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和文概要 (邦題：「音声音響符号化のための非線形信号整形法による
符号化モデル拡張についての研究」)

近年, ネットワークや通信機器の発展に支えられ, 我々は日々大量の情報を生み出し, 発信・
受信することが可能となった. 中でも音声通信の発展は目覚ましく, 今では場所や時間によら
ず音声音響信号のやりとりが可能である. このように音声通信が当たり前となった時代におい
ては, より品質の高い通信に対する需要が益々増加していくことが予想される. この品質は, 扱
える情報量や音質は勿論のこと, 通信のリアルタイム性やコストなども含めて包括的に考慮す
る必要がある. 特にリアルタイム性は, 刻一刻生み出される音声音響信号の情報を最大限に活
用するには必要不可欠な要素である.

長年この音声通信を下支えしてきたのが音声音響符号化の技術であり, この技術はこれらの
需要に応えるにあたって重要な役割を果たす. 音声音響符号化の枠組みにおいて, 音声通信の
品質に大きく影響を与える情報量や, 復号音質, 原理遅延, 計算量, 誤り耐性の各要素はお互い
に複雑に依存し合い, 様々なトレードオフが存在する. 通信の用途によって変わる制約の中で,

高い音質を保ちながらリアルタイム性を重視した低遅延な符号化を実現することは困難な課題
として残っており, 本研究はこの課題に焦点を当てる.

本論文では, 既存の多くの符号化方式が, 制約の違い毎に実装は大きく異なるがその本質は
変わらないことに着目し, 低遅延条件下の符号化方式において幅広く活用できる基盤となる技
術を提案する. その中で重視するのが, 計算量や既存の技術との親和性である. 低遅延な条件
下では計算量が増加しやすく, また符号化は様々な技術の複合体となるため, 簡潔で低演算量
な処理が望ましい. そこで, 提案手法は全て信号や情報の整形, 情報を失わずに見方だけを変え
る単純な可逆な変換により, 既存の重要なモデルの拡張を実現している.

章の構成としては, まず第 2章で, 音声音響符号化が大きく信号・感度・符号の三種類のモ
デル化によって構成されていると解釈し, 多くの方式が陰に陽に用いている共通の仮定をこの
考え方に則って説明する. そして第 3, 4, 5章でこれらモデル化における基盤となるモデルを
拡張するための整形法の提案をし, 第 6, 7, 8章で提案手法の応用例として実際の符号化方式を
実装し評価を行う.

第 3章は信号モデル, 音声音響信号の統計的な仮定を決めるモデルに着目している. ここで
は信号の周波数スペクトルの包絡表現に重きを置き, 主要技術である線形予測を拡張するため
の, サンプル単位で効果を発揮する整形法を独立した観点から三つ提案する. 一つ目はスペク
トル包絡推定の周波数の解像度を伸縮するための非負値疎行列による整形である. 二つ目はス
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ペクトルの分布の仮定を, より広いクラスである一般化 Gauss分布としたときでも最適にスペ
クトル包絡を推定するための累乗演算による整形である. 三つ目はスペクトル包絡による白色
化処理を整数値の領域においても可逆に行えるようにするための, ビット平面上の置換による
整形である.

第 4章は感度モデル, 復号音声の聞き手の感度を表すモデルに着目している. ここでは聴覚
心理に従った量子化雑音の聴感的な制御を信号の重み付け処理として捉え, 他のモデルとの親
和性の高いものを実現するため, 信号のブロック単位で効果を発揮する整形法として, ブロッ
ク圧伸の拡張による整形を提案する.

第 5章は符号モデル, 信号・感度モデルが与える目的関数や仮定に基づいて歪みと情報量の
最適化を図るアルゴリズムをモデルに着目している. ここでは, 低演算量で Laplace分布に属
する信号の圧縮に最適なことから広く用いられている可変長符号である Golomb–Rice符号に
着目し, Golomb–Rice 符号の最適性の条件を拡張するため, 分布単位で効果を発揮する整形
法を独立した観点から二つ提案する. 一つ目は Golomb–Rice符号が最適性を失うような疎な
Laplace分布において最適な符号を構成できるようにするための, ビット反転による整形であ
る. 二つ目は一般化 Gauss分布に従う入力に対してでも Golomb–Rice符号で最適に圧縮でき
るようにするための, 整数マッピングによる整形である.

第 6章では, 移動通信のような低遅延且つ低ビットレートな符号化方式の応用例を示す. 音
声信号が得意な時間領域の符号化方式と組み合わせて用いることを想定した, 最新の周波数領
域の符号化方式において, 信号モデルにおける提案法が信号の仮定をより忠実なものとし, 圧
縮の効率を向上させることを実証する. また, 符号モデルにおける提案法により, 一般化Gauss

分布の仮定に拡張してもGolomb–Rice符号を用いて効率的に圧縮可能であることを確かめる.

第 7章では, 主に放送局で用いられることを想定したリアルタイム音源伝送用の低遅延で高
音質な符号化方式の応用例を示す. 柔軟な実装を可能とする感度モデルにおける提案法により,

別の用途で開発された既存の国際標準方式を再利用する方法や, その性能について議論する.

第 8章では, 無線マイクに代表されるリアルタイム機器間通信を想定した, 伝送路でビット
誤りが起こっても復号結果への影響が小さい低地艶な符号化方式の応用例を示す. 信号モデル
と感度モデルにおける提案法を駆使し, ビット誤りに対して頑健な符号化方式を提案し, その
頑健性や音質について検証する.

これらの応用例は実装は異なるが, 基本的な構成・仮定は共通している. 提案する整形法も
全て互いに組み合わせて使用することが可能であり, 既に一部は商用として採用されているこ
とから, 低遅延音声音響符号化方式の設計において欠かせない技術となると期待できる.
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Abstract

In these days, owing to the development of networks and devices, we can every day

produce, send, and receive many kinds of information. Among that, speech-and-audio

communication has significantly been developed, which enables us to communicate with

each other anytime, anywhere. Now, with the speech-and-audio communication taken

for granted, it is expected that the demand for higher quality will further increase. The

quality of communication, of course, includes the sound quality and information amount

to be dealt with, but also its realtimeness and costs should be taken into account. Notably,

the realtimeness is one of the essential factors for entirely making use of the speech and

audio produced moment by moment.

Speech-and-audio coding techniques have been responsible for communication for years

and are the key to meeting the rising demands. In the framework of coding, the factors

related to the quality of the communication such as information amount, reproduction

sound quality, algorithmic delay, computational complexity, and error robustness depend

on each other in very complicated ways so that there are many trade-offs related to

them. There remain challenges to realize low-delay coding schemes maintaining high

sound quality under various conditions dependent on use cases, which is the primary goal

of this work.

This thesis focuses on the fact that there are standard fundamentals of modeling speech-

and-audio coding even though their implementations differ following the use cases. Basic

techniques are proposed to extend the coding models, making them more useful in low-

delay coding. Here, we place a high value on computational complexity and affinity to

other technologies. Since computation costs tend to be significant in low-delay condi-

tions, and the techniques have to harmonize to perform efficient coding, the methods are

preferable to be simple and low complexity. Therefore, all the methods proposed here are

realized by shaping, simple invertible transformations that change only the measurement

of signals without losing any information.

This thesis begins in Chap. 2 with an interpretation of modeling speech-and-audio

coding roughly as three types of modelings, signal, perception, and code modelings. It

explains the common assumptions used in many coding schemes implicitly or explicitly.
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Then in Chaps. 3, 4, and 5, the shaping methods are presented as basic techniques, which

are implemented and evaluated in some codec applications in Chaps. 6, 7, and 8.

Chap. 3 stands on the signal modeling, the modeling determining the statistical as-

sumptions for signals. Here, we focus on envelope representation of frequency spectra

and present three shaping methods based on samples, from independent points of view,

to extend the linear prediction, the principal model for the signal modeling. The first

one is the shaping by non-negative sparse matrices for warping frequency resolution of

envelope estimation. The second one is the shaping by powering operation for extending

the assumption of frequency spectra in envelope estimation to generalized Gaussian dis-

tributions, a broad class of exponential family. The third one is the shaping by bit-plane

rearrangement for realizing invertible whitening by spectral envelopes for integer-domain

frequency spectra.

Chap. 4 stands on perception modeling, the modeling defining the sensitivity of the lis-

teners. Here, we understand the psycho-acoustic control of quantization noise as weighting

processing and present a shaping method based on blocks of signal, consisting of an ex-

tension of block companding, to realize a high-affinity model.

Chap. 5 stands on the code modeling, the modeling giving us algorithms to optimize

the rate-distortion trade-offs subjecting to the sensitivity and assumptions derived from

signal and perception modeling. Here, we focus on Golomb–Rice code, the widely-used

low-complexity variable-length code known to be optimal for Laplacian-distributed sig-

nals, and present two independent shaping methods based on distributions to extend its

optimality. The first one is the shaping by bit inverting for constructing codes optimal

for sparse Laplacian sources for which the conventional Golomb–Rice code loses its op-

timality. The second one is the shaping by integer mappings for Golomb–Rice code to

compress optimally the inputs belonging to generalized Gaussian distributions.

In Chap. 6, we show as an application a low-delay and low-bit-rate codec mainly for

mobile communication. We evaluate a state-of-the-art frequency-domain codec imple-

menting the proposed methods for the signal modeling, assuming its use in combination

with time-domain codecs, which is known to be efficient for speech inputs. The methods

are examined whether they give us more reasonable assumptions for frequency spectra

and enhance compression efficiency. Besides, we discuss applying the proposed method

for the code modeling to use generalized Gaussian assumptions for real codecs based on
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Golomb–Rice coding.

In Chap. 7, we show as another application a low-delay and high-sound-quality codec

mainly for real-time sound data transmission in broadcasting. We discuss reusing the in-

ternational standards, developed for other use cases, by applying the proposed method for

perception modeling enabling us more flexible codec design and evaluate its performance.

In Chap. 8, we show as the last application a low-delay codec having a small influence

on the reconstruction quality even if bit errors occur in the communication line, aiming

at its use in real-time inter-device communication such as wireless microphones. Taking

advantage of the proposed methods for signal and perception modeling, we design a bit-

error-robust codec and investigate its robustness and sound quality.

These applications differ in the implementation, but their underlying structures and

assumptions are the same. Additionally, all the shaping methods proposed here can be

combined, and some of them are already adopted for commercial use. Therefore, they are

expected to be essential techniques for low-delay speech-and-audio coding.

Keywords Audio compression, Low delay, Linear prediction, Golomb–Rice code, Fre-

quency warping, Non-negative matrix, Block companding, Generalized Gaussian

distributions.
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Chapter 1

Introduction

1.1 Background of speech-and-audio coding

In about half a century, the digitalization of speech-and-audio signals has made rapid

changes in communication. Mainly, their compression, or coding, has been greatly con-

tributed to prosperity. Commencing with ITU-T G. 711 [1], used for fixed-line telephones,

the development of low-bit-rate codecs such as 3GPP Adaptive multi-rate (AMR) [2, 3],

3GPP AMR wideband (AMR-WB) [4,5], and 3GPP Enhanced voice services (EVS) [6–8]

now enables us, just with small mobile phones, to talk naturally to whoever we want, re-

gardless of wherever we are and whenever it is. High-sound-quality codecs such as MPEG-

4 Advanced audio coding (AAC) [9,10] and MPEG-4 Audio lossless coding (ALS) [11,12]

have enhanced the flexibility of broadcasting and archiving of audio, allowing us to enjoy

high-quality audio contents in various media not limited to television.

As described above, speech-and-audio coding has supported the realization of desired

sound communication overcoming the limitations of space and devices. However, the re-

cent circumstances of data and network dependence are requiring more and more peculiar

and strict conditions for compression. From the perspective of data in general, the in-

formation amount of the data generated in a year exceeded the overall storage capacity

in 2007 [13], of which the gap is getting larger every year. The sensors collecting those

data are also increasing in amount as well as in variety, exceeding ten billion in 2015 [14].

Also, the networks are changing. For instance, the fifth-generation (5G) mobile commu-

nication networks are designed to use network slicing, a technique of flexibly costuming

the network capability and priority, to meet minute demand on data communications [15].
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This fact means we are expected to consume more and more amount of data coming from

sensors under various kinds of conditions. Furthermore, speech-and-audio data are no

exceptions: We are now communicating with people remotely by phones or maybe locally

by amplifying our voice with microphones, which send our speech signals to loudspeak-

ers in real-time; sometimes sound data are transmitted to audio processing systems in

broadcasting; we may communicate even with machines owing to speech recognition and

synthesis techniques, for example. Speech and audio coding technology have the potential

to realize those demands, which usually have their specific conditions, more flexibly with

higher quality.

Here, we mainly focus on lossy coding, which compresses input signals usually into some

constant bit rate admitting distortion in the decoded ones and is often more useful than

lossless when the bit rates have strict upper limits. Lossy compression of speech-and-audio

signals has fundamental trade-offs between the following conditions:

� Reconstruction quality, the quality of the decoded signals;

� compression bit rates, the overall description length of the encoded signals;

� algorithmic delay, the unavoidable delay due to the coding processes even if the

computation and delivery are done immediately;

� computational complexity, the computational costs affecting the required compu-

tational resources;

� error robustness, the effect on reconstruction quality of errors occurred in encoded

bitstreams.

These conditions are complicatedly related to each other, and their required levels heavily

depend on the use cases, which makes the codecs difficult to design. Also, the reconstruc-

tion quality depends on how we use the decoded signals. For example, if the signals are

analyzed or processed after decoded, the fidelity of the waveforms such as signal-to-noise

ratio (SNR) may be a critical criterion, while thinking of speech communications, the

criterion should be a perceptual difference, which cannot always be estimated from SNR.

Let us briefly look at some conditions in the conventional international standards of lossy

codecs described in Table 1.1: ITU-T G. 711. G. 726 [16], G. 729 [17], and 3GPP AMR-

WB are speech codecs working with low delay; codecs such as 3GPP Extended adaptive

multi-rate wideband (AMR-WB+) [18] and MPEG-D Unified speech and audio coding
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(USAC) [19–21] aims also at music but have a longer delay; in music codecs, MPEG-

1/2 Audio layer 3 (MP3) [22, 23] is very famous for audio archiving, and MPEG-4 AAC

Enhanced low delay (AAC-ELD) [24] compresses with low delay but still requires higher

bit rate compared to speech codecs. The assumed input type and the sampling rate are

related to the requirements for the reconstruction quality. Typically, music signals contain

more information than speech ones in the same sampling rate. The packet dependence

shows that whether or not the codecs are designed for use in packet-based communication

such as Internet protocol (IP). The conditions of the use cases correspond to the error

robustness, whether the codecs are bit-error robust or packet-error robust, and in general,

the former is the stricter. As we can see from the table, the conditions have many trade-

offs, and the standardized codecs have covered many combinations of requirements by

developing several techniques for each case.

According to the trends mentioned previously about data and networks, more demands

are expected in the future on continuously consuming speech-and-audio data: Demands

on mobile communications with higher sound quality and presence, demands on making

use of captured sounds by such as sound detection or speech recognition, demands on

live coverage. In that sense, the timeliness of speech-and-audio communications becomes

more important, and for their coding, “low delay” will be one of the critical factors.

It is known that, in simple conversation, the overall transmission delay becomes de-

tectable from 100 ms [25], and thus the algorithmic delay of a codec should be at most

around 30 ms because there are other factors such as networks. In more severe use cases

such as remote ensemble and local speech amplifying by microphones, for example, the

limitations of the algorithmic delay will be much shorter as a few milliseconds. Under such

conditions, it becomes more difficult to lower the bit rates or enhance the reproduction

quality compared to the codecs used in archiving. Moreover, due to the shorter frame

of coding processes, the computational complexity tends to be higher when adding some

analysis. Therefore, low-delay coding of speech-and-audio signals remains a very challeng-

ing issue, requiring efficient modeling of speech and audio in both senses of compression

efficiency and computational complexity.
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1.2 Motivation of study

The goal of this study is to provide high-efficiency tools, mainly focusing on low-delay

lossy speech-and-audio coding, making the codec design more flexible. As shown in Table

1.1, many standardized codecs work under various conditions. However, from a practical

point of view, there are still many demands remaining for speech-and-audio coding: Low-

delay and low-bit-rate codecs for mobile communications supporting music as well as

speech; low-delay codecs for live broadcasting with very high reconstruction quality close

to lossless; low-delay and high-quality speech and music codecs that can be used in packet-

independent communication lines such as local radio transmission.

Of course, there may be some entirely new approach for each condition. However,

deep understandings in the fundamental ideas often give us natural extensions of the

conventional methods that provide us with simple but efficient solutions easily combined

with other techniques. This study, based on theoretical investigations, proposes “shaping”

techniques, techniques in some sense transforming signals without losing information to

extend and enhance the conventional basic models.

Some proposed methods in this thesis are already adopted in EVS, the state-of-the-art

Table 1.1. Examples of the conditions of the standardized lossy speech/audio codecs

Codec Assumed Sampling Bit rate per Algorithmic Packet

name input type(s) rate [kHz] channel [kbps] delay [ms] dependence

G. 711 Speech/Faximile 8 64 < 1 Independent

G. 726 Speech 8 32 < 1 Independent

G. 729 Speech 8 8 15 Independent

AMR-WB Speech 16 16 25 Independent

AMR-WB+ Speech/Music 16 16 > 100 Dependent

USAC Speech/Music 48 24 > 100 Dependent

MP3 Music 48 96 > 100 Dependent

AAC-ELD Music 48 64 15 Dependent
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Fig. 1.1. Organization of the chapters.

standard of a speech-and-audio codec, and in codecs for commercial use. The methods

may seem disconnected, but they are fundamentally capable of cooperating, depending

on the required conditions. Of course, some methods are not yet adopted in the actual

applications. However, they indeed show high efficiency and make us design codecs more

freely, and thus there are still many chances to be used, sometimes combined with some

other methods for the arising demands in the future.

1.3 Outline of this thesis

The organization of the chapters and their relationships are described in Fig. 1.1. The

thesis first introduces in Chap. 2 the basic ideas used in the conventional coding schemes.

It is explained that the speech-and-audio coding can be interpreted in three fundamental

modelings on which every coding schemes are, whether implicitly or explicitly, based.

The widely-used methods for them are reviewed, and in Chaps. 3, 4, and 5, the shaping

methods are proposed for each of them.

After showing the basic shaping methods, the practical applications are discussed. In

Chap. 6, the cooperation of the methods in Chaps. 3 and 5 is introduced focusing on

mobile communications. Based on sound-data transmission in broadcasting, the method

in Chap. 4 is applied to a codec in Chap. 7. Then in Chap. 8, the methods in Chaps. 3
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and 4 are combined for the situations in local inter-device communication. Finally, the

thesis is concluded in Chap. 9.
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Chapter 2

Basic ideas in conventional coding

schemes

2.1 Introduction of this chapter

As explained in the previous chapter, there are many codec standards, and they use

different coding schemes to achieve the required conditions. However, most of them are

designed based on the modeling categorized, of course, there are some overlaps, into the

following three types.

The first one is the signal modeling, which represents the inter-sample relationships of

the speech-and-audio signals based on the acoustic characteristics. This one is the mod-

eling of the senders of the sounds or sounds themselves. One of the most straightforward

characteristics in this context is the time continuity of the signals, which is often com-

bined with the assumptions of periodicity and harmonics and modeled as filters [26, 27],

prediction [28], and frequency spectra [29], for example. For multi-channel signals, their

space continuity is one of the essential clues to represent the signals, which is also included

in this category. From a statistical point of view, these modeling can be interpreted as re-

garding the signals as stochastic processes and assuming some distributions that generate

their samples.

The second one is perception modeling, which represents the sensitivity of the listeners

of the sounds. It concerns whether the difference in the signals is audible and is, in other

words, the modeling of the receivers. This one is usually modeled for human listeners by
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Fig. 2.1. Example of assumptions based on speech modeling.

using the psycho-acoustic effects such as frequency/temporal masking [30]. It is only after

modeling the perception that we can numerically evaluate the coding schemes.

The last one is the code modeling, or the modeling of the transmission, which represents

the signals by finite numbers or symbols. This one is responsible for finding an optimal

trade-off between the bit rates and the reconstruction quality using quantization and

data compression techniques based on the rate-distortion theory [31]. The optimization

fully depends both on distributions assumed for signals and evaluations in the sense of

sensitivity.

To summarize the above, speech-and-audio coding is modeled as an optimization defined

by the code modeling with its objective given by the perception modeling and its target

distribution by the signal modeling. Based on this interpretation, this chapter shows the

major assumptions used in many codecs and widely-used techniques for each modeling,

pointing out the main approach of this study.

2.2 Overview of major assumptions

From now on, we mainly focus on monaural signals for simplicity. Many speech-and-audio

coding schemes implicitly or explicitly model the correlation of the distributions assumed
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for the signals, each regarded as a vector of samples in a frame. Furthermore, taking long

enough frame length N , they are also assumed to be decorrelated by Fourier transfor-

mation. This means the frequency spectra {Xk}N−1
k=0 of a frame, say they are complex

numbers given by discrete Fourier transformation (DFT) or maybe real numbers given by

modified discrete cosine transformation (MDCT) for example, are assumed independently

for each frequency k as

Xk ∼ pX(X|ϕk) (2.1)

using some class of distributions pX(X|ϕ) with their scales {ϕk}N−1
k=0 .

For the class of distributions pX(X|ϕ), it is known to be preferable to use ones that are

zero-mean, symmetric, and monotonically non-increasing by the magnitude. Therefore,

the distributions in the exponential family, especially Gaussian and Laplacian, are well-

used in this context. It should be noted that the above assumption underlies not only the

frequency-domain coding schemes, compressing strategies for the frequency spectra, such

as in [32–34] but the time-domain ones, directly compressing the signal waveforms using

some filters, such as in [12, 26, 35, 36]. In the encoding, the scales {ϕk}N−1
k=0 are directly

or indirectly estimated, or parameterized, from the input frame {Xk}N−1
k=0 by the signal

modeling to construct a reasonable numerical settings for compression optimization. The

compression always strictly concerns the bit rates, critically related to the log-likelihood of

the signals by their assumptions. For this reason, the estimation of the model parameters

for encoding is often based on a maximum-log-likelihood criterion, equivalent to minimum-

description-length criterion when there is no quantization. An example of this assumption

is depicted in Fig. 2.1, which shows the assumed distributions of corresponding spectra

with their estimated scales. If the values of the spectra are more likely for the distributions,

we can achieve lower bit rates by using optimal codes designed for each distribution.

The perception modeling works as some weights in compression optimization. There are

various ways of implementation, but its fundamentals are briefly interpreted as follows:

� We are more sensitive to the difference in small-amplitude frequencies;

� we are less sensitive to the difference in large-amplitude frequencies;

� we are less sensitive to the difference in frequencies near the large-amplitude ones

(masking effect [30]).
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The same characteristics can also be seen in the time domain. Taking into account these

characteristics, the reconstruction quality, the difference between the original and decoded

signals, are somewhat weighted, for example, by perceptual weights {Pk}N−1
k=0 for each

frequency, which usually derived from the input spectra {Xk}N−1
k=0 .

Roughly speaking, the code modeling decides the way Enc[·] : RN → {0, 1}bit and

Dec[·] : {0, 1}bit → RN to minimize the problem based on the above assumptions with a

target bit rate B as
N−1∑
k=0

∫
(PkXk − PkX̂k)

2p(Xk|ϕk) dXk (2.2)

subjecting to

{X̂k}N−1
k=0 = Dec[Enc[{Xk}N−1

k=0 ]], bit ≤ B. (2.3)

Of course, the distance in the objective function may not limited to L2-norm, and it is

sometimes difficult to distinguish to which modeling it belongs.

2.3 Signal modeling

One of the most basic methods for the signal modeling is linear prediction (LP), capable

of representing the short-term correlation of the samples in a frame. Owing to its simple

and efficient algorithm for estimating the frame-wise model parameters, it is widely used

in speech-and-audio coding schemes [2, 4, 11, 12, 18, 28, 32, 35, 36]. Here, we briefly review

how the LP works.

The LP assumes the signals to be predicted by the p-th-order all-pole filter that can be

represented in the z-transformation domain as

H(z) =
σ2

1 +
∑p

n=1 anz
−n

(2.4)

with its model parameters, or LP coefficients {an}pn=1, and prediction gain σ2, namely

the variance of the prediction residuals. The model parameters that minimize the squared

errors of the prediction residuals in time domain are estimated from the input signals by
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solving the Yule-Walker equation:
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where {rn}pn=0 is the auto-correlation function of the input signal. The auto-correlation

function {rn}pn=0 can be obtained either by correlation operation in the time domain or by

inverse cosine transforming the power spectra of the input signal. Eq. (2.5) is the particular

case of the Toeplitz-type equations so that it can be solved efficiently by the Levinson–

Durbin algorithm while easily checking the stability of the model parameters. Besides,

the parameters can be equivalently represented as partial autocorrelation (PARCOR)

coefficients and line spectrum pairs (LSPs) [37, 38]. These representations are robust for

quantization, which is also the primary reason for adopting LP to the coding schemes.

In the frequency domain, the model of Eq. (2.4) represents the spectral envelope of

the input signal. We can easily deduce that the minimization problem of the LP can be

approximately written into another form in frequency domain when p ≪ N as

min
{an}

N−1∑
k=0

DIS(H
2
k | |Xk|2) (2.6)

(see appendix A for the proof) where {Hk}N−1
k=0 ≡ {|H(eπjk/N )|}N−1

k=0 , and

DIS(x|y) =
y

x
− ln

y

x
− 1 (2.7)

is for the Itakura–Saito (IS) divergence of x from y, emphasizing that IS divergence

does not satisfy the axiom of distance. j and ln(·) are for the imaginary number and

the natural logarithmic function, respectively. For each frequency k, the terms in the

objective function of Eq. (2.6) relating to Hk correspond to the negative log-likelihood of

Gaussian with scales Hk:

pG(Xk |Hk) =
1√

2πHk

exp

(
−1

2

∣∣∣∣Xk

Hk

∣∣∣∣2
)
. (2.8)

This leads to the interpretation of the LP: From the signal-modeling point of view, it

assumes Gaussian for the base distribution pX(X|ϕ) explained in the previous section,
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models its non-uniform scales as ϕk = Hk, and parameterizes the maximum-likelihood

scales for all the frequencies, which forms the spectral envelope, with the constraint of the

all-pole model in Eq. (2.4).

2.4 Perception modeling

For high bit rates, it is sometimes enough for perception modeling to satisfy only the first

two psycho-acoustic characteristics introduced in the previous section. In that case, µ law

is used, which is one of the simplest methods adopted, for example, in ITU-T G. 711 [1].

It compands the signals by quantizing logarithmically each sample, which also can be

interpreted as a uniform quantization after weighting each sample value by large weights

for low values and small weights for high values, respectively.

Block companding [39] is a bit smarter, which uses block-wise representatives to calcu-

late the weights to perform for the corresponding blocks. This process makes use of the

values of neighboring samples, approximating the masking effects. By uniform quantizing

both the weighted samples in the block and also quantizing its representatives, the block

companding perceptually shapes the quantization noise.

The spectral envelopes are as well often used for this kind of modeling, especially when

the coding scheme uses LP for the signal modeling. In this method the weights {Pk}N−1
k=0

are approximated from the envelopes as

Pk = 1/H̃k =

∣∣∣∣∣1 +
p∑

n=1

anγ
ne−jπk

N n

∣∣∣∣∣ (2.9)

where 0 < γ < 1. Coefficients {H̃k}N−1
k=0 in Eq. (2.9) corresponds to the smoothed form

of the envelope {Hk}N−1
k=0 . This weighting before uniform quantization shapes the ratio of

quantization noise to the original value of the spectra in each frequency into approximately

H̃k/Hk, which is lower in the spectral peaks and higher in the spectral valleys around the

peaks.

As the readers may notice from the above explanations, the perception modeling is

highly dependent on the other modeling and coding strategies. Therefore, its design often

has an impact on or is limited by the whole structure of the codec.
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2.5 Code modeling

Here, we are referring to the code modeling as the modeling of compression processes,

source coding, in other words, containing quantization and representation in binary codes.

The source coding has theoretical limits on the bit rates for given allowed distortion

of reconstructed signals, which can be ideally achieved by vector quantization mapping

samples at once to fixed-length codes in the optimized codebooks.

Vector quantization shows high compression performance and is thus used in audio

coding schemes as in [40]. However, in general, it requires high computational complexity,

especially for higher bit rates, and its theoretical optimality holds only for frames with

long enough length. Therefore, many codecs use fixed-to-variable-length (FV) coding, or

entropy coding, with scaler quantization [7, 8, 10, 18, 20], which compresses the quantized

signals based on their entropy with a restriction of decodability. Huffman coding and

arithmetic coding are the FV codes capable of optimally compressing stationary non-

memory random numbers by using codebooks or algorithm based on the distributions of

input signals.

On the other hand, some FV codes focus on specific distributions to realize simpler

algorithms. Golomb code [41] and Golomb–Rice (GR) code [42] are the well-known ex-

amples. After this, we refer to GR code as Rice code when we want to distinguish from

Golomb code. These codes focuses on the geometric distribution, or the half-sided Lapla-

cian distribution,

pGeo[X|θ] = (1− θ)θX (2.10)

enabling us to compress the absolutes x of the quantized signals with low computational

complexity and small memory. For example, Rice code, the particular case of Golomb

code, consists of a prefix code and an R-bit suffix code, with a tunable Rice parameter

R (≥ 0). Rice encoding only requires division of input symbols by 2R, or an R-bit-shift

operation, and respectively represents the quotient and the remainder by unary and R-bit

binary. Golomb code is almost as simple as Rice code, having a finer tunable Golomb

parameter S (= 2R − s, R ≥ 0, 0 ≤ s < 2R−1) and identical to Rice code when S is a

power of 2. Instead of the R-bit suffix code, Golomb code includes the phased-in binary

code [43–46], one of the complete binary tree (CBT) codes [47] which switches R-bit and
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(R − 1)-bit binary codes depending on the input values. The example of the codes is

described in Table 2.1.

Laplacian distribution is practical for use in the signal assumption pX(X|ϕ) mentioned

in the previous section. From this fact and the simplicity of the algorithms, Golomb and

Rice codes are widely used for coding applications such as in [48–50].

2.6 Focus of this study

As shown in the previous sections, there are many useful techniques to model speech-

and-audio coding, categorized into the three modelings. Although there are still many

conditions they do not fully cover, it is preferable, in the sense of affinity to each other,

to make more use of the conventional techniques. Therefore, our study aims at extending

and enhancing the models through simple processing based on theoretical investigations.

We propose in this thesis six “shaping” methods, transforming signals without losing

information, to make the conventional methods solve their challenges.

As the readers may notice that the modeling introduced in the previous sections differs

in the time-or-frequency scopes they tackle with: The signal modeling takes care of the

statistics of each sample; perception modeling mainly concerns only the blocks of neighbor-

ing samples; the code modeling depends on the distributions for wider scopes. With the

Table 2.1. Code examples of Golomb and Rice codes

Input R = 0 R = 1 - R = 2 -

x S = 1 S = 2 S = 3 S = 4 S = 5

0 ‘1′ ‘10′ ‘10′ ‘100′ ‘100′

1 ‘01′ ‘11′ ‘110′ ‘101′ ‘101′

2 ‘001′ ‘010′ ‘111′ ‘110′ ‘110′

3 ‘0001′ ‘011′ ‘010′ ‘111′ ‘1110′

4 ‘00001′ ‘0010′ ‘0110′ ‘0100′ ‘1111′

5 ‘000001′ ‘0011′ ‘0111′ ‘0101′ ‘0100′

6 ‘0000001′ ‘00010′ ‘0010′ ‘0110′ ‘0101′

...
...

...
...

...
...
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clues of these facts, this study shows sample-based, block-based, and distribution-based

shaping methods for respective modeling.

