クリーンルーム内の浮遊微粒子計測法に関する研究 -----エアロゾル濃度制御供給装置の開発を中心として-----Study on Measuring Method for Airborne Particles in Clean Room

村 上 周 三*・加 藤 信 介*・田 中 幸 彦**・宗 像 康 光* Shuzo MURAKAMI Shinsuke KATO Yukihiko TANAKA Yasumitsu MUNAKATA

1. はじめに

空気中の浮遊微粒子(主に粒径 0.1 µm 以上)を極力除 去したクリーンルームにおいては,高清浄度の空間を効 率よく維持する必要がある。このため作業等に伴い空間 内で発生する浮遊微粒子の拡散性状を予測し,制御する ことが重要である。本研究はこうした浮遊微粒子の拡散 性状に関する研究において基礎となる空気中の浮遊微粒 子計測法について検討する。

2. エアロゾルの計測の問題点

(室内浮遊微粒子分布計測のための)

粒径 0.1 µm 以上の浮遊微粒子の空間分布を調べる方 法にはさまざまのものがある。その1つとして、室内に レーザー光を照射し、浮遊微粒子の散乱光を利用して可 視化し直接その全体的な様相を知る手法も開発されてい

号

記

đ	:チューブ内径	(m)
\tilde{F}_{c}	;遠心力	(N)
g	:重力加速度	(m/s^2)
K	:凝集定数	(m³/s)
Кв	:ブラウン凝集定数	(1)
K_T	:乱流凝集定数	(1)
K_{TI}	:ε₀=1のときの乱流凝集定数	(m ³ /s)
L	:チューブ長さ	(m)
т	:粒子の質量	(kg)
n	:粒子数濃度	(個/m³)
n_0	:初期粒子数濃度	(個/m³)
Q	:送風量	(m³/min)
r	:半径	(m)
t	:時刻	(s)
\bar{u}	:チューブ内平均流速	(m/s)
V_c	:遠心沈降速度	(11)
V_s	:重力沈降速度	(11)
V_t	:終末沈降速度	(11)
εo	:単位体積当たりのエネルギー逸散	(m^2/s^3)

* 東京大学生産技術研究所 付属計測技術開発センター

** 東京大学 共同研究員

る.^{1.2)} 一般には、室内の計測点よりサンプリング管を用 いて連続的にサンプル空気を粒子計数器に導き、その粒 径、粒子数を計測する方法が広く用いられている. この 場合サンプリング管内で粒子が凝集、沈着しその粒径分 布、粒子数が変化する可能性のあることが問題となる. こうした計測方法の検討には、粒径と粒子数濃度が既知 のエアロゾルが用意されることが望ましい.本研究では、 こうしたエアロゾルを容易に得ることを目的としたエア ロゾル濃度制御供給装置を開発し、またこの装置を用い て、サンプリング管内の粒子数損失に関する実験および 理論的な検討を行う.

3. エアロゾル濃度制御供給装置

3.1 エアロゾル濃度制御供給装置の概要

写真1 エアロゾル濃度制御供給装置 (粒子発生部を除く)(単位 mm)

速

図1 エアロゾル濃度制御供給装置

エアロゾル中では、粒子がブラウン運動、乱流、重力 等により運動, 衝突し常に凝集, 沈着現象が生じている. したがって粒径、粒子数濃度が既知のエアロゾルを較正 用に長期保存しておくことは不可能であり、較正等にあ たっては必要に応じて望ましい性状のエアロゾルを作製 することになる。しかし粒子発生量を制御して定められ た粒子数濃度 (3.5×10°個/m³(1×10⁸個/ft³) ~35 個/m³ (1個/ft³))のエアロゾルを作製することは非常に困難 である.そのため次善の方法として,既知粒径の粒子を その発生量を細かく制御することなく大量に発生させ、 これを必要な濃度が得られるまで希釈して較正用エアロ ゾルを作製することを考える。今回試作したエアロゾル 濃度制御供給装置(以下供給装置と略す.)の外観を写真 1に示す。この供給装置は、①定常的にかつ粒径分布の 安定したエアロゾルを供給する。②エアロゾルを任意の 倍率で希釈することができる。③粒子数濃度零の清浄空 気も供給可能とする等の特徴を持つ。

図1に供給装置のシステム図を示す.送風機のファン の回転数制御とダンパー制御により,任意の量の清浄空 気をミックスチャンバー内に導く.ここで一定量の粒子 を粒子発生装置より導き,清浄空気と均一に混合して任 意の希釈倍率のエアロゾルを供給する.このどき,発生 粒子を定常に導くには,ミックスチャンバー内の静圧と 粒子発生装置の粒子乾燥部にあるドレン(大気開放)と の差圧を零にする必要がある.そのために圧力調整装置 を設けている.なお粒子は,既知粒径の単分散ポリスチ レン標準粒子の懸濁液をアトマイザー内で噴霧し,乾燥 させて定常発生させている.またミックスチャンバーは

