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Navier–Stokes Equations in a Curved Thin Domain,

Part I: Uniform Estimates for the Stokes Operator

By Tatsu-Hiko Miura

Abstract. In the series of this paper and the forthcoming papers
[47, 48] we study the Navier–Stokes equations in a three-dimensional
curved thin domain around a given closed surface under Navier’s slip
boundary conditions. We focus on the study of the Stokes operator
for the curved thin domain in this paper. The uniform norm equiv-
alence for the Stokes operator and a uniform difference estimate for
the Stokes and Laplace operators are established in which constants
are independent of the thickness of the curved thin domain. To prove
these results we show a uniform Korn inequality and a uniform a priori
estimate for the vector Laplace operator on the curved thin domain
based on a careful analysis of vector fields and surface quantities on
the boundary. We also present examples of curved thin domains and
vector fields for which the uniform Korn inequality is not valid but a
standard Korn inequality holds with a constant that blows up as the
thickness of a thin domain tends to zero.
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1. Introduction

1.1. Problem and main results

Let Γ be a closed surface in R
3 with unit outward normal vector field n.

Also, let g0 and g1 be functions on Γ satisfying g := g1 − g0 ≥ c on Γ with

some constant c > 0. For a sufficiently small ε > 0 we define a curved thin

domain Ωε in R
3 with small thickness of order ε by

Ωε := {y + rn(y) | y ∈ Γ, εg0(y) < r < εg1(y)}(1.1)

and write Γε := Γ0
ε ∪Γ1

ε and nε for the boundary of Ωε and its unit outward

normal vector field, where Γ0
ε and Γ1

ε are the inner and outer boundaries

given by Γiε := {y + εgi(y)n(y) | y ∈ Γ} for i = 0, 1. In the series of this

paper and the forthcoming papers [47, 48] we consider the Navier–Stokes

equations with Navier’s slip boundary conditions
∂tu

ε + (uε · ∇)uε − ν∆uε + ∇pε = fε in Ωε × (0,∞),

div uε = 0 in Ωε × (0,∞),

uε · nε = 0 on Γε × (0,∞),

[σ(uε, pε)nε]tan + γεu
ε = 0 on Γε × (0,∞),

uε|t=0 = uε0 in Ωε.

(1.2)

Here ν > 0 is the viscosity coefficient independent of ε and γε ≥ 0 is the

friction coefficient on Γε given by

γε := γiε on Γiε, i = 0, 1,(1.3)
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where γ0
ε and γ1

ε are nonnegative constants depending on ε. Also,

σ(uε, pε) := 2νD(uε) − pεI3, [σ(uε, pε)nε]tan := Pε[σ(uε, pε)nε]

are the stress tensor and the tangential component of the stress vector on

Γε, where D(uε) := {∇uε + (∇uε)T }/2 is the strain rate tensor, I3 is the

3 × 3 identity matrix, nε ⊗ nε is the tensor product of nε with itself, and

Pε := I3 − nε ⊗ nε is the orthogonal projection onto the tangent plane of

Γε. Note that [σ(uε, pε)nε]tan = 2νPεD(uε)nε is independent of pε and the

slip boundary conditions can be expressed as

uε · nε = 0, 2νPεD(uε)nε + γεu
ε = 0 on Γε.(1.4)

Hereafter we mainly refer to (1.4) as the slip boundary conditions.

The aims of our study are to establish the global-in-time existence of

a strong solution to (1.2) for large data and to study the behavior of the

strong solution as ε → 0. In this paper, however, we focus on the study of

the Stokes operator Aε associated with the Stokes problem in Ωε under the

slip boundary conditions{
−ν∆u+ ∇p = f, div u = 0 in Ωε,

u · nε = 0, 2νPεD(u)nε + γεu = 0 on Γε
(1.5)

and provide fundamental results on Aε for the aims of our study. The goal

of this paper is to show the uniform norm equivalence for Aε and its square

root of the form

c−1‖u‖Hk(Ωε) ≤ ‖Ak/2
ε u‖L2(Ωε) ≤ c‖u‖Hk(Ωε),

u ∈ D(Ak/2
ε ), k = 1, 2

(1.6)

and the uniform difference estimate for Aε and −ν∆ of the form

‖Aεu+ ν∆u‖L2(Ωε) ≤ c‖u‖H1(Ωε), u ∈ D(Aε)(1.7)

with a constant c > 0 independent of ε (see Section 2 for the precise state-

ments).

The estimates (1.6) and (1.7) play a fundamental role in the second part

[47] of our study. In [47] we prove the global existence of a strong solution

uε to (1.2) for large data uε0 and fε such that

‖uε0‖H1(Ωε), ‖fε‖L∞(0,∞;L2(Ωε)) = O(ε−1/2)
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when ε is sufficiently small. We also derive estimates for uε with constants

explicitly depending on ε which are essential for the last paper [48]. To get

the global existence we show that the L2(Ωε)-norm of A
1/2
ε uε is bounded

uniformly in time by a standard energy method. A key tool for the proof is

a good estimate for the trilinear term ((uε ·∇)uε, Aεu
ε)L2(Ωε) which implies

a differential inequality in time for the L2(Ωε)-norm of A
1/2
ε uε similar to

the one for the two-dimensional Navier–Stokes equations. To derive that

estimate we require (1.6) and (1.7). Note that we have the H1(Ωε)-norm of

u, not its H2(Ωε)-norm, in the right-hand side of (1.7), which is important

in order to get a good estimate for the trilinear term.

Let us also mention the last part [48] of our study. We consider the thin-

film limit for (1.2) and study the behavior of the strong solution uε as ε → 0

in [48]. Using the results of this paper and [47] we show that the average in

the thin direction of uε converges on Γ as ε → 0. Moreover, we derive limit

equations on Γ for (1.2) by characterizing the limit of the average of uε as

a solution to the limit equations. When the thickness of Ωε is ε (i.e. g ≡ 1)

and there is no friction between the fluid and the boundary Γε (i.e. γε = 0),

the limit equations derived in [48] agree with the Navier–Stokes equations

on a Riemannian manifold{
∂tv + ∇vv − ν{∆Bv + Ric(v)} + ∇Γq = f on Γ × (0,∞),

divΓv = 0 on Γ × (0,∞)
(1.8)

introduced in [12, 43, 72] and studied in many works (see e.g. [6, 9, 30,

32, 42, 51, 56, 57, 60, 66]). Here ∇vv is the covariant derivative of v along

itself, Ric is the Ricci curvature of Γ, and ∆B, ∇Γ, and divΓ are the Bochner

Laplacian, the tangential gradient, and the surface divergence on Γ (see [48]

for details). We emphasize that the last paper [48] provides the first result

on a rigorous derivation of the surface Navier–Stokes equations on a general

closed surface in R
3 by the thin-film limit and that for [48] the results of

this paper and [47] are essential.

1.2. Ideas of the proofs

Let us explain the ideas of the proofs of (1.6) and (1.7) (see Section 7

for details). Since the bilinear form for (1.5) is of the form

aε(u1, u2) = 2ν
(
D(u1), D(u2)

)
L2(Ωε)

+
∑
i=0,1

γiε(u1, u2)L2(Γi
ε)
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due to the slip boundary conditions (see Lemma 7.1), we show that aε is

bounded and coercive uniformly in ε on an appropriate function space on

Ωε in order to get (1.6) with k = 1 (see Theorem 2.4). To this end, we use

the trace inequality

‖ϕ‖L2(Γi
ε)
≤ cε−1/2‖ϕ‖H1(Ωε), ϕ ∈ H1(Ωε), i = 0, 1

with a constant c > 0 independent of ε, which follows from a more precise

inequality given in Lemma 4.1, and the uniform Korn inequality

‖u‖H1(Ωε) ≤ c‖D(u)‖L2(Ωε)(1.9)

for u ∈ H1(Ωε)
3 which satisfies the impermeable boundary condition

u · nε = 0 on Γε(1.10)

and the condition that there exists a constant β ∈ [0, 1) independent of ε

such that

|(u, v̄)L2(Ωε)| ≤ β‖u‖L2(Ωε)‖v̄‖L2(Ωε)(1.11)

for every Killing vector field v on Γ (see Section 2) satisfying

v · ∇Γg = 0 on Γ,(1.12)

where v̄ is the constant extension of v in the normal direction of Γ and

∇Γ is the tangential gradient on Γ (see Section 3.1). We prove (1.9) under

the conditions (1.10) and (1.11) in Theorem 5.6. Moreover, we observe in

Theorem 5.7 that, if every Killing vector field on Γ satisfying (1.12) is the

restriction on Γ of an infinitesimal rigid displacement of R
3, i.e. a vector

filed on R
3 of the form

w(x) = a× x+ b, x ∈ R
3(1.13)

with a, b ∈ R
3, then (1.9) holds under the conditions (1.10) and, instead of

(1.11),

|(u,w)L2(Ωε)| ≤ β‖u‖L2(Ωε)‖w‖L2(Ωε)(1.14)

for every vector field w of the form (1.13) satisfying

w|Γ · n = w|Γ · ∇Γg = 0 on Γ,(1.15)
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where β ∈ [0, 1) is again a constant independent of ε. The proof of (1.9)

consists of two steps. First we estimate ∇u to derive

‖∇u‖2
L2(Ωε)

≤ 4‖D(u)‖2
L2(Ωε)

+ c‖u‖2
L2(Ωε)

(1.16)

in Lemma 5.1. To this end, we apply integration by parts twice to get

‖∇u‖2
L2(Ωε)

≤ 2‖D(u)‖2
L2(Ωε)

−
∫

Γε

(u · ∇)u · nε dH2

and estimate the last term by reducing the order of the derivatives of u

on Γε with the aid of (1.10) and interpolating integrals over the inner and

outer boundaries Γ0
ε and Γ1

ε. Next we prove the uniform estimate

‖u‖2
L2(Ωε)

≤ α‖∇u‖2
L2(Ωε)

+ c‖D(u)‖2
L2(Ωε)

(1.17)

for a given α > 0 in Lemma 5.3 by contradiction as in the case of a flat thin

domain studied in [19]. We dilate Ωε to a domain with fixed thickness and

show that a sequence of vector fields failing to satisfy (1.17) converges to

the constant extension of a Killing vector field v on Γ satisfying (1.12) as

ε → 0. Then we take v in (1.11) or (1.14), send ε → 0, and use β < 1 to

get a contradiction. Note that both steps are based on a careful analysis of

surface quantities of Γε.

To establish (1.7) we follow the idea of the works [17, 18] on a flat thin

domain. Using (1.4) we derive the integration by parts formula∫
Ωε

curl curlu · Φ dx = −
∫

Ωε

curlG(u) · Φ dx

+

∫
Ωε

{curlu+G(u)} · curl Φ dx

for Φ ∈ L2(Ωε)
3 with curl Φ ∈ L2(Ωε)

3, where G(u) is a vector field on Ωε

whose H1(Ωε)-norm is uniformly bounded by that of u (see Lemmas 7.2

and 7.3). Then we combine this formula and the Helmholtz–Leray decom-

position for −ν∆u on Ωε to get (1.7). Here the uniform estimate for G(u)

plays an important role, but its proof involves a complicated calculations

of surface quantities of Γ0
ε and Γ1

ε since we construct G(u) by interpolating

surface quantities of Γ0
ε and those of Γ1

ε.
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To prove (1.6) with k = 2 we employ (1.7) and the uniform a priori

estimate for the vector Laplace operator

‖u‖H2(Ωε) ≤ c
(
‖∆u‖L2(Ωε) + ‖u‖H1(Ωε)

)
(1.18)

for u ∈ H2(Ωε)
3 satisfying (1.4) (see Theorem 6.1). The proof of (1.18)

proceeds as in that of (1.16), but calculations are more involved. We first

show that the above u is approximated by H3 vector fields on Ωε satisfying

(1.4) to assume u ∈ H3(Ωε)
3 (see Lemma 6.3). Then we use integration by

parts twice to get (see Appendix A for notations)

‖∇2u‖2
L2(Ωε)

= ‖∆u‖2
L2(Ωε)

+

∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2.

Thus we intend to show the uniform estimate for the last term

(1.19)

∣∣∣∣∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2

∣∣∣∣
≤ c

(
‖u‖2

H1(Ωε)
+ ‖u‖H1(Ωε)‖∇2u‖L2(Ωε)

)
.

To this end, we first reduce the second order derivatives of u on Γε to the

first order ones by using (1.4). In this step we employ formulas for the

covariant derivatives of tangential vector fields on Γε given in Appendix D

to carry out calculations on Γε without a change of variables. Then we

interpolate integrals of u and its first order derivatives over Γ0
ε and Γ1

ε to

get (1.19). For this purpose, we apply estimates for the sum and difference

of surface quantities of Γ0
ε and those of Γ1

ε given in Section 3.2. However,

the proofs of those estimates involve complicated calculations of differential

geometry of surfaces (see Appendix C).

1.3. Literature overview

The study of the Navier–Stokes equations in thin domains has a long

history. A main subject is to prove the global existence of a strong solu-

tion for large data depending on the smallness of the thickness of a thin

domain, since a thin domain in R
3 with very small thickness is almost two-

dimensional. It is also important to study the behavior of a solution as

the thickness of a thin domain tends to zero in order to understand the

dependence of a solution on the thin and other directions. Raugel and
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Sell [61, 62, 63] first studied the Navier–Stokes equations in a thin prod-

uct domain Q × (0, ε) in R
3 with a rectangle Q and a sufficiently small

ε > 0 under the purely periodic or mixed Dirichlet-periodic boundary con-

ditions and obtained the global existence of a strong solution. Temam and

Ziane [74] generalized the results of [61, 62, 63] to a thin product domain

ω × (0, ε) in R
3 around a bounded domain ω in R

2 under combinations of

the Dirichlet, periodic, and Hodge boundary conditions. They also proved

that the average in the thin direction of a solution to the original equations

under suitable boundary conditions converges towards a solution to the two-

dimensional Navier–Stokes equations in ω as ε → 0. For further results on

the Navier–Stokes equations in three-dimensional thin product domains we

refer to [22, 23, 24, 34, 35, 49, 50] and the references cited therein.

Thin product domains appearing in the above cited papers are flat in

the sense that they shrink to domains in R
2 as ε → 0 and their top and bot-

tom boundaries are flat, but in physical problems we frequently encounter

nonflat thin domains (see [64] for examples of them). Temam and Ziane

[75] first dealt with a nonflat thin domain in the study of the Navier–Stokes

equations. Under the Hodge boundary conditions they proved the global

existence of a strong solution to the Navier–Stokes equations in a thin spher-

ical shell {x ∈ R
3 | a < |x| < a + εa}, a > 0 and the convergence of its

average towards a solution of limit equations on a sphere as ε → 0. If-

timie, Raugel, and Sell [25] considered a flat thin domain with a nonflat top

boundary

{(x′, x3) ∈ R
3 | x′ ∈ (0, 1)2, 0 < x3 < εg(x′)}, g : (0, 1)2 → R

under the horizontally periodic and vertically slip boundary conditions and

obtained the global existence of a strong solution. They also compared the

strong solution with a solution to limit equations in (0, 1)2. Hoang [18, 20]

and Hoang and Sell [19] generalized the existence result of [25] to a flat thin

domain with nonflat top and bottom boundaries (in [20] two-phase flows

were studied).

Let us also mention the slip boundary conditions (1.4) and the Stokes

problem (1.5). The slip boundary conditions introduced by Navier [52]

state that the fluid slips on the boundary with velocity proportional to the

tangential component of the stress vector. These conditions are considered

as an appropriate model for flows with free boundaries and for flows past
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chemically reacting walls in which the usual no-slip boundary condition is

not valid (see [76]). They also arise in the study of the atmosphere and ocean

dynamics [38, 39, 40] and in the homogenization of the no-slip boundary

condition on a rough boundary [16, 26]. The Stokes problem (1.5) under

the slip boundary conditions for a general bounded domain in R
3 was first

studied by Solonnikov and Ščadilov [69] in the L2-setting. Beirão da Veiga

[4] considered the generalized system for (1.5) and proved the H2-regularity

estimate for a solution. The Lp-theory for (1.5) in a bounded domain in R
3

were established by Amrouche and Rejaiba [2]. Note that the main results

(1.6) and (1.7) of this paper are not covered by [2, 4, 69] since we show that

the constant c in these estimates does not depend on the thickness of the

curved thin domain.

In this paper and the forthcoming papers [47, 48] we deal with the curved

thin domain Ωε of the form (1.1) which degenerates into the closed surface Γ

as ε → 0. Curved thin domains around hypersurfaces and lower dimensional

manifolds were considered in the study of eigenvalues of the Laplace operator

[28, 33, 67, 77] and of reaction-diffusion equations [58, 59, 78]. The series of

our works gives the first study of the Navier–Stokes equations in a curved

thin domain in R
3 whose limit set is a general closed surface. Our aim is

not just to generalize the shape of a thin domain, but to provide the first

result on a rigorous derivation of the surface Navier–Stokes equations (1.8)

by the thin-film limit.

Although the main purpose of this paper is to present preliminary results

for the study of (1.2), we show new results on the uniform Korn inequality

(1.9). Korn’s inequality is a basic tool in the theory of linear elasticity and

fluid mechanics and has been studied in various contexts (see [21] and the

references cited therein). The uniform Korn inequality (1.9) in a curved thin

domain in R
k with k ≥ 2 around a closed hypersurface was first given by

Lewicka and Müller [37]. In [37, Theorem 2.2] they proved (1.9) under the

conditions (1.10) and (1.11) (see also [37, Theorem 2.1] for other conditions).

Their proof was based on a uniform Korn inequality in a thin cylinder and

Korn’s inequality on a hypersurface for which Killing vector fields on the

hypersurface play a fundamental role. In this paper we present another

proof of (1.9) under the same conditions by following the idea of the work

[19] on a flat thin domain. Moreover, we prove (1.9) by imposing (1.10) and

the new condition (1.14) under the assumption that every Killing vector
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field on Γ satisfying (1.12) is the restriction on Γ of an infinitesimal rigid

displacement of R
3. This assumption is valid for many kinds of closed

surfaces in R
3 (see Remark 2.1). In particular, we can use (1.14) instead

of (1.11) for curved thin domains around the unit sphere in R
3. We also

note that we take a vector field w defined on R
3 itself in (1.14), not the

constant extension of a vector field on Γ as in (1.11). This fact is crucial

in order to relate the Stokes operator Aε properly to the Stokes problem

(1.5) (see Remark 2.10). In Section 5.2 we further show that the conditions

(1.11) and (1.14) are more strict than the condition for a standard Korn

inequality related to the axial symmetry of a domain by giving examples of

both axially symmetric and not axially symmetric curved thin domains.

We also mention that we use some techniques to avoid the analysis of vec-

tor fields on the boundary Γε under local coordinate systems. In the proof

of (1.19) we need to compute the second order derivatives of u ∈ H3(Ωε)
3

on Γε to reduce the order of the derivatives. To carry out such calculations

we usually take a local coordinate system of Γε or transform a part of Γε
into the boundary of a half-space, but here these choices will result in too

complicated calculations which we can hardly complete. Instead we use a

local orthonormal frame for the tangent bundle of Γε and formulas for the

covariant derivatives of tangential vector fields on Γε given in Appendix

D to work without a change of variables. The most important tool is the

Gauss formula (X · ∇)Y = ∇ε
XY + (WεX · Y )nε for tangential vector fields

X and Y on Γε, which expresses the directional derivative (X ·∇)Y in R
3 in

terms of the covariant derivative ∇ε
XY on Γε and the second fundamental

form (WεX ·Y )nε of Γε (see Lemma D.1). It enables us to apply formulas of

differential geometry to quantities on Γε expressed in a fixed coordinate sys-

tem of R
3 and to write resulting expressions in the same coordinate system.

Such an idea was also used in [10] to express intrinsically defined differen-

tial operators on a hypersurface such as the Lamè operator in terms of the

global coordinate system of the ambient Euclidean space. This method is

useful to deduce properties of functions on a domain from their behavior on

the boundary since it avoids a change of variables. It also provides an easy

and understandable way to compute vector fields on surfaces without intro-

ducing local coordinate systems and differential forms. We expect that the

methods used here and in [10] will be applicable to other problems involv-

ing complicated calculations of vector fields on surfaces, especially to partial
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differential equations for vector fields on stationary or moving surfaces such

as the surface Navier–Stokes and Stokes equations (see e.g. [27, 31, 53, 65]).

1.4. Organization of this paper

The rest of this paper is organized as follows. In Section 2 we provide the

main results of this paper. Notations and basic results on a closed surface

and a curved thin domain are presented in Section 3. Section 4 gives fun-

damental inequalities and formulas for functions on the curved thin domain

and its boundary. In Section 5 we establish the uniform Korn inequality

(1.9) and compare it with a standard Korn inequality. We also derive the

uniform a priori estimate for the vector Laplace operator (1.18) in Section

6. Using the results of Sections 4–6 we prove our main results in Section

7. Appendix A fixes notations on vectors and matrices. Some auxiliary

results related to the closed surface are shown in Appendix B. In Appendix

C we provide the proofs of lemmas in Section 3 and Lemmas 5.4, 5.5, and

7.2 involving elementary but long calculations of differential geometry of

surfaces. Appendix D presents formulas for the covariant derivatives of tan-

gential vector fields on the closed surface used in Section 6. In Appendix E

we show some properties of infinitesimal rigid displacements of R
3 related

to the axial symmetry of the closed surface and the curved thin domain.

Most results of this paper were obtained in the doctoral thesis of the

author [45]. In this paper, however, we newly prove the uniform Korn

inequality (1.9) under the condition (1.14) and give Appendix E to study

properties of infinitesimal rigid displacements of R
3 related to the axial

symmetry of a closed surface and a curved thin domain. By these new

results we can add the condition (A3) in Assumption 2.3 to consider some

curved thin domains excluded in [45]. The most important example of a

curved thin domain newly included in this paper is the thin spherical shell

Ωε = {x ∈ R
3 | 1 < |x| < 1 + ε} under the perfect slip boundary conditions

(1.4) with γε = 0. This kind of curved thin domain was studied by Temam

and Ziane [75] under different boundary conditions (see Remark 2.9). We

also add Section 5.2 in which we discuss the difference between the uniform

Korn inequality and a standard Korn inequality.
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2. Main Results

In this section we present the main results of this paper. The proofs of

theorems in this section will be given in Section 7.

To state the main results we first fix some notations (see also Section 3).

Let Γ be a two-dimensional closed (i.e. compact and without boundary),

connected, and oriented surface in R
3 with unit outward normal vector field

n and g0, g1 ∈ C4(Γ). We assume that Γ is of class C5 and there exists a

constant c > 0 such that

g := g1 − g0 ≥ c on Γ.(2.1)

Note that we do not assume g0 ≤ 0 or g1 ≥ 0 on Γ. For a sufficiently small

ε ∈ (0, 1] let Ωε be the curved thin domain in R
3 of the form (1.1) and

L2
σ(Ωε) := {u ∈ L2(Ωε)

3 | div u = 0 in Ωε, u · nε = 0 on Γε}

the standard L2-solenoidal space on Ωε. By integration by parts we observe

that the bilinear form for the Stokes probelm (1.5) is given by

aε(u1, u2) := 2ν
(
D(u1), D(u2)

)
L2(Ωε)

+
∑
i=0,1

γiε(u1, u2)L2(Γi
ε)

(2.2)

for u1, u2 ∈ H1(Ωε)
3 (see Lemma 7.1). Here D(u) := {∇u+(∇u)T }/2 is the

strain rate tensor for a vector field u on Ωε and γ0
ε and γ1

ε are the friction

coefficients appearing in (1.3). Clearly, aε is symmetric.

To make aε uniformly in ε bounded and coercive on an appropriate

function space, we define function spaces and impose assumptions on γ0
ε ,

γ1
ε , and Γ. Let

R := {w(x) = a× x+ b, x ∈ R
3 | a, b ∈ R

3, w|Γ · n = 0 on Γ}(2.3)

be the space of all infinitesimal rigid displacements of R
3 whose restrictions

on Γ are tangential. Note that R is of finite dimension and that R �= {0}
if and only if Γ is axially symmetric, i.e. invariant under a rotation by any

angle around some line (see Lemma E.1). Let ∇Γ the tangential gradient

operator on Γ (see Section 3.1 for its definition). We define subspaces of R
by

Ri := {w ∈ R | w|Γ · ∇Γgi = 0 on Γ}, i = 0, 1,

Rg := {w ∈ R | w|Γ · ∇Γg = 0 on Γ} (g = g1 − g0).
(2.4)
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Note that R0 ∩R1 ⊂ Rg. It turns out (see Lemmas E.6 and E.7) that Ωε is

axially symmetric around the same line for all ε ∈ (0, 1] if R0 ∩ R1 �= {0},
while Ωε is not axially symmetric around any line for all ε > 0 sufficiently

small if Rg = {0}.
Next we define the surface strain rate tensor by DΓ(v) := P (∇Γv)SP on

Γ for a (not necessarily tangential) vector field v on Γ, where P := I3−n⊗n

is the orthogonal projection onto the tangent plane of Γ and (∇Γv)S :=

{∇Γv + (∇Γv)
T }/2 is the symmetric part of the tangential gradient matrix

of v (see Section 3.1 for details). Then we set

K(Γ) := {v ∈ H1(Γ)3 | v · n = 0, DΓ(v) = 0 on Γ},
Kg(Γ) := {v ∈ K(Γ) | v · ∇Γg = 0 on Γ}.

(2.5)

If Γ is of class C4, then v ∈ K(Γ) is in fact of class C1 (see Lemma B.8) and

∇Xv · Y +X · ∇Y v = 0 on Γ for all tangential vector fields X and Y on Γ,

where ∇Xv := P (X · ∇Γ)v denotes the covariant derivative of v along X.

Such a vector field generates a one-parameter group of isometries of Γ and

is called a Killing vector field on Γ. It is known that K(Γ) is a Lie algebra

of dimension at most three. For details of Killing vector fields we refer to

[29, 55].

Remark 2.1. For w(x) = a × x + b, x ∈ R
3 with a, b ∈ R

3, direct

calculations show that DΓ(w) = 0 on Γ. Hence w is Killing on Γ if it

tangential on Γ, i.e. R|Γ := {w|Γ | w ∈ R} ⊂ K(Γ). The set R|Γ represents

the extrinsic infinitesimal symmetry of the embedded surface Γ, while K(Γ)

describes the intrinsic one of the abstract Riemannian manifold Γ. It is

known that R|Γ = K(Γ) if Γ is a surface of revolution (see also Lemma E.3).

The same relation holds if Γ is closed and convex since any isometry between

two closed and convex surfaces in R
3 is a motion in R

3 (a rotation and a

translation) or a motion and a reflection by the Cohn-Vossen theorem (see

[71]). However, it is not known whether R|Γ agrees with K(Γ) for a general

(nonconvex and not axially symmetric) closed surface. In particular, the

existence of a closed surface in R
3 that is not axially symmetric but admits

a nontrivial Killing vector field, i.e. R = {0} but K(Γ) �= {0}, is an open

problem (see [37, Remark 3.2]).

We make the following assumptions on the friction coefficients γ0
ε and
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γ1
ε , the closed surface Γ, and the functions g0 and g1 (see also Remarks 2.9

and 2.10).

Assumption 2.2. There exists a constant c > 0 such that

γ0
ε ≤ cε, γ1

ε ≤ cε(2.6)

for all ε ∈ (0, 1].

Assumption 2.3. Either of the following conditions is satisfied:

(A1) There exists a constant c > 0 such that

γ0
ε ≥ cε for all ε ∈ (0, 1] or γ1

ε ≥ cε for all ε ∈ (0, 1].

(A2) The relation Kg(Γ) = {0} holds.

(A3) The relations Rg = R0 ∩ R1 and Rg|Γ = Kg(Γ) hold, where Rg|Γ :=

{w|Γ | w ∈ Rg}, and γ0
ε = γ1

ε = 0 for all ε ∈ (0, 1].

These assumptions are imposed in this section and Section 7. We also

impose Assumption 2.2 in Section 6. Under Assumptions 2.2 and 2.3 we

define subspaces of L2(Ωε)
3 and H1(Ωε)

3 by

Hε :=

{
L2
σ(Ωε) if (A1) or (A2) is satisfied,

L2
σ(Ωε) ∩R⊥

g if (A3) is satisfied,

Vε := Hε ∩H1(Ωε)
3,

(2.7)

where R⊥
g is the orthogonal complement of Rg in L2(Ωε)

3. Here we consider

vector fields in Rg defined on the whole space R
3 as elements of L2(Ωε)

3 just

by restricting them on Ωε. Note that R0∩R1 ⊂ L2
σ(Ωε) by Lemma E.8 and

thus Rg ⊂ L2
σ(Ωε) under the condition (A3). Also, Hε and Vε are closed

in L2(Ωε)
3 and H1(Ωε)

3. By Pε we denote the orthogonal projection from

L2(Ωε)
3 onto Hε. Note that Pε may be slightly different from the standard

Helmholtz–Leray projection from L2(Ωε)
3 onto L2

σ(Ωε) under the condition

(A3).