2.7 Conclusion of Chapter 2

This chapter explained the assumptions which are well-used in speech-and-audio coding

models. It is shown that, from a statistical point of view, the signal modeling can often

be interpreted as parameterizing the scales of the frequency-wise distributions. On the

other hand, the code modeling gives the optimization method of the trade-offs between

bit rates and distortion defined by perception modeling based on psycho-acoustic effects.

The widely used method was introduced, such as linear prediction for the signal mod-

eling, companding methods for perception modeling, and entropy coding for the code

modeling. Based on those conventional ideas, we showed the aim of the overall thesis.

The conventional coding models will be extended by proposing six shaping methods based

on the three types of modeling. From the next chapter, the concepts of each proposed

shaping method are explained first.
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Chapter 3

Signal model extension by

sample-based shaping

3.1 Introduction of this chapter

The signal modeling defines the assumed distribution of the signals and thus determines

the theoretical limits of compression efficiency. Therefore, the model should be reasonable

as possible for representing the real speech-and-audio signals. In the sense of compression,

how reasonable the models are can be discussed based on maximum-likelihood criterion

because ideal expected bit rates of the encoded signals depend on the likelihood of the

models when allowing the same distortion. In other words, in the same freedom of models,

enhancing their likelihood can lower the distortion in the same bit rates and is expected

to enhance the sound quality of the decoded signals.

This chapter focuses on the LP, one of the most important signal models, as mentioned

in the previous chapter, and aims at extending to a more efficient model. Since the LP

has simple assumptions in the frequency domain from a statistical point of view, and,

in general, frequency-domain coding schemes are practically efficient for a broad class of

sounds, we here use the ideas of its model in the frequency domain.

As explained in the previous chapter, the scales of the distributions estimated by the LP

from the frequency spectra are represented as spectral envelopes. In the following sections,

we propose shaping methods, from three independent approaches, making the envelope

representation more reasonable. The first approach is for the model resolution, or the
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fidelity of the model, in each frequency. It makes use of the characteristics of the natural

sounds that often have more dynamics in the lower frequencies than the higher frequencies.

The second one is for the model distribution, the basic class of distributions pX . It gives

more reasonable signal assumptions while requiring a small increase in computational

costs for the estimation of the model parameters. The third approach is for the model

discreteness, for the fact that the target signals take discrete values due to quantization.

It enables us to whiten the spectra, without losing any information, even if they are

quantized and integer-valued. In other words, it realizes an algorithm to make the scales

uniform in the domain of discrete values.

The methods coming from the above approaches tackle different challenges and can be

combined as necessary. Therefore, founded on the requirements of the codecs, appropri-

ately adopting these methods will enhance the compression efficiency.

3.2 Shaping by frequency warping focusing on model resolution

3.2.1 Motivation

Generally, the envelope extracted by the conventional LP has a uniform frequency reso-

lution over the frequencies, depending on its prediction order, for fitting on the spectra

because the envelope is composed of the reciprocal of the linearly-combined sinusoids.

This limitation on the resolution causes, in some cases, low accuracy of scale estimation,

which ends up in unexpected compression results given by the code modeling. Of course,

this resolution can be enhanced by increasing the order of LP, but this also leads to the

increase of the bits to code the LP coefficients and computational complexity to estimate

the LP coefficients from the signal.

Most natural sounds have a relatively higher power at lower frequencies so that the

information content of quantized signals tends to concentrate in the lower band. Fig. 3.1

shows an example of this nature. We calculated the log-likelihood of MDCT spectra

assuming their distribution as Eq. (2.8) with the scales given by prediction orders up to

32. The figure plots how much the log-likelihood of each frequency enhanced in ratio

when the prediction order doubled. Here, the enhancement by the first-order is valued as

1. The ratio was much larger in the lower frequencies than the higher ones, which comes
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Fig. 3.1. Frequency-wise log-likelihood enhancement ratio by prediction order compared

to the enhancement by the first order. Total 24720 frames of 320-sample MDCT

coefficients were tested.

from the large dynamic range of low frequencies. Note that the frequencies near 0 and

8000 Hz have special characteristics derived from the nature of frame-wise processing, and

it is difficult to enhance the likelihood. Taking these facts into account, we here propose a

representation of the envelopes based on a model modified to warp the frequency resolution

into a Mel-frequency scale [51], instead of using higher-order LP.

3.2.2 Resolution warping by non-negative sparse matrices

For warping the resolution of the envelopes, the most straightforward idea is to divide

the spectra by several frequency bands and apply a different order of LP to each band.

However, this method has too many tunable and non-intuitive factors, combinations of

frequency bands, and their corresponding LP orders. Moreover, the envelopes significantly

lose their continuity, especially when the target spectra have peaks at the boundary of

the divided frequency bands, which leaves the risk of artifacts in the decoded signal.

The model in [52] is the well-known representation of continuous envelopes with warped

resolution. This model is written as a modification of Eq. (2.4) with an all-pass filter

approximating the frequency warping:

H(z) =

(∑
n

an

(
z−1 − δ

1− δz−1

)n
)−1

(3.1)
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where δ stands for an extent of the warping, that approximates the Mel-frequency scale

when δ = 0.41 at 16-kHz sampling rate. This method of representation is also known

as a special case of Mel generalized cepstrum analysis [53], called the Mel linear predic-

tive coding (Mel-LPC) method, and its integration in several types of codecs has been

considered before [54–57].

Based on the same sense of warping as Mel-LPC, the method proposed in this section

provides a much simpler scheme with lower complexity owing to its limited use only in

the frequency domain. The method uses the shaping of spectra by two N × N sparse

non-negative matrices prepared in advance: one for approximating frequency warping of

the power spectra; the other for approximating the inverse warping. Here, we simply call

them the warping matrix and the inverse warping matrix, respectively.

The extraction of the envelopes is done as follows. First, the power spectra of the

signal are shaped by the warping matrix W ≡ {Wij}, having their frequency resolution

warped, and inverse Fourier transformed. Then, as in the conventional LP, LP coefficients

are estimated by performing the Levinson–Durbin algorithm with the transformed spec-

tra regarded as a pseudo-auto-correlation function. Substituting the LP coefficients for

Eq. (2.4) gives a frequency-warped envelope with its resolution uniform over the warped

frequencies. Therefore, resetting the frequency by the inverse warping matrix results in an

envelope with its frequency resolution warped. In other words, this shaping by frequency

warping changes the model of the envelope as

Hk =

N−1∑
i=0

Uki

∣∣∣∣∣1 +
p∑

n=1

ane
−jπi

N n

∣∣∣∣∣
−2
 1

2

, (3.2)

with the (i, j)th element (counted from (0, 0) for convenience) of the inverse warping

matrix U ≡ {Uij}. The square root of the prediction gain σ2 given by the algorithm rep-

resents the gain of the envelope mentioned in the last chapter. This method differs from

the conventional LP only in the additional matrix operations, which costs minor complex-

ity when the matrices are sparsely designed. In addition, the Levinson–Durbin algorithm

enables us to check the stability of the LP coefficients easily during the estimation, just

as in the conventional LP.
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3.2.3 Optimization of warping matrix

Here, we provide one way to design the warping and inverse warping matrices. The en-

velope extracted from the frequency-warped spectra, as mentioned above, gets inversely

warped to reset the frequency axis. However, these warping and inverse warping opera-

tions make errors in the envelope, in the sense of how high the accuracy of the envelope

should be in the original frequency axis, because of the inherent irreversibility of the

warping operations. For that reason, the warping and inverse warping matrices must be

designed according to not only the accuracy of the warping but also to the consistency of

the warping and inverse warping operations. Therefore, the matrices are prepared here

by an optimization using a training data set of spectra.

The training data set contains the power spectra of audio signals X ≡ {Xkj} where Xkj

is the spectrum of the kth linear (unwarped) frequency in the jth frame of the signals.

The warped power spectra Y ≡ {Yk′j} are also given by sinc-interpolating the spectrum

of the same signals in accordance with the function f(k′) based on the function in [51],

which maps from the index k′ (0 ≤ k′ ≤ N − 1) of frequency sampled uniformly on the

Mel-frequency scale to the corresponding index on the linear frequency scale, the same

domain as k in the previous discussions:

f(k′) =
2f0
fs

N

(
exp

(
ln(fs/(2f0) + 1)

N
k′
)
− 1

)
(3.3)

with f0 = 1000 (Hz) and sampling rate fs = 16000 (Hz). ln(·) is for the natural logarithmic

function. Note that f(0) = 0, f(N) = N . With these spectra, the warping and the inverse

warping matrices W ≡ {Wij} and U ≡ {Uij} are optimized to satisfy

Y ≈ WX and X ≈ UWX, (3.4)

respectively. Since the conventional LP is based on IS divergence between the spectra

and their envelopes in the frequency domain, as explained in the last chapter, these

approximations should also be measured by IS divergence.

These requirements lead to the objective function of the optimization for the warping

matrix X: ∑
i,j

(
Yij∑

k WikXkj
− ln

Yij∑
k WikXkj

− 1

)
. (3.5)
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This function stands for IS divergence of WX from Y . Here, this objective function has

to be minimized by W , with all of its elements restricted to non-negative values. This

minimization problem cannot be solved explicitly, making it necessary to take an implicit

approach, such as the auxiliary function method introduced in [58].

First, only the terms in the objective function Eq. (3.5) related to W are considered:

∑
i,j

Yij∑
k WikXkj

+
∑
i,j

ln

(∑
k

WikXkj

)
≡ L(W ). (3.6)

Since the reciprocal function 1
x is convex in x > 0, Jensen’s inequality holds as

1∑
k WikXkj

=
1∑

k λijk(WikXkj/λijk)
≤
∑
k

λijk

WikXkj/λijk
(3.7)

with a set of auxiliary variables {λijk (≥ 0)} that satisfies
∑

k λijk = 1 for all i and j.

In addition, the concavity of the logarithmic function leads to an inequality between its

tangential line and itself as

ln

(∑
k

WikXkj

)
≤ ln ξij +

∑
k WikXkj

ξij
(3.8)

with another set of auxiliary variables {ξij (> 0)}. Applying both inequalities (3.7) and

(3.8) to Eq. (3.6), the upper bound can be set to the function L(W ) by an auxiliary

function as

L(W ) ≤
∑
i,j

Yij

∑
k

λ2
ijk

WikXkj
+
∑
i,j

(
ln ξij +

∑
k WikXkj

ξij

)
≡ G(W ) (3.9)

where the equality is attained if and only if the auxiliary variables hold:

λijk =
WikXkj∑
k WikXkj

, ξij =
∑
k

WikXkj (3.10)

for all i, j and k. Because of the convexity, the auxiliary function G(W ) in Eq. (3.9), with

{λijk} and {ξij} all fixed, can be uniquely minimized at the stationary point of W found

as

∂G(W )

∂Wmn

∣∣∣∣
W=W̃

=

(∑
j

Ymjλ
2
mjn/Xnj

)
·
(
− 1

W̃ 2
mn

)
+
∑
j

Xnj/ξmj = 0

⇐⇒ W̃mn =

√∑
j Ymjλ2

mjn/Xnj∑
j Xnj/ξmj

. (3.11)

At last, by Eqs. (3.10) and (3.11), {λijk}, {ξij} and W̃ are iteratively updated, making

the objective function decrease monotonically until it ends up in a local optimum. This

iteration can be summarized as follows.
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Both {λijk} and {ξij} are updated by W (l), which indicates W̃ in the lth iteration, in

accordance with Eq. (3.10) as

λijk =
W

(l)
ik Xkj∑

k W
(l)
ik Xkj

, ξij =
∑
k

W
(l)
ik Xkj . (3.12)

Substituting them into Eq. (3.11) leads to W̃ in the (l + 1)th iteration:

W (l+1)
mn =

√√√√√∑j YmjW
(l)2
mn Xnj/

(∑
k W

(l)
mkXkj

)2
∑

j Xnj/
∑

k W
(l)
mkXkj

. (3.13)

This results in the following updating rule:

W (l+1)
mn = W (l)

mn

√√√√∑j YmkXnj/Ŷ 2
mj∑

j Xnj/Ŷmj

, (3.14)

Ŷ = W (l)X.

After the iteration for W , the inverse matrix U is also optimized as is done for W , to

minimize IS divergence of UWX from X with the optimized W . The iteration for U can

be written in the same form as in Eq. (3.14):

U (l+1)
mn = U (l)

mn

√√√√∑j XmkŶnj/X̂2
mj∑

j Ŷnj/X̂mj

, (3.15)

Ŷ = W (l)X, X̂ = U (l)W (l)X.

Both iterations introduced above are written in products of each element and positive

values. Hence the objective function can be minimized in the sparse non-negative con-

dition of W and U , as shown in Fig. 3.2, by choosing sparse non-negative matrices for

the initial values of W and U . Note that by changing the mapping function f(k′) for

calculating Y , it is possible to design different kinds of warping matrices flexibly.

3.2.4 Smoothing in LSP domain for perceptual noise control

As mentioned in Chap. 2, the envelopes are also used for perceptual control of quantization

noise by smoothing them. However, simply applying the estimated LP coefficients {an}

to Eq. (2.9) means smoothing the envelopes with the warped-frequency scale regarded

as the linear-frequency scale. Mismatch in scales causes changes in the properties of the
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Fig. 3.2. Color mapping of the optimized warping matrix W and an example of its ele-

ments.

smoothing from those of the conventional one, resulting in unexpected shaping of the

noise. Therefore, to approximate the conventional smoothing, we modify the parameter

γ used in smoothing envelopes as

H̃k =



(∑N−1
i=0 U0i |1 +

∑p
n=1 anγ

n|−2
) 1

2

(if k = 0)

(∑N−1
i=0 Uki

∣∣∣1 +∑p
n=1 anγ

g(k)
k ne−jπk

N n
∣∣∣−2
) 1

2

(otherwise)

, (3.16)

lowering γ when the frequencies are stretched by the warping and heightening γ when the

frequencies are squeezed. Note that we assumed here g(k) = k when k = 0. g(k) could

either be the one in Eq. (6.5) or its approximation:
g(0)

...

g(N − 1)

 ≈ U


0

...

N − 1

 . (3.17)

This method smooths the spectra more strongly in the frequencies stretched by the warp-

ing (here, in the lower band) than in the frequencies squeezed (here, in the higher band).

However, the modification makes the smoothed envelopes unable to be calculated by

Fourier transformation, which approximately doubles the complexity for the calculation.

Thus, to save those computational costs, the envelopes should be smoothed in the LSP
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(a)

(b)

Fig. 3.3. Color mappings of matrices K designed respectively for approximating the

smoothing (a) for the conventional envelope and (b) for the resolution-warped

envelope. Both matrices have positive values for the main diagonal elements,

negative values for the elements of the first diagonal below and above the main

diagonal, and zeros for the other elements.
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domain, since the LP coefficients are often quantized and compressed in that domain,

by the following low-cost and straightforward approximative conversion scheme. The

smoothing is described with the LSP representation of the LP coefficients estimated by the

proposed method {ωn}pn=1 and of the coefficients {ω̃n}pn=1 corresponding to the smoothed

envelope as 
ω̃1

...

ω̃p

 = KLSP


ω1 − π

p+1

...

ωp − πp
p+1

 (γ − 1) +


ω1

...

ωp

 (3.18)

where

KLSP =



x1 y1 0

z2 x2 y2
. . .

. . .
. . .

0 zp xp


. (3.19)

With the LP coefficients converted from LSP parameters {ω̃n}pn=1, the smoothed enve-

lope is simply given by Eq. (3.2), which has no additional costs for smoothing. This

LSP conversion of smoothing makes the values of the LSP parameters farther from each

other linearly, with the conversion depending only on the values of the neighboring pa-

rameters. The main idea of this method is to utilize the relation between envelopes and

their corresponding LSP parameter values. LSPs correspond to the positions of peaks

and valleys in envelopes, for this case, in the warped frequency axis, and are set in even

intervals over 0 to π when the envelope is completely flat. The parameters in each row

of the conversion matrix KLSP respectively indicate the extent to which this conversion

makes the LSP parameter of each order closer to even intervals. By properly setting the

matrix KLSP, the operation of Eq. (3.18) can smooth more strongly the LSP parameters

corresponding to the lower frequencies than the parameters corresponding to the higher

frequencies, resulting in effects similar to those in Eq. (3.16).

The conversion matrix KLSP is designed by optimization as in the case of the warping

matrix, using a training data set of LSP parameters estimated from the audio signals.

The optimization proceeds as follows.

First, the LSP parameters

ωj = (ω1j , ..., ωpj)
T and ω̃j = (ω̃1j , ..., ω̃pj)

T (3.20)
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respectively corresponding to the envelope and to the smoothed envelope of the jth frame

of the signals are prepared. Here, we use T for transpose of vectors and matrices. Since

the parameters corresponding to the smoothed envelops cannot be explicitly represented,

we approximate them by LSP parameters converted from the LP coefficients estimated

from LP analysis of the envelopes smoothed by Eq. (3.16). Then, the KLSP in Eq. (3.19)

is chosen by minimizing the Euclidean distance between the LSP parameters:

∑
j

|| ωj − ω̂j ||22. (3.21)

To minimize Eq. (3.21) the conversion Eq. (3.18) is rewritten as

ω̃j = Djx+ ωj , (3.22)

where

Dj =



d1j d2j 0

d1j d2j d3j

d2j d3j d4j

0
. . .


, (3.23)

dnj =

(
ωnj −

πn

p+ 1

)
(γ − 1), (3.24)

x = (x1, y1, z2, x2, y2, ..., zp, xp)
T, (3.25)

and substituted for Eq. (3.21) resulting in

∑
j

{
xTDT

j Djx− 2∆T
j Djx+∆T

j ∆j

}
≡ J(x) (3.26)

with ∆j ≡ ωj − ω̃j . Since this function J(x) is convex, it can be minimized at the

stationary point of x found as

d

dx
J(x) =

∑
j

{
2DT

j Djx− 2DT
j ∆j

}
= 0

⇐⇒ x =

∑
j

DT
j Dj

−1

·

∑
j

DT
j ∆j

 . (3.27)

Finally, KLSP is defined by the parameters in x.

To make more clear the meanings of the conversion matrix KLSP, Fig. 3.3 compares

KLSP designed respectively for approximating the conventional smoothing described in
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Fig. 3.4. Comparison of the envelopes in one frame. The green dotted line shows the

MDCT spectrum of the input. The blue solid line and the red dashed line

respectively indicate its envelopes extracted using linear prediction and the pro-

posed method.

Eq. (2.9) and for approximating the smoothing for the resolution-warped envelope de-

scribed in Eq. (3.16). It can be seen that the values in Fig. 3(b) are non-uniform over

the diagonals with the upper-left elements being larger in absolute where the values in

Fig. 3(a) are almost uniform over the diagonals, which means that the conversion using

the matrix KLSP in Fig. 3(b) smooths the envelope non-uniformly over the warped fre-

quencies, to make the smoothing almost uniform over the linear frequencies, while the one

using the matrix KLSP in Fig. 3(a) smooths the envelope uniformly as the conventional

smoothing does.

3.2.5 Examples of resolution-warped envelope and its smoothing

Here, we show some examples of the envelopes given by the method presented above.

Fig. 3.4 is a clear example of the comparison of the envelopes extracted from one

frame by linear prediction and the method using the optimized matrix. The spectrum

is presented in a linear-amplitude domain because it is quantized in this domain when

coded. It is evident that the resolution of the envelope was warped: the accuracy of the

envelope improved in the lower band, which is more important for the coding, at the cost

of the higher band.
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(a) Smoothed by perceptual weighting Eq. (2.9).

(b) Smoothed by the modified weighting Eq. (3.16).

Fig. 3.5. Resolution-warped envelope smoothed by each method. The blue dashed line

and the red solid line respectively indicate the envelope before and after smooth-

ing.

A comparison of the smoothing is shown in Fig. 3.5. Generally, smoothing by the

weighting Eq. (2.9) has more influence on the steep peaks than on the gentle slopes of the

envelopes. However, as Fig. 5(a), for example, shows, the weighting failed to smooth the

resolution-warped envelopes, with peaks remaining in the lower band. This problem arose

because the weighting Eq. (2.9) smoothed the envelope in the warped frequency domain

instead of the linear domain. By modifying the weighting following Eq. (3.16), as shown
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Fig. 3.6. Resolution-warped envelope smoothed in the LSP domain.

in Fig. 5(b), we were able to smooth the envelope appropriately by the warping. The

local roughness in the smoothed envelopes was caused by the approximation errors in the

warping and inverse warping.

Fig. 3.6 shows an example of applying the optimized conversion in the LSP domain.

The red solid line is the envelope weighted in the LSP domain, while the black dashed

line is the envelope strictly weighted by Eq. (3.16). The weighting model succeeded in

approximating the weighting in the resolution-warped envelope. This method of weighting

enables us to calculate the weighted envelopes by fast Fourier transform as in the case of

regular envelopes and costs only additional 3p operations of multiplication.

3.3 Shaping by amplitude warping focusing on model distribution

3.3.1 Motivation

In designing signal models, we have an option to assume distributions for the target of

the coding, and the more likely the actual target belongs to the assumed distribution,

the more efficiently we can compress it by entropy coding designed based on the code

modeling, which optimally allocates the bit length under the distribution. As mentioned

in Chap.2, the conventional LP assumes Gaussian, which makes the model parameter

optimally estimated by a low-complexity algorithm. Of course, there are some merits in

assuming Gaussian because of its simplicity, but the distribution of the target may vary
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Fig. 3.7. Generalized Gaussian distribution of each shape parameter.

frame-by-frame depending both on acoustic properties and on coding conditions such as

frame length. That is why many codecs, for example, use GR coding, which is optimal for

Laplacian-distributed inputs and is not fit with LP in the sense of the assumptions. To

fully use the statistical properties of the target and to further enhance the compression

efficiency, we should be able to deal with a wider variety of distributions.

As a class of such distributions, generalized Gaussian distributions (GGDs) is well

known in image and video analysis [59–63]. The zero-mean GGD for random variable X

with a scale ϕ is represented as follows:

p̃α(X | ϕ) = A(α)

ϕ
exp

(
−
∣∣∣∣B(α)X

ϕ

∣∣∣∣α) (3.28)

where α is the shape parameter of this distribution, and

A(α) =
αB(α)

2Γ(1/α)
, B(α) =

√
Γ(3/α)

Γ(1/α)
(3.29)

with the gamma function:

Γ(x) =

∫ ∞

0

e−ttx−1dt. (3.30)

By changing the shape parameter α, we can represent respectively the Laplacian and the

Gaussian at α = 1 and α = 2 as displayed in Fig. 3.7. There are some previous works

for audio [59, 60] applied the model to the MDCT spectra. However, these works for

audio had an assumption that the scales of the GGD are uniform over frequencies, which

usually does not match the natural signals because their energy tends to concentrate on

some frequencies.



3.3 Shaping by amplitude warping focusing on model distribution 31

Fig. 3.8. Histograms of MDCT spectra normalized respectively by non-uniform and uni-

form scales estimated by LP.

Let us see some examples of the spectra. Fig. 3.8 shows a spectrogram of a music

and speech signal. We picked up some frames of the MDCT spectra in the spectrogram,

normalized each frame respectively by 16-th-order LP envelope (non-uniform scales) and ℓ2

norm (uniform scales), and made their histograms. The shape parameter α was estimated

by the moment-based method in [64]. The histograms for the non-uniform scales showed

some variance, which seems to depend on acoustic features, while the ones for the uniform

scales had a slight difference. The normalized spectra are equivalent to the prediction

residuals, which corresponds to the quantization target of the coding, and thus modeling

the distribution of the spectra by GGD is reasonable for encoding speech and audio signals,

which have various statistical characteristics not limited to Gaussian.

Motivated by the above facts, this section presents a signal modeling based on the

generalized-Gaussian-distributed spectra, which estimates the scale for each frequency

from the spectral envelope by extending the LP model and presenting an optimal and

simple method to extract the envelope, in other words, to parameterize the scales. Fur-

thermore, we show that this method can be realized by a shaping based on an amplitude

warping.

In the following discussion, we consider the situation of non-uniform scales {ϕk}N−1
k=0 for

frequency spectra {Xk}N−1
k=0 with a fixed α and parameterizing the maximum-likelihood

{ϕk}N−1
k=0 for the given spectra.
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3.3.2 Amplitude warping by powering operation

Here we consider the spectra {Xk}N−1
k=0 as real values, supposing such as discrete cosine

transform (DCT) or MDCT spectra, and introduce the optimization of the likelihood of

their scales. There is an option to decide some of the following factors for this optimization:

� What kind of model to represent the spectral envelope;

� how to associate the envelope to the scales;

� how to extract the envelope.

For example, the conventional LP uses the all-pole model Eq. (2.4) for the envelope and

extracts the envelope by the Levinson–Durbin algorithm, assuming the scale for each

frequency to be the same as the corresponding value in the envelope. Nevertheless, this is

not optimal for the Laplacian assumption often used in the code modeling. The previous

works [65, 66] can be another example, which proposed LP optimizing the bit length

for GR encoding of prediction residuals in the time domain based on minimizing the ℓ1

norm of the residuals. If we interpret in the frequency domain, this idea uses the all-

pole model Eq. (2.4) for the envelope and extracts the envelope by a numerical method

called the auxiliary function method to optimize for the Laplacian assumed in the time

domain. Here, it equivalently assumes the scale for each frequency to be the same as the

corresponding value in the envelope. In other words, the algorithm to extract envelopes

depends on the model of envelopes: If we fix the algorithm, we have to change the model

of envelopes or the relation between envelopes and scales to optimize for the assumed

distribution.

From the perspective of saving computational complexity, we design the model of the

envelope that enables us to extract the envelope by the Levinson–Durbin algorithm. To

design such a model, we have to transform the optimization problem of the likelihood

into the form of Eq. (2.6). The negative log-likelihood for {Xk}N−1
k=0 , which also relates to

the ideal description length, assuming the GGD with scale {ϕk}N−1
k=0 for each frequency is

written as

LLH
α ({Xk}|{ϕk}) =

N−1∑
k=0

− log2 p̃α(Xk | ϕk). (3.31)
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This likelihood can be transformed as

LLH
α ({Xk}|{ϕk})

=
∑
k

(log2 e)

[∣∣∣∣B(α)Xk

ϕk

∣∣∣∣α + lnϕk − lnA(α)

]
=

1

α ln 2

∑
k

[
|Xk|α

ϕα
k/(αB(α)α)

− ln
|Xk|α

ϕα
k/(αB(α)α)

− 1 + 1 + lnα(|Xk|B(α)/A(α))α
]

=
1

α ln 2

∑
k

DIS

(
ϕα
k

αB(α)α

∣∣∣ |Xk|α
)
+ C({Xk}) (3.32)

where C({Xk}) is a constant for {ϕk}N−1
k=0 . Thus, by modeling the scale {ϕk}N−1

k=0 with a

powered all-pole representation as

ϕk ≡

(
αB(α)ασ2

|1 +
∑p

n=1 ane
−jπnk

N |2

)1/α

, (3.33)

the model parameters σ2 and {an}pn=1 that minimize the negative log-likelihood LLH
α are

represented as

argmin
σ2,{an}

LLH
α ({Xk}|{ϕk}) (3.34)

= argmin
σ2,{ai}

∑
k

DIS

(
σ2

|1 +
∑p

n=1 ane
−jπnk

N |2

∣∣∣ |Xk|α
)
.

This can be given by the Levinson–Durbin algorithm, as mentioned in the previous chap-

ter, regarding {|Xk|α}N−1
k=0 as power spectra, in other words, using for {rn}pn=0 in Eq. (2.5)

the inverse cosine transform of the spectra {|Xk|α}N−1
k=0 , shaped by amplitude warping, as

rn =
1

N

N−1∑
k=0

|Xk|α cos

(
πnk

N

)
. (3.35)

Moreover, the model parameters obtained above make {ϕα
k/(αB(α)α)}N−1

k=0 match with

{|Xk|α}N−1
k=0 so that

Hα,k =

(
σ2

|1 +
∑p

n=1 ane
−jπnk

N |2

)1/α

(3.36)

represents the spectral envelope of {|Xk|}N−1
k=0 . This results in the relationship between

the envelope and the scales:

ϕk = (α1/αB(α))Hα,k. (3.37)

From now on, taking into account that the alternative model of scales is represented by

a powered version of the conventional all-pole filter, we call this parameterization method
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of the scales, or the extraction of spectral envelope, Powered all-pole spectrum estimation

(PAPSE). When the shape parameter of the GGD takes α = 2, meaning the Gaussian,

the maximum-likelihood scales {ϕk}N−1
k=0 is calculated from Eq. (3.33) and

B(2) =

√
Γ(3/2)

Γ(1/2)
=

√√
π/2√
π

=
1√
2

(3.38)

as

ϕk =
σ

|1 +
∑p

n=1 ane
−jπnk

N |
= Hα=2,k, (3.39)

which matches to the conventional LP. Additionally, when the shape parameter takes

α = 1, meaning the Laplacian, the extraction of the envelope becomes the same as the

one of the last section.

The inverse cosine transform of {|Xk|α}N−1
k=0 in Eq. (3.35), which appears in the algo-

rithm presented, is known as the zero phase signal representation [67–69] in the noise

reduction context, and its application to LP is studied in other situations for the sake of

its robustness against noise when a small α is used [70].

3.3.3 Shape parameter estimation with PAPSE

As stated above, we can obtain, for a given shape parameter α, the maximum-likelihood

scales of GGD. However, the appropriate shape parameter may change momentarily de-

pending on some sparseness of the spectra and is expected to reflect the acoustic features

of the observation. Here, our concern is how to find smartly, among various shape pa-

rameters in the PAPSE scheme, the best parameter to represent the observation for each

frame, namely the frame-by-frame maximum-likelihood α.

Although there are some previous works on estimating the shape parameter, merely

applying them to the PAPSE scheme leads to inaccurate results: Methods such as moment-

based method and maximum-likelihood estimation in [64] assume uniform scales over the

observation, which conflicts to the PAPSE model; methods for multivariate GGD as in [71]

require several observations belonging to the same distribution, which is hard to collect

for audio signals because their distributions are varying momentarily.

Therefore, we present here an iterative algorithm for simultaneously estimating the

shape parameter and the scales of GGD based on the method in [64]. This algorithm is

composed of two steps: PAPSE step and shape parameter estimation step. At first, we set
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an initial value for α and iteratively perform the following steps for the observed spectra

{Xk}N−1
k=0 :

1. (PAPSE step) Estimate the maximum-likelihood scales {Hk,α}N−1
k=0 by PAPSE of

the present α;

2. (Shape parameter estimation step) since the normalized spectra {Yk ≡

Xk/Hk,α}N−1
k=0 has approximately uniform scales, estimate the shape parame-

ter from {Yk}N−1
k=0 by the method in [64] and update α.

Our preliminary test showed that the maximum-likelihood estimation in [64] often re-

sults in negative αs, which causes computational instability. Thus after this, we use the

moment-based method to approximate maximum-likelihood estimate of α in the shape

parameter estimation step. In principle, the moment-based method estimates α by solv-

ing

F (α) ≡ Γ(2/α)√
Γ(1/α)Γ(3/α)

=
m1√
m2

(3.40)

where m1 and m2 are respectively the empirical first and second moments of {Yk}N−1
k=0 .

Although we cannot explicitly calculate the inverse of F (α), its closed-form approximation

is also proposed in [64]. When I is small enough, it is easier to choose α from its candidates

{αi}Ii=1 that makes F (αi) closest to m1/
√
m2.

Summarizing the above, we can estimate the shape parameter α from a given frame of

spectra by an iteration of closed-form analysis. If the method used in the shape parameter

estimation step gives a maximum-likelihood estimate of α, the algorithm proposed above

makes the likelihood monotonically increase by the iteration, which proves its convergence.

However, because of the approximation of shape parameter estimation by the moment-

based method, we cannot prove the convergence or optimality of this algorithm. Therefore,

its validity must be checked by some experiments, which will be done in the later chapter.
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Fig. 3.9. Example of the use of the conventional spectral envelope in encoding and de-

coding.

