
東京大学大学院新領域創成科学研究科社会文化環境学専攻

2023年度修 士 論 文

Recommender System Based Trajectory Prediction推薦システムに基づく軌跡の予測

2023年7月14日 提出指導教員 宋 軒 准教授小林 博樹 教授
莫 宇

MO, YU

Abstract

In this research, we propose a novel method, titled Recommender System based

Trajectory Prediction (RSTP), for predicting grid-based trajectories. This method

synergizes the principles of the recommender system with trajectory prediction,

encapsulating both spatiotemporal and attribute features. This novel approach

capitalizes on the prowess of Long Short-Term Memory (LSTM) networks and

DeepWalk, a prevalent graph embedding technique, to extract high-level features

from both temporal and spatial domains. We further incorporate an activation

unit, borrowed from Deep Interest Network (DIN) models, to model interactions

between temporal and spatial features before input into a Multi-Layer Perceptron

(MLP). The proposed approach balances the trade-off between prediction accu-

racy and the scope of the research area. Through extensive experiments, RSTP

has demonstrated substantial potential in handling the complexity of trajectory

prediction tasks. In some instances, the proposed method exhibits state-of-the-art

performance, particularly when larger and more diverse datasets are employed.

Our findings suggest that the application of recommender system principles could

herald a new direction for future trajectory prediction research.

Key Word: Recommender System, Trajectory Prediction, Spatiotemporal Data

modeling, Urban Planning, Congestion Control.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Purpose & Contributions . 2

1.3 Structure . 5

2 Related Work 7

2.1 Individual-based Trajectory Prediction 7

2.1.1 Traditional Trajectory based Approaches 8

2.1.2 Grid with Trajectory Approaches 9

2.2 Collective-based Trajectory Prediction 10

2.2.1 Sequential Model based Approaches 10

2.2.2 Convolutional Model based Approaches 12

3 Preliminary 13

3.1 Trajectory . 13

3.1.1 Grid Map . 13

3.1.2 Grid-based Trajectory 13

3.2 Recommender System . 14

3.2.1 Top-N Recommendation 14

3.2.2 Deep Recommender System 16

i

ii CONTENTS

3.3 Neural Network . 18

3.3.1 Long Short-Term Memory 18

3.3.2 DeepWalk . 20

3.4 Problem Definition . 21

4 Methodology 23

4.1 Embedding Construction . 24

4.1.1 Attribute Component: Embedding and Concatenation . . . 24

4.1.2 Spatial Component: DeepWalk 26

4.1.3 Temporal Component: LSTM 27

4.2 Candidate Generation . 28

4.2.1 Interaction Component: Activation Unit 29

4.2.2 Multi-Layer Perceptron 30

5 Experiments 33

5.1 Experiments Settings . 33

5.1.1 Dataset Description . 33

5.1.2 Parameter Settings . 35

5.1.3 Metrics . 36

5.2 Performance Comparison . 38

5.2.1 Competitors . 38

5.3 Case Study . 41

5.3.1 Case Study 1: Effect of Attribute Component 41

5.3.2 Case Study 2: Effect of Spatiotemporal Component 42

5.3.3 Case Study 3: Potential Analysis of RSTP. 44

6 Conclusion 47

Acknowledgement 49

List of Figures

1.1 A Grid-based Trajectory Demo. 5

3.1 A Typical Recommender System Architecture 18

4.1 RSTP Architecture . 23

4.2 The architecture of activation unit. 30

4.3 Control function of PReLU and Dice. 32

5.1 Visualization of two datasets on the grid map. 35

5.2 Results regarding to Transportation Modes 46

iii

List of Tables

5.1 Performance Comparison (15 minutes interval) 40

5.2 Verification of the functionality of Spatiotemporal Component. . . 43

5.3 Functionality Analysis of Proposed Model. 45

v

Chapter 1

Introduction

1.1 Background

Trajectory prediction, a cornerstone technology in the development of intelli-

gent transportation systems, plays a substantial role in the evolution of smart

cities. This technology not only tackles Socio-Cultural and Environmental issues,

but also elevates daily life by enhancing services such as Mobility as a Service

(MaaS). MaaS, an integrated digital platform, consolidates multiple transport ser-

vices into one on-demand service, offering a comprehensive and efficient alterna-

tive to private vehicle ownership.

For example, predicting future locations from a given trajectory, defined by a se-

quence of location points like longitude and latitude pairs, is a crucial aspect of

traffic network optimization, congestion control, and route planning. With accu-

rate predictions, decision-makers can develop improved traffic road designs that

minimize congestion and energy waste, ultimately fostering an environmentally

friendly society.

1

2 CHAPTER 1. INTRODUCTION

As integral components of MaaS, smartphone applications like Uber (an Ameri-

can company that offers a ride-hailing service, connecting drivers and passengers

via a mobile app for convenient, on-demand transportation as an alternative to

traditional taxi services), Google Map and Apple Map, (digital mapping services

provided by Google and Apple respectively), have recently begun to provide ser-

vices that suggest potential next locations based on the user’s current situation and

historical information. For instance, when you finish work at 6 pm and open these

applications, they might recommend directions to a restaurant or home, informed

by your past trajectory information. These features, driven by advancements in

trajectory prediction technologies, significantly enhance the user experience and

facilitate daily life.

1.2 Purpose & Contributions

Despite extensive research has been conducted in the field of trajectory predic-

tion, providing accurate predictions of the next location based on past trajectories

remains a challenging problem, influenced by the following aspects.

(1) Individual vs. Collective: Currently, trajectory prediction research predomi-

nantly falls into two main categories: Individual-based trajectory prediction and

Collective-based trajectory prediction. The primary distinction between these

two categories lies in their research scope and subjects. More specifically, the

individual-based trajectory prediction approach focuses on a specific user, and

usually limited to a relatively small area. For instance, a pedestrian on a side-

walk segment[1, 2] or a car on a highway stretch[3, 4]. While individual-based

approaches often exhibit high accuracy within their limited area of focus, their

1.2. PURPOSE & CONTRIBUTIONS 3

performance significantly decreases when applied to larger areas, sometimes even

failing to provide reliable predictions. Few studies have explored individual ve-

hicle trajectory prediction over cities and oceans[5], but they still face challenges

with accuracy in such scenarios.

Conversely, the focus of collective-based trajectory prediction shifts from indi-

vidual to group. As the trajectories of groups cannot be easily represented by

a sequence of location points, the variation in density within a specific area is

considered instead. For instance, predicting citywide crowd dynamics when big

events happen[6], predicting a large-scale citywide crow density and flow in the

daily life through the trajectory data[7], etc. It is important to note that while

collective-based approaches do not directly predict individual trajectories, the un-

derlying data used, such as population density, car flow, and crowd flow, are de-

rived from trajectory data. Typically, these collective-based approaches analyze

data on a large-scale, encompassing entire cities, to offer valuable insights for ar-

eas like traffic management and urban computing. However, due to their emphasis

on collective behaviors, these approaches are not designed to provide accurate in-

dividual location/trajectory predictions. Their primary focus lies in analyzing and

understanding group movement patterns rather than predicting individual loca-

tions in the next moment.

(2) Various complex factors: The prediction of the next location based on given

trajectories is influenced by a multitude of complex factors. These include tem-

poral correlations, spatial dependencies, the preferences or habits of the trajec-

tory owner, as well as external factors like weather conditions and the day of the

week. The significance of spatiotemporal correlations and dependencies in trajec-

tory prediction problems has been demonstrated[8]. Moreover, these factors can

4 CHAPTER 1. INTRODUCTION

interact with each other in real-world scenarios. For instance, commuters may

alter their commuting routes based on weather conditions. On a rainy day, they

might choose to take a bus to work and prioritize a quick return home, while on

a sunny day, they may opt to ride a bike to work and socialize at a restaurant

with friends until late at night. To improve prediction performance, it is crucial

to implicitly consider these factors within the prediction method. Additionally, as

there are various transportation modes available, predicting trajectories involving

multiple modes becomes more intricate.

To sum up, accurately predict the individuals’ next locations through trajectory

prediction approach is a challenging problem, especially when the area becomes

large, like in the whole city. To address these challenges, this paper introduces a

novel approach for city-wide multi-modal trajectory prediction, termed as (RSTP).

This approach deviates from conventional trajectory prediction as it employs a

grid-based trajectory instead of the original GPS point sequences. RSTP harnesses

the strengths of recommender systems and grid representation, and it strives to

achieve a balance between prediction accuracy and applicability across a broad

geographic scale. Fig.1.1 is a grid-based trajectory demo of a arbitrary trajectory

in United State. The primary contributions of this thesis can be summarized as

follows:

• Proposed a novel trajectory prediction method, Recommender System based

Trajectory Prediction (RSTP), which is based on deep recommendation sys-

tems.

• Proposed a spatiotemporal framework to learn the spatial and temporal cor-

relations and dependencies from the raw GPS sequence in RSTP. In detail,

a) Recurrent Neural Network (LSTM) that learn the temporal dependencies

of the obtained feature map grids and embeddings from external factors; b)

1.3. STRUCTURE 5

Utilize DeepWalk to model the spatial information from graph derived from

the raw GPS data; c) Apply activation unit to model complicate correlations

and dependencies cross the temporal dimension and spatial dimension,

• Conduct extensive experiments on two large real-world datasets which con-

sists of GPS points generated by mobile phone users in Tokyo and Osaka.

