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Abstract 

 

The fractal state of the arterial vascular tree is considered to have a universal dimension related to 

the principle of minimum work rate, but can demonstrate the capacity to adapt to other dimensions 

in disease states such as congenital high-flow pulmonary hypertension (PH) by a process that is not 

completely understood. To document and interpret fractal adaptation in patients with different 

degrees of PH, pulmonary and systemic vascular resistance was analyzed using a model that 

evaluated the fractal dimension, x, of the Poiseuille resistance contribution of the arterial vessel 

radius between 10 and 100 µm, via the proportionality Q µ (Rperi/BL)-x/4, with Q, Rperi, and BL 

clinically observed variables representing total pulmonary or systemic blood flow, its peripheral arterial 

resistance, and body length, respectively. Identification of x in the pulmonary (p) and systemic (s) 

beds was evaluated using hemodynamic data of 213 patients, categorized into 7 groups by PH grade. In 

controls without PH, xp = 2.2 while the dimension increased to 3.0, with the systemic dimension constant 

at xs = 3.1. Our model predicts that severe grades of PH are associated with: more elongated and 

hindered vessels in the periphery, and reductions in vessel numbers, as unit pulmonary resistive arterial 

trees (N1) and their component intra-acinar arteries (Nw). These model network changes suggest a 

complex adaptive process of arterial network reorganization in the pulmonary circulation to 

minimize the work rate of high-flow congenital heart defects.  
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1. Introduction 

The whole vascular system, pulmonary or systemic, can be divided into three segments 

longitudinally, comprising the proximal large arteries, peripheral resistive arteries, and capillaries 

and veins [24, 66]. Hereafter, suffixes p and s stand for pulmonary and systemic, respectively. 

 

1.1. Longitudinal distribution of the pressure gradient in the systemic circulation 

In the systemic circulation, it is generally estimated that the mean pressure in the ascending aorta 

(Pao) drops 10% in large arteries with rs > 100 µm, which function as an elastic reservoir or a Windkessel 

[59, 66], 60% in small resistive arteries with rs ≤ 100 µm, and the remaining 30% in capillaries and veins 

[66]. 

Mean aortic blood pressure falls only 2% from the ascending aorta to small arteries whose inner 

radius (r) narrows to approximately 1 mm [79] (or 2.5 mm [66]) in the human systemic circulation [66]. 

The sufficient elasticity and resultant large distensibility in proximal systemic arteries are due to the large 

ratio of constituent elastin over collagen and the thin smooth muscle layer [21, 66].  

By contrast, as much as 60% of mean aortic blood pressure is lost in the peripheral systemic 

resistive arteries (0.04 ≤ rs ≤ 0.1 mm) [66]. A much smaller elastin/collagen ratio in more peripheral 

systemic arteries renders their wall a lot stiffer [18, 49, 66, 79]. Furthermore, adding a thick smooth 

muscle layer to this already stiffer walls property makes the change in the radius in response to internal 

pulsatile pressure alteration extremely small in systemic arterioles [58, 66].  

Some histologists, however, advocate another intermediate category of systemic arteries around 

0.1 < rs ≤ 1 mm [79] (or ≤ 2.5 mm [66]), where the pressure gradient comprises 8% of mean aortic 

pressure in humans [66]. They describe these arteries as elastic-muscular and their wall properties lie in 

between the more proximal elastic and more peripheral resistive arteries [66, 78]. 
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1.2. Longitudinal distribution of the pressure gradient in the pulmonary circulation  

Hakim et al. (1982) described that the trans-pulmonary pressure drop can be divided into the 

three segments through in situ experiments with perfused canine lungs by arterial and venous 

occlusion: the middle non-muscular, much more distensible fraction contributing a major fraction 

of the vascular compliance, relatively non-distensible muscular arteries, and similarly non-

distensible veins [24]. 

Brody et al. estimated the longitudinal distribution of vascular resistance as being 46% arterial, 

34% capillary, and 20% venous [7]. Bhattacharya et al. reported the distribution of resistance as 

5.4% in pulmonary arteries with diameters > 50 µm, 32.1% in those of diameters of 10–50 µm, and 

62.5% in capillaries and veins by the direct measurement in the isolated perfused dog lungs [6]. In 

the physiological pulmonary circulation, normal pressure through the pulmonary capillaries and 

veins (DPcv-p) is reported to be larger than in its systemic counterpart, amounting to approximately 

50% of the total transpulmonary pressure drop in canine isolated perfused lungs [6, 7, 24, 59, 71].  

The normal pulmonary arterial circulation shares 50% [6, 24, 59] of the whole mean 

transpulmonary pressure gradient, which is as low as 6–7 mmHg in humans [14, 46, 66]. The mean 

pressure gradient through them amounts to only 3.3 ± 0.6 mmHg [63], as estimated in controls of our 

clinical data in this study as shown later. The pulmonary arterial wall is much thinner, less or non-

muscularized, and more distensible than its systemic counterpart [1, 11, 23, 61, 66] even though 

peripheral pulmonary arteries of rp ≤0.1 mm comprise the most resistive in the pulmonary arterial 

circulation [6, 59].  
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1.3. The scale of precapillary arterioles 

The radius of the terminal arteriole is reported to be around 7–10 µm in in vivo rat’s systemic [35, 

53], canine systemic [75] and pulmonary [12], and human systemic [80] and pulmonary [36] arteries, 

because the radii of terminal arterioles are similar in spite of being from different mammalian species. 

These data suggest that the scale of red blood cells (RBCs), whose diameter is around 7 µm, is critical to 

determine the radius of terminal arterioles as well as that of capillaries (5 µm) [53, 66, 77]. 

 
  



 
14 

1.4. Pulmonary vascular disease (PVD) in congenital cardiac defects 

A certain category of congenital cardiac defects is characterized by augmented pulmonary blood 

flow, which is called a left-to-right (L-R) shunt defect. The most common three defects are atrial septal 

defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), and their combination. It 

is well-known that they develop secondary pulmonary vascular disease (PVD) mainly on the arterial 

side of the peripheral pulmonary vascular bed over time as a reactive adjustment to the augmented shunt 

flow and pulmonary hypertension (PH) [4, 25, 27, 31, 32, 37, 59, 69].  

The reversible pathological changes in CHD with PH is characterized by medial hypertrophy of 

pre-acinar vessels and muscularization of normally non-muscularized arterioles [27, 31, 59, 69, 70, 83, 

84]. These may be accompanied by mild proliferation of intimal cells. In the early days when When 

Wagenvoort [84], and Heath & Edwards [27] published their studies around 1960, they considered that 

the secondary PH due to L-R shunt might be reversible when the histology showed medial hypertrophy 

alone. Medial hypertrophy is also observed in all healthy newborns after birth, reversing in the first 8 

weeks of life in fact [83]. However, children with VSD were reported to often display the heterogeneity 

and variability partially maintaining proliferative intimal changes within 1 year, and even plexiform 

lesions within 2.5 years after birth [83, 84]. Therefore, the irreversible form of PVD will progress much 

later to its final stage of further intimal proliferation, fibrosis, plexiform lesion, and arteritis without 

surgical intervention [27, 31, 59, 69, 70, 83, 84].  

These features and their progression were first reported and classified into 6 grades of 

structural changes in the pulmonary arteries with reference to congenital cardiac septal defects by 

Heath & Edwards in 1958 [31, 59, 69, 70, 83]. In their review article, Van der Feen et al. explained 

the mechanism of PVD as follows [83]. Blood flow is originally laminar in the normal pulmonary 

circulation. In the situation of a large L-R shunt, increased blood flow and pressure makes 



 
15 

turbulence in the arteries, especially at their branch points. Turbulence causes endothelial 

dysfunction, which induces medial hypertrophy together with increased pressure. Turbulence also 

disturbs the balance between transforming growth factor beta (TGF-b) vs. bone morphogenetic 

protein (BMP) [20], which elevates apoptosis, proliferation, and inflammation. Misbalance in these 

sequences triggers the endothelial proliferation, which may become resistant to apoptosis and create 

a neointimal layer. The neointimal layer makes the arterial inner surface irregular, increases the 

disruption of flow patterns, and further disturbs signaling balances. An irreversible vicious cycle is 

produced in series by this mechanism [83]. 

It is also widely agreed that this early stage of PVD in large defects results from both reflexive 

and neurohumorally mediated vasoconstriction by the above mentioned increased smooth muscle 

layer toward the peripheral small arteries and arterioles [27, 31, 37, 59, 69]. Congenital L-R shunt 

defects thus induce medial hypertrophy and vasoconstriction of intra-acinar arteries (0.004 ≤ rp ≤ 

0.1 mm) with secondary PH a few months after birth along the postnatal course of the disease [17, 

27, 31, 59]. Both of these pathophysiological changes are considered to induce strikingly decreased 

elasticity and increased rigidity of intra-acinar arterial wall properties. 

In addition to the vasoconstriction, the quantitative alveolar-to-arterial ratio is reported to fall 

in these pediatric patients, because the normal or extended growth of intra-acinar arteries becomes 

disturbed and substantially interrupted [27, 31, 69, 70, 83, 84]. It is not yet well explained what 

mechanisms hamper the development of intra-acinar arteries in these patients. [83, 84].  
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1.5. Radius exponent and fractal dimension 

Biological vessel structures have been simulated by fractal theory [3, 12, 15, 17, 19, 39, 41, 

44, 48, 50, 55, 80, 86, 87, 94], and the fractal dimension provides us with biologically important 

meanings of the branching pattern governing a tree-like structure and its space-occupying rules [55, 

87]. The fractal dimension was revealed as 3 in the branching pattern of arteries in organs [35, 41, 

48, 57, 72, 75, 80] and of bronchi in the lung [44]. The fractal dimension of x = 3 in bifurcating 

peripheral resistive systemic arteries was reported to be by morphometric studies [41, 48] as well as flow-

radius measurement in vivo [35, 53, 57].  

Murray’s law is well known as the minimum work theory to explain the ideal radius exponent 

equal to 3 [62]. The radial cubic law in organ vasculatures was also theoretically accounted for by 

the uniform pressure distribution [15] and optimal space-filling of fractal [55]. 
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1.6. Murray’s law and the relationship between blood flow and vessel radius 

Murray (1926) theoretically predicted the existence of ‘optimality principle’ in the relationship 

between the blood flow through a cylindrical vessel and the vessel radius (Fig. 1) [62].  

 

 

Figure 1. A single tubular vessel model cited from ref. [64]. Blood flow (q) flows through the vessel 
whose radius and length are represented by r and l, respectively. q is defined as volume blood flow per 
unit time. 

 

 

The vascular resistance Rcyl of a cylindrical vessel is given in equation (1) as Hagen–Poiseuille’s 

equation when we hypothesized the vessel as a rigid one, with blood viscosity, radius, and length as µ, r, 

and l, respectively [12, 15, 48, 57, 62, 66, 75]. 

 Rcyl = !"#
$%!

                                               (1) 

With the volume blood flow rate per unit time, the metabolic rate of blood [48, 62] as well as 

vessel wall [57] per unit time volume, and cost function representing the lost energy per unit time to 

transport the blood flow through the vessel as q, K, and C, respectively, the equation was designed as 

follows [15, 48, 57, 62, 75]: 

 $ = %
!"#
$%!
& '& + )*+&,.                                   (2) 

After C was partially differentiated with respect to r, ¶C/¶r = 0 resulted in [15, 48, 57, 62, 75]: 

 ' = ε+', where . = $
(/

)
"

.                             (3) 

Thus the predicted relationship between q and r indicated by Eq. (3) must be selected and adopted in the 

r 
q 

l 
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living body because this condition guarantees the minimum work requirement, under which q is 

regulated and maintained proportionally to r3 (Fig. 2). 

 

 
 
Figure 2. Graph of minimum work theory designed by Murray (1926) [62]. Cmin represents the 
minimum energy cost per unit time; µ, blood viscosity; q, r, and l, the blood flow, the vessel diameter, 
and the vessel length, respectively. 8µlq2/pr4 and Kpr2l are presented in equation (2). The point of Cmin is 
given in the condition with q µ r3 by partial differentiation of C with respect to r. Figure 2 was cited from 
ref. [64]. 
 
 
 

Murray’s law can be interpreted as the ideal model of vessel branching [15, 48, 41, 72, 74, 75, 82]. 

When a mother vessel with her radius rM branches into two daughter vessels with radii rD1 and rD2 (rD1 

> rD2), with qM, qD1, and qD2 as their blood flow through them, respectively (Fig. 3), the common K in 

Eq. (3) gives: 

 '* = .+*
' ,	'+, = .++,

' , and '+& = .++&
' .                     (4) 

As the sum of blood flow through branching is preserved as:  

 '* = '+, + '+&,                                          (5) 

Eqs. (4) and (5) ensures: 

 +*
' = ++,

' + ++&
' .                                         (6) 

When repeated branching succeeds under this condition through the whole vascular tree, the 

0 

C 

r 

Cmin 
Kpr2l 

8µlq2/pr4 

q µ r3 
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fractal dimension is also regarded as 3, as described at the next section.  