3.4 Shaping by bit plane rearrangement focusing on model

discreteness

3.4.1 Motivation

The above sections were aimed at the envelope estimation of the input spectra, which

can tune the resolution and the shape parameters of the assumed distributions. In this

section, we mainly focus on the use of the envelope for discrete-valued frequency spectra.

As introduced in the previous chapter, the spectral envelopes are representing the scales

of the distributions of each frequency. Therefore, to fully make use of the envelopes in

encoding spectra, we have to quantize the spectra and then apply some codebooks or

coding algorithms optimized for the corresponding scales. This is described in Fig. 3.9:

Say there are quantized spectra X̂0, X̂1, and X̂2, and corresponding estimated envelope

values as, bs, and cs, the values shared between the encoder and the decoder via quantized

model parameters. This envelope gives the distribution assumptions for the spectra as

pX(X|as), pX(X|bs), and pX(X|cs), which become the clues for the codebooks encoding

each quantized spectrum.
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Fig. 3.10. Example of the use of the proposed spectral envelope in encoding and decoding.

This scheme requires different codebooks or algorithms for each of the frequencies based

on their different scales, and thus it is preferable, from the perspective of computational

resources, to shape the spectra into uniform scales using the envelopes. In other words,

if we can whiten the spectra as X̂0/a, X̂1/b, and X̂2/c, their assumed distribution will

be uniform as pX(X|s), as long as the envelope estimation is precise enough. However,

the whitened spectra divided by the envelope values are not integers in general, which

cannot be encoded directly. That is the reason why this section proposes another shaping

method that realizes the invertible ’division’ of envelopes in the integer domain, enabling

us to design a coding scheme as in Fig. 3.10 that requires only one pattern of codebook

or coding algorithm.

In time-domain LP, we can realize this kind of whitening, as in MPEG-4 ALS [11, 12],

by using rounding operation because it is a convolution. It makes the codec design more

flexible to realize this kind of whitening in the frequency domain for spectral envelopes

not limited to the LP model. One simple idea to implement the whitening is to use the

logarithmic envelope of the base 2, round its values, and remove the least-significant bits

(LSBs) of each quantized spectrum depending on the corresponding rounded values in the

logarithmic envelope. This operation is similar to the one in GR encoding introduced in

the previous chapter, which divides the input integers into the reciprocal and remainder of

powers of 2. However, this method can only be used where the logarithmic envelope values
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Fig. 3.11. Whitening of integer spectra with LSBM. Using the logarithmic envelope, we

can inverse transform the integer spectra without any loss of information.

more than 0 and thus cannot be applied for small-scaled spectra. Therefore, the following

section proposes a smarter method that shapes the integer values in the binary domain to

achieve more efficient whitening. We focus on the absolutes of spectra, of which poles or

phases are usually coded independently because of the symmetry of assumed distributions.

3.4.2 Bit plane rearrangement by least significant bit management

Here, we can use the property that the logarithmic values of the spectral envelopes: They

can be divided into the terms constant over frequencies and ones variable and summing

up to zero over frequencies. This property enables us to realize invertible division in the

integer region by managing the LSBs of the quantized values of the spectra. For instance,

in the LP model shown in Eq. (3.39), the σ corresponds to the constant term, and the rest

corresponds to the variable terms of which logarithm sum up to zero over the frequency k.

The proposed method, LSB management (LSBM), performs a rearrangement of bit plane

as in Fig. 3.11, to spectra {5, 2, 9, 4} as an example. The logarithmic envelope values are

first divided into the constant term, say 3, and the variable terms aggregating zero, say

{0,−1, 1, 0}. Then, the LSBs are taken off from the spectra following their corresponding

variable terms if they are positive: 1 bit taken off from 9. If they are negative, the LSBs

taken off are set to the LSBs of the spectra following them: 1 bit set to 2. Since the total of

the variable terms is zero, if the envelope estimation is performed with enough precision,
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the processed spectra can be represented within the range depending on the constant

term: {5, 5, 4, 4} are all in the range of 0 to 23. By predetermining the rules of the order

for taking and setting the LSBs, the correct quantized spectra can be reconstructed by

reversing the processes.

This shaping method of integer spectra can approximately make their scales uniform,

enabling us to compress them by a single codebook or coding algorithm optimally. It is

especially useful where we have to deal with a strictly-fixed bit rate, which will be shown

in Chap. 8.

3.5 Conclusion of Chapter 3

This chapter focused on the signal modeling of speech and audio, mainly based on the

spectral envelope that represents and parametrizes the scales of the distributions assumed

for frequency spectra. Since how to estimate and apply the envelopes greatly influences

the compression efficiency of the overall coding processes, we proposed three independent

shaping methods to enhance the usefulness of the envelopes.

The first one was frequency warping by non-negative sparse matrices, which shapes

the spectra before LP to warp the frequency resolution of the all-pole model representing

envelopes. Additionally, a technique was explained for using the envelope as perceptual

weights in this case.

The second one was amplitude warping by powering operations, which also shapes

spectra before LP to change the assumption of spectra into a more comprehensive class

of distribution, generalized Gaussian distribution. Also, an estimation technique was

presented to find the appropriate shapes of assumed distribution for respective input

frames.

The third one was whitening by bit-plane rearrangement, which shapes the quantized

spectra to realize an invertible division by their envelope in integer domain for making

their scales uniform over frequencies.

All the three shaping methods enables us to design coding schemes with more reasonable

assumptions of speech and audio while saving the increase in required computational

resources. The actual applications and evaluations of them will be presented in the later

chapters.
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Chapter 4

Perception model extension by

block-based shaping

4.1 Introduction of this chapter

As mentioned in Chap. 2, perception modeling often depends on the overall coding scheme,

the strategies of optimizing the trade-offs of rate and distortion. For perception model-

ing, some conventional schemes using LP such as [40,72] approximate the psycho-acoustic

model by weighting based on smoothed spectral envelopes. However, they may be subopti-

mal from the signal modeling point of view because they simultaneously use the estimated

LP coefficients both for deciding the distributions and perceptual weighting for the signals

while the coefficients are optimal only for estimating the distributions of unweighted sig-

nals. In other cases, such as companding used in nearly instantaneous compandable audio

matrix (NICAM) [39], the perception modeling is included in the quantization processes,

which need careful tuning of assigning bits depending on total bit rates.

This chapter aims to introduce a qualitative approximation of the psycho-acoustic

model, which emphasizes spectral valleys and deemphasizing spectral peaks and their

neighboring frequencies without affecting the signal modeling nor code modeling, in other

words, the perception modeling available for any coding strategies. This model is expected

to make the codec design more flexible and enhance the affinity of the other proposed

methods.

From the motivation mentioned above, the method for perception modeling is preferable
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to have no auxiliary parameter required to be shared between the encoder and decoder.

Therefore, we here show a shaping method extending the usage of the block companding in

NICAM into a non-parametric process. The block companding in NICAM is a parametric

method that can satisfy the characteristics required for psycho-acoustic models. It decides

in the NICAM encoder the block-wise representatives, represents them respectively as

headers, and compands the blocks by scaling based on their representatives. Then in

the NICAM decoder, the blocks are inversely scaled based on the representatives read

from the headers. It is expected that applying this kind of companding to some subband

spectra will approximate the perceptual weighting. To avoid the auxiliary parameters, the

proposed method, self-determined block companding (SDBC), is designed as headerless

by modifying the way of deciding the representatives and their corresponding scaling.

Besides, avoiding the headers reduces bit rates as well as the redundancies between the

block-wise representatives.

The following sections explain the proposed extensions of the block companding and its

use in the perceptual weighting.

4.2 Shaping by block companding focusing on perceptual

weighting

4.2.1 Self-determined block companding

Let us first show the processes in the proposed companding method applying to, for exam-

ple, some real-valued frequency spectra Xk. Taking into account that the representatives

are expected to represent some kind of magnitude of their blocks, SDBC uses norms for

evaluating the representatives such as ℓ1 norm:

X̄ ≡ fr({Xk}M−1
k=0 ) ≡ 1

M

M−1∑
k=0

|Xk| (4.1)

where M respectively indicate the block length.

As block companding not requiring any headers or auxiliary parameters, the scaling of

spectra {Xk}M−1
k=0 to {Yk}M−1

k=0 must have an inverse scaling using only the information of

{Yk}M−1
k=0 while still meeting the characteristics mentioned above. Therefore, the scaling
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of the block in SDBC is defined as follows:

Yk ≡
gc
(
X̄
)

X̄
Xk (k = 0, . . . ,M − 1) (4.2)

where gc
(
X̄
)
is a companding function using a generalized logarithmic function [73] and

constants µc and γc as

gc
(
X̄
)
≡

glog
(
1 + µc

∣∣X̄∣∣ , γc)
glog(1 + µc, γc)

; (4.3)

glog(x, γc) ≡

 (x− 1)/γc (if 0 < |γc| ≤ 1)

log(x) (if γc = 0)
. (4.4)

The companding function above can be tuned by changing γc from γ = 0, corresponding

to µ-law [1], to γc = 1, corresponding to no companding.

By applying the scaling, the norm of the block will be companded as gc
(
X̄
)
, which

is the trick for the inverse companding. In the inverse companding, since there is no

auxiliary parameter representing the original representative X̄, the representative of the

companded block is evaluated as is done in the companding:

Ȳ ≡ fr({Yk}M−1
k=0 ). (4.5)

Owing to the positive homogeneity of the norm fr({Yk}M−1
k=0 ), Eq.(4.5) can be rewritten

by inserting Eq.(4.2) as

Ȳ = fr

{gc
(
X̄
)

X̄
Xk

}M−1

k=0

 =
gc
(
X̄
)

X̄
fr
(
{Xk}M−1

k=0

)
=

gc
(
X̄
)

X̄
X̄ = gc

(
X̄
)
. (4.6)

Therefore, applying an inverse scaling using the inverse companding function g−1
c

(
Ȳ
)
to

the companded block results in

g−1
c

(
Ȳ
)

Ȳ
Yk =

X̄

gc
(
X̄
)Yk =

X̄

gc
(
X̄
) · gc (X̄)

X̄
Xk = Xk (4.7)

because of Eq.(4.2). Eventually, the original spectra {Xk}M−1
k=0 get inverse companded

from {Yk}M−1
k=0 without any auxiliary parameters.

4.2.2 Perceptual weighting by companding

To use SDBC for the perceptual weighting of audio spectra, we can apply the companding

to subbands of the input signals. For instance, we here show a simple scaler quantization

for N -length spectra {Xk}N−1
k=0 combined with it, illustrated in Fig. 4.1.
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Fig. 4.1. Example of block companded real-valued spectra given by discrete cosine trans-

form.

In companding, SDBC first evaluates the representatives for given subbands [K0,K1),

[K1,K2), . . . , [KI−1,KI) (0 = K0 < K1 < · · · < KI = N):

X̄i = fr

(
{Xk}Ki+1−1

k=Ki

)
(i = 0, . . . , I − 1). (4.8)

Then, the blocks are scaled in accordance with their representatives for each i = 0, . . . , I−1

as

Yk =
gc
(
X̄i

)
X̄i

Xk (k = Ki, . . . ,Ki+1 − 1), (4.9)

and {Yk}N−1
k=0 becomes the companded spectra.

In inverse companding, SDBC evaluates the representatives from the companded spectra

as is done in the companding:

Ȳi = fr

(
{Yk}Ki+1−1

k=Ki

)
(i = 0, . . . , I − 1). (4.10)

Then, the blocks are inversly scaled in accordance with their representatives for each

i = 0, . . . , I − 1 as

Xk =
g−1
c

(
Ȳi

)
Ȳi

Yk (k = Ki, . . . ,Ki+1 − 1), (4.11)

and the original spectra {Xk}N−1
k=0 are given if the companded spectra are not quantized.

Since subbands including spectral peaks tend to have larger-valued representatives,

SDBC generally deemphasizes the spectral peaks and their neighboring spectra compared

to spectral valleys, satisfying the characteristics of perceptual weighting. Therefore, quan-

tizing uniformly in the companded domain makes the quantization noise shaped approx-

imately based on the masking threshold. Moreover, SDBC is invertible as long as the
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function fr({Xk}M−1
k=0 ) is positive homogeneous and the companding function gc

(
X̄
)
is

monotonic, which enables us to design companding flexibly.

The above example of the use of SDBC only applied simple scalar quantization. How-

ever, this companding shapes the input to have uniform perceptual importance so that it

can be combined with any optimization processes that minimize simple criteria such as

square errors and absolute errors.

4.3 Conclusion of Chapter 4

This chapter presented a shaping method for perception modeling that equalizes the

perceptual importance without any additional information. The proposed companding

method, SDBC, performs block-wise scaling of subband frequency spectra qualitatively

approximating the perceptual weighting based on psycho-acoustic models. Additionally,

it is carefully designed to be invertible and thus capable of being integrated freely into

various kinds of signal and code modelings, or optimization strategies in compression. Its

actual effects on perceptual quality of the codecs are evaluated in the later chapters with

some explanations of applications it enables us to design.
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Chapter 5

Code model extension by

distribution-based shaping

5.1 Introduction of this chapter

Code modeling is the basis of the coding scheme, and their performance influences the

potential of the overall coding efficiency. They can be divided into two types: Table-based

models, which are practically dependent on coding tables using, for example, Huffman

coding and arithmetic coding [46,74] after some quantization or sometimes direct coding

by vector quantization; structured models, which are independent of coding tables because

of using well-structured codes such as GR codes [41, 42] and their derivatives after some

quantization. Indeed, the table-based models can construct theoretically optimal codes for

many classes of input distributions, but they often require many memory, computational

costs, or limitations on the input values. On the other hand, structured models do not

need the limitations nor high computational costs, but they lack in flexibility for the sake

of their small classes of input assumptions.

Lossless source codes, in other words, entropy codes, especially FV codes, play an

essential part, both theoretically and practically, in those models. Even in lossy source

coding, FV codes are used with quantization processes, and it is known that optimal FV

codes can achieve the fundamental limits of rate-distortion by combining with appropriate

quantization [75, 76]. The GR code mentioned above is widely used among such codes,

well-structured and sometimes extended or combined with other codes, [46,48–50,77–79].
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As explained in the previous chapter, the conventional GR code has a coding parameter

R(≥ 0), from now on Rice parameter, and the input positive integers are first divided

into the quotient and the remainder of 2R, by using bit-shift operations for example. The

quotient and the remainder are respectively represented by a prefix unary and an R-bit

suffix code. Thus, the code length of GR code for a positive integer X, omitting the

rounding effects, is written as

LGR
1 [X|2R] = X

2R
+R+ 1, (5.1)

corresponding to its approximately optimal distribution p1[X|2R] where

p1[X|ϕ] = 1

Z1(ϕ)
2−

X
ϕ , Z1(ϕ) =

∞∑
k=0

2−
k
ϕ (5.2)

with ϕ = 2R. In other words, the GR code of a Rice parameter R is optimal for a discrete

Laplacian distribution with a scale of 2R, or a geometric distribution pGeo[X|2−1/2R ] using

Eq. (2.10). This can be used as an approximation of the continuous Laplacian distribution

for a positive real number x,

p̃1(x|ϕ) =
1

ϕ
exp

(
−
∣∣∣∣xϕ
∣∣∣∣) , (5.3)

a well-known distribution for assuming the statistics of frequency spectra [59, 80, 81].

Owing to its optimality and simple arithmetic for arbitrary positive integers requiring

low memory and computational cost, GR code is used in many standards such as ITU-

T G.711.0 [50], MPEG-4 ALS [11, 12, 49], SHORTEN [48], and Lossless JPEG (JPEG-

LS) [77,82].

However, in low-rate lossy source coding, symbols given by quantized source inputs

often contain a large portion of small-valued integers with many zeros, corresponding to

the distributions with small scale ϕ: Distribution of coarsely quantized sources has small

scales, while the counterpart of finely quantized sources has large ones. For the non-

negativity of Rice parameter R, GR code cannot adapt to source symbols belonging to

the distribution with scale ϕ smaller than one. This fact results in a more significant gap

between the average GR code length and the source entropy as the scale ϕ gets small,

namely, as the entropy of the source gets low. Moreover, as explained in Chap. 3 and also

investigated in Chap. 6, the assumptions will be more reasonable for speech and audio

signals to use a more general class of distributions.
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The goal of this chapter is to design, maintaining the low complexity, a more flexible

well-structured code useful for the code modeling in speech and audio coding. Therefore,

we here focus on GR code and propose two independent shaping methods to efficiently use

it for various scales and shapes of distributions seen in speech and audio signals. One is for

extending GR code to adapt to Laplacian distributions with lower scales, which enables

us to approximately cover the whole range of scales by combining it with the conventional

one. Another one is for extending GR code to adapt to the GGDs [64, 71], which can be

easily integrated into the first extension.

The following sections show that these kinds of extensions can be realized by control-

ling the scales and shapes of the distributions by some shaping methods, approximately

transforming them into Laplacian distributions with large-valued scales, which is optimal

for the conventional GR encoding. Although the following discussions mention only the

cases of non-negative integer inputs, the whole range of integer can be dealt with, for

instance, by representing the polarity by one bit for each non-zero symbol or by mapping

the symbols by folding and interleaving as in [83].

5.2 Shaping by bit inverting for sparse-distributed sources

5.2.1 Bit inverting for shaping scales

We here focus on sparse inputs, containing a large portion of small-valued integers with

many zeros and belonging to small-valued scales. They are often seen in some cases as

in [79,84,85], where the scaler quantizer uses relatively large quantization steps compared

to the standard deviation of the sources. Among them, the code in [84] combines run-

length code with GR code and practically tunes the code length for runs of zeros to encode

such quantized source symbols, whose entropy gets lower by the coarse quantization.

Indeed applying appropriate run-length codes makes lower average code length than simple

GR code for such symbols, but its optimality is not guaranteed. Therefore, this section

aims at realizing an extension of GR code, by simple arithmetic, for optimally encoding

low-entropy Laplacian-distributed source symbols.

The basic idea of optimal codes for sparse source symbols can be interpreted as follows.

Let us think of, for example, stationary memoryless source symbols belonging to small-
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scaled Laplacian distributions p1[X|(K + 1)−1], where K is non-negative. The ideal code

length for each source symbol X is written as

Lideal[X|(K + 1)] = − log2 p1[X|(K + 1)−1]

= − log2
1

Z1 ((K + 1)−1)
2−(K+1)X

= (K + 1)X + log2 Z1

(
(K + 1)−1

)
, (5.4)

which become, as the sources get sparser and K larger, longer at X ̸= 0 and shorter at

X = 0. To achieve such codes, we have to reinterpret the Laplacian sources using the

definition of geometric sources.

Let us focus on encoding a geometric source pGeo[X|θ] using unary codes, with each of

their codewords containing runs of code symbol ‘0’s and a single one ‘1’. The emergence

rates of the code symbols ‘0’ and ‘1’ are respectively θ and (1−θ), which is trivial interpret-

ing the code symbols as Bernoulli trials. The inversion of the encoded codewords reverses

the emergence rates with the code symbols, which can still be regarded as Bernoulli trials.

Thus, unary decoding the inverted codewords changes the input geometric source into

pGeo[x|1 − θ]. Note that, in practice, if the unary code ends with a code symbol ‘0’, we

have to terminate it by ‘1’ in unary decoding, which corresponds to the code termination

mentioned in the following sections.

Here, we call the integer conversion, the consecutive processes of unary cod-

ing, bit inversion, and unary decoding, as the unary-domain bit inversion, which

can be written as a function FUBI[·] uniquely converting an integer sequence

x = 0Nstartx10
N1x20

N2 · · · 0Nm−1xm0Nm as

FUBI [x] = Nstart0
x1−1(N1 + 1)0x2−1(N2 + 1) · · · 0xm−1Nm, (5.5)

where {x1, x2, · · · , xm} and {Nstart, N1, N2, · · · , Nm} are respectively positive and non-

negative integers for a non-negative integer m, and 0N is for a run of 0s with length

N(≥ 0). Even if θ < 0.5 as in the above case θ = 2−(K+1)(K > 0), GR code can perform

as well as in the case of θ > 0.5, as in case of θ = 2−1/2R(R > 0), by converting the input

source symbols before encoding.

This proposed shaping by the unary-domain bit inversion, followed by GR encoding of

Rice parameter R = K, gives us an approximately optimal code for the sparse sources

mentioned above because 2−(K+1) ≃ 1− 2−1/2R at large K. When the inputs are written
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in the binary form of Bernoulli trials, the code become identical to the code presented

in [86], called the elementary Golomb code: It is one of the run-length codes defined

over the binary inputs with some coding parameter L of a positive integer; it gives the

codeword ‘0’ for the L-length runs of zeros in inputs and the codeword ‘1’ followed by a

phased-in binary code representing the length of the zero runs shorter than L, constructing

a Huffman code for a Tunstall extension [87]. In other words, the encoding with the

unary-domain bit inversion is an extended usage of the elementary Golomb code aimed

at encoding general integer inputs.

The derived code, extended-domain GR (XDGR) code, cannot be described by a simple

code tree usually used in Huffman coding. Instead, the almost instantaneous FV (AIFV)

code scheme [88–90] allows us to represent its simple structure, discuss its theoretical

optimality, and construct its coding algorithm as an extension of the conventional GR

coding.

AIFV codes have multiple code trees having incomplete nodes, nodes still capable of

increasing children, and source symbols are assigned to their incomplete nodes as well as

their leaves. They guarantee their decodability by switching the trees to encode source

symbols, under the switching rules, after encoding at the incomplete nodes. In other

words, recursively integrating simple multiple code trees gives us a single complex code

tree for efficiently encoding the Cartesian products of source symbols. One of the main

advantages of these code trees is that we can assign source symbols to their roots, realizing

codewords with zero code length.

The following sections first present, using the multiple code trees, the code gained by

the combination of the proposed bit inverting and the conventional GR codes. Then, for

simplicity, we show its asymptotic optimality of the code length based on the small-scaled

Laplacian distributions p1[X|(K+1)−1] when the K is large enough. Afterward, to discuss

more precise efficiency of the proposed XDGR code, we analyze the average code length

without the approximation of 2−(K+1) ≃ 1 − 2−1/2R and prove some symmetry between

the conventional GR code. Finally, further extensions are shown, based on Golomb code,

a more general class of structured code, including GR code.
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Fig. 5.1. Double code trees of the proposed XDGR code at K = 1. Binary located

next to the edges and triangled numbers located next to the nodes respectively

indicates the codewords and the assigned source symbols. Right-pointing and

down-pointing triangles respectively show the switching rules of the code trees

T0 → T1 → T0 and T0 → T1 → T1. Incomplete nodes with and without symbols

assigned are depicted as black and white dots, respectively.

5.2.2 Multiple-code-tree representation

For simplicity, we first explain the code in the case of K = 1. From now on, we will

underline the input decimal integers to distinguish from binary codewords. It can be said

from Eq. (5.4) that the optimal code for p1[X|2−1] assigns double code length compared

to unary in case X ̸= 0 to assign less code length to X = 0. The proposed XDGR code of

K = 1 can be written in double code trees, as in Fig. 5.1: They are constructed only by

incomplete nodes with source symbols assigned in ascending order to every two nodes, to

achieve lower average code length for X = 0. The code tree T0 has a code symbol ‘1’ only

in the first edge, and T1 has it only in the second one. Note that this code corresponds to

3-ary AIFV in [88] with code alphabet A = {1, 00, 01}, with its code-tree switching rules

modified within a decodable range: Cyclic switching as T0 → T1 → T0 when X = 0 and

one directional switching to T1 otherwise. The first code symbol ‘1’ in the total encoding

can be omitted because it is trivial.

Before we go to the generalized case of K, we show an example of the coding processes
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(a) Code trees. (b) Switching of the code trees.

Fig. 5.2. Example of encoding input source symbol sequence X = 0012000 using the

multiple-code-tree representation of XDGR code with K = 2. The blue curled

arrow in (b) traces the transitions of the code trees.

of the code. Say the input source symbols are X = 00100, each in decimal, the first source

symbol 0 is encoded by T0: Codeword is ‘1’, and the code tree is switched to T1. Then, the

second source symbol 0 can be encoded by a null codeword, and the code tree is switched

to T0. The third source symbol 1 is encoded by T0 as ‘100’ and the code tree turns to T1.

The code tree switches to T0 again with a null codeword for the fourth source symbol 0.

Finally, the fifth source symbol 0 is encoded by T0 as ‘1’, resulting in the total codeword

sequence ‘1 (NULL) 100 (NULL) 1’, where ‘(NULL)’ indicates a codeword with zero code

length. The first ‘1’ is trivial so that the encoding result becomes ‘1001’ with 4 bits of

code length, shorter than the unary representation ‘110111’ and the run-length GR code

proposed in [84] ‘01000’ with 1-bit run length and Rice parameter 0.

When decoding ‘1001’, we first add the first trivial ‘1’ to it as ‘11001’. Then, read the

code from the beginning until it cannot be decoded by T0: ‘11’ is not decodable by T0

so that the first source symbol must be 0, and the codeword ‘1001’ should be decoded

by T1. The second source symbol must be 0 because T1 has no ‘1’ in the root, and the

codeword ‘1001’ should be decoded by T0. T0 can decode ‘100’ but cannot decode ‘1001’,

which indicates the third source symbol is 1. Similarly, the rest source symbol ‘00’ can be
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decoded, resulting in decoded X = 00100.

For another example, think of encoding the input decimal source symbols X = 0012000

with K = 2, using four code trees in Fig. 5.2 (a) starting from T0 of which switching rules

described in Fig. 5.2 (b). As highlighted in the figures, each source symbol is respectively

encoded by the code trees T0, T1, T2, T1, T1, T2, and T3 into the codewords ‘1’, ‘(NULL)’,

‘010’, ‘001000’, ‘(NULL)’, ‘(NULL)’, and ‘(NULL)’. Omitting the trivial codeword ‘1’ in

the beginning and terminating the codeword by ‘1’, the output codeword will be ‘(1)

(NULL) 010 001000 (NULL) (NULL) (NULL) 1’, i.e., ‘0100010001’.

Although we simplified the coding processes in the above example, it has to be noted

that this code requires, to guarantee the decodability, at least the length of the input

source-symbol sequence to be shared between the encoder and the decoder, as the arith-

metic coding does. Since the source symbol 0 is assigned to the roots of the tree, of which

codeword has zero code length, the termination of the encoding and decoding should be

slightly modified under the coding conditions. If both the length of the input source-

symbol sequence and of the codeword sequence are shared, the encoder can terminate the

process after encoding the last source symbol even if its code length is zero. In this case,

the decoder decodes the codeword sequence as above, resulting in less output source sym-

bols than expected. Therefore, the source symbol 0 should be added to the output source

symbols to complete the decoding. In cases where the decoder knows only the length of

the input source-symbol sequence, the encoder should terminate the codeword sequence

by the codeword ‘1’ when the last codeword symbol has zero length. This terminating

codeword ‘1’ helps the decoder to realize the end of the codeword sequence by checking

whether the length of the output source-symbol sequence exceeds the expectation. After

the termination of the decoding, the exceeded output source symbols can be omitted to

obtain a complete sequence.

It can be expected from Eq. (5.4) that for general non-negative integers K, it is prefer-

able to make the average code length for zero even shorter by assigning source symbols to

every (K + 1) nodes. As expected, the proposed XDGR code for K takes 2K code trees

as in Fig. 5.3: T0 with ‘1’ only in the first edge and T1 to T2K−1 with first (K + 1) edges

that have ‘0’ in the first one and at least one edge with ‘1’. This code corresponds to

(2K + 1)-ary AIFV in [88] with code alphabet A = {1, 00 · · · 00, 00 · · · 01, · · · , 01 · · · 11},

and thus its decoding delay is at most (K + 1) bits. The switching rules are the same as
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(a) Code trees.

(b) Switching rules of the code trees.

Fig. 5.3. Multiple-code-tree representation of XDGR code with a non-negative integer K.

Triangled and underlined red numbers located next to the nodes in (a) indicate

the assigned source symbols. Right-pointing and down-pointing triangles respec-

tively show the switching rules of the code trees T0 → T1 → · · · → T2K−1 → T0

and Ti → T1 for every 0 ≤ i < 2K , corresponding to (b).

the double code trees: Cyclic switching as T0 → T1 → · · · → T2K−1 → T0 when X = 0

and one directional switching to T1 otherwise.

In the sense of decodability, the first (K + 1) edges of the code trees T1 to T2K−1 can

be designed arbitrarily as long as the first (K + 1) edges differ to each other and have ‘0’
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Fig. 5.4. Examples of the proposed code for 100 symbols at K = 1 and K = 2. Input X

contains non-negative decimal integers. Each run length is set to minimize the

run-length GR code. The proposed code terminates its total codeword sequence

by ‘1’ in case decoder do not know the total code length to decode.

in the first edge. However, by sorting the order of T1 to T2K−1 for the first (K +1) edges

to be in ascending order of (K +1)-bit binary numbers, these edges can be interpreted as

run-length codes and make the coding algorithm simple. In addition, the code becomes

unary, the GR code at R = 0, at K = 0 if we use T1 = T0.

The coding algorithm can be reorganized as an extension of unary coding as in Algo-

rithms 1 and 2. These algorithms assume that only the parameter K and the length N of

the input source-symbol sequence are shared between the encoder and the decoder. The

encoder outputs codewords in (K + 1)-bit units following the values of source symbols.

On the other hand, the decoder reads (K+1)-bit units of ‘0’s until any ‘1’ appears in the

(K +1) bits, similar to the unary decoder reading ‘0’s until the stop bit ‘1’ appears. The

variable T , the number of current code tree, indicates the number of the source symbols

appeared before the next non-zero source symbol.

The proposed XDGR code has a very similar structure to the run-length GR code in [84]

except in the assignment of the source symbols after ‘1’. Fig. 5.4 shows some examples.

One may think it is redundant to use many ‘0’s between the symbols. However, assigning

source symbols to every (K + 1) nodes enables us to make the first (K + 1) bit of each

tree serve both as the run length and the stop bit, relatively shortening the code length

for smaller-valued symbols.
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Algorithm 1 Encode X = X0X1 · · ·XN−1 by XDGR code

Set n = 0, T = 0.

while n < N do

if Xn = 0 then

Increment T by 1 and replace it with its modulo 2K .

else

Output (K + 1)-bit binary representing T .

Output (K + 1)(Xn − 1) ‘0’s.

Set T = 1.

end if

if T = 0 then

Output ‘1’.

end if

Increment n by 1.

end while

if T ̸= 0 then

Output ‘1’.

end if

5.2.3 Average code length

Average code length of the proposed XDGR code for encoding source symbol X belonging

to p1[X|(K + 1)−1] is given by the expectation of code length based on the stationary

probabilities of the code trees. From the above code-tree switching rules, the transition

probability matrix H of the code trees can be written as

H =



0 0 · · · · · · 0 pz

1 1− pz 1− pz · · · 1− pz 1− pz

0 pz 0 0 · · · 0

0 0 pz 0 · · · 0

...
. . .

. . .
...

0 · · · 0 pz 0


(5.6)
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Algorithm 2 Decode N source symbols from a binary codeword sequence by XDGR code

Set n = 0, T = 0.

while n < N do

Set l = 0.

while the first (K + 1) bits of the codeword sequence is all ‘0’ do

Read out (K + 1) bits from the codeword sequence.

Increment l by 1.

end while

if T = 0 then

Output l.

else

Output (l + 1).

end if

if the first bit of the codeword sequence is ‘1’ then

Read out 1 bit from the codeword sequence.

Output (2K − 1) 0s.

Set T = 0.

Increment n by 2K .

else

Read out (K + 1) bits from the codeword sequence.

Replace T by the read (K + 1)-bit binary number.

Output (T − 1) 0s.

