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Abstract 

Mobility-as-a-Service (MaaS) describes a shift away from personally-owned modes of 

transportation and mobility solutions consumed as a service. The one significant 

application of MaaS is the shared transportation system. Shared transportation systems 

are enabled by combining transportation services from person-to-person transportation 

providers through a unified gateway that creates and manages the trip. The key concept 

behind the shared transportation system is to offer travellers mobility solutions based 

on their travel needs. For local authorities and policymakers, the potential to use shared 

transportation systems to source data on travel movements could open the door to more 

efficient use of capacity and new transport management tools. 

The objective of the thesis is to utilize the mobile phone GPS data to analyze the market 

potential and its environmental performance of emerging shared transportation modes. 

In this thesis, the study takes three shared transportation modes, which are bicycle-

sharing, ride-sharing, bus-sharing, as the study cases. 

Firstly, the study proposes a market-oriented methodology for non-dock bicycle-

sharing system planning. The potential demand for bicycle-sharing use is identified 

using mobile phone data. Then, a link network is constructed to represent the spatial 

distribution of potential markets. The algorithm of community detection is applied to 

the link network to discover the densely connected nodes in the area and define the 

division of sub-service areas. Finally, the potential patterns of bicycle-sharing use, the 

spatial distribution of the potential demand, and the potential emission reduction are 

analyzed based on the resulting division of sub-service areas. The proposed method is 

tested using a data set of approximately 34 million GPS trajectories obtained in Tokyo. 

The area of Tokyo is subdivided into 21 sub-service areas. Suggestions for bicycle 

management, infrastructure development, and bicycle-sharing system planning are 

given regarding sub-service areas with different properties. The potential emission 

reduction for the introduction of a bicycle-sharing system is calculated in the area of 

Tokyo. 

Then, a model is proposed for analyzing the potential reduction in emissions associated 

with the adoption of a bicycle-sharing system. Methods are presented for extracting 

human travel modes from mobile phone GPS trajectories, together with a geometry-

based probability model, to support particle swarm optimization. A comparison study 

is implemented to analyze the model's computational efficiency. Based on the resulting 

optimal layout for the network of bicycle docking stations, a multi-scenario integer 

linear programming model is proposed to optimize rebalancing procedures (i.e., 

moving bicycles between docking stations according to demand). Mobile phone GPS 

trajectories from approximately 3.7 million local mobilities are used to construct a case 

study for Setagaya Ward, Tokyo. The results show that, compared with the previous 

methods, the optimal layout solved by the proposed method could reduce emissions by 
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a further 6.4% and 4.4%. With an increase from 30 to 90 bicycle stations, the adoption 

of bicycle-sharing can reduce CO2 emissions by approximately 3.1–3.8 thousand 

tonnes. However, emission reduction will maximally decrease by 21.26% after an offset 

by bicycle production and rebalancing-generated emission. 

For ride-sharing, this study proposes an analysis framework to bridge the gap in city-

level adoption potential analysis. This study chooses the case study of the Tokyo area 

with over 1 million GPS travel records and trained a deep learning model to find out 

this potential. On average, from the computation result, nearly 26.97% of travel 

distance could be saved by ride-sharing, which told us that there is more similarity in 

people's travel patterns in Tokyo. There is considerable potential for ride-sharing. 

Moreover, the exhaust emission of CO, NMHC, and NOx can be reduced maximally 

by 15.55 tons, 0.63 tons, and 0.63 tons, respectively. Ride-sharing can improve the air 

quality of these center business districts and alleviate some city problems like traffic 

congestion. This chapter proposed a new framework to analyze the ride-sharing 

potential for ride-sharing service providers and decision-makers. 

Finally, the thesis introduces a method to generate planning suggestions for sharing-

bus lines and stops massive demand data. From the demand input, a link network is 

constructed to represent the sharing route of the demand. Community detection is 

applied to the link network to segment the link network into network communities with 

similar travel routes. By examining the core-peripheral structure and match the core 

part of communities into the road network, customized bus lines are generated. By 

analyzing the potential demand, boarding and alighting hotspots are identified as the 

suggestion for customized bus stops. A case study is conducted using mobile phone 

data in Tokyo, in which 29 bus lines are extracted. With inputting one-day sample data, 

our algorithm can generate the result in approximately 1 minute. According to the shape 

and spatial location of the bus lines, three types of bus lines serving different travel 

patterns are classified, including radiation type lines, ring-type lines, and suburban lines. 

By analyzing the emission reduction potential of the bus lines extracted, the bus lines 

generated by the proposed method can reduce emission pressure on urban expressways 

and mitigate approximately 13% of road traffic emissions. 
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Originality 

Due to the lack of works that summarized the development and frontiers of shared 

transportation potential and environmental impact analyses, it is hard to get 

comprehensive and high-dimensional information about the shared transportation 

system. This research aims to focus on the following questions: a) how to define and 

reinvent data-driven mobility models by studying urban dynamics, urban mobility, 

transportation behavior, and sharing potential. b) within a city-level urban mobility 

framework, how can we characterize the nature of data-enabled shared transportation 

services among different modes, and what are the similarities and differences. c) the 

existing positive and successful shared transportation systems that can be identified in 

the studied domain and how they can be best applied for practical success. To answer 

these questions, we take three shared transportation modes: bicycle-sharing, ride-

sharing, bus-sharing, as the study cases to discuss shared transportation systems under 

the framework of MaaS and developed a series of methods. The contributions of this 

study include: 

(1) The study maps the high-dimensional city people flow data into graph-structure 

forms based on the sharing characteristics. (Chapters 4 & 7) 

(2) The study utilizes the community detection method to decompose the spatial 

complexity of the mobility sharing potential estimation. (Chapters 4 & 7) 

(3) The study proposes an advanced PSO algorithm for reducing the probability of 

converging to locally optimal solutions of the high-dimensional model. (Chapter 5) 

(4) The study extracts the key features of mobility sharing and trains the model with 

prior knowledge. (Chapter 6)  
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Chapter 1 

Introduction 

1.1 Background 

Mobility as a Service (MaaS) was first introduced at the European Union ITS 

Conference in Helsinki, Finland, in 2014. At the 2015 World ITS Conference in 

Bordeaux, France, MaaS began to become a hot topic in the global intelligent 

transportation field. The connotation of MaaS is to understand the travel needs of the 

public deeply. By integrating all modes of transportation into a unified service system 

and platform, MaaS can make full use of big data to make decisions, allocate optimal 

resources, and meet the needs of the travel community. Moreover, to provide external 

services with a unified APP. MaaS has four characteristics as followings: (1) Sharing: 

MaaS pays attention to the provision of transportation services rather than the 

ownership of vehicles; in addition, as a passenger, he is not only the enjoyment of 

transportation services, but also the provider and sharer of traffic data for optimizing 

the entire travel service; (2) Integration: The so-called integration is the integration of 

various models and then the integration of payment systems; (3) People-oriented: Its 

main goal is to provide better travel services, seamless connection, safe, convenient and 

comfortable travel; (4) Low carbon: let everyone increase the proportion of green travel, 

and reduce the usage of private cars. 

The one significant application of MaaS is the shared transportation system (STS). 

Currently, many research groups and companies are focusing on developing STS under 

the framework of MaaS. The research fundamentals to achieve this target are how to 

assess the urban mobility characteristics, shared transportation adoption potential, and 

their matching performance as conditions and constraints in a transport system that is 

undergoing automation and is highly dependent on software, navigation systems, and 

connectivity. Further, another core issue is how to design MaaS platforms for STS that 

adapt to the evolving mobility environment, new types of transportation, and users 

based on an integrated solution that utilizes the sensing and communication capabilities 

to tackle the significant challenges that the STS industry face. 

Big data-based TST development is an emerging topic both in academic and industrial 

aspects. By the end of 2020, there will be over 50 billion connected devices globally, 

collecting over 2.3 zettabytes of data each year. STS leverages on this opportunity and 

is an example of a business model that is supported by the growth in smartphone use. 

STS is a digital, data-driven service that uses several technological capabilities 

associated with intelligent mobility innovation. It relies on building an ecosystem of 

stakeholders that agree to manage the supply and demand of the services that travelers 
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want. 

However, currently, all studies about big data in STS are fragmented. Few works have 

summarized the systemic knowledge on this field. Specifically, few studies focus on 

introducing how to screen and process the potential value from the "deluge" of 

unverified, noisy, and sometimes incomplete information for STS development. Also, 

few works were designed for high-resolution travel data (e.g., GPS data) mining for 

accurate shared transportation demand analysis, such as bicycle-sharing, ride-sharing, 

bus-sharing. However, the above knowledge is significant for stakeholders, such as 

researchers, engineers, operators, company administrators, and policymakers on related 

fields, to comprehensively understand the infra-knowledge structure and limitations of 

current technologies.  

Therefore, in this thesis, I took three shared transportation modes, which are bicycle-

sharing, ride-sharing, bus-sharing, as the study cases and try to discuss the issue of STS 

under the framework of MaaS via answering the following question: How to efficiently 

extract and utilize key feature information of high-dimensional city people flow data 

and assess mobility sharing potential at an urban scale? 

1.2  Shared Transportation Systems 

1.2.1 Bicycle-Sharing System 

Bicycle-sharing is a mobility strategy that could provide a healthy and eco-friendly 

alternative to motorized public transportation for short-distance trips in urban areas. 

Meanwhile, bicycle-sharing in reducing emissions as promoting cycling has been put 

forth as one of the major strategies to mitigate GHGs emissions and to slow down their 

catastrophic consequences. As a form of urban public transportation mode, promoting 

bicycle-sharing systems in the urban areas has several advantages: (1) Bicycle is an 

environmentally friendly travel mode, it produces zero emissions. It provides a 

comfortable and livable environment for the city 1,2. (2) The specific benefits of cycling 

on health outcomes include reductions in mortality and weight gain. The public health 

of the city with more people choosing bicycle can be largely improved 3. (3) Meanwhile, 

a bicycle-sharing system can be a supplement of the public transportation system, as an 

efficient way to solve the "last mile" problem -- connecting people from a public transit 

network to their final destination, which is often the least efficient and least cost-

effective part of travel 4,5.  