 
 

Figure 3. The branching model from the mother to two daughter vessels. qM, and rM represent the blood 
flow rate and radius of the mother, respectively, suffixed with M; those of daughters 1 and 2 are presented 
with suffixes D1 and D2, respectively. Figure 3 was cited from ref. [64]. 
 
 
 

The shear-stress (t) on the internal surface of the vessel wall is measurable as 4µq/pr3 [40, 41, 

74, 85], which is well known as an agent that affects and regulates vessel radius [83]. Because t of 

three vessels is written by Eq. (4) as:  

 1 =
("-"
$%"

# =
("-$%
$%$%

# =
("-$&
$%$&

# ,                              (7) 

Murray’s law also gives the background of the uniform shear-stress theory at the same time [40, 41, 74, 

85].  

 

  

rM qM 

qD1 

qD2 

rD1 

rD2 
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1.7. Introduction of fractal theory to vascular tree 

Mandelbrot (1983) reported the mathematical characteristics based on self-similarity in geometric 

structures of seashore lines and rivers, or in morphology of tree branching, where their self-similarity is 

described with fractal parameters and functions [55]. After his work this concept of a fractal pattern has 

been developed and become well known worldwide. Many researchers also reported the presence of 

fractal structures in such living objects as bronchial branching [44] and vascular network [3, 17, 41, 57, 

66] as described above. 

When we suppose that every k-th generation vessel with mean radius rk branches into N vessels 

on the average of the k+1-th generation with radii rk+1 through the vascular tree, letting k and N be two 

natural numbers, the fractal model is written by using a real number x as: 

 +.
/ = 2+.0,

/ .                                           (8) 

In the fractal structure, vessels undergo successive branching through generations of the vascular 

tree obeying Eq. (8). When N = 2 and x = 3, Eq. (8) results in Eq. (6). Letting qk and qk+1 be mean blood 

flow through a single vessel of k-th and k+1-th generation, respectively, preserved blood flow is written 

as: 

 '. = 2'.0,.                                            (9) 

Eqs. (8) and (9) yield the next equation similar to Eq. (4) with the fractal dimension x as: 

 '. = .+.
/  

This can be written more generally as: 

 ' = .+/                                               (10) 

[3, 34, 35, 57, 88], where x is also called the radius exponent [39, 55] or the junction exponent [3, 48], 

and corresponds to the fractal dimension of embedding in fractal theory for an asymmetric vascular tree 

applicable to multiple consecutive arterial generations [3, 15, 39, 50, 55, 80, 87, 94].  
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In normal physiological situations, the mean of x stayed between 2.0 and 3.0, although its range 

was reported to be from as low as 1.0 to over 4.0 through various methods in a variety of mammalian 

arteries [3, 12, 34, 41, 48, 53, 57, 75, 80, 88, 94] as partially indicated in Figures 4A and 4B.  
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Figure 4. A. Distribution of reported xs in a variety of animals from previous studies using various 
methods, all of which, except for Meuer’s data [48], are humans [48, 63, 72, 80] and mammals [35, 41, 
48, 57, 75]. CMA, ECA, SCA, and SMA indicate the cremaster muscle, external carotid, subclavian, 
and superior mesenteric arteries, respectively. The radii of ECA, SCA, and SMA were estimated from 
Table 1 in Olufsen et al. [67] as 2.5 mm, 4.4 mm, and 3.3 mm, respectively; the radius of ECA was 
tentatively substituted for the mean of the minimal radius at the outlet of bilateral common carotid arteries. 
The results from House and Lipowsky [35] presented in this figure were derived from the 
volumetric flow of red blood cells. B. Distribution of reported xp in humans [34, 63, 80] and dogs [12]. 
PA, pulmonary arterial tree; LPA, left pulmonary artery. r, vessel radius, presented at the mid-point with 
the range because the mean and median were not reported in the literature; x, radius exponent, defined 
by in Eqs. (9) or (10) and presented as the mean with one standard deviation. Suffixes s and p indicate 
systemic and pulmonary. Methodology is indicated by symbols: *, angiography; †, cast-morphometry; 
‡, model analysis with catheter data; §, direct measurement in vivo. Figure 4 was cited from ref. [65] 
after modification. 
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1.8. Systemic arterial tree and fractal dimension 

Previously reported results of xs were plotted in Figure 4A against the corresponding rs, for which 

we were able to identify the range. These data mainly reflect rs-xs sets listed in the review article by 

LaBarbera’ [48], and include those reported by other studies [34, 35, 41, 57, 63, 72, 75, 80].  

xs ≈ 2.0–2.3 was reported by angiographic morphometry in proximal systemic arterial branching 

structures, such as from the aorta to next-generation large arteries [42, 48, 93, 94], where little pressure 

drop takes place. Meanwhile, transitional or intermediate values of xs ≈ 2.7 have also been observed in 

several organs of some mammalian systemic arteries [3, 48, 80].  

In contrast, xs ≈ 3 has consistently been reported in peripheral systemic resistive arteries of 0.004 

≤ rs ≤ 0.1 mm [66] by postmortem cast-morphometry in mammals [41, 75] and direct measurement of 

the qs-rs relationship in in vivo rat cremaster arteries [35, 57]. In general, it has been accepted that at least 

the systemic vasculature in regional circulation is regulated and maintained at x » 3 [15, 35, 57]. 

To date, as mentioned above, the most influential and prevailing theory for xs = 3 found in the 

peripheral systemic arterial bed [41, 48, 72, 75, 82, 92] is Murray’s law, which applied the minimum cost 

principle to a rigid cylindrical artery with viscous Newtonian steady flow [15, 21, 48, 57, 62, 75, 82]. 

Fractal space-filling embedding [15, 55] also provides an alternative theoretical basis for xs = 3. However, 

these two principles are not by themselves effective enough to explain the consistency of the radius 

exponent of the proximal systemic large arteries originating directly from aorta [42, 75, 92], proximal 

systemic (rs > 1 (or 2.5) mm) [48, 92, 93], or intermediate systemic elastic-muscular arteries (0.1 < rs ≤ 

1 (or 2.5) mm) [48, 80], of course including the pulmonary arterial beds, on the common basis [65].  

Several explanations for x from 2.0 to 2.7 have since been attempted, such as the cross-sectional 

area-preserving law (x = 2.0) [3, 45, 87, 88, 93], minimization of both drag and power loss (x = 2.0) [3, 

21], complete turbulence (x = 7/3 = 2.33) [3, 82], minimization of surface area and power loss (x = 2.5) 



 
24 

[3, 21], and minimum volume principle (2.1 < x < 2.8) [3, 88]. 

Hagen–Poiseuille’s equation has long been used universally to express the pressure gradient in 

arterial models including Murray’s theory, irrespective of whether r is derived from big arteries such as 

the aorta or from small peripheral arterioles [12, 15, 17, 39, 41, 42, 45, 48, 57, 62-66, 72, 75, 80, 82, 87, 

92]. However, it is also well known that Hagen–Poiseuille’s equation is unable to accurately estimate 

vascular resistance in proximal systemic elastic arteries and whole pulmonary arteries because of their 

large pulsatile fluctuation of radius [34, 60, 66]. On the other hand, Bernoulli’s equation can and should 

rather reasonably be applied to blood flow through elastic arteries, such as proximal human systemic or 

whole pulmonary arteries [5, 51, 52, 66].  
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1.9. Pulmonary arterial tree and fractal dimension 

Figure 4B presents the pulmonary arterial counterpart reported in humans and dogs in the literature 

[12, 34, 63, 80]. Mean xp was reported to be 2.3 ± 0.1 (0.0065 ≤ rp ≤ 15 mm) [34], or to range from 2.47 

± 0.09 (rp < 0.1 mm) to 2.66 ± 0.07 (rp ≥ 0.1 mm) by pulmonary arterial cast-morphometry of normal 

humans [80]. The relationship between qp and rp in the human pulmonary arterial tree simulated by 

Singhal et al. on the basis of their cast-morphometry [76] is also presented with a ln-ln plot in Figure 5, 

where the slope of this plot clearly indicates that xp stays constant at 2.32 starting from proximal large to 

peripheral small arteries. 

 

 

 

 
Figure 5. Ln-ln plot of human pulmonary arterial blood flow (qp) in a vessel against its corresponding 
vessel radius (rp). The original data for the plot are derived from combining Tables 4 and 5 from Singhal 
et al. [76] in the condition with an assumed cardiac output of 4.8 L/min in a 32-year-old female human. 
The slope of this proportionality is equal to radius exponent x. r indicates the correlation coefficient. 
Figure 5 was cited from ref. [65]. 
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Cross-sectional area preservation at each branching, xp ≈ 2 functionally suggests that constant 

linear blood flow velocity is maintained there. This may be advantageous in transporting blood in a low 

pressure gradient, because no kinetic energy is lost at ramifications. Structurally, xp ≈ 2 also implies that 

the peripheral arterial ramification pattern is short of the space-filling embedding in the lung [15, 55], 

whereas the bronchial branching pattern has been reported to indicate x = 3 [44]. The trait of space-filling 

embedding of airways in spite of the arterial tree design is suggesting that long-term natural selection 

seems to have given priority to the optimal structure for gas exchange more than that of blood distribution 

within a given space in the lung.  

Horsfield and Woldenberg reported xp = 2.3 ± 0.1 at 1,937 bifurcations of human whole pulmonary 

arterial trees as an in vitro morphometric result using resin casts from two fully inflated human lungs, 

counting from the main pulmonary artery down to terminal arterioles [34].  

The heterogeneity of xp from 2 to 3 was also reported in whole pulmonary arterial trees of human 

[88] and dogs [12, 40]. A marked large standard deviation (SD) of the arithmetic mean of xp around 2.9 

was described in canine lungs using a cast-morphometric study by Dawson et al. [12], as indicated in 

Figure 4B. Karau et al. reported that exponent xp in a vascular bifurcation is heterogeneous from 2 to 3 

in the pulmonary arteries on the basis of X-ray morphometry of isolated perfused canine lungs [40]. 

Woldenberg (1983) tried to explain the variety of human xp from 1 to 3 separately by multiple cost factors 

[88]. 

In fact, multifractility [19, 55, 94] exists in either systemic and pulmonary vasculatures in 

mammals [19, 94], where the fractal characteristics may vary at different levels of radii. 
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1.10. Change of fractal dimension in pulmonary vascular disease  

Ghorishi et al. reported the mean xp to be 1.671 at 0.01 ≤ rp ≤ 10 mm in cast-morphometry of 

a 2-month-old lamb with secondary PH caused by surgically produced L-R shunt in the fetal period 

[17]. However, xp in the same shunt lamb targeted 3.0 at the most peripheral pulmonary arterioles 

(rp ≤ 0.01 mm) in their Figure 2B [17], where its xp stayed around 2.0–2.3 at rp from 0.4 to 3 mm 

(Fig. 6).  

Most morphometric studies were performed with formalin-fixed specimens or using resin cast 

method; therefore, their data do not necessarily reflect actual in vivo pulsatile hemodynamic realities [3, 

66, 76, 80]. Nichols and O’Rourke [66] described the cast technique involves errors that are difficult to 

allow for [3]. The high injection pressure of resin [17, 20], linear shrinkage [3] of at least 10% on setting 

[66], the non-physiological temperature of gelatin-barium suspension at 60°C [17, 20], and high 

viscosity of resin (methylmethacrylate plastic) [3, 17] might not be suitable to estimate the micro-

structure at the pulmonary terminal arteriolar level [3, 20].   



 
28 

 

 

Figure 6. Figure 2 from Ghorishi et al. [17] cited from p. H3009 of Am J Physiol Heart Circ Physiol 
292: H3006-H3018 (2007) with permission. The figure compares the average value of bifurcation 
exponents (34) in the pulmonary arterial tree among fetus, 8-week old control twin, and shunt twin lambs 
in their resin morphometric study. The aortopulmonary shunt for the shunt twins was created by surgical 
operation in the uterus 4–8 days before delivery. TB, terminal bronchiole; RB, respiratory bronchioles; 
AD, alveolar ductus. d0 stands for diameter; 54, the average value of area ratio which compares the sum 
of the cross-sectional area of the two daughter vessels to that of their mother vessel. Although Ghorishi 
et al. misapplied black circles for the fetus in the graph legend surrounded by a square, the fetus data 
should be indicated by white circles. 
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1.11. The aim of this study 

The fractal dimension of the pulmonary arterial tree, which our new method tried to estimate in 

this analytical study, would supply the vascular architectural information of PVD without histological 

means. The fractal dimension of the pulmonary arterial tree can be conceivably evaluated by clinical 

means, such as interpreting classical pulmonary vascular resistance (PVR) on the basis of a fractal 

network model [12]. PVR, as normalized by the body surface area (BSA) in children, has long been 

used as a simple and convenient parameter to clinically or physiologically evaluate the pathologic state 

of the pulmonary vascular bed as a whole [22]; however, it has some inevitable drawbacks, such as 

insufficient capability to locate the exact distribution of peripheral resistance or quantify the actual 

geographical or structural pathology. 

