tracking objective by integrating
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4.1 Introduction

an alignment data term on deep features which are learned end-to-end through CNN. The
new tracking objective can capture the global deformation which helps Gauss-Newton to
jump over local minimum, leading to robust tracking on large non-rigid motions. Second, we
bridge the gap between the preconditioning technique and learning method by introducing
a ConditionNet which is trained to generate a preconditioner such that PCG can converge
within a small number of steps. Experimental results indicate that the proposed learning
method converges faster than the original PCG by a large margin.

4.1 Introduction

Non-rigid dynamic objects, e.g.humans and animals, are important targets in both computer
vision and robotics applications. Their complex geometric shapes and non-rigid surface
changes result in challenging problems for tracking and reconstruction. In recent years,
using commodity RGB-D cameras, the seminal works such as DynamicFusion [67] and
VolumeDeform [41] made their efforts to tackle this problem and obtained impressive
non-rigid reconstruction results. At the core of DynamicFucion and VolumeDeform are
non-linear optimization problems. However, this optimization can be slow, and can also
result in undesired local minima. In this chapter, we propose a learning-based method that
finds optimization steps that expand the convergence radius (i.e.avoids local minima) and also
makes convergence faster. We test our method on the essential inter-frame non-rigid tracking
task, i.e.to find the deformation between two RGB-D frames, which is a high-dimensional
and non-convex problem. The absence of an object template model, large non-overlapping
area, and observation noise in both source and target frame make this problem even more
challenging. This section will first review the classic approach and then put our contributions
into context.

Non-rigid Registration The non-rigid surface motions can be roughly approximated
through the “deformation graph" [88]. In this deformable model, all of the unknowns,
i.e.the rotations and translations, are denoted as G . Given two RGB-D frames, the goal of
non-rigid registration is to determine the G that minimizes the typical objective function:

min
G

{E f it(G )+lEreg(G )} (4.1)

where E f it is the data fitting term that measures the closeness between the warped source
frame and the target frame. Many different data fitting terms have been proposed over the past
decades, such as the geometric point-to-point and point-to-plane constraints [51, 114, 67, 41]
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Learning based Optimization for Robust Non-Rigid Tracking

sparse SIFT descriptor correspondences [41], and the dense color term [114], etc. The term
Ereg regularizes the problem by favoring locally rigid deformation. Coefficient l balances
these two terms. The energy (4.1) is minimized by iterating the Gauss-Newton update step
[6] till convergence. Inside each Gauss-Newton update step a large linear system needs to be
solved, for which an iterative preconditioned conjugate gradient (PCG) solver is commonly
used.

This classic approach cannot properly handle large non-rigid motions since the data fitting
term E f it in the energy function (4.1) is made of local constraints (e.g.dense geometry or
color maps), which only work when they are close to the global solution, or global constraints
that are prone to noise (e.g.sparse descriptor). In the case of large non-rigid motions, these
constraints cannot provide convergent residuals and lead to tracking failure. See Fig. 4.2 for
the failure and sucess case of non-rigid tracking.

Figure 4.2 A failure and success case of non-rigid tracking, the image examples are obtained
from VolumeDeform [41]. For the high non-convexity of this problem, the tracking is easily
converged to bad local minima and results tracking failure.

In this chapter, we alleviate the non-convexity of this problem by introducing a deep
feature alignment term into E f it . The deep features are extracted through an end-to-end
trained CNN. We assume that, by leveraging the large receptive field of convolutional
kernels and the nature of the data-driven method, the learned feature can capture the global
information which helps Gauss-Newton to jump over local minimums. Fig. 4.3 shows the
information involves in computing the image gradient and the CNN feature map gradient,
which guides the optimization of non-rigid tracking.

As illustrated in Fig. 4.4, preconditioning speeds up the convergence of an iterative
solver. The general idea behind preconditioning is to use a matrix, called preconditioner,
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4.1 Introduction

Figure 4.3 The information involves in computing the image gradient (left) and the CNN
feature map gradient (right). The gradient of a pixel only captures the information from a
small 3⇥3 local patch thus not suitable for global non-rigid alignment. The CNN feature has
a large receptive field, therefore, capture the global information of the scene.

to modify an ill-posed system into a well-posed one that is easier to solve. As the hard-
coded block-diagonal preconditioner was not designed specifically for the non-rigid tracking
task, the existing non-rigid tracking solvers are still time-consuming. We argue that PCG
converges much faster if the design of the preconditioner involves prior expert knowledge
of this specific task. Then we raise the question: does the data-driven method learn a good

preconditioner? In this chapter, we exploit this idea by training neural network to generate a
preconditioner such that PCG can converge within a few steps.

Our contribution is twofold:

• We introduce a deep feature fitting term based on end-to-end learned CNN for the
non-rigid tracking problem. Using the proposed data fitting term, the non-rigid tracking
Gauss-Newton solver can converge to the global solution even with large non-rigid
motions.

• We propose ConditionNet that learns to generate a problem-specific preconditioner
using a large number of training samples from the Gauss-Newton update equation. The
learned preconditioner increases PCG’s convergence speed by a large margin.
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Learning based Optimization for Robust Non-Rigid Tracking

Preconditioning

Figure 4.4 Example of using the Deepest Decent to solve a 2D system. Deepest Decent
needs multiple steps to converge on an ill-conditioned system (left) and only one step on
a perfectly conditioned system (right). Intuitively, Preconditioning is trying to modify the
energy landscape from an elliptical paraboloid into a spherical one such that from any initial
position, the direction of the first-order derivative directly points to the solution.

4.2 Method

4.2.1 Learning deep non-rigid feature

Scene representation

The input of our method is two frames that are captured using a commodity RGB-D sensor.
Each frame contains a color map and a depth map both at the size of 640⇥480. Calibration
was done to ensure that color and depth were aligned in temporal and spatial domain. We
denote the source frame as S, and the target frame as T.

Figure 4.5 Our deformation graph. Left top: Uniform sampling on the pixel grid. Let bottom:
Binary mask acquired using simple depth threshold or depth aided human annotation. Right:
Masked 3D deformation graph.

We approximate the surface deformation with the deformation graph G . Fig. 4.5 shows an
example of our deformation graph. We uniformly sample the image, resulting in a rectangle
mesh grid of size w⇥ h. A point in the mesh grid is treated as a node in the deformation
graph. Each node connects exactly to its 8 neighboring nodes. To filter out the invalid nodes,
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4.2 Method

a binary mask V 2 Rw⇥h is constructed by checking if the node is from the background,
holds invalid depth, or lies on occlusion boundaries with large depth discontinuity. Similarly,
edges are filtered by the mask E 2 Rw⇥h⇥8 if they link to invalid nodes or go beyond the
edge length threshold. In the deformation graph, the node i is parameterized by a translation
vector ti 2 R3 and a matrix Ri 2 SO3. Putting all parameters into a single vector, we get

G = {Ri, ti|i=1,2,··· ,w⇥h}

Deep Feature Fitting Term

Gauss-Newton update step

Warping

RGB-D

Non-Rigid Feature 
Extractor

Figure 4.6 High-level overview of our non-rigid feature extractor training method. Jacobian
J’s entries for the feature term (4.4) can be precomputed according to the inverse composition
algorithm. Other entries in Jacobian J and all entries in residues r are recomputed in each
Gauss-Newton iteration. For simplicity, the geometric fitting term (5.5) and regularization
term (5.6) are omitted from this figure.

We use the function F (·), which is based on fully convolutional networks [57], to extract
feature map from source frame S and target frame T. The encoded feature maps are:

FS = F (S), FT = F (T) (4.2)

We apply up-sampling layers in the neural network such that the encoded feature map has
the size w⇥h⇥ c, where c is the dimension of a single feature vector. Thus the feature map
and the deformation graph have the same rows and columns. This means that a feature vector
and a graph node have a one-to-one correspondence (to reduce GPU memory overhead and
speed up the learning). We denote DS 2 Rw⇥h and DT 2 Rw⇥h as the sampled depth map
from source and target frames. Given the translation vectors ti 2 G , and the depth value
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DT(i), the projected feature for the pixel i can be obtained by

F̃S(i) = FS(p(ti,DT(i))) (4.3)

where p(·) : R2 ! R2 is the warping function that maps one pixel coordinate to another
pixel coordinate by applying translation ti to a back-projected pixel i, and projecting the
transformed point to the source camera frame. The warped coordinate are continuous values.
F̃S(i) is sampled by bi-linearly interpolating the 4 nearest features on the 2D mesh grid. This
sampling operation is made differentiable using the spatial transformer network defined in
[43]. Then the deep feature fitting term is defined as

E f ea(G ) = l f

w⇥h

Â
i=0

Vi · ||F̃S(i)�FT(i)||2 (4.4)

Note that compared to the classic color-consistency constraints, the learned deep feature
captures high-order spatial deformations in the scans, by leveraging the large receptive field
size of the convolution kernels.

Total Energy

To resolve the ambiguity in Z axis, we adopt a projective depth, which is a rough approxima-
tion of the point-to-plane constraint, as our geometric fitting term. This term measures the
difference between warped depth map D̃S and the depth map of target frame. It is defined as

Egeo(G ) = lg

w⇥h

Â
i=0

Vi · ||D̃S(i)�DT(i)||2 (4.5)

Finally, we regularize the shape deformation by the ARAP regularization term, which
encourages locally rigid motions. It is defined as

Ereg(G ) = lr

w⇥h

Â
i=0

Â
j2Ni

Ei, j · ||(ti� t j)�Ri(t
0
i� t

0
j)||2 (4.6)

Where Ni denotes node-i’s neighboring nodes, and t
0
j
, t
0
j

are the positions of i, j after the
transformation. To summarize the above, we obtain the following energy for non-rigid
tracking:

Etotal(G ) = E f ea(G )+Egeo(G )+Ereg(G ) (4.7)
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4.2 Method

The three terms are balanced by [l f ,lg,lr]. The total energy is then optimized by the
Gauss-Newton update steps:

(JT
J)DG = J

T
r (4.8)

where r is the error residue, and J is the Jacobian of the residue with respect to G . This
equation is further solved by the iterative PCG solver.

4.2.2 Differentiable non-rigid optimization

The learning pipeline is shown in Fig. 4.6. We integrate all energy optimization steps into an
end-to-end training pipeline. To this end, we need to make both Gauss-Newton and PCG
differentiable. In the Gauss-Newton case, the update steps stop when a specified threshold is
reached. Such if-else based termination criteria prevents error back-propagation. We apply
the same solution as in [61, 90, 39], i.e.we fix the number of Gauss-Newton iterations. In
this project, we set this number to a small digit. There are two reasons behind this: 1) For the
recursive nature of the Gauss-Newton layer, large iterations number will induce instability
to the network training, 2) By limiting the available step, the feature extractor is pushed
to produce the features that allow Gauss-Newton solver to make bigger jumps toward the
solution. Thus we can achieve faster convergence and robust solving.

Back-propagation through PCG can is done in a different fashion as described in [3].
Equation (5.7) need to be solved in every Gauss-Newton iteration. Let’s represent J

T
J by A,

DG by x, and J
T

r by b, then we get the following iconic equation:

Ax = b (4.9)

Suppose that we have already got the gradient of loss L w.r.t to the solution x as ∂L/∂x. We
want to back propagate that quantity onto A and b:

∂L
∂b

= A
�1 ∂L

∂x
(4.10)

∂L
∂A

= (�A
�1 ∂L

∂x
)(A�1

b)T =�∂L
∂b

x
T (4.11)

which means that back-propagating through the linear system only need another PCG solve
for Equation (4.10).
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4.2.3 Training objective & data acquisition

The method outputs the final deformation graph after a few Gauss-Newton iterations. We
apply the L1 flow loss on all the translation vectors ti 2 G in the deformation graph

L f low = Â
ti2G

|ti� ti,gt | (4.12)

where ti,gt 2 R3 is node-i’s ground truth 3D translation vector, i.e.the scene flow.

Figure 4.7 Using our non-rigid tracking and reconstruction method to obtain point-point
correspondence. This method can generate accurate correspondence when the motion is small.
The long term correspondence between distant frames can be obtained by accumulating small
inter-frame motions through time and space.

Collecting ti,gt is a non-trivial task. Inspired by Zeng et al.[106] and Schmidt et al. [79],
we realize that the 3D correspondence ground truth can be achieved by running the state-of-
the-art tracking and reconstruction methods such as BundleFusion [19], for rigid scenes, or
DynamicFusion [67]/ VolumeDeform [41], for non-rigidly deforming scenes. For the rigid
training set, we turn to the ScanNet, which contains a large number of indoor sequences
with BundleFusion based camera trajectory. For the non-rigid training dataset, as shown in
Fig. 4.7, we run our geometry based non-rigid reconstruction method (which is similar to
DynamicFusion [67]) on the collected non-rigid sequences. We argue that non-rigid feature
learning could benefit from rigid scenes. Since the rigid scenes can be considered as a subset
of the non-rigid ones, the domain gap is not that huge when we approximate the rigid object
surface from a deformable perspective. Eventually, the feature learning pipeline is pre-trained
on ScanNet and fine-tuned on our non-rigid dataset.

4.2.4 Data-driven preconditioner

Preconditioning as a method of transforming a difficult problem into one that is easier to
solve has centuries of history. Back to 1845, the Jacobi’s Method [13] was first proposed
to improve the convergence of iterative methods. Block-Jacobi is the simplest form of
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4.2 Method

preconditioning, in which the preconditioner is chosen to be the block diagonal of the linear
system that we want to solve. Despite its easy accessibility, we found that applying it
shows only a marginal improvement in our problem. Other methods, such as Incomplete
Cholesky Factorization, multiGrid method [91] or successive over-relaxation [93] method
have shown their effectiveness in many applications. In this section, we exploit the potential
of data-driven preconditioner to solve the linear system in the non-rigid tracking task.

PCG LayerConditionNet

Figure 4.8 Overview of ConditionNet-Dense. The output L is the lower triangle matrix of
the preconditioner. After a few iterations in the PCG layer, the solution x is then penalized
by the L1 loss (4.16). The whole pipeline can be trained end-to-end.