Bicycle-sharing is not a new thing. In the early stage, bicycle-sharing systems were 

operated with bicycle docking stations and were mainly promoted by the government. 

Users have to reach the bicycle docking stations to get access to the bicycle, which 

leads to another "last mile" problem. Since 2014, Internet-supported bicycle-sharing 

mode without bicycle docking stations had emerged and gradually become warmly 



3 

 

applauded by the public. Through the mobile phone application, users can see the 

location of nearby bicycles and reserve one. Data released by China E-commerce 

Research Center in June 2017 shows that China's share economy scaled up to 3.945 

trillion RMB in 2016, increased by 76.4%, serving roughly 60 million people and 

creating 5.85 million jobs, and the total size is still expanding 6.  

However, in recent years, there are some problems revealed in the existing bicycle-

sharing programs. For example, bicycles in some areas do not earn the acceptance of 

the public, but in some areas, the demand is unsatisfied. Bicycles without enough 

parking lots also block the streets or roads and cause traffic congestion7. These 

problems are mainly resulting from the inappropriate layout of bicycle-sharing systems 

and the lack of an accurate grasp of the bicycle-sharing market. The layout design of 

the bicycle-sharing system will have a significant influence on the system's 

implementation performance 8. A well-designed system that matches the actual bicycle-

sharing demand will be readily accepted by the public and can minimize bicycle 

rebalancing and reduce the emission 9. The optimization of bicycle-sharing systems 

generally starts with the definition of coverage areas. Then, optimizing the bicycle dock 

stations or rationing of bicycles are adapted to satisfy the demand. It is also essential to 

propose compatible management in areas with different demand patterns and different 

rent and return behaviors 10. 

Nevertheless, the definition of the coverage area and the division of sub-service areas 

are highly essential and fundamental. However, it usually gets less attention in the 

bicycle-sharing system planning. In most large cities, bicycle-sharing programs are 

usually operated based on the administrative division or limited to the city center and 

gradually extending it to reach the peripheral areas. This kind of area consideration has 

several disadvantages. Firstly, the actual travel demand is failed to be considered. The 

frequent cross-area bicycle-sharing behaviors will lead to considerable effort on bicycle 

rationing and rebalancing. Secondly, without dividing areas into small market segments, 

operators of bicycle-sharing services cannot adapt compatible management strategies 

for areas with different demand patterns. In order to determine the coverage area, a 

more reasonable way should be a market-oriented sub-service area division based on 

the bicycle-sharing pattern. 

1.2.2 Ride-Sharing System 

As one significant component of shared transportation, Ride-sharing is an emerging 

transportation mode under a new concept of MaaS 11. The essential connotation of this 

concept is to understand the travel demand of the public sincerely12. By integrating 

travel information into a unified service system and platform, ride-sharing can make 

full use of big data to make decisions, allocate optimal resources, and meet the travel 

demand of communities13. Ride-sharing provides external services and collects massive 

user data with a unified APP14, which has three characteristics: (1) Integrated: Ride-

sharing pays attention to the provision of transportation services rather than the 
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ownership of vehicles; in addition, as a passenger, he is not only the enjoyment of 

transportation services but also the provider and sharer of traffic data for optimizing the 

complete travel service; (2) People-oriented: Its main goal is to provide better travel 

services, seamless connection, and convenient travel; (3) Sustainable: Ride-sharing 

enables people to share vehicles and trips, thereby reducing energy consumption and 

air pollution, and relieving the traffic jam during rush hour15. The whole process of ride-

sharing is shown in Figure 1. 1. From the ride-sharing concept, people with additional 

resources could be organized through the Internet and MaaS APP. After intelligent 

matching, the integral system efficiency will be significantly increased16. Therefore, 

developing ride-sharing is a fashionable trend for smart and green urban planning17. 

According to the existing cases, ride-sharing is generally introduced and operated by 

some emerging companies as a commercial project, rather than governmental public 

welfare18-20. Hence, the estimated production value of ride-sharing sector is the 

determinant for whether the investment would be determined and the pre-estimation for 

the potential of ride-sharing is necessary21.  

 
Figure 1. 1 Ride-sharing system 

Nevertheless, the potential analysis is a highly complex issue22. Specific knowledge 

gaps need to be further solved. (1) Demand assessment (the scale of driver): Generally, 

the previous studies for the regional potential of ride-sharing are mainly based on the 

urban population distribution, which is rough and imprecise23. (2) The scenario analysis 

on the different extent of participation in ride-sharing. (3) Matching simulation: With 

the uncertainty of mobility trajectory and fuzziness of matching requirement, it is hard 

to predict the matching feasibility for each driver and rider24. As shown in Figure 1. 2, 

the commuting route for a driver is not unique, especially on an urban scale. There will 

be multiple routes for the same origin-destination (OD). Meanwhile, choosing which 

route for a driver will depend on the current traffic condition, driver's habit, and even 

governmental traffic control scheme. For a real-world case, it is hard to observe that 

information from the individual level. (4) Interaction among the above factors: Those 

inaccuracies will introduce many uncertainties into the issue, which will significantly 

impact the matching result. Besides, the determinant for whether a driver and a rider 

would be matched or not is only the similarity of their trip's OD but also that of their 

expected time scheme (departure and arrival time). Here, the driving time asynchronism 
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also should be taken into consideration. For example, in Figure 1. 2, the matching 

condition of the driver and rider #2 is that the picked-up time of rider #2 should be 

similar to its expected departure time, and so do the arrival time. However, how to 

measure those similarities of not only distance but also the duration is a fuzzy question. 

Since the uncertainty of mobile trajectory and fuzziness of matching requirement, it is 

incredibly complicated to make the matching work even for a small scale of users. 

When the range expands to an urban level, the complexity of the issue will be increased 

exponentially. (5) The existing optimization methods cannot support the big data-based 

potential and emission reduction analyses due to the computational complexity.  

 

Driver

Rider #2 

Rider #1 

Rider #3 

Route #1 Route #2 Route #3

Timeline

Departure time 
(Driver)

Departure time 
(Rider #2)

Arrival time 
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Arrival time 
(Rider #2)

·

 

Figure 1. 2 Uncertainty of mobile trajectory and fuzziness of matching requirement 

1.2.3 Bus-Sharing System 

Bus-Sharing is a new type of Internet-supported public transportation mode that 

emerged and was warmly applauded by the public in recent years25. A bus-sharing 

system aims to provide more demand-oriented, express, and efficient transit services 

than traditional public transit bus lines. Meanwhile, promoting a bus-sharing system 

can be one of the major strategies to reduce the usage of private cars and mitigate GHG 

emissions from road traffic. The performance of the bus-sharing system largely depends 

on the system design. Currently, the bus-sharing systems in operation usually collect 

demand data from online surveys and manually plan bus-sharing lines, costly and 

inefficient and can hardly be competitive than traditional bus transit. A real-time 

dynamic bus-sharing line planning system based on the demand can primarily improve 

the performance and the public acceptance of the bus-sharing system.  

Chartered bus sharing on demand is a group of people spread in a specific region, 

interested in going to the same place or region at approximate times. Bus-sharing 

systems must have the ability to offer customized routes to passengers. There have been 

some bus sharing platforms that have the intelligence to group demands and suggest 
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routes according to the customized presets (maximum Km, maximum route time, 

minimum vehicle occupancy, etc.), so as a suggestion, the routes will be published in a 

specific landing page. The passenger can buy/reserve the seat online. 

However, developing such a bus line planning system faces some new challenges: (1) 

bus-sharing systems should have an Internet-based platform to collect passenger's daily 

travel demand efficiently. (2) The system should handle massive demand input and 

generate results in a short time of computation. (3) Due to the constant change of 

demand, the algorithm of generating bus-sharing lines and stops also requires to be 

dynamic. Dynamic bus line planning algorithms should be integrated into the system to 

generate bus-sharing networks according to the real-time demand input or history data. 

1.3  Objective and Outline 

The objective of the thesis is to utilize the mobile phone GPS data to analyze the market 

potential and its environmental performance of emerging shared transportation modes. 

In this thesis, The study took three shared transportation modes, which are bicycle-

sharing, ride-sharing, bus-sharing, as the study cases and aimed to discuss the following 

issue: How to efficiently extract and utilize key feature information of high-dimensional 

city people flow data and assess mobility sharing potential at an urban scale? 

The remainder of this thesis is organized as follows: In chapter 2, The study gives a 

literature review of the researches on shared transportation systems. In chapter 3, The 

study introduces the data source and preprocessing method. Chapter 4 and chapter 5 

focus on the bicycle-sharing system and discuss market-oriented sub-area division and 

layout optimization issues. In chapter 6, the study explores the issue of city-level 

potential analysis for ride-sharing systems. Chapter 7 introduces the proposed method 

for city-level dynamic lines design for the bus-sharing system. Chapter 8 concludes this 

thesis and introduce some point which can improve in the future. 

1.4  Assumptions 

To effectively formulate the big-data-driven shared transportation models, here we 

assume that Shared transportation usage demand has a spatiotemporally linear relation 

with Corresponding-distance total travel demand. Specifically, we assume 

• all short-distance (1-3 km) walk, bicycle, and car travels in the dataset are the 

potential bicycle-sharing demands; 

• all car travels in the dataset are the potential ride-sharing drivers’ travel demands; 

all long-distance travels (>3km) extracted from the dataset represent the ride-

sharing riders’ demands; 

• all car travels in the dataset are the potential bus-sharing demands. 
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Chapter 2 

Literature review 

2.1 Bicycle-Sharing System 

In recent years, most of the studies of bicycle-sharing have focused on the operation 

and optimization of bicycle-sharing systems and system layout design 8, social and 

environmental benefits26, bicycle-sharing demand 27, impacts on public health 28, and 

effects of built environment and weather on bicycle-sharing 29. The success of the 

bicycle-sharing program largely depends on how user demand is met and how the 

system is designed. Much attention has been paid to these two problems. 