Extensive experiments were conducted to demonstrate the feasibility of pro-

posed model in the trajectory prediction tasks.

Fig. 1.1: The green dot is the starting point and the red point is the destination.
The blue line is the actual grid-based trajectory. Each colored grid represents an
area that has been traversed by individuals, with the depth of the color signifying
the number of people that passed through that area within a certain time frame.
The deeper the color, the more visiting trajectories in the area.

1.3 Structure

This thesis consists of 6 chapters in total, including the this Introduction Chapter,

• Chapter 1, gives the introduction of the problem that this paper focused on,

mainly including the background, purpose and contributions.

6 CHAPTER 1. INTRODUCTION

• Chapter 2, delivers a literature review of the related work.

• Chapter 3, introduces preliminary knowledge and definition of the problem

this paper focused on.

• Chapter 4, explain the details of experiments.

• Chapter 5, draw a conclusion and gives the future work for the further

study.

Chapter 2

Related Work

Ever since the inception of the urban computing concept[9], the Trajectory Pre-

diction has emerged as a vibrant area of research. Based on application scenarios,

the research can be broadly divided into two main categories, i.e., individual-based

trajectory prediction and collective-based trajectory prediction. In the rest of this

section, I will give a brief literature review about those two type of approaches.

Limited to the length of the paper, I only mention a few closely related researches.

2.1 Individual-based Trajectory Prediction

Individual-based trajectory prediction focuses on forecasting the future move-

ments of a single entity, such as a person or vehicle, based on its historical trajec-

tory data. This type of prediction has wide-ranging applications from navigation

services, traffic management, to social network analysis. Depending on the data

employed, this methodology can be bifurcated into 2 categories, i.e., Traditional

Trajectory based Approaches and Grid Trajectory based Approaches.

7

8 CHAPTER 2. RELATED WORK

2.1.1 Traditional Trajectory based Approaches

In this paper, traditional trajectory means the trajectory represented by GPS points.

Traditional trajectory based on trajectory prediction has been studied extensively

since several years ago (Alanhi 2016[10], Ma 2019[11], and Huang 2019[2]). At

first, the basic idea of this type of approach is to use time series analysis tech-

niques, such as Autoregressive Integrated Moving Average model (ARIMA), Re-

current Neural Network (RNN), and Long Short-Term Memory (LSTM) and so

on. For example, Chen et al[1] shows a novel approach to use a modified LSTM to

predict the pedestrian trajectory with complicated human-to-human interactions.

And Yang et al[12] uses a extended ARIMA model called Traj-ARIMA to predict

the cars’ speed, and this method can be also applied into trajectory data predic-

tion. As research progresses, in addition to modeling temporal information, an

increasing number of researchers[2][13][14] are discovering that modeling spa-

tial information is also crucial for studying trajectory data, which involves both

time and space dimensions. Xu et al[15] proposed a novel Spatial-Temporal At-

tentive Neural Network called Tra2Tra to capture the complex spatial-temporal

feature, which is based on the previous researches[1, 10]. Their most important

contribution is to consider the spatial features into a temporal model. Varshneya et

al[16] also pointed out that the spatial information matters in the dynamic human

trajectory prediction task. In conclusion, both temporal and spatial information

significantly influence the effectiveness of trajectory prediction tasks. Current re-

search primarily focuses on predicting near-future locations, such as those in the

next 10 seconds, 1 minute, or 3 minutes. These studies aim to maximize accuracy

within a confined area due to application scenarios that demand high precision,

such as autonomous car navigation, pedestrian behavior detection, etc. However,

besides accuracy, data scale is a crucial factor in other contexts like urban comput-

ing and road network planning. Consequently, the accurate prediction of city-wide

2.1. INDIVIDUAL-BASED TRAJECTORY PREDICTION 9

trajectories represents a formidable challenge.

2.1.2 Grid with Trajectory Approaches

To address the problem outlined in the previous subsection, namely, the inability

to accurately predict trajectories across an entire city, an increasing number of

techniques, such as grid-based trajectory representations, are garnering attention

in recent trajectory prediction research. Works by [17, 18, 19] have recognized

that, with the assistance of a grid, the performance of trajectory prediction can be

improved in various scenarios, including pedestrian trajectory prediction and au-

tonomous vehicle navigation systems. Kim et al.[4] demonstrated that grid-based

trajectory prediction is more efficient than traditional trajectory prediction meth-

ods when utilizing the same LSTM models.Their experimental results showed

that predictions based on grid trajectories performed better than traditional ones.

While Kim’s work primarily focuses on enhancing prediction performance in lo-

calized areas, given these benefits, we can hypothesize that employing grid-based

trajectory techniques could be instrumental in addressing the challenges of ac-

curately predicting city-wide trajectories. Incorporating this technique into their

research, Zhang et al.[20] successfully developed a Sequence-to-Sequence Model

for worldwide vessel trajectory prediction. In summary, with grid techniques, the

trajectory prediction performance can be further improved in many cases. And in

some cases like crowd prediction/control, traffic management and etc., grid tech-

niques may be one of the key techniques to solve the inability to accurately predict

city-wide even world-wide trajectories.

10 CHAPTER 2. RELATED WORK

2.2 Collective-based Trajectory Prediction

Contrary to the trajectories in individual-based trajectory prediction tasks, defin-

ing the trajectory in collective case is challenging , as different individuals within

a group may have varying trajectories. Furthermore, in most use cases, the focus

leans towards the alterations in collective properties, such as crowd density, vehi-

cle flow, average speed, and the like, rather than changes in individual trajectories.

However, it’s important to note that all this data originally stems from individual

trajectory data. This is the reason why I refer to this brunch of approaches as

Collective-based Trajectory Prediction. Additionally, grid techniques, which is

key part of the method this thesis proposed, is widely applied in this approaches,

thus it is necessary to introduce related researches here.

Zhang et al.[21] developed a novel system based on Convolutional Neural Net-

work (CNN) to predict the citywide crowd flow. In their work, they partitioned

the city into a I × J grids and then mapped each GPS coordinate into a grid cell

for the first time. After that, more and more researches[22, 23, 24] begins to adopt

the grid techniques in the collective-based trajectory prediction task, or crowd

flow prediction task. With the integration of the grid concept, a completely dis-

tinct approach employing Convolutional Neural Networks (CNN) has emerged.

2.2.1 Sequential Model based Approaches

Given that sequential models are designed to process time-series (sequential) data

such as trajectory data and flow data, it’s intuitive to apply these models to collective-

based trajectory prediction tasks. The effectiveness of sequential models, includ-

ing GRU, LSTM, and others, has been demonstrated in recent research[25, 26,

2.2. COLLECTIVE-BASED TRAJECTORY PREDICTION 11

27, 28]. As research advances, it has been discovered that spatial information

is equally important as temporal information in the trajectory prediction task.

Therefore, considering the spatial features in sequential models has become an

increasingly popular research topic, building on previous studies. Tang et al.[29]

proposed a novel deep learning model, namely spatial–temporal recurrent neural

network, to predict crowd flows, which merges temporal features of crowd flows

and spatial features of roads simultaneously. As previously mentioned, a vari-

ety of factors such as transportation modes can also impact prediction outcomes,

hence, Zhou et al.[30] proposed a relation-specific transformation model to deal

with these heterogeneous relations. Based on the processed heterogeneous infor-

mation, a modified LSTM model is used to finally predict the sequential crowd

flow and demonstrate the superiority of of the proposed model. Additionally, the

fusion of convolutional networks and sequential networks demonstrated its effec-

tiveness in the work of Ali et al.[31]. In this study, they employed a neural network

known as ConvLSTM to model spatiotemporal information and intricate correla-

tions. Furthermore, other factors such as weather and day of the week were taken

into consideration through an attention mechanism. Also, there are some stud-

ies which using the traditional technique like spatial clustering to model spatial

information. For example, Fan et al.[32] developed a predicting-by-clustering

framework to address the problem that unexpected change in crowd flow when

emergent situations or yearly events, which provide a new idea to handle those

irregular cases. Through these studies, we can see that not only does the modeling

of spatiotemporal features impact the final prediction results, but also how exter-

nal factors like weather and unusual activities is critically important to trajectory

prediction research.

12 CHAPTER 2. RELATED WORK

2.2.2 Convolutional Model based Approaches

With the introduction of the grid concept into trajectory prediction, CNN models,

which are typically unrelated to trajectory prediction, can now be applied to the

task. The basic idea is to treat each grid as a pixel and view a trajectory or an entire

map as an image. Spatial features can then be extracted through the CNN model.

More and more studies show the power of CNN model in grid-based trajectory

prediction task[33, 34, 35, 36]. Given that this thesis does not extensively utilize

CNN models, I will not go into great detail about methods of trajectory prediction

using CNN models.

In summary, while current research on trajectory prediction is quite extensive, it

typically either focuses on precise predictions for individual trajectories within

a small scope, or studies overall movement trends within a larger scale, such as

city-wide[1] even world-wide[16]. Therefore, I propose an innovative trajectory

prediction model based on recommender systems in this thesis. This model effec-

tively addresses the aforementioned problems, achieving a good balance between

accuracy and scope. The proposed model are majorly refer to the previous re-

searches in recommender systems[37, 38] and trajectory prediction[21, 33].