表1 凝集定数

生産研

卻

AT WALM								
粒 径 (µm)	ブラウン K _B 凝集定数(m ³ /s 個)	乱 流 K _r 凝集定数(m ³ /s 個)						
0.3	4. 5×10^{-16}	5. 3×10^{-19}						
1. U 5. 0	3.3×10^{-16} 3.0×10^{-16}	2.5×10^{-15}						

図1に示すように、粒子の沈降により供給装置内壁面へ の沈着を少なくするため鉛直になるような設定してい

速

報

表2 サンプリング管内の粒子数損失に関する実験種類

	CASE No.	材質	長さ (m)	発生粒子 径 (μm)	備考
*	1-1	タイロン	3	0.31	
14	1-2	ステンレス	3	0.31	
質	1-3	塩化ビニール	3	0.31	チューブ
Ø.	1-4	ゴム	3	0. 31	は水平に
違	1-5	テフロン	3	0. 31	設置
63	1-6	ポリエチレン(軟)	3	0. 31	
•	1-7	ポリエチレン(硬)	3	0.31	
	2-1	タイロン	1	0.31	
臣	2-2	タイロン	3	0. 31	
۲ د	2-3	タイロン	5	0.31	
C,	2-4	タイロン	1	1.00	チューブ
Ø	2-5	タイロン	3	1.00	は水平に
違	2-6	タイロン	5	1.00	設置
¢3	2-7	タイロン	1	4.50	
	.2-8	タイロン	3	4.50	
	2-9	タイロン	5	4.50	
鉛	3-1	タイロン	3	0.31	チューブ
4 T	3-2	タイロン	3	1.00	は鉛直に
且	3-3	タイロン	3	4.50	設置
離	4-1	タイロン	3	4.50	チューブ
	4-2	タイロン	3	4.50	は水平な 螺旋状に
旋	4-3	タイロン	3	4.50	設置

注)チューブは全て内径60

る.供給装置の帯電による粒子の沈着防止のため、内部 に静電防止処理を施している。

3.2 エアロゾル濃度制御供給装置内での粒子数損失

供給装置内では,凝集および沈着等による粒子数損失 が考えられる。以下供給装置内で問題となる凝集につい て検討する。

凝集は、粒子の粒径分布、粒子数濃度から大きな影響 を受ける。ここでは凝集の程度を大まかに見積るため、 単一粒径の凝集モデルを考える。凝集による粒子数濃度 の時間変化は次式で与えられている.³⁾

 $dn/dt = -K \cdot n^2$

K:凝集定数

表1に今回の供給装置内で検討した粒径のブラウン凝 集定数 K_B (粒径が小さい程大きい値となる.),および乱 流凝集定数 K_T (粒径が大きい程大きい値となる.)を示 す.³⁾ブラウン凝集のみを考えると $K = K_B$ となり,粒径 0.3 μ m の初期粒子数濃度を 3.5×10⁹個/m³とすると粒 子数濃度が 1/2 になる時間(半減期)は,6.3×10⁵秒とな る.また乱流凝集のみの場合では $K = K_T$ となり粒径 5 μ m,初期粒子数濃度を 3.5×10⁹個/m³とすると、半減期 は 1.1×10⁵秒となる。粒子が供給装置内を通過する時間 (最大で約 15 秒)に比べ両者ともその値は十分大きい.

よって,供給装置内での凝集による粒子数損失は問題な いと考えられる.また供給装置内壁面への沈着による粒

子数損失はさらに少ない.³⁾ 図 2 に供給装置によるエアロゾルの希釈の例を示す. この 測 定 は 光 散 乱 型 粒 子 計 数 器(HIAC/ROYCO Model 4102:光源はハロゲン,吸引流量 4.72×10⁻⁶ m³/ sec(0.1 ft³/min) お よ び 4.72×10⁻⁶ m³/sec(0.01 ft³/ min))を使用している.供給装置内で希釈が正しく行わ れているならば、 $n \propto Q^{-1}$ の関係(図中に実線で示す)が 成り立つ.粒径 0.31 μ m,4.5 μ m の場合とも、この関係を 良く満たした結果を示しており凝集,沈着による粒子数 損失の影響は少ないものと考えられる.

4. サンプリング管内の粒子数損失に関する実験

4.1 実験種類

サンプリング管内での粒子数損失を管の材質・長さ・形 状(鉛直・螺旋状)について実験的に検討する。表2に 実験種類を示す。

4.2 実験方法

粒子発生装置より粒径 0.31 μ m,1.0 μ m,4.5 μ m の単分 散ポリスチレン標準粒子を定常発生させ、供給装置に送 り込む.このとき、供給装置の風量は一定とし、約3.5× 10⁶個/m³(1×10⁸個/ft³)のエアロゾル場を作成する.こ のエアロゾル場(供給装置の吹出口部)から粒子を吸引 するようにサンプリング管(6 ϕ)の先端を設置してい る.粒子の計数は、光散乱型粒子計数器を使用し、その サンプリング時間は1分としている.