The existing predicting methods are focusing on demand from three levels27: city-level, 

cluster-level, and station-level on the demand prediction aspect. Giot and Cherrier made 

demand predictions for the next 24 hours with a city-level granularity for the Capital 

Bike Share system30. Li proposed a bike-sharing demand prediction framework that 

introduces a Bipartite Station Clustering algorithm to individual group stations31. Li 

used a Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-

DDGF) model to learn hidden different pairwise correlations between stations to predict 

station-level hourly demand on a large-scale bike-sharing network27. 

Research mainly focuses on the promotion policies of bicycle-sharing service and the 

siting of bicycle stations on the system design aspect. The existing methods can be 

divided into two types: mathematical programming models and GIS-based methods. 

Mathematical models based on developing mixed-integer linear programming (MILP) 

or mixed-integer nonlinear programming (MINLP) models have been frequently 

applied to plan a new bicycle-sharing system. Chen and Sun proposed a MILP model 

to formulate the layout of public bicycle stations to minimize investment budget and 

users' total travel time32. The GIS-based subjective analysis is a method for the layout 

design for many public infrastructures by using GIS as a support tool for assessing 

bicycle facility planning and proposing indicators for measuring latent demand33-35. 

Gonzalez proposed a model to optimize the bicycle stations in bicycle-sharing systems 

by using GIS-based analyzing tools 36. Zhang proposed an optimization method for the 

layout of the network of bicycle docking stations and a model for optimal rebalancing8. 

Based on the spatial data generated from the real world, results from the GIS-based 

method are more objective and practical. 

Most existing researches and methods are focusing on the dock-based bicycle-sharing 

system. As a newly-arisen business model, an Internet-supported bicycle-sharing 

service without bicycle docking stations is more flexible and easier to accept by the 
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public37. However, both demand prediction and the system design in the non-dock 

bicycle-sharing systems are different from dock-based systems.  

In the previous study and existing bicycle-sharing program, the coverage area of the 

bicycle-sharing system gets little attention. The coverage area is usually defined based 

on the boundaries of the central urban district or administration division 38. Most of the 

existing method to define the bicycle-sharing area is to propose models for optimizing 

the travel demand served by the bicycle-sharing system. Frade defined the coverage 

area of the bicycle-sharing system by proposing an optimization method to maximize 

the demand covered39. Zhang and Meng also consider the subarea segmentation in their 

research. They proposed a method based on network community division and set up a 

model to optimize the recourses. However, the study area was only restricted to a 

relatively small district40. The existing consideration of coverage area is usually based 

on a mathematical model to maximize the demand served by the bicycle-sharing system. 

Due to the lack of data and computing resources, these methods are usually applied to 

case studies in a small region.  

The emergence of pervasive, geospatial data generated by individuals has recently 

triggered an opportunity to study individual mobility patterns41 and spatio-temporal 

accessibility42. As a new travel survey tool, mobile phone data is more pervasive and 

accurate, which allows us to fully track the trip chain of the individual in both temporal 

and spatial dimensions. It offers a new way to anticipate the potential demand and 

perform a market-oriented sub-area division of the non-dock bicycle-sharing system in 

the city-level geospatial area. 

In short, the previous methods are still limited by the dilemma between theoretically 

optimal sites and their real-world practicability. Moreover, the coverage area of the 

bicycle-sharing system gets little attention. Due to the heavy computation requirement, 

the existing methods have limitations in handling large-scale cases. For the related 

works about bicycle-sharing system layout optimization, the existing methods are 

usually survey (or aggregated) data-driven models which cause less accuracy in travel 

demand detection. Also, the existing methods are usually point (or cell)-based models 

which cause less flexibility in real applications. Although novel GIS-based methods 

have been developed to achieve a more effective balance for this challenge, further 

analysis, and discussion of the strength of higher-quality sample sets and corresponding 

solving methods are still needed. 

2.2 Ride-Sharing System 

As a representative of intelligent and green city development, the ride-sharing system 

is one of the hottest topics in transportation, public health, urban planning. Many 

articles pursued emerging applications, case discussion, and improving methodology 

for this system in the recent five years. Among these studies, many of them have 

focused on the history and benefits of ride-sharing systems43, crowdsourcing 
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optimization44, development policies45, market analysis46, framework design47, and 

survey study48. These studies could provide some theoretical foundations and data 

supports for the potential analysis of ride-sharing systems. In order to make a precise 

classification for their contributions, Agatz, et al. 49 concluded three further broad 

research fields for ride-sharing systems: (1) Optimization50, (2) Incentive51, and (3) 

Choice52. The rest of the related work will be organized from these three aspects.  

Optimization for ride-sharing systems is a traditional topic in operational research, 

which is also the critical task of the potential assessment. Model is the base of 

optimization, which could be classified into static and dynamic53. The former requires 

the complete knowledge of transportation networks for optimization; however, real-

time applications usually lack it. Despite basic or dynamic, both problems need to 

consider how to arrange the matching pool, and different researches focused on mainly 

three kinds of arrangement: "Single rider, single driver54", "Single driver, multiple 

riders55" and "Single rider, multiple driver56" arrangement issues. Recently, uncertainty 

in ride-sharing optimization is another emerging research topic because the uncertainty 

in the model's parameter could destroy the performance of the optimization solution, 

and there are always uncertainties in real-world application.  Chen et al.57 exploited 

an event-driven Receding Horizon Control scheme for a Ride-Sharing System to 

minimize a weighted sum of passenger waiting and travel times and used Simulation of 

Urban Mobility as the case study evaluate their scheme. The result shows that based on 

an actual map and taxi travel information, the RHC performs better than the known 

greedy heuristic. Naoum-Sawaya, et al. 58 presented a stochastic mixed-integer 

programming model to optimize the allocation of shared vehicles to employees while 

considering the unforeseen event of vehicle unavailability. Considering uncertainties of 

travel time and delivery location, Li, et al. 59 proposed a methodology for ride-sharing 

optimization integrating an adaptive large neighborhood heuristic search and three 

sampling strategies for the scenario generation. 

Incentive, which is another research field in ride-sharing, means assessing the degree 

of increasing the potential and contribution to the environment. Rising fuel costs, 

congestion condition60, and climate mitigation pressure61 may further increase the cost 

of private car use in the future and thus strengthen the advantages of ride-sharing and 

potential62. Studies that concerned this topic mainly focused on evaluating how far ride-

sharing can be adopted and how much benefit can be brought. Santos and Xavier 63 

made an economic comparison between private ride and ride-sharing travel. In their 

simulations, passengers paid, on average, almost 30% less than they would spend on 

individual journeys compared with shared travels. Based on the real-world ride-sharing 

trip data provided by DiDi Chuxing company, Yu, et al. 64 evaluated the direct 

environmental benefits of ride-sharing. The chapter showed that immediate annual 

energy savings are approximately 26.6 thousand tce, and annual emission reductions of 

CO2 and NOx are approximately 46.2 thousand tons and 253.7 tons, respectively. Yin 

and Liu 65 explored the CO2 mitigation potential by ride-sharing. They developed an 

integrated land-use transport model and applied it to the Paris Legion with some ride-
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sharing scenarios in 2030. The result showed that when the vehicle occupancy rises by 

50%, the CO2 emission can be reduced by 33%. Liu and Yin 66 estimated the fuel-

saving of individual ride-sharing trips based on a trip-specific model and the real-world 

data offered by DiDi company. For each trip, the fuel saving can be 1.23 L and carbon 

subsideies are ¥5.38 with the strictest subsidy ceiling. 

Choice, the last research topic in ride-sharing, means making a good understanding on 

participants' behaviors and preferences in various aspects, which is essential to 

participant matching67. Jalali, et al. proposed an assessment method for the potential of 

ridesharing to reduce emissions by reviewing mobility patterns of approximately 8,900 

privately-owned vehicles and extracting their mobility performances 68. The approach 

includes five steps: data preprocessing, trip recognition, feature vector creation, 

similarity measurement, and clustering. With the rising of new technology, there exist 

some studies that explore the potential of autonomous vehicles. Gurumurthy et al. 

matched AirSage's cellphone-based trip records and found significant opportunities for 

DRS(dynamic ride-sharing system)-enabled SAVs(shared autonomous vehicle) 69. 

They showed that about 60% of single-person trips could be matched with another. The 

value increases to 80% if the wait time climbs to 15 to 30 minutes. Then, Pettigrew et 

al. interviewed 43 key stakeholders in different sectors to explore the threats and 

opportunities for the potential of autonomous vehicle sharing 70. 

Although previous studies have made comprehensive and in-depth discussion on ride-

sharing issues when dealing with the and emission reduction potential analyses, there 

are still some topics need to be explored further:  

(1) Complexity and uncertainty of travel time and mobility behavior. Although 

commuting is the main factor of urban mobility behavior, other activities (such as 

shopping or dining outside) also account for a considerable part of ride-sharing markets 

but are rarely considered in previous studies. Besides, ride-sharing will attract 

participants not only from private vehicle travelers but also from public transit riders. 

Those factors have a high impact on the assessment of emission reduction. The multiple 

travel purposes and modes will introduce complexity and uncertainty into the issue.  

(2) Various potential matching factors. Previous researches for potential analysis mainly 

used the similarity of two travels to decide whether they could be matched or not. 

However, there is a weakness in this method. With different travel modes and habits, 

different trajectories might vary a lot from each other despite the same OD. For example, 

if one participant goes to the workplace by private car, and another one goes to the same 

place by urban railway. Although the ODs are identical, the two participants will go 

through different trajectories. Using similarity methods may not be matched, but this is 

a good candidate for adopting ride-sharing in the real world. Furthermore, when the 

time feasibility issue is considered, the matching issue will be more complex. 

(3) Efficient spatial analyses. City-level potential analyses are a complex issue, of 

which the solution is highly time-consuming. While efficient spatial analyses on the 

potential and emission reduction potential are significant and essential to policymakers 
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to make a detailed plan for ride-sharing development. However, few studies gave these 

results. 

2.3 Bus-Sharing System 

As an emerging sustainable travel mode in the public transit system, bus-sharing has 

earned great attention in recent researches. The current study of customized bus systems 

mainly focuses on the following aspects: Analysis of bus-sharing concept25; Bus-

sharing network design71; Bus-sharing management strategies72 and Passenger 

preference on bus-sharing73.  