Chapter 3

Preliminary

In this section, I first present several preliminaries and give the formal definition

of our problem.

3.1 Trajectory

3.1.1 Grid Map

Numerous interpretations of a location exist, varying in granularity and semantic

implications. In this study, instead of representing a location with a specific lon-

gitude and latitude coordinate pair in most of the digital map, the locations within

a certain range are considered as a single location called grid. The grid map is the

map consist of M ×N grids, where M and N depends on the research area and use

case.

3.1.2 Grid-based Trajectory

Traditionally, the trajectory T is considered as a sequence of consecutive GPS

points, i.e., T = {loct1 , loct2 . . . loctN }, where loci is a pair containing the longitude,

13

14 CHAPTER 3. PRELIMINARY

latitude and timestamp information. According to the Definition 1, in this study,

I use grid IDs to replace the GPS points in the former trajectory definition. Thus,

the Grid-based Trajectory can be represented in this form:

T = {Gridt1 ,Gridt2 · · ·Gridti , · · ·GridtN }, i ∈ N, 1 ≤ i ≤ N (3.1)

where the location point Gridti in the grid map contains the grid ID Gridi and the

timestamp ti. Furthermore, for each grid-based trajectory, the external factors such

as the corresponding user/driver (Driver ID), the day of the week (Day of Week),

current speed (v) and traveled distance till now (Distance) are also recorded in

the trajectory data. An intuitive example is shown in Fig.1.1.

3.2 Recommender System

3.2.1 Top-N Recommendation

In general, in the field of Machine Learning, recommendation is to use algorithms

to predict the“ rating”or“ preference”a user would give to an item. These

predictions are made by analyzing data about the user ’s past behavior, as well

as data about the items themselves. The goal of a recommendation system is to

present users with items that they are likely to be interested in, based on their past

behavior and preferences.

Let U be the set of all users and I be the set of all items. A recommendation

function R can be defined as :

R : U × I −→ S (3.2)

where S is the set of all possible scores that an item can have. This function takes

3.2. RECOMMENDER SYSTEM 15

as input a user and an item and returns a score indicating how relevant that item

is for that user. Based on the use case, recommendation can be divided into sev-

eral categories[39], such as Collaborative Filtering (CF) based Recommendation,

Content based Recommendation, Deep Neural Network (DNN) based Recom-

mendation, etc. Each of these types has its own strengths and weaknesses, and the

choice of which to use typically depends on the specific use case and the available

data. In this paper, we focus on the Top-N based approach.

User-Item Matrix: Assume that M is a user-item matrix, where M is a matrix of

m rows (users u) and n columns (items i). Each cell Mu,i represents the rating/score

that user u has given to item i. If user u has not rated item i, then Mu,i is defined

as 0.

Rating/Score Prediction Function: The recommendation function R : U× I −→ S

takes as input a user and an item and returns a score indicating the predicted

preference of that user for that item. The nature of this function can depend on

the specific algorithm used by the recommendation system (collaborative filtering,

matrix factorization, deep learning based etc.).

Top-N Recommendation List: For a given user u, the top-N recommendation

list, L(u,N), is defined as the top N items from the set I with the highest scores

R(u, i) after sorting in descending order. Formally, we have:

L(u,N) = {i1, i2, · · · iN}

∀ j, st.i j ∈ I, 1 ≤ j <N,R(u, i j) ≥ R(u, i j+1)
(3.3)

The goal of a top-N item recommendation algorithm is to generate for each user

a list of N items that the user will most likely be interested in, based on their

16 CHAPTER 3. PRELIMINARY

past interactions and potentially other factors such as user/item features, time, and

context.

3.2.2 Deep Recommender System

Deep Recommender Systems represent the integration of deep learning method-

ologies into recommendation systems. The specific architecture of deep learning,

the data incorporated, and the problem to be solved (such as rating prediction

or top-N item recommendation) can significantly influence the configuration and

process flow. Consequently, it is arduous to encapsulate all these varying method-

ologies within a unified framework. Therefore, in this section, I will only give a

brief introduction of the Deep Recommender System utilizing Embeddings and

Multi-Layer Perceptron(MLP). The Architecture of Embedding & MLP based

Deep Recommender System can be formally defined as:

Denote U as the set of all users and I as the set of all items. Each user u in U
and item i in I are represented as one-hot encoded vectors in a high dimensional

space.

Embedding Layer: The one-hot encoded vectors are passed through an embed-

ding layer to get dense vector representations for users and items. This layer can

be seen as a lookup table that transforms sparse vectors into dense ones. Let Eu

and Ei denote the embedding functions for user and item respectively. The output

of these functions are eu = Eu(u) and ei = Ei(i), which are the embedding vectors

of user u and item i.

Concatenation: The user and item embeddings are concatenated together to form

3.2. RECOMMENDER SYSTEM 17

a single vector, i.e., x = [eu; ei].

Multi-layer Perceptron: This concatenated vector is then passed through an

MLP to capture complex interactions between user and item. The MLP consists

of several fully connected layers and activation functions like ReLU, Sigmoid, and

so on, and the output is another vector. Let MLP denote the MLP function, then

h = MLP(x) is the output vector.

Output Layer: The last fully connected layer is the output layer, which pro-

duces the final prediction. It’s typically a single neuron with a linear or sigmoid

activation function. Let O denote the output function, then the predicted rating

rui = O(h).

Training: The system is trained by minimizing a loss function, which measures

the difference between the predicted and true ratings. Common choices for the

loss function include Mean Squared Error (MSE) and Cross-Entropy.

In summary, a Deep Recommender System using embedding and MLP transforms

sparse user and item vectors into dense embeddings, concatenates these embed-

dings, applies an MLP to learn high-level interaction features, and finally predicts

ratings or preferences.

18 CHAPTER 3. PRELIMINARY

Fig. 3.1: This is a typical framework demo of the modern recommendation sys-
tem. Here substitute the item with the grid in the grid trajectory prediction task
and replace the history data with trajectory, then the framework of the method us-
ing recommender system based approach to predict the trajectory can be obtained.
In this thesis, there is no intent to fulfill the whole architecture since this is just a
pilot research to check the feasibility of proposed model.

3.3 Neural Network

The Neural Network is a broad concept in the field of Artificial Intelligence. It is

the cornerstone technology of Deep Learning, a branch of Artificial Intelligence.

Due to space constraints, I will only briefly introduce the neural network tech-

niques relevant to this paper, such as Long Short-Term Memory networks and the

Graph Embedding techniques.

3.3.1 Long Short-Term Memory

Long Short-Term Memory networks, LSTMs are designed to avoid the long-term

dependency problem which traditional RNNs suffer from. They achieve this by

incorporating memory cells and three types of gates: input, forget, and output

gate. Let’s denote the input at timestep t as xt, the output as ht, and the cell state

3.3. NEURAL NETWORK 19

as ct. LSTM updates the cell state and output by the following set of equations:

1. Forget gate: This gate decides what information should be discarded or kept. It

is a sigmoid layer that takes ht−1 and xt and outputs a number between 0 and 1 for

each number in the cell state ct−1. A 1 represents ”completely keep this” while a

0 represents ”completely get rid of this”.

ft = σ(Wf · [ht−1, xt] + bf) (3.4)

2. Input gate: This gate updates the cell state with the new information. It has two

parts. A sigmoid layer called the ”input gate layer” decides which values we’ll

update, and a tanh layer creates new candidate values that could be added to the

state.

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(WC · [ht−1, xt] + bC)
(3.5)

3. Cell state: It is a combination of the old state (scaled by forget gate value) and

the new candidate values (scaled by input gate value).

ct = ft ∗ ct−1 + it ∗ c̃t (3.6)

4. Output gate: This gate decides what the next hidden state should be. The hidden

state contains information about previous input data, and is used for predictions.

It is a filtered version of the cell state, and the filter is decided by the input data.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(ct)
(3.7)

Here, ∗ denotes element-wise multiplication, σ is the sigmoid function, and the

20 CHAPTER 3. PRELIMINARY

Ws and bs are parameters to learn.

3.3.2 DeepWalk

DeepWalk, an algorithm developed by Perozzi et al.[40], is an effective method to

learn continuous vector representations of vertices in graphs. The central concept

behind DeepWalk is performing random walks over a graph to generate sequences

of vertices, similar to sentences in natural language. These sequences are then

projected onto a latent space using techniques derived from the natural language

processing, specifically the Skip-gram model from Word2Vec.

Let us denote a graph as G(V, E), where V represents the set of vertices and E sym-

bolizes the set of edges. The primary goal of DeepWalk is to identify a function

φ : V → Rd, which maps vertices to a d-dimensional latent space. This process

comprises two stages:

1. Random Walks: For every vertex v ∈ V , DeepWalk generates γ independent

random walks of a fixed length l. Each random walk Wv = {v1, v2, . . . , vl} is a

sequence of vertices where the ith vertex is randomly chosen from the neighbors

of the (i − 1)th vertex.

2. Embedding Learning: The Skip-gram model, a context prediction model from

natural language processing, is used to generate embeddings from the ’sentences’

of vertices created by random walks.