4.3 実験結果および考察

4.3.1 サンプリング管材質が粒子数損失に及ぼす影響

内径 6 mm のサンプリング管の材質を変えた場合の 粒子数損失に関する実験結果を図3に示す。6 材質7種 類のサンプリング管のうち、テフロン管が特に粒子数損

(1)

29

150 37巻4号(1985.4)

(重力による沈着の検討)

失が多い. 同様の結果はすでに今福らの実験")において も得られている。原因の1つには、粒子と材質間の静電 気による沈着等とも考えられるが現在検討中である。他 の材質は、粒子通過率が0.9以上と良い値を示している。 なお粒子通過率とは、サンプリングされた粒子数に対す る計数された粒子数の割合を示し、サンプリング管の出 口と入口のエアロゾル濃度比となる。以下の実験では、 サンプリング管には、今回の実験範囲で粒子数損失の最 も少ないタイロン管を使用している。

4.3.2 サンプリング管長さが粒子数損失に及ぼす影響

サンプリング管の長さを変えた場合の粒子数損失に関 する実験結果を図4に示す。水平管内においては、重力 沈降によって生じる管壁への沈着により粒子数の損失が 支配的と考えられる、重力沈降による粒子数の損失に関 し層流管内流に対し、次式が与えられている.3)

 $n/n_0 = 2(-2\alpha\beta + \alpha^{1/3}\beta + \sin^{-1}\beta)/\pi$ (2)ただし, $\alpha = 3 V_s \cdot L / 4 d \cdot \bar{u}, \beta = (1 - \alpha^{2/3})^{1/2}$

(2) 式による粒子数損失を実線で図4中に示す。実験値 と計算値は良く一致している。また、図4の右端に、長 さ3m,内径6mmのサンプリング管を鉛直にした場合 の粒子通過率を示す.この場合,粒径に関係なく粒子通 過率はほぼ1.0である。したがって、粒径が大きい程、 吸引流量が少ない程、重力沈降の影響が大きい。

4.3.3 サンプリング管の曲がりと粒子数損失の関係

水平面内で、半径 r の螺旋状に設置されたサンプリン グ管の管内平均流速を ūとしたとき、その中で粒子に作 用する遠心力 Fc は次式で与えられる.3)

$$F_c = m \cdot \bar{u}^2 / r \tag{3}$$

このときの遠心沈降速度 Ve は次式で与えられる.3) $V_c = \bar{u}^2 \cdot V_s / g \cdot r$ (4)

今回の実験では、遠心力は水平方向に働くので粒子の 終末沈降速度は次の V_t で表される。

 $V_t = \sqrt{V_c^2 + V_s^2} = V_s \sqrt{(\bar{u}^2/g \cdot r)^2 + 1}$ (5)サンプリング管の螺旋の半径を変化させた場合の粒子数

(遠心力と重力による沈着の検討)

損失に関する実験結果を図5に示す。図中の実線は(5) 式によって求めた V₄を(2)式の重力沈降速度 V₈の代 わりに代入して得られた粒子通過率の計算値である。半 径 5 cm, 15 cm の実験結果が計算値より大きい値を示す が、おおむね半径が小さくなると、粒子通過率は小さく なる傾向がある。

おわりに

①安定したエアロゾル場を供給するために試作したエ アロゾル濃度制御供給装置は十分その性能と条件を満足 している。②サンプリング管内での重力沈降および管の 曲がりによる粒子数損失は、粒径 0.31 µm および 1.0 µm の粒子については、今回の実験の範囲では実用上無視し 得る。③しかし、4.5 µm の粒子では、重力沈降や管の曲 がりの影響を大きく受ける。特に、吸引流量の少ない場 合の重力沈降の影響が大きい。したがって、粒径 4.5 μm 以上の粒子を対象とする計測では、管の水平部分を短か く、曲率の大きい曲がりを少なくする必要がある.

(1985年1月31日受理)

参考文献

- 1) 村上周三ほか "レーザー光を用いた室内乱流現象の可視 化" 生産研究 昭和 59 年 10 月
- 2) 早川一也ほか "レーザー計測技術による粒子挙動および 付着の測定"日本建築学会大会学術講演梗概集 昭和 59 年10月
- 3) 高橋幹二 "基礎エアロゾル工学" 養賢堂 昭和 57 年
- 4) 今福正幸ほか、クリーンルームの性能評価に関する研究" 第3回空気清浄とコンタミネーションコントロールに関 する技術大会 昭和59年2月
- 5) 砂川達也ほか "室内空間における浮遊微粒子挙動計測" 日本建築学会大会学術講演梗概集 昭和 59 年 10 月
- 6) 呂 俊民 * クリーンルームにおけるサブミクロン粒子の 空気清净 昭和 59年 21 巻 4 号 計測"

30