The concept of bus-sharing service was introduced as subscription bus services several 

decades ago. Researches mainly focus on subscription bus services, guidelines for the 

subscription bus network, operational planning, and the pricing strategy, etc74-79. In 

recent years, Qingdao launched the first bus-sharing system in August 2013 in China. 

Liu et al. introduce the new customized bus concept and provide a systematic 

examination and analysis of the development and current state of bus-sharing practices 

in China 25. 

Lyu et al. proposed a typical design of bus-sharing lines (Figure 2. 1). Along the bus-

sharing bus line, there are two bus stops: (1) Grouped bus stops: multiple bus stops are 

arranged in a small region to assemble travelers. (2) Intermediate bus stops: few 

intermediate bus stops are arranged along the bus route to guarantee the efficiency of 

the bus-sharing line. In this design, the bus-sharing bus can provide more efficient and 

direct service than a traditional bus. 

 

Figure 2. 1 Design of bus line and bus stops for a bus-sharing line71,80 

Researches on bus-sharing network design mainly focus on designing bus-sharing lines' 

direction and stop location by using optimization models. These models are usually 

based on the following steps 25,81: demand extraction; bus-sharing line and stops 

deployment; further optimization on scheduling, dispatching and controlling, etc. In the 

detailed design of bus-sharing systems, researchers have well-developed dozens of 

models that can consider multiple factors, including dynamic routing and timetabling, 

congestion detouring, etc.71,82 

However, the previous methods of developing bus-sharing lines have their limitations: 
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(1) The basic concept of most bus-sharing network design research is initially to deploy 

the bus stop and then connect the stops by bus-sharing line. From the city planning 

aspect, it is believed that to design the bus line and decide how the bus line connects 

the areas into integration is more critical. Therefore, it is better to plan bus line direction 

before deploying bus stops, which most current optimization models failed to realize. 

(2) Recent research on bus-sharing line planning has been mostly restricted to 

establishing comprehensive optimization models and can hardly be applied to the city-

wide range of areas with massive demand input. The existing works usually focused on 

hundreds of passengers-level cases which is far lower than the case scale of a city-wide 

analysis. 
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Chapter 3 

Data Preprocessing 

3.1 Data Source 

The GPS data is extracted from the 'Konzatsu-Tokei(R)'GPS dataset collected by NTT 

DOCOMO INC. "Konzatsu-Tokei (R)" Data refers to people flows data collected by 

individual location data sent from a mobile phone with enabled AUTO-GPS function 

under users' consent, through the "docomo map navi" service provided by NTT 

DOCOMO, INC. Those data are processed collectively and statistically in order to 

conceal the private information. Original location data is GPS data (latitude, longitude) 

sent in about every a minimum period of 5 minutes and does not include the information 

to specify individual such as gender or age. There is no any processing or filtering done 

to the data before the usage. 

3.2 Preliminaries 

Definition 1 (Raw human trajectory): The raw trajectory collected from an individual 

is a sequence of 3-tuple: (timestamp; latitude; longitude), which can indicate a person's 

location according to a captured timestamp. Here, I use t  to represent timestamp and 

x  for (latitude; longitude). Hence, the raw human trajectory could be presented as 

( ), ,,i j i jt x . Where i  is superscript for the set of the participant and j is for the set of 

GPS point. 

In order to keep the dataset more structured, I use discrete-time presentation with fixed 

time step t , that is: 

  ) , 1 ,1, , 1, , i j i ji mi j mj t t t+    − =           (3.1) 

Definition 2 (Speed sequence): Speed information is important for trajectory travel 

mode detection. Based on Definition 1, speed sequence could be presented by ( ), ,,i j i jt v , 

where, 

  ) ( ), , 1 ,1, , 1, , i j i j i ji mi j mj v L x x t+    = −  ,       (3.2) 
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L is the distance function by the difference of latitude-longitude coordinates. 

Definition 3 (Rider and driver mobile stream): For riders in the system, OD coordinates, 

departure, and arrival time information are the main determinants for participants 

matching. For drivers, their raw human trajectory data will provide much information 

revealing the uncertainties of travel habits. Here, I use 

( ), , ,= , , , ,i k i k i kRid ODx ODt ur t TRm  to determine the urban rider mobile stream. Where  

k  is superscript for set of trajectory segment, ODx is OD coordinates. ODt  is 

departure and arrival time information. ur is urban area. TRm is the travel mode. F is 

human travel mode detection model. 

    ( ) Rid ,, 1, , = | , , , ,i k i ii I k mk TRm mod mod walk bike vehicle train mod F t v      

(3.3) 

I use ( ), , ,= , , , ,i k i k i kDri x t ur t TRm  to present the urban diver mobile stream, which 

satisfies: 

 Dri ,, 1, , i ki I k mk TRm vehicle    =           (3.4) 

3.3 Travel Mode Detection 

3.3.1 Extraction of Stay Versus Moving Trajectory Segments 

A stay segment within a trajectory corresponds to a group of consecutive points 

representing a user who is stopped at a location. In this study, stay segments were 

extracted based on thresholds for distance and time. Neighboring points with distances 

and times lower than the threshold were classified as stay points. In addition to the 

conventional stay points, some noise points were also featured in the GPS trajectories; 

those points had a large offset from the true location. Note that it was possible for the 

distance from the noise points to the neighboring points to be larger than the threshold 

as if they corresponded to a stay status. In order to detect these outliers, a Gaussian 

distribution was utilized to represent the GPS points, with the mean  and standard 

deviation  being calculated as follows: 

( ) ( )
2

1 1

1 1
,

N N

i ix where x
N N

  = − = 
         (3.5) 

where ix  is the i th GPS point and N  is the total number of points. If the distances 

from an inner point to its neighbors were larger than ( ) 2.6ix  −  , this point was 
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labeled an outlier and removed from the trajectory. 

3.3.2 Splitting Moving Segments 

The moving segments were split through the following procedure. Firstly, moving 

segments with speeds <100 m/min were extracted according to the pedestrian travel 

mode. Then, the remaining segments were split according to the change points, at which 

the users changed transportation mode. The change points were detected using two 

features: the velocity change rate (VCR) and points on train lines. The VCR was defined 

as the average speed of the current segment compared with the current observed speed, 

such that 

. . .average averageVCR S Speed P Speed S Speed= −
        (3.6) 

where . averageS Speed  is the average speed of the segment and  .P Speed  is the speed 

of one point in the segment. The use of the VCR  index was proven to be more effective 

and more stable than the acceleration index in the case of sparse GPS data. 

3.3.3 Traffic Mode Classification 

Once the split traffic segments were obtained, the traffic mode was classified using the 

random forest method, which is an extension of the traditional decision tree and is a 

supervised learning method that has been shown to perform well for transportation 

extraction. In the random forest method, multiple trees are constructed to classify a new 

object, where each tree provides a classification as a vote; then, the forest classifies the 

object with the most votes.  

In this study, the input features used in the random forest method were as follows: the 

total distance (in meters) and duration (in minutes) of the segment; six-speed features 

(i.e., minimum speed, maximum speed, average speed, overall average speed, 

maximum acceleration, and velocity change rate); and the percentage of the points that 

coincide with a train line or the road network, as extracted by a 50 or 100 m buffer, 

respectively. Five traffic mode labels were output by the random forest model: train and 

subway, vehicle, bicycle, walk and stay. Test datasets of the five traffic modes were 

utilized in the experiment to determine the model performance for the different traffic 

modes. 

3.3.4 Segment Merging 

This step reduces the trivial and uncertain segments by applying specific rules. First, 

consecutive segments with the same traffic mode were extracted. Then, segments for 
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which the traffic modes were uncertain were merged into neighboring segments. For 

other complex cases, classifiers with training data were utilized to merge the segments.  
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Chapter 4 

Bicycle-Sharing System: Market-Oriented 

Sub-Area Division 

Bicycle-sharing is an up-to-date travel mode and has been introduced to many cities 

worldwide 83. As a popular form of urban transport, public bicycles have the following 

advantages: (1) As they produce no air or noise pollution, bicycle-sharing systems 

provide residents and tourists with a convenient, environmentally friendly way to travel 

and enhance the city's sustainable competitiveness 24. (2) Meanwhile, cycling also helps 

to enhance public health and reduce morbidity levels associated with urban disease 29. 

(3) Finally, compared with other public transportation modes, public bicycles benefit 

from small volume, flexible operation, good accessibility, and lower investment cost 84. 

Bicycles can be integrated with other modes of public transit, and cover short trips of 

1–5 km, thereby helping to improve utilization of the road network 85, ease traffic 

congestion, improve the efficiency of urban traffic 55, and reducing the transportation 

emission 86. Evaluating the potential emissions reduction of adopting the bicycle-

sharing system for cities is significant to the local government and bicycle-sharing 

companies. This could encourage and promote the transportation sector to make 

sustainable policies about bicycle-sharing and guide companies to formulate the 

development strategy 87. However, city-level evaluation models for demand potential 

usually are not solvable due to the large model scale. We need to divide the city into 

several sub-area for separately modeling to reduce the model size and make the model 

solvable for better system design, monitoring & prediction, and rebalancing, as also 

similar for other socioeconomic division analysis. The current management modes of 

the existing bicycle-sharing systems are usually administrative division based, but the 

administrative division is not effective in representing actual mobility boundaries 

(Figure 4. 1a). Therefore, we need a market-oriented sub-area division.  

In this chapter, a market-oriented method of bicycle-sharing system planning is 

proposed. The proposed method involves three steps: identifying potential demand, 

dividing sub-service areas, and analyzing potential use patterns and potential emission 

reduction. The rest of this chapter is organized as follows — Section 4.1 defines the 

problem that is going to be solved. Section 4.2 presents the methodology of this work, 

including possible bicycle-sharing behavior detection, sub-area division, bicycle-

sharing pattern indicators, hotspot identification, and the emission reduction model; 

Section 4.3 presents the case study in Tokyo and proposes the contributions and 

conclusions of this study. 
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4.1  Market-Oriented Sub-Area Division 

The division of sub-service areas is essential in the market-oriented bicycle-sharing 

system planning. As is illustrated in Figure 4. 1b, the benefits of sub-service area 

division can be concluded in three aspects: 

• Operation: by dividing the coverage areas into sub-service areas, the potential 

market share of each subarea can be estimated. Based on the demand and travel 

patterns, bicycle-sharing operators can estimate the number of bicycles allocated 

in each area to meet the demand without resource waste. 