Now let us present the main results of this paper. The first result is the

uniform boundedness and coerciveness of the bilinear form aε given by (2.2)

on Vε.
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Theorem 2.4. Under Assumptions 2.2 and 2.3, there exist constants

ε0 ∈ (0, 1] and c > 0 such that

c−1‖u‖2
H1(Ωε)

≤ aε(u, u) ≤ c‖u‖2
H1(Ωε)

(2.8)

for all ε ∈ (0, ε0] and u ∈ Vε.

Throughout this section we fix the constant ε0 given in Theorem 2.4 and

take ε ∈ (0, ε0]. By Theorem 2.4 the bilinear form aε is bounded, coercive,

and symmetric on the Hilbert space Vε. Hence by the Lax–Milgram theorem

there exists a bounded linear operator Aε from Vε into its dual space V ′
ε such

that

V ′
ε
〈Aεu1, u2〉Vε = aε(u1, u2), u1, u2 ∈ Vε,

where V ′
ε
〈·, ·〉Vε is the duality product between V ′

ε and Vε. We consider Aε

as an unbounded operator on Hε with domain D(Aε) = {u ∈ Vε | Aεu ∈
Hε}. Then the Lax–Milgram theory shows that Aε is a positive self-adjoint

operator on Hε and its square root A
1/2
ε is well-defined on D(A

1/2
ε ) = Vε.

Moreover,

(Aεu1, u2)L2(Ωε) = (A1/2
ε u1, A

1/2
ε u2)L2(Ωε)(2.9)

for all u1 ∈ D(Aε) and u2 ∈ Vε, and

‖A1/2
ε u‖2

L2(Ωε)
= aε(u, u)

= 2ν‖D(u)‖2
L2(Ωε)

+ γ0
ε‖u‖2

L2(Γ0
ε)

+ γ1
ε‖u‖2

L2(Γ1
ε)

(2.10)

for all u ∈ Vε (see e.g. [5, 70] for details). From a regularity result for a

solution to the Stokes problem (1.5) (see [2, 4, 69]) it also follows that

D(Aε) = {u ∈ Vε ∩H2(Ωε)
3 | 2νPεD(u)nε + γεu = 0 on Γε}(2.11)

and Aεu = −νPε∆u for u ∈ D(Aε). We call Aε the Stokes operator as-

sociated with (1.5) or the Stokes operator for Ωε under the slip boundary

conditions.

Let us give basic estimates for A
1/2
ε with constants independent of ε.

Lemma 2.5. Under Assumptions 2.2 and 2.3, let ε0 be the constant

given in Theorem 2.4. There exists a constant c > 0 such that

c−1‖u‖H1(Ωε) ≤ ‖A1/2
ε u‖L2(Ωε) ≤ c‖u‖H1(Ωε)(2.12)
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for all ε ∈ (0, ε0] and u ∈ Vε. Moreover, if u ∈ D(Aε), then we have

‖A1/2
ε u‖L2(Ωε) ≤ c‖Aεu‖L2(Ωε).(2.13)

Proof. The inequality (2.12) is an immediate consequence of (2.8)

and (2.10). Also, by (2.9) and Hölder’s inequality,

‖A1/2
ε u‖2

L2(Ωε)
= (u,Aεu)L2(Ωε) ≤ ‖u‖L2(Ωε)‖Aεu‖L2(Ωε)

for u ∈ D(Aε). By this inequality and (2.12) we get (2.13). �

Since Aε = −νPε∆ on Hε and Pε is the orthogonal projection from

L2(Ωε)
3 onto Hε, we easily observe that

‖Aεu+ ν∆u‖L2(Ωε) = ν‖∆u− Pε∆u‖L2(Ωε)

≤ ν‖∆u‖L2(Ωε) ≤ c‖u‖H2(Ωε)

for all u ∈ D(Aε) with a constant c > 0 independent of ε. The next theorem

shows that the right-hand side can be replaced by the H1(Ωε)-norm of u

under the slip boundary conditions (1.4).

Theorem 2.6. Under Assumptions 2.2 and 2.3, let ε0 be the constant

given in Theorem 2.4. There exists a constant c > 0 such that

‖Aεu+ ν∆u‖L2(Ωε) ≤ c‖u‖H1(Ωε)(2.14)

for all ε ∈ (0, ε0] and u ∈ D(Aε).

The inequality (2.14) is useful to derive a good estimate for the trilinear

term ((u ·∇)u,Aεu)L2(Ωε), u ∈ D(Aε), which is essential for the proof of the

global existence of a strong solution to the Navier–Stokes equations (1.2).

For details, we refer to [47].

Finally, we present the uniform norm equivalence for Aε.

Theorem 2.7. Under Assumptions 2.2 and 2.3, let ε0 be the constant

given in Theorem 2.4. There exists a constant c > 0 such that

c−1‖u‖H2(Ωε) ≤ ‖Aεu‖L2(Ωε) ≤ c‖u‖H2(Ωε)(2.15)
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for all ε ∈ (0, ε0] and u ∈ D(Aε).

As a consequence of Lemma 2.5 and Theorem 2.7 we obtain an interpo-

lation inequality for a vector field in D(Aε).

Corollary 2.8. Under Assumptions 2.2 and 2.3, let ε0 be the con-

stant given in Theorem 2.4. Then there exists a constant c > 0 such that

‖u‖H1(Ωε) ≤ c‖u‖1/2
L2(Ωε)

‖u‖1/2
H2(Ωε)

(2.16)

for all ε ∈ (0, ε0] and u ∈ D(Aε).

Proof. Let u ∈ D(Aε). From (2.9) and (2.12) it follows that

‖u‖2
H1(Ωε)

≤ c‖A1/2
ε u‖2

L2(Ωε)
= c(Aεu, u)L2(Ωε) ≤ c‖Aεu‖L2(Ωε)‖u‖L2(Ωε).

By this inequality and (2.15) we obtain (2.16). �

We conclude this section with two remarks on Assumption 2.3.

Remark 2.9. The conditions of Assumption 2.3 are valid in the fol-

lowing cases:

(A1) When at least one of γ0
ε and γ1

ε is bounded from below by ε, we may

consider any closed surface Γ. In this case, however, the perfect slip

(i.e. γε = 0) of the fluid on Γε is not allowed.

(A2) It is known (see e.g. [68, Proposition 2.2]) that there exists no non-

trivial Killing vector field on Γ (i.e. K(Γ) = {0}) if the genus of Γ is

greater than one. In this case Kg(Γ) = {0} for any g = g1 − g0 and

we may take any nonnegative γ0
ε and γ1

ε (bounded above by ε). Note

that, if Kg(Γ) = {0}, then Rg = {0} and the curved thin domain Ωε is

not axially symmetric around any line for all ε > 0 sufficiently small

(see Lemma E.7).

(A3) As mentioned in Remark 2.1, if Γ is a surface of revolution or it is

closed and convex then R|Γ = K(Γ) and thus Rg|Γ = Kg(Γ) for any

g = g1 − g0. Also, the relation R0 ∩ R1 = Rg holds if, for example,

g0 or g1 is constant. In this case we only consider the perfect slip

boundary conditions
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u · nε = 0, 2νPεD(u)nε = 0 on Γε.(2.17)

A typical but important example of this case is the thin spherical shell

Ωε = {x ∈ R
3 | 1 < |x| < 1 + ε} (Γ = S2, g0 ≡ 0, g1 ≡ 1) around the

unit sphere S2 in R
3 considered by Temam and Ziane [75] under the

Hodge boundary conditions

u · nε = 0, curlu× nε = 0 on Γε.(2.18)

Note that, if u · nε = 0 on Γε, then we have

2PεD(u)nε − curlu× nε = 2Wεu on Γε,

see [41, Section 2] and Lemma B.10. Here Wε is the Weingarten map

(or the shape operator) of Γε representing the curvatures of Γε (see

Section 3.2). Hence the perfect slip boundary conditions (2.17) are

different from the Hodge boundary conditions (2.18) by the curvatures

of the boundary.

We also note that, if Γ = T
2 is the flat torus, then

Ri = {(a1, a2, 0)T ∈ R
2 × {0} | a1∂1gi + a2∂2gi = 0 on T

2}, i = 0, 1,

Rg = Kg(Γ) = {(a1, a2, 0)T ∈ R
2 × {0} | a1∂1g + a2∂2g = 0 on T

2}

and the conditions (A2) and (A3) were imposed in [18] and [19, 25], re-

spectively, which studied the Naiver–Stokes equations in a flat thin domain

around Γ = T
2.

Remark 2.10. For a function η on Γ let η̄ be its constant extension in

the normal direction of Γ, Kg(Γ) := {v̄ | v ∈ Kg(Γ)}, and

Hε := L2
σ(Ωε) ∩ Kg(Γ)⊥, Vε := Hε ∩H1(Ωε)

3.

Then we see by the uniform Korn inequality given in Theorem 5.6 that the

bilinear form aε is uniformly coercive on Vε even if Assumption 2.3 is not

imposed. Since we can also show that aε is uniformly bounded on Vε under

Assumption 2.2 as in Theorem 2.4, we obtain a bounded linear operator

Aε from Vε into its dual space induced by aε. This Aε, however, is not
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properly related to the Stokes problem (1.5). To see this, let u ∈ Vε such

that f := Aεu ∈ Hε. Then

aε(u, ϕ) = (f, ϕ)L2(Ωε) for all ϕ ∈ Vε.(2.19)

If (2.19) was valid for all ϕ ∈ L2
σ(Ωε) ∩H1(Ωε)

3 then we could recover the

Stokes problem (1.5) from (2.19) by a standard argument (see [8, 5, 70, 73]),

but we cannot verify it because of the condition ϕ ∈ Kg(Γ)⊥ for the test

function ϕ. Indeed, let ϕ ∈ L2
σ(Ωε) ∩ H1(Ωε)

3 and assume that it can be

decomposed into ϕ = Φ+v̄ with some Φ ∈ Vε and v̄ ∈ Kg(Γ) (this is possible

if Kg(Γ) ⊂ L2
σ(Ωε), but such a relation is not always valid since v̄ ∈ Kg(Γ)

does not satisfy v̄ · nε = 0 on Γε in general). Then since (2.19) is valid for

Φ ∈ Vε and (f, v̄)L2(Ωε) = 0 by f ∈ Hε, to verify (2.19) for ϕ = Φ + v̄ we

need to show that

aε(u, v̄) = 2ν
(
D(u), D(v̄)

)
L2(Ωε)

+ γ0
ε (u, v̄)L2(Γ0

ε)
+ γ1

ε (u, v̄)L2(Γ1
ε)

vanishes. However, the second and third terms on the right-hand side do not

vanish unless γ0
ε = γ1

ε = 0. The first term also does not vanish in general,

since for the constant extension v̄ of a vector field v on Γ we observe by

(3.16) that

D(v̄)(x) =
1

2

[
{I3 − rW (y)}−1∇Γv(y) + {∇Γv(y)}T {I3 − rW (y)}−1

]
for x = y + rn(y) ∈ Ωε with y ∈ Γ and r ∈ (εg0(y), εg1(y)), where W is the

Weingarten map of Γ (see Section 3.1), and D(v̄) does not vanish on Ωε just

by DΓ(v) = 0 on Γ (even if Γ = S2 and v̄(x) = e3 × (x/|x|) is the constant

extension of v(y) = e3 × y ∈ K(S2) with e3 = (0, 0, 1)T ). Thus we fail to

show (2.19) for ϕ ∈ L2
σ(Ωε) ∩ H1(Ωε)

3 and it is not clear whether u is a

solution to the Stokes problem (1.5) with f = Aεu. This observation implies

that the operator Aε is not appropriate for the study of the Navier–Stokes

equations (1.2).

The above problem does not occur if we impose Assumption 2.3 and

consider the bilinear form aε on the function space Vε given by (2.7). In

this case, for u ∈ D(Aε) and f := Aεu ∈ Hε we a priori have

aε(u, ϕ) = (f, ϕ)L2(Ωε) for all ϕ ∈ Vε.(2.20)
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Under the condition (A1) or (A2) we have Vε = L2
σ(Ωε) ∩ H1(Ωε)

3 and

thus (2.20) implies that u is indeed a solution to the Stokes problem (1.5)

with f = Aεu. If we impose the condition (A3), then Vε may be smaller

than L2
σ(Ωε) ∩ H1(Ωε)

3. In this case, however, since Rg = R0 ∩ R1 is of

finite dimension and contained in L2
σ(Ωε) by Lemma E.8, each ϕ ∈ L2

σ(Ωε)∩
H1(Ωε)

3 can be decomposed into ϕ = Φ+w with some Φ ∈ Vε and w ∈ Rg.

Then (2.20) holds for Φ ∈ Vε and, since w ∈ Rg is of the form w(x) =

a× x + b, x ∈ R
3 with a, b ∈ R

3, we easily get D(w) = 0 on R
3. From this

fact and γ0
ε = γ1

ε = 0 by the condition (A3) it follows that aε(u,w) = 0.

Thus (2.20) is also valid for all ϕ ∈ L2
σ(Ωε) ∩H1(Ωε)

3 under the condition

(A3).

3. Preliminaries

We fix notations on a closed surface and a curved thin domain and

give their basic properties. Notations on vectors and matrices are given in

Appendix A.

Some lemmas in this section are proved just by calculations involving

differential geometry. We give the proofs of them in Appendix C to avoid

making this section too long. Also, some results in this section are not used

in the following sections but essential for the second and third parts [47, 48]

of our study. We include them here since they easily follow from other

results used in this paper or we can prove them just by a few discussions

along with the proofs of the other results.

Throughout this paper we denote by c a general positive constant in-

dependent of the parameter ε. Also, we fix a coordinate system of R
3 and

write xi, i = 1, 2, 3 for the i-th component of a point x ∈ R
3 under this

coordinate system.

3.1. Closed surface

Let Γ be a two-dimensional closed, connected, and oriented surface in

R
3. We assume that Γ is of class C� with 0 ≥ 2. By n and d we de-

note the unit outward normal vector field of Γ and the signed distance

function from Γ increasing in the direction of n. Also, let κ1 and κ2

be the principal curvatures of Γ. From the C�-regularity of Γ it follows

that n ∈ C�−1(Γ)3 and κ1, κ2 ∈ C�−2(Γ). In particular, κ1 and κ2 are

bounded on the compact set Γ. Hence we can take a tubular neighborhood
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N := {x ∈ R
3 | dist(x,Γ) < δ}, δ > 0 of Γ such that for each x ∈ N there

exists a unique point π(x) ∈ Γ satisfying

x = π(x) + d(x)n(π(x)), ∇d(x) = n(π(x)).(3.1)

Moreover, d and π are of class C� and C�−1 on N (see [15, Section 14.6] for

details). By the boundedness of κ1 and κ2 we also have

c−1 ≤ 1 − rκi(y) ≤ c for all y ∈ Γ, r ∈ (−δ, δ), i = 1, 2(3.2)

if we take δ > 0 sufficiently small.

Let us define differential operators on Γ. We set P := I3 − n ⊗ n and

Q := n ⊗ n on Γ. Then P and Q are the orthogonal projections onto the

tangent plane and the normal direction of Γ and satisfy |P | = 2, |Q| = 1

(here we use the Frobenius norm for matrices as indicated in Appendix A),

and

I3 = P +Q, PQ = QP = 0, P T = P 2 = P, QT = Q2 = Q,

|a|2 = |Pa|2 + |Qa|2, |Pa| ≤ |a|, Pa · n = 0, a ∈ R
3

on Γ. Also, P,Q ∈ C�−1(Γ)3×3 by the C�-regularity of Γ. For η ∈ C1(Γ) we

define the tangential gradient and the tangential derivatives of η as

∇Γη(y) := P (y)∇η̃(y), Diη(y) :=
3∑

j=1

Pij(y)∂j η̃(y)(3.3)

for y ∈ Γ and i = 1, 2, 3 so that ∇Γη = (D1η,D2η,D3η)
T . Here η̃ is a

C1-extension of η to N with η̃|Γ = η. Note that

P∇Γη = ∇Γη, n · ∇Γη = 0 on Γ.(3.4)

Also, ∇Γη agrees with the gradient on a Riemannian manifold expressed

under a local coordinate system (see Lemma B.2). Hence the values of ∇Γη

and Diη are independent of the choice of an extension η̃. In particular, for

the constant extension η̄ := η ◦ π of η in the normal direction of Γ, we have

∇η̄(y) = ∇Γη(y), ∂iη̄(y) = Diη(y), y ∈ Γ, i = 1, 2, 3(3.5)

since ∇π(y) = P (y) for y ∈ Γ by (3.1) and d(y) = 0. In what follows,

the notation η̄ with an overline always stands for the constant extension
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of a function η on Γ in the normal direction of Γ. The tangential Hessian

matrix of η ∈ C2(Γ) and the Laplace–Beltrami operator are given by ∇2
Γη :=

(DiDjη)i,j and ∆Γη := tr[∇2
Γη] =

∑3
i=1 D

2
i η on Γ. Note that ∇2

Γη is not

symmetric in general (see Lemma 3.2).

For a (not necessarily tangential) vector field v ∈ C1(Γ)3 we define the

tangential gradient matrix and the surface divergence of v by

∇Γv :=

D1v1 D1v2 D1v3

D2v1 D2v2 D2v3

D3v1 D3v2 D3v3

 , divΓv := tr[∇Γv] =
3∑
i=1

Divi(3.6)

on Γ with v = (v1, v2, v3)
T (note that in several papers the indices i, j of

Divj in ∇Γv are reversed, see also Appendix A for our notation of ∇u for

u : R
3 → R

3) and the surface strain rate tensor for v by

DΓ(v) := P (∇Γv)SP on Γ, (∇Γv)S =
∇Γv + (∇Γv)

T

2
.(3.7)

Also, for v ∈ C1(Γ)3 and η ∈ C(Γ)3 we set

(η · ∇Γ)v :=

η · ∇Γv1

η · ∇Γv2

η · ∇Γv3

 = (∇Γv)
T η on Γ.

Note that for any C1-extension ṽ of v to N with ṽ|Γ = v we have

∇Γv = P∇ṽ, (η · ∇Γ)v = [(Pη) · ∇]ṽ on Γ.(3.8)

Next we define the Weingarten map W and (twice) the mean curvature H

of Γ by W := −∇Γn and H := tr[W ] = −divΓn on Γ. Note that W and H

are of class C�−2 and thus bounded on Γ.

Lemma 3.1. The Weingarten map W is symmetric and

Wn = 0, PW = WP = W on Γ.(3.9)

Also, if v ∈ C1(Γ)3 is tangential, i.e. v · n = 0 on Γ, then

(∇Γv)n = Wv, ∇Γv = P (∇Γv)P + (Wv) ⊗ n on Γ.(3.10)
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Proof. We see by (3.1) and (3.5) that W = −∇2d is symmetric. Also,

we have (3.9) and (3.10) by applying ∇Γ to |n|2 = 1 and v · n = 0 on Γ and

using (3.4) and I3 = P +Q. �

By (3.9) we see that W has the eigenvalue zero associated with the

eigenvector n. Its other eigenvalues are the principal curvatures κ1 and κ2

and thus H = κ1 + κ2 on Γ (see e.g. [15, 36]).

The Weingarten map W appears when we exchange the tangential

derivatives and compute the gradient of the constant extension of a function

on Γ.

Lemma 3.2. For η ∈ C2(Γ) and i, j = 1, 2, 3 we have

DiDjη −DjDiη = [W∇Γη]inj − [W∇Γη]jni on Γ.(3.11)

Here [W∇Γη]i is the i-th component of the vector field W∇Γη.

For the proof of Lemma 3.2, see e.g. [44, Lemma 2.2].

Lemma 3.3. The matrix

I3 − d(x)W (x) = I3 − rW (y)

is invertible for all x = y + rn(y) ∈ N with y ∈ Γ and r ∈ (−δ, δ), and

{I3 − rW (y)}−1P (y) = P (y){I3 − rW (y)}−1.(3.12)

Moreover, there exists a constant c > 0 such that

c−1|a| ≤
∣∣{I3 − rW (y)}ka

∣∣ ≤ c|a|, k = ±1,(3.13) ∣∣I3 − {I3 − rW (y)}−1
∣∣ ≤ c|r|(3.14)

for all y ∈ Γ, r ∈ (−δ, δ), and a ∈ R
3.

Lemma 3.4. For all x ∈ N we have

∇π(x) =
{
I3 − d(x)W (x)

}−1
P (x).(3.15)

Let η ∈ C1(Γ). Then its constant extension η̄ = η ◦ π satisfies

∇η̄(x) =
{
I3 − d(x)W (x)

}−1 ∇Γη(x), x ∈ N(3.16)
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and there exists a constant c > 0 independent of η such that

c−1
∣∣∇Γη(x)

∣∣ ≤ |∇η̄(x)| ≤ c
∣∣∇Γη(x)

∣∣ ,(3.17) ∣∣∇η̄(x) −∇Γη(x)
∣∣ ≤ c

∣∣d(x)∇Γη(x)
∣∣(3.18)

for all x ∈ N . If Γ is of class C3 and η ∈ C2(Γ), then we have

|∇2η̄(x)| ≤ c
(∣∣∇Γη(x)

∣∣+ ∣∣∣∇2
Γη(x)

∣∣∣) , x ∈ N.(3.19)

Lemmas 3.3 and 3.4 are proved in Appendix C. Note that

∇n̄(x) = −
{
I3 − d(x)W (x)

}−1
W (x), x ∈ N(3.20)

by (3.16) and W = −∇Γn on Γ.

Let us give integration by parts formulas on Γ (see also [11, Theorem

2.10] and [15, Lemma 16.1] for different proofs).

Lemma 3.5. For v ∈ C1(Γ)3 we have∫
Γ

divΓv dH2 = −
∫

Γ
(v · n)H dH2,(3.21)

where H2 is the two-dimensional Hausdorff measure. Moreover,∫
Γ
(ηDiξ + ξDiη) dH2 = −

∫
Γ
ηξHni dH2(3.22)

for η, ξ ∈ C1(Γ) and i = 1, 2, 3.

Proof. If X ∈ C1(Γ)3 is tangential, then we can show
∫
Γ divΓX dH2 =

0 by a standard localization argument and an expression of divΓX under

local coordinates (see Lemma B.3). By this equality and divΓ[(v · n)n] =

−(v · n)H on Γ we get (3.21). Also, we have (3.22) by setting v = ηξei in

(3.21), where {e1, e2, e3} is the standard basis of R
3. �

Based on (3.22), we introduce the Sobolev spaces on Γ as in [11]. For

p ∈ [1,∞] and i = 1, 2, 3 we say that η ∈ Lp(Γ) has the i-th weak tangential

derivative if there exists ηi ∈ Lp(Γ) such that∫
Γ
ηiξ dH2 = −

∫
Γ
η(Diξ + ξHni) dH2(3.23)
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for all ξ ∈ C1(Γ). In this case we write Diη = ηi and define

W 1,p(Γ) := {η ∈ Lp(Γ) | Diη ∈ Lp(Γ) for all i = 1, 2, 3},

‖η‖W 1,p(Γ) :=


(
‖η‖pLp(Γ) + ‖∇Γη‖pLp(Γ)

)1/p
if p ∈ [1,∞),

‖η‖L∞(Γ) + ‖∇Γη‖L∞(Γ) if p = ∞.

Here ∇Γη := (D1η,D2η,D3η)
T is the weak tangential gradient of η ∈

W 1,p(Γ). This notation is consistent with (3.3) for a C1 function on Γ.

Also, for η ∈ W 1,p(Γ) and v ∈ C1(Γ)3, we have∫
Γ
∇Γη · v dH2 = −

∫
Γ
η{divΓv + (v · n)H} dH2(3.24)

by (3.23). We also define the second order Sobolev space

W 2,p(Γ) := {η ∈ W 1,p(Γ) | DiDjη ∈ Lp(Γ) for all i, j = 1, 2, 3},

‖η‖W 2,p(Γ) :=


(
‖η‖p

W 1,p(Γ)
+ ‖∇2

Γη‖
p
Lp(Γ)

)1/p
if p ∈ [1,∞),

‖η‖W 1,∞(Γ) + ‖∇2
Γη‖L∞(Γ) if p = ∞

and Wm,p(Γ) with m ≥ 2 similarly, and write W 0,p(Γ) := Lp(Γ) and

Hm(Γ) := Wm,2(Γ) for p ∈ [1,∞] and m ≥ 0. Here ∇2
Γη := (DiDjη)i,j

for η ∈ W 2,p(Γ). Note that Wm,p(Γ) is a Banach space. In Lemma B.4 we

see that the Sobolev spaces introduced here are equivalent to the standard

ones used in the literature of differential geometry, e.g. [3, 29]. Thus we

have the following density result by standard localization and mollification

arguments (note that we can consider Cm functions on Γ only for m ≤ 0

since Γ is of class C�).

Lemma 3.6. Let m = 0, 1, . . . , 0 and p ∈ [1,∞). Then C�(Γ) is dense

in Wm,p(Γ).

By Lemma 3.6 we can apply the results for Cm functions on Γ given in

this subsection to Wm,p functions with m = 1, 2 and p ∈ [1,∞).

Let X (Γ) be a function space on Γ such as Cm(Γ) and Wm,p(Γ). We

define the space of all tangential vector fields on Γ whose components belong

to X (Γ) by X (Γ, TΓ) := {v ∈ X (Γ)3 | v · n = 0 on Γ}. Then Wm,p(Γ, TΓ)
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is a closed subspace of Wm,p(Γ)3 for m ≥ 0 and p ∈ [1,∞]. Also, for

v ∈ W 1,p(Γ, TΓ) with p ∈ [1,∞] we have∫
Γ

divΓv dH2 = −
∫

Γ
(v · n)H dH2 = 0(3.25)

by (3.23) with ξ ≡ 1 (note that ∇Γξ = 0 on Γ if ξ is constant). When

m ≤ 0− 1 and p �= ∞, an element of Wm,p(Γ, TΓ) is approximated by C�−1

tangential vector fields on Γ.

Lemma 3.7. Let m = 0, 1, . . . , 0−1 and p ∈ [1,∞). Then C�−1(Γ, TΓ)

is dense in Wm,p(Γ, TΓ).

Proof. Let v ∈ Wm,p(Γ, TΓ) ⊂ Wm,p(Γ)3. By Lemma 3.6 we can take

a sequence {ṽk}∞k=1 in C�(Γ)3 that converges to v strongly in Wm,p(Γ)3. For

each k ∈ N let vk := P ṽk on Γ. Then vk ∈ C�−1(Γ, TΓ) since P is of class

C�−1 on Γ. Moreover, since v is tangential on Γ, we have v−vk = P (v− ṽk)

on Γ and thus

‖v − vk‖Wm,p(Γ) ≤ c‖v − ṽk‖Wm,p(Γ) → 0 as k → ∞

by the C�−1-regularity of P on Γ and the strong convergence of {ṽk}∞k=1 to

v in Wm,p(Γ)3. Hence the claim is valid. �

3.2. Curved thin domain

From now on, we assume that the closed surface Γ is of class C5. Let

g0, g1 ∈ C4(Γ) such that g := g1−g0 satisfies (2.1). For ε ∈ (0, 1] we define a

curved thin domain Ωε in R
3 by (1.1), i.e. Ωε = {y+rn(y) | y ∈ Γ, εg0(y) <

r < εg1(y)}. Since g0 and g1 are bounded on Γ, there exists ε̃ ∈ (0, 1] such

that ε̃|gi| < δ on Γ for i = 0, 1, where δ > 0 is the radius of the tubular

neighborhood N of Γ given in Section 3.1. Hence Ωε ⊂ N and the lemmas

in Section 3.1 are applicable in Ωε for all ε ∈ (0, ε̃]. In what follows, we

assume ε̃ = 1 by replacing gi with ε̃gi for i = 0, 1.

Let Γ0
ε and Γ1

ε be the inner and outer boundaries of Ωε defined as Γiε =

{y + εgi(y)n(y) | y ∈ Γ}, i = 0, 1. Then the whole boundary of Ωε is

Γε := Γ0
ε ∪ Γ1

ε. Note that Γε is of class C4 by the C5-regularity of Γ and

g0, g1 ∈ C4(Γ). We use this fact in the proof of a uniform a priori estimate

for the vector Laplace operator (see Section 6).
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Let us give surface quantities on Γε. We define vector fields on Γ by

τ iε(y) := {I3 − εgi(y)W (y)}−1∇Γgi(y),(3.26)

niε(y) := (−1)i+1 n(y) − ετ iε(y)√
1 + ε2|τ iε(y)|2

(3.27)

for y ∈ Γ and i = 0, 1. Then τ iε is tangential on Γ by (3.4), (3.12), and

Pa · n = 0 on Γ for a ∈ R
3. Also, τ iε and niε are bounded on Γ uniformly in

ε along with their first and second order tangential derivatives.

Lemma 3.8. There exists a constant c > 0 independent of ε such that

|τ iε(y)| ≤ c, |Dkτ
i
ε(y)| ≤ c, |DlDkτ

i
ε(y)| ≤ c,(3.28)

|τ iε(y) −∇Γgi(y)| ≤ cε, |∇Γτ
i
ε(y) −∇2

Γgi(y)| ≤ cε(3.29)

for all y ∈ Γ, i = 0, 1, and k, l = 1, 2, 3. We also have

|niε(y)| = 1, |Dkn
i
ε(y)| ≤ c, |DlDkn

i
ε(y)| ≤ c,(3.30)

|n0
ε(y) + n1

ε(y)| ≤ cε, |∇Γn
0
ε(y) + ∇Γn

1
ε(y)| ≤ cε(3.31)

for all y ∈ Γ, i = 0, 1, and k, l = 1, 2, 3.