Preconditioner M
�1 modifies the system Ax = b to

M
�1

Ax = M
�1

b (4.13)

which is easier to solve. From the iterative optimization perspective, solving (4.13) is equal
to finding the x that minimizes the quadratic form

min
x

||M�1
Ax�M

�1
b||2 (4.14)

Here, we propose the ConditionNet C (·) based on neural networks with an encoder and
decoder structure to do the mapping:

C (·) : Rn⇥n! Rn⇥n : A!M
�1

A good preconditioner should be a symmetric positive definite (SPD) matrix, otherwise, the
PCG can not guarantee to converge. To this end, the ConditionNet first generates the lower
triangle matrix L. Then the preconditioner M

�1 is computed as

M
�1 = LL

T (4.15)

Empirically, we apply a hard positive threshold on M
�1’s diagonal entries to combat the

situations that there exist zero singular values. By doing this, M
�1 is ensured to be an SPD

matrix in our case.
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The matrix density, i.e.the ratio of non-zero entries, play an important role in precon-
ditioning. On one end, a denser preconditioner has a higher potential to approximate A

�1,
which is the perfect conditioner, but the matrix inverse itself is time-consuming. On the other
end, a sparser matrix is cheaper to achieve while leading to a poor preconditioning effect. To
examine the trade-off between efficiency and effectiveness, we propose the following three
ConditionNet variants. They use the same network structure but generate preconditioners
with different density, from dense to sparse.

ConditionNet-Dense. As shown in Fig. 4.8, this one uses full matrix A as input and
generate the dense preconditioner, in which all entries can be non-zero. Intuitively, this
model is trying to approximate the perfect conditioner A

�1.
ConditionNet-Sparse. This one inputs full matrix A. For the output, a binary mask is

applied such that any entry in L is set to zero if the corresponding entry in A is also zero.
ConditionNet-Diagonal. The input and output are the block diagonals of the matrices.

There are w⇥h diagonal blocks and each block is 6⇥6. Since each block is directly related
to a feature in the 2D mesh grid, we reshape the input block diagonal entries to a [w,h,36]
volume to leverage such 2D spatial correlations. The output volume is [w,h,21] for the lower
triangle matrix L. This model generates the sparsest preconditioner.

Self-Supervised Training

The straight forward way to train the ConditionNet is to minimize the condition number
k(M�1

A) = lmax/lmin i.e.the ratio of the maximum and minimum singular value in M
�1

A.
However, the time consuming singular value decomposition (SVD) makes large scale training
impractical.

Instead, we propose the PCG-Loss for training. As shown in Fig. 4.8 the learned
preconditioner M

�1 is fed to a PCG layer to minimize (4.14) and output the solution x.
Training data generation for the ConditionNet is fully automatic; i.e., no annotations are
needed to find the ground truth solution xgt to equation Ax = b, which we do by running
a standard PCG solver. To obtain xgt , the standard PCG is executed as many iterations as
possible till convergence. Then the L1 PCG-Loss is applied on the predicted solution

Lpcg = |x�xgt | (4.16)

The training samples, i.e.the [A, b] pairs, are collected from the Gauss-Newton update step
in Eqn. (5.7).

During the training phase, we limit the number of available iterations in the PCG layer.
This is to encourage the ConditionNet to generate a better preconditioner that achieves
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the same solution while using fewer steps. At the early phase of the training, the PCG
layer with limited iterations does not guarantee a good convergence. The back-propagation
strategy described in Section 4.2.2 can not be applied here, because incomplete solving
results in wrong gradient. Instead, we directly flow the gradient through all PCG iterations
for ConditionNet training.

We train ConditionNet and the non-rigid feature extractor separately. They are used
together at the testing phase.

4.3 Experimental results

Implementation Details: The resolution of the deformation graph is 16⇥12. Empirically,
the weighting factor [l f ,lg,lr] in the energy function (5.4) are set to [1,0.5,40]. The number
of Gauss-Newton iterations is 3 for non-rigid feature extractor training. The number of PCG
iterations is 10 for ConditionNet Training. We implement our networks using the publicly
available Pytorch framework and train it with Tesla P100 GPUs. We trained all the models
from scratch for 30 epochs,with a mini-batch size of 4 using Adam [48] optimizer, where
b1 = 0.9, b1 = 0.999. We used an initial learning rate of 0.0001 and halve it every 1/5 of the
total iterations.

Datasets

ScanNet ScanNet [18] is a large-scale RGBD video dataset containing 1,513 sequences
in 706 different scenes. The sequences are captured by iPad Mounted RGBD sensors that
provide calibrated depth-color pairs of VGA resolution. The 3D camera poses are based
on BundleFusion [19]. The 3D dense motion ground truth on the ScanNet is obtained by
projecting point cloud via depth and 6-Dof camera pose. We apply the following filtering
process for training data. To narrow the domain gap with the non-rigid dataset, we filter
out images if more than 50% of the pixels have the invalid depth or depth values larger
than 2 meters. To avoid image pairs with large pose error, we filter image pairs with a large
photo-consistency error. Finally, we remove the image pairs with less than 50% “covisibility",
i.e.the percentage of the pixels that are visible from both images. Similarly, the sequences
are subsampled using the intervals [2, 4, 8, 16]. We use 60k frame pairs in total and split
train/valid/test as 8/1/1.

Non-Rigid Dataset We use the non-rigid dataset from Aljaž et al. [9] which consists of
400 non-rigidly deforming scenes, over 390,000 RGB-D frames. The distance of the objects
to the camera center lies in the range [0.5m, 2.0m]. Depending on the complexity of the
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scene, the foreground object masks are either obtained by a simple depth threshold or depth
map aided human annotation. We run our tracking and reconstruction method to obtain the
ground truth non-rigid motions. We remove the drifted sequences by manually checking the
tracking quality of the reconstructed model. The example of this dataset can be found in the
paper [9]. Similarly to the rigid case, we sub-sample the sequences using the frame jumps [2,
4, 8, 16] to simulate the different magnitude of non-rigid deformation. For data-augmentation,
we perform horizontal flips, random gamma, brightness, and color shifts for input frame
pairs. Finally, we got 8.5k frame pairs in total and split train/valid/test as 8/1/1.

4.3.1 Non-rigid tracking evaluation

Baselines We implement a few variants of the non-rigid ICP (N-ICP) methods. They apply
different energy terms as shown in Tab. 1. Among them, N-ICP-1 is our implementation
of the method DynamicFusion [67], and N-ICP-2 is our implementation for the method
described in [114]. The original two papers are focusing on the model to frame tracking
problems where the model is either reconstructed on-the-fly or pre-defined. Here all baselines
are deployed for the frame-frame tracking problem. Ours first optimizes the feature fitting
term based objective (5.4) to get the coarse motion and then refine the graph with the classic
point-to-plane constraints using the raw depth maps.

Quantitative Results The quantitative results on the ScanNet dataset and the non-rigid
dataset can be found in Table 1. The estimated motions are evaluated using the 3D End-
Point-Error (EPE) metric. On ScanNet, Ours(SN) achieves overall better performance than
the other N-ICP baselines, especially when the motions are large (e.g.on 0!8 and 0!16
frame jump). Note that the ScanNet pre-trained model Ours(SN) even achieves better results
than the classic N-ICPs on the non-rigid dataset, indicating a good generalization ability of
the learned non-rigid feature, which makes sense considering that the learnable CNN model
focuses only on the feature extraction part, and the using of classic optimizer disentangle
the direct mapping from images to motion. It also proves the assumption that the rigid and
non-rigid surfaces lie in quite close domains. The fine-tuned model Ours(SN+NR) on the
non-rigid dataset further improved these numbers.

Qualitative Results Fig. 4.9, Fig. 4.10, Fig. 4.11, and Fig. 4.12 shows the frame-frame
tracking results on the non-rigid frame pairs. We selected the frame pairs with relatively large
non-rigid motions. N-ICP-1 (DynamicFusion) and N-ICP-2 (VolumeDeform) have trouble
dealing with these motions and converged to bad local minimums. Our method manages to
converge to the global solutions on these challenging cases. For instance, the clothes scene
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Table 4.1 3D End point Error (EPE) on ScanNet and our Non-Rigid dataset. The frame jumps
shows the index of the indices of the source and target frame. The number of unkonws in the
deformation graph is 1152 (16⇥12⇥6). Ours (SN): trained on ScanNet [18]. Ours (SN +
NR): pretrained on ScanNet and fine-tuned on the Non-Rigid dataset [9].
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Figure 4.9 Frame-Frame tracking results for the “cloth” sequence. Compared to DynamicFu-
sion Newcombe et al. [67] and VolumeDeform Innmann et al. [41], Our method yield better
alignment with target frame. Meshes are constructed from depth images. Depth images are
preprocessed by the bilateral filter to reduce observation noise. Initial alignment is done by
simply setting the camera poses of both frames to identity. The alignment error (hotter means
larger) measures the point to point distance between target mesh and the transformed source
mesh.
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Figure 4.10 Frame-Frame tracking results for the “pillow” sequence. Compared to Dynam-
icFusion Newcombe et al. [67] and VolumeDeform Innmann et al. [41], Our method yield
better alignment with target frame. Meshes are constructed from depth images. Depth images
are preprocessed by the bilateral filter to reduce observation noise. Initial alignment is done
by simply setting the camera poses of both frames to identity. The alignment error (hotter
means larger) measures the point to point distance between target mesh and the transformed
source mesh.
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Figure 4.11 Frame-Frame tracking results for the “Adult” sequence. Compared to Dynam-
icFusion Newcombe et al. [67] and VolumeDeform Innmann et al. [41], Our method yield
better alignment with target frame. Meshes are constructed from depth images. Depth images
are preprocessed by the bilateral filter to reduce observation noise. Initial alignment is done
by simply setting the camera poses of both frames to identity. The alignment error (hotter
means larger) measures the point to point distance between target mesh and the transformed
source mesh.
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Figure 4.12 Frame-Frame tracking results for the “Bear” sequence. Compared to Dynam-
icFusion Newcombe et al. [67] and VolumeDeform Innmann et al. [41], Our method yield
better alignment with target frame. Meshes are constructed from depth images. Depth images
are preprocessed by the bilateral filter to reduce observation noise. Initial alignment is done
by simply setting the camera poses of both frames to identity. The alignment error (hotter
means larger) measures the point to point distance between target mesh and the transformed
source mesh.
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in Fig. 4.9 is an especially challenging case for classic non-rigid ICP methods because the
point-to-plane term has no chance to slide over the zigzag clothes surface which contains
multiple folds, and the color consistency term could also be easily confused by the repetitive
camouflage textures of the clothes. The learned features show an advantage for capturing
high order deformation on those cases. For additional tracking results, please refer to the
supplementary material.

4.3.2 Preconditioning results

We randomly collected 10K [A, b] pairs from different iterations the Gauss-Newton step.
We split them to train/valid/test according to the ratio of 8/1/1. We compare with 3 PCG
baselines: w/o preconditioner, the standard block-diagonal preconditioner, and the Incomplete
Cholesky factorization based preconditioner. We also show the ablation studies on three of
the ConditionNet variants: Diagonal, Sparse and Dense. Fig. 4.13 shows the PCG steps
using different preconditioners. The learned preconditioner outperforms the classic ones by a
large margin. Tab. 2 shows PCG’s solving results using different preconditioners. All learned
preconditioners significantly reduced the condition numbers. ConditionNet-Dense achieves
the best convergence rate and the least overall solving time.

4.4 Summary

In this chapter, we present an end-to-end learning approach for non-rigid RGB-D tracking.
Our core contribution is the learnable optimization approach which improves both robustness
and convergence by a significant margin. The experimental results show that the learned non-
rigid feature significantly improves the convergence of Gauss-Newton solver for the frame-
frame non-rigid tracking. In addition, our method increases the PCG solver’s convergence
rate by predicting a good preconditionier. Overall, the learned preconditioner requires 2 to 3
times fewer iterations until convergence.

4.5 Limitation

While we believe this results are very promising and can lead to significant practical im-
provements in non-rigid tracking and reconstruction frameworks, there are several major
challenges are yet to be addressed:

1) The proposed non-rigid feature extractor adopted plain 2D convolution kernels, which
are potentially not the best option to handle 3D scene occlusions. One possible research
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Figure 4.13 PCG convergence using different preconditioners. The curves show the average
convergence on the testing dataset. Note that our final method (green curve) requires 3 times
fewer PCG steps to achieve the same residual (10�6) than the best baseline (dashed line).

Preconditioner density k iters time (ms)

None – 3442.18 46 33.43

Block-Diagonal 0.46% 541.52 44 31.34

Incomplete Cholesky 1.52 379.82 37 28.42

ConditionNet-Diagonal (ours) 0.46% 93.55 21 12.38

ConditionNet-Sparse (ours) 1.52% 125.81 23 17.80

ConditionNet-Dense (ours) 100.% 34.90 13 10.32

Table 4.2 PCG solving results using different preconditioners (residue threshold of conver-
gence: 10�6). density: density of preconditioner. k: condition number of the modified
linear system. iters: total steps for convergence. time(ms): time of solving. All numbers are
obtained with Pytorch-GPU implementation.
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avenue is to directly extract non-rigid features from 3D point clouds or mesh structures using
the point-based architectures [75], or even graph convolutions [11].

2) Collecting dense scene flow using DynamicFusion for real-world RGB-D video
sequence is expensive (i.e. segmentation and outlier removal can become painful processes).
The potential solution is learning on synthetic datasets. (e.g.using graphics simulations where
the dense motion ground truth is available).

3) The proposed method is essentially based on the direct Lucas-Kanade [2] alignment
method that uses the gradient on the 2D image/feature grid. If the source and target frames
are too far away from each other (e.g. two frames have no overlap at all), the direct alignment
method will not work. Fig. 4.14 shows a large and a small overlap case. A potential solution
in such situation is to use the sparse descriptor matching [9, 59, 4] method to coarsely draw
two frames together and then use the direct method to refine the tracking.