• Management: for subareas with different demand patterns, corresponding policies 

can be made, including dynamic pricing, restricting parking areas, etc. The division 

of subareas can also give suggestions to the infrastructure construction of the 

bicycle system. 

• Rebalance: from the volume of cross-area demand, the penalty of cross-area 

traveling can be decided without largely influence the whole system, which can 

primarily reduce the effort of rebalancing and ensure the usage in some specific 

areas. From the traveling patterns in each subarea, bicycle-sharing operators can 

decide their rebalancing strategy.   

According to the demand of market-oriented sub-area division, making a proper 

division of coverage area should obey the rules below:  

• The subareas should be clusters of regions and continuous in spatial. 

• The division of coverage area should follow the bicycle-sharing use patterns by 

using human mobility data, with a relatively larger volume of intro-area than cross-

area travel. 

• The size of subareas should be suitable and usable for bicycle-sharing system 

management without being too large to invalidate the benefit of sub-area division 

or being too small to increase the difficulty of management. 

In general, constructing a network based on human mobility data and applying the 

network community detection method on the network will be a perfect solution for the 

market-oriented sub-area division. 

 

(a) 



19 

 

 

(b) 

Figure 4. 2 Problem description of the sub-area division 

(a) illustrates the difference between administrative division and market-oriented sub-area division. (b) 

illustrates the benefits of a market-oriented sub-area division. 

4.2 Methodology 

4.2.1  Framework 

 

 

Figure 4. 3 Framework of methods introduced for market-oriented sub-area division 

The framework of the methodology is shown in Figure 4. 2. In this chapter, mobile 

phone GPS data is used to detect the potential bicycle-sharing demand. The sub-service 

area is divided based on the spatial interaction of the potential bicycle-sharing use 

demand. In brief, the methodology is as follows: firstly, from the mobile phone data, 

travel mode is detected by the data mining method proposed in our previous work 88. 

The origin(O) and destination(D) information of walking, cycling and short-distance 

vehicle trips are matched into mesh grids and aggregated by grid cells. Secondly, a link 

network is generated based on the potential bicycle-sharing behaviors detected in the 

OD trips. Community detection is then applied to detects the link community, which 

naturally suggests the sub-divisions of the coverage area. Finally, analysis from three 
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aspects is conducted based on the sub-areas division, including the sharing behavior 

pattern, the hotspot, and the potential of emission in sub-areas.  

4.2.2 Detecting Potential Bicycle-Sharing Behaviors 

Considering the scenario as follows: if a traveler rides a bicycle to his/her destination 

and parks the bicycle. Soon after that, another traveler starts his/her trip from the exact 

location using the same bicycle. This scenario can be regarded as one perfect bicycle-

sharing procedure.  

Based on this scenario, given short distance OD trips (1-3km in this study) inferred 

from the mobile phone GPS data, I propose a method to identify the potential bicycle-

sharing trips. I first define the spatial and temporal resolution for which bicycle-sharing 

trips can be matched. A mesh grid composed of equal-width grid cells is generated on 

the spatial aspect, and the OD trips are aggregated by grid cells over the study area. 

Here, the spatial resolution is set as 500m*500m squares; On the temporal aspect, I 

assume that trips occur uniformly throughout each hour and compute the number of 

trips within each time window Δ, for which the timestamp 𝑡𝑛 =  𝑡𝑛−1 +  Δ. Δ is the 

maximum allowable gap between the arrival time of the first trip and the departure time 

of the second trip to consider as a desired bicycle-sharing behavior. A larger Δ will 

enable more trips to be matched as bicycle-sharing. However, it implies a lower 

efficiency of the sharing system and will generate more bicycle parking demand. Here, 

considering the data volume, Δ is set as 30 minutes. 

 

Figure 4. 4 Method of potential bicycle-sharing estimation and link network construction 

Consider in timestamp 𝑡𝑛, there are 𝑞𝐴𝐵 trips from location A to B, and in the next 

timestamp 𝑡𝑛+1, there are 𝑞𝐵𝐶 trips from location B to C. Users of the bicycle will be 

changed in location B, and, thus, is the place where the bicycle-sharing behavior is 
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generated. The maximum of potential bicycle-sharing trips from the edge 𝑒𝐴𝐵 to edge 

𝑒𝐵𝐶 is 𝑃𝐴𝐵𝐶 = 𝑚𝑖𝑛 (𝑞𝐴𝐵, 𝑞𝐵𝐶). Suppose I consider the edges between the mesh grids 

(OD) as nodes in a network. In that case, naturally, a link network can be constructed, 

with the number of potential bicycle-sharing trips between nodes as the weight of edges 

in this network. This link network can be denoted as 𝐺(𝑉, 𝐸, 𝑊) , where 𝑉 =

{𝑒𝑖𝑗; 𝑖 ≠ 𝑗} is the set of nodes, 𝐸 = {𝑒𝑖𝑗𝑘; 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘} is the set of edges, and 𝑊 =

{𝑤𝑖𝑗𝑘; 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘} is the edge-weights. An example of this method is illustrated in 

Figure 4. 3. 

4.2.3 Market-Oriented Division of Sub Service Areas 

In the network analysis, a community is a group of nodes having a higher probability 

of being connected than to nodes of other groups89. Placing each link as a node in the 

network allows us to reveal hierarchical and overlapping relationships simultaneously. 

With every link belonging to a single community, the nodes they connect to can belong 

to several communities and unveil the network's overlapping structure of the network 
90.  

The principle of defining sub-service areas for the layout of the bicycle-sharing system 

is to find the sub-area with the strong connection inside each area and the relatively 

weak connection between different areas, which makes the community detection a 

perfect method for this purpose. Several methods have been developed to find 

community structure. For the mega-scale link network of bicycle-sharing, the two 

measures of importance are efficiency and interpretability. A higher computational 

efficiency shows that the adopted method is practical for mega-scale networks. A more 

interpretable outcome proves the method is appropriate for the planning practice and 

helpful to solve practical issues. Therefore, the fast unfolding algorithm is adopted in 

this study 91.  

The inspiration for the fast unfolding algorithm is the optimization of modularity. 

Modularity is a benefit function that measures edges inside communities compared to 

edges between communities 92. It is defined as follows: 

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑡𝑦 =
1

2𝑚
∑ [𝑤𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝑖,𝑗 𝛿(𝑐𝑖, 𝑐𝑗)   (4.1) 

where 𝑤𝑖𝑗 represents the edge-weight between nodes 𝑣𝑖 , 𝑣𝑗; 𝑘𝑖 is the sum of edge-

weights attached to the node 𝑣𝑖 ; 𝑐𝑖  denotes the community to which node 𝑣𝑖  is 

assigned; 2𝑚 is the sum of edge weights in the network; 𝛿(𝑢, 𝑣) is a simple delta 

function defined as follows: 

𝛿(𝑢, 𝑣) = {
1 𝑢 = 𝑣
0 𝑢 ≠ 𝑣

  (4.2) 
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In order to maximize the modularity efficiently, the fast unfolding algorithm has two 

steps that are repeated iteratively. 

Step 1: modularity optimization. All the nodes in the network are assigned to their own 

communities. For each node 𝑣𝑖, the change in modularity is calculated by removing 𝑣𝑖 

from its original community 𝑐𝑖 and moving to other neighboring communities. Once 

modularity is calculated for all communities to which node 𝑣𝑖  is connected, 𝑣𝑖  is 

assigned to the community resulted in the highest modularity increase. If no increase is 

possible, node 𝑣𝑖 remains in its original community. This process is applied repeatedly 

and sequentially to all nodes until the local maximum of modularity is hit. 

Step 2: community aggregation. A new network is built where nodes are the 

communities from the previous step. The new network in each iteration has a significant 

actual sense to stand for a hierarchical level in the spatial structure. The first step can 

be re-applied to the new network.  

The iteration ends when global modularity can no longer be improved.  

By applying community detection on a link network, in the result generated, every link 

belongs to a link community. When the links from different communities connecting to 

the same mesh grid, this grid will belong to multiple communities. Using 𝑒𝑖𝑗(𝑘) to 

denote that the edge from grid 𝑖 to grid 𝑗 belongs to link community 𝑘, and 𝑤𝑖𝑗(𝑘) 

to denote the weight of this link, by adding the weight of links from different 

communities, the impact of link community 𝑘 for grid 𝑗 can be denoted as follows: 

𝐼𝑗𝑘 =
∑ 𝑤𝑖𝑗(𝑘)𝑖

∑ ∑ 𝑤𝑖𝑗(𝑘)𝑘𝑖
   (4.3) 

To divide sub-areas, grids can be regarded as belonging to the community with the most 

significant impact.  

Because most of the grids are impacted by multiple communities, the link communities 

also imply the local core-periphery structure for the network. The grids that are most 

impacted by a single link community as core grids and the grids are simultaneously 

impacted by several link communities as peripheral grids. The core and peripheral grids 

can be distinguished by setting a threshold 𝑡, and grid 𝑗 is a core grid if max
𝑘

{𝐼𝑗𝑘} ≥

𝑡, otherwise it is a peripheral grid. Here, I set the threshold 𝑡 = 0.8, which denotes that 

the impact from the community it belongs to is over 80% and is dominated by the 

community. 

4.2.4 Indicators for Bicycle-Sharing Patterns 

In order to describe the different bicycle-sharing patterns in sub-areas, several network 
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community indicators are proposed here. 