The vascular reaction and its wall remodeling affect diameter, hence tree complexity, which 

has been shown to influence adaptive changes in the fractal dimension [85, 86] in experimental 

models of PH [17]. However, whether the fractal dimension changes dynamically in the human 

condition has not been demonstrated. This model analysis with in vivo hemodynamic data of 

routine catheterization in voluntary respiration is also important because the actual in vivo measurement 

of hemodynamic data in peripheral pulmonary arteries during voluntary respiration is unfeasible as well 

as in in vitro conditions with artificial positive-pressure ventilation.  

Arterial branching is not uniform in a geometric self-similar manner, but it can demonstrate 

diameter heterogeneity within a resistance partition [12, 17, 66]. In view of the segmentation by Hakim 

et al. [24, 59, 71], and the possibility of an arterial tree with different dimensions within a given segment, 

our focus was on the peripheral arterial segment. We developed a fractal model whose dimension x was 

predicted to reflect vessel radii between 10 and 100 µm. Our hypothesis is that tree complexity changes 

in conjunction with PH. We evaluated this hypothesis by comparing the pulmonary and systemic model-
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derived values. 

Such changes, if significant, may indicate a multifractal paradigm of fractal adaptation [19, 

56, 94], where dimensions change in response to hemodynamic forces, which is currently not accounted 

for in Murray’s theory alone [3, 19, 41, 48, 55, 82, 88, 93, 94]. Previous studies tried to account for 

the multifractility of arterial trees in the living body by using multiple optimal conditions 

corresponding to each fractality [3, 19, 41, 48, 55, 83, 88, 93, 94] because they could not explain 

the structures using an integrated theory alone. Finally, we discussed two possible theories, i.e. the 

maximal blood flow hypothesis and the least energy principle, to explain the change in fractal dimension 

or the multifractility of arterial systems. We hope that our new methodology and theories might 

contribute to the development of artificial vascular trees and circuits with an optimal design as well as a 

deep understanding of the vascular pathophysiology including the mechanism of PVD. 
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2. Methods  

 

2.1. Physiological and pathophysiological premises 

For the systemic model we assumed that the mean pressure gradient of large arteries to 

peripheral arteries DPprox-s (r > 100 µm) : DPperi-s (r ≤ 100 µm) was 1:6 (Fig. 7B) as mentioned in 

the section 1.1. The border of radius was defined as 100 µm [66] in this model for simplicity. 

Using the analogy of systemic counterparts [66] and on the basis of pressure data directly 

measured in the isolated perfused dog lung reported by Bhattacharya et al. [6] we applied same 1:6 

ratio rule for the mean pressure gradient distribution in the pulmonary circulation between DPprox-P 

(r > 100 µm) and DPperi-P (r ≤ 100 µm), as shown in Figure 7A.  

Based upon the canine experimental report by Michel et al., in which they examined the 

effects of chronic L-R shunt surgically produced between the left subclanian and left lower lobe 

arteries [59], we assumed tentatively to regard DPcv-p in PH caused by congenital L-R shunt as 

remaining stable at the 50% level of the normal trans-pulmonary pressure drop for simplicity 

irrespective of the underlying PH level (Fig. 7A).  
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Figure 7. These schemas illustrate the relative longitudinal distribution of three segmental pressure 
gradients in pulmonary (A) or systemic (B) circulation in relation to pulmonary hypertension (PH) and 
systemic blood pressure, respectively. Pmpa, Pla, and Pao indicate mean pressures in the main pulmonary 
artery, left atrium, and aorta, respectively. These three segments are proximal large arteries of radius > 
100 µm, peripheral resistive arteries of radius 10–100 µm, and capillaries and veins. We applied 1:6 as 
the ratio between pressure drops through the proximal arteries and through the peripheral arteries [66]. 
The pressure drop through pulmonary capillaries and veins does not change even in PH due to chronic 
L-R shunt [59]. Cited from ref. [64]. 
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2.2 Fractal model to translate the q-r relationship of a single vessel into that of the whole vascular 

tree 

The mathematical model in this study was designed with fractal theory and Eq. (10) by translating 

the relationship between q and r of a single vessel into that between total blood flow (Q) and whole 

peripheral arterial resistance (Rperi) in an arterial network. This model can be applied to the fractal analysis 

of resistive arteries and peripheral arterial system with hemodynamic data clinically accessible in a 

routine cath study. 

First, we constrained the mean radius of the initial starting 1st resistive arteries as r1 = 100 µm. We 

expressed the total number of unit arterial trees as scattered in parallel by N1, which is a natural number 

(Fig. 8A). Parallel N1 unit resistive arterial trees were connected to large arteries in-series (Fig. 8A).  

Second, we defined the unit resistive arterial tree as an asymmetric branching fractal trees that 

yield generations from the most proximal 1st to the most peripheral n-th in series, where n is a natural 

number (Fig. 8B). Setting k as an integer 1 £ k £ n, when the k-th generation vessels whose means of 

radius, vessel length, and number of vessels are given as rk, lk, and Nk, respectively.  

Third, applying the data from related literature [12, 35, 36, 53, 75] mentioned in section 1.3., we 

regarded the mean outlet radius of precapillary arterioles as 10 µm in both systemic and pulmonary 

vascular trees for simplicity (Fig. 9). We constrained the mean radius of the last n-th arterioles as rn = 10 

µm, where Nn terminal arterioles are connected to capillaries (Figs. 8B and 9). Hence, in pulmonary 

circulation, the resistive arterial network is composed of the intra-acinar arteries [30].  

Therefore, this fractal structure neither includes large central arteries, which act more as a 

Windkessel or an elastic reservoir proximally [59, 66], nor the capillary network, which is not a 

simple tree but instead a complex sinusoid [87]. 

We also assumed that practically all resistive arteriolar vessels have the shape of a relatively rigid 
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circular cylinder in both systemic and pulmonary arterial systems [7, 12, 15, 17, 39, 41, 45, 48, 57, 66, 

75, 80, 82, 86, 94].  

In addition, we assumed that each repetitively branching arterial tree within the unit network is 

made of a fractal dichotomy as a whole, as indicated in Figure 8B. Blood flow was treated as a viscous 

incompressible non-Newtonian fluid [13, 26, 39, 66]. 

  



 
35 

 

Figure 8. A. Schematic diagram of either the pulmonary or systemic arterial tree. Unit resistive arterial 
trees, scatted and connected in parallel to the central compliant artery, are represented by circles with a 
single slender line inside. B. Schematic diagram of a unit peripheral resistive arterial tree with the 
condition of N = 2 in Eq. (11a), which starts from the 1st generation, bifurcating repeatedly in series until 
the terminal n-th. The last n-th generation vessels are distally connected to capillaries. qk, mean blood 
flow through k-th generation vessels, where arrows (→) indicate the direction of blood flow; k, 
natural number from 1 to n. This figure was cited from ref. [64]. 
 
 

 

Figure 9. Schematic diagram suggesting the landscape around terminal arterioles. Scattered ovals 
represent red blood cells (RBCs). The mean radius (rn) of terminal arterioles is considered to be 
determined by the scale of RBCs. So, rn was in common among different species of mammals [12, 35, 
36, 53, 74], because the size of mammalian RBCs stays almost same among them. qn and ln represent 
mean blood flow and vessel length of terminal arterioles, respectively. This model set rn at 10 µm. This 
figure was cited from ref. [64]. 
 

A B 



 
36 

2.2.1. Incorporating this branching fractal structure into the resistive arterial tree 

Letting the vessel number, mean radius [µm] and mean length [mm] of the k-th generation (k was 

a natural number: 1≤ k ≤ n) be Nk, rk, and lk, respectively, we assumed that the fractal structure is ruled 

by: 

 2 = 2.0, 2.⁄ ,                                              (11a) 

 7 = +.0, +.⁄ ,                                               (11b) 

 8 = ,.0, ,.⁄ ,                                                (11c)                                                   

where N was set at 2 in our model formulation for simplicity because the arterial branching pattern 

has long been treated as a bifurcation in model analysis of systemic and pulmonary vascular trees  [15, 

36, 41, 57, 61, 66], although the branching ratio N reported by morphometric studies in the pulmonary 

arterial tree varied from 1.79 in 2-month-old lamb [17] to 3.58 in cat [91]; b (0 < b  < 1) and g (0 < g  < 

1) are also assumed to be constants throughout the successive branching generations within a unit 

peripheral resistive arterial tree and throughout the parallel arranged unit arterial trees. rk and rk+1, or lk 

and lk+1 represent the mean values of all vascular radii or lengths of in-series placed individual generations 

within the unit vascular network. For simplicity, we did not take into consideration in our model the 

effects of tapering or turbulence within the vessel.  

By combining Eqs. (1), (8), (9), (10), (11a), (11b), and (11c), we tried to translate the relationship 

between the blood flow of a single vessel and its radius to that between the total blood flow and its overall 

arterial resistance in the whole peripheral vascular network, either pulmonary or systemic.  

Hagen–Poiseuille’s law and our fractal hypothesis gave us the whole peripheral vascular 

resistance (Rperi [mmHg/L/min]) as: 

 91234 = ∑
!5"#'
6'∙$%'

!
8
.9, , ; = ,×,;%(

,''×<;
 [mmHg×min×µm4/(L×cP×mm)].        (12) 

cP (centipoise) is a fluid viscosity unit. l converts the resistance of the cgs unit into mmHg×min/L. 
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Because apparent blood viscosity was reported to decrease significantly in vessels with radii < 100 

µm using the Fåhraeus–Lindqvist effect which is well known as a non-Newtonian effect of blood flow 

in the organ regional circulation [13, 26, 39, 66], in this analysis we used the Haynes’ equation [26], 

shown below, letting µ be µ (r); r, vessel radius:  

 <(+) =
")

(,0%* %⁄ )&, rt < r.                                (13) 

Here µ¥ and rt are estimated as 4.0 cP and 4.29 µm, respectively (Fig. 10) [13, 26, 39, 66].  

 

 

 

 

 
Figure 10. The simulation curve of Fåhraeus–Lindqvist effect [13, 26, 39, 66] reported as Haynes’ 
equation [26, 39]. µ represents the blood viscosity given as centipoise (cP); r, radius. Figure 10 was cited 
from ref. [64]. 
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When we introduced a constant for the relative radius ratio d = rt /rn into our computation 

tentatively and for convenience, d in the next Eq. (14b) became 0.429 (= 4.29/10). Rewriting Eq. (12) 

with Eqs. (11a), (11b), (11c), (13), and d yields: 

 91234 = ∑
!5")#'

6'∙$%'
!(,0%* %'⁄ )&

8
.9, =

!5")#+
$6%%+!

∙ @(!),                    (14a) 

where  @(!) = ∑
@,(+,')

6',%∙A,!(+,')B,0CA+,'D&
8
.9, .                            (14b) 

G(n) is a tentatively introduced intermediary function as derived from the fractal structure in order to 

combine and translate n, N, b, and g into Rperi.  

Letting the mean blood flow [L/min] in each n-th generation vessel and blood flow of total arterial 

network be qn and Q, respectively (Fig. 8B), Eq. (10) gives: 

 '8 = . ∙ +8
/ = A 28⁄ .                                       (15) 

By using Eq. (15), elimination of rn from Eq. (14a) yields:  

 91234 = AE( /⁄ ∙ (. ∙ 28)
( /⁄ ∙

!5")#+
$6%

∙ @(!).                        (16) 

Although the vessel length ln [mm] can be regarded as an invariable for blood flow change [66], 

we designed the vessel length to be proportional to a body scale parameter, M, for standardization. The 

way to define the most proper M is described in the Results section. 

So, letting dn be the proportional coefficient, ln is given by: 

 ,8 = B8 ∙ C.                                         (17) 

Eqs. (14a), (15), (16), and (17) result in an important logarithmic equation to define Q as a function 

of Rperi: 

 lnA = F ∙ ln %
F/012
G
& + G,                                    (18) 

where  F = −
/
(
,                                                 (19a) 

 G = ln I.28 %
!5")H+I(8)

$6%
&
/ (⁄
J.                                 (19b) 

Thus, Eq. (18) defines the final relationship among Q, Rperi, and M in the whole vascular bed, either 
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pulmonary or systemic. Furthermore, Eqs. (18) and (19a) provide us with a method to analytically 

estimate the key parameter, namely the radius exponent x [55], even from routine in vivo hemodynamic 

catheterization data.  