Figure 4.14 Left: frames pair with large overlap (most points in the source frame are observed
in the target frame); Right: frame pair with small overlap (only the points around the stomach
of the cow are observed in both frames). To handle small overlap cases, it is necessary to
learn the overlapping area between two frames.
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4.6 Supplementary material

In this document, we provide more details to the main chapter. In Sec. 4.6.1, we show
additional non-rigid tracking results. In Sec. 4.6.2, we provide details of about our networks.
In Sec. 4.6.3, we provide details of about of the non-rigid dataset. Alg. 1 and Alg. 2 provide
details about the nested optimizers: Gauss-Newton (GN) and Preconditioned Conjugate
Gradient (PCG).

4.6.1 Additional non-rigid tracking results

Fig. 4.16 and Fig. 4.15 show the frame-frame non-rigid tracking results on different ranges
of motion, from small to large. We compare our method with two baselines, DynamicFusion
[67] and VolumeDeform [114]. Though all three methods show artifacts when the motion is
large, the results of our method are geometrically closer to the target frames.

4.6.2 Network configurations

Table.4.3 shows the network structure of the non-rigid feature extractor. It is based on the
fully convolutional networks [57]. The RGB-D images are resized to 128⇥96 before feeding
to the feature extractor. All convolutions are followed by a batch normalization layer and
a ReLU layer. We use spatial average pooling of size 2 to down-sample features between
two feature pyramids. The input volume is [128, 96, 4], where 4 represents the 4 channels
of the RGB-D frame. Down-sampling is applied three times in total. The output volume of
the network is [16, 12, 5]. Table. 4.4 shows the network structure of the ConditionNet. The
number of input and output channels for ConditionNet-Dense and ConditionNet-Sparse is 1.
ConditionNet-Diagonal has 36 channels for input and 21 channels for output.

4.6.3 Dataset details

Fig. 4.17 shows the examples in the collected non-rigid dataset. Foreground are selected by
crowd-sourced manual annotation. Similar to the ScanNet, the RGB-D videos are captured
via iPad mounted Structure Sensor. The depth frames are recorded at a resolution of 640⇥480.
A variety of dynamic objects are included: animals, adults, children, cloth, furniture, etc.
Fig 4.18 shows the statistics of the dataset. The backgrounds vary from static scenes to
dynamic ones with multiple moving objects. Fig. 4.19 and Fig. 4.20 show the Examples of
reconstructed model using our non-rigid tracking and reconstruction tool, from which we get
the dense motion annotation for network training.
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Algorithm 1 Gauss-Newton Optimization
1: C  F(Is,It) . Estimate correspondences
2: W  Y(Zs,Z 0

t ,H ) . Estimate importance weights
3: function SOLVER(C ,W ,V )
4: T  0

5: for n 0 to max_iter do

6: J,r ComputeJacobianAndResidual(V ,T ,Zs,Z 0
t ,C ,W )

7: DT  PreconditionedConjugateGradient(JT
JDT =�J

T
r) . Solve linear

system
8: T  T +DT . Apply increment
9: return T

Algorithm 2 Preconditioned Conjugate Gradients, reproduced from [3]
Input:

A(·) // A function which implements Ax

b // The b vector in the linear system
x // The initial value of the state x

M
�1(·) // A function which implements a preconditioner

n // the number of iterations
Output:

x // x such that A(x)⇡ b

1: i 0
2: r b�A(x)
3: d M

�1(r)
4: lnew r

T
d

5: while i < n do

6: q A(d)
7: a  lnew

dTq

8: x x+ad

9: r r�aq

10: s M
�1(r)

11: lold  lnew

12: lnew r
T
s

13: b  lnew

lold

14: d s+bd

15: i i+1
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Module Name Channels Stride Batch Norm. Activation Dilation
Conv2d 16 1 True ReLU 1
Conv2d 32 1 True ReLU 2
Conv2d 32 1 True ReLU 2

Average Polling
Conv2d 32 1 True ReLU 1
Conv2d 64 1 True ReLU 2
Conv2d 64 1 True ReLU 2

Average Polling
Conv2d 64 1 True ReLU 1
Conv2d 96 1 True ReLU 2
Conv2d 96 1 True ReLU 2

Average Polling
Conv2d 96 1 True ReLU 1
Conv2d 128 1 True ReLU 2
Conv2d 128 1 True ReLU 2
Conv2d 5 1 True ReLU 1

Table 4.3 The network configuration of the non-rigid extractor.
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Module Name Channels Stride Batch Norm. Activation padding
Input nin

Conv2D-1.1 32 1 true PReLU 1
Conv2D-1.2 32 1 true PReLU 1
Max pooling
Conv2D-2.1 64 1 true PReLU 1
Conv2D-2.2 64 1 true PReLU 1
Max pooling
Conv2D-3.1 128 1 true PReLU 1
Conv2D-3.2 128 1 true PReLU 1
Max pooling
Conv2D-4.1 128 1 true PReLU 1
Conv2D-4.2 128 1 true PReLU 1

NearestUpSample1
Concat (w/ Conv2d-3.2) 128+128 1 true PReLU 1

Conv2D 128 1 true PReLU 1
Conv2D 128 1 true PReLU 1

NearestUpSample2
Concat (w/ Conv2d-2.2) 128+64 1 true PReLU 1

Conv2D 64 1 true PReLU 1
Conv2D 64 1 true PReLU 1

NearestUpSample3
Concat (w/ Conv2d-1.2) 64+32 1 PReLU 1

Conv2D 32 1 true PReLU 1
Conv2D nout 1 true Linear 1

Table 4.4 The network configuration of ConditionNet. nin = 1,nout = 1 for ConditionNet-
Dense and ConditionNet-Sparse. nin = 36,nout = 21 for ConditionNet-Diagonal. The kernel
size is 2x2 for ConditionNet-Diagonal and alternate between 1x1 and 2x2 for ConditionNet-
Dense and ConditionNet-Sparse.
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Figure 4.15 Non-Rigid tracking results on the hoody scene.
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Figure 4.16 Non-Rigid tracking results on the kitty scene.
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Figure 4.17 The Non-rigid dataset from [9] contains a large variety of dynamic sequences
with segmentation masks and point correspondences between different RGB-D frames. The
foreground are segmented through crowd-sourced manual annotation.

Figure 4.18 Object class variety. This dataset include many different sequences of dynamic
objects, such as cloths, bags, etc..
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Figure 4.19 Examples of reconstructed model in the non-rigid dataset. Top row: Color
frame in the sequence. Bottom row: The reconstructed foreground object models using our
non-rigid tracking and reconstruction method.
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Figure 4.20 Examples of reconstructed model in the non-rigid dataset. Top row: Color
frame in the sequence. Bottom row: The reconstructed foreground object models using our
non-rigid tracking and reconstruction method.
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Chapter 5

SplitFusion

Figure 5.1 The focus of this chapter and its position in the entire system.

As shown in Figure. 5.1, this chapter focuses on the main framework of this system:
a framework that allows simultaneous tracking and mapping on both rigid and non-rigid
scene. We present SplitFusion, a novel dense RGB-D SLAM framework that simultaneously
performs tracking and dense reconstruction for both rigid and non-rigid components of the
scene. SplitFusion first adopts deep learning based semantic instant segmentation technique to
split the scene into rigid or non-rigid surfaces. The split surfaces are independently tracked via
rigid or non-rigid ICP and reconstructed through incremental depth map fusion. Experimental
results show that the proposed approach can provide not only accurate environment maps but
also well-reconstructed non-rigid targets, e.g.the moving humans.
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5.1 Introduction

Visual Simultaneous Localization and Mapping (Visual SLAM) is a popular robotics research
topic which focuses on the robot self-localization and unknown environment reconstruction
using visual sensors, such as stereoscopes, monocular cameras, RGB-D sensors, and laser
scanners. Most of the existed visual SLAM approaches are designed based on the static
environment assumption. However, dynamic elements in the scene can cause trouble for
camera 6-DoF pose tracking, leading to artifacts in the reconstruction.

To deal with the problem of the dynamic environment, the recent works [80] extract the
dynamic components from the input, removing them as exceptions to apply static SLAM
frameworks. These approaches have shown improvements in both camera tracking and
reconstruction. Nonetheless, the removed dynamic objects are important targets for many
autonomous robot systems, such as cooperative manipulation and human-robot interactions.

The seminal DynamicFusion [67] proposed a general solution for non-rigid scene re-
construction by parameterizing the scene with a expandable deformation model. However,
the complexity of non-rigid tracking grows quadratically with the model’s size, making this
approach less scalable to larger scenes. Moreover, without explicit surface segmentation,
these methods can not efficiently handle topology changes.

In this chapter, we present a novel SLAM framework called SplitFusion which simulta-
neously performs tracking and reconstruction for both rigid and non-rigid components of
the scene. We first split the scene into rigid or non-rigid geometric surfaces by leveraging
the recent advancement in deep learning based semantic instance scene understanding. The
split surfaces are independently tracked via rigid or non-rigid ICP and reconstructed through
incremental depth map fusion. The proposed visual SLAM framework not only results in
accurate and clean rigid environment maps but also provides well reconstructed non-rigid
objects.

In this chapter, we present a novel non-rigid scene reconstruction system that by lever-
aging the recent advancement in semantic/instance scene understanding, to simultaneously
reconstruct multiple non-rigidly deforming objects along with the static scene together.

5.2 Method

SplitFusion Overview

SplitFusion splits a scene into several mutually independent geometric surfaces. A surface is
associated with a warping filed that transforms the surface into the time-varying frames. As
show in Fig. 5.1 the followings are the overview of this system:
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Figure 5.1 Overview of the proposed reconstruction system. For input RGB-D frames, we
first apply YOLACT [7] based semantic instance segmentation on the color images and then
refine the segmentation via depth map (i.e.point clustering). The segmented surfaces are
tracked independently. The tracking is performed using rigid-ICP for rigid classes, (e.g.
chairs and ground) or non-rigid ICP for deformable classes (e.g. human and animals). Depth
map fusion is done for each surface and the extracted meshes are combined together using
the relative surface-to-camera transformations.

1. The scene is first decomposed into several independent sub-surfaces. (cf. Sec-
tion. 5.2.1)

2. The motion of a sub-surface is approximated by a dense warping filed. (cf. Sec-
tion. 5.2.2)

3. Non-linear optimization is performed to find the best warping filed parameters for each
sub-surface. (cf. Section. 5.2.3)

4. A live frame is fused into the warped model using volumetric method. (cf. Sec-
tion. 5.2.4)

5.2.1 Scene decomposition

SplitFusion takes RGB-D frames as input. Each frame is decomposed into several pieces via
deep learning based semantic/instance segmentation and the segmentation are then refined
by geometric post-processing. The system flowchart of the proposed method is shown in
Fig. 5.1. The RGB frame is first fed into YOLACT [7] to detect the object category and
perform pixel-level segmentation. YOLACT is a real-time instance segmentation method that
can handle 80 types of objects in 2D images. Unlike two-stage methods such as Mask-RCNN,

48



5.2 Method

YOLACT is a one-shot instance segmentation method, which greatly reduces the inference
time. It divide the instance segmentation into two parallel tasks. The first task uses fully
convolutional networks [57] to generate a set of prototype masks with the same size for each
image, and the output uses ReLU function for non-linearization. The second task is object
detection based on anchor. It contains three branches: the first branch is used to predict
mask coefficients for each prototype, the second branch is used to predict the confidence of
instance categories and the third branch is used to predict the coordinates of the bounding
box.

There are over 80-type of objects that can be detected by YOLACT. The objects in the
environments are classified into rigid or nor-rigid objects according to their semantic labels.
For instance, we treat humans and animals as non-rigid, tables, grounds, and desktops as
rigid. The next step is to split the 3D surface according to the former 2D segmentation.

However, the YOLACT based segmentation is noisy and there are inevitable misalign-
ments between color image and depth maps of a commodity RGB-D camera. Hence, we
refine the YOLACT segmentation based on depth-map based geometry post-processing. This
is done by applying the point cloud clustering as demonstrated in [108]. Specifically, the
segmented non-rigid masks are first projected to 3D space using the pinhole camera model,
then these projected points are used as foreground prior to start a 3D graph-cut [33] based
point clouds splitting. It treats every 3D point as a vertex and the vertices are connected with
their neighbors by edges. Given these mask points as foreground priors, it split the non-rigid
object point clouds out from the rigid backgrounds by computing the weights of the edges.

5.2.2 Per surface warping filed

The decomposed surfaces are processed independently. Similar to [67][41], we represent the
per-surface warping filed by the deformation graph G . In the deformation graph, the node
i’s motion is parameterized by a translation vector ti 2 R3 and a rotation matrix Ri 2 SO3.
Therefore a node is parameterized by a rigid 6-dof transformation. Putting all parameters
into a single vector, we get the warping filed parameters G = {ti,Ri|i = 1...k}, where k is
the total number of node. Besides the 6-dof motion, a node also has the attribute gi 2 R3,
storing its 3D position in each time-step. The deformation nodes are sampled in the way that
it covers the surface evenly. The nodes are connected based on closeness. Refer to [88] for
the details.

The motion of the entire surface is estimated by linearly blending [88] the motions from
the graph nodes. The influence of a rigid transformation is centered at a node’s position, so
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Figure 5.2 Non-Rigid surface representation. From left to right, input RGB image, semantic
instant segmentation, deformation graph and surface.

that any nearby point p is mapped to position p̃ according to

p̃ = Ri(p�gi)+ ti +gi (5.1)

The influence of multiple graph node can be smoothly blended so that the transformation in
point ṽ jis a weighted sum of the deformation graph transformations

ṽ j =
k

Â
i=1

wi, j[Ri(v j�gi)+ ti +gi] (5.2)

The blending weights wi, j are pre-computed acoording to

wi, j = (1� ||vi�g j||/dmax)
2 (5.3)

and then normalized to sum to one. Here dmax define the max distance of a valid neighbor.
The blending weights for nodes that are beyond dmax are set to zero. dmax is computed
per-point. It is defined by the distance to the K + 1-th nearest neighbor node, i.e. only K

nearest neighbor nodes can affect a point. Empirically we use K = 6 in our implementation.
Based on the semantic information obtained from YOLACT, we split the scene into

independent rigid and non-rigid surfaces. Note that the rigid surface can be considered as a
special case of the non-rigid surface, where there are only one node in the deformation graph,
i.e., it has only 6 degrees of freedom.