• The proportion of cross-area bicycle-sharing trips:  

By obtaining the number of intro-trips inside the subareas 𝑄𝑖𝑛𝑠𝑖𝑑𝑒, the trips with the 

origin outside the area and destination inside the area 𝑄𝑖𝑛, and the trips with the origin 

inside the area and destination outside the area 𝑄𝑜𝑢𝑡, the total number of trips that 

happened in the area is 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑖𝑛𝑠𝑖𝑑𝑒 + 𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡. The proportion of cross-area 

bicycle-sharing trips in area 𝑘 can be calculated as follows: 

𝑃𝑘 =
𝑄𝑖𝑛+𝑄𝑜𝑢𝑡

𝑄𝑡𝑜𝑡𝑎𝑙
  (4.4) 

The lower of the 𝑃𝑘  indicates that the area has less crossing-area bicycle-sharing 

demand, which will imply the demand for rebalancing bicycles between the 

communities. 

• Graph density:  

In network science, graph density is an index to measure the density of edges93. For 

each sub-areas, the graph density provides an indicator of how the grids are densely 

connected. It is defined as Eq.5: 

𝐷𝑘 =
𝑚

𝑛(𝑛−1)
  (4.5) 

where 𝑛 is the number of grids in sub-area 𝑘, 𝑚 is the number of edges in sub-area 

𝑘. The higher of the 𝐷𝑘  Indicates that the grids in this sub-area are more densely 

connected by bicycle-sharing, and bicycles can have more possibilities to enter a 

circulating flow travel pattern. Therefore, graph density represents the demand for 

bicycle rebalancing inside the community, which is more desirable for the bicycle-

sharing system. 

• Complementary cumulative distribution function (CCDF):  

CCDF is used to find the probability of a variable taking a value greater than x. 

Comparing the CCDF curves of node strength (the number of potential bicycle-sharing 

trips normalized by dividing them with the maximum in each sub-areas), the one 

decrease quickly in the small value of node strength indicates that potential bicycle-

sharing trips concentrate on few locations. These locations play an important role in 

attracting bicycle-sharing behavior. 

4.2.5 Hotspot Identification 

Identifying the spatial hotspot clusters of potential bicycle-sharing demand in each sub-

areas is significantly helpful for system layout design. In order to promote bicycle-

sharing service in sub-areas, the hotspot area implies the locations where should be 
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initially considered. Among the hotspot identification methods, the local Moran's I 

index is the most popularly used 94. The local Moran's I index examines the individual 

locations, enabling hotspots to be identified based on a comparison with the 

neighboring samples.  

Applying the local Moran's I index on the bicycle-sharing scenario, the number of 

potential bicycle-sharing trips 𝑃𝐴𝐵𝐶  from the edge 𝑒𝐴𝐵  to edge 𝑒𝐵𝐶  implies that 

there will be 𝑃𝐴𝐵𝐶  potential hand over of bicycle in location 𝐵. The high positive local 

Moran's I index indicates that the number of potential bicycle-sharing demand in the 

grid has similarly high or low values as its neighbors. The local Moran's I index can 

identify two types of spatial clusters: high-high clusters (high values in a high-value 

neighborhood) and low-low clusters (low values in a low-value neighborhood); And 

two types of outliers: spatial outliers include high–low (a high-value in a low-value 

neighborhood) and low–high (a low value in a high-value neighborhood). In bicycle-

sharing system layout design, the high-high clusters and high–low clusters are the 

"regional hotspots" and "individual hotspots" with significantly higher sharing demand 

but with different patterns. 

4.2.6 Emission Reduction Potential Model 

Here, COPERT (Computer Programme to calculate the Emissions from Road Transport) 

model is adapted to calculate fuel consumption (FC) and emissions of carbon monoxide 

(CO), nitrogen oxides (NOx), and hydrocarbon (HC). COPERT is a widely used 

emission model developed by the European Environment Agency (EPA). Based on 

distinguishing vehicle categories, fuel types, road categories, and other parameters, 

COPERT model determines the emissions of different pollutants and FC by adopting 

regression analysis for speeds and traveling distance of vehicles 95,96. The detail of the 

emission model is shown in Supplementary materials A. 

Adding up the emissions generated by all the short car trips in 1-3km connecting to the 

grids/sub-areas, the potential emission reduction can be calculated. The normalized 

emissions in grids/sub-areas normalized by dividing them with the sum of all grids/sub-

areas can be calculated to be comparable for each type of emissions. 

4.3 Results and Discussion 

4.3.1  Study Case 

Bicycles usually cover short trips of 1–3 km. Therefore, after identifying the travel 

modes, this study only extracts the short-distance walk, bicycle, and car travel in 1-3 

km as our research subject. Figure 4. 4 shows the spatial distribution of trajectory data 

in 1 month. The data set comprises 34,181,231 trajectories, including 19,821,894 
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walking trips, 11,994,279 bicycle trips, and 2,365,058 car trips. 

 
(a) 

 

(b) 
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(c) 

Figure 4. 5 Spatial distribution of trajectory dataset in 1 month.  

(a) Car trajectories, (b) Bicycle trajectories, (c) Walk trajectories 

4.3.2  Result of Market-Oriented Sub-Area Division 

By applying the methods above on the data set, 47,666,836 potential bicycle-sharing 

trips are matched in total. Aggregating all year data, a link network with 587,606 nodes 

and 9,425,875 edges have constructed. Applying the fast unfolding algorithm on the 

link network, the algorithm iterates two times. The modularity index increases from 

0.836 to 0.842 and hits its maximum. The high value of modularity indicates a fairly 

good community structure discovered by the algorithm in the link network. The result 

of link communities of each iteration is shown in Supplementary materials B. 

Figure 4. 5 shows the result of community detection on the link graph. Each link 

community contains 27,948 links on average. By only visualizing the links with the top 

5% weight in Figure 4. 5, it can be seen that, in suburban areas, the bicycle-sharing 

pattern is mainly organized as a radiating shape, connecting adjacent areas to local 

centers. In urban districts, links are organized with high-density connecting mesh grids 

distributed around the whole area. 

Based on the link communities, the area of Tokyo is divided into 21 sub-areas, with 

each sub-area contains 216 mesh grids(54 km2) on average(Figure 4. 6). In the sub-area 

division, although the community detection method is conducted without inputting any 

spatial information, the resulting link communities and sub-area divisions can merge 

the adjacent grids and intertwine with the geographical space. Comparing the sub-area 
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division with the administration division, most of the area boundaries are different, 

indicating that the potential bicycle-sharing demand is not organized as administrative 

units. This result proves that when designing a bicycle-sharing system, simply divide 

the area based on the administrative division would be inappropriate. 

By distinguishing the core and peripheral grids in Figure 4. 6, I can identify the 

locations in sub-areas that have frequent connections with other areas. These are the 

locations where the bicycles may be circulated into other sub-areas and causing the 

demand for rebalancing. In this division of sub-areas, the periphery grids are mostly the 

mesh grids among the boundary of sub-areas, which can ensure that in most parts of the 

center of these sub-areas, the balance of the bicycle can be guaranteed. 

The sub-area segmentation is influenced mainly by natural geographical barriers, such 

as rivers, mountains. For some of the sub-areas, subarea 6, 7, 14, 16, and 19, their 

boundaries are consistent with the administrative division. These areas are primarily in 

suburban areas. Subarea 1, 2, 3, 4, 5, and 8 subareas are very different from the 

administrative division in the city center. Small isolated areas with a high density of 

short-distance travel are also detected, including subarea 17(the Tokyo Disney resort), 

20(Odaiba: an artificial island), and 21(Haneda airport). This result indicates that divide 

the bicycle-sharing market by administration division will be inconsistent with the 

bicycle-sharing pattern of users. 

 

Figure 4. 6 Result of link communities 

 (only links with top 5% weight are visualized) 
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Figure 4. 7 Division of sub-areas based on the link communities. 

 The different colors represent different communities and sub-areas, which are named in descending order 

according to the number of the total trips Q_total in the area. 

4.3.3 Analysis of Bicycle-Sharing Pattern 

Figure 4. 7 shows the indicators of the sub-areas. From Figure 4. 7 (a) and Figure 4. 7 

(b), I can see that for some of the sub-areas, although they may have a similar amount 

of trips inside, they may have different levels of cross-area trip demand. In practice, to 

promote bicycle-sharing services, these areas should be managed with different policies. 

For example, in sub-area 7, 9, 11, 16, and 17, they have a lower proportion of cross-

area bicycle-sharing demand (under 15%), setting the restriction policy for cross-area 

bicycle-sharing trips can reduce the effort of bicycle rebalancing and not affecting too 

much bicycle-sharing demand. But in sub-area 1, 3, 5, 6, 12, 15, and 20, they have a 

relatively higher proportion of cross-area bicycle-sharing demand (around or over 30%). 

The same policy may cause inconvenience for users. Based on the proportion of cross-

area trips, a dynamic pricing dispatching fee policy for cross-area trips will also be an 

excellent solution for rebalancing optimization. 

From Figure 4. 7 (c) and Figure 4. 7 (d), the sub-areas 1, 2, 3, 5, 8 are the areas with 

higher graph density and, spatially, are located in the city center, but the CCDF curves 

of areas 1, 3, 5 are reducing much slower than area 2 and 8. This result indicates that 

although these areas are all in the city center, they may share a different traveling pattern 

of bicycle-sharing, with trips in areas 2 and 8 centralized and trips in areas 1, 3, and 5 

more decentralized. In suburban areas, the graph density is among the same level of 

0.2-0.3, but the CCDF curves also show the different centralization of bicycle-sharing 
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trips. In general, trips in suburban areas are more centralized than in urban areas. 

From Figure 4. 8, the temporal distribution of bicycle-sharing trips is similar in each 

sub-areas. The hour distribution shows a characteristic of double peaks in a day, from 

7:00 to 9:00 as the morning peak and 17:00 to 19:00 as the evening peak. Besides, more 

trips are generated during the evening peak, especially for the sub-areas in the city 

center. In suburban areas, the evening peaks are also with more trips, but almost at the 

same level as the morning peak. This reason can be in two aspects: 1. In the morning 

peak, traveling demand is mostly for commuting; But in the evening peak, besides 

commuting, people will have more diverse activities and generating more travel 

demand. 2. In urban areas, with denser public transportation networks, higher 

accessibility, and a better-built environment. People will have more opportunities and 

generate diverse activities. Bicycles can be used for many purposes, especially in the 

evening time. In contrast, in suburban areas, the function of bicycle transportation mode 

is mainly to serve the commuting demand, which makes the morning peak at the same 

level as the evening peak. In the weekday distribution, the trips on Friday will reach the 

week's peak and then drop on weekends. In the month distribution, more trips will be 

generated in spring but fewer in winter. The reason is that bicycle is a travel mode that 

will be primarily affected by the weather and temperature29. 