A, B, and x of both vascular beds were then determined for each categorized group of patients 

(Table 1) along with x-derived n, b, and g. We also analytically quantified N1, the number of unit 

peripheral resistive arterial trees counted at the inlet, and Nw, the whole number of arteries included 

in all the vascular networks in question where the peripheral resistance resides. 

 

 

2.2.2. Determination of x, A, & B  

Setting pulmonary blood flow and peripheral pulmonary arterial resistance as Qp and Rperi-p, 

respectively, lnQp was plotted against ln(Rperi-p/M) in a logarithmic scale diagram for each group. Linear 

regression analysis was performed for each group using the least-square method. The slope corresponds 

to Ap while its intercept to Bp, respectively. xp is given by Eq. (19a). As, Bs, and xs were also determined 

similarly. 
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2.2.3. Estimation of n, b, g, N1, & Nw 

Because the total blood flow should be equal to the sum of all the n-th generations in this arterial 

tree (Fig. 8B), Eq. (20) ensues from Eq. (10):  

 A = 2,.+,
/ = 2,2

8E,.+8
/ ≈ 28E,2,+8

/,                          (20) 

where x and e eventually represent averaged values for each item for the whole resistive arterial bed. 

Using the constraints of r1 = 100 µm and rn = 10 µm as primary constants in this model, Eq. (20) gives 

x-derived n as the mean real number (ñ) in each group: 

 !" = M ∙
JK(,;; ,;⁄ )

JK&
+ 1 = %

JK,;
JK&
& M + 1 ≈ 3.32M + 1.                 (21) 

To deal with n and calculate G(n), however, we chose the nearest natural number in place of ñ as n. 

As Eq. (11b) results in rn = b n–1r1 from the model structure, Eq. (22) follows using ñ of Eq. (21) 

for n: 

 7 = %
,;
,;;
&

%
+,%

= 0.1
%

+,% ≈ 0.1
%

#.#&4.                               (22) 

Similarly, Eq. (11c) gives ln = g  n–1×l1 by definition. Letting d1 be the proportional coefficient as in 

Eq. (17), l1 can also be represented as a proportion to M: l1 = d1×M. Using d1 and dn, g can also be obtained 

as:  

 8 = %
H+
H%
&

%
+,%

≈ %
H+
H%
&

%
#.#&4.                                     (23) 

Combination of Eqs. (14a), (17), and rn = 10 µm results in: 

 2, =
!5")H+I(8)
,;!$BF/012 G⁄ D

.                                           (24) 

Nw was also computed as: 

  2L = ∑ 2.E,8
.9, 2, =

6+E,
6E,

∙ 2, ≈ (28 − 1) ∙ 2,.                  (25) 

Thus, N1 and Nw were calculated for each patient and standardized conventionally by BSA [m2]. 
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2.3 Subjects 

2.3.1. Subject data 

Cardiac catheterization was performed as one of the preoperative evaluations from November 

1996 until June 2007 in the Department of Pediatrics, Tokyo University Hospital. All patients had either 

a normal or increased ratio of pulmonary (Qp) over systemic (Qs) blood flow: Qp/Qs ≥ 1. In 213 patients, 

the mean pressure of the pulmonary arterial wedge (Ppaw [mmHg]) was recorded and regarded as that of 

the left atrium (Pla [mmHg]) [9, 11]. These 213 patients had neither a reversed right-to-left (R-L) shunt 

deriving from pulmonary hypertension (PH) by advanced PVD nor restrictive or obstructive lung 

diseases. They also had no systemic vascular diseases. 
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2.3.2. Categorization of the patients with an L-R shunt  

As shown in Table 1, we categorized our patients with L-R shunt into seven groups according to 

the degree of transpulmonary vascular pressure gradient or the mean pressure of main pulmonary artery 

(Pmpa [mmHg]) minus Ppaw.  

Approximately 30% of VSD patients in Japan and other Far Eastern countries [80] have a so-

called outlet (or subaortic) defect or type I by Kirklin [43] where the right coronary cusp often prolapses 

down into the left ventricle and obliterates the defect from birth with the result of only a trivial shunt 

across the defect even if the defect is not small, whereas its incidence is reported to be approximately 5–

7% in America or European countries [2, 77, 81]. These patients are consequently categorized into 

controls because they show only a tiny shunt across the defect at the time of cardiac catheterization, even 

though their original defect was not small and early surgical intervention is imperative because prolapsed 

cusp eventually induces significant aortic regurgitation and timely surgery prevents this untoward 

complication. 

Most of our VSD control patients belonged to this type of tiny shunt subaortic defect. The only 

ASD patient had a tiny defect and 2 PDA patients had such a rudimentary ductus that it was barely 

visualized by angiography. We termed patients with type I VSD with right coronary cusp prolapse but 

without aortic regurgitation, 2 small PDAs without indication for coil embolization, and a small ASD, 

controls because they were quite healthy without any physical disability or stunted growth by the disease 

(Qp/Qs » 1.0).  
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Table 1. Categorization, number of patients, and distribution of shunt site for each group. 

Pmpa, mean pressure in the main pulmonary artery; Ppaw, mean pressure in the pulmonary arterial wedge; 
QP/QS, pulmonary to systemic blood flow ratio; A, atrial; V, ventricular; D, ductal. Note that a single 
patient might have more than one left-to-right shunt. Table 1 was cited from ref. [63].  

 

 

  

Group Indices of categorization Number  
of patients 

Number of patients  
for each shunt site Pmpa – Ppaw  

[mmHg] 
Qp/Qs 

A V D 
Control ≤ 9 1.0 19 1  17  2  

1 ≤ 9 > 1.0 47 6 38 4 
2 ≥ 10 – ≤ 15 > 1.0 53 10 41 4 
3 > 15 – ≤ 25 > 1.0 29 8 23 5 
4 > 25 – ≤ 35 > 1.0 20 4 16 7 
5 > 35 – ≤ 45 > 1.0 22 4 21 2 
6 > 45 > 1.0 23 3 19 4 



 
44 

2.3.3. Estimation of the reversibility in the severe pulmonary hypertension. 

To determine whether PH due to L-R shunt is irreversible a 100% oxygen administration test was 

additionally performed for patients with severe PH, Gr. 5 or 6, as a preoperative evaluation of 

vasoreactivity at the time of catheterization [28]. All patients in this study passed the test and showed 

enough vasoreactivity to be good candidates for surgery. Furthermore, postoperative PH returned to 

normal even in patients with Gr. 5 or 6 at least within several weeks at most after corrective surgery 

as assessed by postoperative direct monitoring or echocardiography [10], suggesting that they did not 

have irreversible PVD in peripheral resistive arteries. Gr. 5 and/or 6, therefore, does not indicate a 

morphologically advanced stage of PVD. 
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2.3.4. Cardiac catheterization and estimation of hemodynamics. 

Cardiac catheterization was performed by the conventional method [22]. Each patient was sedated 

by intravenous injection of pentazocine (0.5–1.0 mg/kg) and midazolam (0.2–0.3 mg/kg) to a 

physiological steady state with voluntary respiration in room air [63]. We evaluated Qp and Qs by Fick’s 

method with estimated oxygen consumption, which was assessed by the regression equation fitted by 

gender, body weight, body length, and heart rate, as was recently reported by Lundell BP et al. [54]. 

Rperi-p was obtained by: 

 ∆91234 =
∆N/012
O/

,                                               (26) 

where DPperi-p was estimated as: 

 ∆S1234E1 =
<
P
TSQ1R − S1RL − ∆SSTE1U                            (27) 

in this analysis as described at the beginning of the Methods. If we regard the DPcv-p of controls as 

a half of transpulmonary pressure gradient [6, 7, 24, 59, 63, 71]:  

 ∆SSTE1 =
,
&
TSQ1R − S1RLU,                                     (28) 

the mean and standard deviation (SD) of DPcv-p in controls is 3.3 ± 0.6 mmHg [63]; therefore, we 

assumed that DPcv-p for Gr. 1–6 remained constant at 3.3 mmHg [59, 63].  

We calculated DPperi-s and Rperi-s respectively using [66]:  

 ∆S1234EU = 0.6 × SRV                                          

and 91234EU = 0.6 ×
N56
O7

.                                           

The general characteristics and hemodynamic data obtained for each group are shown in Tables 2 

and 3, respectively. 
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Table 2. General characteristics of each group. 

M, male; F, female; BW, body weight; Ht, hematocrit. Age & BW are represented as the median 
with (range); Ht, mean ± SD. Student’s t-test found no significant differences among these 7 groups 
with respect to gender ratio or Ht. Note that patients with severe pulmonary hypertension with a bigger 
defect had a greater opportunity for earlier hemodynamic study (catheter) and earlier surgical 
intervention to protect against advanced or irreversible pulmonary vascular disease. Table 2 was 
cited from ref. [63]. 
 
 
 
 
Table 3. Hemodynamic data of each group. 

Qp and Qs stand for pulmonary and systemic blood flow; Rperi-p and Rperi-s, estimated pulmonary and 
systemic peripheral arterial resistance, respectively; BSA, body surface area. Data are represented 
as the mean ± SD. Note that these Rperi-p and Rperi-s are estimated as 40–80% and 60% of ordinary 
pulmonary and systemic vascular resistance used clinically and conventionally. Table 3 was cited 
from ref. [63].   

Group 
 

Age  
[months] 

Gender  
[M/F] 

BW 
 [kg] 

Ht  
[%] 

Control 50 (3–195) 8/11 15.7 (5.4–66.6) 38. 7 ± 3.7 
1 27 (1–361) 24/23 11.7 (4.0–57.8) 38.3 ± 2.9 
2 19 (2–401) 25/28 10.6 (3.8–55.2) 38.5 ± 2.8 
3 10 (3–132) 13/16 7.2 (3.9–50.5) 37.8 ± 3.6 
4 7 (1–115) 12/8 5.5 (3.0–14.0) 36.5 ± 2.8 
5 5 (2–152) 10/12 5.2 (2.0–47.9) 37.6 ± 3.5 
6 4 (2–102) 14/9 5.6 (3.7–20.3) 37.7 ± 3.8 

Group 
 

Qp/BSA 
[L/(min×m2)] 

Rperi-p×BSA 
[mmHg×min×m2/L] 

Qs/BSA 
[L/(min×m2)] 

Rperi-s×BSA 
[mmHg×min×m2/L] 

Control 6.1 ± 1.3 0.5 ± 0.1 6.1 ± 1.3 7.9 ± 1.5 
1 7.1 ± 2.8 0.6 ± 0.2 5.0 ± 1.4 9.3 ± 2.7 
2 7.5 ± 2.7 1.2 ± 0.5 5.0 ± 1.6 9.4 ± 2.5 
3 8.1 ± 2.9 1.8 ± 0.6 4.4 ± 1.4 10.2 ±2.7 
4 8.3 ± 3.0 3.2 ± 1.3 4.2 ± 1.1 10.4 ± 2.2 
5 7.9 ± 2.9 4.4 ± 1.4 3.9 ± 0.7 10.3 ± 1.5 
6 7.0 ± 2.8 6.8 ± 3.2 3.8 ± 1.1 12.3 ± 5.2 
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2.4. Ethical procedures 

This study was permitted to use the clinical data from patients by the directors of the 

Department of Pediatrics (T. I.) and Pediatric Cardiology (H. K.), in accordance with guidelines of 

the time of the study: Comprehensive Retrospective Studies of the Epidemiology, Pathophysiology, 

Diagnosis, and Therapeutics of Pediatric Diseases in the Department of Pediatrics of the University 

of Tokyo Hospital. 
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3. Results 

 

3.1. Systemic circulation and the importance of body length in the new model 

The relationship between systemic blood flow (Qs) and peripheral systemic arterial resistance 

(Rperi-s) was analyzed. First the simple plot of lnQs vs. ln Rperi-s of all patients is presented in Figure 11A. 

lnQs and ln Rperi-s turned out to be linearly arranged. As conventionally standardized by BSA ln(Qs/BSA) 

vs. ln(Rperi-s·BSA) are presented in Figure 11B for reference.  

Then, three different body scale parameters for M were introduced to standardize Rs as indicated 

in Eq. (18). We compared the regression slope and correlation coefficient for each M, e.g. BSA, body 

weight (BW), and body length (BL) as shown in Figures 11C, 11D, and 12, respectively. BL was defined 

as the distance from the top to heel.  

When BSA and BW were applied to Eq. (18) as M, the slope (= As) of the regression line resulted 

in -0.637 (Fig. 11C) and -0.549 (Fig. 11D), respectively, with close negative correlations (r = -0.985 and 

-0.981, respectively). Finally, the plot applying BL to Eq. (18) was presented in Figure 12. lnQs vs. ln(Rperi-

s/BL) plots exhibited AS = -0.721 (r = - 0.983) in controls (Fig. 12A), and As = -0.776 (r = 0.987) in all 

patients under study, respectively (Fig. 12B).  