In the rigid case, the non-rigid surface tracking task is reduced to the 6-dof camera pose
tracking and the dmax is set to positive infinity, i.e.all linear blending weights in Eqn. 5.2
become 1.
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Figure 5.3 Estimation of warping filed parameters between to surfaces using the non-rigid
ICP method. Brown: live frame, Blue: canonical surface. After performing non-rigid ICP,
the source surface is warped to the target surface via the estimated dense warping filed. the
registered surfaces are then fused together using the volumetric method.

5.2.3 Warping filed estimation

We solve the surface motion tracking problem via the non-rigid ICP approach. For each
surface, we estimate the deformation filed G given a target depth map by minimizing the
following energy function:

Etotal(G ) = Edata(G )+lEprior(G ) (5.4)

Here the data term Edata is the dense model-to-frame ICP cost measuring the point-to-plane
term between the warped model, which is a projected depth map Dm, and live depth map Dt.
It is defined as

Edata(G ) = Â
(um,ut)2W

||nT

m(vm� vt)||2 (5.5)

where W is the set of corresponding pixel pairs in the projected depth map and live depth
map. n,v 2 R3 are the normal vector and re-projected 3D vertex associated with a pixel.
The method to found the correspondence set W can be found in the literature[67][41]. The
point-to-plane data-term interact with the motion filed parameters according to the chain rule.

Here we show how to compute the Jacobian matrix J for the motion filed parameter
G = {ti,Ri|i = 1...k} w.r.t the point-to-plane term. According the to Gauss-Newton method,
the point-to-plane residual r is computed as:

r = n
T

m(vm� vt)

Here, only vm is relevant, n
T
m and vt are constant values. Accordingly,

∂ r

∂vm

= n
T

m
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J =
∂ r

∂G
= { ∂ r

∂ ti
,

∂ r

∂Ri

|i = 1...k}

∂ r

∂ ti
=

∂ r

∂vm

∂vm

∂ ti
∂ r

∂Ri

=
∂ r

∂vm

∂vm

∂Ri

The partial derivatives ∂vm/∂ ti and ∂vm/∂Ri can be computed via the linear blending
function defined in Eqn. 5.2.

Following the engineering insights from [67, 41], we also use the point-to-point constraint
at the beginning iterations of N-ICP to fast close-up the gap between two geometries and use
point-to-plane later for alignment refinement.

The prior term Eprior regularize the shape deformation. We use the ARAP [85], which
encourages locally rigid motions. It is defined as

Eprior(G ) =
k

Â
i=1

Â
j2Ni

Ei, j · ||(ti� t j)�Ri(t
0
i� t

0
j)||2 (5.6)

Where Ni denotes node-i’s neighboring nodes, and t
0
j
, t
0
j

are the positions of i, j after the
transformation. Ei, j define the weight associated with the edge.

The energy Etotal(G ) is then optimized by the Gauss-Newton update steps:

(JTJ)DG = JTr (5.7)

where r is the error residue, and J is the Jacobian of the residue with respect to G . This linear
equation is solved using the data-parallel preconditioned conjugate gradient (PCG). Note
that by splitting the whole scene into sub-surfaces, we also decomposed a potentially very
large linear system into several smaller ones, which are easier to solve. If the surface is rigid,
the tracking is reduced to rigid point-to-plane ICP and the ARAP regularization disappeared
from the energy function since there is only one deformation node.

5.2.4 Surface fusion

We use the TSDF function to update each sub-surface model geometry. Following the fusion
technique introduced by [66][67], the depth maps segments Dt of the real-time RGB-D frame
is incrementally integrated into the canonical TSDF. Note that each sub-surface is associated
with a separate volume and the TSDF fusion is also performed independently. We may
have both rigid and non-rigid surfaces. Non-rigid surface fusion is a generalization of the
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projective truncated signed distance function integration approach applied in the rigid case
in [66].

After the dense TSDF volumes are created, we perform per pixel ray-casting [71] to
extract the final reconstructed surfaces. All surfaces are re-united to the camera coordinate
system according to the surface-to-camera warping fileds (cf. Section 5.2.3).

5.3 Experimental results

We evaluate the proposed approach in two perspectives: non-rigid scene reconstruction and
camera pose tracking w.r.t the rigid background.

5.3.1 Non-rigid scene reconstruction results

We evaluate the reconstruction results of our method using the following three published
non-rigid sequences:

freiburg_walking_xyz This sequence is from the TUM-RGBD [87] dataset. This scene
contains two walking people in an office. It is captured via the Asus Xtion sensor which has
manually been moved along three directions (xyz) while keeping the same orientation. This
sequence is extremely challenging because the non-rigid human motions are very fast and the
people are also interacting with the rigid objects, i.e. the chair. The sensor readings for the
chairs are insufficient for detection, leading to environmental noise for tracking. We compare
our method with the following methods: the rigid SLAM: KinectFusion [66], the non-rigid
reconstructor: DynamicFusion [67], and Co-Fusion [77] which also perform rigid tracking
for segmented objects. Reconstruction results for this sequence can be found in Fig. 5.4
and 5.5. KinectFusion does not work for dynamic scenes. DynamicFusion treats the entire
scene as a whole non-rigid object, the scene sticks together over time. Although Co-Fusion
also uses segmentation technique, it can not track and reconstruct the non-rigid human. We
achieve significantly better reconstructions than these methods. For video comparison, we
refer to the supplementary material.

Selfie This sequence is released by StaticFusion [80]. In this sequence, a person carries the
camera with her right arm while the camera points at them. This a very complex test because
the person often occupies more than 50% of the image and which causes a problem for
camera pose tracking and background reconstruction. The result of this sequence is shown in
Fig. 5.6. We achieve robust tracking and reconstruction for both the foreground people and
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Figure 5.4 Reconstructions of non-rigid scenes with SplitFusion; top: meshes, bottom:
normal maps; both the people and the camera are moving. From left to right: frame 1, 20
and 100 of the sequence fr3/walking_xyz from TUM RGB-D [87] dataset.

KinectFusion [66] DynamicFusion [67]

Co-Fusion [77] Ours

Figure 5.5 Reconstruction results on fr3-walking-xyz sequence from the TUM-RGBD [87]
dataset. KinectFusion does not work when the scene is non-rigid. DynamicFusion fails to
deal with the topology changes without explicit scene segmentation. Co-Fusion can not
handle non-rigid objects.
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Figure 5.6 Our reconstruction results of the selfie sequence [80], from left to right, frame
ID: 1, 39, 72, 88, 139, 168. Top row: the Color image; Middle row: reconstruction of the
non-rigid face; Bottom row: reconstruction of the whole scene, including both rigid and
non-rigid components. For the whole sequence results, we refer to the supplementary mp4
video.

Figure 5.7 Our reconstruction results of the minions sequence [41], from left to right, frame
ID: 3, 50, 100, 200, 426. Top row: the Color image; Middle row: reconstruction of the
non-rigid objects; Bottom row: reconstruction of the whole scene, including both rigid and
non-rigid components. For the whole sequence results, we refer to the supplementary mp4
video.
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the room. However, the arm and shoulder can not be reconstructed because the commodity
RGB-D camera can only capture depth that is further than 0.5 meters.

Minion This sequence is published by VolumeDeform [41]. This is also a very hard
sequence. In this sequence, a person carries a “Minion" in front of a camera. A large portion
of the frame is occupied by the non-rigid objects. The self-occlusion between the minions
and human also make non-rigid tracking very hard. For the high entanglement, we treat the
person and minion as a single object. The result of this sequence is shown in Fig. 5.7.

As shown in Fig. 5.4, Fig. 5.6, and Fig. 5.7 (from left to right), just like the results
demonstrated in [67] [41], noisy and incomplete reconstruction can be progressively denoised
and completed over time as more depth maps are fused into the model.

5.3.2 Camera pose tracking w.r.t the rigid background

To evaluate the rigid mapping results, we compared the proposed method to three state-
of-the-art dynamic environment reconstruction methods: Co-Fusion(CF), StaticFusion(SF)
and FlowFusion(FF). Tab. 5.1 shows the translational Absolute Trajectory Errors (ATE)
on TUM[87] and HRPSlam[109] RGB-D datasets. The first two fr1 sequences are static
environments, all of these methods got similar results. The lower four rows are dynamic
sequences. As our method applied advanced dynamic object detection and removal technique,
VO errors are much smaller than CF and competitive to SF and FF. The proposed method
results in the smallest 4.8 cm ATE in fr3/walking_xyzsequence, the reconstructed maps are
shown in Fig. 5.5.

Sequence CF SF FF Ours
fr1/xyz 0.014 0.017 0.020 0.015
fr1/desk2 0.17 0.051 0.034 0.040
fr3/walk_xyz 0.71 0.21 0.12 0.048
fr3/walk_static 0.58 0.031 0.23 0.21
HRPSlam2.1 0.91 0.25 0.23 0.22
HRPSlam2.4 0.63 0.44 0.49 0.45

Table 5.1 Absolute Trajectory Error (ATE) RMSE (m)

CF works well in known environments. There are moving objects in this sequence from
the beginning, which result in CF’s VO failure. KF and DF cannot distinguish rigid and non-
rigid objects, thus they cannot decouple the camera motion and failed in non-rigid tracking.
The proposed SplitFusion split rigid and non-rigid objects. The rigid fusion pipeline provides
an accurate static environment mapping and camera tracking(see the reconstructed desk and
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ground in the figure). Furthermore, the non-rigid fusion pipeline successfully tracks and
reconstructs multiple non-rigid objects(see the yellow and green humans in the figure).

5.4 Summary

In this chapter, we proposed SplitFusion, which simultaneously tracks and reconstructs the
rigid backgrounds and the deformable moving objects. Experimental results show that we
can reconstruct accurate static environment maps and multiple non-rigid objects even in the
challenging dynamic scenes.

5.5 Limitation

The following challenges are yet to be addressed:
1) the system requires excessive computation and memory on complex scenes with

multiple objects, which could be alleviate by using light surfel as 3D representation,
2) both rigid and non-rigid tracking are not reliable on large motions, a promising

direction is to incorporate the robust trackers [112][9][53][8].
3) in complex situations such as objects overlap/interact with each other, instance segmen-

tation is not reliable anymore; to overcome such problem, a potential solution is to leverage
the non-rigid geometry tracking information to improve instance segmentation.

4) The segmentation part of the system is based on YOLACT, which is a supervised
object segmentation method that requires a large amount of data for training. Moreover,
YOLOACT does not inform us which object is dynamic which is not. The solution is to
leverage a self-supervised method to segment dynamic objects from static ones by reasoning
the motion of the scene. Dynamic objects are outliers of rigid tracking. Keller et al. [46] has
shown that when performing ICP for rigid tracking, failure of data association to find model
correspondences for input points is a strong indication that these points are depth samples
belonging to dynamic objects.
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5.6 Supplementary material

5.6.1 Volumetric integration

Fig. 1.6 shows an example of global TSDF with truncation of 3. The global fusion of all depth
maps in the volume is formed by the weighted average of all individual TSDFs computed for
each depth map, which can be seen as de-noising the global TSDF from multiple noisy TSDF
measurements. Under an L2 norm the denoised (fused) surface results as the zero-crossings
of the point-wise TSDF F minimizing:

min
T SDF(p)

Â
k

||W obs

k
(p)T SDF

obs

k
(p)�T SDF(p)||2 (5.8)

where, T SDF
obs

k
(p) represent the TSDF of a voxel p given the depth observation from frame

k, and W
obs

k
(p) stands for the weights of this frame.

Given that the focus of the system is on real-time sensor tracking and surface reconstruc-
tion we must maintain interactive frame-rates. (For a 640x480 depth stream at 30fps the
equivalent of over 9 million new point measurements are made per second). Storing a weight
W

obs

k
(p) with each value allows an important aspect of the global minimum of the convex

L2 de-noising metric to be exploited for real-time fusion; that the solution can be obtained
incrementally as more data terms are added using a simple weighted running average, defined
point-wise:

T SDFk(p) =
Wk�1(p)T SDFk�1(p)+W

obs

k
(p)T SDF

obs

k
(p)

Wk�1(p) +W
obs

k
(p)

(5.9)

Wk(p) =Wk�1(p) +W
obs

k
(p) (5.10)

No update on the global TSDF is performed for values resulting from unmeasurable
regions specified in Equation 9. While W

obs

k
(p) provides weighting of the TSDF proportional

to the uncertainty of surface measurement, in practice simply letting W
obs

k
(p) = 1, resulting

in a simple average, provides good results. Moreover, by truncating the updated weight over
some value

Wk(p) = min(Wk�1(p) +W
obs

k
(p),Wh) (5.11)

a moving average surface reconstruction can be obtained enabling reconstruction in scenes
with dynamic object motion.
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Chapter 6

Structure and Motion Completion for

Non-rigidly Deforming Scene

Figure 6.1 The focus of this chapter and its position in the entire system.

As shown in Figure. 6.1, this chapter focuses on how to handle the occlusion of the scene
during non-rigid or rigid tracking. Tracking non-rigidly deforming scenes using range sensors
has numerous applications in computer vision, virtual/augmented reality, and robotics, etc.
However, due to occlusions and physical limitations of range sensors, existing methods can
only handle the visible surface, leading to discontinuity and incompleteness in the geometry
and motion field. In this chapter, we introduce a novel data-driven approach that estimates
the non-rigid motion for the occluded geometry.
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6.1 Introduction

Motion represents how structure evolves in the time axis. Understanding the motion of non-
rigidly deforming scenes using a single range sensor is an important task for many computer
vision and robotics applications. One fundamental limitation is that, due to occlusions and
the physical limitations of range sensors, a single depth camera can obtain only partial and
incomplete observations of a given scene, see Fig. 6.2. As a result, existing non-rigid motion
tracking methods are restricted to the observable part of the scene. However, the ability to
infer complete motion from partial observation is indispensable for many high-level tasks.
For instance, as a domestic robot, to safely serve in a room, it needs to understand the 3D
structure and complete motion field for all the dynamic objects in the room (i.e. human and
pets), even that the objects are always partially occluded.