  

(a) (b) 
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(c) (d) 

Figure 4. 8 Indicators for the bicycle-sharing pattern in sub-areas. 

 (a) The number of intro-trips inside the subareas 𝑄𝑖𝑛𝑠𝑖𝑑𝑒, the trips with the origin outside the area and 

destination inside the area 𝑄𝑖𝑛, and the trips with the origin inside the area and destination outside the area 𝑄𝑜𝑢𝑡. 

(b) The proportion of cross-area bicycle-sharing trips 𝑃𝑘. (c) Graph density of sub-areas 𝐷𝑘. (d) CCDF of sub-

areas. 

 

 

 

 

 

(a) Hour (b) Weekday 
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(c) Month  

Figure 4. 9 Temporal distribution of bicycle-sharing potential 

4.3.4 Result of Hotspot Identification 

Hotspot identification can identify the critical locations when considering promoting 

an Internet-based bicycle-sharing service without docking stations. The priority of 

bicycle management and infrastructure construction should be given in hotspot areas 

and receive better outcomes. 

Figure 4. 9 (a) shows the spatial distribution of the location generating the potential 

bicycle-sharing behavior, and Figure 4. 9 (b) is the hotspot identified based on it. This 

study identified two types of hotspots: regional hotspots and individual hotspots. 

Bicycle-sharing patterns in these two types of hotspots are different, and thus, 

management in these areas should also be different. Regional hotspots are regions that 

consist of multiple grids with high bicycle-sharing potential. Sharing behaviors may 

frequently generate between the grids, and infrastructures like bicycle parking lots 

should be widely distributed over these regions. The rebalancing of bicycles in these 

areas will need fewer efforts since the bicycles can circulate by sharing behavior. 

Nevertheless, for Individual hotspots, it indicates a high-potential grid in a low-

potential neighborhood, which usually happened as an essential spot, such as a point of 

interest(POI) or a transportation station, attracting bicycle-sharing demands. In these 

areas, sharing behavior will be more concentrated, and more bicycle parking lots should 

be placed around the spot. Bicycles in the neighborhood will gradually gather in the 

individual hotspot and causing an imbalance between the central area and surrounding 

areas, which may need more rebalancing. 
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(a) Spatial distribution of bicycle-sharing 

 

(b) Hotspot identified 

Figure 4. 10 Result of hotspot identification 

The spatial patterns of bicycle-sharing are different between urban and suburban areas. 

Similarly, the shape of hotspots in these areas is also different. In the city center, 

hotspots are all regional hotspots forming consecutive regions with high potential 

demand. Most of these areas are the central urban districts or popular tourist attractions. 

Hotspots in the suburban area are more scattered, with relatively more minor regional 

hotspots and more individual hotspots. Moreover, many of these spots are the metro 
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stations or core areas of suburban satellite cities. From this result, bicycle management 

should be more centralized and focus on some unique spots in suburban areas and be 

more decentralized and widely distributed among the regional hotspots. 

4.3.5 Analysis of Emission Reduction Potential 

 

(a) 

 

(b) 

Figure 4. 11 Estimation of potential emission reduction in sub-areas 

(a) Spatial distribution of the normalized potential emission reduction in mesh grid level. (b) Normalized 

potential emission reduction in sub-areas 

After normalization, the four types of potential emission reduction are in the value with 

the same level (see Supplementary materials C). Thus, the average value of 4 types of 
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emission can be an index for emission reduction. Figure 4. 10 (a) shows the spatial 

distribution at the mesh grid level. This result also implies how many short-distance 

trips connecting the area depend on the car model. Significant emissions of short-

distance car trips are handled by the central part of the urban area. Most emissions occur 

within the commercial districts, such as Ginza, Shinjuku, Shibuya, and Ikebukuro. In 

suburban areas, there are also some clustering regions with high emission reduction 

potential sparsely distributed.  

Figure 4. 10 (b) shows the four types of normalized potential emissions in sub-areas. In 

suburban areas, although with a lower number of potential bicycle-sharing trips when 

compared with urban areas, they still have a high potential for emission reduction. For 

most of the existing bicycle-sharing programs, the marketing areas are restricted to 

urban centers and neglecting suburban areas. However, as shown in the result, with 

proper management and promotion of bicycle-sharing services, sub-urban areas can 

also have high performance in emission reduction. The result also shows that small 

isolated areas with a high density of short-distance travel, subarea 17, 20, and 21 have 

less emission reduction potential, indicating that the short trips in these areas depend 

less on cars, which is reasonable considering the land use of these subareas. 

4.4 Conclusions 

City-level evaluation models for demand potential usually are not solvable due to the 

large model scale. We need to divide the city into several sub-area for separately 

modeling to reduce the model size and make the model solvable. However, few studies 

aimed at sub-service area division driven by the bicycle traveling pattern, which is the 

most fundamental part of system design, monitoring & prediction, and rebalancing. 

Therefore, a market-oriented method was proposed in this chapter. The proposed 

method involves identifying potential bicycle-sharing demand, the division of sub-

service area, and the analysis of potential use patterns and potential emission reduction. 

The potential bicycle-sharing demand is detected using mobile phone GPS data. Based 

on the link network constructed from potential bicycle-sharing demand, the community 

detection method is applied to discover the densely connected modes, define the 

division of sub-service areas and distinguish the core and peripheral areas. Then, 

several network community indicators are proposed for subareas to understand the 

potential patterns of bicycle-sharing use. Hotspots of subareas are identified for the 

priority of bicycle management and infrastructure construction. The emission reduction 

model is used to measure the potential emission reduction. A case study is conducted 

by using the mobile phone data set in Tokyo and divides the area of Tokyo into 21 sub-

areas. Suggestions for bicycle management, infrastructure development, and bicycle-

sharing system planning are given regarding subareas with different properties. 

Potential emission reduction for applying a bicycle-sharing system is calculated in the 

area of Tokyo.  
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Chapter 5 

Bicycle-Sharing System: Layout Optimization 

The layout design of the bicycle-sharing system will have a great influence on the 

system’s implementation performance and the effect of emission reduction. In recent 

years, many real-world cases have shown pervasive problems of public bicycle schemes, 

such as abandoning bicycles, uncoordinated rationing, and low public acceptance. 

Those problems mainly result from the inconvenience caused by the inappropriate 

layout of bicycle-sharing systems. Therefore, when evaluating the potential emissions 

reduction of adopting a new bicycle-sharing system, the pragmatic and performance-

oriented layout optimization would be primary and necessary. 

Nevertheless, pragmatic and performance-oriented layout optimization is a highly 

complex issue 97. The demand prediction will be the first difficulty. Generally, bicycle 

docking stations are co-located with points of interest (PoI), such as subway stations, 

hospitals, universities, and shopping malls 98. The people density of each PoI is counted 

to estimate potential bicycle-rental demand and to decide the locations and capacity of 

the required bicycle-sharing stations 99. This type of method has several limitations. 

Firstly, the method cannot detect personal travel modes, which results in the inaccurate 

prediction of bicycle rental demand. Secondly, origin-destination (OD) information is 

absent, and therefore cannot guide the rationing of public bicycles 100. The second 

difficulty is the uncertainty of construction conditions at specific locations. At the 

layout design stage, it is difficult to collect detailed information on conditions for the 

potential construction of bicycle docking stations at multiple locations throughout the 

city 101. Theoretically optimal locations may have unsuitable conditions for the 

construction of bicycle-sharing infrastructure 102. In the absence of such information, it 

is pretty challenging to identify the real optimal locations for bicycle-sharing stations 
103. Consequently, there is considerable uncertainty when attempting to optimize the 

layout of bicycle-sharing systems.  

The remainder of this chapter is organized as follows: Section 5.1 presents the 

methodology of this work, including geometry-based probability model, improved PSO 

method, and an integer linear programming (ILP) model for rebalancing optimization; 

Section 5.2 presents the results of the real-world case study. Finally, the conclusions are 

presented. 
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5.1 Methodology 

5.1.1 Framework 

In this chapter, a method (see Figure 5. 1) is proposed, which employs mobile phone 

GPS data to optimize the layout of the bicycle-sharing system and analyze the potential 

reduction in emissions of CO2. The proposed method shows a relatively universal 

computation framework and implementation methodology. The method comprises four 

steps: (1) Detection of human travel mode: developing a data mining method to detect 

trajectories and travel modes from GPS data (comprising users’ ID, longitude, latitude, 

and time information) 88; (2) Layout Optimization: here, a geometry-based probability 

model is proposed to deal with the uncertainty of construction conditions at candidate 

locations for bicycle docking stations. According to the origin and destination (OD) 

information of the walking, cycling, and short-distance vehicle trips, which are 

calculated in step 1, an improved particle swarm optimization (PSO) method is 

introduced to solve the model; (3) Rebalancing optimization: with considering demand 

uncertainty, a multi-scenario integer linear programming (ILP) model is proposed for 

optimal scheduling of rebalancing operations (i.e., dynamic relocation of bicycles 

between docking stations, in response to demand), to determine detailed design-scale 

information for potential reduction analysis; (4) Potential emissions reduction analysis: 

current days, emission are great complexes and affected by anthropogenic disturbance 
104. As a matter of reality, total emission potentiality could be attenuated by bicycle 

production-related emission and affected by truck type, truck fuel selection, and truck 

loading capacity. Therefore, based on the layout and rebalancing results, the study 

evaluates the potential for bicycle-sharing systems to reduce emissions.  