The objective of the Skip-gram model is to identify vector representations that are

suitable for predicting the surrounding vertices in a sequence for a given vertex.

3.4. PROBLEM DEFINITION 21

This can be formally defined as the following optimization problem:

min
φ
− 1
|V |
∑

v∈V
log Pr (Wv | φ(v)) (3.8)

where φ(v) represents the d-dimensional representation of vertex v and Pr(Wv|φ(v))

is the probability of walk Wv given the vector representation of vertex v.

The probability Pr(Wv|φ(v)) is factorized using the conditional independence as-

sumption and then approximated using the softmax function:

Pr (vi | φ(v)) =
exp (φ (vi) · φ(v))

∑
v j∈V exp

(
φ
(
v j

)
· φ(v)

) (3.9)

for each vertex vi in the random walk Wv. This objective function is typically op-

timized using Stochastic Gradient Descent (SGD) or similar optimization meth-

ods. The result of the DeepWalk algorithm is a series of d-dimensional embed-

dings for each vertex in the input graph. These embeddings effectively capture

the local neighborhood structure surrounding each vertex. It should be noted that

DeepWalk focuses on first-order proximity between vertices and does not consider

higher-order or global structural properties of the graph.

3.4 Problem Definition

Grid Trajectory Prediction. In this study, the problem being addressed can be

formally defined as: under a certain sampling frequency f , given a trajectory

T = {Gridt1 ,Gridt2 · · ·Gridti , · · ·GridtN−1}, predict GridtN by providing K possible

candidates which have a descending probability.

Chapter 4

Methodology

Fig. 4.1: RSTP Architecture

In this section, I will present the architecture of the proposed model, Recom-

mender System based Trajectory Prediction model, RSTR. And provide a detailed

explanation of each functional components in RSTR. As shown in Fig.4.1, RSTP

is consist of two modules as a typical Recommender System do: the Embedding

Construction module and the Candidate Generation module. In each module, it

contains several functional components to deal with different information. More

23

24 CHAPTER 4. METHODOLOGY

specifically, Embedding Construction module is comprised of three components:

Temporal Component, Spatial Component and Attribute Component. And the

Candidate Generation module is comprised of two components: Interaction Com-

ponent and Output Layers. As the detailed explanation of each component will be

presented in each subsection.

4.1 Embedding Construction

The Embedding Construction module is designed to transform the original sparse

trajectory data into dense representations, represented as high-dimensional vec-

tors/tensors. Once the representation for each grid cell and individual trajectory is

obtained, similarity computation can be easily conducted. As a result, processes

such as collaborative filtering or recommendation generation can be carried out

seamlessly based on the previously computed similarities. The primary challenge

in extracting these dense representations lies in the simultaneous consideration of

complex spatiotemporal information and other external factors in conjunction with

the original trajectory data. To address this challenge, the Embedding Construc-

tion module is comprised of three distinct components: the Temporal Component,

the Spatial Component, and the Attribute Component. Each of these components

plays a crucial role in processing and integrating different types of information,

thereby enhancing the effectiveness and accuracy of the subsequent trajectory pre-

diction.

4.1.1 Attribute Component: Embedding and Concatenation

As previously mentioned, trajectory prediction is influenced by a myriad of com-

plex factors, such as transportation mode, day of the week, and driving habits.

To encapsulate such factors into the proposed model, I designed a component I

4.1. EMBEDDING CONSTRUCTION 25

refer to as the Attribute Component. As illustrated in Fig.4.1, I have integrated

attributes such as transportation mode (bus/walk/bike etc.), driver ID, time infor-

mation (day of the week and time slot of the sampling point), and other statistical

features (current speed/average speed/distance traveled, etc.). These attributes are

respectively denoted as modeID, driverID, weekID, and timeID. It is important

to note that these factors are categorical values and cannot be directly fed into

the neural network. To address this, in our proposed model, I adopt the embed-

ding method proposed by Gal and Ghahramani [41]. This method transforms

each categorical attribute into a low-dimensional real vector, which can then be

processed by our neural network model effectively. Specifically, the embedding

method maps each categorical value c ∈ C to a real space RE×1 (also known as

the Embedding space) by multiplying it with a parameter matrix W ∈ RC×E. Here,

C signifies the vocabulary size of the original categorical value and E represents

the dimension of the embedding space. Usually, E is significantly less than C

(E) C). When compared with one-hot encoding, the embedding method has

two main advantages. Firstly, as the vocabulary size of the categorical values can

be quite extensive (for instance, there are over 2000 drivers in our dataset), the

embedding method effectively reduces the input dimension, thus offering compu-

tational efficiency. Secondly, it has been demonstrated that categorical values with

similar semantic meanings are usually embedded into close locations [41]. This

implies that the embedding method facilitates the identification and sharing of

similar patterns across different trajectories. This inherent property can be highly

advantageous in improving the predictive accuracy of our model.

Besides the embedded attributes, we further incorporate other important statistical

attributes, like the distance traveled, current speed and average speed. Let’s use

Disi,t, vi,t, v̄i,t to denote the total traveled distance from the starting point to current

26 CHAPTER 4. METHODOLOGY

locations, current speed and the average speed from start till now. Formally, those

attributes can be computed as:

Disi,t =

t−1∑

j=0

dist(Loci, j, Pi, j+1)

vi,t =
dist(Loci,t, Loci,t−1)

∆t

v̄i,t =
Disi,t

t

(4.1)

where dist is the geographic distance between two GPS points. Then, we con-

catenate the obtained embedded vectors together with these statistic features. The

concatenation is used as the output of the attribute component, denoted by attr.

4.1.2 Spatial Component: DeepWalk

As previously noted, DeepWalk is a technique that extracts high-dimensional vec-

tor representations of nodes from a graph. This is accomplished through the em-

ulation of random walks over the graph, which effectively produces ’sentences’

of nodes. These sequences are then embedded into a latent space by employing

techniques derivative of natural language processing. In particular, the Skip-gram

model from Word2Vec[42]. Through this mechanism, DeepWalk generates nu-

anced, contextually-informed embeddings for each node within the graph, effec-

tively capturing the localized neighborhood structure for individual nodes.

To utilize the DeepWalk method, it is necessary to construct a graph from the

map data. Since the proposed model uses a Grid Map, it is intuitive to perceive

the grid map as a spatial graph. More specifically, we consider each grid cell

gi as a vertex v in the graph, with the connections among grid cells representing

the edges e in the graph. The connection between two grid cells is established if

4.1. EMBEDDING CONSTRUCTION 27

there are any trajectories traversing from grid gx to another grid gy. And the more

links established between two grids, the higher weight w the two grids have. This

construction of the graph effectively maps spatial relationships between locations

onto a topological structure, facilitating the subsequent application of DeepWalk

for the extraction of grid cell representations.

Before apply the DeepWalk method, according to the trajectory data and map

information, construct a weighted undirected graph G, where the vertex is the

grid cell gi, and the edge ei is the times a certain trajectory across any two grid

cell sequentially. Then, the DeepWalk method can be applied to extract the high-

dimensional grid cell representations gridi.

4.1.3 Temporal Component: LSTM

Indeed, the first reason why LSTM network is that the application of LSTM net-

works for trajectory prediction tasks is grounded in their demonstrable ability to

handle and model non-linear temporal dependencies inherent in sequential data.

The underlying premise of these applications lies in treating trajectories as a se-

ries of interconnected data points ordered in time. Another reason why LSTM

network is necessary in this work is that the raw trajectory data is greatly un-

equally distributed (detailed explanation will be introduced in the Chapter 5). To

mitigate the impact of this variable on the prediction results, LSTM serves as an

apt choice, given its capability to transform sequential data of arbitrary lengths

into embeddings of a uniform length. This characteristic is particularly salient for

our task, as it accommodates the variable-length trajectories in our data. Given the

potent capabilities of LSTM models in dealing with time-series data, it is entirely

rational to leverage them for trajectory data. However, the use of LSTM in this

work deviates from traditional approaches. Instead of directly employing LSTM

28 CHAPTER 4. METHODOLOGY

for predicting subsequent locations for a given trajectory, a task that can poten-

tially be hampered by an overwhelming number of possible outcomes, LSTM is

utilized for extracting high-level embedded trajectory representations.

Based on the extracted grid cell representations gridi, it is easy to obtain the

vector representation of a trajectory, since the sequential combination of high-

dimensional grid cell vector gridi is a kind of embedded trajectory representations

T ′i = {gridi0 , gridi1 , · · · , gridit}. However, as the raw data does not time-equally

sampled (detailed reasons will be provide in Chapter 5), the performance of pro-

posed model will be greatly affected by the number of sampling points, even fail-

ure to work. Thus, the output trajectory representation should be calculated as:

Ti = LSTM(gridi0 , gridi1 , · · · , gridit) (4.2)

Again, Ti is not the prediction result of the next location. It is the embedded

trajectory vector, more specifically, is the combination of hidden state (3.5) and

cell state (3.5). The hidden state and cell state are intermediate vectors generate by

the LSTM network, the vectors means characterization of the previous time-step’
s data (short-term memory) and the information from all previous time-steps that

have been processed (long memory) respectively.