We present the proof of Lemmas 3.8 in Appendix C.

Let nε be the unit outward normal vector field of Γε. For i = 0, 1 the

direction of nε on Γiε is the same as that of (−1)i+1n̄ since the signed distance

function d from Γ increases in the direction of n.

Lemma 3.9. Let n̄iε = niε ◦ π be the constant extension of niε. Then

nε(x) = n̄iε(x), x ∈ Γiε, i = 0, 1.(3.32)

Proof. We observe in Lemma B.5 that, if we define

τh := (I3 − hW )−1∇Γh, nh :=
n− τh√
1 + |τh|2

on Γ(3.33)

for h ∈ C1(Γ) satisfying |h| < δ on Γ, then the constant extension of nh is

a unit normal vector field of the parametrized surface

Γh := {y + h(y)n(y) | y ∈ Γ}.(3.34)
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Setting h = εgi in Lemma B.5 and noting that the direction of nε on Γiε is

the same as that of (−1)i+1n̄ for i = 0, 1 we obtain (3.32). �

As in Section 3.1, we set Pε := I3 −nε⊗nε and Qε := nε⊗nε on Γε and

define the tangential gradient and the tangential derivatives of ϕ ∈ C1(Γε)

by ∇Γεϕ := Pε∇ϕ̃ and Dε
iϕ :=

∑3
j=1[Pε]ij∂jϕ̃ on Γε, i = 1, 2, 3, where ϕ̃ is

any C1-extension of ϕ to an open neighborhood of Γε with ϕ̃|Γε = ϕ. For

u = (u1, u2, u3)
T ∈ C1(Γε)

3 we define the tangential gradient matrix and

the surface divergence of u by

∇Γεu :=

Dε
1u1 Dε

1u2 Dε
1u3

Dε
2u1 Dε

2u2 Dε
2u3

Dε
3u1 Dε

3u2 Dε
3u3

 , divΓεu := tr[∇Γεu] =
3∑
i=1

Dε
iui

on Γε. Also, for u ∈ C1(Γε)
3 and ϕ ∈ C(Γε)

3 we write

(ϕ · ∇Γε)u :=

ϕ · ∇Γεu1

ϕ · ∇Γεu2

ϕ · ∇Γεu3

 = (∇Γεu)Tϕ on Γε.

Note that, as in the case of Γ, we have

∇Γεu = Pε∇ũ, (ϕ · ∇Γε)u = [(Pεϕ) · ∇]ũ on Γε(3.35)

for any C1-extension ũ of u to an open neighborhood of Γε with ũ|Γε = u.

We also define the Weingarten map Wε and (twice) the mean curvature Hε

of Γε as Wε := −∇Γεnε and Hε := tr[Wε] = −divΓεnε on Γε. Then by

Lemma 3.1 we have

W T
ε = PεWε = WεPε = Wε on Γε.(3.36)

The weak tangential derivatives of functions on Γε and the Sobolev spaces

Wm,p(Γε) are also defined as in Section 3.1.

By the expression (3.27) of the unit outward normal nε to Γε, we can

compare the surface quantities of Γε with those of Γ.

Lemma 3.10. There exists a constant c > 0 independent of ε such that∣∣nε(x) − (−1)i+1
{
n̄(x) − ε∇Γgi(x)

}∣∣ ≤ cε2,(3.37) ∣∣Pε(x) − P (x)
∣∣ ≤ cε,

∣∣Qε(x) −Q(x)
∣∣ ≤ cε,(3.38) ∣∣Wε(x) − (−1)i+1W (x)

∣∣ ≤ cε,
∣∣Hε(x) − (−1)i+1H(x)

∣∣ ≤ cε,(3.39) ∣∣Dε
jWε(x) − (−1)i+1DjW (x)

∣∣ ≤ cε(3.40)
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for all x ∈ Γiε, i = 0, 1, and j = 1, 2, 3. In particular, Wε, Hε, and Dε
jWε

with j = 1, 2, 3 are uniformly bounded in ε on Γε (note that |Pε| = 2 and

|Qε| = 1 on Γε).

We can also compare the surface quantities of Γ0
ε and Γ1

ε.

Lemma 3.11. There exists a constant c > 0 independent of ε such that

|Fε(y + εg1(y)n(y)) − Fε(y + εg0(y)n(y))| ≤ cε,(3.41)

|Gε(y + εg1(y)n(y)) +Gε(y + εg0(y)n(y))| ≤ cε(3.42)

for all y ∈ Γ, Fε = Pε, Qε, and Gε = Wε, Hε, D
ε
jWε with j = 1, 2, 3.

The proofs of Lemmas 3.10 and 3.11 are given in Appendix C. Note

that, in (3.42), the sum of the surface quantities on Γ0
ε and Γ1

ε related to

nε, not the difference of them, is of order ε. This is because the direction

of nε on Γ0
ε is the opposite to that of nε on Γ1

ε.

Next we give a change of variables formula for an integral over Ωε. For

functions ϕ on Ωε and η on Γiε, i = 0, 1 we use the notations

ϕ�(y, r) := ϕ(y + rn(y)), y ∈ Γ, r ∈ (εg0(y), εg1(y)),(3.43)

η�i (y) := η(y + εgi(y)n(y)), y ∈ Γ.(3.44)

Let J = J(y, r) be a function given by

J(y, r) := det[I3 − rW (y)] = {1 − rκ1(y)}{1 − rκ2(y)}(3.45)

for y ∈ Γ and r ∈ (−δ, δ). By (3.2) and κ1, κ2 ∈ C3(Γ) we have

c−1 ≤ J(y, r) ≤ c,

∣∣∣∣∂J∂r (y, r)

∣∣∣∣ ≤ c,(3.46)

|J(y, r) − 1| ≤ c|r|(3.47)

for all y ∈ Γ and r ∈ (−δ, δ). Note that J is the Jacobian appearing in the

change of variables formula∫
Ωε

ϕ(x) dx =

∫
Γ

∫ εg1(y)

εg0(y)
ϕ(y + rn(y))J(y, r) dr dH2(y)(3.48)
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for a function ϕ on Ωε (see e.g. [15, Section 14.6]). The formula (3.48) can

be seen as a co-area formula. From (3.46) and (3.48) it immediately follows

that

c−1‖ϕ‖pLp(Ωε)
≤
∫

Γ

∫ εg1(y)

εg0(y)
|ϕ�(y, r)|p dr dH2(y) ≤ c‖ϕ‖pLp(Ωε)

(3.49)

for ϕ ∈ Lp(Ωε), p ∈ [1,∞). In the sequel we frequently use this inequality

and the following estimates for the constant extension η̄ = η◦π of a function

η on Γ.

Lemma 3.12. For p ∈ [1,∞) we have η ∈ Lp(Γ) if and only if η̄ ∈
Lp(Ωε), and there exists a constant c > 0 independent of ε and η such that

c−1ε1/p‖η‖Lp(Γ) ≤ ‖η̄‖Lp(Ωε) ≤ cε1/p‖η‖Lp(Γ).(3.50)

Moreover, η ∈ W 1,p(Γ) if and only if η̄ ∈ W 1,p(Ωε) and we have

c−1ε1/p‖η‖W 1,p(Γ) ≤ ‖η̄‖W 1,p(Ωε) ≤ cε1/p‖η‖W 1,p(Γ).(3.51)

Proof. Since η̄�(y, r) = η(y) for y ∈ Γ and r ∈ (εg0(y), εg1(y)),∫
Γ

∫ εg1(y)

εg0(y)
|η̄�(y, r)|p dr dH2(y) = ε

∫
Γ
g(y)|η(y)|p dH2(y).

By this equality, (2.1), and (3.49), we get (3.50). Similarly,

c−1ε1/p‖∇Γη‖Lp(Γ) ≤ ‖∇η̄‖Lp(Ωε) ≤ cε1/p‖∇Γη‖Lp(Γ)

by (2.1), (3.17), and (3.49). This inequality and (3.50) yield (3.51). �

We also give a change of variables formula for an integral over Γiε.

Lemma 3.13. For ϕ ∈ L1(Γiε), i = 0, 1 let ϕ�i be given by (3.44). Then∫
Γi
ε

ϕ(x) dH2(x) =

∫
Γ
ϕ�i(y)J(y, εgi(y))

√
1 + ε2|τ iε(y)|2 dH2(y)(3.52)
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with τ iε given by (3.26). Moreover, if ϕ ∈ Lp(Γiε), p ∈ [1,∞), then ϕ�i ∈
Lp(Γ) and

c−1‖ϕ‖Lp(Γi
ε)
≤ ‖ϕ�i‖Lp(Γ) ≤ c‖ϕ‖Lp(Γi

ε)
,(3.53)

where c > 0 is a constant independent of ε and ϕ.

Proof. In Lemma B.6 we show the change of variables formula∫
Γh

ϕ(x) dH2(x) =

∫
Γ
ϕ�h(y)J(y, h(y))

√
1 + |τh(y)|2 dH2(y)

for ϕ ∈ L1(Γh), where τh and Γh are given by (3.33) and (3.34) with h ∈
C1(Γ) satisfying |h| < δ on Γ and ϕ�h(y) := ϕ(y + h(y)n(y)) for y ∈ Γ.

Setting h = εgi, i = 0, 1 in the above formula we obtain (3.52). Also, (3.53)

follows from (3.28), (3.46), and (3.52). �

4. Fundamental Inequalities and Formulas

Let us give fundamental inequalities and formulas for functions on Ωε

and Γε. For a function ϕ on Ωε and x ∈ Ωε with y = π(x) ∈ Γ let

∂nϕ(x) := (n̄(x) · ∇)ϕ(x) =
d

dr

(
ϕ(y + rn(y))

)∣∣∣
r=d(x)

(4.1)

be the derivative of ϕ in the normal direction of Γ. Note that ∂nη̄ = (n̄ ·
∇)η̄ = 0 in Ωε for the constant extension η̄ = η ◦ π of η ∈ C1(Γ).

First we show Poincaré and trace type inequalities on Ωε.

Lemma 4.1. There exists a constant c > 0 such that

‖ϕ‖Lp(Ωε) ≤ c
(
ε1/p‖ϕ‖Lp(Γi

ε)
+ ε‖∂nϕ‖Lp(Ωε)

)
,(4.2)

‖ϕ‖Lp(Γi
ε)
≤ c

(
ε−1/p‖ϕ‖Lp(Ωε) + ε1−1/p‖∂nϕ‖Lp(Ωε)

)
(4.3)

for all ε ∈ (0, 1], ϕ ∈ W 1,p(Ωε) with p ∈ [1,∞), and i = 0, 1.

Proof. We prove (4.2) and (4.3) for i = 0. The proofs for i = 1 are

the same. We use the notations (3.43) and (3.44). Since

ϕ�(y, εg0(y)) = ϕ�0(y),
∂ϕ�

∂r
(y, r) = (∂nϕ)�(y, r)
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for y ∈ Γ and r ∈ (εg0(y), εg1(y)) by (4.1), we have

ϕ�(y, r) = ϕ�0(y) +

∫ r

εg0(y)
(∂nϕ)�(y, r̃) dr̃.(4.4)

From (4.4) and Hölder’s inequality it follows that

|ϕ�(y, r)| ≤ |ϕ�0(y)| + cε1−1/p

(∫ εg1(y)

εg0(y)
|(∂nϕ)�(y, r̃)|p dr̃

)1/p

.

Noting that the right-hand side is independent of r, we integrate the p-th

power of both sides of this inequality with respect to r to get

(4.5)

∫ εg1(y)

εg0(y)
|ϕ�(y, r)|p dr

≤ c

(
ε|ϕ�0(y)|p + εp

∫ εg1(y)

εg0(y)
|(∂nϕ)�(y, r̃)|p dr̃

)
, y ∈ Γ.

We integrate both sides with respect to y and use (3.49) to have

‖ϕ‖pLp(Ωε)
≤ c

(
ε‖ϕ�0‖

p
Lp(Γ) + εp‖∂nϕ‖pLp(Ωε)

)
.

Applying (3.53) to the first term on the right-hand side we obtain (4.2).

Next let us prove (4.3). As in the proof of (4.5), we use (4.4) to get

g(y)|ϕ�0(y)|p

≤ c

(
ε−1

∫ εg1(y)

εg0(y)
|ϕ�(y, r)|p dr + εp−1

∫ εg1(y)

εg0(y)
|(∂nϕ)�(y, r̃)|p dr̃

)

for all y ∈ Γ. Here the function g(y) on the left-hand side comes from the

integration with respect to r. Integrating both sides of the above inequality

with respect to y and using (2.1) and (3.49) we obtain

‖ϕ�0‖
p
Lp(Γ) ≤ c

(
ε−1‖ϕ‖pLp(Ωε)

+ εp−1‖∂nϕ‖pLp(Ωε)

)
.

We apply (3.53) to the left-hand side of this inequality to get (4.3). �
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Next we present two results for a vector field u : Ωε → R
3 satisfying the

impermeable boundary condition

u · nε = 0 on Γε.(4.6)

Lemma 4.2. For i = 0, 1 let u ∈ L2(Γiε)
3 satisfy (4.6) on Γiε. Then

u · n̄ = εu · τ̄ iε, |u · n̄| ≤ cε|u| on Γiε,(4.7)

where τ iε is given by (3.26) and c > 0 is a constant independent of ε and u.

Proof. The first equality of (4.7) follows from (3.27), (3.32), and (4.6)

on Γiε. Also, we get the second inequality of (4.7) by the first one and

(3.28). �

Lemma 4.3. There exists a constant c > 0 such that∣∣∣∣∫
Γε

(u · ∇)u · nε dH2

∣∣∣∣ ≤ c
(
‖u‖2

L2(Ωε)
+ ‖u‖L2(Ωε)‖∇u‖L2(Ωε)

)
(4.8)

for all ε ∈ (0, 1] and u ∈ H2(Ωε)
3 satisfying (4.6).

Note that the second order derivatives of u do not appear in (4.8), al-

though we need u ∈ H2(Ωε)
3 to confirm ∇u|Γε ∈ L2(Ωε)

3×3. We use (4.8)

in the proof of Lemma 5.1 below, where in fact u ∈ C2(Ωε)
3, and also in the

last part of our study [48, Lemma 4.14], where we only have u ∈ H2(Ωε)
3.

Proof. Noting that u is tangential on Γε by (4.6), we use (3.35) to

get

(u · ∇)u · nε = (u · ∇Γε)u · nε = u · ∇Γε(u · nε) − u · (u · ∇Γε)nε

on Γε. The first term on the right-hand side vanishes by (4.6) (note that

the tangential gradient on Γε depends only on the values of a function

on Γε). Also, (u · ∇Γε)nε = −Wεu by −∇Γεnε = Wε = W T
ε . Hence

(u · ∇)u · nε = u ·Wεu on Γε and∫
Γε

(u · ∇)u · nε dH2 =

∫
Γε

u ·Wεu dH2 =
∑
i=0,1

∫
Γi
ε

u ·Wεu dH2.(4.9)
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To estimate the right-hand side we interpolate the integrals over Γ0
ε and Γ1

ε

to produce an integral over Ωε. Let

Fi(y) :=
√

1 + ε2|τ iε(y)|2 W �
ε,i(y), i = 0, 1,

F (y, r) :=
1

εg(y)

{(
r − εg0(y)

)
F1(y) −

(
εg1(y) − r

)
F0(y)

}
,

ϕ(y, r) := u�(y, r) · F (y, r)u�(y, r)J(y, r)

(4.10)

for y ∈ Γ and r ∈ [εg0(y), εg1(y)] with τ iε, i = 0, 1 and J given by (3.26)

and (3.45). Here and hereafter we use the notations (3.43) and (3.44) and

sometimes suppress the arguments y and r. By (4.10) we have

[u ·Wεu]�i(y)
√

1 + ε2|τ iε(y)|2J(y, εgi(y)) = (−1)i+1ϕ(y, εgi(y))

for y ∈ Γ and i = 0, 1. From this relation and (3.52) we deduce that∑
i=0,1

∫
Γi
ε

[u ·Wεu](x) dH2(x)

=

∫
Γ
{ϕ(y, εg1(y)) − ϕ(y, εg0(y))} dH2(y)

=

∫
Γ

∫ εg1(y)

εg0(y)

∂ϕ

∂r
(y, r) dr dH2(y).

(4.11)

To estimate the integrand on the last line we use (3.46) to get∣∣∣∣∂ϕ∂r
∣∣∣∣ ≤ c

{(
|F | +

∣∣∣∣∂F∂r
∣∣∣∣) |u�|2 + |F ||u�||(∇u)�|

}
.(4.12)

By (3.28) and the uniform boundedness in ε of Wε on Γε (see Lemma 3.10),

we see that F0 and F1 are bounded on Γ uniformly in ε. Thus

|F (y, r)| ≤ c

εg(y)

{(
r − εg0(y)

)
+
(
εg1(y) − r

)
} = c(4.13)

for y ∈ Γ and r ∈ [εg0(y), εg1(y)]. Also,∣∣∣∣∂F∂r
∣∣∣∣ ≤ cε−1

|W �
ε,1 +W �

ε,0| +
∑
i=0,1

(√
1 + ε2|τ iε|2 − 1

)
|W �

ε,i|

(4.14)
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by ∂F/∂r = (εg)−1(F1 + F0) and (4.10). We observe by the mean value

theorem for the function
√

1 + s, s ≥ 0 and (3.28) that

0 ≤
√

1 + ε2|τ iε(y)|2 − 1 ≤ ε2

2
|τ iε(y)|2 ≤ cε2, y ∈ Γ.(4.15)

We apply this inequality, (3.42) with Gε = Wε, and the uniform bounded-

ness in ε of Wε on Γε to the right-hand side of (4.14) to obtain∣∣∣∣∂F∂r (y, r)

∣∣∣∣ ≤ c for all y ∈ Γ, r ∈ [εg0(y), εg1(y)].(4.16)

From (4.12), (4.13), and (4.16), we deduce that∣∣∣∣∂ϕ∂r (y, r)

∣∣∣∣ ≤ c
(
|u�(y, r)|2 +

[
|u�||(∇u)�|

]
(y, r)

)
(4.17)

for y ∈ Γ and r ∈ [εg0(y), εg1(y)]. Thus, by (4.9), (4.11), and (4.17),∣∣∣∣∫
Γε

(u · ∇)u · nε dH2

∣∣∣∣ ≤ c

∫
Γ

∫ εg1

εg0

(
|u�|2 + |u�||(∇u)�|

)
dr dH2

and we apply (3.49) and Hölder’s inequality to the right-hand side to obtain

(4.8). �

Let us give two formulas on Γε from the slip boundary conditions

u · nε = 0, 2νPεD(u)nε + γεu = 0 on Γε(4.18)

which are crucial for the proofs of a uniform a priori estimate for the vec-

tor Laplace operator on Ωε (see Theorem 6.1) and the uniform difference

estimate for the Stokes and Laplace operators (2.14).

Lemma 4.4. For i = 0, 1 let u ∈ H2(Ωε)
3 satisfy (4.18) on Γiε. Then

Pε(nε · ∇)u = −Wεu− γε
ν
u on Γiε,(4.19)

nε × curlu = −nε ×
{
nε ×

(
2Wεu+

γε
ν
u
)}

on Γiε.(4.20)
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Proof. Taking the tangential gradient of u · nε = 0 on Γiε we have

(∇Γεu)nε = −(∇Γεnε)u = Wεu on Γiε.(4.21)

By 2D(u) = ∇u+ (∇u)T , (3.35), and (4.21), we have 2PεD(u)nε = Wεu+

Pε(nε · ∇)u on Γiε. This equality and (4.18) give (4.19).

To prove (4.20) we see that the vector field nε × curlu is tangential on

Γiε. By this fact, (3.35), (4.19), and (4.21),

nε × curlu = Pε(nε × curlu) = Pε{(∇u)nε − (∇u)Tnε}
= (∇Γεu)nε − Pε(nε · ∇)u = 2Wεu+

γε
ν
u

on Γiε. The equality (4.20) follows from the the above equality and the

identity a× (a× b) = (a · b)a− |a|2b with a = nε and b = 2Wεu + ν−1γεu,

since nε · u = nε ·Wεu = 0 and |nε|2 = 1 on Γiε. �

5. Korn’s Inequality on a Curved Thin Domain

In this section we establish the uniform Korn inequality (1.9) on Ωε

that is essential for the uniform coerciveness of the bilinear form aε given

by (2.2). We also compare it with a standard Korn inequality for simple

examples of Ωε.

5.1. Uniform Korn inequality on a curved thin domain

The goal of this subsection is to show the uniform Korn inequality under

suitable assumptions for a vector field u on Ωε. First we give a uniform L2-

estimate for ∇u on Ωε.

Lemma 5.1. There exists a constant cK,1 > 0 independent of ε such

that

‖∇u‖2
L2(Ωε)

≤ 4‖D(u)‖2
L2(Ωε)

+ cK,1‖u‖2
L2(Ωε)

(5.1)

for all ε ∈ (0, 1] and u ∈ H1(Ωε)
3 satisfying (4.6).

Let us prove an auxiliary density result.

Lemma 5.2. Let u ∈ H1(Ωε)
3 satisfy (4.6). Then there exists a se-

quence {uk}∞k=1 in C2(Ωε)
3 such that uk satisfies (4.6) for each k ∈ N and

limk→∞ ‖u− uk‖H1(Ωε) = 0.
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Proof. We follow the idea of the proof of [5, Theorem IV.4.7], but

here it is not necessary to localize a vector field on Ωε. For x ∈ N we define

ñ(x) :=
1

εḡ(x)

{(
d(x) − εḡ0(x)

)
n̄1
ε(x) +

(
εḡ1(x) − d(x)

)
n̄0
ε(x)

}
,

where n0
ε and n1

ε are given by (3.27) and η̄ = η ◦ π denotes the constant

extension of a function η on Γ. Then ñ ∈ C2(N)3 by the regularity of

Γ, g0, and g1. Moreover, ñ = nε on Γε by Lemma 3.9. Hence if u ∈
H1(Ωε)

3 satisfies (4.6), then we have u · ñ ∈ H1
0 (Ωε) and w := u− (u · ñ)ñ ∈

H1(Ωε)
3. Since Γε is of class C4, there exist sequences {ϕk}∞k=1 in C∞

c (Ωε)

and {wk}∞k=1 in C∞(Ωε)
3 such that

lim
k→∞

‖u · ñ− ϕk‖H1(Ωε) = lim
k→∞

‖w − wk‖H1(Ωε) = 0.

Here C∞
c (Ωε) is the space of all smooth and compactly supported functions

on Ωε. Therefore, setting uk := ϕkñ+wk− (wk · ñ)ñ ∈ C2(Ωε)
3 we see that

uk · nε = uk · ñ = ϕk = 0 on Γε for each k ∈ N and

‖u− uk‖H1(Ωε) = ‖(u · ñ− ϕk)ñ+ (w − wk) − {(w − wk) · ñ}ñ‖H1(Ωε)

≤ cε
(
‖u · ñ− ϕk‖H1(Ωε) + ‖w − wk‖H1(Ωε)

)
→ 0

as k → ∞ (note that u = (u · ñ)ñ + w and w · ñ = 0 in Ωε and cε is

independent of k). �

Proof of Lemma 5.1. It is sufficient to show (5.1) for all u ∈ C2(Ωε)
3

satisfying (4.6) by Lemma 5.2 and a density argument. Then we can carry

out integration by parts twice to get∫
Ωε

∇u : (∇u)T dx

=

∫
Ωε

(div u)2 dx+

∫
Γε

{(u · ∇)u · nε − (u · nε)div u} dH2.

Since (div u)2 ≥ 0 in Ωε and u · nε = 0 on Γε, the above equality implies∫
Ωε

∇u : (∇u)T dx ≥
∫

Γε

(u · ∇)u · nε dH2.
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By this inequality and |∇u|2 = 2|D(u)|2 −∇u : (∇u)T in Ωε, we have

‖∇u‖2
L2(Ωε)

≤ 2‖D(u)‖2
L2(Ωε)

−
∫

Γε

(u · ∇)u · nε dH2.

Noting that u ∈ C2(Ωε)
3 satisfies (4.6), we apply (4.8) to the last term and

use ab ≤ (a2 + b2)/2 for a, b ≥ 0 to obtain

‖∇u‖2
L2(Ωε)

≤ 2‖D(u)‖2
L2(Ωε)

+ c‖u‖2
L2(Ωε)

+
1

2
‖∇u‖2

L2(Ωε)
.

Hence (5.1) follows. �

Next we show a uniform L2-estimate for u by the L2-norms of ∇u and

D(u) on Ωε. Recall that for a function η on Γ we denote by η̄ = η ◦ π its

constant extension in the normal direction of Γ.

Lemma 5.3. For given α > 0 and β ∈ [0, 1) there exist constants εK =

εK(α, β) ∈ (0, 1] and cK,2 = cK,2(α, β) > 0 such that

‖u‖2
L2(Ωε)

≤ α‖∇u‖2
L2(Ωε)

+ cK,2‖D(u)‖2
L2(Ωε)

(5.2)

for all ε ∈ (0, εK ] and u ∈ H1(Ωε)
3 satisfying (4.6) and∣∣(u, v̄)L2(Ωε)

∣∣ ≤ β‖u‖L2(Ωε)‖v̄‖L2(Ωε) for all v ∈ Kg(Γ).(5.3)

Here Kg(Γ) is the function space on Γ given by (2.5).

A geometric interpretation of the condition (5.3) for the uniform Korn

inequality is given in [37, Remark 3.1]. Also, we observe in Section 5.2 that

(5.3) is indeed necessary for the uniform Korn inequality.

To prove Lemma 5.3 we transform integrals over Ωε into those over the

domain Ω1 with fixed thickness by using the following lemmas (note that

we assume Ω1 ⊂ N by scaling g0 and g1).

Lemma 5.4. For ε ∈ (0, 1] let

Φε(X) := π(X) + εd(X)n̄(X), X ∈ Ω1.(5.4)

Then Φε is a bijection from Ω1 onto Ωε and∫
Ωε

ϕ(x) dx = ε

∫
Ω1

ξ(X)J(π(X), d(X))−1J(π(X), εd(X)) dX(5.5)
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for a function ϕ on Ωε, where ξ := ϕ ◦ Φε on Ω1 and J is given by (3.45).

Moreover, if ϕ ∈ L2(Ωε), then ξ ∈ L2(Ω1) and there exist constants c1, c2 >

0 independent of ε and ϕ such that

c1ε
−1‖ϕ‖2

L2(Ωε)
≤ ‖ξ‖2

L2(Ω1) ≤ c2ε
−1‖ϕ‖2

L2(Ωε)
.(5.6)

If in addition ϕ ∈ H1(Ωε), then ξ ∈ H1(Ω1) and

ε−1‖∇ϕ‖2
L2(Ωε)

≥ c
(∥∥P∇ξ

∥∥2

L2(Ω1)
+ ε−2‖∂nξ‖2

L2(Ω1)

)
,(5.7)

where ∂nξ = (n̄ · ∇)ξ on Ω1 and c > 0 is a constant independent of ε and

ϕ.

Lemma 5.5. For ε ∈ (0, 1] let Φε : Ω1 → Ωε be the bijection given by

(5.4). Also, let u ∈ H1(Ωε)
3. Then U := u ◦ Φε ∈ H1(Ω1)

3 and (5.7) holds

with ϕ and ξ replaced by u and U , respectively. Moreover,

(5.8) ε−1‖D(u)‖2
L2(Ωε)

≥ c
(∥∥PFε(U)SP

∥∥2

L2(Ω1)
+ ε−2‖∂n(U · n̄)‖2

L2(Ω1)

)
,

where Fε(U)S = {Fε(U) + Fε(U)T }/2 is the symmetric part of

Fε(U) :=
(
I3 − εdW

)−1(
I3 − dW

)
∇U on Ω1(5.9)

and c > 0 is a constant independent of ε and u.

We give the proofs of Lemmas 5.4 and 5.5 in Appendix C.

Proof of Lemma 5.3. Following the idea in the case of a flat thin

domain [19, Lemma 4.14], we prove (5.2) by contradiction.

Assume to the contrary that there exist a sequence {εk}∞k=1 of positive

numbers with limk→∞ εk = 0 and vector fields uk ∈ H1(Ωεk)
3 satisfying

(4.6) on Γεk , (5.3), and

‖uk‖2
L2(Ωεk

) > α‖∇uk‖2
L2(Ωεk

) + k‖D(uk)‖2
L2(Ωεk

), k ∈ N.(5.10)
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For each k ∈ N let Φεk be the bijection from Ω1 onto Ωεk given by (5.4) and

Uk := uk ◦ Φεk ∈ H1(Ω1)
3. Also, let Fεk(Uk) be given by (5.9). We divide

both sides of (5.10) by εk and use (5.6)–(5.8) to get

‖Uk‖2
L2(Ω1) > cα

(∥∥P∇Uk
∥∥2

L2(Ω1)
+ ε−2

k ‖∂nUk‖2
L2(Ω1)

)
+ ck

(∥∥PFεk(Uk)SP∥∥2

L2(Ω1)
+ ε−2

k ‖∂n(Uk · n̄)‖2
L2(Ω1)

)
.