Increment n by T .

end if

end while

Omit the exceeded symbols after the N -th output symbol.

where pz = p1[0|(K + 1)−1]. Let p∗i (0 ≤ i < 2K) be the stationary probability of code

tree Ti. The stationary probabilities p∗ = [p∗0, p
∗
1, · · · , p∗2K−1]

T should satisfy

p∗ = Hp∗ and 1Tp∗ = 1 (5.7)
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where 1 = [1, 1, · · · , 1]T, which leads to

p∗i =



p2K−1
z∑2K−1

j=0 pj
z

(if i = 0)

pi−1
z∑2K−1

j=0 pj
z

(otherwise)

. (5.8)

Taking into account that the code length LTi
[X|K] for source symbol X at code tree Ti

is written as

LTi
[X|K] =

 (K + 1)X + 1 (if i = 0)

(K + 1)X (otherwise)
, (5.9)

the average code length LXR
1 [X|K] of the proposed XDGR code for source symbol X is

given as

LXR
1 [X|K] =

2K−1∑
i=0

LTi [X|K]p∗i

= (K + 1)X +
p2

K−1
z∑2K−1
j=0 pjz

. (5.10)

To show the similarity of the optimal code length Lideal
1 [X|K] and LXR

1 [X|K], we further

develop the equations. Since

Z1

(
(K + 1)−1

)
=

∞∑
X=0

2−(K+1)X =
1

1− 2−(K+1)
, (5.11)

Lideal
1 [X|K] can be rewritten as

Lideal
1 [X|K] = (K + 1)X + log2

1

1− 2−(K+1)
(5.12)

and LXR
1 [X|K] as

LXR
1 [X|K] = (K + 1)X +

p2
K−1

z

1− p2Kz
(1− pz)

= (K + 1)X +
(1− 2−(K+1))2

K−1

1− (1− 2−(K+1))2K
2−(K+1) (5.13)

from pz = Z−1
(K+1)−1 = (1− 2−(K+1)). In the extreme case of K ≫ 1, the second terms in

Eqs. (5.12) and (5.13) respectively become

log2
1

1− 2−(K+1)
≃ 1

ln 2
2−(K+1) ≃ 2−(K+1) × 1.4427 (5.14)

and

(1− 2−(K+1))2
K−1

1− (1− 2−(K+1))2K
2−(K+1) ≃ 1√

e− 1
2−(K+1) ≃ 2−(K+1) × 1.5415 (5.15)
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because

lim
K→∞

(1− 2−(K+1))2
K

=
1√
e
. (5.16)

Therefore, if K ≫ 1, namely the entropy of the source symbols is significantly low, the

difference of the proposed XDGR code length from the optimal code length will only

depends on 2−(K+1) as

LXR
1 [X|K]− Lideal

1 [X|K] ≃ 2−(K+1) × 0.0988, (5.17)

which proves the high performance of the proposed XDGR code.

It should also be noted that LXR
1 [X|0] = X + 1 coincides with the GR code of R = 0,

and the parameter K corresponds to the “negative domain” of Rice parameters.

5.2.4 Asymptotic optimality

The main concern here is whether the difference of the code length shown above becomes

negligible compared to the total code length. The entropy SK of p1[X|(K + 1)−1] is

calculated as

SK =

∞∑
X=0

Lideal
1 [X|K]p1[X|(K + 1)−1]

=
(K + 1)

Z1 ((K + 1)−1)

∞∑
X=0

X2−(K+1)X + log2 Z1

(
(K + 1)−1

)
=

(K + 1)2−(K+1)

1− 2−(K+1)
+ log2

1

1− 2−(K+1)
. (5.18)

On the other hand, the total average code length S̄K of the proposed XDGR code, coding

the source symbols belonging to p1[X|(K + 1)−1], is given by

S̄K =

∞∑
X=0

LXR
1 [X|K]p1[X|(K + 1)−1]

=
(K + 1)2−(K+1)

1− 2−(K+1)
+

(1− 2−(K+1))2
K−1

1− (1− 2−(K+1))2K
2−(K+1),
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and thus the coding loss DK , defined here as a relative difference from the entropy,

converges to

lim
K→∞

DK = lim
K→∞

S̄K − SK

SK

= lim
K→∞

1√
e−1

2−(K+1) − 1
ln 22

−(K+1)

(K+1)2−(K+1)

1−2−(K+1) + 1
ln 22

−(K+1)

= lim
K→∞

1√
e−1

− 1
ln 2

(K+1)
1−2−(K+1) +

1
ln 2

= 0. (5.19)

So, if the scale ϕ of the distribution in Eq. (5.2) is small enough, or the optimal parameter

K is large enough, the coding loss of the proposed XDGR code can be neglected compared

to the total code length.

5.2.5 Parameter estimation for extended-domain Golomb–Rice code

To make use of the proposed XDGR code for distributions of variable scale ϕ, in the

similar way as using the conventional GR code, the parameter K introduced above, the

parameter that decides how many code trees to use, should be estimated from an input

source-symbol sequence. In the conventional GR coding, the Rice parameter R is often

estimated to minimize the approximate total code length BGR(r) of the input source-

symbol sequence {Xi}N−1
i=0 :

BGR(r) =

N−1∑
i=0

(
Xi

2R
+R+ 1

)
, (5.20)

which can be minimized at its stationary point

ropt = log2 ((ln 2)M) (5.21)

where M = 1
N

∑N−1
i=0 Xi indicates the empirical average. This estimated parameter Ropt

can be used after rounding for coding and approximately matches to the maximum-

likelihood estimate of R for the source distribution p1[X|2R]. On the other hand, in

the proposed XDGR coding, we cannot explicitly derive the direct estimate of K for min-

imizing the total code length. Therefore, we discuss here using the maximum-likelihood

estimate of K for the source distribution p1[X|(K + 1)−1] and its correspondence to the

code-length-minimizing K.
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(a) K estimated in case of each empirical average M .

(b) Absolute difference between estimated Ks.

Fig. 5.5. Numerical comparison of parameter K estimations.

The log-likelihood of {Xi}N−1
i=0 for the source distribution p1[X|(K + 1)−1] is written,
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using Eq. (5.11), as

BLH(K) =

N−1∑
i=0

log2 p1[Xi|(K + 1)−1]

=

N−1∑
i=0

(
−(K + 1)Xi − log2 Z1

(
(K + 1)−1

))
= −

N−1∑
i=0

(K + 1)Xi +N log2

(
1− 2−(K+1)

)
, (5.22)

which can be maximized at its stationary point

Kest = log2

(
1 +

1

M

)
− 1. (5.23)

When the code-length-minimizing K = Kopt satisfies Kopt ≫ 1, the empirical average

M must be small enough, and thus the maximum-likelihood estimate Kest approximately

values as

Kest ≃ log2

(
1

M

)
− 1 = − log2 M − 1 (5.24)

from M−1 ≫ 1. In case K ≫ 1, Kopt can be explicitly derived from the stationary point

of the total code length

BProp(K) =

N−1∑
i=0

LXR
1 [Xi|K]

≃
N−1∑
i=0

(K + 1)Xi +
N√
e− 1

2−(K+1) (5.25)

as

Kopt ≃ − log2 M − 1 + log2
ln 2√
e− 1

≃ − log2 M − 1 + 0.0956, (5.26)

matching to Kest when rounded. That means the maximum-likelihood estimate of K by

Eq. (5.23) gives a nearly optimal parameter for code length when K ≫ 1.

Fig. 5.5 shows the numerical comparison between the maximum-likelihood estimate Kest

and the actual code-length-minimizing estimate Kopt for each empirical average M : the

former comes from Eq. (5.23) and the latter from the relation derived from the stationary

point of the code length BProp(K), without assuming K ≫ 1, as

M = − d

dK

(1− 2−(K+1))2
K−1

1− (1− 2−(K+1))2K
2−(K+1). (5.27)

Both estimation slightly differ to each other at any K ≥ 0 with their difference converging

to log2
ln 2√
e−1

≃ 0.0956 as expected.
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Following the above discussions, Eq. (5.23) gives K that nearly minimizes the total

code length of the proposed XDGR code. Furthermore, this proposed XDGR extension

can be interpreted as extending Rice parameters to the negative domain. The proposed

XDGR code is expected to be used with the conventional GR code as unified GR code by

estimating the parameters R and K based on Eq. (5.23) or the combination of Eqs. (5.21)

and (5.23).

5.2.6 Symmetry of relative redundancy to Golomb–Rice code

Here, for more precise investigation, we compare the relative redundancy of the proposed

XDGR and the conventional GR codes in encoding the geometric source pGeo[X|θ]. The

average code length L̄XR
1 (θ|K) of the proposed XDGR code with the parameter K is given

from the stationary probability p∗i (i = 0, 1, · · · , 2K − 1,
∑

i p
∗
i = 1) of each code tree Ti as

L̄XR
1 (θ|K) = p∗0

∞∑
X=0

pGeo[X|θ][(K + 1)X + 1] +

2K−1∑
i=1

p∗i

∞∑
X=1

pGeo[X|θ](K + 1)X

= (K + 1)

∞∑
X=0

pGeo[X|θ]X + p∗0. (5.28)

Similar to the above discussions, the stationary probability p∗0 is derived as

p∗0 =
(1− θ)2

K−1∑2K−1
j=0 (1− θ)j

=
θ(1− θ)2

K−1

1− (1− θ)2K
, (5.29)

which makes

L̄XR
1 (θ|K) =

(K + 1)θ

1− θ
+

θ(1− θ)2
K−1

1− (1− θ)2K
. (5.30)

For conventional GR code, its average code length L̄R
1 (θ|R) with Rice parameter R is

written as

L̄R
1 (θ|R) =

∞∑
X=0

pGeo[X|θ]
(
R+ 1 + ⌊2−RX⌋

)
= R+ 1 +

∞∑
X=0

pGeo[X|θ]2−RX −
2R−1∑
i=1

∞∑
X=0

pGeo[2
RX + i|θ]2−Ri

= R+ 1 +
2−Rθ

1− θ
−

(
2−Rθ

1− θ
− θ2

R

1− θ2R

)

= R+ 1 +
θ2

R

1− θ2R
(5.31)

where ⌊·⌋ is a flooring operation.
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Therefore, the entropy of the source

L̄ideal
1 (θ) =

∞∑
X=0

−pGeo[X|θ] log2 pGeo[X|θ] (5.32)

= (1− θ)−1[−θ log2 θ − (1− θ) log2(1− θ)]

leads to the respective relative redundancy RXR
1 (θ|K) and RR

1 (θ|R):

RXR
1 (θ|K) =

L̄XR
1 (θ|K)

L̄ideal
1 (θ)

− 1 (5.33)

=

[
(K + 1)θ +

θ(1− θ)2
K

1− (1− θ)2K

]
· [−θ log2 θ − (1− θ) log2(1− θ)]

−1 − 1

RR
1 (θ|R) =

L̄R
1 (θ|R)

L̄ideal
1 (θ)

− 1 (5.34)

=

[
(R+ 1)(1− θ) +

(1− θ)θ2
R

1− θ2R

]
· [−θ log2 θ − (1− θ) log2(1− θ)]

−1 − 1,

which proves the symmetry between the proposed XDGR and the conventional GR codes

as

RXR
1 (1− θ|K) = RR

1 (θ|R) when K = R. (5.35)

The above proof of the symmetry guarantees the codes show symmetric relative redun-

dancy to each other when encoding geometric sources with corresponding coding param-

eters K and R. Therefore, the optimality of the proposed XDGR is approximated as

precise as that of the conventional GR code.

5.2.7 Further code extension

The discussion above has shown that the proposed shaping by the unary-domain bit

inversion realizes a code having a strong symmetry between GR codes in the sense of

relative redundancy, especially between their parameters K and R. Now, there is a

possibility of combining the proposed shaping with Golomb code, which enables us a

more precise tune to the scale ϕ of the input sources using the Golomb parameter S. This

combination, extended-domain Golomb (XDG) code, can also be interpreted by multiple

code trees generalized from the ones mentioned in the previous sections.

By using multiple code trees and a conditional branch function f [i|l] which outputs

0 if i < l and 1 otherwise, the proposed code can be represented as in Fig. 5.6: It is
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(a) Code trees.

(b) Switching rules of the code trees.

Fig. 5.6. Multiple-code-tree representation of the proposed XDG code with a positive

integer L as an extension of the code in Fig. 5.3. L is written with non-negative

integers K and l (< 2K−1) as L = 2K − l. f [i|l] is a conditional branch function

that outputs 0 if i < l and 1 otherwise.

constructed with L code trees, which naturally come from the phased-in binary code

included in the conventional Golomb code. When the parameter L is a power of two, in

other words, l = 0, the proposed code becomes identical to the conventional XDGR code.

The encoding and decoding steps are shown in Algorithms 3 and 4, which is an extension

of the unary code as well as the conventional XDGR code.

Fig. 5.7 shows the encoding example of the proposed XDG code compared to the XDGR
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Algorithm 3 Encode X = X0X1 · · ·XN−1

Set n = 0, T = 0.

while n < N do

if Xn = 0 then

Increment T by 1 and replace it with its modulo L.

else

Output ‘0’ and phased-in binary code of parameter L representing T .

Output (K + f [0|l])(Xn − 1) ‘0’s.

Set T = 1.

end if

if T = 0 then

Output ‘1’.

end if

Increment n by 1.

end while

if T ̸= 0 then

Output ‘1’.

end if

code. Since the proposed code has a finer parameter to tune, there are some cases where

it can achieve a shorter code length than the XDGR code is achievable. Indeed, finer

tunable parameters mean, if we want to switch them sequence by sequence, more bits to

represent themselves. However, they make the coding design more flexible, and we can

control the costs for sending the parameter Ls by limiting the range of them or dealing

with longer sequences. The following sections show the proof that the proposed XDG

code is identical to the conventional Golomb code with the unary-domain bit inversion,

which we here call the inverted Golomb code, for convenience, and their symmetry in the

sense of relative redundancy.
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Algorithm 4 Decode N source symbols from a binary codeword sequence

Set n = 0, T = 0.

while n < N do

Set i = 0.

while the first (K + f [0|l]) bits of the codeword sequence is all ‘0’ do

Read out (K + f [0|l]) bits from the codeword sequence.

Increment i by 1.

end while

if T = 0 then

Output i.

else

Output (i+ 1).

end if

Read out 1 bit from the codeword sequence.

if the read bit is ‘1’ then

Output (L− 1) 0s.

Set T = 0.

Increment n by L.

else

Read out phased-in binary code of parameter L from the codeword sequence.

Replace T by the number represented by the phased-in binary code.

Output (T − 1) 0s.

Increment n by T .

end if

end while

Omit the exceeded symbols after the N -th output symbol.

5.2.8 Equivalence to inverted Golomb code

Preparation of proof

To prove the equivalence between the inverted Golomb code CiG[x|L] for Golomb param-

eter L = 2K − l (0 ≤ l < 2K−1) and XDG code CXDG[x|L] for parameter L, we compare
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Fig. 5.7. Examples of XDGR code and the proposed code for 100 symbols with each

parameter. InputX contains non-negative decimal integers. XDGR code cannot

shorten the code than at K = 2 while the proposed code achieves the shortest

code length by L = 3, with L being the extension of K.

the codewords contained in the code symbol sequence. We here use the input sequence

x = 0Nstartx10
N1x20

N2 · · · 0Nm−1xm0Nm , which represents any input sequences by setting

non-negative integers {m,Nstart, N1, N2, · · · , Nm} and positive integers {x1, x2, · · · , xm}.

The cases are divided depending on the following conditions:

1. Either encoding from the beginning or the middle of x;

2. whether encoding the last input symbol of x.

The second condition matters when the decoder does not know the end of the codeword

sequence. From a practical perspective, we set the main discussion on this case, where

the decoder only knows the number of integers.

Before going on to the proof, we define some expressions: The decimal input integers

and the binary codewords are respectively underlined and quoted as x and ‘0’; we refer to

0x, ‘0x’, and ‘1x’ as the runs of 0s, ‘0’s, and ‘1’s with length x; the phased-in binary code

for parameter L representing x is written as ‘PBCL[x]’; we use x%L ≡ x− ⌊x/L⌋ ×L for

remainders where ⌊·⌋ is a flooring operation; ceiling operations are written using ⌈·⌉.

Using these expressions, Golomb code CG[x|L] for Golomb parameter L of x can be

written as ‘0⌊x/L⌋1PBCL[x%L]’. However, to show the correspondence to the code shown

in Fig. 5.6, we here use the unary part inverted as ‘1x0’, and thus ‘1⌊x/L⌋0PBCL[x%L]’

for x, without loss of generality. It should also be noted that ‘PBCL[0]’ is equivalent to

‘0K+f [0|l]−1’, and the first part of the codewords in each tree Ti (i ̸= 0) in Fig. 5.6 (a) is

given as ‘0PBCL[i]’.
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Codewords in inverted Golomb code

As explained in the previous section, we defined the inverted Golomb code as a code given

by the combination of the unary-domain bit inversion in Eq. (5.5) and Golomb encoding,

namely, Golomb code for FUBI[x]. Since Golomb code is uniquely decodable and the

inversion FUBI[·] is invertible, the inverted Golomb code CiG[x|L] = CG[FUBI[x]|L] is also

uniquely decodable when the decoder knows both the end of the codeword sequence and

the number of integers to decode. However, when the decoder does not know the end of

the codeword sequence, it will not be uniquely decodable or will be redundant at the end

of the sequence if we use the Golomb encoding output for FUBI[x] as is. Therefore, we

have to think about termination in this case. The following shows the codeword sequence

using a termination, which keeps the decodability and minimizes the redundancy.

In the case where the decoder only knows the number of integers to decode, the output

of the unary-domain bit inversion should not end with runs of zeros. This is because the

decoder cannot know the amount of m in the input x, and F−1
UBI[·] will fail when the runs

of zeros are followed by some other consecutive code beginning with zero. On the other

hand, when FUBI[x] ends with a non-zero integer, the decoder can detect the end of the

code by counting the output integers even if any other codes follow. Therefore, under the

condition discussed here, the bit-inversion should use the function

F̂UBI [x] = Nstart0
x1−1(N1 + 1)0x2−1(N2 + 1) · · · 0xm−1(Nm + 1). (5.36)

Although it is not surjective since it ends with a non-zero integer, we here assume that

the codes are all terminated and do not consider inverse converting F̂UBI[x] ending with

a zero.

i-a) Encoding 0Nstart · · · (m ̸= 0)

Let us think of the inverted Golomb encoding of 0Nstart · · · followed by some positive

integer. The unary-domain bit inversion of the concerning part is Nstart. Therefore, the

output of the inverted Golomb encoding is

‘1⌊Nstart/L⌋0PBCL[Nstart%L]’. (5.37)

i-b) Encoding 0Nstart (m = 0, Nstart ̸= 0)

Circumstances will change if no positive integer follows the input 0Nstart . The Golomb
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code for F̂UBI[0
Nstart ] is the same as in Eq. (5.37). However, the decoder can recognize

from the codeword ‘1⌊Nstart/L⌋’ that there are (⌊Nstart/L⌋ × L) or more zeros to output.

Awing to this fact, if the decoder knows the number of the integers to decode (here,

Nstart), the encoder needs only to output

‘1⌈Nstart/L⌉’ (5.38)

to guarantee the decodability.

ii-a) Encoding · · ·xi0
Ni · · · (m ̸= 0, 0 < i < m)

Next, let us think of the inverted Golomb encoding of · · ·xi0
Ni · · · (1 < i < m) which

follows some positive integer input. In this case, the inputs of the concerning part become

0xi−1(Ni + 1) by the unary-domain bit inversion, resulting in CiG[x|L] as

‘0PBCL[0]0PBCL[0] · · · 0PBCL[0]1
⌊(Ni+1)/L⌋0PBCL[(Ni + 1)%L]’

= ‘0(K+f [0|l])(xi−1)1⌊(Ni+1)/L⌋0PBCL[(Ni + 1)%L]’. (5.39)

ii-b) Encoding · · ·xm0Nm (m ̸= 0)

The Golomb code for F̂UBI[· · ·xm0Nm ] is the same as in Eq. (5.39) at i = m. To discuss

the termination for this part, we have to consider both cases where the input sequence

ends with non-zero (in case of Nm = 0) and zero (in case of Nm ̸= 0).

When Nm = 0, the codeword 0PBCL[(Nm+1)%L] in the tail of Eq. (5.39) is redundant

for the same reason mention in i-b). Therefore,

‘0(K+f [0|l])(xm−1)1⌈(Nm+1)/L⌉’ (5.40)

is enough for CiG[x|L] to keep the decodability.

When Nm ̸= 0, the input converted by the unary-domain bit inversion is F̂UBI[· · ·xm] =

· · · 0xm−1, of which corresponding Golomb code is ‘0(K+f [0|l])(xm−1)’. Leaving the end with

‘0’, in this case, may cause a decoding error when the decoder does not know the end of the

codeword sequence: If there comes another ‘0(K+f [0|l])’ after the codeword sequence, the

decoder will output (xm + 1) as the last integer. Therefore, the encoder has to terminate

the codeword with minimum bits. If the decoder knows the number of the inputs, it is

reasonable for the encoder to terminate the codeword sequence with ‘1’: The decoder

can determine xm when it reads the last ‘1’ and recognize it has finished reading the
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integers by counting decoded ones. This results in CiG[x|L] identical to Eq. (5.40), which

is uniquely decodable.

Codewords in XDG code

The following shows the codeword sequence of the proposed XDG code, with the cases

divided the same as above. This code also needs termination, and we show it is identical

to the one used for the inverted Golomb code.

i-a) Encoding 0Nstart · · · (m ̸= 0)

XDG encoding begins with the code tree T0 and outputs ‘1’ for input 0L so that

‘1⌊Nstart/L⌋’ is output at first. Then, the following positive integer will be encoded

by the code tree TNstart%L, and thus we can expect the encoder will output at least

‘0PBCL[Nstart%L]’. Therefore, the codeword in CXDG[x|L] which the encoder can

determine from the concerning part of the input is

‘1⌊Nstart/L⌋0PBCL[Nstart%L]’, (5.41)

equivalent to CiG[x|L] in Eq. (5.37).

i-b) Encoding 0Nstart (m = 0, Nstart ̸= 0)

If no positive integer follows the input 0Nstart , the encoder need not to output

‘0PBCL[Nstart%L]’ mentioned above. However, if Nstart%L ̸= 0, the decoder cannot

know only from ‘1⌊Nstart/L⌋’ whether this is the end of the codeword or not because there

are Nstart%L integers remaining to be decoded. Therefore, it is reasonable to terminate

‘1⌊Nstart/L⌋’ with ‘1’ in this case: The decoder can finish the decoding by determining all

the remaining integers to be zero. Including Nstart%L = 0, CXDG[x|L] for this case can

be written as

‘1⌈Nstart/L⌉’, (5.42)

equivalent to CiG[x|L] in Eq. (5.38).

ii-a) Encoding · · ·xi0
Ni · · · (m ̸= 0, 0 < i < m)

XDG encoding begins with the code tree T(Ni−1+1)%L (here, we regard N0 as (Nstart−1))

after encoding the previous part. As explained in i-a), the encoder has already outputted
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‘0PBCL[(Ni−1 + 1)%L]’. Therefore, the input xi leads to the output as

‘0PBCL[0]0PBCL[0] · · · 0PBCL[0] = ‘0(K+f [0|l])(xi−1)’. (5.43)

Then, the encoder starts encoding 0Ni using the code trees beginning with T1. If the input

sequence continues with a positive integer, it will be encoded with the code tree T(Ni+1)%L

Derived from the same logic as in i-a), the codeword that the encoder can determine from

0Ni is ‘1⌊(Ni+1)/L⌋0PBCL[(Ni + 1)%L]’. Eventually, the total output codeword for the

concerning part results in

‘0(K+f [0|l])(xi−1)1⌊(Ni+1)/L⌋0PBCL[(Ni + 1)%L]’, (5.44)

equivalent to CiG[x|L] in Eq. (5.39).

ii-b) Encoding · · ·xm0Nm (m ̸= 0)

The output for xm part is the same as in Eq. (5.43) at i = m. If no positive integer

follows the input · · ·xm0Nm , the encoder needs not to output ‘0PBCL[(Nm−1 + 1)%L]’ as

in ii-a). However, if (Nm−1 +1)%L ̸= 0, the decoder cannot know only from ‘1⌊(Ni+1)/L⌋’

whether this is the end of the codeword or not because there are (Ni + 1)%L integers

remaining to be decoded. Therefore, as in i-b), we can keep the decodability with minimum

bits by terminating the codeword with ‘1’. Including (Nm−1 + 1)%L = 0, CXDG[x|L] for

the concerning part results in

‘0(K+f [0|l])(xm−1)1⌈(Nm+1)/L⌉’, (5.45)

equivalent to CiG[x|L] in Eq. (5.40).

Since we have CiG[x|L] = CXDG[x|L] in all cases of i-a), ii-a), i-b) and ii-b), XDG code

is uniquely decodable in the same way as the inverted Golomb code.

5.2.9 Symmetry of relative redundancy to Golomb code

As we have shown in Sec. 5.2.6, we here prove the symmetry between the proposed XDG

code and the Golomb code. The average code length L̄XG
1 (θ|L) of XDG code with the

parameter L is given from the stationary probability p∗i (i = 0, 1, · · · , L− 1,
∑

i p
∗
i = 1) of
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each code tree Ti as

L̄XG
1 (θ|L) = p∗0

∞∑
X=0

pGeo[X|θ]{(K + f [0|l])X + 1} (5.46)

+

L−1∑
i=1

p∗i

∞∑
X=1

pGeo[X|θ]{(K + f [0|l])X + (f [i|l]− f [0|l])}

= (K + f [0|l])
∞∑

X=0

pGeo[X|θ]X + p∗0 +

L−1∑
i=1

p∗i

∞∑
X=1

pGeo[X|θ](f [i|l]− f [0|l])

Similar to Eq. (5.29), the stationary probabilities {p∗i }
l−1
i=0 are given as

p∗i =


θ(1−θ)L−1

1−(1−θ)L
(if i = 0)

θ(1−θ)i−1

1−(1−θ)L
(otherwise)

, (5.47)

resulting in

L̄XG
1 (θ|L) = (K + f [0|l]) θ

1− θ
+

θ(1− θ)L−1

1− (1− θ)L

+

L−1∑
i=1

θ2(1− θ)i−1

1− (1− θ)L
(f [i|l]− f [0|l])

=
Kθ

1− θ
+

L−1∑
i=0

θ2(1− θ)i−1

1− (1− θ)L
f [i|l] + θ(1− θ)L−1

1− (1− θ)L
(5.48)

For Golomb code, its average code length L̄G
1 (θ|S) with Golomb parameter S is written

as

L̄G
1 (θ|S) =

∞∑
X=0

pGeo[X|θ](R+ f
[
X − S

⌊
S−1X

⌋
|s
]
+ ⌊S−1X⌋)

= R+
S−1∑
i=0

∞∑
X=0

pGeo[SX + i|θ]f [i|s] +
∞∑

X=0

pGeo[X|θ]S−1X

−
S−1∑
i=1

∞∑
X=0

pGeo[SX + i|θ]S−1i

= R+

S−1∑
i=0

(1− θ)θi

1− θS
f [i|s] + S−1θ

1− θ
−
(
S−1θ

1− θ
− θS

1− θS

)

= R+

S−1∑
i=0

(1− θ)θi

1− θS
f [i|s] + θS

1− θS
(5.49)

with the same conditional branch function f [i|l] stated above.
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Comparing with the entropy, the respective relative redundancy RXG
1 (θ|L) andRG

1 (θ|S)

become

RXG
1 (θ|L) = L̄XG

1 (θ|L)
L̄ideal
1 (θ)

− 1 (5.50)

=

{
Kθ +

L−1∑
i=0

θ2(1− θ)i

1− (1− θ)L
f [i|l] + θ(1− θ)L

1− (1− θ)L

}
·[−θ log2 θ − (1− θ) log2(1− θ)]−1 − 1

RG
1 (θ|S) =

L̄G
1 (θ|S)

L̄ideal
1 (θ)

− 1 (5.51)

=

{
R(1− θ) +

S−1∑
i=0

(1− θ)2θi

1− θS
f [i|s] + (1− θ)θS

1− θS

}
·[−θ log2 θ − (1− θ) log2(1− θ)]−1 − 1

Here, the parameters K, R, l, and s satisfy K = R and l = s when L = S so that the

symmetry is guaranteed as

RXG
1 (1− θ|L) = RG

1 (θ|S) when L = S. (5.52)

Note that these average code length and relative redundancy are identical to the case in

XDGR and Rice codes when l = s = 0.

5.2.10 Parameter estimation for extended-domain Golomb code

The symmetry between XDG and Golomb codes stated above also provides us with some

suggestion for the parameter estimation of the proposed code. Owing to the simplicity of

the structure of the Golomb code, its code-minimizing parameter S can be approximately

estimated from the empirical average M of the input source symbol sequence as an integer

close to (ln 2)M . On the other hand, the proposed XDG code is difficult to minimize its

actual code length directly.

Therefore, it is practical to derive its optimal parameter L from using the symmetry in

Eq. (5.52) and estimating the average of the geometric source pGeo[X|θ] when the average

of pGeo[X|1 − θ] is M . The average of pGeo[X|θ] and pGeo[X|1 − θ] are respectively

θ(1− θ)−1 and (1− θ)θ−1, and thus

1− θ

θ
= M ⇒ θ

1− θ
=

1

M
. (5.53)
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Fig. 5.8. Relative redundancy of the proposed XDG (XDGR) and conventional Golomb

(Rice) codes with respective parameters L (K) and S (R) for random number

sequences belonging to each geometric source.

Since the optimal parameter S minimizing Golomb code length of the sequence with aver-

age M−1 is given from (ln 2)M−1, the optimal parameter L for the proposed XDG encod-

ing the sequence with the empirical average M should be an integer close to (ln 2)M−1.

From Eq. (5.52), the estimation of the parameter L is guaranteed to be, if the estimation

of the average M is precise enough, as accurate in the sense of relative redundancy as the

parameter estimation of Golomb code. It should also be noted that parameters L and K of

XDG and XDGR codes have a logarithmic relationship. Therefore, the conclusion above

does not conflict with the result in the approximate solution in Eq. (5.24) for code-length

minimization of XDGR code.

5.2.11 Simulation by random numbers

We simulated by using random numbers to support the above theories. First, we focused

on the code length of the proposed and conventional codes with fixed XDG parameter

L, or XDGR parameter K, and Golomb parameter S, or Rice parameter R, to see their
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(a) Result for the combined XDGR and Rice

code using estimated parameters (K or R).

(b) Result for the combined XDG and Golomb

code using estimated parameters (L or S).

Fig. 5.9. Relative redundancy of the combined codes using estimated parameters for each

random number sequences belonging to each geometric source.

symmetry. For each source pGeo[x|θ] of θ = 0.01, 0.02, 0.03, · · · , 0.99, N = 106 symbols

of stationary memoryless non-negative random integer x were generated by the inversion

method [91] and coded into the proposed code.

Fig. 5.8 compares the codes for each parameter. It can be seen that the curves of the

relative redundancy showed symmetry for θ = 0.5 for each L = S, or K = R, consistent

with the theory. Note that the codes are identical when L = S = 1 and K = R = 0.

Next, we coded the same sequences into codes combining XDGR with Rice and XDG

with Golomb codes to see the symmetry for a further range of the parameters. Their

parameters were estimated for each sequence by the method stated previously and the

one in [92]. The codes were switched source by source, between XDGR and Rice codes,

and between XDG and Golomb codes, depending on which of their estimated parameters

were the larger.

Fig. 5.9 shows the results. The relative redundancy of Golomb and Rice codes matched

to the result in the other works [93,94]. The symmetry in the curves of relative redundancy

appeared both between XDGR and Rice codes and between XDG and Golomb codes,

which confirms the parameters to have been correctly estimated. The peaks in relative

redundancy of the proposed XDG code were lower than the ones of the proposed XDGR
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(a) Comparison with run-length GR code in

[84]. Black long dashed short dashed line

shows the result for run-length GR code with

its bits for run length searched exhaustively.

(b) Comparison with Huffman codes. Purple

long dashed short dashed line and black dot-

ted line show the results for Huffman codes

optimized for X 4 and X 5, respectively.