4.2 Candidate Generation

Through the Embedding Construction module, the embedded vectors of both tra-

jectories and grid cells are obtained. These vectors allow for a direct computation

of the similarity between trajectories and grid cells. Up to this point, the pro-

posed model has taken into account temporal factors, spatial factors, and attribute

factors. However, in real-world scenarios, temporal and spatial factors typically

4.2. CANDIDATE GENERATION 29

influence each other, indicating that modeling their correlations and dependencies

is also vital for accurate prediction results. Consequently, before inputting the

high-level feature representations into the Multi-Layer Perceptron or Deep Neural

Networks (DNN)[38], an Activation Unit is incorporated to facilitate interactions

between temporal features and spatial features.

4.2.1 Interaction Component: Activation Unit

This component, called an Activation Unit, is used to model feature interactions,

which play an essential role in generating predictions. It utilizes a mini-network

structure with a hidden layer, enabling the learning of sophisticated feature in-

teractions automatically rather than relying on manual feature engineering. The

model learns weights that emphasize meaningful interactions while diminishing

the impact of less relevant ones, refining the prediction accuracy. In this these,

the Activation Unit learn the weights between trajectory and candidate grid cells

automatically. This way, the Activation Unit promotes better prediction results

through the incorporation of interrelated temporal and spatial features.

In detailed, activation units are applied on the grid trajectory features, which per-

forms as a weighted sum pooling to adaptively calculate trajectory representation

TU given a candidate grid cell gc as:

TU(gc) = f
(
gc, grid1, grid2, . . . , gridH

)
=

H∑

j=1

a
(
grid j, gc

)
grid j =

H∑

j=1

wj · grid j

(4.3)

where {grid1, grid2, . . . , gridH} is the list of embedding vectors of the past traveled

girds of user U with length of H. gc is the embedding vector of candidate c, and

a(·) is a feed-forward network with output as the activation weight as shown in

Fig.4.2. In this way, TU(gc) varies over different candidate grid cells. In a more

30 CHAPTER 4. METHODOLOGY

intuitive sense, the current trajectory embeddings reflect dynamic variations, sub-

ject not only to changes in temporal information (trajectory) but also in response

to alterations in spatial features. This multi-dimensional variability lends a ro-

bustness and complexity to the model that mirrors real-world conditions more

accurately. The correlations and dependencies between spatial and temporal fac-

tors are intertwined, thereby generating trajectory embeddings that offer a more

comprehensive understanding of the movement patterns.

Fig. 4.2: The architecture of activation unit.

4.2.2 Multi-Layer Perceptron

The MLP is most common layer to conduct the non-linear transformation of input

data, which make the prediction result more robust. And the MLP is also known

4.2. CANDIDATE GENERATION 31

as a typical type of Feed-Forward Network (FNN). Let’s denote the weights from

layer i to layer i + 1 as Wi and the bias at layer i + 1 as bi+1. If hi represents the

output of layer i and f is the activation function, then the output of layer i + 1 can

be represented as:

hi+1 = f (Wihi + bi+1) (4.4)

This formula represents the feed-forward computation for a single layer. In an

MLP with L layers, this computation would be repeated L times (once for each

layer). The output for the final layer L is typically passed through a final activation

function to produce the final output of the network. In this thesis, the activation

function called Dice is used. Zhou et al.[38] developed the novel activation func-

tion based a classical activation funtion PReLU, which aims to deal with different

distribution problem similar to the one I countered in this studies. Mathematically,

the PReLU function can be formulated as:

f (s) =




s if s > 0

αs if s ≤ 0
= p(s) · s + (1 − p(s)) · αs (4.5)

Wherein s represents a dimension of the input to the activation function f (·), and

p(s) = I(s > 0) is an indicator function that dictates the behavior of f (s), per-

mitting it to switch between the channels f (s) = s and f (s) = αs. In the latter

channel, α serves as a trainable parameter. We refer to p(s) as the control func-

tion. The control function of the PReLU activation function is depicted on the

left side of Fig. 4.3. PReLU sets a rectified point at a value of 0, an approach

that may be ill-suited when the inputs across different layers display diverse dis-

tributions. Given this consideration, we propose a novel data adaptive activation

32 CHAPTER 4. METHODOLOGY

function dubbed Dice to address this issue in a more sophisticated manner.

f (s) = p(s) · s + (1 − p(s)) · αs, p(s) =
1

1 + e−
s−E[s]√
Var[s]+ε

(4.6)

The control function for the Dice activation function is illustrated on the right side

of Fig. 4.3. From one perspective, Dice can be considered as a generalized form of

PReLU. The central idea underpinning Dice is to adaptively modify the rectified

point in accordance with the distribution of the input data, with the value being

set to the mean of the input. Furthermore, Dice facilitates a smooth transition

between the two channels. In the case where E(s) = 0 and Var[s] = 0, Dice

reduces to the PReLU function.

Fig. 4.3: Control function of PReLU and Dice.

Finally, get through MLP layers, the cosine similarity is used to measure final

result, which is the possibility of the candidate grid cell to be the next location for

a given trajectory.

Chapter 5

Experiments

In this section, I will give all the details of experiments settings and How I con-

ducted the experiments. After that, the performances comparison of different

models on the same dataset is provided as well.

5.1 Experiments Settings

5.1.1 Dataset Description

I evaluate the proposed model on two real-world datasets:

• Tokyo Dataset: Tokyo dataset comprises 612,010 trajectories, encompass-

ing over 120 million GPS records. These data were collected from 2,319

users over a period from August 23rd to August 30th, 2022, within the ur-

ban confines of Tokyo, Japan. The shortest trajectory only contains 13 GPS

records (2km) and the longest trajectory contains 2109 GPS records (41km).

Besides, the Tokyo dataset contains 5 different transportation modes, in-

cluding walk, bike, car, bus and train. Apart from the bike trajectories,

which comprise approximately 12% of the total dataset, a proportion slightly

33

34 CHAPTER 5. EXPERIMENTS

less than other modes, the remaining transport modes are approximately

equally distributed throughout the dataset. This means that, despite the

slight underrepresentation of bike trajectories, a broad diversity of trans-

port modes is still well represented in the dataset, providing a robust basis

for the generalization of our trajectory prediction model across different

transportation contexts.

• Osaka Dataset: Osaka dataset is comprised of 368,216 trajectories (over 70

million individual GPS records), which is collected from 10,53 users over a

period from August 23rd to August 30th, 2022, within the urban confines of

Osaka, Japan. The shortest trajectory only contains 4 GPS records (0.4km)

and the longest trajectory contains 1349 GPS records (28km). Same like

the Tokyo dataset, Osaka dataset also contains 5 different transportation

modes, including walk, bike, car, bus and train. Additionally, each mode of

transportation is approximately equally distributed throughout the dataset.

As discernible from the dataset description, it is conspicuous that the distribution

of GPS data points is markedly uneven, ranging from 10 to 2000, and the intervals

between each sampling point are not necessarily consistent. In order to mitigate

potential detrimental effects on prediction accuracy engendered by these factors,

the original data underwent preprocessing. This involved a resampling process,

which was conducted based on a defined time interval, thereby ensuring unifor-

mity and reducing potential bias in our analyses.

Fit 5.1 gives an intuitive example how those dataset looks like. Is important to

mention that the research area of both two dataset are square, like from 139.55

to 139.85 and 35.55 to 35.85. The reason why the Tokyo dataset visualized in a

circle is that sampled data is a little bit larger than the research area to make sure

the data used in the experiment will not be corrupted by accident, for example

5.1. EXPERIMENTS SETTINGS 35

Fig. 5.1: Visualization of two datasets on the grid map.

only a part of GPS points of a entire trajectory is used.

Map Division. In addition, due to the divergent distributions of the two datasets,

the research areas considered differ slightly. Specifically, for the primary exper-

iments conducted on the Tokyo dataset, the selected area is demarcated by lon-

gitude and latitude values ranging from 139.55 to 139.85 and 35.55 to 35.85,

respectively. And in Osaka, the selected area is demarcated by longitude and

latitude values ranging from 135.35 to 135.65 and 34.55 to 34.85. To make the

consistence with the default model, the grid size is set to be 100×100 meter2 both

in Tokyo and Osaka. It is important to mention that other map information like

Point-Of-Interest (POI) data are not considered in the prototype model, since the

main purpose is to verify the functionality of recommender system based approach

on the trajectory prediction task.

5.1.2 Parameter Settings

The parameters I used in the following experiments are described as follows:

• In the attribute component, the embedding vector dimension is chosen like

36 CHAPTER 5. EXPERIMENTS

weekID to R4, timeID to R16, driverID to R12.

• In the spatial component, the LSTM is implemented by TensorFlow, and the

embedding dimension (units) is set to be R64, the used activation function

is tanh, and recurrent activation is sigmoid. In order to consistent with the

output of DeepWalk, the single layer LSTM network is more suitable.

• In the temporal component, the parameters of a DeepWalk model imple-

mented by Python is like number of random walks per node (num walks) is

10, the length of random walk (walk length) is 100, the dimension of em-

beddings (representation size) is R64, the window size (window size) is 5,

the number of epochs (num iter) is 10, and the learning rate (r) is 0.002.