Since ‖Uk‖L2(Ω1) > 0, we may assume

‖Uk‖L2(Ω1) = 1, k ∈ N(5.11)

by replacing Uk with Uk/‖Uk‖L2(Ω1). Then∥∥P∇Uk
∥∥2

L2(Ω1)
+ ε−2

k ‖∂nUk‖2
L2(Ω1) < cα−1,(5.12) ∥∥PFεk(Uk)SP∥∥2

L2(Ω1)
+ ε−2

k ‖∂n(Uk · n̄)‖2
L2(Ω1) < ck−1(5.13)

and {Uk}∞k=1 is bounded in H1(Ω1)
3 by (5.11), (5.12), and

|∇Uk|2 =
∣∣P∇Uk

∣∣2 +
∣∣Q∇Uk

∣∣2 , ∣∣Q∇Uk
∣∣ = |n̄⊗ ∂nUk| = |∂nUk|

in Ω1. By these facts and the compact embedding H1(Ω1) ↪→ L2(Ω1), we

see that {Uk}∞k=1 converges (up to a subsequence) to some U strongly in

L2(Ωε)
3 and weakly in H1(Ωε)

3. Thus, by (5.11),

‖U‖L2(Ω1) = lim
k→∞

‖Uk‖L2(Ω1) = 1.(5.14)

Moreover, since {Uk}∞k=1 converges to U weakly in H1(Ω1)
3 and

lim
k→∞

‖∂nUk‖L2(Ω1) = 0(5.15)

by (5.12), we have ∂nU = 0 in Ω1, i.e. U is independent of the normal

direction of Γ. Hence, setting v(y) := U(y + g0(y)n(y)) for y ∈ Γ, we can

consider U as the constant extension of v, i.e. U = v̄ in Ω1.

Now we claim that v ∈ Kg(Γ). If this claim is valid, then

|(uk, v̄)L2(Ωεk
)| ≤ β‖uk‖L2(Ωεk

)‖v̄‖L2(Ωεk
), k ∈ N(5.16)
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with β ∈ [0, 1) since we assume that uk satisfies (5.3). We express this

inequality in terms of Uk and send k → ∞. Let

ϕk(X) := J(π(X), d(X))−1J(π(X), εkd(X)), X ∈ Ω1.(5.17)

Then by (5.5) and Uk = uk ◦ Φεk on Ω1 we have

(uk, v̄)L2(Ωεk
) = εk

∫
Ω1

Uk · (v̄ ◦ Φεk)ϕk dX.

Here v̄ ◦ Φεk = v̄ in Ω1 since π ◦ Φεk = π in Ω1 by (5.4). Moreover, since

ϕk(X) − J(π(X), d(X))−1 = J(π(X), d(X))−1{J(π(X), εkd(X)) − 1}

for X ∈ Ω1, we observe by (3.46), (3.47), and |d| ≤ c in Ω1 that

|ϕk(X) − J(π(X), d(X))−1| ≤ cεk|d(X)| ≤ cεk → 0(5.18)

as k → ∞ uniformly in X ∈ Ω1. By these facts and the strong convergence

of {Uk}∞k=1 to U = v̄ in L2(Ω1)
3, we have

lim
k→∞

ε−1
k (uk, v̄)L2(Ωεk

) = lim
k→∞

∫
Ω1

(Uk · v̄)ϕk dX

=

∫
Ω1

|v̄|2J(π(·), d(·))−1 dX.

Moreover, the last term is of the form∫
Γ

∫ g1(y)

g0(y)
|v(y)|2J(y, r)−1J(y, r) dr dH2(y) =

∫
Γ
g(y)|v(y)|2 dH2(y)

by (3.48) with ε = 1. Therefore,

lim
k→∞

ε−1
k (uk, v̄)L2(Ωεk

) = ‖g1/2v‖2
L2(Γ).(5.19)

By the same arguments we have

lim
k→∞

ε−1
k ‖uk‖2

L2(Ωεk
) = lim

k→∞
ε−1
k ‖v̄‖2

L2(Ωεk
) = ‖g1/2v‖2

L2(Γ).(5.20)

We divide both sides of (5.16) by εk, send k → ∞, and use (5.19) and (5.20)

to get ‖g1/2v‖2
L2(Γ) ≤ β‖g1/2v‖2

L2(Γ). By this inequality, β < 1, and (2.1),
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we find that v = 0 on Γ and thus U = v̄ = 0 in Ω1, which contradicts (5.14).

Hence (5.2) is valid.

It remains to show v ∈ Kg(Γ). First we note that v ∈ H1(Γ)3 by

v̄ = U ∈ H1(Ω1)
3 and Lemma 3.12. To verify the other conditions for

v ∈ Kg(Γ), we use the impermeable condition (4.6) on Γεk for uk and the

relations (5.13) and (5.15) for Uk.

Let us prove v · n = 0 on Γ. We have

‖Uk − v̄‖L2(Γ1) ≤ c
(
‖Uk − v̄‖L2(Ω1) + ‖∂nUk‖L2(Ω1)

)
, k ∈ N

by (4.3) with ε = 1 and ∂nv̄ = 0 in Ω1. Thus

lim
k→∞

‖Uk − v̄‖L2(Γ1) = 0(5.21)

by the strong convergence of {Uk}∞k=1 to v̄ = U in L2(Ω1)
3 and (5.15).

On the other hand, since uk satisfies (4.6) on Γεk , we can use (4.7) to get

|uk · n̄| ≤ cεk|uk| on Γεk , or equivalently, |Uk · n̄| ≤ cεk|Uk| on Γ1 for each

k ∈ N. By this inequality, (4.3) with ε = 1, and the boundedness of {Uk}∞k=1

in H1(Ω1)
3, we find that

‖Uk · n̄‖L2(Γ1) ≤ cεk‖Uk‖L2(Γ1) ≤ cεk‖Uk‖H1(Ω1) → 0

as k → ∞. Combining this with (5.21) we obtain v̄ · n̄ = 0 on Γ1, which

yields v · n = 0 on Γ since v̄ and n̄ are the constant extensions of v and n

in the normal direction of Γ.

Next we verify DΓ(v) = 0 on Γ. Since Fεk(Uk) is given by (5.9), {Uk}∞k=1

converges to U = v̄ weakly in H1(Ω1)
3, and∣∣∣{I3 − εkd(X)W (X)

}−1 − I3

∣∣∣ ≤ cεk|d(X)| ≤ cεk → 0

as k → ∞ uniformly in X ∈ Ω1 by (3.14), we have

lim
k→∞

Fεk(Uk) =
(
I3 − dW

)
∇v̄ = ∇Γv weakly in L2(Ω1)

3×3.

Here the last equality follows from (3.16). Thus we get

lim
k→∞

PFεk(Uk)SP = P
(
∇Γv

)
S
P = DΓ(v) weakly in L2(Ω1)

3×3.
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Moreover, limk→∞
∥∥PFεk(Uk)SP∥∥L2(Ω1)

= 0 by (5.13). Hence DΓ(v) = 0 in

Ω1 and we obtain DΓ(v) = 0 on Γ.

Lastly, let us prove v · ∇Γg = 0 on Γ. Hereafter we use the notations

(3.43) and (3.44) (with ε = 1). For each k ∈ N, since uk satisfies (4.6) on

Γεk , we have uk · τ̄ iεk = ε−1
k uk · n̄ on Γiεk , i = 0, 1 by (4.7). This equality

yields Uk · τ̄ iεk = ε−1
k Uk · n̄ on Γi1, or equivalently, U �

k,i · τ iεk = ε−1
k U �

k,i · n on

Γ for i = 0, 1. Hence

‖U �
k,1 · τ1

εk
− U �

k,0 · τ0
εk
‖L2(Γ) = ε−1

k ‖U �
k,1 · n− U �

k,0 · n‖L2(Γ).(5.22)

Moreover, since n̄�(y, r) = n(y) for y ∈ Γ and r ∈ (g0(y), g1(y)),

(U �
k,1 · n)(y) − (U �

k,0 · n)(y) =

∫ g1(y)

g0(y)

∂

∂r

(
(Uk · n̄)�(y, r)

)
dr

=

∫ g1(y)

g0(y)
[∂n(Uk · n̄)]�(y, r) dr.

By this equality, Hölder’s inequality, (3.49), and (5.13), we have

‖U �
k,1 · n− U �

k,0 · n‖2
L2(Γ) =

∫
Γ

(∫ g1(y)

g0(y)
[∂n(Uk · n̄)]�(y, r) dr

)2

dH2(y)

≤ c‖∂n(Uk · n̄)‖2
L2(Ω1) ≤ cε2

kk
−1.

Applying this inequality to the right-hand side of (5.22) we get

‖U �
k,1 · τ1

εk
− U �

k,0 · τ0
εk
‖L2(Γ) ≤ ck−1/2 → 0 as k → ∞.(5.23)

Also, by (3.28), (3.29), and (3.53), we see that

‖U �
k,i · τ iεk − v · ∇Γgi‖L2(Γ)

≤ ‖(U �
k,i − v) · τ iεk‖L2(Γ) + ‖v · (τ iεk −∇Γgi)‖L2(Γ)

≤ c
(
‖U �

k,i − v‖L2(Γ) + εk‖v‖L2(Γ)

)
≤ c

(
‖Uk − v̄‖L2(Γi

1) + εk‖v‖L2(Γ)

)
.

Since the right-hand side tends to zero as k → ∞ by (5.21),

lim
k→∞

‖U �
k,i · τ iεk − v · ∇Γgi‖L2(Γ) = 0, i = 0, 1.
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By this equality, (5.23), and g = g1 − g0 on Γ, we obtain ‖v ·∇Γg‖L2(Γ) = 0.

Hence v · ∇Γg = 0 on Γ and we conclude that v ∈ Kg(Γ). �

By Lemmas 5.1 and 5.3 we get the uniform Korn inequality on Ωε.

Theorem 5.6. For β ∈ [0, 1) there exist εK,β ∈ (0, 1] and cK,β > 0

such that

‖u‖2
H1(Ωε)

≤ cK,β‖D(u)‖2
L2(Ωε)

(5.24)

for all ε ∈ (0, εK,β ] and u ∈ H1(Ωε)
3 satisfying (4.6) and (5.3).

Proof. Let cK,1 > 0 be the constant given in Lemma 5.1. Also,

let εK ∈ (0, 1] and cK,2 > 0 be the constants given in Lemma 5.3 with

α := 1/2cK,1. For ε ∈ (0, εK ] let u ∈ H1(Ωε)
3 satisfy (4.6) and (5.3). By

(5.1) and (5.2) we have

‖∇u‖2
L2(Ωε)

≤ (4 + cK,1cK,2)‖D(u)‖2
L2(Ωε)

+ cK,1α‖∇u‖2
L2(Ωε)

.

Since α = 1/2cK,1, the above inequality implies that

‖∇u‖2
L2(Ωε)

≤ cβ,1‖D(u)‖2
L2(Ωε)

, cβ,1 := 2(4 + cK,1cK,2).(5.25)

From this inequality and (5.2), we further deduce that

‖u‖2
L2(Ωε)

≤ cβ,2‖D(u)‖2
L2(Ωε)

, cβ,2 := 2(2c−1
K,1 + cK,2).(5.26)

By (5.25) and (5.26) we get (5.24) with εK,β := εK and cK,β := cβ,1+cβ,2. �

Let Rg be the space of infinitesimal rigid displacements of R
3 given by

(2.4). We show that (5.24) holds under another condition if Kg(Γ) agrees

with Rg|Γ := {w|Γ | w ∈ Rg} (see also Remark 2.1).

Theorem 5.7. Suppose that Rg|Γ = Kg(Γ). Then for β ∈ [0, 1) there

exist constants εK,β ∈ (0, 1] and cK,β > 0 such that the inequality (5.24)

holds for all ε ∈ (0, εK,β ] and u ∈ H1(Ωε)
3 satisfying (4.6) and∣∣(u,w)L2(Ωε)

∣∣ ≤ β‖u‖L2(Ωε)‖w‖L2(Ωε) for all w ∈ Rg.(5.27)
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Note that w ∈ Rg in (5.27) has an explicit form w(x) = a × x + b for

x ∈ R
3, which is essential for the proof of Theorem 5.7.

Proof. The proof is the same as that of Theorem 5.6 if we show that

the statement of Lemma 5.3 is still valid under the condition (5.27) instead

of (5.3). Assume to the contrary that there exist a sequence {εk}∞k=1 of

positive numbers convergent to zero and vector fields uk ∈ H1(Ωεk)
3, k ∈ N

satisfying (4.6) on Γεk , (5.10), and (5.27). Let Φεk be the bijection from

Ω1 onto Ωεk given by (5.4) and Uk := uk ◦ Φεk ∈ H1(Ω1)
3. Then, after

replacing Uk with Uk/‖Uk‖L2(Ω1), we can show as in the proof of Lemma

5.3 that {Uk}∞k=1 converges (up to a subsequence) strongly in L2(Ω1)
3 to

the constant extension v̄ of some v ∈ Kg(Γ) and

‖v̄‖L2(Ω1) = lim
k→∞

‖Uk‖L2(Ω1) = 1.(5.28)

Now we can take w ∈ Rg such that w|Γ = v on Γ by the assumption

Rg|Γ = Kg(Γ). Then since uk satisfies (5.27) and w ∈ Rg,∣∣∣(uk, w)L2(Ωεk
)

∣∣∣ ≤ β‖uk‖L2(Ωεk
)‖w‖L2(Ωεk

), k ∈ N.(5.29)

Let ϕk be the function on Ω1 given by (5.17). Then by (5.5) we get

(uk, w)L2(Ωεk
) = εk

∫
Ω1

Uk · (w ◦ Φεk)ϕk dX.

Since w ∈ Rg is of the form w(x) = a× x+ b with a, b ∈ R
3,

w(Φεk(X)) = a× {π(X) + εkd(X)n̄(X)} + b

= w(π(X)) + εkd(X){a× n̄(X)}

for X ∈ Ω1. Hence by |d| ≤ c and |n̄| = 1 in Ω1 we have

|w ◦ Φεk − w ◦ π| = εk|d(a× n̄)| ≤ cεk → 0

as k → ∞ uniformly on Ω1. By this fact, (5.18), and the strong convergence

of {Uk}∞k=1 to v̄ in L2(Ω1)
3, we get

lim
k→∞

ε−1
k (uk, w)L2(Ωεk

) =

∫
Ω1

v̄ · (w ◦ π)J(π(·), d(·))−1 dX.
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To the right-hand side we further apply (3.48) with ε = 1. Then since

π(y + rn(y)) = y for y ∈ Γ and r ∈ (g0(y), g1(y)) and since w|Γ = v on Γ,

we obtain

lim
k→∞

ε−1
k (uk, w)L2(Ωεk

) =

∫
Γ
g(y)v(y) · w(y) dH2(y) = ‖g1/2v‖2

L2(Γ).

In the same way we can show that

lim
k→∞

ε−1
k ‖uk‖2

L2(Ωεk
) = lim

k→∞
ε−1
k ‖w‖2

L2(Ωεk
) = ‖g1/2v‖2

L2(Γ).

Thus, as in the proof of Lemma 5.3, we can derive v = 0 on Γ by dividing

both sides of (5.29) by εk, sending k → ∞, and using the above equalities,

β < 1, and (2.1). This implies v̄ = 0 on Ω1, which contradicts (5.28). Hence

the statement of Lemma 5.3 holds under the condition (5.27) instead of

(5.3). �

Remark 5.8. The uniform Korn inequality (5.24) was first established

by Lewicka and Müller [37, Theorem 2.2] under the condition (5.3). They

combined a uniform Korn inequality on a thin cylinder and Korn’s inequality

on a surface to prove (5.24). In Theorem 5.6 we gave a more direct proof of

(5.24) under the same condition.

The condition (5.27) under the assumption Rg|Γ = Kg(Γ) is a new con-

dition for the uniform Korn inequality (5.24). Note that we take a vector

field w ∈ Rg defined on R
3 itself in (5.27), not its restriction on Γ as in

[37]. Due to this fact, Theorem 5.7 under the assumption Rg = Kg(Γ) gives

an improvement of [37, Theorem 2.3] which shows Korn’s inequality with a

constant of order ε−1.

As we mentioned in Remark 2.1, we have R|Γ = K(Γ) and thus Rg|Γ =

Kg(Γ) for any g if Γ is axially symmetric or it is closed and convex. In

particular, Theorem 5.7 is applicable for curved thin domains around the

unit sphere S2 in R
3.

5.2. Difference between the uniform and standard Korn inequal-

ities

In this subsection we discuss the difference between the uniform Korn

inequality (5.24) and a standard Korn inequality related to the axial sym-

metry of a domain.
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For a fixed ε ∈ (0, 1] let

Rε := {w(x) = a× x+ b, x ∈ R
3 | a, b ∈ R

3, w|Γε · nε = 0 on Γε}.

The set Rε stands for the axial symmetry of Ωε, i.e. Rε �= {0} if and only

if Ωε is axially symmetric around some line (see Lemma E.1). It appears

in the following standard Korn inequality with a constant depending on a

domain (see also [2, 4, 69]).

Lemma 5.9. For fixed ε ∈ (0, 1] and β ∈ [0, 1) there exists a constant

cε > 0 depending on ε (and β) such that

‖u‖H1(Ωε) ≤ cε‖D(u)‖L2(Ωε)(5.30)

for all u ∈ H1(Ωε)
3 satisfying (4.6) and∣∣(u,w)L2(Ωε)

∣∣ ≤ β‖u‖L2(Ωε)‖w‖L2(Ωε) for all w ∈ Rε.(5.31)

Proof. The proof is much easier than those of Theorems 5.6 and 5.7

since we fix ε and do not use a change of variables. By (5.1) it suffices

to show ‖u‖L2(Ωε) ≤ cε‖D(u)‖L2(Ωε) for all u ∈ H1(Ωε)
3 satisfying (4.6)

and (5.31). Assume to the contrary that there exists uk ∈ H1(Ωε)
3 that

satisfies (4.6), (5.31), ‖uk‖L2(Ωε) = 1, and ‖D(uk)‖L2(Ωε) < k−1 for k ∈ N.

Then {uk}∞k=1 is bounded in H1(Ωε) by (5.1) and thus converges (up to a

subsequence) to some u strongly in L2(Ωε)
3 and weakly in H1(Ωε)

3 by the

compact embedding H1(Ωε) ↪→ L2(Ωε). Moreover, {uk|Γε}∞k=1 converges to

u|Γε strongly in L2(Γε)
3 by the trace inequality (5.32) given below (note

that we fix ε). By these facts, we get D(u) = 0 in Ωε and u · nε = 0 on Γε,

which shows u ∈ Rε, and also ‖u‖L2(Ωε) = 1. Now we have (5.31) with u

and w replaced by uk and u by the assumption on uk and u ∈ Rε. Then we

send k → ∞ to get 1 ≤ β, which contradicts β ∈ [0, 1). Hence the claim is

valid. �

Lemma 5.10. There exists a constant c > 0 such that

‖ϕ‖L2(Γi
ε)
≤ c

(
ε−1/2‖ϕ‖L2(Ωε) + ‖ϕ‖1/2

L2(Ωε)
‖∂nϕ‖1/2

L2(Ωε)

)
(5.32)

for all ε ∈ (0, 1] and ϕ ∈ H1(Ωε), where ∂nϕ = (n̄ · ∇)ϕ.
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Proof. The proof is the same as that of (4.3), and here we use

|ϕ�i(y)|2 = |ϕ�(y, r)|2 +

∫ εgi(y)

r

∂

∂r̃

(
|ϕ�(y, r̃)|2

)
dr̃

and ∂|ϕ�|2/∂r = 2ϕ�(∂nϕ)� for y ∈ Γ and r ∈ (εg0(y), εg1(y)) instead of

(4.4), where we used the notations (3.43)–(3.44). �

The constant cε in (5.30) may blow up as ε → 0 (see [19, Corollary

4.11] for the case of a flat thin domain). To see this, we use a vector field

introduced in [37, Section 4] as a counterexample to (5.24).

Lemma 5.11. Suppose that Kg(Γ) �= {0}. Let v ∈ Kg(Γ), v �≡ 0 and

vε(x) :=
{
I3 − d(x)W (x)

}
v̄(x) + ε

{
v̄(x) · ∇Γg0(x)

}
n̄(x)(5.33)

for x ∈ N . Then vε satisfies (4.6) for all ε ∈ (0, 1]. Moreover, there exist

constants c1v, c
2
v > 0 and εv ∈ (0, 1] depending on v such that

‖vε‖H1(Ωε) ≥ c1vε
1/2, ‖D(vε)‖L2(Ωε) ≤ c2vε

3/2(5.34)

for all ε ∈ (0, εv].

This result was shown in [37, Section 4]. An alternative proof in our

notations can be found in the arXiv version of this paper [46].

From Lemma 5.11 it immediately follows that cε blows up if Kg(Γ) �= {0}
and Ωε is not axially symmetric for all ε ∈ (0, 1] sufficiently small. Let us

give an example.

Lemma 5.12. Let Γ = S2 be the unit sphere in R
3 and

g0(y) = y3, g1(y) = y2 + 2, y = (y1, y2, y3) ∈ S2.

Then for all ε ∈ (0, 1] the curved thin domain

Ωε = {ry | y ∈ S2, 1 + εy3 < r < 1 + ε(y2 + 2)}

is not axially symmetric around any line. Also, there exist constants cb > 0

and εb ∈ (0, 1] such that the constant cε given in Lemma 5.9 with any

β ∈ [0, 1) satisfies

cε ≥ cbε
−1(5.35)
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for all ε ∈ (0, εb] and thus cε → ∞ as ε → 0.

Proof. First note that g(y) = y2 − y3 + 2 ≥ 2 −
√

2 for all y ∈ S2.

Using the spherical coordinate system

S2 = {(sinϑ1 cosϑ2, sinϑ1 sinϑ2, cosϑ1) | ϑ1 ∈ [0, π], ϑ2 ∈ [0, 2π]}

we can express the inner boundary of Ωε as

Γ0
ε = {(ϕ(ϑ1) cosϑ2, ϕ(ϑ1) sinϑ2, ψ(ϑ1)) | ϑ1 ∈ [0, π], ϑ2 ∈ [0, 2π]},
ϕ(ϑ1) := (1 + ε cosϑ1) sinϑ1, ψ(ϑ1) := (1 + ε cosϑ1) cosϑ1.

Thus Γ0
ε is axially symmetric around the x3-axis. Since Γ0

ε is not a sphere,

it is not axially symmetric around other lines (see Remark E.4). Similarly,

we see that the outer boundary Γ1
ε is axially symmetric only around the

x2-axis. Hence Ωε is not axially symmetric around any line, i.e. Rε = {0}
for all ε ∈ (0, 1] (see Lemma E.1).

Next let us prove (5.35). Since Γ = S2, we have

R = {w(x) = a× x, x ∈ R
3 | a ∈ R

3}, K(S2) = R|S2 .(5.36)

Let v ∈ K(S2) be of the form v(y) = a× y, y ∈ S2 with a ∈ R
3. Then since

∇Γg(y) = P (y)(e2 − e3) for y ∈ S2, where {e1, e2, e3} is the standard basis

of R
3, and v is tangential on S2,

v(y) · ∇Γg(y) = v(y) · (e2 − e3) = {(e2 − e3) × a} · y, y ∈ S2.

Hence v · ∇Γg = 0 on S2 if and only if a = α(e2 − e3) with α ∈ R, i.e.

Kg(S
2) = {αv0 | α ∈ R} �= {0}, v0(y) := (e2 − e3) × y, y ∈ S2.

Let vε be the vector field given by (5.33) with v = v0. Also, let c1v, c
2
v, and εv

be the constants given in Lemma 5.11 and εb := εv. Then vε satisfies (4.6)

and (5.34) for all ε ∈ (0, εb] by Lemma 5.11. Moreover, since Rε = {0}, the

condition (5.31) with any β ∈ [0, 1) is automatically satisfied. Hence we can

apply (5.30) and (5.34) to vε to get

c1vε
1/2 ≤ ‖vε‖H1(Ωε) ≤ cε‖D(vε)‖L2(Ωε) ≤ cεc

2
vε

3/2

for all ε ∈ (0, εb]. This inequality yields (5.35) with cb := c1v/c
2
v. �
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By Lemmas 5.11 and 5.12, we find that the axial asymmetry of a curved

thin domain is not sufficient for the uniform Korn inequality (5.24). Next

we give an example of an axially symmetric curved thin domain for which

cε blows up.

Lemma 5.13. Let Γ = S2 be the unit sphere in R
3 and

g0(y) = y2
3, g1(y) = y2

3 + 1, y = (y1, y2, y3) ∈ S2.

Then for all ε ∈ (0, 1] the curved thin domain

Ωε = {ry | y ∈ S2, 1 + εy2
3 < r < 1 + ε(y2

3 + 1)}(5.37)

is axially symmetric only around the x3-axis. Moreover, there exist con-

stants cb > 0 and εb ∈ (0, 1] such that the constant cε given in Lemma 5.9

with any β ∈ [0, 1) satisfies (5.35) for all ε ∈ (0, εb] and thus cε → ∞ as

ε → 0.

Proof. Since g = g1 − g0 = 1 on S2, we have ∇Γg = 0 on S2 and

Rg = R = {w(x) = a× x, x ∈ R
3 | a ∈ R

3},
Kg(S

2) = K(S2) = R|S2 .
(5.38)

Also, as in the proof of Lemma 5.12, we see that the inner and outer bound-

aries of Ωε are axially symmetric only around the x3-axis. Hence Ωε is

axially symmetric only around the x3-axis and

Rε = {αw3 | α ∈ R}, w3(x) = e3 × x, x ∈ R
3(5.39)

for all ε ∈ (0, 1] by Lemma E.1, where e3 = (0, 0, 1)T .

Next we prove (5.35). Let e1 = (1, 0, 0)T and

w1(x) := e1 × x, x ∈ R
3, v1 := w1|S2 ∈ Kg(S

2) \ {0},

and vε be the vector field given by (5.33) with v = v1. Then vε satisfies

(4.6) and (5.34) by Lemma 5.11. Let us show that vε satisfies the condition

(5.31) for (5.30). For y ∈ S2 we have

n(y) = y, W (y) = −∇Γn(y) = −P (y), W (y)v1(y) = −v1(y),

∇Γg0(y) = 2y3P (y)e3, v1(y) · ∇Γg0(y) = 2y3v1(y) · e3 = 2y2y3
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since v1 is tangential on S2 and g0(y) = y2
3. Also, d(x) = |x| − 1 and

η̄(x) = η(x/|x|) for x ∈ N . By these formulas, vε is of the form

vε(x) = |x|
(
e1 ×

x

|x|

)
+ 2ε

x2x3

|x|2
x

|x| = w1(x) + 2ε
x2x3

|x|2
x

|x|(5.40)

for x ∈ N and thus vε(x) ·w3(x) = −x1x3 and (vε, w3)L2(Ωε) = 0. Hence vε

satisfies (5.31) with any β ∈ [0, 1) by (5.39). Since vε also satisfies (4.6), we

can apply (5.30) to vε. Thus we get (5.35) by (5.30) and (5.34) as in the

proof of Lemma 5.12. �

As we observed in the above proof, the vector field vε of the form (5.40)

satisfies the condition (5.31) for the standard Korn inequality (5.30), but

the uniform Korn inequality (5.24) is not valid for vε. Let us directly show

that vε does not satisfy the condition (5.3) or (5.27) with any β ∈ [0, 1) for

(5.24).

Lemma 5.14. Let Ωε and vε be the curved thin domain and the vector

field of the form (5.37) and (5.40), respectively. Then for each β ∈ [0, 1)

there exists a constant εβ ∈ (0, 1] such that vε does not satisfy (5.3) or

(5.27) for all ε ∈ (0, εβ].