Fig. 5.10. Relative redundancy of each code. Red solid line and blue dashed line re-

spectively indicate the results for the proposed XDG and XDGR codes with

estimated parameters for each geometric source.

code because it was more flexibly tunable as Golomb code was.

Finally, we compared the relative redundancy with other codes, run-length Golomb–

Rice (RLGR) code proposed in [84] and Huffman codes using the sparser half of the

geometric sources, pGeo[x|θ] with θ = 0.01, 0.02, 0.03, · · · , 0.50, and generating N = 106

stationary memoryless non-negative random integer symbols.

Fig. 5.10 shows the comparison results. For Huffman codes, we took a histogram of the

existing symbols X in the random integer sequence for each source and made codebooks

optimized for the histograms of its Cartesian products X 4 and X 5. The curve of the

proposed XDG code was under one of the proposed XDGR code, both outperforming the

run-length GR and Huffman codes, especially at small θs, or sparse sources.
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5.3 Shaping by integer mappings for generalized-Gaussian-

distributed sources

5.3.1 Integer mappings for controlling shapes

The discussions in the previous chapters for the signal modeling revealed that, with appro-

priate spectral envelope estimation, we have a chance to enhance the compression efficiency

by extending the assumption of the distributions to GGDs. Furthermore, switching their

shape parameter α frame by frame depending on the acoustic features of the input signals

may also be effective for enhancing compression efficiency. Therefore, if we can design

a low complexity well-structured code for various shape parameters, we may make more

use of these perspectives. Based on this motivation, we here focus on the discrete type of

GGDs

pα[X|ϕ] = 1

Zα(ϕ)
2−(

X
ϕ )

α

, Zα(ϕ) =

∞∑
k=0

2−(
k
ϕ )

α

, (5.54)

as an approximation of discrete distributions strictly derived from the integrals of (3.28)

and discuss how to construct a code with its expected code length close to the theoretical

limit

Lideal
α [X|ϕ] = − log2 pα[X|ϕ] =

(
X

ϕ

)α

+ log2 Zα(ϕ), (5.55)

proportionate to the α-th power of input integer X.

Some previous works tackled this problem by extending the GR code. For distributions

with small α, the work in [85] combined GR code with exponential-Golomb (exp-Golomb)

code, a code representing integers by a suffix code of which code length written by a unary

code. To apply the code to a broader range of α, the work in [84] combined GR code with

zero-run-length code. However, the tunable parameters of the method are related to the

shape parameter α in a complicated way, resulting in a sophisticated iterative algorithm.

Therefore, we here present a shaping method based on the idea in [95].

In the work of [95], a pair of integers is mapped into a single integer, based on the ℓ2

norm, shaping their distribution into a Laplacian distribution before GR encoding. To

decode in this scheme, we have only to read GR code and perform inverse mapping of the

decoded integers. This code becomes an FV code for two-dimensional (2-D) non-negative
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Fig. 5.11. Outputs (numbers in each lattice point) of 2-D integer nesting pairs of integers

(X1, X2).

integers X 2. Generally, FV codes for 2-D integers do not precisely achieve the entropy of

the target distribution unless we assume some exceptional cases: Laplacian of scale 1 or

correlated inputs as in [95]. However, FV coding has advantages in computational com-

plexity compared to variable-to-variable-length (VV) coding, such as arithmetic coding.

Extending the above idea to a mapping method between a group of integers and a single

integer, we will show that GR code can be flexibly adapted to the GGDs. It is memory- or

time-consuming to prepare many mapping patterns for every non-negative integer pairs.

Therefore, we here introduce algebraic mappings, which can approximately shape integers

into Laplacian distributions.

5.3.2 Integer nesting

Case of 2-D inputs

The mappings to use for GR code in this context have to be bijective: They should be

surjective to have all the integers encoded; they should be injective so that the codes

are decoded in a completely lossless manner. Here, we first focus on the case where

shape parameter α is a natural number p. The mappings required in this case should

be bijective in non-negative integer space and raise the input values to their pth power.

With the freedom of the input and output spaces of the mappings taken into account, it is
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Fig. 5.12. Example of calculating the number for a given lattice point (a, b) in the case

of a ̸= b.

intuitive to employ mappings from p-D integers to a single integer, that we here propose

as p-D integer nesting. Of course, it is not impossible to make a mapping between other

spaces under the constraints mentioned above, but by focusing on mappings from p-D

integer space to 1-D integer space, we can design much simpler rules to make one roughly

satisfy the constraints.

The approach of the proposed p-D integer nesting is to number each lattice point in p-D

integer space to make the numbers distribute approximately as Laplacian distributions.

Nonetheless, there are many possibilities for numbering the lattice points, and it is difficult

to analyze theoretically. Therefore, we experimentally, by trial and error, found practical

numbering in the order based on specific rules: In comparing two lattice points, the one

with the larger ℓ1 norm should be numbered with a larger value; if the ℓ1 norms are

identical, the one with the larger l1 distance from the lattice point of uniform elements

with the same ℓ1 norm should be numbered with a larger value.

Let us show an example in the case of p = 2, which aims at integers belonging to

Gaussian distribution p2[X|2r], as in Fig. 5.11. The 2-D integer lattice points (X1, X2)

are numbered in the order of the ℓ1 norm, and the lattice points with the same ℓ1 norm

are arranged in ascending order of the differences |X1 − X2|. The lattice points with
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(a) Histogram of GGD of shape parameter

α = 2.

(b) Histogram of integers given by nesting in-

tegers belonging to GGD of shape parameter

α = 2.

Fig. 5.13. Changes in a histogram of GGD of shape parameter α = 2 by 2-D integer

nesting. Red fat bars and yellow bars surrounded by dashed lines in (b) re-

spectively show the relative frequency of the values given by nesting two equal

integers and by nesting two consecutive integers. The blue dotted line and red

dashed line respectively show the outlines of the histogram and the part of the

histogram highlighted in red.

the same ℓ1 norm and |X1 − X2| are the permutations of the elements, and their order

will not change the expected code length of the encoding mentioned later. Therefore, we

arbitrarily ordered in a way that the ones with X1 > X2 come first when ℓ1 norm and

|X1 −X2| are the same.

Fig. 5.12 shows how to calculate the numbering from input integers (a, b) in the case

of a ̸= b. First, we count all the lattice points having the lower ℓ1 norm, which forms a

triangle, including (a + b)(a + b + 1)/2 lattice points. Then, the ones having the same

ℓ1 norm and lower differences |X1 −X2|, which forms a line beside (a, b), are counted as

|a − b| − 1. Finally, a number is added to the above counts to distinguish (a, b) from its

permutation (b, a). As a result, the proposed 2-D integer nesting from (X1, X2) to an

integer Y based on this numbering is written, with a function f(statement) outputting 1

if the statement is true and 0 otherwise, as

Y =
1

2
(X1 +X2)(X1 +X2 + 1) + |X1 −X2| − f(X1 > X2), (5.56)
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which also holds for X1 = X2 and is naturally bijective and thus invertible mapping.

An inverse mapping, which will be shown in detail later, can be designed by finding

(X1+X2)(X1+X2+1)/2, |X1−X2|, and f(X1 > X2) in this order from Y . By encoding

the nested integer Y using GR code, say with Rice parameter r = 0, the average code

length of each X1 and X2 will be

LGR
2 [X1, X2] =

(
X1 +X2

2

)
·
(
X1 +X2

2
+ 0.5

)
+

∣∣∣∣X1 −X2

2

∣∣∣∣+ 1

2
f(X1 ≤ X2). (5.57)

Although the above mapping is heuristic, its effect on expected code length can be

interpreted by a rough approximation. The expected code length is given by

EX1,X2

[
LGR
2 [X1, X2]

]
(5.58)

=

∞∑
X1=0

∞∑
X2=0

LGR
2 [X1, X2]p2[X1|1]p2[X2|1]

and it can be seen from Eq. (5.57) that the first term, depending on the average (X1 +

X2)/2, is dominant in LGR
2 [X1, X2]. In addition, among the terms in Eq. (5.59) hav-

ing the same average (X1 + X2)/2, the terms with X1 ≃ X2 are dominant because of

p2[X1|1]p2[X2|1]. This results in a coarse approximation of Eq. (5.59) using X = X1 ≃ X2

and X(X + 0.5) ≃ X2 as

EX1,X2

[
LGR
2 [X1, X2]

]
≃

∞∑
X=0

(
X2 + const.

)
p2[X|1] (5.59)

where the const. will be a little larger than 0.5 due to the approximation errors, which

is close to the theoretical limit of the expected code length using the ideal code length

L2[X|1], the one from Eq. (5.55) in the case of α = 2:

EX [L2[X|1]] =
∞∑

X=0

(
X2 + log2 Z2(1)

)
p2[X|1] (5.60)

=

∞∑
X=0

(
X2 + 0.6457 · · ·

)
p2[X|1].

Fig. 5.13 shows an example of histograms to support qualitatively the approximation.

One of the Gaussian distributions, p2[X|1], is shown Fig. 5.13 (a), which has an outline

forming a quadratic curve on a logarithmic axis. It gets shaped by the 2-D integer nesting,

as in Fig. 5.13 (b), which is given by the nested numbers. We can see that the outline of
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Fig. 5.14. Example of calculating the number for a given p(= 3)-D lattice point (a, b, c)

in case of a < b < c.

the bars for the values given from the integer pairs (X1, X2) of |X1 −X2| ≤ 1 highlighted

in red and yellow, which have dominant probability in Eq. (5.59), forms an almost straight

line such as the one for Laplacian distributions does.

Case of p-D inputs

The proposed integer nesting can naturally be generalized for arbitrary natural number p

by an iterative algorithm extended from the counting method in Fig. 5.12. An example is

shown in Fig. 5.14, which interprets the generalization of the triangle and line in Fig. 5.12

as a hyper trigonal pyramid and hyper regular triangle. First, we count all the lattice

points having lower ℓ1 norms, which form a p-D hyper pyramid. Let us define the number

of lattice points included in the hyper pyramid, including ones on the sides, as HPp(S),

where S is the ℓ1 norm of the input. It is identical to the number of possible integer

combinations (X1, X2, · · · , Xp) satisfying

p∑
i=1

Xi < S s.t. Xi ≥ 0 (i = 1, 2, · · · , p), (5.61)

which is written using the combination function C(n, k) = n!/(n− k)!/k! as

HPp(S) = C(S + p− 1, p). (5.62)
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Then, focusing on the (p−1)-D hyper triangle, shown in the right-hand side of Fig. 5.14,

formed by the lattice points having the same ℓ1 norm, the ones included in the inner hyper

triangle are counted. The inner hyper triangle, in this case where a is the minimum in

the elements, is surrounded by a hyper triangle composed of vertices (b + c − a, a, a),

(a, b + c − a, a), and (a, a, b + c − a), and thus the number of included lattice points

is identical that included in a hyper triangle composed of vertices (b − a + c − a, 0, 0),

(0, b−a+ c−a, 0), and (0, 0, b−a+ c−a), excluding the sides. By defining HTp−1(S
′) as

the amount of lattice points included in a (p − 1)-D hyper triangle composed of vertices

(S′, 0, 0, · · · , 0), (0, S′, 0, · · · , 0), · · · , (0, 0, · · · , 0, S′) excluding the sides, it can be counted

as the number of possible integer combinations (X1, X2, · · · , Xp) satisfying

p∑
i=1

Xi = S′ s.t. Xi > 0 (i = 1, 2, · · · , p) (5.63)

and written as

HTp−1(S
′) = C(S′ − 1, p− 1). (5.64)

Therefore, the lattice points included in the inner hyper triangle amount to HTp−1(b −

a+ c− a).

Since the inner hyper triangle has P (p, 1) sides, where P (n, k) = n!/(n − k)! is the

permutation function, there neighbor P (p, 1) of (p − 2)-D hyper triangles. The lattice

points included in their inner hyper triangles are counted similarly, neglecting the smallest-

valued element used in the previous iteration. After iteratively counting the ones in (p−1)-

D to 1-D inner hyper triangles, the p! permutations of the inputs, in the case where all

the elements of the input have different values, are numbered to distinguish them from

one another. Whenever there is more than one element taking the minimum value, the

dimension of the hyper triangles and the permutations will degenerate.

The above method is summarized as a pseudo-code in Algorithm 5. To make it hold

for every case, C(n, k) and P (n, k) are both defined to output 1 when k = 0 and 0 when

n < k or when n or k is negative. For the same reason explained above, the pth powers

of the inputs roughly show dominant effects on the outputs of p-D integer nesting, and

thus the nesting is expected to shape the GGDs of shape parameter α = p into Laplacian

distributions approximately in the sense of the expected code length.
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Algorithm 5 p-D integer nesting integers (X1, X2, . . . , Xp) into a integer Y

Set X as the copy of the input.

Set I as a number of unique values in X.

Set Li = 0 and Mi = 0 for i = 1, 2, . . . , p.

Set n = 0, i = 0, Xmin = −1, and M̄ = 1.

Set S as the sum of the input.

Set Y = C(S + p− 1, p).

while n < p do

Find the minimum in the input and replace Xmin with it. If there are more than one, choose the

leftmost.

Increment Y by

P (p, n)C(S −Xmin(p− n)− 1, p− n− 1)/M̄ .

if Xmin is equal to the previous one then

Increment Mi by 1.

Multiply M̄ by Mi.

else

Increment i by 1.

Set Mi = 1 and Li = Xmin.

end if

Decrement S by Xmin.

Delete the chosen minimum from X.

Increment n by 1.

end while

Set H = 0, i = 0, and N = p.

while i < I do

Increment i by 1.

Set n = 0 and m = Mi.

while n < N do

Increment n by 1.

if n-th element in the input is equal to Li then

Increment H by C(N − n,m).

Decrement m by 1.

end if

end while

Delete all Li from the input.

Decrement N by Mi.

Multiply H by C(N,Mi+1).

end while

Increment Y by H and output Y .
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(a) Histogram of GGD of shape parameter

α = 1/2.

(b) Histogram of integers given by splitting

integers belonging to GGD of shape parame-

ter α = 1/2.

Fig. 5.15. Changes in histogram of GGD of shape parameter α = 1/2 by 2-D integer

splitting. Blue dotted lines show the outlines of the histograms.

Fig. 5.16. Comparisons between the conventional GR encoding and GR encoding with

the proposed shape control. The Rice parameters are set to the optimum value

for each case.

5.3.3 Integer splitting

Case of 2-D outputs

The proposed integer nesting, as we can naturally understand from its concept, always
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Algorithm 6 q-D integer splitting integer Y into integers (X1, X2, . . . , Xq)

Set S = 0, i = 0, n = 0, Xmin = −1, and M̄ = 1.

Set Li = 0 and Mi = 0 for i = 1, 2, . . . , q.

Find the largest S satisfying Y ≥ C(S + q − 1, q).

Decrement Y by C(S + q − 1, q).

while n < q do

Find the smallest Xmin satisfying

Y ≥ P (q, n)C(S −Xmin(q − n)− 1, q − n− 1)/M̄ .

Decrement Y by

P (q, n)C(S −Xmin(q − n)− 1, q − n− 1)/M̄ .

if Xmin is equal to the previous one then

Increment Mi by 1.

Multiply M̄ by Mi.

else

Increment i by 1.

Set Mi = 1 and Li = Xmin.

end if

Decrement S by Xmin.

Increment n by 1.

end while

Set H = Y , and N = 0.

Set X as an empty set.

while i > 0 do

Set n = 0 and m = Mi.

Increment N by Mi.

Set X as a set of N elements (X1, X2, . . . , XN ).

Get the quotient and remainder h of H divided by C(N,Mi).

Replace H with the quotient.

while n < N do

Increment n by 1.

if h ≥ C(N − n,m) then

Set Xn = Li.

Decrement h by C(N − n,m).

Decrement m by 1.

end if

end while

Replace the elements of X where Li was not set with the previous X in the same order.

Decrement i by 1.

end while

Output X as (X1, X2, . . . , Xq).
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has an inverse mapping uniquely giving a group of integers from a single integer, which

we here present as integer splitting, Let us show an example of 2-D integer splitting, i.e.,

an inverse mapping of 2-D integer nesting mentioned in the previous section. The clue is

that the input integer Y given by 2-D integer nesting (X1, X2) as in Eq. (5.56) satisfies

the following inequalities in accordance with the sum of the nested integers S = X1+X2:

1

2
S2 <

1

2
S(S + 1) ≤Y <

1

2
(S + 1)(S + 2) <

1

2
(S + 2)2

⇐⇒ ⌊
√
2Y ⌋ − 1 ≤S≤ ⌊

√
2Y ⌋. (5.65)

Therefore, S is determined as

S = ⌊
√
2Y ⌋ − f

(
Y <

1

2
⌊
√
2Y ⌋

(
⌊
√
2Y ⌋+ 1

))
. (5.66)

This corresponds to finding the maximum triangle in Fig. 5.12 that does not cover

(X1, X2). Also, Eq. (5.56) can be rewritten as

|X1 −X2| − f(X1 > X2) = Y − 1

2
S(S + 1). (5.67)

The sum of X1 +X2 and |X1 −X2| will always be an even number 2max(X1, X2), which

will lead to the 2-D integer splitting:

if Y − S(S − 1)/2 is even X1 = (S(S + 3)/2− Y )/2

X2 = (Y − S(S − 1)/2)/2

(5.68)

otherwise X1 = (Y + 1− S(S − 1)/2)/2

X2 = (S(S + 3)/2− Y − 1)/2

using S in Eq. (6.3).

As integer nesting, the proposed integer splitting can also shape the input distributions.

This time, think of integers belonging to GGDs of shape parameter α = 1/q with a natural

number q and splitting them into q integers each by q-D integer splitting. The splitting

shapes the GGDs approximately into Laplacian distributions so that efficient compression

can be achieved by GR encoding the split integers.

This fact can be easily understood by the expected code length when using 2-D integer

splitting. Given an integer Y split into X1 and X2, their code length in GR code of Rice
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parameter r = 0 depends on S related to Y as in Eq. (6.3) and will be

LGR
1/2[Y ] = (X1 + 1) + (X2 + 1) = S + 2

= ⌊
√
2Y ⌋ − f

(
Y <

1

2
⌊
√
2Y ⌋

(
⌊
√
2Y ⌋+ 1

))
+2. (5.69)

This code length is very close to the ideal one for the GGD p1/2[Y |0.5], i.e., L1/2[Y |0.5]

in Eq. (5.55) with α = 1/2. In fact, the expected code length in this case is

EY

[
LGR
1/2[Y ]

]
≃

∞∑
Y=0

(√
2Y + const.

)
p1/2[Y |0.5] (5.70)

with const. a little larger than 1, due to
√
2Y − 1 < ⌊

√
2Y ⌋ ≤

√
2Y and 0 ≤ f(·) ≤ 1,

while the theoretical limit is

EY

[
L1/2[Y |0.5]

]
=

∞∑
Y=0

(√
2Y + 1.4589 · · ·

)
p1/2[Y |0.5]. (5.71)

Fig. 5.15 shows an example of histograms. One of GGDs, p1/2[X|0.5], is shown Fig. 5.15

(a), which has an outline forming an inverse quadratic curve in a logarithmic axis. It gets

shaped by the 2-D integer splitting, as in Fig. 5.15 (b), which is given by the split numbers.

We can see that the outline forms an almost straight line, such as the one for Laplacian

distributions does, which is much more precise than in the case of the integer nesting

shown in the previous section.

Case of q-dimensional outputs

As the integer nesting, the algorithm of the splitting can be generalized to q-D integer

splitting. It consists of iteratively finding the largest hyper pyramid and inner hyper trian-

gles that do not cover the output lattice point, as in Fig. 5.14. These processes determine

the values in the outputs in ascending order, and the number for permutations is given

after subtracting from the input integer the number of lattice points in the determined

hyper pyramid and inner hyper triangles.

The procedure is summarized in Algorithm 6. Although the complexity becomes higher

for larger q, finding the largest hyper pyramid, i.e., finding the largest S satisfying Y ≥

C(S+q−1, q) in the algorithm can be solved easily, by using the inequality corresponding

to Eq. (5.65):

⌊ q
√

q!Y ⌋ − (q − 1) ≤ S ≤ ⌊ q
√

q!Y ⌋. (5.72)
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For the same reason explained above, q-D integer nesting is expected to shape the GGDs

of shape parameter α = 1/q into Laplacian distributions approximately in the sense of

the expected code length.

5.3.4 Proposed shape control method

Summarizing the above discussion, for natural integers p and q, p-D integer nesting and

q-D integer splitting integers enable us to approximately shape their distributions into

Laplacian ones from the GGDs of shape parameters α = p and 1/q, respectively. From

these facts, we can expect to combine the nesting and splitting to deal with integers

belonging to GGDs with shape parameters represented as α = p/q, an arbitrary rational

number, although it is a heuristic and non-trivial matter.

In the conventional GR encoding, the input integers are divided by 2r using Rice pa-

rameter r, and the quotient and remainder are respectively represented as a unary prefix

and an r-bit suffix. This separation can be interpreted as a control of the scale of the input

distributions: The input integers are scaled by the division to be efficiently compressed

by the unary code. In other words, their distribution, for example Laplacian distribution

p1[X|2r], changes to p1[X|1]. From this perspective, the proposed integer nesting and

splitting are the same kind of shaping operations as the division in the conventional GR

encoding except that they change the shape instead of the scale.

An example of the proposed shape control in the GR encoding is shown in Fig. 5.16.

The proposed encoding strategy performs the division by 2r after integer nesting and

performs integer splitting to the quotient, followed by the unary encoding. The remainder

is represented by a r-bit suffix as in the conventional encoding. Practically, it is preferable

to use the division between the nesting and splitting because we can use more precise Rice

parameters. In the example, the proposed encoding can compress input (9, 4, 5) into a

total of 12 bits, while the conventional one cannot make it shorter than 13 bits of r = 2.

Given p and q, the Rice parameter to use can be estimated from the input integer

sequence. Thinking of N integer-nested input integers {Yk}N−1
k=0 , the length of the output

code using Rice parameter r can be approximated in accordance with Eq. (5.72) as

N−1∑
k=0

(
q

√
q!
Yk

2r
+ r + 1

)
, (5.73)
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Table 5.1. Numerically-calculated entropy, expected length of the proposed code, ex-

pected length of Huffman codes for the same input dimension, and the upper

limit of expected code length generally guaranteed by Huffman coding scheme,

respectively for input distribution pα[X|ϕ] in Eq. (5.54)

Shape parameter α of input 1/3 1/2 3/5 2/3 3/4 1

Scale ϕ of input 0.303 0.707 0.849 0.909 0.957 1.000

p for the proposed code
(= Input dimension as a FV code) 1 1 3 2 3 1

q for the proposed code 3 2 5 3 4 1

Entropy (bit/sample) 6.414 4.161 3.425 3.062 2.703 2.000

Huffman code for X p

(bit/sample) 6.446 4.187 3.435 3.076 2.712 2.000

Proposed code (bit/sample) 6.495 4.198 3.514 3.115 2.744 2.000

General upper limit
of Huffman coding scheme (bit/sample) 7.414 5.161 3.759 3.562 3.037 3.000

4/3 3/2 5/3 2 3

0.972 0.950 0.928 0.886 0.797

4 3 5 2 3

3 2 3 1 1

1.489 1.323 1.192 1.001 0.728

1.493 1.335 1.200 1.026 0.737

1.500 1.343 1.215 1.027 0.784

1.739 1.656 1.392 1.501 1.062

which is minimized by the stationary point of r:

r = q log2

(
ln 2

qN

N−1∑
k=0

q
√

q!Yk

)
, (5.74)

depending on the l1/q-norm of the nested integers.

5.3.5 Numerical calculation of theoretical expected code length

Actually, it is difficult to analyze theoretically the effects of the proposed shape con-

trol method on GR encoding, nevertheless we can calculate its theoretical expected code
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length. To compare the theoretical performance of the codes, we numerically calculated

the expected length of the proposed codes with r = 0 and Huffman codes using the same

input dimensions. Say the mapping by the combination of p-D integer nesting and q-D

integer splitting is represented as (X1, X2, · · · , Xp) → (Y1, Y2, · · · , Yq) the expected length

of the proposed code with r = 0 for GGD pα[X|ϕ] is given as

∑
X1,X2,··· ,Xp

1
p

q∑
i=1

(Yi + 1)

p∏
j=1

pα[Xj |ϕ]

 . (5.75)

We truncated the GGDs at sufficiently large (X1, X2, · · · , Xp) of which corresponding term

in Eq. (5.75) became lower than 10−10 to get the expected code length. The truncated

distributions were also used for calculating the counterpart of Huffman codes for p-D

integers, which corresponds to the theoretical limit of FV codes.

The numerical results for the expected code length are given in Table 5.1. It should

be noted that the theoretical performance of the arithmetic coder matches the entropy

because it can be regarded as optimal FV codes for large enough input dimensions. The

shape parameters of the GGDs were set as α = p/q to match with the integer nesting and

splitting dimensions. Since the scale ϕ, as we can see in the rough approximation in the

integer splitting mentioned in the previous section, gets shifted by the proposed shape

control, which makes the proposed code with r = 0 optimal for GGDs with its scale ϕ

shifted from ϕ = 1. Our preliminary test and some trials and errors revealed that the

shift in scale ϕ actually slightly occurs also by the integer nesting and that the following

heuristic formula gives us precise estimate: The integers X belonging to GGDs pα[X|ϕ]

with α = p/q are approximately mapped by p-D integer nesting and q-D integer splitting

to integers Y such as

Y ∼ p1
[
Y |ϕ/Γ(1 + α−1)α−1

]
(5.76)

and thus we set ϕ for the numerical calculation using the gamma function Γ(1 + N), a

generalization of N !, as

ϕ = Γ(1 + α−1)α−1. (5.77)

This was motivated by the fact that the value for shifting the scale ϕ is exactly 1 when

α = 1, and is around 1 and q! respectively when α = p and α = 1/q, according to the

discussions in the previous sections. Despite many heuristics and rough approximation,

the expected code lengths shown in Table 5.1 are very close to one of Huffman codes
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Fig. 5.17. Relative redundancy of the proposed codes, using each p and q for integer

nesting and splitting, for random number sequences belonging to GGDs of

respective shape parameter α with scale ϕ = 1.

compared to the range generally guaranteed by the Huffman coding scheme, i.e., from the

entropy H to H + 1/p. It can be said that the proposed code can theoretically achieve

almost optimal expected code length as an FV code, at least under the demonstrated

conditions.

It should be noted that we can estimate the scales of the nested or split integers and

their optimal Rice parameter r as in Eq. (5.74) from the input integers. Therefore, the

shift in the scales mentioned above will not be a problem in practice.

5.3.6 Simulation by random numbers

First, we focused on the code length for simulated random numbers of GR code combined

with the proposed shape control with fixed parameters p and q. For each GGD pα[X|1] of

α = 0.5, 0.7, 1.0, 1.5, and 2.0, N = 106+80 inputs of stationary memoryless non-negative

random integer X were generated by the inversion method [91], shaped by p-D integer

nesting and q-D integer splitting with (p, q) = (1, 2), (3, 5), (2, 3), (3, 4), (1, 1), (4, 3),

(3, 2), (5, 3), and (2, 1), and GR-encoded, where 1-D integer nesting/splitting do nothing.

The sample number N was set to be dividable by 2,3,4, and 5. Fig. 5.17 compares the

results for each distribution with p/q on the horizontal axis. The relative redundancy

is defined here as the relative difference between the average code length and empirical
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(a) Average total time for encoding and de-

coding normalized by the entropy of each in-

put sequence.

(b) Average code length.

(c) Average relative redundancy.

Fig. 5.18. Comparison of trade-offs between compression speed and efficiency. The range

coder was optimized for the empirical distribution of each input sequence.

A machine with a 3.70-GHz Intel (R) Xeon (R) CPU E5-1630 v3, 16.0 GB

memory and 64 bit windows 7 OS was used.

entropy. Note that (p, q) = (1, 1) matches GR code with Rice parameter r = 0, or the

unary code.

The code length for each distribution took a minimum at (p, q) that makes p/q nearest

to shape parameter α. That supports the fact that the proposed shape control can shape

GGDs of shape parameter α = p/q approximately into Laplacian distributions.

Next, to demonstrate the advantage of the proposed coder in computational complexity,

we compared with the range coder [46], the fast implementation of arithmetic coding, and

the unary coder. Computational complexity highly depends on the hardware to be used,
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and there are some standards for its evaluation, such as million instructions per second

(MIPS), floating-point operations per second (FLOPS), and weighted million operations

per second (WMOPS). However, analyzing those metrics for the coders requires to rewrite

the source code and optimize it based on their specific basic operations. Therefore, for

simplicity, we here estimated the complexity by the execution time of the coders using an

Intel central processing unit (CPU) with the coders complied by the C-source compiler

in Microsoft Visual Studio 2017. Since audio coders are recently used in such kind of

conditions in many cases, we expect the execution time gives us a reasonable estimate of

computational complexity in a practical sense.

For p-D integer nesting and q-D integer splitting, (p, q) = (1, 3), (1, 2), (3, 5), (2, 3),

(3, 4), (1, 1), (4, 3), (3, 2), (5, 3), (2, 1), and (3, 1) were used, and N = 106+80 inputs each

were generated from GGDs pα[X|ϕ] with α = p/q and Eq. (5.77) for the corresponding

conditions. The range coder used the empirical distribution gained from the inputs.

Fig. 5.18 describes their trade-offs between the coding time and compression efficiency.

We took an average of encoding and decoding time over 100 trials and divided by N and

the entropy to get the coding time. While the range coder showed very high compression

efficiency because it was a VV code, the proposed coder performed faster in every case,

especially when using smaller p and q. For example, the proposed coder showed about

six times faster than the range coder for Gaussian-distributed integers, maintaining the

increase in relative redundancy around 2.6%, which was much lower than that of the

unary coder. Although the coding time in absolute has less meaning because it depends on

hardware and compilers, its relative value gives us some reasonable estimate of complexity

compared with other conditions based on the same hardware and compiler. Compared to

the unary coder, the compression efficiency of the proposed code was much higher where

the coding time was almost comparable at (p, q) = (1, 2) and (2, 1).

We also compared the relative redundancy with that of other codes—run-length

GR (RLGR) code proposed in [84], Huffman codes, and the exp-Golomb code—using

GGDs pα[X|ϕ] of α = 1/2, 2/3, 3/4, 4/3, 3/2, and 2/1 in a wider range of scales

ϕ = 1.00, 1.01, 1.02, · · · , 4.00, for the same length of input sequences. RLGR code is the

conventional method aimed at its use in compressing integers belonging to GGDs and

includes the conventional GR code as its particular case. This time, for the proposed

code, parameters (p, q) were given to match each shape parameter α and the Rice
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parameter was estimated using Eq. (5.74) for each ϕ.

Fig. 5.19 shows the comparison results. The coding parameters for RLGR code and

exp-Golomb code were searched exhaustively for each distribution. For Huffman codes,

we took a histogram of the existing integers X in the input integer sequence for each

distribution and made codebooks optimized for the histograms of the Cartesian products

X 2 of the integers. It can be seen from the curve that the proposed code outperformed the

conventional exp-Golomb and RLGR codes. Additionally, this result also proves its higher

performance than that of the conventional GR code because the RLGR code includes the

conventional GR code representing by one of the coding parameters.

5.4 Conclusion of Chapter 5

This chapter presented two shaping methods related to the code modeling of speech and

audio signals. Both of them shape the distributions to which the inputs belong into the

ones optimally encoded by low-complexity structured codes, Golomb and Rice codes.

Bit inverting shapes the scale of the input distribution, realizing XDGR and XDG

codes, which are optimal for integers belonging to sparse Laplacian distributions and

have simple algorithms derived from the idea of AIFV codes. Shape control by integer

nesting and splitting can approximately change generalized Gaussian distributions into

Laplacian, which enables us to efficiently compress a wide range of sources belonging to

distributions of the exponential family. Both methods were investigated in theory and in

simulations that showed promising characteristics.