• As for the physical devices and software versions, the propose model is im-

plemented with TensorFlow 2.11.0, a widely used Deep Learning Python

library. The versions of other used software/library is Pandas 1.5.2, Numpy

1.24.1 and faiss 1.7.2, where faiss is an open-source library developed by

Facebook AI that provides efficient and scalable methods for handling sim-

ilarity search and clustering of high-dimensional vectors. The hardware

involed is 2 GeForce RTX 2080 Ti GPU, 1 Intel(R) Xeon(R) Silver 4210

CPU @ 2.20GHz CPU, and the developing environment is Ubuntu 20.04.6

LTS.

5.1.3 Metrics

In the following experiments, I used two metrics to measure the performance of

the proposed model, i.e., Cosine Similarity and Hit Rate. During the model train-

ing process, Cosine Similarity is used to measure the quality of generated em-

beddings. And in the predicting process, Hit Rate is used to evaluate the overall

5.1. EXPERIMENTS SETTINGS 37

performance of the proposed model.

Cosine Similarity. Cosine similarity is a measure of similarity between two non-

zero vectors of an inner product space. It is defined as the cosine of the angle

between the two vectors, which is determined by the dot product of the vectors di-

vided by the product of the vectors’ magnitudes. In our case, the Cosine Similarity

is used to compute the similarity of embedded trajectory vector and the candidate

embedded grid cell vectors. Mathematically, cosine similarity is computed as fol-

lows:

cos(Θ) =
Ti · gj

||Ti|| ·
∣∣∣
∣∣∣gj

∣∣∣
∣∣∣

(5.1)

where Ti · gj denotes the dot product of embedded trajectory vector Ti and the

embedded grid vectorgj, and Ti and gj represents the magnitudes (or lengths) of

vectors Ti and gj. The result of this equation is a value between -1 and 1. Ba-

sically, the larger cosine similarity, the more similar two vectors. In this thesis,

a larger cosine similarity implies a greater similarity between the two vectors. In

the context of our trajectory prediction task, this translates to the higher likelihood

of a grid being the next point in a given trajectory. When considering the recom-

mendation of the next grid cell based on this principle, the grid cells with larger

cosine similarity values to the trajectory’s current direction are more likely to be

the subsequent point in the trajectory.

Hit Rate. The metric used to measure the overall performance is called Hit Rate.

Hit Rate is a commonly employed evaluation metric used to assess the system’s

effectiveness. It quantifies the proportion of true positive recommendations out

of all the recommendations made by the system. Formally, Hit Rate is defined as

the number of hits divided by the total number of recommendations given. In our

case, the ground truth or hit is the grid which a certain user will appeared in next

38 CHAPTER 5. EXPERIMENTS

timestamp, it can formulated as:

HitRate =
number of hit

number of trajectories

where hit means that the ground truth grid cell appeared in the top-K recommen-

dations. It important to point out that unlike the recommendation task, there is

only one location can be ground truth for a given trajectory at certain time.

5.2 Performance Comparison

To demonstrate the strength of the proposed model. I first compare the proposed

model with several baseline methods and analysis the difference among the exper-

iment results.

5.2.1 Competitors

To best of my knowledge, there is no similar approach, for instance, using the

recommender system approaches to predict individual trajectory. Thus, the base-

line mode is select from the classical models that can applied to the grid trajectory

prediction task, also including the simplified proposed model. The detail follows:

AN: AN stands for Average Neighbour, the idea is to just select the neighbour grid

cells of the last appeared location for a given trajectory as the predict results. For

example, Since the map is already divided by the grid, it is clear that the neighbour

grids are the grids which are most close to the target grid.

LSTM: As outlined in Chapter 3, the LSTM model is a traditional and effective

approach for sequential data prediction. Given that trajectory data, even when rep-

5.2. PERFORMANCE COMPARISON 39

resented as grid trajectories, is essentially sequential data, it stands to reason that

LSTM would be used to predict the next location for a given trajectory. Neverthe-

less, it is important to note that the standard LSTM model was not originally de-

signed for recommendation purposes. Consequently, in subsequent experiments,

we only consider the top-1 recommendation for LSTM. This is easily understood

when considering that the prediction itself can also be viewed as the top-1 recom-

mendation.

YouTubeDNN: YouTubeDNN refers to the model proposed in the paper named

”Deep Neural Networks for YouTube Recommendations[37]”. Actually, the pro-

posed model is derived from the YouTubeDNN model. And the YouTubeDNN is

a famous model in the field of recommendation, which is designed to solve the

efficient recommendation problem for the famous video website YouTube. In the

grid trajectory case, it is also can be used for the trajectory prediction.

Temporal RSTP: Temporal RSTP is a simplified model of the proposed RSTP

model, or to put it simply, it can be regard as a simple combination of YouTubeDNN

and LSTM. In the temporal RSTP model, only the temporal information is consid-

ered. That is to say, the LSTM model is used to extract the temporal information

behind the ordinary trajectory. As for the spatial embedding of the grid cell, it

is just using a function provided by the TensorFlow to random generate a dense

embedding representation of any numerical value like Grid ID.

Spatial RSTP: Spatial RSTP is also simplified model of the proposed RSTP

model, similarly, it can be regard as a simple combination of YouTubeDNN and

DeepWalk. Similar to the temporal model, the spatial temporal model only con-

sider the spatial information by utilize the DeepWalk model to capture the spatial

40 CHAPTER 5. EXPERIMENTS

information. To avoid the failures caused by the variant-length of trajectory, after

obtaining the embedded grid cells, we directly compute the average R64 vector of

past traveled grid cell as the representation of trajectory.

Datasets Methods K@1 K@10 K@100
Tokyo AN 22.98% (9) 25.46% (25) 40.71%(81)

LSTM 0.11% - -
YouTubeDNN 0.76% 3.92% 9.74%

Temporal RSTP 23.37% 25.58% 30.68%
Spatial RSTP 1.23% 8.32% 19.39%

RSTP (proposed) 23.66% 28.33% 34.76%
Osaka AN 18.59%(9) 26.66%(25) 48.37%(81)

LSTM 0.13% - -
YouTubeDNN 0.18% 3.32% 6.84%

Temporal RSTP 20.18% 28.32% 29.23%
Spatial RSTP 1.49% 6.32% 20.33%

RSTP (proposed) 25.77% 30.43% 48.53%

Table. 5.1: Performance Comparison (15 minutes interval)

Table 5.1 shows the experiment results. As we can see, simply using the Average

Neighbour method has a relative good results comparing to the ordinary unop-

timized method like LSTM, YouTubeDNN, even superior to the Spatial RSTP

method when the recommendation number K is small. One possible reason why

LSTM model almost fail to work is that as the multi-classification problem, there

is too many possible results to choose for the LSTM model. Additionally, LSTM

model can not get enough information to distinguish those classes (grids). As for

the YouTubeDNN model, comparing to the LSTM, its performance is similar to

LSTM. With the k increasing, the result is also increasing rapidly. We can say

that this result indicates that the recommender system approaches work for the

grid trajectory prediction task.

In general, the proposed model have a good performance in most the cases. As the

5.3. CASE STUDY 41

incorporation of spatiotemporal component, the performance is greatly improved,

which indicated the importance of the spatiotemporal information in the trajectory

prediction task. However, as the K or the number of neighbours increase to a

certain level, the performance of naive Average Neighbour method may Superior

to the proposed method. That is because in the trajectory predictions, the physical

constrains exists. When the number of neighbours increases to a certain level,

it will easily cover all possible results like a brute force approaches. While the

proposed methods works in a completely different logic, and it is more promising

comparing to the Average Neighbour method. The detailed explanation will be

given in the Case Study section.

5.3 Case Study

In this section, I will introduce some detailed case study to show the strength of

the proposed model and explain why this approach is more promising than the

brute force method like Average Neighbour method.

5.3.1 Case Study 1: Effect of Attribute Component

We validate the effectiveness of various attributes, including timeID, driverID,

and weekID, through a series of controlled experiments conducted on the Tokyo

Dataset. For each experiment, we selectively eliminate one attribute. Our find-

ings reveal that both timeID and weekID have a considerable impact on the Hit

Rate. The elimination of these two attributes leads to a decrease in the Hit Rate of

0.79% and 1.07% in the Top-1 scenario, respectively. This result aligns with our

intuitive understanding, that is, individuals typically exhibit distinct trajectory pat-

terns at different times of the day and on different days of the week. For instance,

during working hours, most people are likely to remain in their homes or offices,

42 CHAPTER 5. EXPERIMENTS

resulting in stable trajectories. Conversely, on weekends, people may travel to

different places compared to weekdays. The removal of the DriverID leads to a

minor decrease of 0.15% in the Top-1 scenario, which might not seem substantial.

However, if both the DriverID and statistical features such as speed and distance

are eliminated, the decrease increases to 0.9% in the Top-1 scenario. These exper-

iments underscore the importance of attribute information for prediction results,

particularly when K is small.

5.3.2 Case Study 2: Effect of Spatiotemporal Component

Table 5.1 vividly illustrates that the independent incorporation of both Spatial

Component and Temporal Component into the YouTubeDNN model significantly

enhances its performance, albeit with differing growth patterns. For clarity, we

have collated the results into Table 5.2. Here, the method termed ’combined’

refers to the numerical amalgamation of the results from Temporal RSTP and

Spatial RSTP. More specifically, a union operation is performed on the prediction

result sets of Temporal RSTP and Spatial RSTP, following which the hit rate is

recalculated. The results are then documented in Table 5.2. Three notable findings

can be extrapolated from Table 5.2:

• The proposed temporal component serves to enhance the overall perfor-

mance of the prediction model. Interestingly, the degree of this improve-

ment does not show substantial sensitivity to the increase in the number K.