Figure 6.2 The illustration of occlusion in an RGB-D camera. The ray from the camera
terminates at the visible surface of a given scene, beyond that is occluded and unknown.

Motion estimation of the hidden surface is a widely encountered problem in non-rigid
4D reconstruction using depth sensors. Existing works such as DynamicFusion [67] and
Volumedeform [41] try to tackle it by propagating deformation from the visible surface to
the invisible space through a latent deformation graph. The invisible deformation is deter-
mined by optimizing the hard-coded deformation priors such as As-Rigid-As-Possible [85]
or Embedded Deformation [88], which enforces the graph vertices locally move in an ap-
proximately rigid manner. Such deformation priors have several limitations: 1) They require
heavy parameter tuning effort; 2) do not always reflect nature deformation; and 3) work
only on a connected surface. Occlusion causes surface disconnections and therefore poses
problems for non-rigid tracking, see Fig. 6.3.

One promising direction towards solving this problem is to use machine learning for
shape completion. Very recently, deep learning approaches for 3D shape or scene completion
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Figure 6.3 Occlusion causes surface disconnections and therefore poses a problem for non-
rigid tracking. Left: the input color image; Middle: the surface deformation graph sampled
from the input surface (nodes are connecting to nearby nodes within a geodesic distance
threshold, c.f. Chapter 14 for deformation graph construction); Right: the surface visualized
from another viewpoint (due to occlusion, the hand and arm of the person are not covered by
the same graph, in this case, the motion of the two graphs have to be tracked separately).

and other generative tasks involving a single depth image or room-scale scans have shown
promising results [20, 84, 21, 22]. However, these works focused on processing static scenes.

In this chapter, we make the first effort to combine geometry completion with non-rigid
motion tracking. In nature, the structure and motion of non-rigidly deforming objects are
highly entangled data modalities. It has been long recognized that natural deformations
lie on a spatial-temporal submanifold [10, 23, 50]. In addition, we argue that structure
completion and motion estimation are two mutually complementary tasks. On one hand,
natural objects are usually articulated, e.g. animals and humans. The surface deformation
could be a blending result of several articulations. The other way around, motion can be
considered as the structure’s evolution in the time axis, the similarity in motion patterns is
a strong indicator for structural connectivity. To bridge the best of the two, we propose a
novel framework to jointly recover the missing geometry and predict the invisible motion,
see Fig. 6.4. To train our network, we generate training data from animated CG characters
(c.f. Section. 6.3.2).

6.2 Related work to geometry completion

Completing 3D scans has been well-studied in geometry processing. Traditional methods,
such as Poisson Surface Reconstruction [45], locally optimize for a surface to fit observed
points and work well for small missing regions. Zheng et al [111] predict the unobserved
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Figure 6.4 We propose to jointly recover the missing geometry and predict the invisible
motion from partial observation. In our method, we represent both the shape and motion
field using 3D volume grid.

voxels by reasoning physics. Halimi et al [38] complete partial human scans by deforming
human templates. 3D CNNs have shown promising results for geometry completion for depth
scans [84, 20–22]. Among these works, SSCNet [84], operating on a depth image of a scene;
ScanComplete [21] and SGNN [22] demonstrated scene completion on room- and building
floor-scale scans. An alternative approach for shape completion could through learning
implicit scene representations [63, 68, 73, 70, 54, 15, 44, 82]. While existing works mainly
focus on completing static scenes, we investigate how to do completion in the dynamic 4D
domain.

6.3 Method

6.3.1 Network Configuration

Given a single-view depth map observation of a 3D scene, and the scene flow that is computed
between the current frame and the next frame, the goal of our network is to recover the
missing geometry and motion filed.

Input. We use 3D volumetric representation for both structure and motion. The input depth
map is represented as a projective truncated signed distance field (TSDF), as a sparse set of
voxel locations within truncation and their corresponding distance values. The input scene
flow is the 3D translational vectors of the 3D points that are reprojected from the depth map’s
pixels. In this work, we use Flownet3D [55] to predict the scene flow for the visible surface.
Because a 3D point does not necessarily lie on a regular 3D grid position, we voxelize the
sparse scene flow field to a 3D volumetric motion field. We bind the flow motions to the
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voxels using Eqn. 6.2. The projective TSDF and the voxelized scene flow are concatenated
together as network input.

Network Architecture. To obtain an output high-resolution structure and motion field, we
build the networks upon the sparse convolutions [34, 35, 16], which is computationally
efficient in processing 3D volume data by operating only on sparse surface geometry. Fig. 6.5
shows an overview of our network architecture. The network consists of a shared 4D encoder
and two decoders to estimate geometry and motion in parallel. The input sparse tensor is first
fed to the 4D Encoder, which encodes the data using a series of sparse convolutions, each set
reduces the spatial dimensions by a factor of two. Similar to [22], the structure decoder is
designed in a coarse-to-fine architecture, with 4 hierachical levels. In the hierarchical level
k, the structure decoder predicts the voxels’ occupancy Ok and TSDF value Sk. We filter
voxels with sigmoid(Ok(v))> 0.5 as the input geometry for the next hierarchical level. In
each hierarchical level, the predicted geometry is also fed to the parallel motion decoder, i.e.
to inform where the motion should be estimated. We use skip connections between the 4D
encoder and the 2 decoders to connect feature maps of same spatial resolution. Since the
structure decoder usually generate a larger set of sparse locations than the input, we use zero
feature vector for the locations that do not exist in the input volume.

Structure Loss. The structure head’s final output is a sparse TSDF from which a mesh can
be extracted by Marching Cubes. Following [22], we apply l1 loss on the log-transformed
TSDF values. The log-transformation encourage more accurate prediction near the surface
geometry. We additionally employ proxy losses at each hierarchy level for outputs Ok and
Sk, using binary cross entropy with target occupancies and l1 with target TSDF values,
respectively.

Motion Loss. For each sparse location, the motion head predicts its motion vector in R3.
We formulate the loss for the completed motion field on the final predicted sparse locations,
using an l2 loss with the target motion vectors at those locations. In addition, we apply the
cosine similarity loss on the normalized motion vector to encourage the directions of the
motion vectors to be consistent with the ground truth.

Training. We use a newly constructed dataset (c.f. Section. 6.3.2) to train our network. As
shown in Fig. 6.5, at training time, we consider cropped views of scans for efficiency, using
random crops of size [96⇥96⇥128] voxels for the finest level. We crop the volumes at 1
meter intervals out of each of the train object and discard empty volume. The resolution
drops by a factor of 2, resulting resolution of [48⇥48⇥64], [24⇥24⇥32], and [12⇥12⇥
16] for each hierarchical level. The fully-convolutional nature of our approach enables
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Figure 6.5 The network architecture of our method. The input of our network is the concate-
nation of a TSDF volume and volumetric motion field. The network predicts the complete
TSDF and motion field using the shape and motion decoder in parallel. Our method is trained
on the cropped volume of spatial dimension 96⇥96⇥128. The fully-convolutional nature
of our approach enables testing on whole objects of arbitrary sizes at testing time.

testing on whole object of arbitrary sizes at testing time. To learn viewpoint invariant
motion representation, during training, we apply random rigid rotation transformation on
the 3D motion vectors as data-augmentation. The randomness is drawn from the Haar
distribution [86] which yield uniform distribution on SO3. We train our network, using
the Adam optimizer with a learning rate of 0.001 and batch size of 8. We use level 2000
iterations for progressive introduction of each higher resolution output, and train our model
for 40 hours until convergence.
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6.3.2 Mixamo Animation dataset

Training our network requires a sufficient amount of non-rigidly deforming target sequences
with ground truth 4D annotation, (i.e.motion and shape) at the voxel level. However, such
a dataset does not exist. To overcome the dataset issue, we construct a synthetic dataset,
which consists of a large number of animated humanoids characters with skin mesh, texture,
and skeleton. Generally, these characters are animated by using “rigging" and “skinning" to
blend the skeletal movement to the surface skin mesh. We borrow the humanoid characters
from Adobe Mixamo1, the motion of which was collected using the motion capture system.
The dataset contains 100 different humanoids characters and 200 animated sequences. From
Mixamo animated characters, we generate ground truth for per-frame TSDF, per-frame
Volumetric Motion Field, scene flow, and RGB-D image.

Crop volume for training. At training time, as shown in Fig. 6.6, we consider cropped
views of scans for efficiency, using random crops of size [96⇥ 96⇥ 128] voxels for the
finest level. We crop the volumes at 1 meter intervals out of each of the train object and
discard empty volume. As shown in Fig. 6.7, the resolution drops by a factor of 2, resulting
resolution of [48⇥48⇥64], [24⇥24⇥32], and [12⇥12⇥16] for each hierarchical level.
The fully-convolutional nature of our approach enables testing on whole object of arbitrary
sizes at testing time.

Figure 6.6 At training time,we consider cropped views of scans for efficiency, using random
crops of size [96⇥ 96⇥ 128] voxels for the finest level. We crop the volumes at 1 meter
intervals out of each of the train object and discard empty volume. Left: original mesh and
volume. Right: cropped volumes.

1https://mixamo.com
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Figure 6.7 Four hierarchy levels of the cropped volumes with voxel sizes of 1.0cm
3, 2.0cm

3,
4.0cm

3, and 8cm
3.

6.4 Experimental results

Scene Flow Field, Volumetric Motion Field. Here we show how we do the conversion
between the scene flow field (SFF) and the volumetric motion field (VMF). Given a point
cloud {pi|i = 1, ...,N}, where pi 2 R3 are XYZ coordinates of individual point, the SFF
is defined as {S FF i|i = 1, ...,N}, where S FF i 2 R3 are the 3D translational motion
vectors of the points. Similarly, given a set 3D voxel positions {v j| j = 1, ...,M}, the VMF
is defined as {V MF i|i = 1, ...,M}, where V MF i 2 R3 are the 3D translational motion
vectors of the voxels. To convert from SFF to VMF, we use the inverse-distance weighted
interpolation as defined in [75]:

V MF j = Â
pi2knn(v j)

S FF i ·dist(pi,v j)�1

Âpi2knn(v j) dist(pi,v j)�1 (6.1)

where knn() is the fucntion to find K-Nearest-Neighbors, here we set neighbor number K = 3,
and dist(,) computes the euclidean distance between two positions. To convert from VMF to
SFF, we do tri-linear interpolation:

S FF j = Â
v j2knn(pi)

V MF j ·w(pi,v j) (6.2)
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where w(,) computes the linear-interpolation weights, and K = 8 represent the neigboring 8
corner voxels of the cube that the point lies in. Note that throughout the experiments, we
convert all VMF to SFF before doing motion evaluation.

Motion Evaluation Metric. Following [55], we use 3D end point error (EPE) and motion
accuracy (ACC) as our motion evaluation metrics. The 3D EPE measures the average
euclidean distance between the estimated motion vector to the ground truth motion vector.
The ACC score measures the portion of estimated motion vectors that are below a specified
end point error, among all the points. We report two ACC metrics with different thresholds.

Structure Evaluation Metric. To measure structure completion quality, we follow [21] and
use an l1 error metric between predicted and target TSDFs, where unobserved regions in
the target are masked out. Note that unsigned distances are used in the error computation
to avoid sign ambiguities. We measure the l1 distance in voxel units of the entire volume
(entire volume), and the unobserved region of the volume (unobserved space). We use a
global truncation of 3.

6.4.1 Structure completion results

This section we show qualitative structure completion results of our approach. Fig. 6.8 shows
the structure completion results for RGB-D sequences from [41, 53]. Fig. 6.9 shows the
structure completion results for RGB-D sequences from MPI-Sintel [12]. Since our method
is based on fully convolutional sparse CNN, it can test on the large Sintel scene (the max
depth is 20 meters in this Sintel frame). Fig. 6.10 shows the testing results for synthetic
characters in Mixamo dataset.
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Figure 6.8 Structure completion results on real world RGB-D image.
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Figure 6.9 Structure completion results on MPI Sintel [12] dataset. The fully convolutional
nature of our method allows testing on very large scene (The max depth is 20 meters in this
Sintel frame).
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Figure 6.10 Structure completion results on synthetic dataset. The examples are not included
in the training dataset. This result also reveal two major limitations of the proposed comple-
tion method. 1) As shown in the 3rd row: the completion model can retain geometry details
from the visible surface but can not generate geometry details for the occluded surface. 2)
Our model can not reconstruct the shape for heavily occluded areas, e.g. in the 4th row, the
left leg of this person (a promising direction is to leverage skeleton information for articulated
objects).
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6.4.2 Ablation study of Network Architecture

Method SGNN [22] Ours (no motion) Ours (joint)
l1-Err 0.529 0.531 0.503

Table 6.1 Surface prediction error on testing set of synthetic. SGNN [22] is retrained on this
dataset. We measure the l1 error against the ground truth distance field in voxel space for the
entire space with 2cm voxels and global truncation of 3.

This experiment examines how the two tasks: geometry completion and motion tracking
influence each other. To this end, we train the following 3 model: “Joint”, “no. completion”,
and “no motion”. As defined in Fig. 6.5, “Joint” is the full model that perform both tasks.
“no completion” remove the structure decoder and only predict the motion for the observed
surface. “no motion” removes the motion decoder and only do geometry completion. We
pre-train the Flownet3D [55] on the scene flow data. FlowNet3D predicts the SFF given a
pair of point clouds with a subsampled size of 2048. We convert the sparse SFF to VMF
using Eqn. 6.2 as network input. The voxel position in the VMF is consistent with the input
projective TSDF.