These proposed methods, in combination, are expected to fully make use of the assump-

tions of the speech and audio defined by the signal modeling even under conditions of low

computational costs, which will be evaluated in the later chapter.
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(a) p = 1, q = 2 (b) p = 2, q = 3

(c) p = 3, q = 4 (d) p = 4, q = 3

(e) p = 3, q = 2 (f) p = 2, q = 1

Fig. 5.19. Relative redundancy of each code. Red solid, purple long-dashed short-dashed,

black dotted, blue dashed, and green crossed lines, respectively indicate the

proposed code using each p and q for integer nesting and splitting, Huffman

code, RLGR code, and exp-Golomb code.
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Chapter 6

Application for low-delay and

low-bit-rate mobile communication

6.1 Introduction of this chapter

The following chapters discuss the applications realized by the proposed shaping methods.

Although each of the applications differs in the implementations, their fundamental struc-

tures are the same, which explained in Chap. 2 introducing the three types of modeling.

In this chapter, we show an application on mobile communication, one of the greatest

demands for speech-and-audio communication.

In mobile communications, the limitations of the radio resources and the computa-

tion resources of mobile phones require their codecs to operate at low bit rates with low

computational costs. Although the networks are becoming broadband these days, speech

communications, the communications that must not be interrupted, should be under the

priority control, which still requires a low traffic volume. Also, the mutual communica-

tions demand low delay, low enough delay not to disturb the conversation. For the reasons

above, the codecs for mobile communications have to find an exquisite trade-off of low bit

rate, low delay, and low computational complexity while remaining high sound quality.

To achieve speech communications with high quality dealing with the trade-offs, codecs

such as ITU-T G.729 [17] and 3GPP AMR [2,3] have overcome the difficulties by strongly

assuming that the inputs are speech signals: They operate only on a narrow frequency

band, utilizing statistical properties of speech and efficiently represent the spectral en-
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velopes of voiced signals by LP. Consequently, the quality of the coding particularly in-

creases when the input is a speech signal, and these codecs have made significant contri-

butions to the prosperity of the speech communications. However, specializing in speech

conversely leads to the weakness against the other signals, especially against signals having

far different bandwidth and statistics from speech, and these kinds of signals significantly

degrade the quality of the codecs. Realize communication with higher quality, establishing

more comfortable conversations with higher presence requires codecs to deal with broader

frequency bands and also with audio signals, music, for example, as well as the speech

signals.

These days, as in 3GPP AMR-WB+ and MPEG-D USAC [18–21], a coding paradigm

has been developed for coding signals including both speech and the other audio. These

codecs switch their modes depending on the characteristics of the input signals. In most

cases, speech signals are coded in the time domain, with the assumptions stated above.

The other audio signals, especially signals with a variety of sounds, are coded in the

frequency domain because it is easier to apply perception modeling, such as the model

of masking effects. Although this paradigm succeeds in making up for the shortcomings

of the time-domain coding, the frequency-domain coding needs relatively longer delay

because of the need for buffering inputs in order to take sufficient frequency resolution

for showing its merits of energy concentration and the perception modeling. For the sake

of this fact, AMR-WB+ and USAC both permit more than 100 ms of delay only for

their algorithms, while 100 ms is a detectable delay in conversations [25]. Therefore, to

utilize the paradigm of unified speech and audio coding for mobile communications, it is

necessary for the frequency-domain coding to represent the inputs efficiently in lower-delay

conditions.

Recently, a promising frequency-domain coding scheme called transform coded exci-

tation (TCX) has been invented [32], which is adopted into USAC. This coding scheme

represents the input signals in the form of MDCT coefficients and applies a simple percep-

tual model that can be easily extended to low-delay conditions. Therefore, in this chapter,

we consider designing a TCX-based frequency-domain codec that shows high quality at

low-bit-rate and low-delay conditions, expecting to combine with the time-domain codecs.

We first describe the basic structure of the TCX based on the conventional scheme and

then discuss enhancing it, focusing respectively on signal and code modeling, which are
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(a) Encoder

(b) Decoder

Fig. 6.1. Breif flowchart of the baseline TCX.

the main factors related to its compression efficiency.

6.2 Structure of the baseline coding scheme

The TCX, the recently-proposed frequency-domain coding scheme based on MDCT, pro-

vides us with a simple perceptual model that can be easily realized by scalar quantization

and entropy coding. To design a low-delay frequency-domain codec, we first implemented

from scratch a baseline codec by extracting the essence of the TCX. After this, unless

otherwise noted, we refer this TCX-based codec to TCX.

Figs. 1(a) (a) and (b) show the flowchart of the encoder and the decoder, respectively.

First, the encoder transforms the 2N -length input signal {xn}2N−1
n=0 into frequency spectra

{Xk}N−1
k=0 by MDCT after windowing. Then, the encoder extracts their envelope {Hk}N−1

k=0

using LP from the spectra as explained in Chap. 2. The order of the LP is set to 16, as

is usually done in similar conditions. The coefficients are coded in 20 bits using the

vector quantization similar to [96] in the form of LSP. After the extraction, the encoder

scalar quantizes the target spectra with the quantization noise perceptually controlled by

multiplying perceptual weights {Pk}N−1
k=0 derived from the smoothed envelope {H̃k}N−1

k=0

in Eq. (2.9). The quantized spectra are entropy coded by GR code applying a different

Rice parameter for each frequency k in accordance with the value of the envelope of the
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weighted spectrum PkHk as

Rk = max([log2((ln 2)σPkHk/s)], 0)

= max([log2(PkHk) + log2((ln 2)σ/s)], 0)

≡ max([log2(PkHk) + R̄], 0). (6.1)

where σ is a prediction gain, and s indicates the quantization step. σPkHk/s in the

equation indicates the envelope of the quantized spectra. On the other hand, R̄ represents

a base value of the Rice parameters in the frame and can be assumed to be a constant

value that depends on the bit rate because the step size is decided to satisfy the given bit

rate and the gain σ, which approximately indicates the standard deviation of the spectra,

is related to the entropy of the target. Allocating the Rice parameters as in Eq. (6.1)

results in fewer bits required for GR coding, as long as the envelope represents the values

of the spectra with sufficient accuracy, compared with the case of using the same Rice

parameter for all the frequencies.

Additionally, to enhance the performance of the entropy coding, the encoder codes the

runs of zeros in the variable-length part of the code, i.e., the runs of zero-valued quotients

of the target values divided by 2Rk . This run-length code contains a fixed-length part

and a variable-length part as GR code, and the information about how many bits to use

for the fixed-length part is sent by a few bits at each frame. The step size of the scalar

quantization, quantized in decibels, is found by a bisection search so that the result of the

entropy coding meets the given bit rate.

The codec uses a window function shown in Fig. 6.2, which is based on a half-sine

window and simply modified for its use in the low delay condition:

wk =



0 (if 0 ≤ k < L)

sin
(

π(k−L+0.5)
2M

)
(if L ≤ k < M + L)

1 (if M + L ≤ k < N + L)

sin
(

π(k−3L+0.5)
2M

)
(if N + L ≤ k < 2N − L)

0 (if 2N − L ≤ k < 2N)

(6.2)

where N = 320, for the frame length, M = 192, for the lookahead, and L = (N −M)/2.

Thus, with 20-ms overlapping, the encoder buffers 20 ms for each frame with 12 ms of

lookahead, totally making 32 ms of algorithmic delay. This delay is much shorter compared



6.2 Structure of the baseline coding scheme 101

Fig. 6.2. Window function used in the codecs with half overlap. 640 samples at 16-kHz

sampling rate.

to AMR-WB+, which takes the frame size of 128 ms with 16 ms of lookahead, totally

permitting 144 ms of algorithmic delay [97].

Summarizing the above, this TCX is implemented by

� LP for the signal modeling

� smoothed envelope for the perception modeling

� scalar quantization and GR code for the code modeling

where the signal and code modelings are the main focus of this chapter for employing the

proposed shaping methods.

In the following sections, the objective and subjective evaluations of the TCX with

the proposed shaping methods are discussed, aiming at monaural signals at around 16-

64 kbps at a 16-kHz sampling rate, which is the favored target for this use case. As

mentioned in the previous section, we are expecting the codec to be used in a hybrid codec

of time-domain and frequency-domain coding. Therefore, the evaluations of the quality

were conducted for musical signals, for which the frequency-domain codec is typically

responsible.
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6.3 Enhancement in signal modeling

6.3.1 Evaluation of frequency warping

Integration into baseline codec

To integrate into the baseline TCX the frequency warping method presented in Chap. 3,

which warps the frequency resolution of LP-based envelopes, we have only to insert ma-

trix operations in the envelope estimation and the perceptual weighting. The modified

envelope estimation works by applying the frequency-warping and inverse-warping ma-

trix W and U , optimized in advance by Eqs. (3.14) and (3.15), respectively to the power

spectra before estimating their envelopes and to the envelopes given as the conventional

LP. As also mentioned in Chap. 3, the smoothed envelopes for the perceptual weighting

are calculated from Eq. (2.9) followed by applying the inverse-warping matrix U with LP

coefficients transformed in the LSP domain by the conversion matrix in Eq. (3.19).

For the W and U used in the codec, their initial values W (0) and U (0) are respectively

given from N ×N matrices of squared sinc interpolation:

Smn = sinc2(f(m)− n) (6.3)

Tmn = sinc2(g(m)− n) (6.4)

with the sinc function sinc(x) = sin(πx)/(πx), the mapping function f(k′) in Eq. (3.3)

and its inverse function:

g(k) =
N

ln(fs/(2f0) + 1)
ln

(
fs

2f0N
k + 1

)
, (6.5)

which maps from the index k (0 ≤ k ≤ N − 1) of the frequency sampled uniformly on the

linear frequency scale to the corresponding index on the Mel-frequency scale. Note that

g(0) = 0, g(N) = N . Zero values are substituted for the elements in {Smn} and {Tmn}

except in the column with the maximum value of each row and the columns around it,

resulting in sparse matrices having at most seven non-zero elements in each row. These

sparse matrices become the initial values W (0) and U (0), resulting in the warping and the

inverse warping matrices that cost only 7N operations of multiplication each to operate.
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(a) Average calculation time per frame required to estimate parameters

and calculate envelopes by each method. The difference of WMOPS [98]

from the 16th-order LP was estimated on the basis of the computational

time of warping-matrix operations.

(b) Average improvement from the conventional 16th-order LP in Itakura–

Saito divergence of the envelopes extracted by each method.

Fig. 6.3. Comparison of the envelope models based on calculation time and accuracy.

Performance in calculation and accuracy

Before we go to the codec performance, let us focus on the effects of the proposed shaping

method itself. We evaluated the proposed resolution-warped model of spectral envelopes

at the 16th order based on its computational costs and the accuracy of the represented
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envelopes. The compared methods were the conventional LP, the higher order of the

LP, the proposed LP, which was explained in the previous section, with optimized sparse

matrices for warping, the proposed LP with sinc interpolation, which respectively used

non-optimized full matrices in Eq. (6.3) and Eq. (6.4) for warping and inverse warping,

and the Mel-LPC method in [52].

First, we measured the calculation times to estimate the parameters for each model

from the power spectra of test data and calculate the envelopes. For a fair comparison,

we used for each method C program files in the speech signal processing toolkit (SPTK)

ver. 3.6 [99]. The proposed LP was implemented by just adding the matrix operations in

the conventional LP. Since the programs in SPTK work only for the frame length with

the power of two, the computational times were calculated for 256 samples per frame at a

16-kHz sampling rate, although the TCX processes the target signals at 320 samples per

frame. We tested 31,301 frames, each containing 256 samples of audio signals at a 16-kHz

sampling rate, and used a machine with a 2.40-GHz Intel (R) Core (TM) i7-3630QM CPU,

16.0 GB memory and 64 bit windows 7 OS.

The results are shown in Fig. 3(a). The value written for each bar is the additional

time spent from the 16th-order conventional LP. Sparsely designed matrices lowered the

computational cost for the warping to the level of minor complexity compared with the

other methods.

Secondly, with the same test data, the accuracy of the envelopes extracted by each

method was measured. We evaluated it by the IS divergence since the envelopes are based

on the IS divergence from the power spectra, as mentioned in the previous section. For

evenly divided frequency bands {Bi}10i=1, we calculated the improvements of the accuracy

from the 16th-order conventional LP defined with IS divergence DIS(x|y) = y/x−ln(y/x)−

1 as

Improvementi ≡
∑
k∈Bi

(
DIS(Ĥ

2
k |Xk)−DIS(H

2
k |Xk)

)
(6.6)

where {Ĥk}, {Hk} and {Xk} are the envelope of 16th-order conventional LP, the envelope

of each method, and the power spectra of the test data.

The average improvements are plotted in Fig. 3(b). The envelopes of the proposed LP

with the optimized matrices, despite their significantly low costs for calculation, showed

almost the same accuracy as the Mel-LPC method, approximately equivalent to the 32nd-
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Fig. 6.4. Bit-per-frame comparison of GR coding with each Rice-parameter decision. The

average bit length at each frame. Frame length was 20 ms at 16-kHz sampling

rate.

order conventional LP in the lower band and the 8th-order counterpart in the higher band.

Meanwhile, the envelopes that used non-optimized full matrices appeared to be degraded

in the higher band, which was caused by the irreversible warping and inverse warping

operations. This result proves that the proposed optimization provided the warping op-

erations with sufficient consistency.

Performance in Golomb–Rice coding

To evaluate the effects of the resolution-warped envelopes on the TCX, we compared

the performance in GR coding. For this comparison, quantized spectra were prepared

by coding the test data mentioned above with the TCX integrated with the frequency

warping at 16 kbps. Then, we coded the quantized spectra with GR code using the

Rice parameters decided by the following methods. The first method is to allocate the

optimal Rice parameter for each frequency, which provides the ideal description length.

The second method is to use the same Rice parameter for every frequency in each frame

that makes the shortest code length. The third is to calculate the Rice parameters by

Eq. (6.1) respectively with the envelopes {Hk} extracted by

1. the 16th-order conventional LP
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Fig. 6.5. Database-wise average PEAQ scores. Error bars indicate the 95% confidence

intervals.

2. the 32th-order conventional LP

3. the 16th-order proposed LP with optimized matrices

without the quantization for the envelopes.

Fig. 6.4 presents the average frame-wise ratio of each bit length to the ideal description

length. The result suggests the validity of changing Rice parameters for each bin following

the envelope. The resolution warping of the envelopes enhances the efficiency even more,

with equivalence to the conventional LP of twice the order. This enhancement occurred

because most of the values of the target spectra had a more dynamic range in the lower

band, which required a more precise allocation of Rice parameters than in the higher

band.

Performance in objective sound quality

Objective quality was measured by the method of the perceptual evaluation of audio

quality (PEAQ) in AFsp [100]. The test data were randomly selected from the four

databases in the RWC Music Database [101]: Ten items each from the Classical Music,

Jazz Music, and Music Genre Databases; twenty items from the Popular Music Database,
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Fig. 6.6. Item-wise scores of AB test, where A is the TCX with warping and B is the TCX

without warping. Average and standard error. Asterisk indicates the existence

of significant difference at 5% in a t-test.

ten without vocals, and ten with vocals. All items contained ten seconds of signals down-

sampled into 16 kHz.

Fig. 6.5 displays the results. Although the shortage of the frame length caused dis-

advantage against AMR-WB+, especially in classical music items, which often contain

stationary signals, the TCX with the frequency warping showed higher performance on

average owing to the enhancement provided by the resolution-warped representation.

Performance in subjective sound quality

The codecs were also evaluated subjectively. Five audio items in the RWC Music

Database, ten seconds each down-sampled into 16 kHz, were used for the evaluations.

The test items were labeled as follows: ”Classic,” for a violin piece from the Classical

Music Database, ”House,” for a guitar piece from the Music Genre Database, ”Jazz,” for

a trumpet piece from the Jazz Music Database, ”Popular,” for a synthesizer piece from

the Popular Music Database, and ”Vocal,” for a female vocal piece from the Popular

Music Database.

Two experiments were conducted with seven participants, all engaged in audio signal

processing research. First, the effects of the resolution warped representation were evalu-

ated by an informal AB test. Participants blindly listened to the items, each coded in 16

kbps by respective TCX with and without the frequency warping. After listening to the



108 Chapter 6 Application for low-delay and low-bit-rate mobile communication

(a)

(b)

Fig. 6.7. Item-wise MUSHRA scores. Average and standard error. (a) Absolute scores.

(b) Relative scores of the TCX compared to AMR-WB+. Asterisk indicates the

existence of significant difference at 5% in a paired t-test.

references, the participant chose the method they preferred by scoring from -2 to 2 points

for each item.

The results in Fig. 6.6 prove the resolution-warped representation of the envelope en-

hances the subjective quality of the codec.
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Secondly, the TCX with the warping was compared with the other codecs by ITU-

R BS.1534-1 Multiple stimuli with hidden reference and anchor (MUSHRA) [102]. The

items were each coded at 16 kbps by the TCX with the warping, AMR-WB+, and AMR-

WB. This time, the participants were blindly provided with these coded items with the

references and 3.5-kHz band-limited anchors, and they graded the quality of each codec

from 0 to 100 points.

The scores are presented in Fig. 6.7. The results for AMR-WB confirm the weakness of

time-domain coding of audio signals other than speech and the need for frequency-domain

coding. As stated in the introduction, AMR-WB+ uses frequency-domain coding in addi-

tion to time-domain coding, which made the quality higher than AMR-WB. Meanwhile,

due to the efficient representation, the TCX with frequency warping showed comparable

performance, although it has much lower delay compared with AMR-WB+.

6.3.2 Evaluation of amplitude warping

Integration into baseline codec

We can easily introduce the amplitude-warping method and the GGD assumptions into the

baseline codec if we modify its entropy coding part to use arithmetic coding. Therefore,

we also implemented arithmetic coding mode for the baseline codec using the range-coder-

based arithmetic coding [46].

The arithmetic coding can allocate real-valued bits by encoding the whole spectra in

the frame at once and is adopted in, for example, JPEG [103] and USAC. Based on the

conventional assumptions as in the case of GR coding, the target of the arithmetic coding

is written as

Yk = PkXk/s, (6.7)

ignoring the rounding operation, and its envelope can be represented by

Ĥk = σPkHk/s =
σPk

s|1 +
∑p

n=1 ane
−jπk

N n|
. (6.8)

The encoder allocates the bit length for each {Yk}N−1
k=0 in accordance with its envelope
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{Ĥk}N−1
k=0 as

bk =


− log2(q̃1(

1
2 | Ĥk)) (if Yk = 0)

− log2(q̃1(|Yk|+ 0.5 | Ĥk)− q̃1(|Yk| − 0.5 | Ĥk)) + 1 (otherwise)

(6.9)

where q̃1(Yk | Ĥk) is a cumulative frequency function of Laplacian defined as

q̃1(Yk | Ĥk) =

∫ Yk

0

2p̃1(x | Ĥk) dx

=

∫ Yk

0

1

Ĥk

exp

(
−
∣∣∣∣ x

Ĥk

∣∣∣∣) dx, (6.10)

a one-sided cumulative distribution function of the Laplacian with its scale depending on

the value of the envelope, and +1 in Eq. (6.9) is for the sign of each MDCT coefficient.

The entropy coding assuming GGD can be implemented in this entropy coding mode.

Thus, we consider here to apply to the above arithmetic coding the proposed amplitude-

warping method combined with this assumption. First, the relationship is shown between

the code length of the arithmetic coding, which assumes the GGD, and the negative

log-likelihood of Eq. (3.31).

If we assume the scale of each frequency k as {ϕkPk/s}N−1
k=0 for the GGD with fixed

weights {Pk}N−1
k=0 and quantization step s, the bit allocation for {Yk(= PkXk/s)}N−1

k=0 of

the arithmetic coding will be

bk =



− log2
(
q̃α
(
1
2

∣∣ ϕkPk/s
))

(if Yk = 0)

− log2
(
q̃α
(
|Yk|+ 1

2

∣∣ ϕkPk/s
)
− q̃α

(
|Yk| − 1

2

∣∣ ϕkPk/s
))

+ 1

(otherwise)

(6.11)

where q̃α(Yk | ϕ) is defined as

q̃α (Yk || ϕ) =
∫ Yk

0

2p̃α (x || ϕ) dx (6.12)

=
1

Γ(1/α)
Γinc

(
1

α
,

∣∣∣∣B(α)Yk

ϕ

∣∣∣∣α)
with B(α) of Eq. (3.29) and the incomplete gamma function:

Γinc(x, y) =

∫ y

0

e−ttx−1dt. (6.13)
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In the case of Yk ̸= 0, using the fact that q̃α(Yk | ϕ) depends only on the ratio for Yk and

ϕ, the bit allocation bk of Eq. (6.11) can be rewritten as

bk = − log2

(
q̃α

(
s|Yk|
Pk

+
s

2Pk

∣∣∣ ϕk

)
− q̃α

(
s|Yk|
Pk

− s

2Pk

∣∣∣ ϕk

))
+ 1

= − log2

(
q̃α

(
|Xk|+

s

2Pk

∣∣∣ ϕk

)
− q̃α

(
|Xk| −

s

2Pk

∣∣∣ ϕk

))
+ 1

(6.14)

and when the quantization is fine enough, or s ≪ 1/Pk, the first-order approximation of

bk for s becomes

bk ≃ − log2

(
s

Pk

∂

∂x
q̃α(x | ϕk)

∣∣∣
x=|Xk|

)
+ 1

= − log2 p̃α(|Xk| | ϕk) + log2 Pk/s, (6.15)

and so as in the case of Yk = 0. This results in the total bit length:

N−1∑
k=0

bk ≃
N−1∑
k=0

[− log2 p̃α(|Xk| | ϕk) + log2 Pk/s]

∝ LLH
α ({Xk} | {ϕk}), (6.16)

which approximately proportionate to the negative log-likelihood presented in Eq. (3.31).

In the end, the minimization of the total bit length comes down, when the quantization is

sufficiently fine, to the minimization of the negative log-likelihood, which can be optimized

by the proposed PAPSE by using Eq. (3.33) for {ϕk}N−1
k=0 . Moreover, for the approximation

of the perceptual weights {Pk}N−1
k=0 , we can use the smoothed version of the envelope in

Eq. (3.36) as

Pk =

∣∣∣∣∣1 +
p∑

n=1

γnane
−jπnk

N

∣∣∣∣∣
2/α

(6.17)

because the envelope in Eq. (3.36) shows the rough shape of the magnitude spectra as

well as the conventional envelope does.

Summarizing the discussion above, the algorithm to encode the frequency spectra goes

as follows:

1. Calculate the model parameters σ2 and {an}pn=1 in Eq. (3.36) by the Levinson–

Durbin algorithm using for {Rn}pn=0 in Eq. (2.5) the inverse cosine transform of

the α-th power of the magnitude spectra {|Xk|}N−1
k=0 as in Eq. (3.35) instead of using

the one of the power (Method of PAPSE).
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2. Approximate the perceptual weights by Eq. (6.17) instead of the ones in Eq. (2.9).

3. Scaler quantize the weighted spectra {PkXk}N−1
k=0 by step size s.

4. Allocate bit length to the quantized spectra by arithmetic coding in accordance with

Eq. (6.11) with Eq. (3.33) for the scale {ϕk}N−1
k=0 instead of allocating in accordance

with Eq. (6.9).

These minor changes from the TCX provide the codec with the globally-optimized com-

pression of the scaler-quantized spectra belonging to the GGD of shape parameter α the

scale of which is constrained by the model of Eq. (3.33). It should be noted that, since

the proposed PAPSE is based on the all-pole model as the conventional LP, the model

parameters {an}pn=1 can be quantized by the conventional quantization algorithms for the

LP coefficients such as in [96], the vector quantization of the coefficients in the form of

LSP.

The model parameters {an}pn=1 defined in Eq. (3.33) and the quantization step s can be

quantized respectively by the method of [96] and by simple logarithmic scaler quantization.

For the other model parameter σ2, we assume here its ratio to the quantization step s to

be a constant depending only on the conditions of the bit rate and the shape parameter α

because it is strongly related to the entropy of the generalized-Gaussian source. In other

words, the σ2 is 0-bit quantized. The decision of this constant is performed by taking the

α-power mean of σ2/α/s given from the training data.

Optimal shape parameter in each acoustic situation

Before we go on to the evaluation of the codec integration, the assumption of the GGD

and the use of the proposed PAPSE should be justified. Therefore, we first compared

the compression efficiency for fixed quantized spectra to see how the distribution of the

frequency spectra varies depending on the acoustic properties of the signal and how the

dependence fluctuates due to the difference in the model of the scales: the uniform-scale

model, which is the assumption in [59,60], the conventional LP model in Eq. (3.39), which

is used in the baseline TCX, and the proposed PAPSE model in Eq. (3.33) presented in the

previous chapter. The fixed spectra were prepared by quantizing the MDCT coefficients

of a test signal using the TCX at 64 kbps and 16 kbps and were compressed by the

arithmetic coding assuming the GGD. The following three methods calculated the scales

for the GGD:
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Fig. 6.8. Spectrogram of the test signal (a), transitions of optimal parameter α (the upper

half of (b) and (c)), and ratios of the saved bits from the conventional setting

(the lower half of (b) and (c)).

� For the uniform-scale model, the scales were given by the zeroth-order of the pro-

posed PAPSE, which means using the maximum-likelihood uniform scales for each

frame;

� for the conventional LP model, the scales were given by Eq. (3.39) with the 16th-
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order LP coefficients for each frame;

� for the proposed PAPSE model, the scales were given by Eq. (3.33) with the model

parameters obtained by the 16th-order of the proposed PAPSE for each frame.

For each case, without quantizing the model parameters, we compressed the fixed spectra

by using for the shape parameter α of the GGD from α = 0.1 to α = 3 in increments of

0.1 and found the α for each consecutive ten frames that makes the minimum description

length in bits. Note that dealing with each consecutive ten frames was intended just for

avoiding meaningless outliers. In all the three cases, to fairly compare the effects of the

models, we also fixed the perceptual weights {Pk}N−1
k=0 defined in Eq. (6.7) to the one

used to quantize the fixed spectra. The test signal, the spectrogram of which is shown in

Fig. 6.8 (a), was composed of, in order to see different acoustic cases, four seconds each of

a popular music (synthesizer), a classical music (violin), a jazz music (trumpet), a male

speech (clean), and the same male speech with pink noise (signal-to-noise ratio was 10

dB). We used the musical signals in the RWC music database [101] and the speech signals

in the ATR speech database [104] all down-sampled into a 16-kHz sampling rate.

The results are described in Fig. 6.8 (b) and (c). The upper halves of the figures show

the transition of the optimal shape parameters α for each consecutive ten frames in each

case, and the lower halves show the ratio of the saved bits compared with the arithmetic

coding assuming the Laplacian with its scales modeled by the conventional LP, or the

conventional setting. Although the result of the optimal α for the uniform-scale model

agreed with the ones of the previous studies in [59, 60], it is obvious that the optimal α

reflected the acoustic properties much more when assuming non-uniform scales for the

GGDs: higher values of α for noisy or temporal sounds and lower values for clean or tonal

sounds. In the sense of compression efficiency, there were some situations that the tuning

of α makes an improvement from the conventional setting even if the scales were assumed

to be uniform, but this uniform assumption failed in the other situations and worsened

the efficiency. Besides, comparing the conventional and proposed PAPSE models, the

difference in the transition of the optimal α was affected by the bit rate more in the

case of the conventional LP model. Furthermore, in the case of the proposed PAPSE

model, the compression efficiency was much improved, especially in tonal sounds, while

the improvement was much smaller in the case of the conventional LP model despite the
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(a) (b)

Fig. 6.9. Histogram of the optimal shape parameter α (a), transitions of average bit

length by changing α from the optimal one (b). Total 24720 frames of MDCT

coefficients were tested.

(a) (b)

Fig. 6.10. Ranges of α that makes the bit length increase less then 3 % from the optimal

length (a), and average bit length when using the same α for all the data (b).

100% in (b) was given by the average bit length when using the optimal α for

each consecutive ten frames. Total 24720 frames of MDCT coefficients were

tested.

tuning of α.
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Effects of shape parameter on compression efficiency

From now on, we focus on the musical signals because the TCX is mainly expected to deal

with these kinds of input, on which it is hard, in most cases, for the time-domain codec

to exert its advantages. The second experiment was aimed at discussing the following

factors:

� Which shape parameter α the optimal α tends to be;

� how much bits the coding consumes when the α used in the coding is not the optimal

one;

� how the optimal α ranges when we permit to some extent the increase in the bit

length;

� which α is the best if we have to choose one α to code all the spectra.

With the motivation to answer these questions, we prepared quantized MDCT coeffi-

cients from ten seconds each of fifty musical signals by the same method in the previous

experiment at 16 kbps and compressed the quantized coefficients by the arithmetic coding

for the GGD with the proposed PAPSE using the shape parameter α from α = 0.1 to

α = 3 in increments of 0.1. The fifty musical signals were randomly selected from the four

databases in the RWC Music Database [101]: Ten items each from the Classical Music,

Jazz Music, and Music Genre Databases; twenty items from the Popular Music Database,

ten without vocals, and ten with vocals. Ten seconds of signals were extracted from each

item and down-sampled into 16 kHz.

Fig. 6.9 (a) is the histogram of the optimal shape parameter α that attained the shortest

bit length for each consecutive ten frames. As in the histogram, the optimal α tends to

be near α = 1, which does not conflict with the previous assumptions for the distribution

of frequency spectra. The curves in Fig. 6.9 (b) were obtained by gathering the frames

that attained the shortest bit length when α = 0.5, α = 1, and α = 1.5, respectively, and

plotting the average of the bit length for each case using the other α. It can be seen that

all three curves have asymmetric forms, steeper in the left side, and the steepness gets

weaker as the optimal α becomes high. Related to the steepness, the ranges of α are also

shown in Fig. 6.10 (a) that makes at most three percent of the increase in the bit length

from the case of the optimal α. In other words, each range in Fig. 6.10 (a) corresponds
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to the range of α that makes each of the curves in Fig. 6.9 (b) lower than 103 %. We can

see that the range gets larger as the optimal α becomes high, that is to say, the spectra

belonging to the GGD with higher α are more tolerant, in terms of a bit length, to the

difference in α used in the coding. Fig. 6.10 (b) is, as to speak, an integration of Figs. 6.9

(a), (b), and Fig. 6.10 (c). This curve denoted a plot of the bit length when we used a

single α for compressing all the test spectra compared with the optimal bit length when

we were able to tune the α for each consecutive ten frames. The asymmetry of the curve

remains, and the suitable α for compressing all the test spectra seems to be between 0.5

and 1 with α = 0.8 being optimum for this test.

Since the TCX, as mentioned above, chooses quantization steps that make the compres-

sion results satisfy the given bit rate, it can be said that the higher compression efficiency

the arithmetic coding has, the more precise the encoder is allowed to quantize the input

frequency spectra. In order to check if the quantization gets more precise by the proposed

PAPSE, we also compared the SNR of the quantized spectra in Eq. (6.7), which is con-

siderably related to the sound quality, fixing the bit rate at 16 kbps by finding the scale s

with a bisection search. The same test data as above were compressed by the arithmetic

coding with one shape parameter α for every frame. To make a fair comparison, we used,

in every condition, for the perceptual weights {Pk}N−1
k=0 the one approximated from the

conventional LP as in Eq. (2.9).

The results are plotted in Fig. 6.11. The peak of the curve for the proposed PAPSE

seems to be in between 0.5 and 1 with α = 0.7 being optimum for this test, which almost

agrees with the previous experiment. On the other hand, with the conventional LP, tuning

the shape parameter α was less effective, and this result agrees with the last experiment.

The SNR in the conditions near α = 2 was close to one of the conventional LP. That is

because the proposed PAPSE identifies with the conventional LP when α = 2, namely

when assuming Gaussian for spectra.

Performance in sound quality

This time, in order to confirm the benefit of both the proposed PAPSE and the GGD, we

applied the coding scheme to the baseline TCX, which used range-coder-based arithmetic

coding instead of GR coding, at 16 kbps and evaluated objectively and subjectively the

sound quality of musical signals.
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Fig. 6.11. SNR of the quantized spectra by the shape parameter α for the arithmetic

coding using each LP. Total 24720 frames of MDCT coefficients were tested at

16 kbps.