One plausible explanation for this observation is that the temporal compo-

nent predominantly captures time-related information, such as the trajectory

of the previous day. Given that most individuals exhibit relatively consis-

tent trajectory patterns within a week, an increase in K may not necessarily

alter the results provided by the model. This is reflected in the incremental

improvement not showing substantial sensitivity to the rise in the value of

5.3. CASE STUDY 43

K.

• The proposed spatial component also enhances the overall performance of

the prediction model, showing considerable sensitivity to increases in the

number K. Given that the spatial component is designed to identify simi-

lar grid cells, it is expected to find numerous similarities at the city-scale.

For instance, areas surrounding different stations may exhibit striking sim-

ilarities. As such, while the performance in the Top-1 case may not meet

expectations, an increase in K can yield a larger set of similar grids. These

are likely to contain the ground truth, hence improving the model’s perfor-

mance as K increases.

• Another intriguing observation is that the proposed RSTP model consis-

tently outperforms the numerical combination of the Spatial and Tempo-

ral models in all conducted experiments. Particularly in the Osaka dataset,

with Top-100 recommendations, the performance of RSTP is approximately

14% superior to that of the numerical combination. This suggests that the

interaction component in the ’candidate generation’ phase of the model is

functioning effectively, enabling it to capture the nuanced interplay between

the spatial and temporal factors.

Datasets Methods K@1 K@10 K@100
Tokyo Temporal RSTP 23.37% 25.58% 30.68%

Spatial RSTP 1.23% 8.32% 19.39%
RSTP 23.66% 28.33% 34.76%

Combined 23.37% 25.90% 31.48%
Osaka Temporal RSTP 20.18% 28.32% 29.23%

Spatial RSTP 1.49% 6.32% 20.33%
RSTP 25.77% 30.43% 48.53%

Combined 20.33% 29.42% 34.53%

Table. 5.2: Verification of the functionality of Spatiotemporal Component.

44 CHAPTER 5. EXPERIMENTS

5.3.3 Case Study 3: Potential Analysis of RSTP.

Before proceeding with the analysis of performance across different transporta-

tion modes, it is imperative to first examine the results of a comparable experi-

ment conducted in Case 2. In this experiment, we compare the proposed model

with the brute force method known as Average Neighbor. Look at table 5.3, a

different finding is that the numerical combination got much better performance,

which means those prediction provided by those two method are not completely

the same. More specifically, as shown in table 5.3, around 34% of the prediction

results in each method is independent since incremental of method Combined is

roughly one third comparing the method AN and method RSTP.

One plausible explanation for this result is as follows: The brute force method,

Average Neighbor, considers all possible results without taking into account the

physical constraints of the trajectory prediction task, such as the speed of trans-

portation modes and road connections. In contrast, the trajectory prediction task

is inherently constrained by these physical conditions, resulting in a limited range

of potential outcomes within the vicinity of the last observed location. There-

fore, in this particular scenario, the brute force method can still achieve relatively

good performance due to the proximity constraint. However, the proposed RSTP

method, which aims to identify grid cells similar to the last observed grid or the

entire trajectory, focuses on finding more accurate predictions by leveraging the

inherent patterns and similarities in the data. Considering these factors, combin-

ing the numerical results of the two methods can lead to an incremental improve-

ment in accuracy compared to the individual base methods. By incorporating the

strengths of both approaches, the combined method can potentially enhance the

prediction performance by effectively capturing the relevant spatial and temporal

patterns present in the data. If the physical constrains can be incorporated to the

5.3. CASE STUDY 45

model, a further improve mend on the prediction accuracy can be expected. I

leave it as an intriguing direction for future work.

Datasets Methods K@1 K@10 K@100
Tokyo AN 22.98% (9) 25.46% (25) 40.71%(81)

RSTP 23.66% 28.33% 34.76%
Combined 30.71% 36.09% 48.61%

Osaka AN 18.59%(9) 26.66%(25) 48.37%(81)
RSTP 25.77% 30.43% 48.53%

Combined 31.33% 36.83% 51.66%

Table. 5.3: Functionality Analysis of Proposed Model.

Then let’s take a deeper look at the performance of the two methods on different

transportation modes. Fig.5.2 illustrates the performances among different trans-

portation modes on Tokyo dataset and Osaka dataset. An observation is that, both

in Tokyo and Osaka, the Average Neighbour method have a much better perfor-

mance on the walk mode than the proposed method, and in the bike mode, those

two method have similar performance. As for the left transportation modes, the

proposed RSTP method is superior to the brute force AN method. This observa-

tion is consistent with the previous analysis that due to the physical constrains, the

transportation mode with low speed leads to the the possible results constrained

to the nearby area of last appeared location. That is, results of the walk mode and

the bike mode provided by the AN method are better than the proposed model.

While the average speed increased, such as the car mode, bus mode and train

mode, during 15 minutes, it can easily traveled 10 km away from the last loca-

tions. In this case, if using AN method to predict the next grid cell, the number of

neighbour should reach to around 100∗100 grids to include the ground truth in all

situations, which makes no sense in the real world applications. In contrast, the

RSTP model give a relative better results than the brute force AN method. Even

46 CHAPTER 5. EXPERIMENTS

just in the top-10 recommendation, it have the hit rate with a average 3% in such

high speed situations. This may the contributions of the spatiotemporal compo-

nent as we analyzed in Case Study 2.

(a) (b)

Fig. 5.2: Detailed performance comparison on transportation modes. (a) Tokyo
Dataset (b) Osaka Dataset

In a summary, based on the extensive analysis on the 3 case studies, the function-

ality of the proposed model can be ensured through the conducted experiments.

Moreover, the basic idea of the proposed model is different from the brute force

method like Average Neighbour, and we can know that it is more practical in the

real world applications through the analysis of Case Study 3: Potential Analysis of

RSTP. However, the limitations of the proposed model are obvious as well, such

as no considerations of physical constrains, lack of module to process the long-

term temporal information. Till now, the feasibility of the recommender system

approaches on the trajectory prediction task is approved, and the further improve-

ment can be expected. I leave it as an intriguing direction for future work.

Chapter 6

Conclusion

In this thesis, a Recommender System based Trajectory Prediction (RSTP) model

is proposed to address the grid-based trajectory prediction problem, striking a

balance between prediction accuracy and the scope of the research area. The ef-

fectiveness of this modified Recommender System approach, which specializes

in modeling spatiotemporal information, has been substantiated through exten-

sive experiments, reinforcing the practicality of applying a Recommender System

framework to the trajectory prediction problem. From a comprehensive literature

review and the empirical investigations, it is observed that the proposed model

exhibits clear practical utility and shows potential to forge a new approach for

tackling trajectory prediction tasks. While the results may not be superior in all

scenarios, the case studies suggest that this approach could potentially be a state-

of-the-art technique, particularly when larger and more diverse datasets are taken

into consideration. In future work, I will incorporate more context information

such as the Point-Of-Interest (POI) information and long-term temporal informa-

tion into the model to further improve the prediction performance.

47

Acknowledgements

First of all, I would like to thank the all the teachers and students in University

of Tokyo for their assistance both in academic and in life. Secondly, I also have

to express my gratitude to my dear friends in University of Tokyo, without of

their help, I definitely can not gain such achievements and stand here finishing my

master thesis. Thirdly, thanks the contributors of the extraordinary LATEXtemplate.

Finally, I would like to offer my sincere tribute to University of Tokyo, my alma

mater and my parents!

49

Bibliography

[1] B. Cheng, X. Xu, Y. Zeng, J. Ren, and S. Jung, “Pedestrian trajectory predic-

tion via the social-grid lstm model,” The Journal of Engineering, vol. 2018,

no. 16, pp. 1468–1474, 2018.

[2] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-

temporal interactions for human trajectory prediction,” in Proceedings of the

IEEE/CVF international conference on computer vision, 2019, pp. 6272–

6281.

[3] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory

prediction,” in 2017 IEEE 20th international conference on intelligent trans-

portation systems (ITSC). IEEE, 2017, pp. 353–359.

[4] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi, “Prob-

abilistic vehicle trajectory prediction over occupancy grid map via recurrent

neural network,” in 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), 2017, pp. 399–404.

[5] D.-D. Nguyen, C. Le Van, and M. I. Ali, “Vessel trajectory prediction us-

ing sequence-to-sequence models over spatial grid,” in Proceedings of the

12th ACM International Conference on Distributed and Event-Based Sys-

tems, 2018, pp. 258–261.

51

52 BIBLIOGRAPHY

[6] R. Jiang, X. Song, D. Huang, X. Song, T. Xia, Z. Cai, Z. Wang, K.-S. Kim,

and R. Shibasaki, “Deepurbanevent: A system for predicting citywide crowd

dynamics at big events,” in Proceedings of the 25th ACM SIGKDD interna-

tional conference on knowledge discovery & data mining, 2019, pp. 2114–

2122.