Proof. Let vε be the vector field of the form (5.40), i.e.

vε(x) = w1(x) + εu(x), w1(x) = e1 × x, u(x) =
2x2x3

|x|2
x

|x|

for x ∈ N . Then w1 ∈ Rg and v1 := w1|S2 ∈ Kg(S
2) by (5.38). Since

w1 · u = 0 in N , we have

(vε, w1)L2(Ωε) = ‖w1‖2
L2(Ωε)

,

‖vε‖2
L2(Ωε)

= ‖w1‖2
L2(Ωε)

+ ε2‖u‖2
L2(Ωε)

.
(5.41)

Also, by v̄1(x) = v1(x/|x|) = |x|−1w1(x) for x ∈ N ,

(vε, v̄1)L2(Ωε) =

∫
Ωε

|w1(x)|2
|x| dx, ‖v̄1‖2

L2(Ωε)
=

∫
Ωε

|w1(x)|2
|x|2 dx.(5.42)
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Since w1 �≡ 0, the first equalities of (5.41) and (5.42) show that vε does not

satisfy (5.3) or (5.27) with β = 0 for all ε ∈ (0, 1]. Now let β ∈ (0, 1). For

x = ry ∈ Ωε with y ∈ S2 we have

1 ≤ |x| = r ≤ 1 + 2ε, r ∈
(
1 + εy2

3, 1 + ε(y2
3 + 1)

)
(5.43)

and we deduce from (5.42) and (5.43) that

(vε, v̄1)L2(Ωε) ≥
1

1 + 2ε
‖w1‖2

L2(Ωε)
, ‖v̄1‖2

L2(Ωε)
≤ ‖w1‖2

L2(Ωε)
.(5.44)

Also, we easily get ‖w1‖2
L2(Ωε)

≥ c1ε and ‖u‖2
L2(Ωε)

≤ c2ε with constants

c1, c2 > 0 independent of ε by the change of variables and (5.43). Hence

‖u‖2
L2(Ωε)

≤ c3‖w1‖2
L2(Ωε)

with c3 := c2/c1, and we see by this inequality

and the second equality of (5.41) that

‖vε‖L2(Ωε) ≤ (1 + c3ε
2)1/2‖w1‖L2(Ωε).(5.45)

Now since β ∈ (0, 1) there exists a constant εβ ∈ (0, 1] such that

β(1 + c3ε
2)1/2(1 + 2ε) < 1, β(1 + c3ε

2)1/2 <
1

1 + 2ε
< 1(5.46)

for all ε ∈ (0, εβ]. Then by (5.41), (5.45), and (5.46) we get

β‖vε‖L2(Ωε)‖w1‖L2(Ωε) ≤ β(1 + c3ε
2)1/2‖w1‖2

L2(Ωε)

< ‖w1‖2
L2(Ωε)

= (vε, w1)L2(Ωε)

and, by (5.44), (5.45), and (5.46),

β‖vε‖L2(Ωε)‖v̄1‖L2(Ωε) ≤ β(1 + c3ε
2)1/2‖w1‖2

L2(Ωε)

<
1

1 + 2ε
‖w1‖2

L2(Ωε)
≤ (vε, v̄1)L2(Ωε).

Hence vε fails to satisfy (5.3) with v = v1 ∈ Kg(S
2) and (5.27) with w =

w1 ∈ Rg for all ε ∈ (0, εβ]. �

Lemmas 5.13 and 5.14 show that the conditions (5.3) and (5.27) for the

uniform Korn inequality (5.24) can be more strict than the condition (5.31)

for the standard Korn inequality (5.30) even if a curved thin domain is
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axially symmetric. Note that it may also happen that the condition (5.27)

is the same as (5.31). For example, if Ωε = {x ∈ R
3 | 1 < |x| < 1 + ε} is a

thin spherical shell, then

Rg = Rε = R = {w(x) = a× x, x ∈ R
3 | a ∈ R

3}

for all ε ∈ (0, 1] and thus the condition (5.27) is the same as (5.31).

Remark 5.15. The authors of [37] constructed the vector field of the

form (5.33) and proved (5.34) under the assumption Kg(Γ) �= {0} to show

that the uniform Korn inequality (5.24) fails to hold without the condition

(5.3). Based on that result they mentioned at the end of [37, Section 4] that

the constant cε in (5.30) blows up as ε → 0 even if the limit surface Γ is not

axially symmetric. Indeed, if Γ is not axially symmetric, then Ωε is also not

axially symmetric for all ε ∈ (0, 1] sufficiently small (see Lemma E.7) and

we get (5.35) as in the proof of Lemma 5.12. However, as we mentioned

in Remark 2.1, it is not known whether there exists a closed surface in R
3

that is not axially symmetric but admits a nontrivial Killing vector field,

i.e. R = {0} but K(Γ) �= {0}. To avoid this problem, we presented the

concrete examples of curved thin domains around the unit sphere in R
3 for

which the relations (5.36) hold and cε blows up as ε → 0 in Lemmas 5.12

and 5.13. Note that the comment at the end of [37, Section 4] is valid for

curved thin domains in R
2, since every smooth closed curve in R

2 has a

nontrivial tangential vector field of constant length as a nontrivial Killing

vector field.

6. Uniform a Priori Estimate for the Vector Laplace Operator

The purpose of this section is to prove the following uniform a priori

estimate for the vector Laplace operator on Ωε under the slip boundary

conditions (4.18).

Theorem 6.1. Under Assumption 2.2, there exists a constant c > 0

independent of ε such that

‖u‖H2(Ωε) ≤ c
(
‖∆u‖L2(Ωε) + ‖u‖H1(Ωε)

)
(6.1)

for all ε ∈ (0, 1] and u ∈ H2(Ωε)
3 satisfying (4.18).
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First we give an approximation result for a vector field in H2(Ωε)
3 sat-

isfying (4.18). To this end, we consider the problem{
−ν{∆u+ ∇(div u)} + u = f in Ωε,

u · nε = 0, 2νPεD(u)nε + γεu = 0 on Γε
(6.2)

for a given data f : Ωε → R
3. The bilinear form for (6.2) is given by

ãε(u1, u2) := 2ν
(
D(u1), D(u2)

)
L2(Ωε)

+ (u1, u2)L2(Ωε)

+
∑
i=0,1

γiε(u1, u2)L2(Γi
ε)

for u1, u2 ∈ H1(Ωε)
3 (see Lemma 7.1).

Lemma 6.2. For ε ∈ (0, 1] let f ∈ L2(Ωε)
3. Suppose that the inequali-

ties (2.6) are valid. Then there exist a unique solution u ∈ H2(Ωε)
3 to (6.2)

and a constant cε depending on ε such that

‖u‖H2(Ωε) ≤ cε‖f‖L2(Ωε).(6.3)

If in addition f ∈ H1(Ωε)
3 then u ∈ H3(Ωε)

3.

Note that it does not matter how the constant cε in (6.3) depends on

ε since we apply Lemma 6.2 just for approximation of a vector field on Ωε

(see Lemma 6.3).

Proof. Let H1
n,0(Ωε) := {u ∈ H1(Ωε)

3 | u · nε = 0 on Γε}, which is a

closed subspace of H1(Ωε)
3. By (5.1), we easily find that

‖u‖2
H1(Ωε)

≤ cãε(u, u), u ∈ H1
n,0(Ωε)(6.4)

with a constant c > 0 independent of ε. On the other hand, for i = 0, 1 we

have γiε‖u‖2
L2(Γi

ε)
≤ c‖u‖2

H1(Ωε)
by (2.6) and (4.3). From this inequality and

|D(u)| ≤ |∇u| in Ωε it follows that

ãε(u, u) ≤ c‖u‖2
H1(Ωε)

, u ∈ H1
n,0(Ωε).(6.5)

Since ãε is bounded and coercive on H1
n,0(Ωε) by (6.4) and (6.5), the Lax–

Milgram theorem shows that there exists a unique weak solution u ∈
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H1
n,0(Ωε) to (6.2) in the sense that ãε(u,Φ) = (f,Φ)L2(S2) for all Φ ∈

H1
n,0(Ωε). Moreover, since f ∈ L2(Ωε)

3, we can get u ∈ H2(Ωε)
3 and

(6.3) by a standard localization argument and a method of the difference

quotient. Here we omit the proof since it is the same as the proofs of [4,

Theorem 1.2] and [69, Theorem 2] which established the H2-regularity of

a weak solution to the Stokes problem in a general bounded domain under

the slip boundary conditions.

The H3-regularity of u for f ∈ H1(Ωε)
3 is proved by induction and

a localization argument as in the case of a general second order elliptic

equation shown in [14, Section 6.3, Theorem 5]. Note that here we require

the C4-regularity of Γε, see the arguments in [4, 69]. �

Using Lemma 6.2, we show that a vector field in H2(Ωε)
3 is approxi-

mated by those in H3(Ωε)
3 under the slip boundary conditions (4.18).

Lemma 6.3. For ε ∈ (0, 1] let u ∈ H2(Ωε)
3 satisfy (4.18) and suppose

that the inequalities (2.6) are valid. Then there exists a sequence {uk}∞k=1

in H3(Ωε)
3 such that uk satisfies (4.18) for each k ∈ N and limk→∞ ‖u −

uk‖H2(Ωε) = 0.

Proof. Let u ∈ H2(Ωε)
3 satisfy (4.18) and f := −ν{∆u+∇(div u)}+

u ∈ L2(Ωε)
3. Then we can take a sequence {fk}∞k=1 in C∞

c (Ωε)
3 that con-

verges to f strongly in L2(Ωε)
3. For each k ∈ N let uk ∈ H3(Ωε)

3 be

a unique solution to (6.2) with data fk ∈ C∞
c (Ωε)

3 given by Lemma 6.2.

Then uk satisfies (4.18). Moreover, since u − uk is a unique weak solution

to (6.2) with data f − fk,

‖u− uk‖H2(Ωε) ≤ cε‖f − fk‖L2(Ωε) → 0 as k → ∞

by (6.3) and the strong convergence of {fk}∞k=1 to f in L2(Ωε)
3 (note that

cε does not depend on k). �

Now let us prove Theorem 6.1. As in Section 3.1, for a function space

X (Γε) on Γε we denote the space of all tangential vector fields on Γε of

class X by X (Γε, TΓε) := {u ∈ X (Γε)
3 | u · nε = 0 on Γε}. We define

the covariant derivative ∇ε
vu := Pε(v · ∇)ũ = Pε(v · ∇Γε)u on Γε for u ∈

H1(Γε, TΓε) and v ∈ L2(Γε, TΓε), where ũ is any H1-extension of u to
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an open neighborhood of Γε with ũ|Γε = u. We use the formulas for the

covariant derivatives given in Appendix D.

Proof of Theorem 6.1. Let u ∈ H2(Ωε)
3 satisfy (4.18). Since

‖u‖2
H2(Ωε)

= ‖u‖2
H1(Ωε)

+ ‖∇2u‖2
L2(Ωε)

, it is sufficient for (6.1) to show that

‖∇2u‖2
L2(Ωε)

≤ c
(
‖∆u‖2

L2(Ωε)
+ ‖u‖2

H1(Ωε)

)
.(6.6)

Moreover, by Lemma 6.3 and a density argument, we may assume that u

belongs to H3(Ωε)
3 and satisfies (4.18), and thus u|Γε ∈ H2(Γε, TΓε). By

u ∈ H3(Ωε)
3 we can carry out integration by parts twice to get

(6.7) ‖∇2u‖2
L2(Ωε)

= ‖∆u‖2
L2(Ωε)

+

∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2.

Here (nε · ∇)∇u denotes a 3 × 3 matrix whose (i, j)-entry is given by

[(nε · ∇)∇u]ij := nε · ∇(∂iuj), i, j = 1, 2, 3.

Let us estimate the boundary integral in (6.7). Our goal is to show

(6.8)

∣∣∣∣∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2

∣∣∣∣
≤ c

(
‖u‖2

H1(Ωε)
+ ‖u‖H1(Ωε)‖∇2u‖L2(Ωε)

)
.

Since u satisfies (4.18) and u and Wεu are tangential on Γε, we have

(∇u)Tnε = (nε · ∇)u = −Wεu− γ̃εu+ ξεnε on Γε(6.9)

by (4.19), where γ̃ε := γε/ν and ξε := (nε · ∇)u · nε = ∇u : Qε.

The first step for (6.8) is to reduce the second order derivatives of u on

Γε coming from (nε · ∇)∇u − nε ⊗ ∆u to the zeroth and first order ones

by using (6.9) and the formulas for the covariant derivatives on Γε given in

Appendix D. More precisely, we show that∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2 =

4∑
k=1

∫
Γε

ϕk dH2,(6.10)
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where

ϕ1 := −2{∇ΓεWε · u+ (∇u)Wε + γ̃ε∇u} : Pε(∇u)Pε,

ϕ2 := Wε∇u : (∇u)Pε +Hε(∇u : Qε)
2

− 2(u · divΓεWε + 2∇u : Wε)(∇u : Qε),

ϕ3 := −(W 3
ε u−HεW

2
ε u) · u,

ϕ4 := −γ̃ε(2W 2
ε u− 2HεWεu− γ̃εHεu) · u.

(6.11)

In (6.11), ∇ΓεWε · u is a 3 × 3 matrix with (i, j)-entry

[∇ΓεWε · u]ij :=

3∑
k=1

(Dε
i [Wε]jk)uk, i, j = 1, 2, 3(6.12)

and divΓεWε is a vector field with j-th component

[divΓεWε]j :=

3∑
i=1

Dε
i [Wε]ij , j = 1, 2, 3.(6.13)

Using a partition of unity on Γε we may assume that u|Γε is compactly

supported in a relatively open subset O of Γε on which we can take a local

orthonormal frame {τ1, τ2} (see Appendix D). Then

(6.14) ∇u : {(nε · ∇)∇u− nε ⊗ ∆u}
= (∇u)T : [{(nε · ∇)∇u}T − ∆u⊗ nε] = η1 + η2 + η3

on O since {τ1, τ2, nε} is an orthonormal basis of R
3, where

ηi := (∇u)T τi · [{(nε · ∇)∇u}T τi − (∆u⊗ nε)τi], i = 1, 2,(6.15)

η3 := (∇u)Tnε · [{(nε · ∇)∇u}Tnε − (∆u⊗ nε)nε].(6.16)

In what follows, we carry out calculations on O. By (D.2) and τi · nε = 0,

(∇u)T τi = (τi · ∇)u = ∇ε
iu+ (Wεu · τi)nε,

(∆u⊗ nε)τi = (τi · nε)∆u = 0,
(6.17)

where ∇ε
i := ∇ε

τi , i = 1, 2. For j = 1, 2, 3 let τ ji and njε be the j-th

components of τi and nε. Then the j-th component of {(nε · ∇)∇u}T τi is



206 Tatsu-Hiko Miura

of the form

3∑
k,l=1

nkε(∂k∂luj)τ
l
i =

3∑
k=1

nkε(τi · ∇)(∂kuj) =
3∑

k=1

nkε(τi · ∇Γε)(∂kuj)

=
3∑

k=1

{(τi · ∇Γε)(n
k
ε∂kuj) − (τi · ∇Γεn

k
ε)∂kuj}

= (τi · ∇Γε){(nε · ∇)uj} − {(τi · ∇Γε)nε · ∇}uj

by (3.35) and Pετi = τi (also note that the tangential derivatives depend

only on the values of functions on Γε). Hence

{(nε · ∇)∇u}T τi = (τi · ∇Γε){(nε · ∇)u} − {(τi · ∇Γε)nε · ∇}u.

By (6.9), (D.2), −∇Γεnε = Wε = W T
ε , and

(τi · ∇Γε)nε = (∇Γεnε)
T τi = −Wετi,(6.18)

we further observe that

(6.19) {(nε · ∇)∇u}T τi = −∇ε
i (Wεu) − γ̃ε∇ε

iu+ ∇ε
Wετiu− ξεWετi

+ {(−γ̃εWεu+ ∇Γεξε) · τi}nε.

Note that the first four terms on the right-hand side of (6.19) are tangential

on Γε. From (6.15), (6.17), and (6.19) we deduce that

ηi = −
{
∇ε
i (Wεu) + γ̃ε∇ε

iu−∇ε
Wετiu+ ξεWετi

}
· ∇ε

iu

+ (Wεu · τi){(−γ̃εWεu+ ∇Γεξε) · τi}

for i = 1, 2. Since Wεu and ∇Γεξε are tangential on Γε and {τ1, τ2} is an

orthonormal basis of the tangent plane of Γε, by the above equality and

(D.9)–(D.11) we obtain

(6.20) η1 + η2 = −{∇Γε(Wεu) + γ̃ε∇Γεu−Wε∇Γεu} : (∇Γεu)Pε

− ξε(∇Γεu : Wε) +Wεu · (−γ̃εWεu+ ∇Γεξε).



Navier–Stokes Equations in a Curved Thin Domain, Part I 207

To calculate η3 we see that the j-th component of {(nε · ∇)∇u}Tnε for

j = 1, 2, 3 is of the form

3∑
k,l=1

nkε(∂k∂luj)n
l
ε = tr[Qε∇2uj ] = tr[∇2uj ] − tr[Pε∇2uj ]

= ∆uj −
∑
i=1,2

Pε(∇2uj)τi · τi − Pε(∇2u)nε · nε

= ∆uj −
∑
i=1,2

{(τi · ∇)∇uj} · τi

by P T
ε = Pε, Pετi = τi, and Pεnε = 0. From this equality and

{(τi · ∇)∇uj} · τi = {(τi · ∇Γε)∇uj} · τi
= (τi · ∇Γε)(∇uj · τi) −∇uj · (τi · ∇Γε)τi

= (τi · ∇Γε){(τi · ∇)uj} − {(τi · ∇Γε)τi · ∇}uj

by (3.35) and Pετi = τi, we deduce that

{(nε · ∇)∇u}Tnε
= ∆u−

∑
i=1,2

[(τi · ∇Γε){(τi · ∇)u} − {(τi · ∇Γε)τi · ∇}u].

Moreover, since (∆u⊗ nε)nε = (nε · nε)∆u = ∆u, it follows that

(6.21) {(nε · ∇)∇u}Tnε − (∆u⊗ nε)nε

= −
∑
i=1,2

[(τi · ∇Γε){(τi · ∇)u} − {(τi · ∇Γε)τi · ∇}u].

By (6.9), (6.18), and (D.2) we also observe that

(τi · ∇Γε){(τi · ∇)u} = (τi · ∇Γε)
{
∇ε
iu+ (Wεu · τi)nε

}
= ∇ε

i∇
ε
iu− (Wεu · τi)Wετi +

{
Wε∇ε

iu · τi + τi · ∇Γε(Wεu · τi)
}
nε

and

{(τi · ∇Γε)τi · ∇}u =
[{

∇ε
i τi + (Wετi · τi)nε

}
· ∇
]
u

= ∇ε
∇ε

i τi
u− (Wετi · τi)(Wεu+ γ̃εu) +

(
Wεu · ∇ε

i τi + ξεWετi · τi
)
nε.
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We substitute these expressions for (6.21) and use (D.7), (D.9), and∑
i=1,2

{
τi · ∇Γε(Wεu · τi) −Wεu · ∇ε

i τi
}

=
∑
i=1,2

∇ε
i (Wεu) · τi

= divΓε(Wεu),

which follows from (D.5) and (D.8), and∑
i=1,2

(Wεu · τi)Wετi = Wε

∑
i=1,2

(Wεu · τi)τi = W 2
ε u

due to the facts that Wεu is tangential on Γε and that {τ1, τ2} is an or-

thonormal basis of the tangent plane of Γε. Then we have

(6.22) {(nε · ∇)∇u}Tnε − (∆u⊗ nε)nε

= −
∑
i=1,2

(
∇ε
i∇

ε
iu−∇ε

∇ε
i τi
u
)

+W 2
ε u−HεWεu− γ̃εHεu

− {∇Γεu : Wε + divΓε(Wεu) − ξεHε}nε.

Hence by (6.9), (6.16), and (6.22) we get

(6.23) η3 =
∑
i=1,2

(
∇ε
i∇

ε
iu−∇ε

∇ε
i τi
u
)
· (Wεu+ γ̃εu)

− (W 2
ε u−HεWεu− γ̃εHεu) · (Wεu+ γ̃εu)

− ξε{∇Γεu : Wε + divΓε(Wεu) − ξεHε}.

Now we observe by (3.35) and direct calculations that

∇Γεu : (∇Γεu)Pε = Pε(∇u) : Pε(∇u)Pε = ∇u : P T
ε Pε(∇u)Pε.

Since P T
ε = P 2

ε = Pε, the above equality implies that

∇Γεu : (∇Γεu)Pε = ∇u : Pε(∇u)Pε.(6.24)

By the same calculations with (3.35) and (3.36) we have

∇Γε(Wεu) : (∇Γεu)Pε = {∇ΓεWε · u+ (∇Γεu)Wε} : (∇Γεu)Pε

= {∇ΓεWε · u+ (∇u)Wε} : Pε(∇u)Pε,
(6.25)
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where the matrix ∇ΓεWε · u is given by (6.12), and

Wε(∇Γεu) : (∇Γεu)Pε = Wε(∇u) : (∇u)Pε,

∇Γεu : Wε = ∇u : Wε.
(6.26)

Also, it is easy to get (recall that divΓεWε is given by (6.13))

Wεu · ∇Γεξε = divΓε(ξεWεu) − ξεdivΓε(Wεu),

divΓε(Wεu) = u · divΓεWε + ∇Γεu : Wε

= u · divΓεWε + ∇u : Wε.

(6.27)

By (6.14), (6.20), (6.23)–(6.27), W T
ε = Wε, and ξε = ∇u : Qε, we get

(6.28)

∫
Γε

∇u : {(nε · ∇)∇u− nε ⊗ ∆u} dH2

=
∑
i=1,2

∫
Γε

(
∇ε
i∇

ε
iu−∇ε

∇ε
i τi
u
)
· (Wεu+ γ̃εu) dH2

+

∫
Γε

(
1

2
ϕ1 +

4∑
k=2

ϕk

)
dH2 +

∫
Γε

divΓε(ξεWεu) dH2,

with ϕ1, . . . , ϕ4 given by (6.11). Moreover, we apply (D.13) to the first

term on the right-hand side and use (D.10), (6.24), and (6.25) to have∑
i=1,2

∫
Γε

(
∇ε
i∇

ε
iu−∇ε

∇ε
i τi
u
)
· (Wεu+ γ̃εu) dH2 =

1

2

∫
Γε

ϕ1 dH2.

Also, since ξεWεu = (∇u : Qε)Wεu ∈ W 1,1(Γε, TΓε) by u ∈ H3(Ωε)
3 and

Qε,Wε ∈ C2(Γε)
3×3, we can apply (3.25) to ξεWεu to find that the last

term of (6.28) vanishes. Hence we obtain (6.10).

The second step for (6.8) is to show that∣∣∣∣∫
Γε

ϕk dH2

∣∣∣∣ ≤ c
(
‖u‖2

H1(Ωε)
+ ‖u‖H1(Ωε)‖∇2u‖L2(Ωε)

)
(6.29)

for k = 1, 2 and ∣∣∣∣∫
Γε

ϕk dH2

∣∣∣∣ ≤ c‖u‖2
H1(Ωε)

, k = 3, 4(6.30)
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with a constant c > 0 independent of ε. The estimate (6.30) for k = 4 is an

easy consequence of (2.6), (4.3), and the uniform boundedness of Wε and

Hε on Γε (see Lemma 3.10):∣∣∣∣∫
Γε

ϕ4 dH2

∣∣∣∣ ≤ cε‖u‖2
L2(Γε)

≤ c‖u‖2
H1(Ωε)

.

Let us prove (6.29) for k = 1. Here the idea is the same as that of the proof

of Lemma 4.3: using (3.52), we rewrite the boundary integral∫
Γε

ϕ1(x) dH2(x) =
∑
i=0,1

∫
Γi
ε

ϕ1(x) dH2(x)

=
∑
i=0,1

∫
Γ
ϕ1(y + εgi(y)n(y))J(y, εgi(y))

√
1 + ε2|τ iε(y)|2 dH2(y)

as the integral over Γ of the form∫
Γ
{Φ1(y + εg1(y)n(y)) − Φ1(y + εg0(y)n(y))} dH2(y)

=

∫
Γ

∫ εg1(y)

εg0(y)

d

dr

(
Φ1(y + rn(y))

)
dr dH2(y),

where Φ1 is a function on Ωε such that

Φ1(y + εgi(y)n(y))

= (−1)i+1ϕ1(y + εgi(y)n(y))J(y, εgi(y))
√

1 + ε2|τ iε(y)|2

for y ∈ Γ and i = 0, 1. Then we estimate the last integral by showing an

appropriate estimate for Φ1 on Ωε. The point is that the sign of Φ1 on Γ0
ε

is opposite to that of Φ1 on Γ1
ε, which enables us to write the sum of the

integrals of ϕ1 over Γ0
ε and Γ1

ε as the integral over Γ of the difference of the

values of Φ1 on Γ0
ε and Γ1

ε. Also, to get an appropriate estimate for Φ1, we

use the comparison results for the surface quantities of Γ0
ε and Γ1

ε given in

Lemma 3.11.

In what follows, we use the notations (3.43) and (3.44). Also, we always

take the arguments y ∈ Γ and r ∈ [εg0(y), εg1(y)] and sometimes suppress



Navier–Stokes Equations in a Curved Thin Domain, Part I 211

them. We define

F (y, r) :=
1

εg(y)

{(
r − εg0(y)

)
W �

ε,1(y) −
(
εg1(y) − r

)
W �

ε,0(y)
}
,

γ̃(y, r) :=
1

εg(y)

{(
r − εg0(y)

)
γ̃1
ε −

(
εg1(y) − r

)
γ̃0
ε

}
,

where γ̃iε := γiε/ν, i = 0, 1, and

Gl
jk(y, r) :=

1

εg(y)

{(
r − εg0(y)

)(
Dε
j [Wε]kl

)�
1
(y)

−
(
εg1(y) − r

)(
Dε
j [Wε]kl

)�
0
(y)
}

for j, k, l = 1, 2, 3. Then

(6.31) [∇ΓεWε · u+ (∇u)Wε + γ̃ε∇u]�i(y)

= (−1)i+1[G · u� + (∇u)�F + γ̃(∇u)�](y, εgi(y))

for i = 0, 1, where G · u� is a 3 × 3 matrix with (j, k)-entry

[G · u�]jk :=
3∑
l=1

Gl
jku

�
l , j, k = 1, 2, 3.

Moreover, by (2.1), (2.6), (3.42) for Wε and Dε
jWε with j = 1, 2, 3,

|r − εgi(y)| ≤ εg(y) ≤ cε, i = 0, 1(6.32)

and the uniform boundedness in ε of Wε and Dε
jWε on Γε (see Lemma 3.10),

we have

|η(y, r)| +
∣∣∣∣∂η∂r (y, r)

∣∣∣∣ ≤ c, η = F,Gl
jk, γ̃(6.33)

with a constant c > 0 independent of ε. We also define

R(y, r) :=
1

εg(y)

{(
r − εg0(y)

)
P �
ε,1(y) +

(
εg1(y) − r

)
P �
ε,0(y)

}
,

Si(y) :=
√

1 + ε2|τ iε(y)|2 P �
ε,i(y), i = 0, 1,

S(y, r) :=
1

εg(y)

{(
r − εg0(y)

)
S1(y) +

(
εg1(y) − r

)
S0(y)

}
,
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where τ0
ε and τ1

ε are given by (3.26). Then, for i = 0, 1,√
1 + ε2|τ iε(y)|2 [Pε(∇u)Pε]

�
i(y) = [R(∇u)�S](y, εgi(y)).(6.34)

Moreover, by (3.41) for Pε, (4.15), (6.32), and |Pε| = 2 on Γε, we have

|η(y, r)| +
∣∣∣∣∂η∂r (y, r)

∣∣∣∣ ≤ c, η = R,S.(6.35)

Now let J be given by (3.45) and

Φ1(y, r) := −2[{G · u� + (∇u)�F + γ̃(∇u)�} : R(∇u)�S](y, r)J(y, r).

Then we see by (6.11), (6.31), and (6.34) that

Φ1(y, εgi(y)) = (−1)i+1ϕ�1,i(y)J(y, εgi(y))
√

1 + ε2|τ iε(y)|2

for y ∈ Γ and i = 0, 1 (note that here we use (3.44) for ϕ1). Hence∫
Γε

ϕ1(x) dH2(x) =
∑
i=0,1

∫
Γi
ε

ϕ1(x) dH2(x)

=

∫
Γ
{Φ1(y, εg1(y)) − Φ1(y, εg0(y))} dH2(y)

=

∫
Γ

∫ εg1(y)

εg0(y)

∂Φ1

∂r
(y, r) dr dH2(y)

by (3.52). Moreover, it follows from (3.46), (6.33), and (6.35) that∣∣∣∣∂Φ1

∂r

∣∣∣∣ ≤ c{|u�|2 + |(∇u)�|2 + (|u�| + |(∇u)�|)|(∇2u)�|}

with some constant c > 0 independent of ε (here we also used Young’s

inequality). By the above relations, (3.49), and Hölder’s inequality,∣∣∣∣∫
Γε

ϕ1 dH2

∣∣∣∣
≤ c

∫
Γ

∫ εg1

εg0

{|u�|2 + |(∇u)�|2 + (|u�| + |(∇u)�|)|(∇2u)�|} dr dH2

≤ c
(
‖u‖2

H1(Ωε)
+ ‖u‖H1(Ωε)‖∇2u‖L2(Ωε)

)
.
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Thus the inequality (6.29) for k = 1 is valid. By the same arguments we

can prove (6.29) for k = 2 and (6.30) for k = 3.

Finally, we obtain (6.8) by (6.10), (6.29), and (6.30), and we apply (6.8)

to (6.7) and then use ab ≤ (a2 + b2)/2 for a, b ≥ 0 to get

‖∇2u‖2
L2(Ωε)

≤ ‖∆u‖2
L2(Ωε)

+
1

2
‖∇2u‖2

L2(Ωε)
+ c‖u‖2

H1(Ωε)
,

which yields (6.6). Hence the inequality (6.1) is valid. �

7. Proofs of the Main Results

In this section we establish Theorems 2.4, 2.6, and 2.7. First we give an

integration by parts formula related to the slip boundary conditions (4.18).

Lemma 7.1. For u1 ∈ H2(Ωε)
3 and u2 ∈ H1(Ωε)

3 we have

(7.1)

∫
Ωε

{∆u1 + ∇(div u1)} · u2 dx

= −2

∫
Ωε

D(u1) : D(u2) dx+ 2

∫
Γε

[D(u1)nε] · u2 dH2.