For the objective evaluation, the method of PEAQ in AFsp [100] was used. The test

data for this objective evaluation were the same as the last experiment, and the following

conditions of TCX were compared:

� Assuming the Laplacian (the GGD with shape parameter α = 1), modeling its

scales with the conventional LP model, and approximating the perceptual weight

by {Pk}N−1
k=0 in Eq. (2.9), hereinafter called the conventional setting;

� assuming the GGD with α = 0.7, modeling its scales with the proposed PAPSE

model, and approximating the perceptual weight by {Pk}N−1
k=0 in Eq. (6.17), here-

inafter called the proposed setting.

One may seem it unfair to use shape parameter α that proved in the last experiment

to be the best parameter for representing the test data. However, our objective for this

experiment is to confirm the existence of the distribution that makes better performance

than the Laplacian and to see the effects of the optimization in that case. Therefore, we

are not insisting on the superiority of the shape parameter α = 0.7.

Fig. 6.12 displays the database-wise PEAQ scores for the all conditions. The perfor-

mance of the TCX appeared to be enhanced by introducing the GGD and the proposed
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Fig. 6.12. Database-wise PEAQ scores. Error bars indicate the 95 % confidence intervals.

PAPSE. Additionally, the paired t-test proved there was a significant difference at five

percent, totally and for each database, between the conventional and proposed setting.

For the subjective evaluation, the three conditions were compared by MUSHRA. Five

audio items in the RWC Music Database, ten seconds each down-sampled into 16 kHz,

were used for the evaluations. The test items were labeled as follows: ”Classic,” for a

harpsichord piece from the Classical Music Database, ”African,” for a guitar piece from

the Music Genre Database, ”Jazz,” for a piano piece from the Jazz Music Database,

”Popular,” for a synthesizer piece from the Popular Music Database, and ”Vocal,” for

a female vocal piece from the Popular Music Database. Eight participants, all engaged

in audio signal processing research, were blindly provided with the coded items with the

references and 3.5-kHz band-limited anchors, and they graded the quality of each codec

from 0 to 100 points.

The absolute scores and the scores increased by the proposed setting are presented

in Fig. 6.13. The codec with the conventional setting, which showed almost the same

performance as AMR-WB+, was enhanced in average by introducing the GGD and the

proposed PAPSE optimized to it, with three out of five items and total score having a

significant difference at five percent.
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(a)

(b)

Fig. 6.13. Item-wise MUSHRA scores. Average and 95 % confidential interval of t-

distribution. (a) Absolute scores. (b) Relative scores of the proposed set-

ting compared to the conventional setting. Asterisk indicates the existence of

significant difference at 5 % in a paired t-test.

Discussions

The results in the previous experiments insist on the importance of the following three

factors: selecting the distributions for the target spectra, assuming non-uniform scales

over frequencies, and parameterizing the scales, or spectral envelope, optimally. The most
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interesting part of the results is that only in the case of parameterizing the scales by the

conventional LP the transition of optimal shape parameters greatly fluctuated comparing

Fig. 6.8 (b) and (c). Since the conditions in Fig. 6.8 (b) and (c) differed solely in bit rate,

in other words, in the step size of the quantization, one may expect only the scale, instead

of the shape, of the distribution to have been influenced by the quantization. However,

this expectation merely holds as long as the scales of the target is appropriately estimated.

We conjecture that the scales, parameterized improperly by the conventional LP in the

sense of likelihood, required the shape parameter α to compensate for the scales in order

to describe the target spectra. Therefore, tuning the shapes of the assumed distributions

may be vain efforts unless we parameterize the scales correctly. Surprisingly, the proposed

PAPSE, which approximately attains the optimal parameterization of the scales for the

GGDs, seems to have preserved its approximation in the low-bit-rate situation such as

16 kbps at a 16-kHz sampling rate, and significantly reduced the description length by

properly parameterizing the scales.

The remained discussions are about computational complexity and the effects of the

slight modifications from the conventional scale model in Eq. (3.39) to the proposed scale

model in Eq. (3.33). Owing to the slight modifications in the model, which were aimed to

make the optimization solved by the Levinson–Durbin algorithm, the additional costs of

computation for the proposed PAPSE only appear in the powering operations in Eq. (3.33),

(3.35), and (6.17) for the encoder. According to BASOP [98], the total increase of the

computational costs in the encoder, in the condition of the codec stated in the evaluations,

amount to approximately 1.2 WMOPS, about only four percent of the increase when the α

is not an integer. It should be noted that this computation still has room for improvement.

If we permit the decrease in the precision of the envelope, we can reduce the costs by

calculating the envelope only in several frequency intervals. Moreover, when α = 1, the

process of the proposed PAPSE corresponds to the one in [40], and it is known that the

computational complexity gets reduced from the case of applying the conventional LP in

that case. By the way, we have to emphasize that the proposed PAPSE is not guaranteed

to always make the bit length shorter compared with the case of the conventional LP

because the model is slightly changed to simplify the algorithm. Nevertheless, the results

of all the experiments proved that the difference in the model had a little influence on the

superiority of the proposed PAPSE model.
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Fig. 6.14. Relative average log-likelihood compared to LP (bits/sample) by each iteration

and initial values. Black dotted horizontal line shows the limit found by an

exhaustive search. 17232 frames of 16-kHz audio signals (about 6 minutes)

were tested.

6.3.3 Further extensions

Frame-wise adaptive amplitude warping

Using the shape parameter estimation presented in Sec. 3.3.3, PAPSE has the potential

to enhance the baseline TCX further: Estimating frame-by-frame α makes higher likeli-

hood, using different distributions in the arithmetic coding under the estimated α and

transmitting α to the decoder by allocating bits to it. Here, we evaluate its possibility of

enhancement.

At first, to check the characteristics of the proposed method, its effect on likelihood,

initial dependence, convergence, the required number of iteration, we estimated shape

parameters for some speech and audio signals and calculated their likelihood. For the

shape parameter estimation step in the proposed method, we prepared for the α candidates

α = 0.1 to α = 3 in increments of 0.1.

Fig. 6.14 plots the average log-likelihood. The likelihood was calculated as relative
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Table 6.1. Relative average log-likelihood compared to LP (bits/sample) with 17232

frames of 16-kHz audio signals (about 6 minutes) tested

Without PAPSE With PAPSE

Simple moment-
based estimation

Fixed
(α = 0.7)

Proposed
estimation

Exhaustive
search

-60.1111 27.9153 37.4118 38.1298

log-likelihood in bits compared by its counterpart of LP:

L =
1

NM

∑
k,l

log2
p̃α∗

l
(|Xk,l| |Hα∗

l ,k,l
)

p̃2(|Xk,l| ||Hk,l)
(6.18)

where l, M , and α∗
l respectively stands for the frame number, the total frames, and the

estimated α for the l-th frame. Hα∗
l ,k,l

and Hk,l were given by 16-th-order PAPSE and

16-th-order LP, respectively. It can be seen that there is some convergence, and it depends

on the initial values. Practically, it seems sufficient to use a large value for the initial α

and the results of the first iteration.

Table 6.1 compares other estimation methods with the proposed method (the result of

the first iteration with initial value α = 2). The difference between the proposed method

and the exhaustive search was less than 1 bit, and changing the shape parameter frame

by frame showed a higher likelihood compared to the fixed PAPSE, which calculated the

log-likelihood with a constant α for every frame. A simple moment-based method, which

estimated α using the moment-based method without normalizing the spectra by its scale

Hk,α, seems to have given inaccurate estimates resulting in the decrease of the likelihood

from LP.

Next, we compared the transition of the estimated shape parameters. The test signal

was composed of four seconds each of a popular music (synthesizer), a classical music

(violin), a jazz music (trumpet), a male speech (clean), and the same male speech with

pink noise (signal-to-noise ratio was 10 dB), which was used in [105]. Fig. 6.15 depicts

the result. The shape parameters estimated by the proposed method roughly tracked the

optimal shape parameters found by the exhaustive search, showing the correspondence

between the shape parameter and some acoustic features. On the other hand, the simple

moment-based method estimated continuously as around α = 0.5, which revealed to be

inaccurate by the previous experiment.
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Fig. 6.15. Spectrogram and its shape parameters estimated for every five frames. Simple

moment-based method for conventional method (black chained line), proposed

method (red solid line), and exhaustive search (blue slashed line).

At 16 kbps, we used two conditions of codec integration for the comparison:

1. (Constant PAPSE) Using GGD of α = 0.7 for arithmetic coding with its scales

represented by fixed PAPSE of 16-th order, of which coefficients {an}16n=1 were

vector quantized in the form of LSP as in [96] with 20 bits;

2. (Adaptive PAPSE) adding shape parameter estimation part before PAPSE. The

arithmetic coding used different GGD for each frame based on the estimated α.

The variance was also represented by 16-th-order PAPSE. Its coefficients were quan-

tized by the method stated above with different codebooks for each α. The α was

represented by 1 bit, as mentioned below.

For the estimated shape parameter, we used the results from the first iteration of the

proposed shape parameter estimation with an initial value of α = 1. The quantization

of the estimated shape parameter α was designed heuristically by trial and error, with

the optimal α expected to change smoothly in audio signals: Representing the quantized

shape parameter in τ -th frame α̂τ with fourth-order moving average by 1 bit, in other

words, selecting β̂τ that satisfies

α̂τ = µ−1(β̂τ + 0.7β̂τ−1 + 0.6β̂τ−2 + 0.5β̂τ−3 + 0.4β̂τ−4) (6.19)

where µ(α) indicates the µ-law algorithm of ITU-T G. 711 [1]. The values for β̂τ was

defined to make α̂τ be in [0.5 1]. The other bit allocations were evenly set.
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Fig. 6.16. Database-wise relative objective difference grades by PEAQ compared to the

TCX with constant PAPSE. Average and 95 % confidence intervals. Asterisk

indicates there was a significant difference at 5 % in a paired t-test.

The objective sound quality of the reconstructed signals in PEAQ, graded from −4 to 0

points, was calculated by McGill University’s AFsp PQevalAudio [100]. Fifty items were

randomly selected from the four databases in the RWC Music Database [101]: Ten items

each from the Classical Music, Jazz Music, and Music Genre Databases; twenty items

from the Popular Music Database, ten without vocals and ten with vocals. Ten seconds

of signals were extracted from each item and down-sampled into 16 kHz.

The relative scores of the TCX with adaptive PAPSE compared to the one with constant

PAPSE are shown in Fig. 6.16. The shape parameter estimation made the average objec-

tive quality higher, giving a significant difference in the total score. As for the complexity,

the additional computational costs for applying the shape parameter estimation in this

condition were about 0.6 WMOPS [98], about 2 % of the total costs of the TCX-based

coder.

To evaluate whether the difference in objective quality shown by the previous exper-

iment is actually audible, an informal subjective evaluation was held. Five audio items

in the RWC Music Database, ten seconds each down-sampled into 16 kHz, were respec-

tively coded in the two conditions, presented to seven participants with the references

and 3.5-kHz band-limited anchors, and graded from 0 to 100 points, as is done in ITU-R
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Fig. 6.17. Item-wise relative subjective scores by MUSHRA compared to the TCX with

constant PAPSE. Average and 95 % confidence intervals. Asterisk indicates

there was a significant difference at 5 % in a paired t-test.

BS.1534-1 MUSHRA [102]. The test items were labeled as follows: ”Cello,” for a cello

piece from the Classical Music Database, ”Synthesizer,” for a synthesizer piece from the

Music Genre Database, ”Piano,” for a piano piece from the Jazz Music Database, ”Gui-

tar,” for a Guitar piece from the Popular Music Database, and ”Vocal,” for a female vocal

piece from the Popular Music Database.

Fig. 6.17 describes the item-wise relative scores of the TCX with adaptive PAPSE

compared to the one with constant PAPSE. It can be seen that the shape parameter

estimation enhanced the average subjective quality with a significant difference in the

total score, which resembles the results of the objective evaluation.

Combining two types of warping

The ideas proposed in Chap. 3 have placed high importance on the use of the all-pole-

based model and the Levinson–Durbin algorithm for representing the spectral envelopes

because they lead to algorithms with low computational complexity and enable the codec

to quantize the model parameters efficiently by LSP representation and to guarantee the

stability of the parameters simply. Therefore, in order not to spoil these merits, the

integration of frequency and amplitude warping also has to be implemented based on the

all-pole model and the Levinson–Durbin algorithm.

Heuristic combination of the envelope models Eqs. (3.2) and (3.36) leads to the following
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envelope and scale models, respectively:

Hα,k =

N−1∑
i=0

Uki

∣∣∣∣∣1 +
p∑

n=1

ane
−jπi

N n

∣∣∣∣∣
−2
 1

α

, (6.20)

a powered all-pole model of which frequency resolution is warped by the inverse warping

matrix U , and

ϕk = α1/αB(α)σ2/αHα,k (6.21)

as in Eq. (3.33). This envelope model becomes equivalent to Eq. (3.2) when α = 2 and to

Eq. (3.36) when U is identity. According to the motivation stated above and the proposed

methods, it is natural to think that the extraction of the envelopes based on Eq. (6.20)

can be done by regarding warped and powered spectra as power spectra, in other words

using

Rn =
1

N

N−1∑
k=0

N−1∑
i=0

Wki|Xi|α cos

(
πnk

N

)
(6.22)

for auto-correlation function in the Levinson–Durbin algorithm.

However, it should be noted that for the sake of the frequency-warping operation, the

criterion of this extraction, or the estimation of {an}pn=1, gets different from the actual

bit length of the entropy coding; the criterion becomes the bit length added up over the

warped-frequency axis. On the other hand, in regard to the other model parameter σ2,

the power of the prediction residual , which is usually given from the Levinson–Durbin

algorithm and is used in calculating the variance {ϕk}N−1
k=0 as in Eq. (6.21), the parameter

can be easily optimized on the criterion of the actual bit length. Provided that the variance

of the spectra is given by Eq. (6.21) with the extracted envelope {Hα,k}N−1
k=0 , the negative

log-likelihood of the spectra {Xk}N−1
k=0 , assumed to be generalized-Gaussian distributed,

becomes

LLH
α ({Xk} | {ϕk})

=

N−1∑
k=0

(log2 e)

[∣∣∣∣B(α)Xk

ϕk

∣∣∣∣α + lnϕk − lnA(α)

]
=

1

ln 2

∑
k

[
1

ασ2

∣∣∣∣ Xk

Hα,k

∣∣∣∣α +
1

α
lnσ2 + lnα1/αB(α)Hα,k/A(α)

]
. (6.23)

This likelihood is convex for σ2 so that the optimal σ2 that minimizes LLH
α ({Xk} | {ϕk})
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Fig. 6.18. Comparison of the average bit length by each representation of envelopes. 100

% indicates the average bit length in the case of the conventional setting. Total

24720 frames of MDCT coefficients were tested.

is given by

∂

∂σ2
LLH
α ({Xk} | {ϕk}) =

1

α ln 2

∑
k

[
− 1

(σ2)2

∣∣∣∣ Xk

Hα,k

∣∣∣∣α +
1

σ2

]
= 0

⇐⇒ σ2 =
1

N

∑
k

∣∣∣∣ Xk

Hα,k

∣∣∣∣α , (6.24)

which is the mean of α-th-powered residual {|Xk/Hα,k|α}N−1
k=0 .

We evaluated the model by compressing the quantized spectra using the range-coder-

based arithmetic coding, as in the last section. For this evaluation, ten seconds each from

fifty musical signals in the RWC Music Database [101] were down-sampled into 16 kHz

and tested. The quantized spectra were prepared by quantizing the MDCT coefficients of

a test signal using the baseline TCX at 16 kbps and were compressed by the arithmetic

coding with the following conditions, and the code lengths were compared:

� Extracting envelope by the conventional LP with the Laplacian assumed for the

arithmetic coding (the conventional setting);

� extracting envelope by the resolution-warped model in Eq. (3.2) switching by 1 bit

the warping matrices between the identity ones and the logarithmic ones presented

in Chap. 3 with the Laplacian assumed for the arithmetic coding;
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� extracting envelope by the PAPSE model in Eq. (3.36) with the GGD of α = 0.7

assumed for the arithmetic coding;

� extracting envelope by the integrated model in Eq. (6.20) switching by 1 bit the

warping matrices between the identity ones and the logarithmic ones with the GGD

of α = 0.7 assumed for the arithmetic coding.

To make a fair comparison, we used, in every condition, for the perceptual weights

{Pk}N−1
k=0 the one approximated from the conventional LP as in Eq. (2.9). A closed-loop

search decided the switching of the warping.

The result is depicted in Fig. 6.18. The bit length of each condition is represented by the

ratio to one of the conventional setting. It can be seen that both ideas of the frequency-

and amplitude- warping contributed to enhancing the efficiency of the entropy coding,

and the integration of the ideas made further enhancement. Since the perceptual weights

{Pk}N−1
k=0 were the same in every condition, higher compression efficiency can be expected

to make higher sound quality at the same bit rate allowing us to quantize spectra more

precisely.

6.4 Enhancement in code modeling

6.4.1 Integration into baseline codec

In the previous section, the integration of the proposed PAPSE was realized by using

arithmetic coding in the entropy coding part of the TCX because GR coding cannot

optimally encode under the assumption of GGDs. It is expected that introducing the

methods for the code modeling proposed in Chap. 5 will enable us to integrate PAPSE

into the GR-coding-based scheme. However, the conventional adaptation of the Rice

parameter as in Eq. (6.1) restricts each Rice parameter to be non-negative, which will

limit the freedom of the bit assignment of GR encoding, which is the base of the proposed

integer-mapping methods. Here, the bit-plane rearrangement, LSBM proposed in Sec. 3.4,

can be applied to avoid this restriction. LSBM can, in an invertible way, whiten the

quantized spectra to be uniform scales making the XDGR code, the GR code extension

achieved by the proposed bit inversion, available to be performed.

To summarize the above explanations, the proposed coding scheme works as depicted
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Fig. 6.19. Brief flowchart of the encoding processes in the proposed scheme.

in Fig. 6.19: In the integrated encoder, the input is first transformed into MDCT spectra

with their shape parameter and envelope estimated; the spectra get perceptually weighted

based on the smoothed envelope followed by scaler quantization; the signs of the non-zero

quantized spectra are coded into one bit each, and the LSBM transforms the absolutes

into smoothed ones following the envelope; finally, the transformed spectra go through

the proposed shape control, using the p and q in a predetermined range that makes p/q

nearest to the estimated shape parameter, and then encoded by unified GR code, the

combination of the proposed XDGR and conventional GR codes.

It should be noted that the model parameters required to be sent to the decoder for

each frame are GR-coded spectra, the LP coefficients for the envelope, the step size for

the quantization, and the shape parameter, of which only difference to the baseline coding

scheme is the frame-wise shape parameter. Therefore, to focus on the effect of the proposed

shape control, we do not discuss here the quantization of parameters instead of MDCT

spectra and shape parameters.
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Fig. 6.20. Relative redundancy of each coding scheme for real audio frequency spectra.

The item-wise average and 95% confidence interval.

6.4.2 Performance in compression efficiency

We evaluated the compression performance by applying it to the baseline TCX, as ex-

plained above. A hundred-and-forty items of audio in the RWC Music Database [101] and

super-wide-band speech, eight seconds each down-sampled into 16 kHz, were quantized,

at 16, 32, 64, 96, and 128 kbps, by an oracle encoder based on [106]: The encoder can

use PAPSE switching shape parameter α frame by frame with no limitation and simu-

lates the bit rate of quantized spectra X̂k = ⌊WkXk/s+ 0.5⌋ by the log likelihood for the

GGD assumption X̂k ∼ p̃α(x|Wkϕk/s) where {Xk}N−1
k=0 , {ϕk}N−1

k=0 , {Wk}N−1
k=0 , and s are

respectively the MDCT spectra of input signals, their envelope, perceptual weights, and

the step size searched for each bit rates. We calculated the code length of the quantized

spectra in the following eight conditions using the same perceptual weights {Wk}N−1
k=0 ,

step size s, and frame size N = 320:

1. The theoretical limit using the Laplacian assumption X̂k ∼ p̃1(x|Wkϕk/s) with the

envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = 1 [GGD (α = 1) limit];

2. the theoretical limit using the constant GGD assumption X̂k ∼ p̃2/3(x|Wkϕk/s)

with the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = 2/3 [GGD

(α = 2/3) limit];

3. the theoretical limit using the adaptive GGD assumption X̂k ∼ p̃α(x|Wkϕk/s) with

shape parameter α estimated frame by frame using the same estimation conditions
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in [106] and the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of the estimated

α [GGD (α adaptive) limit];

4. the baseline coding scheme introduced in the previous section using GR encoding

with the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = 1 [conv. GR

without LSBM];

5. the proposed coding scheme using the conventional RLGR encoding instead of the

unified GR encoding with its coding parameter searched exhaustively after trans-

forming the quantized spectra by LSBM based on the envelope {ϕk}N−1
k=0 estimated

by 16-th-order PAPSE of α estimated frame by frame as in condition 3 [conv. RLGR

with LSBM];

6. the proposed coding scheme using the proposed shape control of (p, q) = (1, 1) and

with the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = 1 [prop. (p = 1,

q = 1) with LSBM];

7. the proposed coding scheme using the proposed shape control of (p, q) = (2, 3) with

the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = 2/3 [prop. (p = 1,

q = 1) with LSBM];

8. the proposed coding scheme using the proposed shape control of adaptive (p, q) in

accordance with the shape parameter α estimated frame by frame as in 3) with

the envelope {ϕk}N−1
k=0 estimated by 16-th-order PAPSE of α = p/q [prop. (p, q

adaptive) with LSBM].

Condition 6 is equivalent to the proposed coding scheme without the proposed shape

control. Note that the shape parameter α = 2/3 was chosen because it was close to

the parameter that showed high performance in [105] for a constant shape parameter.

The results for conditions 3, 5, and 8 include 1 bit for representing the frame-wise shape

parameter α. Since every condition shares the same perceptual weights, the lower code

length means there is room for more precise quantization, and thus higher sound quality

can be expected at the same bit rate compared to the conventional coding schemes, which

have shown subjective quality compatible with the state-of-the-art standards in [105–107].

The relative redundancy of each condition, compared to the bit rate of the oracle

encoder, is described in Fig. 6.20. The proposed coding scheme showed higher compression

efficiency than the pure GR and RLGR encodings. The approximation of the shape
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control became harder to hold at lower bit rates, resulting in a little worse performance

at 16 kbps. That was due to the course decorrelation, compared with the quantized

values of spectra, by the bit-wise operations of LSBM, where a room remains for further

enhancement. However, the proposed shape control generally enhanced the efficiency even

when used with constant parameters (p, q). Also, using frame-wise (p, q) further improved

the performance, especially at higher bit rates.

Of course, the arithmetic coding can achieve very close to the theoretical limits, so we

do not insist on the superiority of the proposed coding to it. However, the shape control,

combined with GR coding, has lower requirements for computation resources and will

remain a reasonable choice when designing a codec.

6.5 Conclusion of Chapter 6

In this chapter, we focused on frequency-domain audio codecs, codecs encoding audio

signals in the frequency domain, in a low-bit-rate and low-delay condition aiming at their

use in mobile communications. These frequency-domain codecs are mainly expected to

deal with signals, including a variety of sounds that time-domain codecs, the conventional

speech codecs, fail to exert high performance. Generally, codecs have intrinsic trade-offs

between the compression efficiency and the delay they permit, and especially in frequency-

domain codecs, the restriction of low delay significantly affects their reproduction quality.

Therefore, this chapter presented independent approaches for integrating the proposed

shaping methods to modify TCX, the state-of-the-art frequency-domain codec, from the

perspectives of signal and code modelings.

In the signal-modeling approach, we respectively evaluated the effects of the proposed

frequency and amplitude warping. The frequency warping showed some enhancement

in envelope estimation by warping its frequency resolution, improving the baseline TCX

based on GR coding. On the other hand, amplitude warping enabled us to use the GGD

assumption for frequency spectra in entropy coding, which revealed to be more reasonable

compared to the conventional Laplacian assumptions and enhance the compression effi-

ciency of the baseline TCX based on arithmetic coding. Additionally, the shape parameter

estimation and the combination of the frequency and amplitude warping are investigated

as promising possibilities for further extensions of these methods.
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In the communication-modeling approach, we realized to introduce the GGD assump-

tion into the baseline TCX based on GR-coding by applying the proposed bit inverting

and integer mapping. Supported by the proposed bit-plane rearrangement, the codes ex-

tended from GR code were combined with the proposed amplitude warping, enhancing

the compression efficiency of the baseline TCX based on GR-coding. The compression ef-

ficiency was yet far from that of the theoretical limits, but the low-complexity algorithms

derived from the proposed methods will give more flexible choices for codec design.

Both approaches were appeared to be useful for the low-bit-rate and low-delay

frequency-domain codec. All of the methods proposed here, including the extensions,

are designed independently and available for combinational use. Therefore, they are

expected to be integrated into the speech and audio codecs, the hybrid codecs of time

and frequency domain, realizing communications with higher quality, and a part of these

methods are already adopted in the recent standard 3GPP EVS [34].
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Chapter 7

Application for low-delay and

high-quality sound-data transmission

7.1 Introduction of this chapter

The previous chapter presented the use case at rather low bit rates. In this chapter, we go

on to another low-delay coding application requiring higher bit rates. Recent progresses

in audio codecs, MPEG-4 AAC family [9, 24, 46], ALS [11, 12], and 3GPP EVS [6–8]

for example, have enabled us to transmit more freely high quality music and speech.

Moreover, owing to the development of communication networks, there is a rising demand

for real-time transmission of high-quality audio.

In radio broadcasting, sound data of live coverage have to be transmitted to the radio

station and mixed before broadcasted. Even if the mixed audio stream gets compressed

and degraded when delivered on the radio, sound data should have as little degradation as

possible when mixed or processed. Therefore, in those cases, recorded sounds are preferred

to be transmitted in real-time with high fidelity.

As in the case of speech communication, real-time audio transmission critically requires

low transmission delay, the delay caused by the codecs, networks, computation, for exam-

ple. The transmission delay is one of the critical factors for presence, and trained listeners

are said to detect it from 100 ms [25]. Since typical IP network delivery takes around 100

ms, the algorithmic delay of the codecs should be negligibly short. For instance, in radio

broadcasting of sports, the listeners tend to receive the radio at the relay site to listen to
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Fig. 7.1. Structure of the CLEAR encoder (upper half) and decoder (lower half).

the commentary in real-time, which strictly requires low-delay delivery of sounds.

In Japan, the radio broadcasters have used for years Integrated services digital network

(ISDN) services [108], metal-network services of low-cost and high reliability. However,

the deterioration of the metal lines required their providers to migrate to new services:

Data connect [109] is one of them, which is a high-quality optical-network service with

low cost at 1-Mbps limit, about three-quarters of the bit rate of compact-disc quality

sound data. For this reason, a new codec fully making use of the new network services

is needed recently. This kind of network services, to guarantee real-time transmission,

require high priority and stability, which usually have restrict the limit of their bit rates

following their fee. Therefore, it is preferable to use lossy codecs of constant bit rates

instead of lossless ones of variable bit rates such as MPEG-4 ALS. Note that indeed, the

scalable codec standard MPEG-4 Scalable to lossless (SLS) [33] can control the bit rate,

but its frame size limits the flexibility of the codec delay, and thus it does not support

short delay conditions.

Enhanced apt-X [110] and NICAM [39] are the codecs capable of compressing audio

signals with little degradation and low delay. These kinds of codecs are designed to

quantize signals to make the quantization noise inaudible, which sometimes requires a

different criterion than SNR. Awing to their designs, these codecs achieve compression

with quantization noise that non-professionals can hardly detect. However, in cases such

as sound data transmission in radio broadcasting, where high bit rates are allowed, many



7.2 Proposed low-delay near-lossless coding scheme 137

digital sounds can be transmitted losslessly by invertible compression. Even in such cases,

these codecs apply the quantization, which degrades the fidelity of the signals in SNR.

Taking into account that the sounds must pass through the mixing process, they should

be compressed losslessly whenever possible.

For the above reasons, we present in this chapter Conditionally lossless encoding under

allowed rates (CLEAR), a near-lossless full-band stereo compression scheme enhancing the

fidelity of sound data with high perceptual quality. It focuses on compressing the 48-kHz

16-bit stereo speech-and-audio data into about one to three quarters with the algorithmic

delay of around 2 ms. As stated in the following section, from the business point of

view, the designed codec is required to be used in low running and maintenance costs.

Therefore, it is very reasonable if we can reuse the existing international standards. Here,

by applying the perception model proposed in Chap. 4, it is shown that we can design the

lossy codec from an existing international standard without changing its format.

We first show the overall scheme of the proposed CLEAR in this chapter. Then, it is

evaluated by some objective and subjective measurements.

7.2 Proposed low-delay near-lossless coding scheme

7.2.1 Bit-rate-controlled compression

CLEAR is based on the idea of [72], which combines pre- and post-processed uniform

quantizer with invertible compression. Instead of just lowering the bit rates of the invert-

ible compression by the quantization as in [72], CLEAR controls the bit rate to be under

the target rate and leaves the input signals lossless if possible.

From the perspective of the costs related to the codec, the costs for the development,

including the audio transmission services, and maintenance, if available, it is better to

use international standards than to make up from scratch because there is official support

usually, and sometimes the transfer protocols are prepared for their formats.

From the above facts, the CLEAR encoder and decoder are designed as in Fig. 7.1. The

CLEAR encoder compresses 48-kHz 16-bit stereo signals, about 1.5 Mbps of pulse code

modulation (PCM) data, by 1.3-ms frame without overlaps. Therefore, the algorithmic

delay of the CLEAR encoder is 1.3 ms. For the invertible compression, MPEG-4 ALS
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simple profile [111] is used, which has the following characteristics:

1. It supports low delay conditions (delay from one sample).

2. It represents signals with LP filters and their entropy-coded prediction residuals.

3. It has an option of losslessly omitting LSBs of the input signals when their LSBs

are all zero in one frame.

4. It deals with bitstreams that can be sent by a standard protocol such as IETF RTP

3640 and 6416 [112,113].

The first one enables us to control the algorithmic delay of the codec easily. The second

one makes efficient entropy coding for signals with time correlation. The third one aims

at dealing with cases in broadcasting where the devices sometimes represent 20-bit audio

signals as 24-bit amplitude by padding 4 bits of LSBs for each sample. This option enables

the CLEAR encoder to quantize the input signals by altering their LSBs to zeros without

additional bits for representing quantization steps: Quantizing outside the MPEG-4 ALS

encoder, the CLEAR encoder invokes the option that automatically makes use of the

altered LSBs to reduce more the data size.

With the option, the CLEAR encoder iteratively compresses and quantizes the input

signal, altering its LSBs to make the MPEG-4 ALS encoding bit rate under the target

rate. Fig. 7.2 illustrates the frame-wise rates of altered LSBs during this process. The

more LSBs altered to zero, the coarser the quantization, and no bit altered means lossless

compression.

7.2.2 Adaptive pre- and post-processing

Coarse uniform quantization makes quantization noise with flat frequency spectra, which

sometimes audible at higher frequencies. Therefore, the CLEAR encoder applies per-

ceptual weighting as pre-processing when more than 4 bits are altered to zero by the

quantizer. The CLEAR decoder judges whether the weighting is done by checking the

number of LSBs altered and performs inverse weighting as post-processing if necessary.

The perceptual weighting in CLEAR comprises block companding in the DCT domain.

SDBC, introduced in Chap. 4, approximates the masking thresholds and weights DCT

spectra following them without any auxiliary parameters required for the psycho-acoustic
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Fig. 7.2. Rates of altered LSBs by the CLEAR encoder at each bit rate. 42 speech and

audio items, 8 seconds each of 48-kHz 16-bit stereo files.

model as in [72].