[7] R. Jiang, Z. Cai, Z. Wang, C. Yang, Z. Fan, Q. Chen, K. Tsubouchi, X. Song,

and R. Shibasaki, “Deepcrowd: A deep model for large-scale citywide crowd

density and flow prediction,” IEEE Transactions on Knowledge and Data

Engineering, vol. 35, no. 1, pp. 276–290, 2021.

[8] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O.

Arras, “Human motion trajectory prediction: A survey,” The International

Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.

[9] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing: concepts,

methodologies, and applications,” ACM Transactions on Intelligent Systems

and Technology (TIST), vol. 5, no. 3, pp. 1–55, 2014.

[10] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and

S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,”

in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 961–971.

[11] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, “Trafficpre-

dict: Trajectory prediction for heterogeneous traffic-agents,” in Proceedings

of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.

6120–6127.

BIBLIOGRAPHY 53

[12] Z. Yan, “Traj-arima: A spatial-time series model for network-constrained

trajectory,” in Proceedings of the Third International Workshop on Compu-

tational Transportation Science, 2010, pp. 11–16.

[13] X. Zhang, X. Fu, Z. Xiao, H. Xu, and Z. Qin, “Vessel trajectory prediction

in maritime transportation: Current approaches and beyond,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 19 980–

19 998, 2022.

[14] L. Lin, W. Li, H. Bi, and L. Qin, “Vehicle trajectory prediction using lstms

with spatial–temporal attention mechanisms,” IEEE Intelligent Transporta-

tion Systems Magazine, vol. 14, no. 2, pp. 197–208, 2022.

[15] Y. Xu, D. Ren, M. Li, Y. Chen, M. Fan, and H. Xia, “Tra2tra: Trajectory-

to-trajectory prediction with a global social spatial-temporal attentive neural

network,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1574–

1581, 2021.

[16] D. Varshneya and G. Srinivasaraghavan, “Human trajectory prediction using

spatially aware deep attention models,” arXiv preprint arXiv:1705.09436,

2017.

[17] H. Xue, D. Q. Huynh, and M. Reynolds, “Ss-lstm: A hierarchical lstm model

for pedestrian trajectory prediction,” in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, 2018, pp. 1186–1194.

[18] M. Huynh and G. Alaghband, “Trajectory prediction by coupling scene-lstm

with human movement lstm,” in Advances in Visual Computing: 14th In-

ternational Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV,

USA, October 7–9, 2019, Proceedings, Part I 14. Springer, 2019, pp. 244–

259.

54 BIBLIOGRAPHY

[19] G. Xie, A. Shangguan, R. Fei, W. Ji, W. Ma, and X. Hei, “Motion trajectory

prediction based on a cnn-lstm sequential model,” Science China Informa-

tion Sciences, vol. 63, pp. 1–21, 2020.

[20] X. Zhang, X. Fu, Z. Xiao, H. Xu, and Z. Qin, “Vessel trajectory prediction

in maritime transportation: Current approaches and beyond,” IEEE Transac-

tions on Intelligent Transportation Systems, 2022.

[21] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based prediction model for

spatio-temporal data,” in Proceedings of the 24th ACM SIGSPATIAL inter-

national conference on advances in geographic information systems, 2016,

pp. 1–4.

[22] L. Wang, X. Geng, X. Ma, F. Liu, and Q. Yang, “Crowd flow prediction by

deep spatio-temporal transfer learning,” arXiv preprint arXiv:1802.00386,

2018.

[23] Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin, “Deepstn+: Context-aware spatial-

temporal neural network for crowd flow prediction in metropolis,” in Pro-

ceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01,

2019, pp. 1020–1027.

[24] S. Wang, J. Cao, H. Chen, H. Peng, and Z. Huang, “Seqst-gan: Seq2seq

generative adversarial nets for multi-step urban crowd flow prediction,” ACM

Transactions on Spatial Algorithms and Systems (TSAS), vol. 6, no. 4, pp. 1–

24, 2020.

[25] J. He, J. Wang, and Y. Luo, “Deep architectures for crowd flow prediction,”

in Proceedings of the 2019 2nd International Conference on Data Science

and Information Technology, 2019, pp. 236–241.

BIBLIOGRAPHY 55

[26] Q. Zhou, J.-J. Gu, C. Ling, W.-B. Li, Y. Zhuang, and J. Wang, “Exploit-

ing multiple correlations among urban regions for crowd flow prediction,”

Journal of Computer Science and Technology, vol. 35, pp. 338–352, 2020.

[27] Z. Zou, P. Gao, and C. Yao, “City-level traffic flow prediction via lstm net-

works,” in Proceedings of the 2nd International Conference on Advances in

Image Processing, 2018, pp. 149–153.

[28] H. Yu, Q. Zheng, S. Qian, and Y. Zhang, “A fuzzy-based convolutional

lstm network approach for citywide traffic flow prediction,” in 2022 IEEE

25th International Conference on Intelligent Transportation Systems (ITSC).

IEEE, 2022, pp. 3360–3367.

[29] G. Tang, B. Li, H.-N. Dai, and X. Zheng, “Sprnn: A spatial–temporal recur-

rent neural network for crowd flow prediction,” Information Sciences, vol.

614, pp. 19–34, 2022.

[30] Q. Zhou, J. Gu, X. Lu, F. Zhuang, Y. Zhao, Q. Wang, and X. Zhang, “Model-

ing heterogeneous relations across multiple modes for potential crowd flow

prediction,” in Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 35, no. 5, 2021, pp. 4723–4731.

[31] A. Ali, Y. Zhu, and M. Zakarya, “A data aggregation based approach to

exploit dynamic spatio-temporal correlations for citywide crowd flows pre-

diction in fog computing,” Multimedia Tools and Applications, pp. 1–33,

2021.

[32] Z. Fan, X. Song, R. Shibasaki, and R. Adachi, “Citymomentum: an online

approach for crowd behavior prediction at a citywide level,” in Proceedings

of the 2015 ACM International Joint Conference on Pervasive and Ubiqui-

tous Computing, 2015, pp. 559–569.

56 BIBLIOGRAPHY

[33] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for

citywide crowd flows prediction,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 31, no. 1, 2017.

[34] S. S. Sohn, H. Zhou, S. Moon, S. Yoon, V. Pavlovic, and M. Kapadia, “Lay-

ing the foundations of deep long-term crowd flow prediction,” in Computer

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–

28, 2020, Proceedings, Part XXIX 16. Springer, 2020, pp. 711–728.

[35] X. Wang, Z. Zhou, Y. Zhao, X. Zhang, K. Xing, F. Xiao, Z. Yang, and Y. Liu,

“Improving urban crowd flow prediction on flexible region partition,” IEEE

Transactions on Mobile Computing, vol. 19, no. 12, pp. 2804–2817, 2019.

[36] T. Zang, Y. Zhu, Y. Xu, and J. Yu, “Jointly modeling spatio–temporal de-

pendencies and daily flow correlations for crowd flow prediction,” ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 4,

pp. 1–20, 2021.

[37] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube

recommendations,” in Proceedings of the 10th ACM conference on recom-

mender systems, 2016, pp. 191–198.

[38] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and

K. Gai, “Deep interest network for click-through rate prediction,” in Pro-

ceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, 2018, pp. 1059–1068.

[39] H. Ko, S. Lee, Y. Park, and A. Choi, “A survey of recommendation sys-

tems: recommendation models, techniques, and application fields,” Elec-

tronics, vol. 11, no. 1, p. 141, 2022.

BIBLIOGRAPHY 57

[40] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social

representations,” in Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2014, pp. 701–710.

[41] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout

in recurrent neural networks,” Advances in neural information processing

systems, vol. 29, 2016.

[42] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov

et al.’s negative-sampling word-embedding method,” arXiv preprint

arXiv:1402.3722, 2014.

	1 Introduction
	1.1 Background
	1.2 Purpose & Contributions
	1.3 Structure

	2 Related Work
	2.1 Individual-based Trajectory Prediction
	2.1.1 Traditional Trajectory based Approaches
	2.1.2 Grid with Trajectory Approaches

	2.2 Collective-based Trajectory Prediction
	2.2.1 Sequential Model based Approaches
	2.2.2 Convolutional Model based Approaches

	3 Preliminary
	3.1 Trajectory
	3.1.1 Grid Map
	3.1.2 Grid-based Trajectory

	3.2 Recommender System
	3.2.1 Top-N Recommendation
	3.2.2 Deep Recommender System

	3.3 Neural Network
	3.3.1 Long Short-Term Memory
	3.3.2 DeepWalk

	3.4 Problem Definition

	4 Methodology
	4.1 Embedding Construction
	4.1.1 Attribute Component: Embedding and Concatenation
	4.1.2 Spatial Component: DeepWalk
	4.1.3 Temporal Component: LSTM

	4.2 Candidate Generation
	4.2.1 Interaction Component: Activation Unit
	4.2.2 Multi-Layer Perceptron

	5 Experiments
	5.1 Experiments Settings
	5.1.1 Dataset Description
	5.1.2 Parameter Settings
	5.1.3 Metrics

	5.2 Performance Comparison
	5.2.1 Competitors

	5.3 Case Study
	5.3.1 Case Study 1: Effect of Attribute Component
	5.3.2 Case Study 2: Effect of Spatiotemporal Component
	5.3.3 Case Study 3: Potential Analysis of RSTP.

	6 Conclusion
	Acknowledgement