The regression line with the least scatter was found in Figure 12B, where BL was used as the most 

suitable body scale parameter. Furthermore, with Eq. (18) these values of A resulted in x = 2.9–3.1, which 

fluently accounted for Murray’s law. On the other hand, BSA and BW did not represent Murray’s law 

from their regression slopes with a result of x = 2.5 and x = 2.2, respectively. 

Therefore, introduction of BL is appropriate to adjust for different vessel lengths and meet 

Murray’s law in systemic resistive arteries. Thus, M in Eq. (18) was rewritten with BL and completed as: 

  lnA = F ∙ ln %
F/012
WX

& + G.                                       (29) 
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We attempted to apply Eq. (29) to pulmonary circulation similarly.  

As, xs, and Bs stayed almost constant throughout all groups (Figs. 14A and B). Mean ± SD for As was 

-0.77 ± 0.04, for xs 3.1 ± 0.2, and for Bs 3.25 ± 0.11. Calculated ñs by Eq. (21) was 11.3 ± 0.5 (Table 4). 

Meanwhile, l1-s, ln-s, d1-s, and dn-s in Eq. (23) were worked out as follows. First, we assumed that l1-

s = 4.0 mm and ln-s = 0.65 mm from microscopic measurements of a dog weighing 20 kg [61] because 

no human data of systemic vessel length were available. A 20-kg body weight corresponds to BL = 

1.14 min humans [47], we assumed d1-s = 3.51 (= 4.0/1.14) and dn-s = 0.57 (= 0.65/1.14) to be the 

equivalent human systemic measurements and the best possible substitution. Therefore, by applying 

these data and our result for xs to Eqs. (22) and (23), bs and g s in systemic arteries were 0.80 ± 0.01 and 

0.84 ± 0.01 (Table 4 and Fig. 15). Results of N1-s and Nw-s are presented in Figure 16, in which they were 

standardized with BSA. 
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Figure 11. A. Simple plot of lnQs vs. lnRs. B. Plot of ln(Qs/BSA) vs. lnRs×BSA. C. Plot of lnQs vs. 
ln(Rs/BSA). D. Plot of lnQs vs. ln(Rs/BW). Qs, Rs, BSA, and BW stand for systemic blood flow [L/min], 
peripheral systemic arterial resistance [mmHg/L/min], body surface area [m2], and body weight [kg]. 
The regression line was fitted by the least square method. r stands for correlation coefficient. Figures 
were cited from ref. [64]. 
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Figure 12. lnQs vs. ln(Rs/BL). A. Plot of controls. B. Plot of all patients. Qs, Rs, and BL stand for systemic 
blood flow [L/min], peripheral systemic arterial resistance [mmHg/L/min], and body length [m], 
respectively. The regression line was fitted by the least square method. r stands for correlation coefficient. 
Figures were cited from ref. [64]. 
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3.2. Application of this model to normal pulmonary circulation  

Figure 13A presents the plot of lnQp vs. lnRperi-p/BL in our control group. The regression slope Ap 

yielded xp = 2.2 (Fig. 14A). Calculated ñp by Eq. (21) was 8.3 in controls (Table 4). 

Because l1-p and ln-p have been reported to be 1.08 ± 0.65 and 0.22 ± 0.08 mm in the pulmonary 

cast study of adult human males with BL = 1.83 ± 0.03 m [47], we assumed both d1-p and dn-p in Eq. 

(23) were 0.59 (= 1.08/1.83) and 0.12 (= 0.22/1.83), respectively. As a result, b p and g p in normal 

pulmonary circulation were estimated as 0.73 and 0.80, respectively (Table 4 and Fig. 15).  

 
 
 

3.3. Application to the pulmonary circulation with L-R shunt 

lnQp vs. ln(Rperi-p/BL) plots of all groups are shown in Figure 13B. The least-square fittings and the 

resultant linear regression equations were in good agreement with Eq. (29) and the correlation coefficient 

(r) of each group of the peripheral pulmonary arterial bed as well as the systemic one ranged from -0.95 

to -0.99, indicating that flow in these patients was strictly governed by the resistance of the whole 

peripheral arterial bed as divided by BL again.  

Figure 13B shows the gradually decreasing slope of regression lines in relation to the severity of 

PH. The changes in slope resulted in the increment of xp from 2.2 to 3.0 (Fig. 14A). Changes in estimated 

bp and gp in terms of the severity of PH are presented in Table 4 and Figure 15. BP had a high correlation 

with lnDPperi-p, as presented in Figure 14B. Intercept B means lnQ expected theoretically in condition of 

R/BL =1 by Eq. (29). 
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Figure 13. lnQp vs. ln(Rp/BL). A. Plot of controls. B. Plot of all subjects categorized into 7 groups 
including controls in terms of severity of pulmonary hypertension induced by left-to-right shunt. Qp, Rp, 
and BL stand for pulmonary blood flow [L/min], peripheral pulmonary arterial resistance 
[mmHg/L/min], and body length [m], respectively. Pmpa and Pla indicate mean pressures of the main 
pulmonary artery and left atrium, respectively. Qp/Qs stands for the ratio of pulmonary vs. systemic blood 
flows; r, the correlation coefficient. The regression line was fitted to the least. Figures were cited from 
ref. [63, 64]. 
 

Figure 14. A. The change of xp with peripheral pressure gradient (DPperi-p). B. The increase of Bp with 
DPperi-p. x is given by Eq. (19a) from the regression coefficient in Figures 12 and 13, and B is the 
regression constant. Suffixes p and s stand for pulmonary and systemic, respectively. Dashed curves 
represent the change in xp or Bp to DPperi-p by fitting a logarithmic function with the least-square method; 
r, correlation coefficient. Mean DPperi-p of each group and mean DPperi-s of all cases are indicated 
horizontally with standard deviation (SD) using outliers. Means of xs and Bs in all groups are 
similarly presented with SD. Figures were cited from ref. [63]. 
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Table 4. Parameters for fractal structure and the resistance of a partial arterial tree distal to the 
8th order estimated using our model. 

R8th, resistance of a partial arterial tree distal to the 8th order for BL = 1.2 [m]. Systemic data are 
presented as mean ± SD for all groups. Table 4 was cited from ref. [63]. 
 
 
 

 
 
Figure 15. Those of b and  g in relation of DPperi. Mean with ± one standard deviation is presented as the 
circle with horizontal outliers. Dashed curves represent the change in xp, bp, or gp to DPp by fitting a 
logarithmic function with the least-square method. r represents the correlation coefficient. DP means the 
peripheral arterial pressure drop; suffix P, pulmonary. Systemic DP is estimated as 60% of mean aortic 
pressure (section 2.3.4), whereas pulmonary one as six-sevenths of a half of transpulmonary pressure 
gradient (Eqs. (27) and (28)), which is given by mean pulmonary arterial pressure minus mean left 
arterial one. Figure 15 was cited from ref. [64] after modification. 
  

Group ñ b g R8th 
    (´105 [mmHg×min/L]) 
Pulmonary     

 Control 8.3 0.73 0.80 2.9 
 1 9.4 0.76 0.84 3.8 
 2 9.7 0.77 0.84 4.3 
 3 9.7 0.77 0.84 4.4 
 4 10.4 0.78 0.85 5.2 
 5 10.7 0.79 0.85 5.6 
 6 11.0 0.79 0.85 6.2 

Systemic 11.3 ± 0.5 0.80 ± 0.01 0.84 ± 0.01 33.8 ± 4.0 

gp = 0.0168ln(DPperi-p) + 0.7923

r² = 0.8150

bp = 0.0224ln(DPperi-p ) + 0.7136

r² = 0.8180
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In Figure 16 N1-p/BSA and Nw-p/BSA showed markedly strong negative correlations with 

lnPmpa (r = -0.88, -0.78, respectively), whereas their systemic counterparts N1-s/BSA and Nw-s/BSA 

showed much weaker correlations (r = -0.40 for both). N1-p/BSA of Gr. 5 and 6 were estimated as 

1/43 and 1/55 of the controls, whereas Nw-p/BSA in either Gr. 5 or 6 was only but still approximately 

1/9 of the controls. N1-s/BSA and Nw-s/BSA showed the same negative correlation coefficient against 

lnPmpa because Nw-s is given by (211.3 – 1)×N1-s. 

 

 

 
Figure 16. Plot of N1-p/BSA, N1-s/BSA, Nw-p/BSA, and Nw-s/BSA vs. Pmpa. N1, number of unit peripheral 
arterial trees estimated by Eq. (24); Nw, whole number of peripheral resistive arteries given by Eq. 
(25); Pmpa, mean pressure of main pulmonary artery [mmHg]. Suffixes p and s represent pulmonary 
and systemic, respectively. BSA, body surface area [m2]. Lines are exponential regression curves; r, 
correlation coefficient. Figure 16 was cited from ref. [63]. 
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4. Discussion 

 

A new mathematical simulation model was proposed by combining the fundamental 

hydrodynamics of a single tube with a morphologically fractal unit network structure, arranged in parallel 

at the segment of peripheral resistive arteries. The model enabled us to quantitatively transform the basic 

flow vs. vessel radius relationship of a single tube into that of total flow vs. overall resistance of the 

peripheral arterial bed where the actual resistance resides in both pulmonary and systemic vessels, and 

advanced stages of PVD may also develop over time without surgical intervention. 

By directly fitting the body scale and in vivo hemodynamic data (BL, Q, Rperi) from patients, we 

successfully determined the key parameters of branching exponents xp and xS of our fractal model 

structure in humans along with some x-derived structural parameters in in vivo vasoconstriction by 

multiple natural neurohumoral feedback mechanisms [37, 59, 69] and down regulation in the 

number of intra-acinar arteries, which was reported histologically in literatures and caused by 

unknown mechanism at present [31, 59, 69, 70, 83].  

As discussed below, a number of new x-derived parameters depicted the pathophysiological 

hemodynamics as a reaction to abnormally augmented pulmonary blood flow in terms of its 

geographic distribution within the arteriolar fractal network. 
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4.1. Fractal dimension in peripheral systemic arteries 

In controls as well as in other groups, xs stayed almost invariably at 3.1 irrespective of the underlying 

conditions (Figs. 12 A and B). Resultant xs in our model was compared with reported counterparts in 

previous reports [35, 41, 53, 57, 72, 75] and was in good agreement with them (Table 5). That indicated 

the simultaneous implementation of both functional and structural optimizations, accounted for by the 

minimum work principle and space-filling embedding, respectively [15, 35, 55, 57, 62].  

The importance of BL was also recognized in this study as the most proportional coefficient to 

standardize the vessel length among BSA, BW, and BL itself (Figs. 11 and 12). 

 

 

 

Table 5. The radial exponent x in the peripheral systemic and pulmonary arteries in previous 
reports in comparison with our model-derived x. 

 Radius 
[µm] 

x Method/Data Reference 

Systemic     
Rat, CMA 5*–50 2.73 IM/Fr [35, 53] 
Rat, CMA 3*–54 3.01 ± 0.07 IM/Fr [57] 
Dog, arterioles 11–96 2.947 FA/Mm [75] 
Pig, coronary arteries 4.5*–25 3 FA/Mm [41] 
Human, cerebral arteries < 500 2.9 ± 0.7 FA/Ag [72] 
Our model, human 10–100 3.1 ± 0.2 MA/Hd   [63] 
Pulmonary     
Rat 13–800 2.15 FA/Mm [38] 
Cat 12–508 2.35 FA/Mm [91, 95] 
Human 30*–500 2.3 ± 0.1 FA/Mm [82] 
Our model, human 10–100 2.2 MA/Hd  [63] 

* Represents not the mean radii of terminal arterioles but the minimum. CMA indicates cremaster muscle 
arteries. IM, in vivo measurement; FA, fractal analysis; MA, model analysis; Fr, data of flow and radius; 
Mm, morphometric data; Ag, angiographic data; Hd, hemodynamic data. Data are presented as mean 
with one standard deviation. Table 5 was cited from ref. [64]. 
 
  



 
58 

4.2. Fractal dimension in peripheral pulmonary arteries and with L-R shunt  

In addition to functional and morphological changes caused by large shunt and PH, xp increased 

from 2.2, which was in good agreement with the data as reported by previous morphometric studies [38, 

82, 91, 95] (Table 5), to a plateau value of 3.0 according to the grade of PH (Figs. 13A and B).  

Ghorishi et al., on the other hand, used resin cast morphometry and reported that the average fractal 

dimension (equivalent to x in our model) for the whole pulmonary arterial tree in a 2-month-old lamb 

with an in-utero placed artificial L-R shunt remained at 1.7 (Fig. 6), resulting in two-fold increased 

bifurcations and retaining its fetal characteristics [17]. Pulmonary arteriolar development was 

reported to be disturbed and its new morphological pathology manifested itself after 2 months of 

age in large shunt defects [31, 37, 69, 70]. These lambs were dissected before that age, whereas 

most patients with Gr. 5 and 6 are already older than 2 months (Table 2). 