In particular,

ν

∫
Ωε

∆u1 · u2 dx = −2ν

∫
Ωε

D(u1) : D(u2) dx

−
∑
i=0,1

γiε

∫
Γi
ε

u1 · u2 dH2

if u1 satisfies div u1 = 0 in Ωε and (4.18), and if u2 satisfies (4.6).

Proof. Since ∆u1 + ∇(div u1) = 2div[D(u1)] in Ωε,∫
Ωε

{∆u1 + ∇(div u1)} · u2 dx = 2

∫
Ωε

div[D(u1)] · u2 dx.(7.2)

Moreover, for A ∈ H1(Ωε)
3×3 and u ∈ H1(Ωε)

3 we have∫
Ωε

divA · u dx =

∫
Γε

(ATnε) · u dH2 −
∫

Ωε

A : ∇u dx
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by integration by parts. Applying this with A = D(u1) and u = u2 to (7.2)

and using D(u1)
T = D(u1) and D(u1) : ∇u2 = D(u1) : D(u2), we obtain

(7.1). �

By Lemma 7.1, we see that the bilinear form for the Stokes prob-

lem (1.5) is given by (2.2), i.e. aε(u1, u2) = 2ν
(
D(u1), D(u2)

)
L2(Ωε)

+∑
i=0,1 γ

i
ε(u1, u2)L2(Γi

ε)
for u1, u2 ∈ H1(Ωε)

3. Now we impose Assumptions

2.2 and 2.3 and define the function spaces Hε and Vε by (2.7). Let us show

that aε is uniformly bounded and coercive on Vε.

Proof of Theorem 2.4. Let u ∈ Vε. Then γiε‖u‖2
L2(Γi

ε)
≤ c‖u‖2

H1(Ωε)

for i = 0, 1 by (2.6) in Assumption 2.2 and (4.3). Combining this with

|D(u)| ≤ |∇u| in Ωε, we get the right-hand inequality of (2.8).

Let us prove the left-hand inequality of (2.8). First we suppose that the

condition (A1) of Assumption 2.3 is satisfied. Without loss of generality,

we may assume γ0
ε ≥ cε for all ε ∈ (0, 1]. For u ∈ Vε we use (4.2) with i = 0

and then apply γ0
ε ≥ cε and (5.1) (note that u ∈ Vε satisfies (4.6)) to get

‖u‖2
L2(Ωε)

≤ c
(
γ0
ε‖u‖2

L2(Γ0
ε)

+ ε2‖D(u)‖2
L2(Ωε)

+ ε2‖u‖2
L2(Ωε)

)
≤ c1aε(u, u) + c2ε

2‖u‖2
L2(Ωε)

with constants c1, c2 > 0 independent of ε. We set ε1 := 1/
√

2c2 and

take ε ∈ (0, ε1] in the above inequality to get ‖u‖2
L2(Ωε)

≤ 2c1aε(u, u). By

this inequality and (5.1) we also have ‖∇u‖2
L2(Ωε)

≤ caε(u, u). These two

inequalities imply the left-hand inequality of (2.8).

Next we suppose that the condition (A2) or (A3) of Assumption 2.3 is

satisfied. Then u ∈ Vε satisfies (4.6) and (5.3) (resp. (5.27)) with β = 0

under the condition (A2) (resp. (A3)). Hence Theorems 5.6 and 5.7 imply

that there exist εK,0 ∈ (0, 1] and cK,0 > 0 such that

‖u‖2
H1(Ωε)

≤ cK,0‖D(u)‖2
L2(Ωε)

≤ cK,0aε(u, u)

for all ε ∈ (0, εK,0], i.e. the left-hand inequality of (2.8) holds.

Therefore, the theorem is valid with ε0 := min{ε1, εK,0}. �

As in Section 2, we fix the constant ε0 given in Theorem 2.4 and denote

by Aε the Stokes operator for Ωε under the slip boundary conditions for

ε ∈ (0, ε0].
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Next we derive the uniform difference estimate (2.14) for Aε and −ν∆.

For this purpose, we give an integration by parts formula for the curl of a

vector field on Ωε. Let n0
ε and n1

ε be the vector fields on Γ given by (3.27)

and

W i
ε(x) := −{I3 − n̄iε(x) ⊗ n̄iε(x)}∇n̄iε(x), x ∈ N, i = 0, 1.(7.3)

Here n̄iε = niε ◦ π, i = 0, 1 is the constant extension of niε. Let

ñ1(x) :=
1

εḡ(x)

{(
d(x) − εḡ0(x)

)
n̄1
ε(x) −

(
εḡ1(x) − d(x)

)
n̄0
ε(x)

}
,

ñ2(x) :=
1

εḡ(x)

{(
d(x) − εḡ0(x)

)γ1
ε

ν
n̄1
ε(x) +

(
εḡ1(x) − d(x)

)γ0
ε

ν
n̄0
ε(x)

}
,

W̃ (x) :=
1

εḡ(x)

{(
d(x) − εḡ0(x)

)
W 1

ε (x) −
(
εḡ1(x) − d(x)

)
W 0

ε (x)
}

(7.4)

for x ∈ N . From these definitions and Lemma 3.9 it follows that

ñ1 = (−1)i+1nε, ñ2 =
γε
ν
nε, W̃ = (−1)i+1Wε on Γiε(7.5)

for i = 0, 1. For u : Ωε → R
3 we define G(u) : Ωε → R

3 by

G(u) := G1(u) +G2(u),

G1(u) := 2ñ1 × W̃u, G2(u) := ñ2 × u.
(7.6)

Lemma 7.2. Suppose that the inequalities (2.6) are valid. Then

|G(u)| ≤ c|u|, |∇G(u)| ≤ c(|u| + |∇u|) in Ωε(7.7)

for all u ∈ C1(Ωε)
3, where c > 0 is a constant independent of ε and u.

Lemma 7.2 is proved just by direct calculations and the application of

the results given in Section 3. We give its proof in Appendix C.

Lemma 7.3. The integration by parts formula

(7.8)

∫
Ωε

curl curlu · Φ dx

= −
∫

Ωε

curlG(u) · Φ dx+

∫
Ωε

{curlu+G(u)} · curl Φ dx
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holds for all u ∈ H2(Ωε)
3 satisfying (4.18) and Φ ∈ L2(Ωε)

3 with curl Φ ∈
L2(Ωε)

3.

The proof of (7.8) is the same as in the case of a flat thin domain (see

the proofs of [17, Lemma 2.3] and [18, Lemma 5.2]). Here we give it for the

completeness.

Proof. By standard cut-off, dilatation, and mollification arguments,

we can show as in the proof of [73, Chapter 1, Theorem 1.1] that for Φ ∈
L2(Ωε)

3 with curl Φ ∈ L2(Ωε)
3 there exists a sequence {Φk}∞k=1 in C∞(Ωε)

3

such that

lim
k→∞

‖Φ − Φk‖L2(Ωε) = lim
k→∞

‖curl Φ − curl Φk‖L2(Ωε) = 0.

Thus, by a density argument, it suffices to show (7.8) for Φ ∈ C∞(Ωε)
3.

Let u ∈ H2(Ωε)
3 satisfy (4.18) and Φ ∈ C∞(Ωε)

3. Then

(7.9)

∫
Ωε

curl curlu · Φ dx

=

∫
Γε

(nε × curlu) · Φ dH2 +

∫
Ωε

curlu · curl Φ dx

by integration by parts. Since u satisfies (4.18),

nε × curlu = −nε ×
{
nε ×

(
2Wεu+

γε
ν
u
)}

= −nε ×
(
2ñ1 × W̃u+ ñ2 × u

)
= −nε ×G(u)

on Γε by (4.20), (7.5), and (7.6). Hence integration by parts yields∫
Γε

(nε × curlu) · Φ dH2 = −
∫

Γε

{nε ×G(u)} · Φ dH2

=

∫
Ωε

{G(u) · curl Φ − curlG(u) · Φ} dx.

Substituting this for (7.9) we obtain (7.8). �

Now let us prove (2.14). We follow the idea of the proof of a similar

estimate for a flat thin domain given in [17, Theorem 2.1] and [18, Corollary
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5.3]. Main tools are the integration by parts formula (7.8) and the standard

Helmholtz–Leray projection from L2(Ωε)
3 onto L2

σ(Ωε) which we denote by

Lε. It is well known (see [5, 8, 70, 73]) that for each u ∈ L2(Ωε)
3 the

Helmholtz–Leray decomposition

u = Lεu+ ∇q in L2(Ωε)
3, Lεu ∈ L2

σ(Ωε), ∇q ∈ L2
σ(Ωε)

⊥

holds, where q ∈ H1(Ωε) is a weak solution to the Neumann problem of

Poisson’s equation

∆q = div u in Ωε,
∂q

∂nε
= u · nε on Γε.

Note that Lε may differ from the orthogonal projection Pε from L2(Ωε)
3

onto the closed subspace Hε given by (2.7) under the condition (A3) of

Assumption 2.3. In this case we require a little more discussions to establish

(2.14).

Proof of Theorem 2.6. We first show that

‖ν∆u− νLε∆u‖L2(Ωε) ≤ c‖u‖H1(Ωε)(7.10)

for all ε ∈ (0, ε0] and u ∈ D(Aε) with a constant c > 0 independent of ε and

u. It follows from the Helmholtz–Leray decomposition

ν∆u = νLε∆u+ ∇q in L2(Ωε)
3, (νLε∆u,∇q)L2(Ωε) = 0

with q ∈ H1(Ωε) and ∆u = −curl curlu in Ωε by div u = 0 that

‖ν∆u− νLε∆u‖2
L2(Ωε)

= (ν∆u− νLε∆u,∇q)L2(Ωε)

= −ν(curl curlu,∇q)L2(Ωε).

Noting that curl∇q = 0 in Ωε, we apply (7.8) with Φ = ∇q to the last term

to get

−ν(curl curlu,∇q)L2(Ωε) = ν(curlG(u),∇q)L2(Ωε)

≤ c‖∇G(u)‖L2(Ωε)‖∇q‖L2(Ωε)
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with G(u) given by (7.6). Since the inequalities (2.6) hold by Assumption

2.2, we can apply (7.7) to the right-hand side of this inequality. Hence (note

that ∇q = ν∆u− νLε∆u)

‖ν∆u− νLε∆u‖2
L2(Ωε)

≤ c‖∇G(u)‖L2(Ωε)‖∇q‖L2(Ωε)

≤ c‖u‖H1(Ωε)‖ν∆u− νLε∆u‖L2(Ωε)

and (7.10) is valid. If the condition (A1) or (A2) of Assumption 2.3 is sat-

isfied, then Lε agrees with the orthogonal projection Pε onto Hε = L2
σ(Ωε).

Hence

Aεu = −νPε∆u = −νLε∆u in L2(Ωε)
3, u ∈ D(Aε)(7.11)

and (2.14) follows from (7.10).

Next we suppose that the condition (A3) of Assumption 2.3 is satisfied.

Then Aεu = −νPε∆u ∈ Hε = L2
σ(Ωε) ∩ R⊥

g for u ∈ D(Aε), where Rg is

the space of infinitesimal rigid displacements of R
3 given by (2.4). In this

case, however, we still have (7.11). To see this, let w ∈ Rg. Then w belongs

to L2
σ(Ωε) by the assumption Rg = R0 ∩ R1 and Lemma E.8 and thus

(Lε∆u,w)L2(Ωε) = (∆u,w)L2(Ωε) since Lε is the orthogonal projection from

L2(Ωε)
3 onto L2

σ(Ωε). Moreover, under the assumptions Rg = R0 ∩R1 and

γ0
ε = γ1

ε = 0, the vector fields u ∈ D(Aε) and w ∈ Rg satisfy (note that w

is of the form w(x) = a× x+ b)

div u = 0, D(w) = 0 in Ωε,

u · nε = 0, PεD(u)nε = 0, w · nε = 0 on Γε

by (2.11) and Lemma E.5. These equalities and (7.1) yield

(∆u,w)L2(Ωε) = −2
(
D(u), D(w)

)
L2(Ωε)

+ 2(D(u)nε, w)L2(Γε) = 0.

Hence (Lε∆u,w)L2(Ωε) = 0 for all w ∈ Rg, i.e. Lε∆u ∈ L2
σ(Ωε) ∩R⊥

g = Hε.

Now since the Helmholtz–Leray decomposition

∆u = Lε∆u+ ∇q̃ in L2(Ωε)
3,

Lε∆u ∈ Hε, ∇q̃ ∈ L2
σ(Ωε)

⊥ ⊂ H⊥
ε

holds and Pε is the orthogonal projection from L2(Ωε)
3 onto Hε, it follows

that Pε∆u = PεLε∆u = Lε∆u in L2(Ωε)
3 for u ∈ D(Aε). Thus the relation

(7.11) holds and (2.14) again follows from (7.10). �
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Finally, we prove the uniform norm equivalence (2.15) for Aε.

Proof of Theorem 2.7. Let u ∈ D(Aε). Since u satisfies the slip

boundary conditions (4.18) by (2.11), we can use (2.14) and (6.1) to get

‖u‖H2(Ωε) ≤ c
(
‖∆u‖L2(Ωε) + ‖u‖H1(Ωε)

)
≤ c

(
‖Aεu‖L2(Ωε) + ‖Aεu+ ν∆u‖L2(Ωε) + ‖u‖H1(Ωε)

)
≤ c

(
‖Aεu‖L2(Ωε) + ‖u‖H1(Ωε)

)
.

Applying (2.12) and (2.13) to the second term on the last line we obtain

the left-hand inequality of (2.15). Also, by (2.14),

‖Aεu‖L2(Ωε) ≤ ‖Aεu+ ν∆u‖L2(Ωε) + ‖ν∆u‖L2(Ωε) ≤ c‖u‖H2(Ωε).

Hence the right-hand inequality of (2.15) holds. �

Appendix A. Notations on Vectors and Matrices

In this appendix we fix notations on vectors and matrices. For l,m ∈ N,

we consider a vector a ∈ R
m as a column vector and express a ∈ R

m and a

matrix A ∈ R
l×m as

a =

a1
...

am

 = (a1, · · · , am)T , A = (Aij)i,j =

A11 · · · A1m
...

...

Al1 · · · Alm

 .

We denote the i-th component of a by ai or sometimes ai or [a]i, and write

Aij or [A]ij for the (i, j)-entry of A. Also, we denote the transpose of A by

AT and, when l = m, the symmetric part of A by AS := (A + AT )/2 and

the m×m identity matrix by Im. The tensor product of vectors a ∈ R
l and

b ∈ R
m is given by

a⊗ b :=

a1b1 · · · a1bm
...

...

alb1 · · · albm

 , a =

a1
...

al

 , b =

 b1
...

bm

 .
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For three-dimensional vector fields u = (u1, u2, u3)
T and ϕ on an open set

in R
3 let

∇u :=

∂1u1 ∂1u2 ∂1u3

∂2u1 ∂2u2 ∂2u3

∂3u1 ∂3u2 ∂3u3

 , (ϕ · ∇)u :=

ϕ · ∇u1

ϕ · ∇u2

ϕ · ∇u3

 = (∇u)Tϕ,

and |∇2u|2 :=
∑3

i,j,k=1 |∂i∂juk|2, where ∂i = ∂/∂xi. Also, for a 3×3 matrix-

valued function A = (Aij)i,j on an open set in R
3 we set

divA :=

[divA]1
[divA]2
[divA]3

 , [divA]j :=

3∑
i=1

∂iAij , j = 1, 2, 3.

We define the inner product and the norm of matrices A,B ∈ R
3×3 by

A : B := tr[ATB] =
∑3

i=1 AEi ·BEi and |A| :=
√
A : A, where {E1, E2, E3}

is an orthonormal basis of R
3. Note that A : B does not depend on a

choice of {E1, E2, E3}. In particular, taking the standard basis of R
3 we

get A : B =
∑3

i,j=1 AijBij and thus A : B = B : A = AT : BT and

AB : C = A : CBT = B : ATC for A,B,C ∈ R
3×3. Also, for a, b ∈ R

3 we

have |a⊗ b| = |a||b|.

Appendix B. Auxiliary Results Related to a Closed Surface

This appendix gives some auxiliary results related to a closed surface.

The results of this appendix are well known or easily proved by direct calcu-

lations, so we briefly explain the proofs and omit details here. For detailed

calculations, see the arXiv version of this paper [46].

Let Γ be a closed, connected, and oriented surface in R
3 of class C�

with 0 ≥ 2. We use the notations given in Section 3.1. First we give some

properties of the Riemannian metric of Γ.

Lemma B.1. Let U be an open set in R
2, µ : U → Γ a C� local

parametrization of Γ, and K a compact subset of U . Then there exists a

constant c > 0 such that

|∂siµ(s)| ≤ c, |∂si∂sjµ(s)| ≤ c for all s ∈ K, i, j = 1, 2.(B.1)
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We define the Riemannian metric θ = (θij)i,j of Γ by

θ(s) := ∇sµ(s){∇sµ(s)}T , ∇sµ :=

(
∂s1µ1 ∂s1µ2 ∂s1µ3

∂s2µ1 ∂s2µ2 ∂s2µ3

)
(B.2)

for s ∈ U and denote by θ−1 = (θij)i,j the inverse matrix of θ (note that θ

and θ−1 are symmetric). Then

|θk(s)| ≤ c, |∂siθk(s)| ≤ c, c−1 ≤ det θ(s) ≤ c(B.3)

for all s ∈ K, i = 1, 2, and k = ±1. Moreover,

c−1|a|2 ≤ θ−1(s)a · a ≤ c|a|2(B.4)

for all s ∈ K and a ∈ R
2.

Proof. The inequalities (B.1) and (B.3) follow from the C�-regularity

of µ on U , ∂siθ
−1 = −θ−1(∂siθ)θ

−1 and det θ > 0 in U , and the compactness

of K in U . Also, for s ∈ U and a = (a1, a2)
T ∈ R

2, we see that X(s, a) :=∑2
i,j=1 θ

ij(s)ai∂sjµ(s) vanishes if and only if a = 0. Hence |X(s, a)|2 =

θ−1(s)a · a is strictly positive for a �= 0 and it is bounded from above and

below by positive constants on the compact set K×S1, where S1 is the unit

circle in R
2. Hence (B.4) follows. �

Next we see that the differential operators on Γ given in Section 3.1

agree with those defined in differential geometry.

Lemma B.2. Let U be an open set in R
2 and µ : U → Γ a C� local

parametrization of Γ. For η ∈ C1(Γ) let η$ := η ◦ µ on U . Then the

tangential gradient of η defined by (3.3) is expressed as

∇Γη(µ(s)) =

2∑
i,j=1

θij(s)∂siη
$(s)∂sjµ(s), s ∈ U.(B.5)

Proof. Noting that {∂s1µ(s), ∂s2µ(s), n(µ(s))} is a basis of R
3 for s ∈

U , we can easily get (B.5) by ∂siη
$(s) = ∂siµ(s) · ∇Γη(µ(s)) for i = 1, 2 and

n · ∇Γη = 0 on Γ. �
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Lemma B.3. Let U be an open set in R
2 and µ : U → Γ a C� local

parametrization of Γ. The surface divergence of X ∈ C1(Γ, TΓ) defined by

(3.6) is locally of the form

divΓX(µ(s)) =
1√

det θ(s)

2∑
i=1

∂si

(
Xi(s)

√
det θ(s)

)
, s ∈ U,(B.6)

where Xi(s) :=
∑2

j=1 θ
ij(s)∂sjµ(s) ·X(µ(s)) for i = 1, 2.

Proof. We write η$(s) := η(µ(s)), s ∈ U for a function η on Γ and

suppress the argument s ∈ U . Let X = (X1, X2, X3)
T so that divΓX =∑3

k=1 DkXk on Γ. Then it follows from (B.5) for η = Xk that

(divΓX)$ =
3∑

k=1

2∑
i,j=1

θij(∂siX
$
k)∂sjµk =

2∑
i,j=1

θij∂siX
$ · ∂sjµ.

Since we can show X$ =
∑2

i=1 X
i∂siµ as in the proof of Lemma B.2, we

substitute this for the above equality. Also, we compute the right-hand

side of (B.6) by using Jacobi’s formula ∂si(det θ) = tr(θ−1∂siθ) det θ and

tr(θ−1∂siθ) = 2
∑2

j,k=1 θ
jk∂si∂skµ · ∂sjµ. Then, by comparing the resulting

expressions, we find that (B.6) is valid. �

Let us consider the equivalence of the Sobolev spaces on Γ.

Lemma B.4. Let p ∈ [1,∞] and m = 0, 1, . . . , 0.

(a) Let µ : U → Γ be a C� local parametrization of Γ with an open subset

U of R
2. Also, let η be a function on Γ compactly supported in µ(U)

and η$ := η ◦µ on U . Then η ∈ Wm,p(Γ) if and only if η$ ∈ Wm,p(U),

and

c−1‖η$‖Wm,p(U) ≤ ‖η‖Wm,p(Γ) ≤ c‖η$‖Wm,p(U).(B.7)

In particular, if η ∈ W 1,p(Γ), then (B.5) holds on U and

c−1‖∇sη
$‖Lp(U) ≤ ‖∇Γη‖Lp(Γ) ≤ c‖∇sη

$‖Lp(U),(B.8)
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where ∇sη
$ = (∂s1η

$, ∂s2η
$)T is the gradient of η$ in s ∈ R

2.

(b) Let η be a function on Γ. Then η ∈ Wm,p(Γ) if and only if (ξη) ◦ µ ∈
Wm,p(U) for any C� local parametrization µ : U → Γ with an open

subset U of R
2 and any ξ ∈ C�(Γ) compactly supported in µ(U).

This result seems to be well known, but we cannot find the literature

which gives an explicit proof based on the definition (3.23) of the weak

tangential derivative. Here we give the outline of the proof when m = 0, 1, 2

for the readers’ convenience.

Proof. The statement (b) follows from (a) and a localization argu-

ment with a partition of unity on Γ, which consists of C� functions on Γ

since Γ is of class C�. Let us show (a) when m = 0, 1, 2 (the higher order

case can be shown similarly). In what follows, we write ξ$ := ξ ◦ µ on U

for a function ξ on Γ. Also, let K be a compact subset of U such that η is

supported in µ(K).

When m = 0, we have (B.7) for p �= ∞ by the definition of the surface

integral and (B.3). Also, ‖η‖L∞(Γ) = ‖η$‖L∞(U) if p = ∞.

Let m = 1 and η ∈ W 1,p(Γ). For i = 1, 2 and ϕ ∈ C1
c (U) we set

X(µ(s)) :=
ϕ(s)√
det θ(s)

∂siµ(s), s ∈ U

and extend X to Γ by zero outside µ(U). Then X ∈ C1(Γ, TΓ) and

−
∫
U
η$∂siϕds = −

∫
Γ
η divΓX dH2 =

∫
Γ
∇Γη ·X dH2

=

∫
U
{∂siµ · (∇Γη)

$}ϕds

by (3.24), (B.6), and X · n = 0 on Γ. Hence

∂siη
$ = ∂siµ · (∇Γη)

$ on U, i = 1, 2(B.9)

and we get η$ ∈ W 1,p(U) and the left-hand inequality of (B.8) by (B.1) and

(B.3), since η ∈ W 1,p(Γ) is supported in µ(K).

Conversely, let η$ ∈ W 1,p(U). We define v(µ(s)) by the right-hand side

of (B.5) for s ∈ U and extend v to Γ by zero outside of µ(U). Then
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v ∈ Lp(Γ)3 by (B.1) and (B.3), since η$ is supported in K. For k = 1, 2, 3 let

vk be the k-th component of v. We prove Dkη = vk on Γ by verifying (3.23).

Let ξ ∈ C1(Γ) be a test function in (3.23). Since η is supported in µ(K),

we may assume that ξ is so. We set Y := ξPek on Γ, where {e1, e2, e3} is

the standard basis of R
3. Then Y belongs to C1(Γ, TΓ) and is supported in

µ(K), and divΓY = Dkξ+ξHnk on Γ. Hence, by (B.6) for Y and integration

by parts with respect to si,

−
∫

Γ
η(Dkξ + ξHnk) dH2 =

2∑
i=1

∫
U
(∂siη

$)Y i
√

det θ ds.

Moreover, Y i =
∑2

j=1 θ
ij∂sjµ · Y $ = ξ$

∑2
j=1 θ

ij∂sjµk on U , where µk is the

k-th component of µ, since Y = ξPei on Γ and ∂sjµ is tangent to Γ. Hence

−
∫

Γ
η(Dkξ + ξHnk) dH2 =

∫
U

 2∑
i,j=1

θij(∂siη
$)∂sjµk

 ξ$
√

det θ ds

and the right-hand side is equal to
∫
Γ vkξ dH2 since v is given by the right-

hand side of (B.5). Therefore, Dkη = vk on Γ for k = 1, 2, 3 and we obtain

η ∈ W 1,p(Γ) and the right-hand inequality of (B.8) by (B.1) and (B.3), since

η$ ∈ W 1,p(U) is supported in K.

Now let m = 2 and η ∈ W 2,p(Γ). To prove η$ ∈ W 2,p(U), it suffices to

consider ∂si∂sjη
$ for i, j = 1, 2. For ϕ ∈ C1

c (U) we set

Zk(µ(s)) :=
ϕ(s)∂sjµk(s)√

det θ(s)
∂siµ(s), s ∈ U, k = 1, 2, 3

and extend Zk to Γ by zero outside µ(U) to get Zk ∈ C1(Γ, TΓ). Note that

here Zk does not mean the k-th component of a vector field Z. Then, by

(B.6) for Zk and (B.9), we can show that

−
∫
U
(∂sjη

$)∂siϕds = −
3∑

k=1

∫
U
(Dkη)

$(∂sjµk)∂siϕds

= J +

∫
U
{∂si∂sjµ · (∇Γη)

$}ϕds,
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where J = −
∑3

k=1

∫
Γ(Dkη) divΓZk dH2. Moreover, we have

J =
3∑

k=1

∫
Γ
∇Γ(Dkη) · Zk dH2 =

∫
U
[∂siµ · {(∇2

Γη)
$∂sjµ}]ϕds

by (3.24) with v = Zk and Zk · n = 0 on Γ. Hence

−
∫
U
(∂sjη

$)∂siϕds =

∫
U
[∂siµ · {(∇2

Γη)
$∂sjµ} + ∂si∂sjµ · (∇Γη)

$]ϕds

for all ϕ ∈ C1
c (U), which shows that

∂si∂sjη
$ = ∂siµ · {(∇2

Γη)
$∂sjµ} + ∂si∂sjµ · (∇Γη)

$ on U.

Therefore, η$ ∈ W 2,p(U) and the left-hand inequality of (B.7) holds by (B.1)

and (B.3), since η ∈ W 2,p(Γ) is supported in µ(K).

Conversely, suppose that η$ ∈ W 2,p(U). Let us show η ∈ W 2,p(Γ).

It is sufficient to deal with DkDlη for k, l = 1, 2, 3. By the proof in the

case m = 1, we observe that Dlη is supported in µ(U) and (Dlη)
$ =∑2

i,j=1 θ
ij(∂siη

$)∂sjµl on U . Thus, using again (B.6) for Y = ξPek, we

can get −
∫
Γ Dlη(Dkξ + ξHnk) dH2 =

∫
Γ Aklξ dH2 for all ξ ∈ C1(Γ) as in

the case m = 1, where we set

A$
kl :=

2∑
i,j,i′,j′=1

θi
′j′ [∂si′{θ

ij(∂siη
$)∂sjµl}]∂sj′µk on U

and extend Akl to Γ by zero outside µ(U). Hence DkDlη = Akl on Γ by

(3.23), and we get η ∈ W 2,p(Γ) and the right-hand inequality of (B.7) by

(B.1) and (B.3), since η$ ∈ W 2,p(U) is supported in K. �

We give two lemmas related to a parametrized surface used in the proofs

of Lemmas 3.9 and 3.13. For h ∈ C1(Γ) with |h| < δ on Γ let

Γh := {y + h(y)n(y) | y ∈ Γ} ⊂ R
3.(B.10)

Note that Γh ⊂ N by |h| < δ on Γ (see Section 3.1). We also define

τh := (I3 − hW )−1∇Γh, nh :=
n− τh√
1 + |τh|2

on Γ.(B.11)
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Note that τh ·n = 0 on Γ. We assume that the orientation of Γh is the same

as that of Γ.

Lemma B.5. The constant extension of nh in the normal direction of

Γ gives the unit outward normal vector field of Γh.

Proof. Let n̄h = nh◦π be the constant extension of nh. Since |nh| = 1

on Γ and the direction of nh is the same as that of n, it is sufficient to show

that n̄h is perpendicular to the tangent plane of Γh.