Does geometry completion help non-rigid tracking? Table. 6.2 reports the motion predic-
tion results for the visible surface. Though only evaluating on the visible surface, the model
trained with the added supervision of the geometry completion task show improvement over
the model trained only on motion prediction. This demonstrates that understanding complete
object geometry is beneficial for non-rigid tracking.

Does motion prediction help geometry completion? Table. 6.1 reports the geometry
completion results in the synthetic synthetic dataset. The “joint” model show improvement
over the model that is train for geometry completion only. This result validates the idea that
in dynamic scene it is beneficial to understand the motion in order to achieve better geometry
completion.

6.4.3 Motion prediction for the invisible surface

This section evaluate motion estimation of the unobserved surface. We conduct the following
experiment: the baselines are given a complete mesh, a subset of mesh vertices that are
observed from a given camera viewpoint, and the scene flow for the observed vertices.
The goal is to estimate the motion of the unobserved vertices. (Note that this is a widely
encountered situation in non-rigid reconstruction. For instance, DynamicFusion [67] always
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Mixamo Animation
Method Training dataset Input EPE# ACC(5)" ACC (10)"
FlowNet3D FT3D [62] points 7.36 69.43% 80.04%
FlowNet3D Deforming

Things4D

points 3.74 82.02% 91.63%
Ours (no completion) VMF 3.82 79.02% 90.55%
Ours (join) VMF 3.56 85.02% 91.59%

Table 6.2 Scene Flow estimation results on the synthetic (FT3D) dataset. Note that all scores
are reported only for the visible surface. Metrics are End-point-error (EPE) in centimeter,
and Acc ( <5cm or 5%, 10cm or 10%) for motion. FT3D stands for Flyingthings3D [62]
dataset.

needs to infer the deformation of the occluded surface when the target model turns around
from the camera.)

We implement the following baselines.

•Rigid Fitting. This method assumes that the scene undergoes rigid motion. It finds a single
rigid transform in SE(3) for the entire mesh that best explains the surface motion.

•As-Rigid-As-Possible (ARAP) Deformation. ARAP [85] is widely used as the deforma-
tion prior in many non-rigid reconstruction method [67, 41, 114]. It assumes that locally
a mesh vertex should be transformed with rigid transformation. Such rigid constraints are
imposed upon nearby vertices that are connected by edges. ARAP deformation finds for each
mesh vertex a local fan-rotation R 2 SO(3) and a global translation vector t 2 R3 that best
explains the anchor motion (i.e.scene flow on observed vertices) and local rigidity constraints.
Refer to [85, 40] for more details.

•Motion Complete (Ours). The mesh and scene flow are voxelized as the input to our
network. The output of our motion complete network is a 3D volumetric motion field. The
final motion of a mesh vertex is computed by trilinearly interpolating the motion vectors
from 8-nearest voxels on the volume grid.

•Motion Complete + Post Processing (PP) (Ours). We found that the raw output motion
field is noisy. We employ optimization-based post-processing to alleviate the noise: the
predicted motion filed on the mesh surface is jointly optimized with ARAP prior that enforce
geodesic neighbors have similar motions.

Results. Table 1 reports the motion estimation results for the occluded surface. The testing
sequence is the Samba Dance sequence from Mixamo dataset. Among the baselines, rigid
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fitting yields significantly larger error, which indicate that the sequences undergo large non-
rigid motion. Our Motion Completion consistently achieves lower end-point-error than the
ARAP. Motion Completion + PP further improves the numbers. Our take is that the network
with large receptive field learns to capture the global deformation.

Methods Mixamo testing sequence (Samba Dance)
Rigid Fitting 15.30
ARAP [85] 3.24
MotionCompletion (Ours) 2.32
MotionCompletion + PP (Ours) 1.81

Table 6.3 Quantitative evaluation for the motion estimation results of the unobserved surface.
The Metric is 3D End-Point-Error (EPE) in centimeter. Note that our method is trained only
on humanoid motions.

6.5 Summary

In this chapter, we introduce the first method that jointly recovers the high-resolution struc-
ture and motion field from partial observation. Ablation study shows that our method
learns entangled 4D feature representation that benefits both structure and motion estima-
tion. By deforming the occludede surface, our method yield more accurate deformation
than classic non-rigid priors such as ARAP deformation. The experiments on DynamicFu-
sion/VolumeDeform sequence, and MPI Sintel shows that our method generalizes well to
unseen categories in real-world scans. We also show that synthetic dataset such as Mixamo
can be a good option for training shape and motion completion network, the results also
generalize to real-world scans.

6.6 Limitation

We believe this work is a significant step toward robust non-rigid reconstruction for generic
scenes, several major challenges are yet to be addressed:

1) the method only uses the geometry information of a single frame, an interesting
direction is to combine the geometry information from both two frames for more detailed
shape completion.

2) the completed shape from 3D CNN is not necessarily water-tight, it easily generates
un-filled holes in the heavily occluded region; see Figure 6.10. A promising direction is
to use the implicit occupancy networks [63] for geometry completion, which treats the 3D

73



Structure and Motion Completion for Non-rigidly Deforming Scene

surface as a decision boundary between occupied and empty space, thus easily generate
water-tight surfaces.

3) As shown in Fig. 6.10, the completion model can retain geometry details from the
visible surface but can not generate geometry details for the occluded surface. The model
can not reconstruct the shape for heavily occluded areas, e.g. in the forth row, the left leg of
this person (a promising direction is to leverage skeleton information for articulated objects).
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6.7 Supplementary material

In this document, we provide more details to the main chapter. In Sec. 6.7.1, we show how
we get the scene flow for the visible surface. In Sec. 6.7.2, we provide more details about the
the generated synthetic dataset.

6.7.1 Scene flow estimation for the visible surface

We use FlowNet3D [55] to estimate the scene flow between two consecutive RGB-D frames.
As shown in Fig. 6.11, FlowNet3D directly operates on point clouds. It learns to predict the
scene flow as translational motion vectors for each point of the first frame.

Figure 6.11 The network architecture of Flownet3D [55]. Given two frames of point clouds,
the network learns to predict the scene flow as translational motion vectors for each point
of the first frame. The input pointsets are subsampled to 2048 points. And through each
encoder/decoder layers, it down-/up-sample the number of points by a factor of 2 or 4. The
lower part shows an example of the point sampling through the layers. See the original
paper [55] for more details.

The final FlowNet3D architecture is composed of four set conv layers, one flow embed-
ding layer and four set upconv layers (corresponding to the four set conv layers) and a final
linear flow regression layer that outputs the R3 predicted scene flow. For the set upconv
layers we also have skip connections to concatenate set conv output features. Each learnable
layer adopts multi-layer perceptrons for the function h with a few Linear-BatchNorm-ReLU
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Layer type r Sample rate MLP width
set conv 0.5 0.5⇥ [32,32,64]
set conv 1.0 0.25⇥ [64,64,128]

flow embedding 5.0 1⇥ [128,128,128]
set conv 2.0 0.25⇥ [128,128,256]
set conv 4.0 0.25⇥ [256,256,512]

set upconv 4.0 4⇥ [128,128,256]
set upconv 2.0 4⇥ [128,128,256]
set upconv 1.0 4⇥ [128,128,128]
set upconv 0.5 2⇥ [128,128,128]

linear - - 3⇤

Table 6.4 FlowNet3D architecture specs. Note that the last layer is linear thus has no ReLU
and batch normalization.

Figure 6.12 Example of running FlowNet3D on a pair of point clouds from real-world
RGB-D images. Top Left: the dense point cloud that is reprojected from the depth images.
Top Right: the sub-sampled point cloud input to FlowNet3D, each have 2048 points. Bottom
Left: the estimated scene flow vectors which are visualized by the arrows. Bottom Right:
warping the source point cloud to the target using the estimated scene flow.

layers parameterized by its linear layer width. The detailed layer parameters are as shown in
Table 6.4. Fig. 6.12 show a example of running FlowNet3D on a pair of point clouds from
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real-world RGB-D images. Fig. 6.14 and Fig. 6.15 show the results of scene flow estimation
on a real-world RGB-D video recorded from Azure Kinect camera.

6.7.2 Animation Dataset details

Fig. 6.16 shows the example of animated characters in the Adobe Mixamo project (https://mixamo.com).
Fig. 6.13 shows the rendered data for the Mixamo "Aiming Gun" sequence, including color
image, depth image, and inter-frame scene flow.
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Figure 6.13 Rendered data for the Mixamo "Aiming Gun" sequence. From left to right:
color image, depth image, point cloud (reporjected from depth image), and inter-frame
scene flow. The visualization of scene flow and point cloud is done using Mayavi
(https://docs.enthought.com/mayavi/mayavi/).
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Figure 6.14 Scene flow estimation results for a real-world RGB-D sequence. The model is
FlowNet3D [55] trained on synthetic dataset. The RBD-G sequence are captured using Azure
Kinect. Upper row shows consecutive RGB-D input frames. Lower row show the scene
flow vectors between the two frames, the point cloud sampled from source frame (given in
pink color), and the point cloud sampled from the target frame (given in blue color). The
visualization is done using Mayavi (https://docs.enthought.com/mayavi/mayavi/).
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Figure 6.15 Scene flow estimation results for a real-world RGB-D sequence. The model is
FlowNet3D [55] trained on synthetic dataset. The RBD-G sequence are captured using Azure
Kinect. Upper row shows consecutive RGB-D input frames. Lower row show the scene
flow vectors between the two frames, the point cloud sampled from source frame (given in
pink color), and the point cloud sampled from the target frame (given in blue color). The
visualization is done using Mayavi (https://docs.enthought.com/mayavi/mayavi/).
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Figure 6.16 Example of animated characters in the Adobe Mixamo project
(https://mixamo.com). Upper part of the figure shows the skeletal movement. Lower part of
the figure shows the skin mesh. Generally, these characters are animated by using “rigging"
and “skinning" to blend the skeletal movement to the surface skin mesh. The motion was
collected using the motion capture system.
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Chapter 7

Pose Graph Optimization for

Unsupervised Monocular Visual

Odometry

Figure 7.1 The focus of this chapter and its position in the entire system.

As shown in Figure. 7.1, this chapter focuses on the rigid tracking part. Rigid tracking
always suffers from trajectory drift when the camera travels a long distance. Camera trajectory
drifts eventually cause geometry distortions in reconstruction. In this chapter, we pick out the
monocular visual odometry (VO) problem and propose a method that corrects the trajectory
drift. Note that such kind of technique is indispensable for large scale reconstruction.
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Unsupervised Learning based monocular visual odometry has lately drawn significant
attention for its potential in label-free leaning ability and robustness to camera parameters
and environmental variations. However, partially due to the lack of drift correction technique,
these methods are still by far less accurate than geometric approaches for large-scale odometry
estimation. In this chapter, we propose to leverage graph optimization and loop closure
detection to overcome limitations of unsupervised learning based monocular visual odometry.
To this end, we propose a hybrid VO system which combines an unsupervised monocular VO
called NeuralBundler with a pose graph optimization back-end. NeuralBundler is a neural
network architecture that uses temporal and spatial photometric loss as main supervision and
generates a windowed pose graph consists of multi-view 6DoF constraints. We propose a
novel pose cycle consistency loss to relieve the tensions in the windowed pose graph, leading
to improved performance and robustness. In the back-end, a global pose graph is built from
local and loop 6DoF constraints estimated by NeuralBundler, and is optimized over SE(3).
Empirical evaluation on the KITTI odometry dataset demonstrates that 1) NeuralBundler
achieves state-of-the-art performance on unsupervised monocular VO estimation, and 2) our
whole approach can achieve efficient loop closing and show favorable overall translational
accuracy compared to established monocular SLAM systems.

7.1 Introduction

Nowadays, monocular visual odometry (VO) can be newly divided into two groups based on
the technique and the framework adopted: geometry-based and learning-based approaches.
The geometric approach is usually solved via shallow feature or photometric re-projection
followed by on-line error minimization. Learning base visual odometry is a newly emerged
solution and has already achieved promising results on some benchmarks. This approach
is solved by off-line training of End-to-End deep neural networks driven by a large number
of image sequences. Benefiting from the nature of data-driven approach and the potential
of deep neural networks, learning based monocular VO has shown clear advantages over
geometric methods in the following aspects: 1) no need for parameter tuning effort, 2)
robustness to tracking failure and scale drift [113], 3) capable of recovering metric scale
from monocular image by using stereo image pairs in training phase [52][32][101], 4) high
potential in directly integrating semantic information for robust camera tracking.

Due to the existence of outliers, noises, etc., all frame-frame VO systems suffer from drifts
(the accumulation of small errors over time). In the geometric lineup, the so-called graph-
based SLAM mitigates this problem by combining the geometric VO with an optimization
back-end to continuously regulate the landmark’s positions and the camera’s poses, as known
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as the graph optimization technique. Graph-based SLAM has achieved success in many
cases with established systems, such as feature-based PTAM [49] and ORB-SLAM [65],
and direct LSD-SLAM [27] and DSO [28]. Especially, with the help of loop closing, i.e.
graph optimization with correctly established loop closure constraints, SLAM is able to
significantly reduce global trajectory drift.

Partially due to the lack of drift correction technique, learning based VO is still by far
less accurate than the geometric approach. Therefore, it is worth exploiting the potential
of SLAM’s graph optimization technique for learning based visual odometry. However,
such work has never been done. We presume that this is because most of the existing deep
learning architectures are either trying to mimic the graph optimization process through
memory-based LSTM network [95] or trying to integrate loop closing into a whole end-to-
end learning process. These works ignore the fact that loop closing is randomly occurred
event and requires simultaneously processing of sequence with arbitrary length, which the
neural networks are inadequate to do.

In this work, we build on the main idea of the unsupervised VO architecture: SfMLeaner
[113], the bag of visual word based place recognition tool: DBoW2 [29], and the insight
of using Covisibility / Essential Graph optimization [49][65] for large-scale loop closing
operation, to design a hybrid VO system with the following contributions:

• An unsupervised learning based monocular visual odometry called NeuralBundler
which produces a windowed pose graph from monocular image sequence with a novel
training loss that enforces pose cycle consistency.