Furthermore, most samples in their morphometry came from more proximal arteries or even 

started with main pulmonary artery, extending all the way down to arterioles, as they mentioned in 

their method [3, 17]. Consequently, their average fractal dimension reflected the situation of more 

proximal arteries than ours. Because our model deals with more distal resistive intra-acinar arteries 

theoretically, our radial exponent xp reflects the estimate of the most peripheral arterioles and their 

bifurcations, whose number exceeds more than half of whole resistive arterioles because even Nn-p 

(= 2ñ–1×N1-p) alone amounts to one half of Nw-p (= (2ñ – 1) ×N1-p), as indicated by the model structure 

and Eq. (25). 
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4.3. Fractal parameters 

Taking N, which does not influence x as exhibited by Eqs. (14b), (19a), and (19b) for the number 

of repeatedly branching vessels of a space-filling embedding fractal model [15, 55] in the systemic 

arterial network proposed by West et al. [87], both b and g resulted in N -1/3 [87]. So when N is set at 2, 

as in our bifurcation model [15, 36, 41, 57, 61, 66], both b and g should theoretically be 0.79 (= 2 -1/3), 

which is in good agreement with our results of b in systemic and pulmonary vasculature with severe PH. 

In our analysis, g under x = 3 was estimated as 0.83 (systemic) or 0.85 (pulmonary Gr. 5, 6), which was 

only 4.5–7.1% larger than 0.79 (Table 4).  

In order to assess the validity of np, which is the function of x, as indicated in Eq. (21), in our 

control group, we selected those pulmonary vessels with a radius of 100 µm among controls first and 

then compared the estimated np in terms of “order” with the reported morphometric counterparts (Table 

6). The order rule, inversely numbering arteries from the most peripheral precapillary arteriole backward 

to the most proximal artery, has been widely applied to vascular morphometry [33, 36, 61]. Our model-

derived np for the resistive area of the peripheral pulmonary vasculature in normal controls exceeded its 

morphometrically determined counterparts in the literature by 1 or 2 (Table 6).  

Our results of ñp shown in Table 4 suggested that the first resistive generation shifts by 3 (» 11.0 –

8.3) orders proximal in severe PH. This was consistent with the input impedance study in which the main 

reflection point of pulmonary artery pressure wave shifts more proximally in PH than in normal 

situations [4, 32].  

Our b p was in good agreement with the model analysis of Dawson et al. with Np = 2, where their 

bp resulted in 0.77 [12]. Yen et al. reported that Np, bp, and gp were 3.58, 0.58, and 0.55, respectively, in a 

cat’s pulmonary arterial tree [90].  
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Table 6. Comparison of our model-derived estimates in our control group for generation, order, and number of vessels with pertinent morphometric data in 
the literature.  

 Radius [µm] Generation Order Number of vessels Reference 
Systemic      

Dog, 20 kg, whole arterial tree 75   1.1 ́  105 [61]  
    4*   2.7 ́  109*  
   Dog, mesenteric artery 
 

96 
11 

(3) 
(6) 

(4‡) 
(1‡) 

6.1 ́  102 

1.3 ́  106 
[75]  

   Our model, human, 15.7 (5.4–66.6) kg 100 1 11 4.0 (0.8–11.6) ́  104 [63]  
    10 11 1 4.9 (1.0–14.2) ́  107  

Pulmonary      
Human, 112 ± 13 kg 110 ± 15 1 6 2.85 ́  105 [36] 
 10 ± 1 6 1 5.12 ́  107  
Human, 32-years-old female 112 1 7 5.23 ́  104 [76] 
 10.5 6 2 1.27 ́  107  
Human, 56-years-old male 112 1 7 5.81 ́  104 [33] 
 10.5 6 2 2.03 ́  107  
Cat, 3.9–5.9 kg 96 1 5 2.93 ́  103 [95] 
 12 5 1 3.00 ́  105  
Our model, human, 15.7 (5.4–66.6) kg 100 1  8 3.6 (0.6–19.0) ́  105 [63] 
 10 8 1 5.5 (0.9–29.6) ́  107  

* Represents data of capillary. ‡ represents ‘rank’ in original paper. The number of rank is not exactly corresponding to order. The ‘order’ is the rule of reversely 
numbering arteries from the most peripheral terminal arteriole backward to the most proximal artery [33, 36, 76, 95]. Number of vessels in our model is presented as 
median with range. Table 6 was cited from ref. [64] after modification.   
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Combining the results of ñp with bp, we also interpreted that the radius of the 8th order vessel 

corresponded to approximately 50 µm in Gr. 5 and 6 because bifurcations through 3 generations yielded 

a 0.793 (= 0.49) times smaller radius than in controls. Thus, the partial resistance of an arterial tree distal 

to the 8th order was estimated to be 2.1 (= 6.2/2.9) times higher in Gr. 6 than in controls (Table 4). These 

results of controls and Gr. 6 are presented in Figures 17 and 18 as a schematic illustrations of vessel 

diameter and length within a single pulmonary unit resistive arterial tree in the case of BL = 1.2 m. Hence, 

the overall structural aspect in in vivo humans, as expected by our model in PH, renders the unit 

arterial tree much slenderer and 1.3 (= 4.0/3.0) times elongated in Gr. 6 than in controls (Figs. 17 and 18). 

These effects might be well accounted for by in vivo vasoconstriction due to medial hypertrophy in 

resistive arterial trees [31, 37, 59, 69].  

Michel et al. reported the importance of early pathogenic changes exists in the pulmonary arterial 

vasoconstriction in L-R shunt lungs, which they examined using the arterial hyperreactivity to serotonin 

in an L-R shunted canine lobe at 7–20 months after surgical shunt operation [59]. However, they 

observed no significant histological differences in medial muscle thickness or the muscularization into 

smaller arteries between the shunt and control lobes in dogs. 

Bergel et al. reported that the main reflecting sites moved to a more proximal site due to the 

pulmonary arterial vasoconstriction by serotonin in an impedance study of the pulmonary pressure 

wave velocity with anesthetized dogs in vivo [3]. They speculated that it might be caused by a 50% 

reduction in the distance to the major reflecting site, doubling of wave velocity, or by appropriate 

combination of the two effects.  
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Figure 17. The schematic illustration indicates vessel radius and length of each generation of a unit 
resistive pulmonary arterial tree for either control (dotted lines) or Gr. 6 (dashed lines) for BL = 1.2 m; 
BL, body length; Gr., group. This figure was cited from ref. [63]. 

 

 

 

Figure 18. Separated lateral views of Figure 15 were drawn into control (A) and the Gr. 6 with the 
severest pulmonary hypertension (B) in our data for BL = 1.2 m similarly with indicators of each 
generation of a unit resistive pulmonary arterial tree; BL, body length. Figures were cited from ref. [64]. 
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4.4. Numbers of peripheral arterial vessels. 

4.4.1. Systemic arteries. 

Estimated N1-s and Nn-s were in good agreement with corresponding counterparts of canine 

morphometric data [61, 75] as the best available substitution for direct comparison because no pertinent 

morphometric data in human are available (Table 6).  

 

4.4.2. Pulmonary arteries. 

Controls. The estimated N1-p and Nn-p in controls were also compared with published data of 

vessel numbers reported with their radius near 100 µm (N1-p), and to those of precapillary arteriole 

equivalents (Nn-p), as shown in Table 6. Both N1-p and Nn-p in controls were in good agreement with 

pertinent direct morphometric data in the literature [33, 36, 76].  

Thus, our theoretical model gives good simulation results regarding the number of unit resistive 

arterial trees in normal controls, both pulmonary and systemic. 

L-R shunt. A marked reduction in parallel N1-p (Fig. 16) results mainly from the more 

proximal involvement of arteries in the resistive arterial tree as a consequence of the slenderization 

and elongation of each component arteriole (Figs. 17 and 18), which in turn contributes to the 

substantial increase in pulmonary vascular resistance. Nw-p, on the other hand, reflects the peripheral 

pulmonary vascularity as a whole, because it represents the total number of component arteries in 

the peripheral resistive vascular network, as expressed in Eq. (25), and it was actually reduced in 

number substantially against Pmpa (Fig. 16). N1-p/BSA and Nw-p/BSA in severe PH in our model may 

well explain the disturbed development in the number of intra-acinar arteries in VSD patients with severe 

PH in the literature [31, 69, 70].  
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4.4.3. Comparison of changes in the number and size of intra-acinar arteries due to L-R shunt 

between our prediction and histological data in the literature. 

In relation to the reduced number and diminished radius size of acinar arteries, we tried to compare 

our results with these histopathological changes quantitatively reported in previous reports (Table 7).  

Hislop et al. [31] and Rabinovitch et al. [70] examined the reduced number of intra-acinar arteries 

in patients with L-R shunt with PH through necropsy and biopsy, respectively, by measuring the alveolar 

artery ratio. Two studies reported that they did not observe significant changes in the number of alveoli 

between L-R shunted patients and controls, concluding that pulmonary high flow and induced PH would 

not have disturbed the development of alveoli after birth [31, 69, 70].  

Ghorishi et al. reported that their shunt model in lambs displayed 1.5 to 2 times larger numbers of 

terminal arterioles and smaller pulmonary resistance than controls, presenting in their Figures 4B and 5, 

respectively, describing that these results did not reflect the reported properties of human subjects and 

other species [17]. They discussed that these paradoxical results may have been attributed to the isolated 

lung casts at 8 weeks after birth, genotypic variation and heterogeneity within a population of individuals 

and between species. 
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Table 7. Comparison among histopathological reports and our results. 
 

n, the number of patients; PVR, pulmonary vascular resistance [mmHg×min×m2/L]; *, data from our group 6; †, reversed data from the alveolar artery ratio, in which 
the number of alveoli was not changed for the age in comparison to controls in the literature [31, 70]; ‡, the estimated reduction in radius in Gr. 6 at the point of the 
beginning of the 1st generation in the controls [Fig. 17].  

Histology of intra acinar arteries 
(radius 10 – 100 µm) 

Hislop et al. [31] Rabinovitch et al. [70] Our model [63] 

Subject/Method  Human/Necropsy  Human/Biopsy Human/Model analysis* 

n 1 5 23 
Corresponding PVR 4.6 3.5 – 10 6.8 ± 3.2 

Decreased number of arteries  1/3† 1/5 – 1/8† 1/9 
Radius compared to controls — 2/3 – 1/2 -22%‡ 
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4.5. Clinical benefits supposed by these changes in the pulmonary arterial system due to the 

L-R shunt  

The pathophysiological changes producing PH are desirable in some respects and include 

certain benefits. The vasoconstriction and suppressed development of intra-acinar arteries 

might play an important part in impeding further high flow, pulmonary edema, and capillary 

damage by restricting the increment of Qp, because pulmonary capillaries are a crucial and 

delicate region in the lung to exchange gases. Furthermore, these adjustments to PH in 

peripheral pulmonary arteries lead to decreasing the preload of the left ventricle, which is the 

most important pump in the living body. The systemic circulation must remain stable in spite 

of increased pressure load to the right ventricle and peripheral pulmonary arteries. It is needless 

to say that the long-term pressure load to peripheral pulmonary arteries causes irreversible 

lesions of intimal thickening [27, 69, 89, 90], thrombosis, and vasculitis [27, 59, 69, 84], which 

hamper the long-term prognosis of life. However, without these adjustments in pulmonary 

resistive arteries the short-term survival can be jeopardized because of lethal pulmonary edema 

and severe congestive heart failure.  
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4.6. Verification of the ratio between DPprox-P and DPperi-P in our model analyses. 

The ratio of 1:6 between DPprox-P and DPperi-P reported by Bhattacharya et al. [6] was 

partially verified by our own catheter data. However, the basic parameters of x, b, and g are not 

influenced by the ratio because this ratio does not change the regression slope (A) by Eqs. (18), 

(19a), and (26) to (29). We analyzed our hemodynamic data of Pmpa in relation to the mean 

pressure of the 1st branch daughter artery (P1st-pbr), as shown in Table 7, adopting the higher 

pressure between the two (left or right) daughter branches as P1st-pbr. The pressure drop through 

the 1st branching (DP1st-pbr) was given by (Pmpa – P1st-pbr). The mean generations included in 

proximal large arteries (Dñ, real number) in each group were estimated by subtracting ñ from 

the total generations of the whole pulmonary arterial tree (=15) using the data in ref. [36] and 

our Table 4. If the same ratio of DP1st-pbr/(Pmpa – Ppaw) is conserved as the pressure drop ratio 

through all the successively lower bifurcations as in the mode of a functional fractal, then these 

next two equations should hold true: 

 DPprox-p/(Pmpa – Ppaw) = 1 – {1 – DP1st-pbr/(Pmpa – Ppaw)}Dñ-1 and 

 DPperi-p/(Pmpa – Ppaw) = {1 – DP1st-pbr/(Pmpa – Ppaw)}Dñ-1 – DPcv-p/(Pmpa – Ppaw). 