Let µ : U → Γ be a local parametrization of Γ with an open set U of

R
2 and µh(s) := µ(s) + h(µ(s))n(µ(s)) for s ∈ U . Then µh is a local

parametrization of Γh and {∂s1µh(s), ∂s2µh(s)} is a basis of the tangent

plane of Γh at µh(s). Hence to show that n̄h is perpendicular to the tangent

plane of Γh it suffices to prove

n̄h(µh(s)) · ∂skµh(s) = 0, s ∈ U, k = 1, 2.(B.12)

Moreover, since n̄h(µh(s)) = nh(µ(s)) for s ∈ U by π(µh(s)) = µ(s) ∈ Γ,

the equality (B.12) is equivalent to n$ · ∂skµh = τ $h · ∂skµh on U for k = 1, 2,

where η$ := η ◦ µ for a function η on Γ, and this equality holds since both

sides are equal to ∂skµ · (∇Γh)$ by

∂skµh = (I3 − h$W $)∂skµ+ {∂skµ · (∇Γh)$}n$ on U

and by (B.11), τ $h · n$ = 0, and (W T )$ = W $. �

Lemma B.6. For ϕ ∈ L1(Γh) we have the change of variables formula∫
Γh

ϕ(x) dH2(x) =

∫
Γ
ϕ�h(y)J(y, h(y))

√
1 + |τh(y)|2 dH2(y),(B.13)

where ϕ�h(y) := ϕ(y + h(y)n(y)) for y ∈ Γ. Also, J and τh are given by

(3.45) and (B.11).

To prove Lemma B.6 we use the tangential gradient of ϕ ∈ C1(Γh) given

by

∇Γh
ϕ(x) := {I3 − n̄h(x) ⊗ n̄h(x)}∇ϕ̃(x), x ∈ Γh,(B.14)

where ϕ̃ is an arbitrary extension of ϕ to N satisfying ϕ̃|Γh
= ϕ.
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Proof. By a localization argument, it is sufficient to show√
det θh = J(µ, h ◦ µ)

√
(1 + |τh ◦ µ|2) det θ on U,(B.15)

where µ : U → Γ is a local parametrization of Γ with an open subset U of

R
2, µh := µ+ (hn) ◦ µ is a local parametrization of Γh on U , and θ and θh

are the Riemannian metrics of Γ and Γh given by (B.2).

In what follows, we write η$(s) := η(µ(s)), s ∈ U for a function η on Γ

and suppress the argument s ∈ U . Let h̄ = h ◦ π be the constant extension

of h. First we prove

(1 − |(∇Γh
h̄) ◦ µh|2) det θh = J(µ, h$)2 det θ.(B.16)

Since ∇sµh = ∇sµ(I3 − h$W $) + ∇sh
$ ⊗ n$ by µh = µ+ h$n$,

θh = ∇sµh(∇sµh)
T = ∇sµ(I3 − h$W $)2(∇sµ)T + ∇sh

$ ⊗∇sh
$

by (∇sµ)n$ = 0, W $n$ = 0, and |n$|2 = 1. Hence

det(θh −∇sh
$ ⊗∇sh

$) = det[∇sµ(I3 − h$W $)2(∇sµ)T ].

Let θ−1
h be the inverse matrix of θh. Then

det(θh −∇sh
$ ⊗∇sh

$) = {1 − (θ−1
h ∇sh

$) · ∇sh
$}det θh

by det(I2+a⊗b) = 1+a ·b for a, b ∈ R
2. Moreover, since h$ = h◦µ = h̄◦µh,

we have (θ−1
h ∇sh

$) · ∇sh
$ = |(∇Γh

h̄) ◦ µh|2 by the local expression (B.5) of

∇Γh
h̄ on Γh. Also, setting

A :=

(
∇sµ

(n$)T

)
, Ah :=

(
∇sµ(I3 − h$W $)

(n$)T

)
,

we have Ah = A(I3 − h$W $) and thus, by calculating det[AhA
T
h ],

det[∇sµ(I3 − h$W $)2(∇sµ)T ] = J(µ, h$)2 det θ.

Hence (B.16) follows from the above relations.

Let τh and nh be given by (B.11). Next we show

1 −
∣∣∇Γh

h̄(y + h(y)n(y))
∣∣2 =

1

1 + |τh(y)|2
, y ∈ Γ.(B.17)
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Hereafter we suppress the argument y of functions on Γ. We see by (3.16),

d(y + hn) = h, and π(y + hn) = y that ∇h̄(y + hn) = τh. By this equality,

(B.14), n̄h(y + hn) = nh, and τh · n = 0, we can get (B.17). Hence (B.15)

holds by (B.16) and (B.17). �

Remark B.7. To show Lemma B.6 we used (3.16) which will be proved

in Appendix C. Note that we do not apply Lemma B.6 to show (3.16).

Let us give a regularity result for a Killing vector field on Γ.

Lemma B.8. If Γ is of class C� with 0 ≥ 3 and v ∈ H1(Γ, TΓ) satisfies

DΓ(v) = 0 on Γ, where DΓ(v) is given by (3.7), then v is of class C�−3 on

Γ. In particular, v is smooth if Γ is smooth.

Proof. Let v ∈ H1(Γ, TΓ) satisfy DΓ(v) = 0 on Γ. Then

∇Γv + (∇Γv)
T = (Wv) ⊗ n+ n⊗ (Wv)(B.18)

on Γ by (3.10), P T = P , and DΓ(v) = 0, and we get div v = 0 on Γ by

taking the trace of (B.18). Moreover, by (B.18) we have

∇Γvi = −Div + niWv + [Wv]in on Γ, i = 1, 2, 3,

where Div = (Div1, Div2, Div3)
T . Using this relation and (3.23), and ap-

plying (3.11), divΓv = 0, v · n = 0, and W T = W on Γ, we can get

(∇Γvi,∇Γξ)L2(Γ) = −(∇Γ(niH) · v, ξ)L2(Γ) for all ξ ∈ C2(Γ).

Since C2(Γ) is dense in H1(Γ) by Lemma 3.6, this equality shows that vi
is a weak solution to ∆Γvi = ∇Γ(niH) · v on Γ, which is expressed under a

local parametrization µ : U → Γ by

1√
det θ

2∑
k,l=1

∂sk

(
θkl(∂slv

$
i )
√

det θ
)

=

3∑
j=1

bjiv
$
j on U,

where U is an open set in R
2, θ and θ−1 = (θkl)k,l are the Riemannian

metric of Γ and its inverse, and v$i := vi ◦ µ and bji := [Dj(niH)] ◦ µ on

U . Then since θ and θ−1 are of class C�−1 and bji is of class C�−3 on U

by the C�-regularity of Γ (see Section 3.1), we have v$i ∈ H�−1(U ′) with
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any bounded open subset U ′ of U with U ′ ⊂ U by the elliptic regularity

theorem (see [14, 15]) and a bootstrap argument. Hence v$i ∈ C�−3(U) by

the Sobolev embedding theorem (see [1]), which shows that v = (v1, v2, v3)
T

is of class C�−3 on Γ. �

Remark B.9. To prove Lemma B.8 we used Lemma 3.6, which is

shown by Lemma B.4 and localization and mollification arguments. Note

that of course we do not use Lemma B.8 to get Lemma 3.6.

Finally, we show that the perfect slip boundary conditions

u · n = 0, 2PD(u)n = 0 on Γ

are different by the curvatures of Γ from the Hodge boundary conditions

u · n = 0, curlu× n = 0 on Γ

for u : Ω → R
3, where Ω is a bounded domain in R

3 with ∂Ω = Γ.

Lemma B.10. Suppose that u ∈ C1(Ω)3 satisfies u · n = 0 on Γ. Then

2PD(u)n− curlu× n = 2Wu on Γ.(B.19)

Proof. Since 2D(u) = ∇u+(∇u)T and curlu×n = (∇u)Tn− (∇u)n

under our notation for ∇u (see Appendix A), and since curlu × n is tan-

gential on Γ, i.e. curlu× n = P (curlu× n) on Γ, we have

2PD(u)n− curlu× n = 2P (∇u)n = 2(∇Γu)n = 2Wu

on Γ by (3.8) and (3.10), i.e. (B.19) is valid. �

Appendix C. Proofs of Auxiliary Lemmas

The purpose of this appendix is to give the proofs of the lemmas in

Section 3 and Lemmas 5.4, 5.5, and 7.2 involving elementary but long cal-

culations of differential geometry of the surfaces Γ, Γ0
ε, and Γ1

ε.

As in Appendix B, let Γ be a closed, connected, and oriented surface in

R
3 of class C� with 0 ≥ 2. First we prove the lemmas in Section 3.1.
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Proof of Lemma 3.3. Since W has the eigenvalues zero, κ1, and κ2,

det[I3 − rW (y)] = {1 − rκ1(y)}{1 − rκ2(y)} > 0

for y ∈ Γ and r ∈ (−δ, δ) by (3.2). Hence I3 − rW (y) is invertible. Also,

(3.12) follows from (3.9).

Let us prove (3.13) and (3.14). We fix and suppress y ∈ Γ. Since W is

real and symmetric by Lemma 3.1 and has the eigenvalues κ1, κ2, and zero

with Wn = 0, we can take an orthonormal basis {τ1, τ2, n} of R
3 such that

Wτi = κiτi, i = 1, 2. Then

(I3 − rW )kτi = (1 − rκi)
kτi, (I3 − rW )kn = n

for r ∈ (−δ, δ), i = 1, 2, and k = ±1. By these relations and (3.2), we can

easily get (3.13) and (3.14). �

Proof of Lemma 3.4. For x ∈ N we have π(x) = x − d(x)n̄(π(x))

and −∇n̄(π(x)) = W (x) by (3.1), n ◦ π = n̄ ◦ π in N , (3.5) with π(x) ∈ Γ,

and −∇Γn = W on Γ. There relations and ∇d = n̄ ◦ π in N imply

∇π(x) = P (x) + d(x)∇π(x)W (x), i.e. ∇π(x)A(x) = P (x),

where A := I3−dW is invertible in N by Lemma 3.3. Hence we have (3.15)

by the above equality and (3.12).

Let η ∈ C1(Γ) and η̄ = η ◦ π be its constant extension. Then

∇η̄(x) = ∇π(x)∇η̄(π(x)) = A(x)−1P (x)∇Γη(π(x))

by η̄(x) = η̄(π(x)) and π(x) ∈ Γ for x ∈ N , (3.5), and (3.15). Hence (3.16)

follows from the above equality, (3.4), and ∇Γη(π(x)) = ∇Γη(x). We also

have (3.17) and (3.18) by (3.13), (3.14), and (3.16).

Now let Γ be of class C3 and η ∈ C2(Γ). For i = 1, 2, 3 we differentiate

both sides of (3.16) with respect to xi to get

∂i∇η̄ =
(
∂iA

−1
)
∇Γη +A−1∂i

(
∇Γη

)
in N.(C.1)

To estimate the right-hand side we differentiate A−1A = I3 with respect to

xi and use A = I3 + dW and ∇d = n̄ to get

∂iA
−1 = A−1

(
n̄iW + d∂iW

)
A−1 in N.(C.2)
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The right-hand side of (C.2) is bounded on N by (3.13), (3.17), and the

C1-regularity of W since Γ is of class C3. By this fact, (3.13), (3.17), and

(C.1), we obtain (3.19). �

Next we assume that Γ is of class C5 and prove the formulas and in-

equalities in Section 3.2 for the surface quantities of Γ0
ε and Γ1

ε.

Proof of Lemma 3.8. First note that, since W ∈ C3(Γ)3×3 by the

C5-regularity of Γ and g0, g1 ∈ C4(Γ), they are bounded on Γ along with

their first and second order tangential derivatives.

Let τ iε and niε, i = 0, 1 be the vector fields on Γ given by (3.26) and

(3.27). The first inequalities of (3.28) and (3.29) immediately follow from

(3.13) and (3.14). To show the second inequalities, we set

Ri
ε(y) := {I3 − εgi(y)W (y)}−1, y ∈ Γ(C.3)

and apply Dk, k = 1, 2, 3 to Ri
ε(I3 − εgiW ) = I3 on Γ to get

DkR
i
ε = εRi

ε{(Dkgi)W + giDkW}Ri
ε on Γ.(C.4)

Hence it follows from (3.13) that

|DkR
i
ε| ≤ cε on Γ(C.5)

with a constant c > 0 independent of ε. We apply (3.13), (3.14), and (C.5)

to Dkτ
i
ε = (DkR

i
ε)∇Γgi +Ri

ε(Dk∇Γg) to get |Dkτ
i
ε| ≤ c and

|Dkτ
i
ε −Dk∇Γg| ≤ |(DkR

i
ε)∇Γgi| + |(Ri

ε − I3)(Dk∇Γg)| ≤ cε

on Γ for k = 1, 2, 3. Hence the second inequalities of (3.28) and (3.29) are

valid. We further apply Dl, l = 1, 2, 3 to (C.4) and use (3.13) and (C.5) to

get |DlDkR
i
ε| ≤ cε on Γ. Using this, (3.13), and (C.5) to

DlDkτ
i
ε = (DlDkR

i
ε)∇Γgi + (DkR

i
ε)(Dl∇Γgi)

+ (DlR
i
ε)(Dk∇Γgi) +Ri

ε(DlDk∇Γgi),

we obtain the third inequality of (3.28).

Next we show (3.30) and (3.31). We have the first equality of (3.30) by

(3.27) and the other inequalities by (3.28). To prove (3.31) let

ηiε :=
1√

1 + ε2|τ iε|2
, i = 0, 1, ϕε := η1

ε − η0
ε , τε := −η1

ετ
1
ε + η0

ετ
0
ε
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so that n0
ε + n1

ε = ϕεn+ ετε on Γ. We deduce from (3.28) that |τε| ≤ c and

|∇Γτε| ≤ c on Γ with a constant c > 0 independent of ε. Also,

|ϕε| ≤
ε2

2

∣∣|τ1
ε |2 − |τ0

ε |2
∣∣ ≤ cε2 on Γ

by the mean value theorem for (1 + s)−1/2, s ≥ 0 and (3.28). Since

∇Γη
i
ε = − ε2(∇Γτ

i
ε)τ

i
ε

(1 + ε2|τ iε|2)3/2
on Γ, i = 0, 1,

we have |∇Γϕε| ≤ cε2 on Γ by (3.28). Applying the above inequalities to

n0
ε + n1

ε = ϕεn+ ετε we obtain (3.31). �

Proof of Lemma 3.10. Throughout the proof we write c for a general

positive constant independent of ε and denote by η̄ = η ◦ π the constant

extension of a function η on Γ. First note that n̄, P , and W are bounded

on N independently of ε along their first and second order derivatives by

(3.17), (3.19), and the C5-regularity of Γ. In the sequel we use this fact

without mention.

For i = 0, 1 let τ iε and niε be given by (3.26) and (3.27), and

ϕiε(x) :=
1√

1 + ε2|τ̄ iε(x)|2
− 1, x ∈ N.

By the mean value theorem for (1 + s)−1/2, s ≥ 0 and (3.28) we have

|ϕiε(x)| ≤ ε2

2
|τ̄ iε(x)|2 ≤ cε2, x ∈ N.(C.6)

We also differentiate ϕiε and use (3.17), (3.19), and (3.28) to get

|∂αxϕiε(x)| ≤ cε2, x ∈ N, |α| = 1, 2,(C.7)

where ∂αx = ∂α1
1 ∂α2

2 ∂α3
3 for α = (α1, α2, α3) ∈ Z

3 with αj ≥ 0, j = 1, 2, 3.

The inequality (3.37) follows from (3.28), (3.29), and (C.6), since

(−1)i+1nε −
(
n̄− ε∇Γgi

)
= ϕiε(n̄− ετ̄ iε) − ε

(
τ̄ iε −∇Γgi

)
on Γε by (3.27) and (3.32). We also have (3.38) by (3.37) and the definitions

of P , Q, Pε, and Qε.
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Next we prove (3.39). For x ∈ N we set

Φi
ε(x) := (−1)i+1

{
ϕiε(x)n̄(x) − ετ̄ iε(x)√

1 + ε2|τ̄ iε(x)|2

}
.

Then it follows from (3.17), (3.19), (3.28), (C.6), and (C.7) that

|∂αxΦi
ε(x)| ≤ cε, x ∈ N, |α| = 0, 1, 2.(C.8)

Since n̄iε = (−1)i+1n̄+ Φi
ε in N , we see by (3.20) that

∇n̄iε = (−1)i
(
I3 − dW

)−1
W + ∇Φi

ε in N.

Moreover, since n̄iε is an extension of nε|Γi
ε

to N , the Weingarten map of Γiε
is given by Wε = −Pε∇n̄iε on Γiε. Thus the above equality yields

Wε = Pε

{
(−1)i+1R

i
εW −∇Φi

ε

}
on Γiε,(C.9)

where Ri
ε is given by (C.3), and it follows from (3.9) that∣∣Wε − (−1)i+1W

∣∣ ≤ ∣∣∣(Pε − P
)
R
i
εW

∣∣∣+ ∣∣∣P(Ri
ε − I3

)
W
∣∣∣+ |Pε∇Φi

ε|

on Γiε. By this inequality, (3.13), (3.14), (3.38), and (C.8), we get the first

inequality of (3.39). Also, the second inequality of (3.39) follows from the

first one since H = tr[W ] and Hε = tr[Wε].

Let us show (3.40). Based on (C.9) we define an extension of Wε|Γi
ε

to

N by W̃ i
ε := P

i
ε

{
(−1)i+1R

i
εW −∇Φi

ε

}
in N , where P i

ε := I3 − niε ⊗ niε on

Γ. Let

F i
ε,1 := (−1)i+1

(
P
i
ε − P

)
R
i
εW,

F i
ε,2 := (−1)i+1P

(
R
i
ε − I3

)
W, F i

ε,3 := −P i
ε∇Φi

ε

in N so that W̃ i
ε = (−1)i+1W +

∑3
k=1 F

i
ε,k in N by (3.9). Then

∂jW̃
i
ε =

3∑
k=1

(−1)i+1

[(
I3 − dW

)−1
]
jk

DkW +

3∑
k=1

∂jF
i
ε,k(C.10)
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in N for j = 1, 2, 3 by (3.16). To estimate the last term, we see that

P
i
ε − P = (−1)i(n̄⊗ Φi

ε + Φi
ε ⊗ n̄) − Φi

ε ⊗ Φi
ε in N

by n̄iε = (−1)i+1n̄+ Φi
ε in N and the definitions of P and P i

ε . Hence∣∣∣P i
ε − P

∣∣∣ ≤ cε,
∣∣∣∂jP i

ε − ∂jP
∣∣∣ ≤ cε in N

by (C.8), and we see by these inequalities, (3.13), (3.14), (3.17), (C.5), and

(C.8) that |∂jF i
ε,k| ≤ cε in N . Applying this inequality and (3.14) to (C.10),

we get ∣∣∣∂jW̃ i
ε(x) − (−1)i+1DjW (x)

∣∣∣ ≤ c(|d(x)| + ε), x ∈ N.(C.11)

Now we observe that Dε
jWε =

∑3
k=1[Pε]jk∂kW̃

i
ε on Γiε since W̃ i

ε is an ex-

tension of Wε|Γi
ε

to N . From this fact and DjW =
∑3

k=1 PjkDkW on Γ by

(3.4), we deduce that∣∣Dε
jWε − (−1)i+1DjW

∣∣
≤

3∑
k=1

(∣∣∣∣[Pε − P
]
jk
∂kW̃

i
ε

∣∣∣∣+ ∣∣∣P jk

{
∂kW̃

i
ε − (−1)i+1DkW

}∣∣∣)
on Γiε for j = 1, 2, 3. Applying (3.38) and (C.11) with |d| = ε|ḡi| ≤ cε on Γiε
to the right-hand side, we obtain (3.40). �

Proof of Lemma 3.11. We fix and suppress the argument y of func-

tions on Γ. Since P (y+εg0n) = P (y+εg1n) = P for the constant extension

P = P ◦ π of P , we have

|Pε(y + εg1n) − Pε(y + εg0n)| ≤
∑
i=0,1

∣∣∣[Pε − P
]
(y + εgin)

∣∣∣ .
To the right-hand side we apply (3.38) to get (3.41) for Fε = Pε. Using

(3.38)–(3.40) we can show the other inequalities in the same way. �

Now let us give the proofs of Lemmas 5.4 and 5.5.

Proof of Lemma 5.4. Let Φε be the mapping given by (5.4), i.e.

Φε(X) := π(X) + εd(X)n̄(X), X ∈ Ω1.
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We see by (3.1) that Φε is a bijection from Ω1 onto Ωε with inverse

Φ−1
ε (x) := π(x) + ε−1d(x)n̄(x), x ∈ Ωε.

Moreover, by ∇d = n̄ in N , (3.9), (3.15), and (3.20), we have

∇Φε(X) =
{
I3 − d(X)W (X)

}−1 {
I3 − εd(X)W (X)

}
P (X) + εQ(X)

for X ∈ Ω1. Since W has the eigenvalues zero, κ1, and κ2 with Wn = 0 on

Γ, we can take an orthonormal basis {τ1, τ2, n̄(X)} such that

W (X)τi = κ̄i(X)τi = κi(π(X))τi, P (X)τi = τi, Q(X)τi = 0

for each X ∈ Ω1 and i = 1, 2. Then for i = 1, 2 we have

[∇Φε(X)]τi = {1 − d(X)κi(π(X))}−1{1 − εd(X)κi(π(X))}τi.

Also, [∇Φε(X)]n̄(X) = εn̄(X) by Pn = 0 and Qn = n on Γ. Thus

det∇Φε(X) = εJ(π(X), d(X))−1J(π(X), εd(X)), X ∈ Ω1

and we obtain (5.5). Moreover, when ϕ ∈ L2(Ωε),

‖ϕ‖2
L2(Ωε)

= ε

∫
Ω1

|ξ(X)|2J(π(X), d(X))−1J(π(X), εd(X)) dX

with ξ := ϕ ◦ Φε on Ω1 by (5.5) and thus (5.6) follows from (3.46).

Let ϕ ∈ H1(Ωε). Then the right-hand inequality of (5.6) yields

ε−1‖∇ϕ‖2
L2(Ωε)

≥ c‖(∇ϕ) ◦ Φε‖2
L2(Ω1).(C.12)

To estimate the right-hand side we observe that

∇Φ−1
ε (x) =

{
I3 − d(x)W (x)

}−1 {
I3 − ε−1d(x)W (x)

}
P (x) + ε−1Q(x)

for x ∈ Ωε by ∇d = n̄ in N , (3.9), (3.15), and (3.20). In this equality, we

set x = Φε(X) with X ∈ Ω1. Then it follows from d(Φε(X)) = εd(X) and

π(Φε(X)) = π(X) that

∇Φ−1
ε (Φε(X)) = Λε(X)P (X) + ε−1Q(X), X ∈ Ω1,

Λε(X) :=
{
I3 − εd(X)W (X)

}−1 {
I3 − d(X)W (X)

}
.

(C.13)
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Let ξ = ϕ ◦ Φε on Ω1. In what follows, we carry out calculations in Ω1 and

omit the argument X ∈ Ω1. We have

(∇ϕ) ◦ Φε = [(∇Φ−1
ε ) ◦ Φε]∇ξ = PΛε∇ξ + ε−1(∂nξ)n̄

by (C.13), Q∇ξ = (∂nξ)n̄, and ΛεP = PΛε, which follows from (3.9) and

(3.12). Then we see by PΛε = ΛεP and (3.13) that

|(∇ϕ) ◦ Φε|2 =
∣∣PΛε∇ξ

∣∣2 + ε−2|(∂nξ)n̄|2 ≥ c
∣∣P∇ξ

∣∣2 + ε−2|∂nξ|2.

By this inequality and (C.12) we get (5.7). Also, ξ ∈ H1(Ω1) by (5.6) and

(5.7) since |∇ξ|2 =
∣∣P∇ξ

∣∣2 +
∣∣Q∇ξ

∣∣2 and
∣∣Q∇ξ

∣∣ = |∂nξ|. �

To prove Lemma 5.5 we present an auxiliary result.

Lemma C.1. Let τ1, τ2, n0 ∈ R
3 and A ∈ R

3×3 satisfy

|n0| = 1, n0 · τ1 = n0 · τ2 = 0, An0 = ATn0 = 0.(C.14)

Then for B := A+ τ1 ⊗ n0 + n0 ⊗ τ2 + cn0 ⊗ n0 with c ∈ R we have

|B|2 = |A|2 + |τ1|2 + |τ2|2 + |c|2.(C.15)

Proof. By direct calculations with |n0| = 1, n0 ·τ1 = 0, and ATn0 = 0,

BTB = ATA+ τ2 ⊗ τ2 + (|τ1|2 + |c|2)n0 ⊗ n0

+ (AT τ1) ⊗ n0 + n0 ⊗ (AT τ1) + c(τ2 ⊗ n0 + n0 ⊗ τ2).

Hence |B|2 = tr[BTB] is of the form

|B|2 = |A|2 + |τ2|2 + (|τ1|2 + |c|2)|n0|2 + 2(AT τ1) · n0 + 2c(τ2 · n0).

Since |n0| = 1, τ2 · n0 = 0, and (AT τ1) · n0 = τ1 · (An0) = 0 by An0 = 0, we

conclude by the above equality that (C.15) is valid. �

Proof of Lemma 5.5. Let Φε be the bijection from Ω1 onto Ωε given

by (5.4). For u ∈ H1(Ωε)
3 we see by Lemma 5.4 that U := u◦Φε ∈ H1(Ω1)

3

and (5.7) holds with ϕ and ξ replaced by u and U .
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Let us show (5.8). We carry out calculations in Ω1 and suppress the

argument X ∈ Ω1 unless otherwise stated. Noting that

Q∇U = n̄⊗ [(∇U)T n̄], (∇U)T n̄ = (n̄ · ∇)U = ∂nU,

we observe by (C.13) and ΛεP = PΛε that

(∇u) ◦ Φε = PFε(U) + ε−1n̄⊗ ∂nU, Fε(U) := Λε∇U.

Moreover, by I3 = P +Q on Γ and ∂nη̄ = 0 in Ω1 with η = n, P ,

PFε(U) = PFε(U)P + PFε(U)Q = PFε(U)P +
[
PFε(U)n̄

]
⊗ n̄,

∂nU = ∂n

[
PU + (U · n̄)n̄

]
= P∂nU + {∂n(U · n̄)}n̄.

By these relations and D(u) = (∇u)S = {∇u+ (∇u)T }/2, we get

D(u) ◦ Φε = A+ τ1 ⊗ n0 + n0 ⊗ τ2 + ε−1{∂n(U · n̄)}n0 ⊗ n0,

A := PFε(U)SP , τ1 = τ2 :=
1

2
P{Fε(U)n̄+ ε−1∂nU}, n0 := n̄.

Moreover, since Pn = P Tn = 0 on Γ, we see that A, τ1, τ2, and n0 satisfy

(C.14). Hence we can apply (C.15) to B = D(u) ◦ Φε to get

|D(u) ◦ Φε|2 ≥ |A|2 + ε−2|∂n(U · n̄)|2

in Ω1. We deduce from this inequality and (5.6) that

ε−1‖D(u)‖2
L2(Ωε)

≥ c
(
‖A‖2

L2(Ω1) + ε−2‖∂n(U · n̄)‖2
L2(Ω1)

)
.

Since A = PFε(U)SP and Fε(U) = Λε∇U is of the form (5.9), we have (5.8)

by the above inequality. �

Finally, we prove Lemma 7.2 for the vector field G(u) given by (7.6).

Proof of Lemma 7.2. For a function η on Γ we denote by η̄ = η ◦ π
its constant extension in the normal direction of Γ. Let n0

ε and n1
ε be the

vector fields on Γ given by (3.27) and W 0
ε , W 1

ε , ñ1, ñ2, and W̃ the functions
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on N given by (7.3) and (7.4). We observe by (3.17), (3.19), (3.30), and

g0, g1 ∈ C4(Γ) that

|∂αx n̄iε(x)| ≤ c, |∂αx ḡi(x)| ≤ c, x ∈ N, i = 0, 1, |α| = 0, 1, 2,(C.16)

where ∂αx = ∂α1
1 ∂α2

2 ∂α3
3 for α = (α1, α2, α3)

T ∈ Z
3 with αj ≥ 0, j = 1, 2, 3

and c > 0 is a constant independent of ε. Also,

|W i
ε(x)| ≤ c, |∂kW i

ε(x)| ≤ c, x ∈ N, i = 0, 1, k = 1, 2, 3(C.17)

by (C.16). It follows from (2.6), (C.16), (C.17) and

0 ≤ d(x) − εḡ0(x) ≤ εḡ(x), 0 ≤ εḡ1(x) − d(x) ≤ εḡ(x)(C.18)

for x ∈ Ωε that

|ñ1| ≤ c, |ñ2| ≤ cε,
∣∣∣W̃ ∣∣∣ ≤ c in Ωε.(C.19)

Applying (C.19) to (7.6) we obtain the first inequality of (7.7).

To prove the second inequality of (7.7), we estimate the first order deriva-

tives of ñ1, ñ2, and W̃ . We differentiate ñ1 to get

∇ñ1 =
1

εḡ
n̄⊗ (n̄0

ε + n̄1
ε) +A1 in N

by ∇d = n̄, where A1 is a 3 × 3 matrix-valued function given by

A1 := −∇ḡ

ḡ
⊗ ñ1 −

1

ḡ
(∇ḡ0 ⊗ n̄1

ε + ∇ḡ1 ⊗ n̄0
ε)

+
1

εḡ
{(d− εḡ0)∇n̄1

ε − (εḡ1 − d)∇n̄0
ε}.