Since only when the quantization is coarse enough is this weighting performed, the

CLEAR encoder can losslessly compress more than a quarter of frames at 704 kbps,

according to Fig. 7.2. Moreover, CLEAR is backward compatible with MPEG-4 ALS

because both the quantization and the perceptual weighting do not require additional

information to decode.

To summarize the above, this CLEAR is implemented by

� LP, inside MPEG-4, ALS for the signal modeling

� Adaptive pre- and post-processing by SDBC for the perception modeling

� the uniform quantization outside MPEG-4 ALS and GR code inside MPEG-4 ALS

for the code modeling

where perception modeling is the main focus of this chapter for employing the proposed

shaping methods.

7.3 Performance in objective sound quality

To evaluate the performance of CLEAR codec, we compared with the benchmark codecs,

Enhanced apt-X, and NICAM. The algorithmic delays of the codecs were respectively 1.3,

1.9, 1.0 ms. The fidelity and the objective quality of the reconstructed signals were respec-
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(a) (b)

Fig. 7.3. Average SNR of the item-wise reconstructed signals. (a) Original items from

the database. (b) Items whose volume turned down to -26 dBov.

(a) (b)

Fig. 7.4. Average PEAQ scores of the item-wise reconstructed signals. (a) Original items

from the database. (b) Items whose volume turned down to -26 dBov.

tively evaluated as file-wise SNR and PEAQ scored from -4 to 0 by McGill University’s

AFsp PQevalAudio [100]. The test items included 140 speech and audio files, 8 seconds

each of 48-kHz 16-bit stereo recording. These items were tested in two ways: Inputting

to the codecs directly and inputting to the codecs after turning down the volume to -26

dBov to evaluate the performance for quiet sounds. Since NICAM supports only a 32-kHz

sampling rate, the items were downsampled, only in evaluating NICAM, and upsampled

to 48 kHz in calculating SNR and PEAQ scores. We also compared the CLEAR codec

without using SDBC to evaluate its effects.

Fig. 7.3 plots the average SNR of each codec. The bit rates were for the total of the
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(a) (b)

Fig. 7.5. Increase in PEAQ scores by SDBC, average and 95% confidence intervals by

item-wise paired t test. (a) Original items from the database. (b) Items whose

volume turned down to -26 dBov.

two channels. CLEAR showed high reconstruction fidelity compared to the other codecs.

It can also be seen that the performance of CLEAR slightly increased for quiet sounds

because CLEAR compresses signals losslessly if they are statistically easy to compress.

The other codecs, on the other hand, failed to take advantage of the quietness. Note that

Enhanced apt-X has about 50% longer algorithmic delay than CLEAR. The high fidelity

of CLEAR will make it easier to mix or process transmitted sound data.

Figs. 7.4 and 7.5 respectively plot the average PEAQ scores of each codec, and the

scores of CLEAR increased by the proposed SDBC. Note that the centers of each symbol

show each PEAQ score in Fig. 7.4, and all the scores are under zero. The small but

statistically significant improvements in PEAQ scores by the proposed SDBC at lower bit

rates indicate that the adaptive pre- and post-processing by SDBC will reduce the risk of

annoying noise made by quantization without affecting the fidelity of the reconstructed

signals.

7.4 Performance in subjective sound quality

Next, we held two subjective experiments. One was ITU-R BS.1116 [114], aimed at

evaluating the effects of the proposed SDBC. Sixteen listeners were blindly provided pairs

of original (reference) and coded (test) speech and audio items and scored each sound

quality in degradation mean opinion score (DMOS) from 1 to 5. Twelve items were used in
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Fig. 7.6. Relative degradation by each condition in ITU-R BS.1116. Average and 95%

confidence interval in paired t-test.

Fig. 7.7. Item-wise MUSHRA scores by each condition. Average and 95% confidence

interval in t-test.

total, and four conditions, CLEAR at 400 and 700 kbps with and without SDBC. Fig. 7.6

shows the result, which plots the difference of the DMOS, or the average degradations. It

can be seen that the proposed SDBC concealed the significant degradations shown in the

conditions without SDBC.

Another experiment was TU-R BS.1534-1 MUSHRA [102], aimed at evaluating the

sound quality of the proposed CLEAR. Four trained participants were blindly provided
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with the following conditions and graded the quality of each one from 0 to 100 points:

� Original items as hidden reference (HR);

� 3.5-kHz band-limited anchors (Anchor);

� ones coded by AAC-ELD at 288 kbps with 7.5-ms algorithmic delay (AAC-ELD

288);

� ones coded by Enhanced APT-X at 384 kbps with 1.9-ms algorithmic delay (APT-X

384);

� ones coded by CLEAR at 400 kbps with 1.3-ms algorithmic delay (CLEAR 400);

� ones coded by CLEAR at 700 kbps with 1.3-ms algorithmic delay (CLEAR 700).

The average scores are presented in Fig. 7.7. All the codecs showed a high sound

quality that normal listeners without training often could not tell the difference. Despite

its stricter low-delay condition, the proposed CLEAR performed compatible quality to

those reference codecs, succeeding in maintaining both objective and subjective quality.

7.5 Conclusion of Chapter 7

We introduced in this chapter a low-delay and high quality audio coding scheme, CLEAR,

as an application of the proposed shaping method in the perception modeling. A combi-

nation in the CLEAR codec of a uniform quantizer, MPEG-4 ALS, and adaptive pre- and

post-processing, realized by the proposed SDBC, achieved effective compression of audio

signals with high fidelity. Awing to the option of MPEG-4 ALS and the headerless pro-

cess of SDBC, the CLEAR encoder can output bitstreams based on the MPEG standard.

Objective and subjective experiments revealed its high performance in reconstruction fi-

delity with the compatible perceptual quality compared with benchmark codecs. CLEAR

is expected to be useful in real-time sound data transmission, where sounds are mixed

after transmitted, and is adopted in a commercial codec, HDIP-3000V, now on sale from

RF Design [115].
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Chapter 8

Application for low-delay and

packet-independent inter-device

communication

8.1 Introduction of this chapter

The development and spread of IP have made a considerable influence on the trend of

speech compression. Notably, the concept of packet freed us from the risks of bit errors,

allowing us to use powerful variable-length coding tools such as arithmetic coding even

in real-time speech communication. These tools have enhanced the performance of many

codecs and contributed to the state-of-the-art speech codec standards such as 3GPP EVS.

The codecs presented in the previous chapters also depend on this kind of protocol.

However, there remains a demand for speech communication without IP in conditions

where bit errors will occur. Among various Internet of things (IoT) systems, although

they are mainly expected to depend on IP, some use cases may need local communica-

tion or observation, which require total optimization with a more simple protocol having

smaller overhead at the expense of bit-error correction capacity. As a well-known con-

ventional example, wireless microphones need low-delay codecs dealing with bit errors.

With variable-length coding tools used in these cases, bit errors will make the decoder

mistake the sample length to decode, with its influence lasting for a long period and
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collapsing the whole communication in the worst case. This possibility of the mistakes

will not be zero even if the code is protected by some error-correction codes. For this

reason, ADPCM [26] and its derivatives such as Enhanced APT-X [110], codecs used for

compressing high-quality speech in the above conditions, have fixed bit assignments and

tend to use high bit rate, which limits the number of devices working simultaneously at

limited communication bandwidth. Besides, the high bit rate makes the bit-error problem

harder, even for low bit error rates (BERs), compared with the case of low-bit-rate radio

communication.

Therefore, in this chapter, we present Bit-plane rearrangement for audio and voice en-

coding (BRAVE), an efficient low-delay and bit-error-robust codec with lower bit rates

than the conventional ones to transmit more sounds simultaneously with high sound qual-

ity. It focuses on 32-kHz 16-bit monaural inputs compressing into about one fifth with

around 3-ms algorithmic delay, which is a stricter delay condition than mobile commu-

nication because it may be used in load speakers, for example. To deal not only with

speech but also music items, we designed based on MDCT, which can easily control the

quantization noise, instead of codecs based on strict speech models, for example, ITU-T

Rec. G.728, G.729, and Pitch synchronous innovation code excited linear prediction (PSI-

CELP) [17, 116, 117] although they are robust against bit errors and some of them have

contributed to non-IP mobile communication.

Guaranteeing the decoded frame-wise sample length under bit-error conditions requires

strictly fixing the total bits used for each frame. At higher bit rates, vector quantiza-

tion, one of the well-used fixed-length coding techniques, has difficulties in avoiding its

exponentially increasing computation costs, although there are many extensions to reduce

them [40,118,119]. Therefore, codecs working at the bit rates focused here are preferable

to use sample-wise bit assignment with scalar quantization. In this case, the compression

performance of the codec greatly depends on how to assign the bits to each frequency

spectra and represent the bit assignment itself.

Due to this fact, we adopt the shaping method introduced in Sec. 3.4, LSBM, which

realizes an error-robust realization of bit assignment based on spectral envelopes and

reduces the effects of the bit errors occurred in the bit assignment on the degradation

of the reconstructed frequency spectra. The paper first quickly reviews the conventional

idea of bit assignment for frequency spectra, providing the relationship with the spectral
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Fig. 8.1. Simple coding of quantized spectra with bits assigned to each frequency. Bit

assignment indicates the number of the red blocks used for packing each spec-

trum into the bit stream. If the bit error, in the yellow arrow, changes the

information of the bit assignment as in the red circles, the bit steam read by the

decoder will be shifted, resulting in large errors even in the frequency where the

bit assignment is correct.

envelopes. Then, the structure of the proposed BRAVE is described, followed by some

objective and subjective evaluations.

8.2 Proposed low-delay bit-error-robust coding scheme

8.2.1 Envelope-based bit assignment

Many methods of bit assignment for frequency spectra are based on the idea of adaptive

transform coding in [120], which insists on the optimality of bit assignment in the sense

of rate-distortion trade-offs. The following discussions focus on assigning bits to positive

values by omitting polarity of the spectra, which can be coded independently or combined

with the positive values by folding and interleaving as in [83]. Assuming real-valued

MDCT spectra {Xk ∈ [0, ∞)}N−1
k=0 , each distributed in accordance with independent

probability density functions (pdfs) having a same shape but different variances {σ2
k}

N−1
k=0 ,

the probability distribution and the optimal expected code length {bk}N−1
k=0 of each spectra

scalar-quantized by quantization steps {dk}N−1
k=0 , can be approximately written with a pdf
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pX(X|1) of scale 1 as
{

dk

σk
pX

(
dkX
σk

∣∣∣ 1)}N−1

k=0
and

bk ≃
∫ ∞

0

−dk
σk

pX

(
dkX

σk

∣∣∣∣) log2

(
dk
σk

pX

(
dkX

σk

∣∣∣∣)) dX

= log2
σk

dk
+ C(pX(X|1)), (8.1)

respectively, where C(pX(X|1)) is a constant depending only on the shape pX(X|1) of

the distributions. If the quantization steps are small enough, the expected energy of the

quantization noise will proportionate d2k, and thus the rate-distortion optimizing problem

of a given bit rate B becomes

min
{dk}

N−1∑
k=0

d2k s.t. B =

N−1∑
k=0

bk. (8.2)

This leads to the optimal quantization steps

dk = 2−
B
N

N−1∏
j=0

σj

1/N

, (8.3)

uniform among the frequencies n, and the bit assignment

bk = log2 Hk + C(pX(X|1)), Hk ≡ σk(∏N−1
j=0 σj

)1/N , (8.4)

of which differences among the frequencies k depend only on the normalized standard

deviation {Hk}N−1
k=0 .

The signal modeling often approximates this normalized standard deviation as, for ex-

ample, LP coefficients or LSPs [30, 32, 80, 105, 107] because the spectral envelope derived

from the model has a property that its geometric average among the frequencies becomes

1, just as {Hk}N−1
k=0 has. Therefore, the encoder can optimally code the spectra by the

combination of scalar quantization and bit assignment based on the parameterized spec-

tral envelope. The decoder reconstructs the spectra by first decoding the envelope and

then reading the bitstream following the bit assignment the envelope suggests. More con-

cretely speaking, parameterizing the bits to be assigned is equivalent to parameterizing

the logarithmic spectral envelope.

As mentioned in the introduction, we have to use a strictly fixed bit assignment. Namely,

the bit assignment {bk}N−1
k=0 should be integer as is the case of the codec in [120]. However,

in cases where the encoder naively packs the code of spectra sequentially into the bitstream
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Fig. 8.2. Coding of quantized spectra with LSBM. If the bit assignment is sent correctly,

the decoder can reconstruct the quantized spectra correctly (left half). Even if

errors change the bit assignment as in the red circles, the order of the bit stream

read by the decoder will not change (right half).

as in Fig. 8.1, even a little error in the bit assignment disturbs the whole order of the

bits read by the decoder, making unexpected decoding errors. Indeed, it may be effective

to modify the scanning order of the bit planes, such as in [121], but it still has a risk of

unexpected collapse.

8.2.2 Least significant bit management based on spectral envelope

Here, LSBM proposed in Sec. 3.4 can be used, which enables us to realize invertible

’division’ in the integer region by managing the LSBs of the quantized values of the

spectra. Using the proposed LSBM, the decoder can read out the bitstream by fixed

bit-length intervals so that even if the bit assignment changed by errors, the influence

of the errors do not spread to the whole order of the bits, which guarantees that the

most significant bits (MSBs) of the spectra will be preserved where their corresponding

envelopes are correct. For the example in Fig. 8.2, 3 bits of MSBs of the spectra are

guaranteed in this sense. Therefore, there are fewer chances where the errors crucially

distort the outline of the spectra, as in Fig. 8.1, and the decoder can avoid substantial

perceptual degradation. Of course, the spectral envelop {Hk}N−1
k=0 can be coded using

all-pole models represented by LP coefficients or LSPs. However, since the bit assignment

needs only the integer precision for the LSBM scheme, in low-delay conditions where the
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Fig. 8.3. Brief outline of the proposed BRAVE coding scheme.

frame length and the envelope length are short, it may be efficient to code the envelope-

dependent terms {log2 Hk}N−1
k=0 directly by vector quantization, for instance. In these

cases, the distortion can be minimized by preparing the patterns of envelope-dependent

terms {log2 H
(m)
k }N−1

k=0 for j = 0, · · · ,M−1, which are organized to sum up to zero in each

pattern, and searching the pattern minimizing the spectral energy
∑N−1

k=0

∣∣∣Xk/H
(m)
k

∣∣∣2,
with bit-shift operations, for example.

In fact, taking into account that
∑

k log2 Hk = 0 for every patterns, this minimization

problem is rewritten as

min
m

N−1∑
k=0

(∣∣∣Xk/H
(m)
k

∣∣∣2 − ln
∣∣∣Xk/H

(m)
k

∣∣∣2 − 1

)
, (8.5)

in other words, equivalent to the IS divergence minimization, with which LP analysis also

deals [28]. Therefore, the vector quantization mentioned above has the same characteris-

tics in the sense of envelope fitting in LP.

8.2.3 Codec design

Based on the above ideas, the proposed BRAVE works as in Fig. 8.3. The codec compresses

32-kHz sampling rate 16-bit depth monaural signals into around 96 kbps, working for 32-

or 64-sample frames with quarter overlaps, which makes 1.5- or 3-ms algorithmic delay. It

first transforms the input signals into MDCT spectra and performs perceptual weighting

by SDBC presented in Chap. 4. Then, the envelope-dependent terms of the bit assignment

are determined by vector quantization mentioned above based on the weighted spectra.

The weighted spectra are scalar quantized by a single quantization step, followed by

LSBM. The envelope-dependent terms used for LSBM are represented in 4 bits at 32-

sample-frame mode and 12 bits at 64-sample frame mode by the vector quantization. For
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Fig. 8.4. Item-wise improvement in log spectral distortion for each BER. Average and

standard deviation. Circles and crosses indicate 32- and 64-sample-frame con-

ditions, respectively.

reconstructing speech signals, the decoder performs pitch enhancement [27] by a post-filter

using only the decoded signals. It should be noted that the SDBC allows us to use only

the envelopes of integer precision because it does not require LP coefficients such as the

perception modeling by smoothed envelopes.

To summarize the above, this BRAVE is implemented by

� integer-precision envelopes with LSBM for the signal modeling

� SDBC for the perception modeling

� the uniform quantization and fixed-bit-length coding for the code modeling

where the signal modeling is the main focus in this chapter for employing the proposed

shaping methods.

8.3 Performance in bit-error robustness

At first, to check the robustness of the proposed LSBM, we compared the log spectral

distortion [122] of the reconstructed MDCT spectra by artificially making bit errors on the

encoded bitstreams. Two conditions were prepared for BRAVE: one used proposed LSBM
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Fig. 8.5. Condition-wise DMOS of ITU-T Rec. P.800. Error bars indicate 95 % confidence

intervals.

for bit assignment, and the other used conventional simple sequential bit assignment. We

encoded and decoded by these codecs 84 items, about 8 seconds each of speech and audio

with a 32-kHz sampling rate and 16-bit depth. Among the encoded bitstreams, the bits

representing the spectral envelopes were randomly altered respectively under each BER.

Note that the commercial use in this condition usually requires under around 0.01% BER

for safety.

Fig. 8.4 shows the improvement, the difference of the proposed LSBM from the con-

ventional bit assignment, in log spectral distortion at each frame-length condition. The

difference between the proposed and conventional bit assignments became more evident as

the BER raised. However, the preliminary experiment on the reproduction SNR showed

little difference between the conditions. That means the small values such as spectra in

higher frequencies were damaged by bit errors more at the conventional bit assignment,

and the errors should be more annoying for listeners compared to them in the case of

using the proposed LSBM.
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8.4 Performance in sound quality

To evaluate the quality of the proposed BRAVE, we held a subjective experiment for

degradation category rating (DCR) based on ITU-T Rec. P.800 [123]. 24 participants

rated, in five-point degradation, four items each of clean speech, noisy speech and music

for the respective conditions. For a reference, we prepared EVS, known to perform very

high quality at mobile communication using more than ten times longer algorithmic delay

(32 ms) compared to the proposed BRAVE. Some conditions had 0.01% BER with errors

randomly generated based on uniform probability.

Fig. 8.5 describes the item-wise DMOS based on the average over the 96 votes for

each condition. Due to the limitations of space, we omitted from the graph the results

of Modulated noise reference units (MNRUs) at 14- and 8-dB signal-to-modulated-noise

ratio. It can be seen that the proposed codec at 96 kbps displayed high DMOS around

4.5 on average. Also, the DMOS of the proposed codec with 0.01% bit error was around

4.0, showing little degradation, especially in noisy conditions.

8.5 Conclusion of Chapter 8

In this chapter, we presented a low-delay and bit-error-robust speech-and-audio codec,

BRAVE, focusing on its use in real-time packet-free communication. Adopting LSBM,

the proposed shaping method for the signal modeling, the bit assignment in the proposed

BRAVE for frequency spectra was realized by the addition and subtraction of LSBs fol-

lowing the spectral envelopes. This method enables the decoder to guarantee the range

of the damage by the bit errors occurring in the codes for spectral envelopes, which may

reduce the annoying noise given by the errors.

The objective and subjective evaluations showed its high performance in sound quality

even in the bit-error conditions. Therefore, the proposed BRAVE is expected to be useful

in such as real-time inter-device communication and is in preparation for some commercial

use.



153

Chapter 9

Conclusion

In this thesis, we presented shaping methods, methods extending basic speech-and-audio

coding models by only inserting simple invertible transformation, aiming at their use in

low-delay codecs. Generally, codecs have intrinsic trade-offs between the compression effi-

ciency and the delay they permit, and the restriction of low delay, which required in many

use cases related to real-time communication, greatly affects their reproduction quality.

Therefore, this thesis interpreted in Chap. 2 speech-and-audio coding into three types of

essential modeling that much reflect on the codec strategies and quality: The signal mod-

eling determines the statistical assumptions for speech-and-audio signals, the distributions

to which each sample or frequency spectrum belongs; the perception modeling defines the

sensitivity of the listeners or receivers, which gives us some objective functions; the code

modeling designs the optimization for the objective function given by the perception mod-

eling subjecting to the assumptions given by the signal modeling. With each importance

pointed out, the following chapters introduced the shaping methods from several points

of view.

Chap. 3 presented the sample-based shaping methods for the signal modeling. Here,

we focused on LP, one of the essential techniques for the signal modeling, and extended

it by using two shaping methods. One was frequency warping that warps the frequency

resolution of LP-based spectral envelope estimation using non-negative sparse matrices.

Another was amplitude warping that realizes maximum-likelihood estimation of envelopes

based on generalized-Gaussian-distributed frequency spectra with slight changes in esti-

mation algorithms. The changes of envelope model derived from the shaping methods

enabled the LP-based envelopes to be estimated under more reasonable assumptions. Ad-
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ditionally, LSBM was introduced, the shaping method realizing the invertible division, or

whitening, of integer spectra. Owing to this shaping method, we can more flexibly use

the envelopes even if we deal with quantized integer inputs, as in the case of contentious

situations.

Chap. 4 presented the block-based shaping method for perception modeling. Since

the codec design heavily depends on perception modeling, it is crucial to implement the

psycho-acoustic characteristics more flexibly. The usage of the companding, one of the

simplest models, was extended to make the codec design more flexible. The proposed

SDBC enabled us, for the sake of requiring no auxiliary parameters for reconstruction, to

realize the perceptual control of quantization noise as weighting pre- and post-processing

outside of the compression optimization.

Chap. 5 presented the distribution-based shaping methods for the code modeling. GR

code, the structured code used in many applications, was focused in this chapter. Without

ruining its low complexity of coding algorithms, we aimed at extending it to optimally

encode integers belonging to generalized Gaussian distributions, a more general class of

distributions including Laplacian assumed in the conventional GR code. The proposed

shaping by bit inversion gave us the extension for sparse, or low-scaled, Laplacian. XDGR

and XDG codes, given from the inversion, can optimally encode sparse Laplacian sources,

which GR code does not support, showing some symmetry between them in the compres-

sion performance. Another proposed shaping by integer mapping was proven to approx-

imately shape the generalized-Gaussian-distributed sources into Laplacian by invertible

mappings between a group of integers and a single integer. Therefore, combining the two

shaping methods enables us to encode a wide range of generalized-Gaussian-distributed

sources by GR code.

We also presented the low-delay applications realized by the above basic shaping meth-

ods. Chap. 6 was aimed at mobile communication, which requires low delay and low

bit rate. Focusing on the state-of-the-art frequency-domain coding scheme used in the

unified speech and audio coding in such conditions, we evaluated the proposed shaping

methods for the signal modeling. Due to the enhanced compression efficiency given by the

frequency and amplitude warping, the subjective quality of the codec was enhanced by

the respective method, showing some possibilities of further extensions by using adaptive

shapes of GGDs and by combining the warping methods. Moreover, we also evaluated the
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GR code extensions given by the shaping methods for the code modeling. It was shown

that we could enhance the GR-based codec by introducing the proposed bit inverting and

integer mapping by realizing GR coding under the GGD assumptions.

Chap. 7 was aimed at real-time audio data transmission for broadcasting, which re-

quires a low delay and high fidelity for reconstructed waveforms. The flexible feature

of the proposed SDBC enabled us to design a low-delay and nearly-lossless codec based

on lossless audio standard MPEG-4 ALS without changing its compression format, which

much saved the development and maintenance costs of services. The objective and subjec-

tive evaluation proved the perceptual effects of SDBC and the high quality of the proposed

codec from both perspectives of waveform fidelity and sound quality.

Chap. 8 was aimed at real-time inter-device communication for IoT devices, which

requires a low delay and bit error robustness. The proposed LSBM, for the sake of its

discrete characteristics, enabled us to make use of the spectral envelopes for compressing

in fixed-length coding, robust against bit errors. The objective and subjective evaluation

showed its bit-error robustness and high sound quality despite its very low algorithmic

delay.

To summarize the above studies, the proposed shaping methods were confirmed to be

useful for the low-delay speech-and-audio codec. It should be noted that some of these

methods are already adopted for commercial use. Besides, the methods proposed were

independently designed so that it is possible to combine each other, remaining as future

issues. Therefore, the methods not adopted yet are also expected to be used in practical

codecs combined with other technologies.
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A

Equivalence between square error and

IS divergence

Here we represent the envelope as H2
k = σ2h2

k with

h2
k ≡

∣∣∣∣∣1 +
p∑

n=1

ane
−jπnk

N

∣∣∣∣∣
−2

. (A.1)

The minimization problem of the LP with frame length 2N can be equivalently written,

using the Parseval’s theorem, as

min
{an}

LMMSE = min
{an}

1

2N

2N−1∑
k=0

|Xk|2

h2
k

, (A.2)

with {Xk}2N−1
k=0 regarded as the DFT spectra of a real-valued signal. We respectively use

LMMSE and LML here to represent the objective functions of the LP and the IS divergence

in order to make it clear that the functions corresponds to the Minimum Mean Squared

Error (MMSE) criterion and the Maximum Likelihood (ML) criterion, respectively. Since

|Xk|2 = |X2N−k|2 where 1 ≤ k ≤ N − 1, ignoring the edge effects of {|Xk|2}N−1
k=0 , namely

assuming |X0|2, |XN |2 ≪ N , the objective function can be approximated by the variance

given from half of the frame as

LMMSE ≈ 1

N

N−1∑
k=0

|Xk|2

h2
k

≡ σ2. (A.3)



170 A Equivalence between square error and IS divergence

On the other hand, the IS divergence discussed in this paper can be transformed as

LML =

N−1∑
k=0

DIS(H
2
k | |Xk|2) (A.4)

=

N−1∑
k=0

(
|Xk|2

H2
k

− ln
|Xk|2

H2
k

− 1

)

=
1

σ2

N−1∑
k=0

|Xk|2

h2
k

−
N−1∑
k=0

ln
|Xk|2

H2
k

−N

= −
N−1∑
k=0

ln
|Xk|2

H2
k

= N

lnσ2 − ln

(
N−1∏
k=0

h2
k

) 1
N

+ C({Xk})

where C({Xk}) is a constant for {an}pn=1. Additionally ignoring the edge effects of

{hk}N−1
k=0 , it becomes as

LML ≈ N

lnσ2 − ln

(
2N−1∏
k=0

h2
k

) 1
2N

+ C({Xk}). (A.5)

Therefore, if we can prove (
∏2N−1

k=0 h2
k)

1
2N = 1, we can say that the two objective functions

satisfies

argmin
{an}

LMMSE = argmin
{an}

LML, (A.6)

and the equivalence of the problems will be proved. The rest of this section shows the

proof for the statement (
∏2N−1

k=0 h2
k)

1
2N = 1.

It should be noted that the statement is trivial when using continuous signals because

the complex line integral of logarithmic function around the unit circle becomes zero.

However, when it comes to discrete signals, we have to consider a little more carefully.

Taking into account that {hk}2N−1
k=0 are composed of Fourier series, the envelope {h2

k}
2N−1
k=0

can be interpreted, when the coefficients {an}pn=1 are stable, as the eigenvalues of a 2N ×
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2N matrix (ΦTΦ)−1 represented by a circulant matrix:

Φ =



1 ap . . . a1

a1 1
. . .

...

...
. . .

. . . ap

ap
. . .

. . .

. . .
. . .

. . .

ap . . . a1 1


. (A.7)

Thus, the geometric mean of {h2
k}

2N−1
k=0 is given from the determinant of (ΦTΦ)−1:

(
2N−1∏
l=0

h2
k

) 1
2N

= (det(ΦTΦ)−1)
1

2N = (detΦ)−
1
N . (A.8)

Hereinafter, without loss of generality, we regard 2N and p as powers of two. To evaluate

(detΦ)−
1
N , we divide the matrix Φ as

1 ap . . . a1

a1 1
. . .

...

...
. . . ap

ap

. . .
. . .

. . .
. . .

. . .

ap . . . a1 1

ap . . . a1 1

. . .
... a1 1

ap

...
. . .

ap

. . .
. . .

. . .
. . .

. . .

ap . . . a1 1



,

in other words,

Φ =

P (p)
N×N Q

(p)
N×N

Q
(p)
N×N P

(p)
N×N

 . (A.9)

We first evaluate the upper-bound of the determinant. Since det(P+Q) ≥ detP+detQ

holds for positive-semidefinite matrices P and Q, and P
(p)
N×N is a lower triangular matrix
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with all of its diagonal elements valued one, the determinant satisfies

detΦ =

∣∣∣∣∣∣
P (p)

N×N 0

Q
(p)
N×N P

(p)
N×N

+

0 Q
(p)
N×N

0 0

∣∣∣∣∣∣
≥

∣∣∣∣∣∣P
(p)
N×N 0

Q
(p)
N×N P

(p)
N×N

∣∣∣∣∣∣+
∣∣∣∣∣∣0 Q

(p)
N×N

0 0

∣∣∣∣∣∣
= 1 + 0 = 1. (A.10)

Therefore, (detΦ)−
1
N ≤ 1.

Next, for the lower-bound, we use the theorem of determinants as

detΦ =

∣∣∣∣∣∣P
(p)
N×N Q

(p)
N×N

Q
(p)
N×N P

(p)
N×N

∣∣∣∣∣∣
=
∣∣∣P (p)

N×N

∣∣∣ · ∣∣∣∣P (p)
N×N −Q

(p)
N×N

(
P

(p)
N×N

)−1

Q
(p)
N×N

∣∣∣∣
=

∣∣∣∣P (p)
N×N −Q

(p)
N×N

(
P

(p)
N×N

)−1

Q
(p)
N×N

∣∣∣∣ . (A.11)

In accordance with the structure of P
(p)
N×N and Q

(p)
N×N , the N ×N matrix in Eq. (A.11)

can be written, using p× p matrix c
(N/2)
p×p , as

P
(p)
N×N −Q

(p)
N×N

(
P

(p)
N×N

)−1

Q
(p)
N×N =

1

a1 1 c
(N/2)
p×p

...
. . .

ap

. . .
. . .

. . .
. . .

. . .

ap . . . a1 1

ap . . . a1 1

. . .
... a1 1

ap

...
. . .

ap

. . .
. . .

. . .
. . .

. . .

ap . . . a1 1



≡

P (p)
N/2×N/2 C

(p)
N/2×N/2

Q
(p)
N/2×N/2 P

(p)
N/2×N/2

 , (A.12)
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and then we can rewrite the determinant using this:

detΦ (A.13)

=

∣∣∣∣P (p)
N/2×N/2 −Q

(p)
N/2×N/2

(
P

(p)
N/2×N/2

)−1

C
(p)
N/2×N/2

∣∣∣∣ .
The N/2×N/2 matrix Q

(p)
N/2×N/2

(
P

(p)
N/2×N/2

)−1

C
(p)
N/2×N/2 has non-zero elements in the

same place as C
(p)
N/2×N/2 so that the transformation of the determinant from Eq. (A.11)

to Eq. (A.13) can be repeated until the matrix in the equation becomes 2p× 2p:

detΦ =

∣∣∣∣∣∣P
(p)
p×p c

(p)
p×p

Q
(p)
p×p P

(p)
p×p

∣∣∣∣∣∣ . (A.14)

Finally applying to this equation the Hadamard’s inequality, it comes as

(detΦ) ≤

 2p∏
i=1

2p∑
j=1

Φ2
ij

 1
2

≤
(
2p|amax|2

)p
, (A.15)

where Φij and amax are respectively the (i, j) element of Φ and the maximum of

{1, |a1|, ..., |ap|}, resulting in

(detΦ)−
1
N ≥

(
2p|amax|2

)− p
N . (A.16)

From the above, the determinant is proved to hold

(
2p|amax|2

)− p
N ≤ (detΦ)−

1
N ≤ 1, (A.17)

and since
(
2p|amax|2

)− p
N = 1 when p ≪ N , the squeeze theorem leads to

lim
p/N→0

(
2N−1∏
k=0

h2
k

) 1
2N

= lim
p/N→0

(detΦ)−
1
N = 1. (A.18)

Therefore, the minimization problem of the LP is approximately equivalent to the mini-

mization of IS divergence when the frame length N is sufficiently larger than the prediction

order p.
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