• Efficient loop closing procedure based on the optimization of a pose graph which is
built from local and loop 6DoF constraints estimated by the proposed unsupervised
monocular VO.

We present the evaluation on KITTI odometry dataset [31]. NeuralBundler achieves the
state of the art performance on learning based visual odometry estimation and our whole
approach is able to perform efficient loop closing and yields favorable overall translational
accuracy compared to established monocular SLAM systems. To the best of our knowledge,
this is the first attempt to combine deep learning based VO with the classic graph optimization
technique. Our research provides insights into the design of future SLAM system which
could directly integrate the robustness and perception ability of deep neural network.
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Pose Graph Optimization

Time

Pose netDepth net

Loss

NeuralBundler

Windowed pose graphDepth map

Figure 7.2 Overview of the proposed VO system.

7.2 Related work to visual odometry estimation

7.2.1 Geometry based visual vdometry

Geometry based Visual Odometry is a well-studied problem with two main solutions: feature-
based and direct methods. Feature-based approach usually consists of two stages: 1) data
association, through hand-engineered feature extraction (e.g. SURF [4], SIFT [59] and ORB
[76]) and matching, and 2) pose estimation via minimizing feature point re-projection error.
Direct VO treats data association and pose estimation as a whole optimization problem
and solve it by minimizing the photometric error. Although these methods are effective in
many cases, they are usually hard-coded and require extensive parameter tuning effort in
order to ensure performance in a given scenario. The reliance on accurate data association
can lead to tracking failure in regions of low texture, illumination change, and occlusions.
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Moreover, geometric approaches inherently suffer from the fact that camera motion can only
be estimated up to an unknown scale which also leads to scale drift over time.

7.2.2 Learning based visual odometry

This line of research can be further divided into 2 categories: supervised and unsupervised
methods. In supervised approaches, Wang et al. [95] train a deep recurrent network end-to-
end to predict ego-motion using ground truth trajectory as supervision. Kendall et al. [47]
directly regress the camera’s world pose from RGB images with the convolutional neural
network. Zhou et al. [112] proposed a coarse to fine deep learning framework to track camera
based on key-frame. However, the cost of collecting ground truth poses limits the application
of such methods.

On the other hand, the unsupervised approach attracts more attention for its label-free
leaning ability. The first architecture that achieved unsupervised learning of ego-motion from
the video is SfMLeaner proposed by Zhou et al [113]. SfMLeaner takes consecutive temporal
images to predict both depth and ego-motion with view synthesis as supervision. However,
similar to geometric approaches, SfMLeaner can only observe ego-motion in a relative scale
from monocular image. Godard et al. [32] show that the solution to recovery metric scale for
depth prediction is using stereo images constraints for network training. Soon after, Nan et al.
[101] integrate such a monocular deep depth predictor into DSO [28] as direct virtual stereo
measurements. The follow-up works from Ruihao et al. [52] and Huangying et al. [107] also
show that leveraging stereo image pairs with known baseline in training phase enable the
networks to recover metric scale for both depth and pose estimation. Existing learning based
methods only focus on frame-frame VO estimation. We propose to utilize the multi-view
discrepancies within a temporal window. Our method produces a windowed pose graph and
uses a novel loss to ensure pose consistency in the graph.

7.2.3 Graph-based SLAM

Graph-based SLAM maintains a global graph whose nodes represent camera’s poses or
landmarks and an edge represents a sensor measurement that constrains the connected poses
[36]. Apparently, such constraints can be conflicting to each other since measurements are
easily influenced by noise. Once such a graph is constructed, SLAM uses graph optimization
method (i.e. nonlinear least-squares error minimization via the Gauss-Newton or Levenberg-
Marquardt algorithm) to find a configuration of the nodes that is maximally consistent with
all the constraints. The graph optimization procedure, with the presence of both camera pose
and landmarks in the graph, is called Bundle-Adjustment (BA). Monocular SLAM systems
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that apply graph optimization include PTAM [49], LSD-SLAM [27], ORB-SLAM [65], DSO
[28], etc.

In monocular SLAM, loop closure is solved through a pose graph optimization with
7DoF similarity constraints (Sim(3)) to correct the scale drift. A pose graph is built on
selected key-frame connected by the pose-pose constraints. Pose-pose constraints are defined
by covisiblity and estimated by a geometry base VO front end. Two poses are connected to
each other if they share enough common features. The graph built on covisiblity is called
Covisiblity Graph. In order to achieve scalable, real-time performance, Raúl et al. [65]
proposed to perform loop closing on a much lighter Essential Graph which retains all the
nodes (key-frames) from Covisibility Graph and a subset of edges with high covisibility.
As shown in [65], the optimization of a properly constructed Essential Graph is already
very accurate that full Bundle Adjustment only makes marginal improvement. We take the
idea of loop closing with graph optimization and apply it to an unsupervised learning based
visual odometry. Different from the monocular SLAM approach, we only optimize the pose
graph with 6DoF constraints, i.e. SE(3). The reason is that perhaps owing to the nature of
data-driven method, in our learning based VO, scale drift is so small, that, in the experiments,
optimization over SE(3) and Sim(3) almost leads to the identical result.

Loop closure is triggered by the place recognition technique. Appearance or image-image
matching based methods, such as the bag of word approaches DBoW2 [29], are dominating
this area for their high efficiency. Raúl Mur-Artal et al. [65] proposed a bag of words place
recognizer built on DBoW2 with ORB feature and successful achieved real-time loop closing.
In this work, for efficiency and simplicity, we used a similar loop closure detection procedure.

7.3 Method

7.3.1 Unsupervised monocular visual odometry

In this section, we will introduce our unsupervised approach for monocular visual estimation.
The training procedure is shown in Fig. 7.3.

Network Architecture

We name our model NeuralBundler in the sense that, similar to Bundle Adjustment, it
performs jointly optimization of both poses and 3D position (depth map) in a neural network
fashion. NeuralBundler consists of a pose estimation network and a depth estimation network,
which are trained jointly and can be used separately in the testing phase. The input to the
pose estimation network is a stack of views from a sliding window of size N, and the
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Figure 7.3 Training procedure of NeuralBundler. 1 right image from the first frame and N

left images are involved in the training phase. Both pose net and depth net only require
monocular sequence in the testing phase.

output is a windowed pose graph which has N nodes representing the views and N⇥ (N�1)
edges each of which represents the relative 6DoF motion between two views. The network
consists of 7 stride-2 convolutions followed by two 1⇥1 convolutions with 6⇥N⇥ (N�1)
output channels (corresponding to 3 Euler angles and a 3D translation for each edge in the
windowed pose graph). Depth net produces one dense depth map for each RGB image. It has
an encoder-decoder shape with skip connections between corresponding encoder and decoder
blocks in order to generate high-resolution depth prediction with fine-grained details. The
encoder is based on ResNet-50 and each decoder block uses a nearest-neighbor upsampling
layer followed by a convolutional layer.

Loss Function

Let’s denote N as the total number of views in the input window, Ii as the i-th view. Di

denotes the predicted depth map and Ti j denotes the predicted relative motion from view i

to view j. K is the camera’s intrinsics. E is the set of the graph’s edges, each of which is
represented by a tuple of index: (i, j). The final loss is a weighted sum of the photometric
loss and pose cycle consistency loss.

Temporal Photometric Loss

Let pi be the homogeneous coordinates of a pixel in view i and p j as pi’s projected pixel
onto the view j. Based on the epipolar geometry, we can obtain p j from pi through:

p j = KTi jDiK
�1

pi
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Then, by applying the differentiable bilinear sampling mechanism proposed in spatial trans-
former networks [43], from view i we can synthesis view j, which is denoted as Ii! j.

Figure 7.4 Illustration of the differentiable image warping process. For each point pt in the
target view, we first project it onto the source view based on the predicted depth and camera
pose, and then use bilinear interpolation to obtain the value of the warped image Îs at location
pt . This process is made differentiable by spatial transformer networks [43].

Inspired by Godard et al. [32], the quality of the reconstructed image is measured with
the weighted sum of the l1 loss and the single scale structural similarity (SSIM) loss. Then
the temporal photometric loss is:

L
temp

pho
= Â

(i, j)2E

h
(1�a)Ll1(I j, Ii! j)+aL

SSIM(I j, Ii! j)
i

where a is set to 0.25.

Stereo Spatial Photometric Loss

In order to recover metric scale for depth and pose estimation, like [107], we apply the same
photometric loss between the stereo camera. As show in Fig. 7.5, the warpping function
between a pair of stereo images can be simply represented by the disparity, which represent
the displacement of pixel in the image’s horizontal axis.

As shown in Fig. 7.3, we only use the stereo images from the beginning frame of the
window. Therefore I1 (default as left image) and I1,R (right image) is the spatial pair. The
projection I1,R!1 is synthesized using the disparity. As shown in Fig. 7.5, the disparity can
be computed from the known stereo baseline and the predicted left depth map. As shown in
Fig. 7.6, the stereo images are undistorted and rectified, image synthesized can be done with
disparity. Then the spatial stereo photometric loss is:

L
spat

pho
= (1�a)Ll1(I1, I1,R!1)+aL

SSIM(I1, I1,R!1)
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Figure 7.5 Illustration of the stereo constraints. Since the baseline (horizonta distance of
two camera) and the camera focal length is known. The disparity-to depth relation can be
represented by disparity = baseline⇥ f ocallength

depth

Figure 7.6 Stereo images overlayed from KITTI dataset. Since the stereo images are undis-
torted and rectified, the pixels matches are along parallel (horizontal) lines. Therefore, the
disparity can be used to warp a image.

Pose Cycle Consistency Loss

The windowed pose graph is a complete directed graph containing N⇥ (N�1) 6DoF camera
motion constraints. Obviously, these constraints may be contradictory to each other, which
creates tensions in the pose graph. During network training, we relax the windowed pose
graph by penalizing a pose cycle consistency loss. Say (i, j,k) are the indexes of three views
in the input window. Then the cycle constraint Ti jTjkTki = I holds, where I is the identity
matrix. Let’s denote C as the set of possible cycles in the graph. We penalize the l1 loss:

Lpos = Â
(i, j,k)2C

L
l1(Ti jTjkTki,I)
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Considering that this loss is similar to the objective of graph optimization (in Section IV-B),
we are somewhat performing a windowed pose graph optimization in a neural network form.
Section V-B demonstrates the efficiency of this loss.

7.3.2 Back-end

In the back-end, as shown in Fig. 1, we maintain a global pose graph and insert new elements
to it each time a new frame is processed by NeuralBundler. We optimize this graph if a loop
is established.

Pose graph construction

Pose graph is built on local and loop pose-pose constraints estimated by NeuralBundler. As
shown in Fig. 3, local constraints are generated in a sliding window. Loop constraints are
obtained in two crossed windows around the loop closure area. Specifically, when there is a
loop closure detected between views Ii and I j, the two input windows for NeuralBundler are
< Ii, I j�1, ..., I j�N+1 > and < I j, Ii�1, ..., Ii�N+1 >, where N is the window size.

Local window Loop window

Figure 7.7 Image windows for building local and loop pose-pose constraints. The red link
indicates a detected loop. Live frames are marked with blue color.

The system uses a bags of visual words place recognition tool, based on DBoW2, to
perform loop closure detection. We use a predefined ORB-Vocabulary and ORB-Database
which are created off-line with ORB descriptor extracted from a large set of images. Since
querying the database with an image will return multiple candidates, similar to [65], we apply
the following procedure to filter the candidates: in order to be accepted, 1) a loop candidate
must be preceded by 6 or more consecutive loop detections, and 2) the loop candidate’s cor-
responding 6DoF transformation must get enough in-liers after several RANSAC iterations.
Fig. 7.8 shows a loop closure example on the Seq-06 in the KIITI odometry dataset [31].
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Figure 7.8 Loop closure detection example on the Seq-06 in the KIITI odometry dataset [31].
The red trajectory show the estimated trajectory. The blue one isthe ground truth trajectory.
the pink links indicate detected loops using the DBoW2 [29] tool.

Pose Graph Optimization

A 3D rigid body transformation T 2 SE(3), is defined by:

T =

"
R t

0 1

#
with R 2 SO(3) and t 2 R3

During optimization, T is mapped to a minimal representation in R6 of the associated Lie-
algebra through the logarithmic mapping function logSE(3). Given a pose graph constructed
in the proposed way, the error in an edge is defined as:

ei, j = logSE(3)(T
�1
i j

T
�1
i

T j)

where Ti j is the relative 6DoF transformation constraints, and the goal is to minimize the
total energy:

c2(T2, ...,Tm) = Â
Ti j

(eT

i, jei, j)

with respect to the absolute poses T2, ...,Tm. These absolute poses are initialized through a
chain of relative 6DoF transformations starting from the world reference frame T1, which is
fixed during the optimization. We use the Levenberg-Marquardt algorithm implemented in
g2o to carry out the optimization.
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Table 7.1 Comparison with unsupervised learning based approaches. trel(%) is translational
error and rrel(

o) is rotational error. Both are averaged over 100m to 800m intervals. Result of
UndeepVO is obtained from [52] and for SfMLearner [113] and Huangying et al. [107] we
ran their pre-trained model. All models share the same training setup. Three variants of our
approach is included, NB (no pccl): pose cycle consistency loss is not used for training, NB:
NeuralBundler with pose cycle consistency is used for training, NB+LC: NeuralBundler+loop
closing, our whole approach. Both the pose cycle consistency loss and loop closing show
improvement over the baseline.
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Table 7.2 RMSE error of estimated trajectories on KITTI Odometry Dataset. All the methods
listed in the table perform loop closing if any loop is detected. Results of ORB-SLAM and
ORB-SLAM + Global BA (20 its.) are taken from [65]. ORB-SLAM: perform optimization
on the Essential Graph [65], ORB-SLAM + Global BA (20 its): perform 20 iterations of
global Bundler Adjustment afterward. For trajectory alignment, we use 6DoF transformations
and ORB-SLAM uses 7DoF transformations. Transformations are optimized to achieve the
best alignment. 94



7.4 Experimental results

Figure 7.9 Results on sequence 00 from the KITII Odometry dataset. Compared to SFM-
Leaner [113], NeuralBundler yield better trajectory. After loop closing, our method show
similar result with ORB-SLAM [65].