From this simulation, the ratio of DPperi-p to (DPprox-p + DPperi-p) in Gr. 2–6 was approximately 

0.8, which was in good agreement with 6/7 (= 0.86) as assumed in our model in Section 2.1. in 

the Methods [6], whereas those in the controls and Gr. 1 proved to be slightly lower than 6/7 

(Table 7). Table 7 also indicates that the ratio of DPperi-p to (Pmpa – Ppaw) increases with the 

severity of PH, which suggests that the peripheral resistive arterial bed is exposed to more 

mechanical stress [59]. In addition, the multiplier 6/7 for the total pulmonary arterial pressure 

gradient in the estimation of DPperi-p does not influence the slope AP per se of the lnQp vs. 

ln(Rperi-p/BL) relationship by Eqs. (26) to (29). xp is computed independently of the multiplier 

value and represents only the model structure of the peripheral arterial network itself. 
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Table 8. Estimation of pulmonary pressure gradient distributions through proximal 
arteries (DPprox-p), peripheral resistive arteries (DPperi-p), and capillaries and veins (DPcv-p). 

Dñ stands for mean generations from the most proximal to the arteries immediately before the 
beginning of intra-acinar arteries in each group, estimated as the gap between the order of the 
main pulmonary artery from the data of ref. [36] and ñ in Table 4. Pmpa and Ppaw represent the 
mean pressures of main pulmonary artery and pulmonary artery wedge, respectively. DP1st-pbr 
designates the mean pressure gradient between the main pulmonary artery and its 1st branch. 

Our model premises ∆"!"#$%!
"&!'#"!'(

 + ∆"!)"*%!
"&!'#"!'(

 + ∆"+,%!
"&!'#"!'(

 = 1.0. Table 8 was cited from ref. 

[63]. 

 

  

Group Dñ 
∆"!"#$%&'
"(%) − "%)*

 
∆"%'+,$%

"(%) − "%)*
 

∆"%-'.$%
"(%) − "%)*

 
∆"/0$%

"(%) − "%)*
 

∆"%-'.$%
∆"%'+,$% + ∆"%-'.$%

 

Controls 6.7 0.038 0.20 0.30 0.50 0.60 
1 5.0 0.053 0.20 0.39 0.41 0.67 
2 5.0 0.042 0.16 0.57 0.27 0.78 
3 5.1 0.045 0.17 0.65 0.18 0.79 
4 4.6 0.065 0.21 0.68 0.11 0.76 
5 4.3 0.057 0.18 0.74 0.08 0.81 
6 4.0 0.069 0.19 0.74 0.07 0.79 
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4.7. Fåhraeus–Lindqvist effect: one of the non-Newtonian effects 

The Fåhraeus–Lindqvist effect [13, 26, 39, 66] also does not influence x (or A), but affects 

G(n) (or B), as Eqs. (14b) and (19b) indicate. This effect on our controls produced -11.0% Rperi-

p, which resulted in only -0.73 mmHg Pmpa. This is not too meaningful in physiological 

pulmonary circulation, as Dawson indicates [12], but this effect leads to a significant reduction 

of -21.0% in Rperi-p of Gr. 6 and -16% in Rperi-s in all patients. Thus, the Fåhraeus–Lindqvist 

effect plays an important role in alleviating afterload on the heart in these high resistance 

circumstances. 
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4.8. Theoretical examinations of changes in x from 2 to 3 

4.8.1. The maximal blood flow hypothesis 

From the standpoint of seeking the condition for maximal flow through the vessel, we 

can rearrange Eq. (2), ! = #$%&
'(-
$ %) + '())*, to express q as a function of r, rewriting q as 

q(r). Eq. (2) was then converted as follows: 

 %()) = -'(
-

$%&
(! − ())*)/

* )⁄

, 0	 < ) < 	# ,

-'&
$
* )⁄

.                   (30) 

Differentiating q(r) with respect to r in Eq. (30) reveals that q(r) reaches its maximum at ¶q/¶r 

= 0, where q(r) is again proportional to the cube of r (Fig. 19). Therefore, x = 3 can also be 

considered to functionally represent maximal blood flow transportability, and indicate the in 

vivo structural law of the bifurcation in this condition with Eqs. (8), (9) and (10). 

Our results reflect the overall flow-dependent adaptive changes in arterial performance 

from the cross-sectional area-preserving or r2 mode (x » 2) to the more hyperdynamic r3 mode 

(x » 3) as a consequence of the forcefully increased flow and the resultant high arterial pressure. 

 

 

Figure 19. The curve of Eq. (30) was illustrated with the q-r relationship. Maximum value of 
q was given by p r3/4µ1/2 when r = (2C/3p l)1/3, where q was proportional to the r3 which is 
equal to Murray’s law: Substituting C = (3/2)p r2l into Eq. (30) produces q = p r3/4µ1/2. 

  

r 

q(r) 

r = (2C/3p l)1/2 ó C = (3/2)p r2l 
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4.8.2. The least energy principle 

We designed the energy function for a single artery and designated it E, which represents 

the whole energy needed to drive and transport blood, and maintain both the vessel and the 

blood, in our recent article [65]. Blood flow was treated as a viscous incompressible Newtonian 

fluid for simplicity. This analysis did not take into account non-Newtonian effects and energy 

dissipations due to either turbulence or arterial ramifications. 

Time average or the mean of kinetic, pressure, and metabolic and thermal energies of 

blood flow are defined as UK, UP, and UM, respectively. Mean losses of kinetic, pressure, and 

metabolic and thermal energies through the vessel per unit time are represented as DUK, DUP, 

and DUM, respectively. Energy dissipation due to turbulence of blood flow was also not taken 

into consideration either in this model.  

The energy conservation through this single artery is expressed as: 

 3 − (∆5. + ∆5/ + ∆50) = 5. + 5/ + 50. 

Thus, we get: 

3 = (5. + ∆5.) + (5/ + ∆5/) + (50 + ∆50):                   (31) 

The rigorous cost function C is definable in Eq. (31) by: 

! = ∆5. + ∆5/ + ∆50.                                       (32) 

Minimizing E optimizes the arterial design of this model analysis, while minimizing C 

reaches Murray’s law as a result.  
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4.8.2.1 Energy function for an elastic artery 

The common factor in two small pressure-losing systems, proximal systemic arteries and 

whole pulmonary arteries, lies largely in the elasticity of the arterial wall [1, 12, 16, 18, 49, 61, 

66, 68, 95].  

The mean of the internal vessel radius and length over time and space in a single elastic 

artery are indicated as r and l, and the mean blood volume flow per unit time and the mean 

pressure over time and space are also represented as q and P, respectively. The pressure drop 

produced along the length of the vessel is expressed by DP.  

Indicating the specific gravity of blood as r, the mean mass of blood volume flow per unit 

time is given by r × q. The mean linear velocity v at the gravitational center of blood flow is 

given as q/p r2. Thus, UK, the kinetic energy of blood flow through the vessel per unit time, is 

expressed in Eq. (33): 

5. =
*

)
6%7) = *

)
	6% # 1

'(.
$
)
.                                    (33) 

In an elastic artery with a modicum of tapering, Bernoulli’s effect provides an increase 

in UK, which makes DUK negative. UP and DUP are described as shown below [61]: 

5/ = 8% and                                               (34) 

∆5/ = ∆8%.                                                (35) 

UM is defined as the sum of the metabolic energy converted from the oxygen supply of 

arterial blood flow and genuine thermal energy in it: 

50 = '′%,                                            (36) 

where K’ indicates the proportional coefficient of two elements including the equivalent 

metabolic energy of arterial oxygen volume [57, 65] and thermal energy in blood [65]. 

Furthermore, DUM in this paper is defined again from Eq. (2) as: 

Δ50 = '())*.                                                      (37) 
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This is as in Murray’s [62] or Mayrovitz and Roy’s equations [57]. However, the relationship 

between l vs. r of an arterial tree in a number of human organs has already been reported by 

Suwa and Takahashi [80], who indicated that l was a function of r using real numbers a and L 

in both systemic and pulmonary arteries as:  

* = ;)2.                                             (38) 

This empirical expression has been applied widely in arterial fractal models [12, 15, 39, 

45, 67, 80, 87]. The morphologically estimated value of the exponent a centers around 1.0, 

ranging from 0.76 to 1.21, in various human systemic [39, 80] as well as mammalian 

pulmonary arteries [12, 80]. Simply assumed to be 1.0, it has generally been used and discussed 

in model studies [12, 15, 39, 45, 67, 80, 87]. Therefore, when we need to deal with a in this 

model analysis, a is set tentatively to 1.0 for the sake of simplicity and brevity. As a result, Eq. 

(37) was rewritten with Eq. (38) as: 

Δ50 = '(;))32.                                           (39)  

Substitution of Eqs. (33), (34), (35) (36), and (39) into Eq. (31) gives: 

3 = *

)
6% # 1

'(.
$
)
+∆5. + (8 + ∆8)% + '′% + '(;))32.                 (40) 

Because Bernoulli’s effect always guarantees reciprocal conversion between DUK and DUP as 

DUK + DUP ≈ 0 throughout an elastic artery [ 5, 51, 52, 66], DUK + DPq ≈ 0 also holds true in 

Eq. (40).  

In conclusion, Eq. (40) is rewritten with Bernoulli’s effect as:  

3 = *

)
6% # 1

'(.
$
)
+ 8% + '′% + '(;))32.                        (41) 

We partially differentiated E with respect to r, and applied ∂E/∂r = 0 to Eq. (41) (Fig. 

20). Because ∂E/∂r = 0 in Eq. (41) results in 26%4 = (2 + =)'(4;)532, it follows  

% = ( -#)32
)
$ -6
7
/
* 4⁄

))32/4.                                    (42) 

Hence, x was directly derived from Eqs. (3) and (42) as follows: 
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> = 2 + 2

4
.                                         (43)  

When a is assumed equal to 1.0, x is deduced as 2.33. Of course, x = 2 + a/3 of Eq. (43) 

also retains its validity both structurally and functionally even in the case of more complex 

asymmetric ramifications by fractal theory.  

4.8.2.2. Energy function for a rigid artery  

The energy function E in Eq. (31) was also applied to the analysis of the optimal design of 

a rigid artery. UK, UP, UM, and DUM are similarly expressed as counterparts in Eqs. (33,) (34), 

(36), and (39), respectively. Because DUP in a rigid artery is due to the friction between viscous 

blood flow and the arterial inner surface [66], Hagen–Poiseuille’s equation was applied as 

presented in Eq. (1). Because there is no change in mean linear velocity through a rigid artery 

due to Hagen–Poiseuille’s law, DUK is equal to 0 in Eq. (31). By substituting Eq. (38) into Eq. 

(1) and using DP·q = Rcyl·q2 as DUP, E of a rigid cylindrical artery is finalized as: 

3 = *

)
6% # 1

'(.
$
)
+ 8% + $%6(/

'(-
%) + '′% + '(;))32.                  (44) 

As a consequence, this involves the addition of Hagen–Poiseuille’s term in DP·q to Eq. 

(41). Similarly, the optimal relationship between q and r was sought by ∂E/∂r = 0 (Fig. 20). 

∂E/∂r = 0 as applied to Eq. (44) gave: 

# )

)32
$ 7

-'06(/
%4 + #9#2

)32
$ $%

-'.
%) = )5.                               (45) 

Letting q/r be f for convenience, x is given below in Eq. (46) by taking a as 1.0 only at the 

exponent in Eq. (45) (Appendix): 

> ≅ 2 + (7; '%)⁄ 3$(9#2)6

4(7; '%)⁄ 3$(9#2)6
.                                        (46) 

Using v = q/pr2, f = q/r, and D = 2r, where D stands for the internal vessel diameter, 

Reynolds number (Re) is defined and rewritten as shown in next Eq. (47) [34, 66]: 

@A = =>7

%
= )7(=

%
= )71

'%(
= )7;

'%
.                                        (47) 

Eliminating f in Eq. (46) using Eq. (47), we can express x with Re and L as: 
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> ≅ 2 + ?

4
, where B = @A3*5(9#2)6

@A3*5(9#2)6 4⁄
.                                 (48) 

Eq. (48) indicates that mean x asymptotically approaches its upper limiting value of 3.00 

at Re <10 and to its lower limiting value 7/3 = 2.33 at Re >104.  