We observe by (2.1), (C.16), (C.18), and (C.19) that A1 is bounded on Ωε

uniformly in ε. By this fact, (2.1), and (3.31), we have

|∇ñ1| ≤
1

εḡ
|n̄0

ε + n̄1
ε| + |A1| ≤ c in Ωε.(C.20)

Similarly, by ∇d = n̄ in N , (2.1), and (C.16)–(C.19),

∇ñ2 =
1

εḡ
n̄⊗

(
γ1
ε

ν
n̄1
ε −

γ0
ε

ν
n̄0
ε

)
+A2,

∂kW̃ =
1

εḡ
n̄k(W

0
ε +W 1

ε ) +Bk, k = 1, 2, 3
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in N , where A2 and Bk are the matrix-valued functions bounded on Ωε

uniformly in ε. Thus we use (2.1), (2.6), and (3.30) to ∇ñ2 to get

|∇ñ2| ≤
c(γ0

ε + γ1
ε )

εḡ
+ |A2| ≤ c in Ωε.(C.21)

Also, we see by (3.16) that

W 0
ε +W 1

ε = {(n̄0
ε + n̄1

ε) ⊗ n̄0
ε − n̄1

ε ⊗ (n̄0
ε + n̄1

ε)}
(
I3 − dW

)−1
∇Γn0

ε

− (I3 − n̄1
ε ⊗ n̄1

ε)
(
I3 − dW

)−1 (
∇Γn0

ε + ∇Γn1
ε

)
and thus |W 0

ε +W 1
ε | ≤ cε in N by (3.13), (3.30), and (3.31). Hence∣∣∣∂kW̃ ∣∣∣ ≤ 1

εḡ
|W 0

ε +W 1
ε | + |Bk| ≤ c in Ωε, k = 1, 2, 3.(C.22)

Here we also used (2.1) and the uniform in ε boundedness of Bk on Ωε in

the second inequality. Noting that G(u) is given by (7.6), we apply (C.19)–

(C.22) to ∇G(u) to obtain the second inequality of (7.7). �

Appendix D. Formulas for the Covariant Derivatives

In this appendix we present formulas for the covariant derivatives of

tangential vector fields on an embedded surface in R
3 used in the proof of

Theorem 6.1.

Let Γ be a closed, connected, and oriented surface in R
3 of class C3. We

use the notations given in Section 3.1. ForX ∈ C1(Γ, TΓ) and Y ∈ C(Γ, TΓ)

we define the covariant derivative of X along Y by

∇YX := P (Y · ∇)X̃ on Γ,(D.1)

where X̃ is a C1-extension of X to an open neighborhood of Γ with X̃|Γ = X.

Since Y is tangential on Γ, we have (Y · ∇)X̃ = (Y · ∇Γ)X on Γ by (3.8).

Thus the value of ∇YX does not depend on the choice of an extension of

X.

Lemma D.1. For X ∈ C1(Γ, TΓ) and Y ∈ C(Γ, TΓ) we have

(Y · ∇)X̃ = (Y · ∇Γ)X = ∇YX + (WX · Y )n on Γ,(D.2)
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where X̃ is any C1-extension of X to an open neighborhood of Γ.

Proof. We have (Y · ∇Γ)X · n = WX · Y on Γ by applying Y · ∇Γ to

X · n = 0. By this relation and (D.1) we get (D.2). �

The formula (D.2) is called the Gauss formula (see e.g. [7, 36]). Let us

give fundamental relations of the covariant derivative.

Lemma D.2. The following equalities hold on Γ:

• For X ∈ C1(Γ, TΓ), Y,Z ∈ C(Γ, TΓ), and η, ξ ∈ C(Γ),

∇ηY+ξZX = η∇YX + ξ∇ZX.(D.3)

• For X ∈ C1(Γ, TΓ), Y ∈ C(Γ, TΓ), and η ∈ C1(Γ),

∇Y (ηX) = (Y · ∇Γη)X + η∇YX.(D.4)

• For X,Y ∈ C1(Γ, TΓ) and Z ∈ C(Γ, TΓ),

Z · ∇Γ(X · Y ) = ∇ZX · Y +X · ∇ZY.(D.5)

• For X,Y ∈ C1(Γ, TΓ) and η ∈ C2(Γ),

X · ∇Γ(Y · ∇Γη) − Y · ∇Γ(X · ∇Γη) =
(
∇XY −∇YX

)
· ∇Γη.(D.6)

Proof. We easily get (D.3)–(D.5) by (D.1) and (D.2). Also, writing

the left-hand side of (D.6) as the sum of {(X · ∇Γ)Y − (Y · ∇Γ)X} · ∇Γη

and
∑3

i,j=1 XiYj(DiDjη −DjDiη), and using (3.11), (D.2), and Z · n = 0

on Γ for Z = ∇Γη,X, Y , we can show (D.6). �

Lemma D.1 shows that ∇ is the Riemannian (or Levi-Civita) connection

on Γ (see e.g. [7, 36]). Note that (D.6) stands for the torsion-free condition

[X,Y ] = ∇XY −∇YX, where [X,Y ] := XY − Y X is the Lie bracket of X

and Y .
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Let O be a relatively open subset of Γ. If O is sufficiently small, then

by the C3-regularity of Γ we can take C2 vector fields τ1 and τ2 on O such

that {τ1(y), τ2(y)} is an orthonormal basis of the tangent plane of Γ at each

y ∈ Γ. We call the pair {τ1, τ2} of such vector fields a local orthonormal

frame for the tangent bundle of Γ on O, or simply a local orthonormal frame

on O. Note that

H = tr[W ] = Wτ1 · τ1 +Wτ2 · τ2 on O(D.7)

since {τ1, τ2, n} is an orthonormal basis of R
3 and Wn = 0 on Γ. We

express several quantities related to the tangential gradient matrix of tan-

gential vector fields on Γ in terms of the covariant derivatives and the local

orthonormal frame.

Lemma D.3. Let {τ1, τ2} be a local orthonormal frame for the tangent

bundle of Γ on a relatively open subset O of Γ. For X,Y ∈ C1(Γ, TΓ) we

have

divΓX =
∑
i=1,2

∇iX · τi,(D.8)

∇ΓX : W =
∑
i=1,2

∇iX ·Wτi =
∑
i=1,2

W∇iX · τi,(D.9)

∇ΓX : (∇ΓY )P =
∑
i=1,2

∇iX · ∇iY,(D.10)

W∇ΓX : (∇ΓY )P =
∑
i=1,2

∇WτiX · ∇iY(D.11)

on O, where ∇i := ∇τi for i = 1, 2.

Proof. We carry out calculations on O. By (3.4) and (D.2) we have

(∇ΓX)T τi = (τi · ∇Γ)X = ∇iX + (WX · τi)n, i = 1, 2,

(∇ΓX)Tn = (n · ∇Γ)X = 0.
(D.12)

Since {τ1, τ2, n} forms an orthonormal basis of R
3,

divΓX = tr[∇ΓX] =
∑
i=1,2

(∇ΓX)T τi · τi + (∇ΓX)Tn · n.
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The equality (D.8) follows from this equality and (D.12). We also have

(D.9) by applying (D.12), W T = W , and Wn = 0 to

∇ΓX : W = (∇ΓX)T : W T =
∑
i=1,2

(∇ΓX)T τi ·W T τi + (∇ΓX)Tn ·W Tn.

Next we observe by (D.12), P T = P , Pn = 0, and P∇iY = ∇iY that

[(∇ΓY )P ]T τi = P [(∇ΓY )T τi] = P
{
∇iY + (WY · τi)n

}
= ∇iY

for i = 1, 2. We apply this equality, (D.12), and ∇iY · n = 0 to

∇ΓX : (∇ΓY )P = (∇ΓX)T : [(∇ΓY )P ]T

=
∑
i=1,2

(∇ΓX)T τi · [(∇ΓY )P ]T τi + (∇ΓX)Tn · [(∇ΓY )P ]Tn

to find that (D.10) holds. Similarly, we can prove (D.11) if we use

[W (∇ΓX)]T τi = (Wτi · ∇Γ)X = ∇WτiX + (WX ·Wτi)n

and [W (∇ΓX)]Tn = 0 by W T = W , Wn = 0, and (D.2). �

We also give an integration by parts formula for the covariant derivatives

along vector fields of a local orthonormal frame.

Lemma D.4. Let {τ1, τ2} be a local orthonormal frame for the tangent

bundle of Γ on a relatively open subset O of Γ and ∇i := ∇τi for i = 1, 2.

Suppose that X ∈ C2(Γ, TΓ) and Y ∈ C1(Γ, TΓ) are compactly supported

in O. Then we have

(D.13)
∑
i=1,2

∫
Γ

(
∇i∇iX −∇∇iτi

X
)
· Y dH2

= −
∑
i=1,2

∫
Γ
∇iX · ∇iY dH2.

Proof. The proof is the same as that of [55, Proposition 34], so we

omit it (see also the arXiv version of this paper [46] for details). �

Remark D.5. Since C2(Γ, TΓ) is dense in Hm(Γ, TΓ) for m = 0, 1, 2

by Lemma 3.7 and the C3-regularity of Γ, the formulas given in this ap-

pendix are also valid if we replace Cm(Γ, TΓ) with Hm(Γ, TΓ).
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Appendix E. Infinitesimal Rigid Displacements on a Closed Sur-

face

In this appendix we show several results on infinitesimal rigid displace-

ments of R
3 related to the axial symmetry of a closed surface and a curved

thin domain.

Let Γ be a C2 closed, connected, and oriented surface in R
3 and R the

set of the form (2.3) which consists of infinitesimal rigid displacements of

R
3 with tangential restrictions on Γ.

Lemma E.1. Let w(x) = a × x + b ∈ R. If w �≡ 0, then a �= 0,

a · b = 0, and Γ is axially symmetric around the line parallel to the vector a

and passing through the point ba := |a|−2(a× b). Conversely, if Γ is axially

symmetric around the line parallel to a �= 0 and passing through b̃ ∈ R
3,

then w̃(x) = a× (x− b̃) ∈ R \ {0}.

This result is well known, so here we give the outline of the proof. See

the arXiv version of this paper [46] for details.

Proof. Suppose first that w(x) = a × x + b ∈ R and w �≡ 0. If

a = 0, then b · n = w · n = 0 on Γ and thus b = 0 since Γ is closed. Hence

a �= 0 if w �≡ 0. Also, the flow map x(·, t) : R
3 → R

3 generated by w �≡ 0,

i.e. a solution to (∂x/∂t)(X, t) = w(x(X, t)) with x(X, 0) = X ∈ R
3 is

given by the combination of a translation by t(b · E3)E3 with E3 := a/|a|
and a rotation through the angle |a|t around the axis parallel to E3 and

passing through ba. Thus the relation a · b = 0 and the axial symmetry of Γ

follow from the compactness of Γ and the fact that Γ is preserved under the

action of x(·, t) if w ∈ R. Similarly, we can show the converse statement for

w̃(x) = a× (x− b̃). �

Lemma E.2. Let w(x) = a× x+ b ∈ R satisfy w �≡ 0. Then

W (y)w(y) = λ(y)w(y), a× n(y) = −λ(y)w(y), y ∈ Γ(E.1)

with some λ(y) ∈ R. Here W = −∇Γn is the Weingarten map of Γ.

Proof. Since w(x) = a × x + b ∈ R and w �≡ 0, Lemma E.1 implies

that a �= 0, a ·b = 0, and Γ is axially symmetric around the line parallel to a
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and passing through ba = |a|−2(a× b). Also, since a× ba = −b by a · b = 0,

we have w(x) = a×(x−ba). Hence, by a translation along ba and a rotation

of coordinates, we may assume that Γ is axially symmetric around the x3-

axis and w(x) = α(e3 × x), where α = |a| > 0 and e3 = (0, 0, 1)T . We may

further assume α = 1, i.e. a = e3 and w(x) = e3 × x by replacing w with

α−1w. Under these assumptions, Γ is represented as a surface of revolution

Γ = {µ(s, ϑ) | s ∈ [0, L], ϑ ∈ [0, 2π]},
µ(s, ϑ) = (ϕ(s) cosϑ, ϕ(s) sinϑ, ψ(s)).

(E.2)

Here γ(s) = (ϕ(s), 0, ψ(s)) is a C2 curve parametrized by the arc length

s ∈ [0, L], L > 0 such that ϕ(s) > 0 for s �= 0, L. We may further assume

that for s = 0, L if ϕ(s) = 0 then ψ′(s) = 0, otherwise Γ is not of class C2

at the point

µ(s, ϑ) = (ϕ(s) cosϑ, ϕ(s) sinϑ, ψ(s)) = (0, 0, ψ(s)), ϑ ∈ [0, 2π].

By the arc length parametrization of γ we have

{ϕ′(s)}2 + {ψ′(s)}2 = 1, s ∈ [0, L].(E.3)

Let y = µ(s, ϑ) ∈ Γ. Hereafter we suppress the arguments of µ and its

derivatives. We deduce from (E.3) and

∂sµ =

ϕ′(s) cosϑ

ϕ′(s) sinϑ

ψ′(s)

 , ∂ϑµ =

−ϕ(s) sinϑ

ϕ(s) cosϑ

0

 = w(y),(E.4)

where the last equality is due to w(y) = e3 × y, that

∂sµ× ∂ϑµ = ϕ(s)

−ψ′(s) cosϑ

−ψ′(s) sinϑ

ϕ′(s)

 , |∂sµ× ∂ϑµ| = ϕ(s).

Suppose that ϕ(s) > 0. Without loss of generality, we may assume that the

direction of ∂sµ× ∂ϑµ is the same as that of n(y). Then

n(y) = n(µ(s, ϑ)) =
∂sµ× ∂ϑµ

|∂sµ× ∂ϑµ|
=

−ψ′(s) cosϑ

−ψ′(s) sinϑ

ϕ′(s)

(E.5)
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and we differentiate both sides with respect to ϑ and use −∇Γn = W = W T

and (E.4) to get W (y)w(y) = λ(y)w(y) with λ(y) = ψ′(s)/ϕ(s). We also

have e3 × n(y) = −λ(y)w(y) by (E.4) and (E.5). Hence (E.1) is valid when

ϕ(s) > 0 (note that we assume a = e3).

Now for s = 0, L suppose that ϕ(s) = 0. Then ψ′(s) = 0 by our

assumption and thus the tangent plane of Γ at the point

y = µ(s, ϑ) = (ϕ(s) cosϑ, ϕ(s) sinϑ, ψ(s)) = (0, 0, ψ(s)), ϑ ∈ [0, 2π]

is orthogonal to the x3-axis. Hence n(y) = ±e3 and a × n(y) = 0 by the

assumption a = e3. Moreover, w(y) = 0 by (E.4) and ϕ(s) = 0. By these

facts we conclude that (E.1) holds for any λ(y) ∈ R. �

Lemma E.3. If Γ is of class C5 and R �= {0}, then K(Γ) = R|Γ. Here

K(Γ) is the space of Killing vector fields on Γ given by (2.5).

Proof. For w(x) = a×x+b we have ∇w+(∇w)T = 0 in R
3 and thus

DΓ(w) = 0 on Γ by ∇Γw = P∇w and P 2 = P . Thus, if w is tangential on

Γ, then w ∈ K(Γ), i.e. R|Γ ⊂ K(Γ).

Suppose that Γ is a sphere in R
3. By a translation we may assume that

Γ is centered at the origin. Then R|Γ = {w(y) = a × y, y ∈ Γ | a ∈ R
3}

is a three-dimensional subspace of K(Γ), while the dimension of K(Γ) is at

most three (see [55, Theorem 35]). Thus K(Γ) = R|Γ.

Next suppose that Γ is not a sphere. Since Γ is axially symmetric by

R �= {0} and Lemma E.1, as in the proof of Lemma E.2 we may assume

that Γ is axially symmetric around the x3-axis, i.e.

{w(y) = c(e3 × y), y ∈ Γ | c ∈ R} ⊂ R|Γ, e3 = (0, 0, 1)T .(E.6)

We may further assume that Γ is a surface of revolution of the form (E.2)

with C5 functions ϕ and ψ satisfying (E.3) and ϕ(s) > 0 for s �= 0, L. Then

the Gaussian curvature of Γ is given by

K(µ(s, ϑ)) = −ϕ′′(s)

ϕ(s)
, s ∈ (0, L), ϑ ∈ [0, 2π],(E.7)

see e.g. [54, Section 5.7]. We use this formula later. Also,

ϕ′(s)ϕ′′(s) + ψ′(s)ψ′′(s) = 0, s ∈ (0, L)(E.8)
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by (E.3). Let X ∈ K(Γ) be of the form

X(µ(s, ϑ)) = Xs(s, ϑ)∂sµ(s, ϑ) +Xϑ(s, ϑ)∂ϑµ(s, ϑ)

for s ∈ [0, L] and ϑ ∈ [0, 2π]. Note that X ∈ C2(Γ, TΓ) by Lemma B.8,

since Γ is of class C5. Also, for all Y,Z ∈ C(Γ, TΓ) we have

(Y · ∇Γ)X · Z + Y · (Z · ∇Γ)X = 2DΓ(X)Y · Z = 0 on Γ

by PY = Y , PZ = Z, and DΓ(X) = 0 on Γ. Noting that

(∂sµ · ∇Γ)X = (∂sX
s)∂sµ+Xs∂2

sµ+ (∂sX
ϑ)∂ϑµ+Xϑ∂s∂ϑµ

by (∂sµ · ∇Γ)X = ∂s(X ◦ µ) and a similar relation holds for (∂ϑµ · ∇Γ)X,

we substitute ∂sµ and ∂ϑµ for Y and Z in the above equality and then use

(E.3), (E.4), and (E.8) to find that

∂sX
s = 0, ∂ϑX

s + ϕ2∂sX
ϑ = 0, ϕ2∂ϑX

ϑ + ϕϕ′Xs = 0.(E.9)

If Xs ≡ 0 then Xϑ ≡ c is constant by the second and third equations of

(E.9) (note that ϕ > 0 on (0, L) and X is of class C2). In this case,

X(y) = c∂ϑµ(s, ϑ) = c(e3 × y) ∈ R|Γ, y = µ(s, ϑ) ∈ Γ

by (E.4) and (E.6). Let us show that each X ∈ K(Γ) is of this form (here

the arguments are essentially the same as in [13, Section 74]). Assume to

the contrary that Xs �≡ 0. By the first equation of (E.9), Xs = Xs(ϑ) is

independent of s. Since Xs continuous and Xs �≡ 0, it does not vanish on

some open interval I ⊂ [0, 2π]. Also,

∂sX
ϑ(s, ϑ) = −∂ϑX

s(ϑ)

{ϕ(s)}2
, ∂ϑX

ϑ(s, ϑ) = −ϕ′(s)Xs(ϑ)

ϕ(s)

for s ∈ (0, L) and ϑ ∈ [0, 2π] by the second and third equations of (E.9) and

ϕ(s) > 0 for s �= 0, L. Since X is of class C2, we have ∂ϑ∂sX
ϑ = ∂s∂ϑX

ϑ.

Thus the above equations imply that

∂2
ϑX

s(ϑ)

Xs(ϑ)
= ϕ(s)ϕ′′(s) − {ϕ′(s)}2, s ∈ (0, L), ϑ ∈ I.
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Noting that the left-hand side is independent of s and ϕ is of class C5, we

differentiate both sides of this equality with respect to s to get

ϕ(s)ϕ′′′(s) − ϕ′(s)ϕ′′(s) = 0, s ∈ (0, L).

Now we observe by this equality and (E.7) that

∂

∂s

(
K(µ(s, ϑ))

)
= −ϕ(s)ϕ′′′(s) − ϕ′(s)ϕ′′(s)

{ϕ(s)}2
= 0

for s ∈ (0, L) and ϑ ∈ [0, 2π], which shows that K is constant on the whole

surface Γ since K and µ are continuous on Γ and [0, L] × [0, 2π]. Hence

Γ is a sphere by Liebmann’s theorem (see e.g. [54, Section 6.3, Theorem

3.7]), which contradicts our assumption that Γ is not a sphere. Thus K(Γ)

contains only vector fields of the form w(y) = c(e3 × y), y ∈ Γ with c ∈ R,

which means that K(Γ) ⊂ R|Γ by (E.6). Since R|Γ is a subspace of K(Γ),

we conclude that K(Γ) = R|Γ. �

Remark E.4. By the proof of Lemma E.3 we see that

• R = {0} if Γ is not axially symmetric,

• the dimension of R is one if Γ is axially symmetric but not a sphere,

and

• the dimension of R is three if Γ is a sphere.

In particular, if Γ is axially symmetric around some line and it is not a

sphere, then it is not axially symmetric around other lines.

Now we assume again that Γ is of class C2 and take g0, g1 ∈ C1(Γ)

satisfying (2.1). Let R0, R1, and Rg be the subspaces of R given by (2.4)

and Ωε the curved thin domain of the form (1.1) with boundary Γε. As in

Section 3.2, we scale gi to assume |gi| < δ on Γ for i = 0, 1, where δ is the

radius of the tubular neighborhood N of Γ given in Section 3.1, and thus

Ωε ⊂ N for all ε ∈ (0, 1].

Lemma E.5. For an infinitesimal rigid displacement w(x) = a× x+ b

of R
3 with a, b ∈ R

3 the following conditions are equivalent:
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(a) For all ε ∈ (0, 1] the restriction of w on Γε satisfies w|Γε · nε = 0 on

Γε.

(b) There exists a sequence {εk}∞k=1 of positive numbers such that

lim
k→∞

εk = 0, w|Γεk
· nεk = 0 on Γεk for all k ∈ N.

(c) The vector field w belongs to R0 ∩R1.

Proof. For ε ∈ (0, 1] and i = 0, 1 let τ iε be given by (3.26). Then

nε(y + εgi(y)n(y)) = (−1)i+1 n(y) − ετ iε(y)√
1 + ε2|τ iε(y)|2

, y + εgi(y)n(y) ∈ Γiε

with y ∈ Γ by Lemma 3.9. Moreover, for w(x) = a× x+ b we have

w(y + εgi(y)n(y)) = w(y) + εgi(y){a× n(y)},
{a× n(y)} · n(y) = 0, y ∈ Γ.

Hence the condition w|Γi
ε
· nε = 0 on Γiε is equivalent to

w|Γ · n− εw|Γ · τ iε − ε2gi(a× n) · τ iε = 0 on Γ.(E.10)

Let us prove the lemma. The condition (a) clearly implies (b). We show

that (b) yields (c). Suppose that (b) is satisfied. Then, by (E.10),

w|Γ · n− εkw|Γ · τ iεk − ε2
kgi(a× n) · τ iεk = 0 on Γ

for k ∈ N and i = 0, 1. Letting k → ∞ in this equality we get w|Γ ·n = 0 on

Γ by (3.28). Hence w ∈ R and w|Γ · τ iεk + εkgi(a× n) · τ iεk = 0 on Γ. Since

{τ iεk}∞k=1 converges to ∇Γgi uniformly on Γ by (3.29), we send k → ∞ in

this equality to get w|Γ · ∇Γgi = 0 on Γ for i = 0, 1. Thus w ∈ R0 ∩R1, i.e.

(c) is valid.

Let us show that (c) implies (a). If w ≡ 0 then (a) is trivial. Suppose

that w �≡ 0 belongs to R0 ∩ R1. Let ε ∈ (0, 1] and i = 0, 1. Since the

condition w|Γi
ε
· nε = 0 on Γiε is equivalent to (E.10) and w ∈ R0 ∩R1 ⊂ R

satisfies w|Γ · n = 0 on Γ, it is sufficient for (a) to show that

w(y) · τ iε(y) = 0, {a× n(y)} · τ iε(y) = 0 for all y ∈ Γ.(E.11)
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Hereafter we fix and suppress the argument y. If w = 0, then a × n = 0

by (E.1) and (E.11) follows (note that we can apply Lemma E.2 by w �≡ 0).

Suppose w �= 0. Then w is the eigenvector of W corresponding to the

eigenvalue λ by (E.1). Since W has the eigenvalues κ1, κ2, and zero with

Wn = 0 and w �= n by w · n = 0, we have λ = κ1 or λ = κ2. Without

loss of generality, we may assume λ = κ1, i.e. Ww = κ1w. Then since

1−εgiκ1 > 0 and I3−εgiW is invertible by |gi| < δ on Γ, (3.2), and Lemma

3.3, we have

(I3 − εgiW )−1w = (1 − εgiκ1)
−1w.(E.12)

We use (3.26), W T = W , (E.12), and w · ∇Γgi = 0 by w ∈ Ri to get

w · τ iε = (I3 − εgiW )−1w · ∇Γgi = 0.(E.13)

Moreover, by (E.1) with λ = κ1 and (E.12),

(I3 − εgiW )−1(a× n) = −κ1(I3 − εgiW )−1w = −κ1(1 − εgiκ1)
−1w.

Using this equality we get (a× n) · τ iε = 0 as in (E.13). Hence (E.11) holds

and we have w|Γi
ε
· nε = 0 on Γiε for all ε ∈ (0, 1] and i = 0, 1, i.e. (a) is

valid. �

By Lemmas E.1 and E.5, we observe that the nontriviality of R0 ∩ R1

implies the uniform axial symmetry of Ωε.

Lemma E.6. If there exists a vector field w(x) = a× x+ b ∈ R0 ∩R1

such that w �≡ 0, then a �= 0, a · b = 0, and Ωε is axially symmetric around

the line parallel to a and passing through ba = |a|−2(a× b) for all ε ∈ (0, 1].

Proof. Let w(x) = a × x + b ∈ R0 ∩ R1. Then w|Γi
ε
· nε = 0 on Γiε

for each ε ∈ (0, 1] and i = 0, 1 by Lemma E.5. Hence if w �≡ 0 then Lemma

E.1 implies that a �= 0, a · b = 0, and both Γ0
ε and Γ1

ε are axially symmetric

around the line parallel to a and passing through ba, which yields the same

axial symmetry of Ωε. �

Also, the triviality of Rg yields the axial asymmetry of Ωε.

Lemma E.7. If Rg = {0}, then there exists a constant ε̃ ∈ (0, 1] such

that Ωε is not axially symmetric around any line for all ε ∈ (0, ε̃].
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Proof. We prove the contrapositive statement: if there exists a se-

quence {εk}∞k=1 convergent to zero such that Ωεk is (and thus Γ0
εk

and Γ1
εk

are) axially symmetric around some line lk for each k ∈ N, then Rg �= {0}.
Suppose that such a sequence {εk}∞k=1 exists and that for each k ∈ N the

line lk is of the form lk = {sak + bk | s ∈ R} with ak, bk ∈ R
3, ak �= 0, i.e. lk

is parallel to ak and passing through bk. Replacing ak with ak/|ak| we may

assume ak ∈ S2 for all k ∈ N without changing lk. Since Ωε is contained in

the bounded set N for all ε ∈ (0, 1], there exists an open ball BR centered

at the origin of radius R > 0 such that Ωεk ⊂ BR for all k ∈ N. Then,

by the axial symmetry of Ωεk around the line lk, the intersection lk ∩ BR

is not empty: otherwise the ball generated by the rotation of BR through

the angle π around lk does not intersect with BR and thus Ωεk ⊂ BR is not

axially symmetric around lk. Hence we may assume bk ∈ lk ∩ BR for all

k ∈ N by replacing bk with bk − sak for an appropriate s ∈ R. Now {ak}∞k=1

and {bk}∞k=1 are bounded in R
3 and thus converge (up to subsequences) to

some a ∈ S2 and b ∈ R
3, respectively.

Let us prove w(x) := a × (x − b) ∈ Rg. For k ∈ N and i = 0, 1 let τ iεk
be the vector field on Γ given by (3.26) and wk(x) := ak × (x− bk), x ∈ R

3.

Then, by (3.29) and ak → a, bk → b as k → ∞,

lim
k→∞

τ iεk(y) = ∇Γgi(y), lim
k→∞

wk(y) = w(y), y ∈ Γ.(E.14)

For each k ∈ N and i = 0, 1, since Γiεk is axially symmetric around the line

lk, Lemma E.1 implies that wk|Γi
εk
·nεk = 0 on Γiεk . By the proof of Lemma

E.5 (see (E.10)) this condition is equivalent to

wk|Γ · n− εkwk|Γ · τ iεk − ε2
kgi(ak × n) · τ iεk = 0 on Γ.(E.15)

We send k → ∞ in (E.15) to get w|Γ · n = 0 on Γ by (E.14) and ak → a.

Thus w ∈ R. Next we subtract (E.15) for i = 1 from that for i = 0 and

divide the resulting equality by εk. Then since wk|Γ · n does not depend on

i, we have

wk|Γ · (τ1
εk

− τ0
εk

) + εk(ak × n) · (g1τ
1
εk

− g0τ
0
εk

) = 0 on Γ.

We send k → ∞ in this equality and use (E.14) and ak → a to get w|Γ·∇Γg =

0 on Γ by g = g1 − g0. Hence w ∈ Rg. Since w �≡ 0 by a ∈ S2, we obtain

Rg �= {0}. �
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Finally, we give a relation between R0 ∩R1 and L2
σ(Ωε).

Lemma E.8. We have R0 ∩R1 ⊂ L2
σ(Ωε) for all ε ∈ (0, 1].

Proof. If w(x) = a× x+ b ∈ R0 ∩R1, then divw = 0 in R
3 by direct

calculations and w|Γε · nε = 0 on Γε by Lemma E.5, i.e. w ∈ L2
σ(Ωε). �
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