7.4 Experimental results

Implementation Detail

We implemented the networks using the publicly available TensorFlow framework and train it
with Tesla P100 GPUs. We trained our model from scratch for 30 epochs, with a mini-batch
size of 4 using Adam optimizer [48], where b1 = 0.9, b2 = 0.999. We used an initial learning
rate of 0.0001 and halve it every 1/5 of the total iterations. The size of the image window
for the windowed pose graph estimation network is set to 3 and each image is resized to
416⇥128. In the testing phase, both the network inference and graph optimization are carried
out on an Ubuntu PC equipped with GeForce GTX TITAN X GPU and Intel Core i5 2.4 GHz
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Figure 7.10 Results on sequence 00, 05 and 07 from the KITII Odometry dataset. Top row:
Raw estimation of NeuralBundler (Trajectory is constructed using the inter-frame motion:
T1!0 from the windowed pose graph, see Section III). Bottom row: After performing loop
closing (Graph optimization with loop constraints).
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Figure 7.11 Results of our approach on sequence 01, 02, 03, and 09 from the KITII Odometry
dataset.
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Figure 7.12 Results on sequence 08 (left) and 07 (right). Sequence 08 does not contain a
loop. For sequence 07, we turn off the loop closing thread of ORB-SLAM. ORB-SLAM
suffers from severe scale drift, and heavily rely on loop closing to eliminate scale drift.
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CPU. The pose estimation network, with about 168k parameters, can be used separately in
testing time. Pose estimation network requires less than 400MB GPU memory with over
40 Hz real-time performance. For benchmarking, we apply the KIITI odometry datasets
[31] which contain 11 sequences (00-10) with ground truth trajectory obtained through the
IMU/GPS readings. Fig. 7.13 show the details of this dataset.

Evaluation

Qualitative comparisons of our trajectories and the ground truth are shown in Fig. 7.11,
Fig. 7.12 and Fig. 7.10. We align the trajectories with the ground truth through rigid body
transformations on SE(3) (No scaling is applied for that our VO system can recover the
metric scale). Sequences 00, 02, 05, 06, 07, 09 contain loops that were correctly detected
and closed by our system. Fig. 7.10 shows the effectiveness of our loop closing approach
on sequence 00, 05 and 06. The top row shows the raw VO estimation of NeuralBundler,
and the bottom row shows corresponding results after performing loop closing. The raw
VO estimation gives decent local accuracy while with gradually accumulated drift. After
performing graph optimization with correctly detected loops, the drift is significantly reduced,
leading to good fits with the ground truth.

For evaluation, first, we use the error metrics proposed in [31] to compare our approach
with other unsupervised learning based visual odometry systems: UnDeepVO [52], SfM-
Leaner [113] and Huangying et al. [107]. As shown in table I. For ablation study, our
NeuralBundler consistently yields better results than the variant without pose cycle con-
sistency loss. NeuralBundler outperforms SfMLeaner and Huangying et al. with a large
margin and shows comparable results to UnDeepVO (which trains the network with extra
supervisions from point cloud alignment and stereo camera’s left-right pose consistency).
Applying loop closing significantly reduced the error, while graph optimization without loop
constraints (not shown) does not necessarily lead to better results, which makes clear the
need of loop closures for global drift correction.

Then, we compare the results of our method with the state of the art feature-based ORB-
SLAM. This time, we directly assess the overall translational RMSE error of the trajectory.
As shown in table II, our method achieves smaller overall translational error for most of
the sequences (8 out of 11). This makes sense considering that though both methods use
monocular image, our approach is more robust to scale drift. Fig. 7.12 shows the estimated
trajectory on sequence 07 and 08. Geometry based ORB-SLAM suffers from sever scale
drift, while NeuralBundler achieves superior performance on eliminating the scale drift.
ORB-SLAM encounters tracking failure on sequence 01 (a high way sequence). However,
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partially due to the fact that geometric methods know exactly the pixel-pixel correspondence,
ORB-SLAM yields smaller rotational errors, which could explain our 3 lost cases.

7.5 Summary

In this chapter, we have presented a new monocular VO system which has an unsupervised
learning based front-end called NeuralBundler and a graph optimization back-end. Results
on KITTI odometry have proved the effectiveness of pose cycle consistency loss. Our whole
approach can achieve efficient loop closure and show better overall RMSE than ORB-SLAM
for most sequences in KITTI odometry datasets.

7.6 Limitation

A number of major challenges are yet to be addressed:

• We have not applied any key-frame selection and edge removal procedure yet. In our
method, every frame becomes a "key-frame", and each node is connected with 12
edges (in the case that window size N is 3 and the node is not on the head or tail),
which lead to a much denser and more complex pose graph than the SLAM’s version.
Though real-time loop closing is achieved, such techniques are still necessary for the
sake of scalability and efficiency.

• The model is trained on sequences with fixed camera intrinsics, fixed input image
size, and from limited scenes (car driving on the road). We need to solve the domain
adaptation problem when applying to different situations.

• We still need to extract and maintain features in the background in order to use DBoW2
tool for loop closure detection, which considerably consumes memory and CPU power.
The solution is to directly perform scene recognition with the deep neural network. We
put this to future work.

• Unsupervised VO still lose to traditional methods on Mean Rotation/Translation
accuracy. A possible solution is to use the coarse-to-fine strategy to optimize the VO
estimation as in [112].
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7.7 Supplementary material

In this document, we provide more details to the main chapter. Fig. 7.13 shows the details
of KITTI odometry benchmark. The odometry benchmark consists of 22 stereo sequences.
Among them, there are 11 sequences (00-10) with ground truth trajectories and 11 sequences
(11-21) without ground truth.

Figure 7.13 Recording platform (left top), stereo image examples (right top), and trajectory
from the KITTI odometry dataset [31]. The images of the car and trajectory maps are
obtained from KITTI’s official site (http://www.cvlibs.net/datasets/kitti/).
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Chapter 8

System Demonstration

In this chapter we show a demonstration of our system that combines scene decomposition,
non-rigid shape completion, rigid tracking and depth map fusion for a real-world sequence.

8.1 Implementation details

The hardwares are shown in Fig. 8.1 We record the demonstration sequence using Kinect
2 camera. Which connects to our desktop computer with USB 3.0 and needs extra charge
cable. It provides depth resolution of 640⇥480. The RGB color image is calibrated to align
with the depth image, where the RGB value of the pixels that does not have valid depth
observation is set to (0,0,0). We run our system on the alienware area-51 computer, which
contains two GeForce GTX TITAN graphics card and an Intel(R) Core(TM) i7-5930K CPU.

We implemented our system using a combination of python/PyTorch and c++/cuda, with
wrappers in between two languages. Scene decomposition and non-rigid shape completion
are running PyTorch models. Rigid tracking ICP program and depth map fusion are done in
c++.

Figure 8.1 Left: the Kinect 2 sensor in this experiment. Right: the desktop computer for
reconstruction.
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8.2 Experiment results

We record a scene with a man walking around in a laboratory. The scene is captured
via a Kinect 2 sensor which is manually moved by another person while scanning. The
man occasionally appears and disappears from the camera view frustum. This sequence
is extremely challenging because the non-rigid human motion is very fast meanwhile the
camera is also moving.

Fig. 8.2 shows an example of foreground segmentation and the corresponding shape
completion result. In this demonstration, for foreground segmentation, we use YOLO [7] to
detect the human bonding box from the color image, the detailed segmentation is obtained
via geometry post-processing on the point cloud.

Fig. 8.6 shows the reconstructed static background and the camera trajectory.
Fig. 8.3, 8.4, 8.5 show the screen shots of the scanning process of our method. Each

screenshot captures the reconstructed scene, the input image, and the projection to the camera.
Note that both the camera and the human are moving. Our system manages to reconstruct
simultaneously both the environment and the non-rigid human.

Fig. 8.7 shows the fly-through video of the 4D reconstruction after the scanning process
is finished, where we manually align the “two" person in the time axis.

Fig. 8.8 shows the ablation study of the background reconstruction. We show that both
pose graph optimization (c.f. Chapter 7) and dynamic object segmentation (c.f. Chapter 5)
are necessary for background reconstruction.

8.3 Limitation

We found that non-rigid object re-identification is a necessary yet interesting task. For
example, at some point of the reconstruction, the human exit the view frustum of the camera,
we do not know where it goes, thus we leave it as a static object in the scene (c.f. second
screenshot in Fig. 8.4). A few seconds later, the same person re-enters the camera view
frustum, we do not know who it is, thus regarding it as a new person (c.f. second screenshot
in Fig. 8.5). We leave object re-identification as future work.

We also want to clarify that our system does not perform in real-time. Especially, due to
the heavy 3D convolution operations, the non-rigid shape completion part runs at around 1
HZ on the GeForce GTX TITAN graphics card. We leave the real-time implementation as
future work.
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Figure 8.2 Foreground segmentation and completion for a RGB-D frame. In this demon-
stration, for foreground segmentation, we use YOLO [7] to detect the human bonding box
from the color image, the detailed segmentation is obtained via geometry post-processing
(i.e. point cloud clustering and geodesic expansion). The lasst row shows the completed
foreground human.
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Figure 8.3 4D reconstruction of our lab. Left: the reconstructed scene; right-top: the input
color image; right-bottom: the reconstructed scene that is projected to the current frame.
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Figure 8.4 4D reconstruction of our lab. Left: the reconstructed scene; right-top: the input
color image; right-bottom: the reconstructed scene that is projected to the current frame.
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Figure 8.5 4D reconstruction of our lab. Left: the reconstructed scene; right-top: the input
color image; right-bottom: the reconstructed scene that is projected to the current frame.
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Figure 8.6 Top view of the reconstructed room. The red dotted line shows the trajectory of
the Kinect2 camera.
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Figure 8.7 Flying through the 4D reconstruction of the lab. The two people are manually
aligned in the time axis.
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8.3 Limitation

Figure 8.8 Ablation study for background reconstruction. Top: no pose graph optimization
(c.f. Chapter 7). Middle: no dynamic object segmentation (c.f. Chapter 5). Bottom: our full
method.
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Chapter 9

Conclusion & Future Work

Non-rigid 4D reconstruction using a single RGB-D camera has numerous applications
in computer vision, virtual/augmented reality, and robotics, etc. However, is it a very
challenging problem because the problem itself is highly complex, and involves non-convex
solving. In addition, a single RGB-D camera suffers from occlusion. In this thesis, we build
a novel non-rigid reconstruction system to overcome certain limitations of this problem. This
section summarizes our approaches and the knowledge we obtained through developing this
system.

In chapter. 5, we proposed a framework call SplitFusion that reconstructs both static
and dynamic scene elements by leveraging semantic instance segmentation. Experiments
show that eliminating the dynamic foreground objects helps camera 6dof pose tracking in the
non-rigid scenes. Moreover, reconstruction quality for both rigid and non-rigid element is
significantly improved over the state-of-the-art SLAM method and non-rigid reconstruction
method. We also found that semantic instance information informs the proposed SplitFusion
system to handle the object-level topological change of the scene.

The core of non-rigid reconstruction is the non-rigid tracking problem. To develop robust
tracking method that can handle large non-rigid motion, in chapter. 4, we present an end-to-
end learning approach for non-rigid RGB-D tracking. We redefine the objective of non-rigid
tracking by a deep feature fitting term which is learned end-to-end through a CNN network
from a large amount of non-rigid dataset. Since the CNN kernels with a large receptive
field can capture the global deformation, the learned deep feature fitting term significantly
improves the convergence of non-rigid Gauss-Newton solver. The result tracking method
can handle larger non-rigid motion than the classic method such as DynamicFusion, which
employs a point-to-plane non-rigid ICP tracker. While we apply this method for non-rigid
tracking, we believe the idea can be adapted to other tasks where it needs to solve least square
problems, such as optical flow estimation.
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The fundamental limitation of single RGB-D camera based reconstruction is the occlusion
problem. A single depth camera can only measure the observable part of a given scene and
usually cause surface disconnections and incompleteness. Occlusion also poses a challenge
for motion tracking since the occluded geometry usually contains valuable information for
tracking. To tackle this problem, in Chapter. 6, we introduce the first method that jointly
recovers the high-resolution structure and motion field from partial observation. Through
ablation studies, we found that understanding complete object geometry is beneficial for non-
rigid tracking, and learning the motion of a scene is also beneficial for geometry completion.
The proposed method also demonstrates better performance in estimating the occluded
motion.

We believe that this thesis is a significant step toward building a robust non-rigid 4D
reconstruction system that is available in people’s daily life. We have shown the advantage
of leveraging data-driven priors for 4D reconstruction in scene segmentation, robust tracking,
and motion and geometry completion. Here, we list a few future directions:

• In Chapter. 4, we have developed a robust non-rigid tracking method to handle large
deformation of the scene. While robust non-rigid tracking between frames with limited
overlap area is yet a challenging problem and thus interesting. A potential solution is
to learn the overlapping area between two frames while performs tracking.

• Dynamic/static scene decomposition is another interesting yet important direction.
What could be interesting is to learn the decomposition in a self-supervised fashion by
reasoning motion and scene contrast.

• In Chapter. 6, we have shown that our shape and motion completion method could
recover reasonable structure from a single RGB-D frame. However, single view
based completion method inevitably loses details for the unseen, for which it basically
generates a averaged smooth geometry. The promising solution is to extend this method
to a multi-view setup, where you can leverage multiview geometry information to
achieve detailed completion.

• This direction is more ambitious: can we differentiate through the entire non-rigid
reconstruction process and learn it end-to-end through data? This approach can leverage
the newly constructed DeformingThings4D dataset (cf. Chapter 6), which we show is
large enough to generalize to real-world sequences. This direction has the potential to
revolutionize the field of generic non-rigid reconstruction.
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