 

Figure 20. Schematic curves of E against r with the condition with constant q in the rigid and 
elastic arterial models when a is assumed to be 1.0, plotted by E = ar -4 + br -3 + cr 3 + d and E 
= ar -4 + cr 3 + d in the rigid and elastic models from Eq. (44) and (41), respectively; a, b, c, 
and d are real numbers. Emin and E’min stand for the minimum values of E in the elastic and 
rigid models, respectively. 
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4.8.2.3. Verification of the least energy theory 

Although we described the details previously [65], the theory was verified with published 

data in the literature in Figures 4 A and 4B as presented below in Figures 21A and 21B, 

respectively, in which reported and estimated mean xs and xp were plotted with the Eq. (48) and 

Eq. (43), respectively. Because the systemic arteries shift its wall properties from elastic (xs » 

2) proximal aorta to rigid peripheral ones (xs » 3), while pulmonary arteries (xp » 2) can be 

treated persistently with elastic arteries from proximal to peripheral regions [66].  

As a result, these two equations well simulated the arrangement of xs and xp on the abscissa 

denoting the scale of radius and the corresponding Re, which was estimated using our 

previously reported methodology in ref. [65]. However, it is hard to explain the actual 

morphometric data of x < 2 or > 3, although those are rather extreme, observed in some 

particular states of normal mammalian vasculatures [3, 12, 48, 88] despite with our least energy 

model. 
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Figure 21. A. Comparison between theoretical x from our rigid arterial model and 
morphometric xs. The model-derived optimal relationship between the radius exponent x vs. 
Reynolds number (Re) in a rigid cylindrical artery was also plotted as curves based on Eq. (48), 
which shifted to the right with the increment of L. L represents the proportional coefficient of 
the vessel length-radius relationship in Eq. (38). Both reported mean xs in the literature [36, 41, 
48, 57, 63, 72, 80] and those estimated from two previous canine studies [61, 63, 75] were 
plotted together against corresponding rs. Mean and one standard deviation (SD) of the 
estimates were plotted with large rhombuses and outliers, respectively, at proximal (xs, 2.36 ± 
0.11; rs, 5.5 mm, range 1.5‒9.5 mm), intermediate (xs, 2.36 ± 0.21; rs, 0.44 mm, range 0.23‒
0.65 mm), and peripheral arterial regions (xs, 3.06 ± 0.21; rs, 0.06 mm, range 0.01‒0.10 mm), 
where Mall’s rank 4 (corresponding to our 5th generation) arterial data [75] were excluded as 
an outlier. CMA, ECA, SCA, and SMA indicate the cremaster muscle, external carotid, 
subclavian, and superior mesenteric arteries, respectively. B. Comparison between the elastic 
arterial model derived x and morphometric xp. Means of both reported xp in the literature [12, 
34, 63, 79] and those estimated from published data sets [16, 34, 36, 38, 61, 76, 95] were 
similarly plotted together against rp. Large rhombuses with outliers indicate the mean of 
estimated xp with one SD at proximal (xp, 2.48 ± 0.59; rp, 0.67 mm, range 0.11‒15 mm) and 
peripheral arterial regions (xp, 2.41 ± 0.40; rp, 0.06 mm, range 0.01‒0.10 mm). PA, pulmonary 
arterial tree; LPA and RPA, left and right pulmonary arterial trees, respectively; prox., 
proximal; peri., peripheral. r, vessel radius, presented as the mid-point of the range because the 
mean and median were not reported in the literature; x, radius exponent, defined by in Eq. (8) 
or (10); s and p, systemic and pulmonary, respectively. Figures were cited from ref. [65] after 
modification. 
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Our elastic arterial model explains x = 2.33 by Bernoulli’s effect, which holds true for a 

single elastic artery and/or valve [5, 51, 52] although the effect is not necessarily guaranteed 

through arterial ramifications. x = 2.33 has conventionally been explained by Uylings’ 

theoretical prediction in the condition of complete turbulence in a rigid cylindrical vessel [82], 

which is one of the most influential theories [3, 34, 36, 67, 75]. However, it still remains 

controversial how to explain the radius exponent reported in proximal systemic arteries as well 

as in the whole pulmonary arterial tree by the presence of turbulence alone [8, 34, 66, 73]. 

Because the peak Re in human systemic and pulmonary arteries is estimated as < 2000, except 

for the region just above the aortic valve [2, 66], it conflicts with the presence of continuous 

turbulence. Horsfield and Woldenberg stated that turbulence by itself may not fully account for 

the coexistence of both xp = 2.3 ± 0.1 and Re < 2000 at the same time in the case of pulmonary 

arteries, where several more direct effects resulting from arterial wall elasticity should also 

intervene [34].  

The result in our rigid arterial model led us to represent x with a novel function of Re and 

L as presented in Eq. (48). This equation provides the general solution of optimal x for various 

blood flow levels, involving both Murray’s and Uylings’ theories. First, Murray’s ∂C/∂r = 0 in 

Eq. (32) is a particular solution of ∂E/∂r = 0 of Eqs. (31) and (44). The ratio of UK over DUP in 

Eq. (44) is proportional to Re when a is equal to 1.0:  

B1
CB2

= (* )⁄ )71D1 '(.⁄ E
.

$%6(/1. '(-⁄
= 7(=

*5%6
∝ @A.                                (49) 

Because the result of ∂E/∂r = 0 in Eq. (44) approximates that of ∂C/∂r = 0 in Eq. (2) in the 

condition where UK « DUP and Re becomes sufficiently low as shown in Eq. (49), x reaches 

3.00, which Murray’s law [62] eventually advocates. Moreover, Uylings’ theory is another 

particular solution of ∂E/∂r = 0 under Re → ¥. E in Eq. (44) appears similar to Eq. (43) in 

inverse conditions of DUP « UK, where Re rises sufficiently high as in Eq. (49), and x 
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approaches 2.33, which is compatible with what Uylings’ model relates [75, 82]. The complete 

turbulence in Eq. (44) means that blood flow closely mimics the ideal fluid with Bernoulli’s 

principle. 

The concept of the optimality principle itself, however, cannot escape some limitations. 

First, the in vivo vascular system must meet multiple functional requirements that are not fully 

expressible in terms of mathematical optimality conditions. Secondly, there is no guarantee that 

the vascular system will attain a mathematically deduced optimal state: in other words, the 

actual vessel structure of a living body shows significant asymmetry and heterogeneity [3, 12, 

21, 88]. 
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4.9. Limitations. 

Our design of the arterial tree was set with rn at 10 mm for simplicity. This is a limitation 

of our model to reflect the actual variable arterioles precisely. However, if we permitted the 

model to freely shrink the terminal arterial radii below 5 µm or less, it might have exceeded 

the reversible level of the arterial remodeling response to PH because the progression of radius 

reduction may result in substantial irreversible intimal thickening, partial thrombosis, and 

vascular occlusion. We need to also consider the pathophysiological condition of the 

pulmonary arteriolar structure with rn < 10 µm [69] ideally, because setting the boundary of 

resistive arteries as 10–100 µm in radius is arbitrary although these constrains were for 

simplicity of the calculation and the design of vascular model. However, the multifractal 

paradigm can consider the effective dimension between two arbitrary radii and calculate the 

effective dimension. In this regard, our model may not be unique as a different compartmental 

model over different diameter ranges and different network fractal dimensions may be possible 

to represent regional variations [17, 19, 94]. Consequently, to establish the veracity of our 

model predictions of adaptation in a structure-function sense, additional 

morphometric/stereological studies are needed.  

Another limitation was the use of the data measured in special conditions, i.e. 

catheterization, in which all subjects were systemically anesthetized by medicines although 

their voluntary respiration was completely maintained with a monitoring system. Fick’s method 

to evaluate the volume blood flow at cardiac catheterization causes measurement errors of 

about 10% [29]. In addition, the oxygen consumption used in this study derives from an 

estimate [54], not from an actual measurement on the spot. DPcv-p is not measured precisely in 

individual patients. In addition, we did not carry out the post-operative study of cardiac 

catheterization whether xp recovered from 3 to around 2 in patients in Gr. 5 and/or 6 after the 
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surgery. We did not perform this routinely because we confirmed the regression of their severe 

PH to a normal level through clinical evaluations after the surgery as described in section of 

2.3.3. 

As mentioned previously, DPperi-p/(DPprox-p + DPperi-p) may not stay constant at 6/7 

through different severities of PH, as suggested in Table 7. These assumptions might interfere, 

to some extent, with the final outcome of our simulation results. Our results, however, were 

quite satisfactory, consistent, and rationally acceptable. Despite these limitations, our model 

results demonstrate that peripheral arterial vessels in the systemic and pulmonary circulation 

remodel their dimensions, consistent with a multifractal paradigm of tree adaptation. This 

adaptive change is clinically relevant because it occurs in diagnosed states where PH was 

demonstrated to be reversible upon surgical intervention.  

Thus, irrespective of the veracity of the current model to interpret PVR and its anatomical 

site of radius, length, and number, the magnitude and direction of change earmarked by our 

fractal dimension x, is anticipated to provide significant information that may delineate states 

of irreversibility, such as leading to severe PH, and the transition of L-R to R-L shunts 

(Eisenmenger syndrome), that might not be apparent in the measurement of PVR alone.  
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4.10. Conclusions 

In conclusion, our model interpretation suggests that the pulmonary peripheral resistive 

arteries in question, exposed to an obligatory large L-R shunt and PH, are bound to increase 

their total resistance by suppressing the development of vessel number on one hand and radius 

reduction on the other due to vasoconstriction, and that blood flow through them cannot escape 

reaching its maximal condition (x = 3) in this reduced capacity of the peripheral vascular bed. 

These effects will prevent, tentatively at least, the critical area of pulmonary function from 

developing into the advanced stage of PVD and decrease the preload of the left ventricle at the 

same time. We consider that these adaptive changes of the peripheral pulmonary arterial bed 

may reflect another aspect of Murray’s minimum work principle, that is the maximal blood 

flow condition, or the least energy principle, as evidenced in the systemic circulation here and 

in the literature [15, 35, 57, 65]. 

Our fractal/multifractal model is based upon several assumptions that require additional 

morphologic/stereological verification in order for its uniqueness to accurately account for the 

vessel adaptation hypothesis summarized in Figures 16-18 [63-65]. At the same time, our 

model predicts information about adaptation during a disease process and identifies what 

region and what morphological indicators to look for in understanding the PH process further. 

Consequently, further studies based on fractal/multifractal simulation, impedance 

identification and morphometric studies are needed in humans and animal models of the 

disease to link physiology to pathology.  

Our theoretical analyses of the maximal blood flow conditions and the least energy 

principle might propose a considerable candidate as one of the optimal designs describing the 

relationship between blood flow and radius in vascular trees, possibly providing the 

applicability for designing the vascular structure in artificial organs, prosthetic vessels, and 
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artificial circuits. 

Hitherto, although the vascular resistance has played an important role as a clinically 

measurable parameter of the vascular bed, consisting of the vessel number, vessel length, radius, 

and blood viscosity, it cannot display nor describe the details of the vascular structure by itself. 

The introduction of fractal theory into the vascular resistance makes it possible to first simulate 

and estimate the changes in mathematical elements and geographical features in the vascular 

branching structure. 
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4.11. Appendix 

In condition with a = 1.0 at the exponent in Eq. (38), Eq. (45) can be transformed to: 

)7

()32)-'06
∙ 1

0

(0
+ $(9#2)%

()32)-'.
∙ 1

.

(.
≅ )9.                               (A1) 

Using a real number e as a proportional coefficient, Eq. (10) is used again as:  

% = E)F.                         (A2) 

f can be defined as: 

 F = 1

(
.                                                    (A3) 

This can be used as a method to calculate Eq. (A1), the equation is simplified as: 

GF4 + HF) = )9,                               (A4) 

where G = )7

()32)-'06
 and H = $(9#2)%

()32)-'.
.                        (A5) 

To make the successive composite functions easier or clear-cut for differential calculus, 

we tentatively define g, y, and z as follows for convenience: 

I = lnF,                                                 (A6) 

L = ln(GF4 + HF)), and                                     (A7) 

M = GH

GI
, respectively.                                          (A8) 

Eqs. (A2), (A3), and (A6) give us: 

I = lnE + (> − 1)lnr.                                         (A9) 

Eqs. (A4) and (A7) lead eventually to: 

L = 4ln).                                                    (A10) 

Eliminating r in Eq. (A9) by Eq. (A10) yields: 

I = lnE + (> − 1) H
9
.                                           (A11) 

Partial differentiation of g in Eq. (A11) with respect to y and Eq. (A8) results in: 

GI

GH
= F#*

9
= *

J
.                                                   (A12) 

On the other hand, Eqs. (A6), (A7), and (A8) provide: 
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M = GH

GI
= KH

K;
∙ K;
KI
= 4L;.3)M;

L;03M;.
F = 4L;3)M

L;3M
.                           (A13) 

With Eqs. (A5), (A12), and (A13) we can describe x as: 

> = 1 + 9

J
= 1 + 9(L;3M)

4L;3)M
= 2 + (7; '%)⁄ 3$(9#2)6

4(7; '%)⁄ 3$(9#2)6
. 
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