Walk travel

Bicycle travel

Short-distance 
vehicle travel

Mobile phone users

GPS data

Information of OD
Circle is O and square is D

Optimal layout of 
bicycle docking station

Human travel mode 
detection model

Improved PSO

Geometry-based 
probability model

Life-cycle emission 
reduction potential analysis

Rebalancing optimizationILP model

 
Figure 5. 1 Framework of model utilizing mobile phone GPS data 

5.1.2 Geometry-Based Probability Model 

Generally, when initially planning the layout of a bicycle-sharing network, it is difficult 

to obtain detailed information on the construction conditions of multiple locations 

throughout the city. Therefore, if the final solution is presented as a series of optimal 

location points, the results might be unworkable for project administrators due to 
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inadequate real-world construction conditions at some locations. Here, a new definition, 

termed probability area, is introduced, a specific range for constructing each bicycle-

sharing station. At each location in this area, the probability of constructing the bicycle 

docking station is the same. Therefore, when constructing the system, it is only 

necessary to find the most suitable place in this broader area to build the station, thereby 

providing a very flexible approach to guiding the construction of the system. Working 

out a series of optimal probability areas will also be more practical in initial layout 

design105. However, this output form makes the model more complex, as both the 

central location and area range need to be decided. Moreover, this also introduces more 

significant uncertainty concerning the potential for the adoption of public bicycles. 

In order to address these problems, a geometry-based probability model of the adoption 

potential is proposed. In Figure 5. 2, the solid circle represents the probability area, sN

is the area's central location, and R is the radius. tN is the origin or destination location 

of the walk, bicycle, and short-distance vehicle trajectories. r  is acceptable distance, 

which represents the maximum distance that users will tolerate to find the bicycle-

sharing station. The imaginary circle shows the acceptable area. d  is the distance 

between sN   and tN  . This method provides probability areas but not the exact 

locations of the stations; therefore, although r   is known, whether a particular tN  

location would be covered by a station is still cannot be ascertained. However, based 

on the definition of the probability area, the covering probability can be calculated by 

geometric analysis. 

R

Ns

r Nt

d

(a) (b) (c)  

Figure 5. 2 Geometry-based probability model 

There will be three kinds of relationships between the probability area and acceptable 

area: In case 1, there is no intersection between two areas (Figure 5. 2 (a)). In this case, 

no matter where the station is, the covering probability will always be zero. In case 2, 

the acceptable area is totally covered by the probability area (Figure 5. 2 (b)). In this 

case, if the station is set in the range of the acceptable area, tN  would be covered. 

Therefore, the covering probability equal to the acceptable area divides the probability 

area (if R r , covering probability = 1). In case 3, part of the acceptable area is covered 

by the probability area (Figure 5. 2 (c)). Here, only when the station is set within the 

range of the shaded area, will the tN  location be covered. Thus, covering probability 

equal to the shaded area SS   divides probability area. The expression of covering 

probability CP  is shown as follows:  
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Where,  

( )2 2
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1a and 2a  are the intermediate variables: 

( ) ( )2 2 2

1=acos 2a r d R r d + −  
 

          

 (5.3) 

( ) ( )2 2 2

2 =acos 2a R d r R d + −  
 

          (5.4) 

To avoid repeat counting, each tN  belongs to a maximum of one station. The 

superscript i  represents trajectory, and the superscript j  represents the probability 

area of a station. The objective is to find the optimal center locations sN j  and these 

radiuses Rj  to maximize the total covering probability of each trajectory. Since the 

bicycle-sharing system would be useful for a trip only when its origin and destination 

are both covered by stations, the covering probability of the trajectory is equal to the 

covering probability of its origin multiplied by that of its destination, as shown as 

follows: 

( )( ) ( )( )C , s C , smax = max , , max , ,i i j i j j i j i j j
j j

i

F P O N R P D N R ,     (5.5) 

where, i  is a coefficient for the travel mode of the origin or destination location. The 

potential rates of substitution by public bicycle differ between the other travel modes. 

If the estimated substitution potential rate of travel mode i  is large, this travel mode 

would have a greater impact on the final optimal layout, therefore i  will be set to a 

high value. Oi  and D
i
represent the OD coordinates of trajectory i. 

According to Eq. 5.1 and Eq. 5.5, to obtain the optimal value of F , each probability 

area radius Rj   should be carefully designed. When Rj   is set overlarge, the 

probability area j  could cover a larger tN  as this reduces the probability of the first 

condition ( +r R d ); however, the value of C ,i jP   the two other conditions would be 

decreased. Therefore, the value of F may also be reduced. On the other hand, if Rj is 

set over-small, the value of C ,i jP  in the second and third conditions would be increased, 

but a larger number of tN i  would meet the first condition and also cause a decrease of 
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F . According to the above analysis, for locations with a high density of tN , such as 

subway stations, hospitals, and shopping malls, the corresponding sN  should be closer 

to these PoIs and R should be small. However, for areas with a lower density of tN , 

such as communities and business districts, the corresponding sN will trend close to 

the center of this area and R should be larger. This qualitative discussion is very similar 

to the process of PoI-based subjective analysis and closer to a convenience-oriented 

design. Furthermore, the detailed layout design parameters are formulated for the 

theoretical optimum-oriented design. Therefore, the proposed model incorporates the 

advantages of both types of design. 

5.1.3 Improved Particle Swarm Optimization Method 

PSO was first proposed by Kennedy and Eberhart 106. Owing to its high convergence 

accuracy and searching ability, PSO has been widely used in many engineering research 

fields 107. Each member or particle in the swarm represents a feasible solution, and their 

velocities and positions are updated during iterations according to Eq. 5.6 and Eq. 5.7: 

       (5.6) 

            (5.7) 

where  and  are the velocity and position of particle , respectively,  and 

  are the respective acceleration parameters,   and   represent two randomly 

generated numbers within the range [0, 1],  denotes the best position in the swarm 

during the search period, and   is the best position for a particle   at the  

iteration.  

Research into improving PSO has burgeoned in the past two decades. Consequently, a 

great many improved PSOs have been proposed, aimed at models with differing 

complexity, scale, and computational efficiency demand. For a new raised optimization 

problem, a comparative analysis is necessary to determine which improved algorithm 

is most suitable. Here, a virtual case study with an area of 10×10 km and 10 000 OD 

coordinates is generated. The number of stations (N) is set to 10,30, 50, 70, and 90, 

respectively, and chose the two classical algorithms (GPSO 106 and LFIPSO 108), a well-

known algorithm (COM-MCPSO 109) and a recent algorithm (PP-PSO 110) for the 

comparison.  

The initial version of PSO, named global particle swarm optimization (GPSO), gained 

popularity mainly due to its speed of convergence and ease of use. However, in GPSO, 

each individual is influenced by the best performer among his neighbors. Thus it 

receives inadequate information. 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))k k k k g kv v c r p x c r p x     + = + − + −

( 1) ( ) ( 1)k k kx x v  + = + +

kv kx k 1c

2c 1r 2r

gp

kp k th
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Subsequently, the fully informed particle swarm optimization (FIPSO) model adopts a 

mechanism to make ensure that the individuals are “fully informed,” among which the 

Ring topology version (LFIPSO) is conceptually more concise and promises more 

effective performance than the traditional particle swarm algorithm. In this new version, 

the particle uses information from all of its neighbors rather than just the best one. 

Despite the improvement in designing topologies, there are difficulties in controlling 

the balance between exploration (global investigation of the search place) and 

exploitation (the refined search around a local optimum). 

In order to balance the exploration and exploitation in PSO, a multi-swarm cooperative 

scheme, named multi-swarm cooperative PSO, was introduced, comprising one master 

swarm and several slave swarms. The slave swarms can supply many new promising 

particles (the position giving the best fitness value) to the master swarm as the evolution 

proceeds. The master swarm updates the particle states based on the best position 

discovered by all the particles in the slave swarms and their own. The interactions 

between the master swarm and slave swarms influence the balance between exploration 

and exploitation and maintain a suitable diversity in the population even when 

approaching the global solution, thus reducing the risk of converging to a local sub-

optimal solution. Despite the improvement of adding new strategies, a mass of particles 

with low velocity may concentrate in some locations, especially in the mid-late 

iterations, and there is the poor capability of exploring new search regions and finding 

better solutions for such particles. 

Ultimately, considering the “slothful particles” with low velocities, which contribute 

little to the optimization and impact the computation speed, the prey-predator PSO (PP-

PSO) was proposed, which employs the three strategies of catch, escape, and breeding. 

In PP-PSO, slothful particles can be deleted or transformed, and while the former helps 

to speed up convergence and computation speed, the latter improves the optimization 

results. 

Since it cannot be proved which algorithm will be most appropriate to this issue simply 

by theoretical derivation, detailed stability and convergence tests are necessary. First, 

N is set to 50 and repeated the computation four times by each improved algorithm. The 

resulting stability analysis is shown in Figure 5. 3 (F means the value of the objective 

function). The results show that COM-MCPSO and PP-PSO performed approximately 

40% better than GPSO and LFIPSO in this scenario. Meanwhile, although COM-

MCPSO has more excellent stability than PP-PSO (the difference among the four times’ 

results solved by COM-MCPSO is lower than that of PP-PSO), PP-PSO could see 

convergence to a better solution. To further indicate which algorithm is best suited to 

this issue, a convergence comparison analysis with N= 10, 30, 70, and 90 is shown in 

Figure 5. 4. F is the value of the objective function (shown in Eq. 5.5). The results show 

that PP-PSO is superior for this case, providing approximately 10% gain over the other 

methods, and hence PP-PSO was chosen as the most suitable algorithm. In order to 

avoid errors associated with the instability of the algorithm, when experimenting, the 
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computation was repeated four times, and the best result was selected as the output of 

the algorithm. 

 

(a)                                                   (b) 

 

(c)                                                   (d) 

Figure 5. 3 Stability analysis with N=50  

by (a) GPSO, (b) LFIPSO, (c) COM-MCPSO, and (d) PP-PSO 

 

(a)                                                  (b) 
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(c)                                                  (d) 

Figure 5. 4 Comparison of convergence performance 

with N= (a) 10, (b) 30, (c) 70, and (d) 90 

5.1.4 Rebalancing Optimization 

Although the optimal layout for bicycle-sharing stations could be obtained through the 

geometry-based probability model and improved PSO, the detailed design-scale 

information still cannot be obtained (such as how many docking facilities need to be 

provided at each station, how many bicycles need be put into the sharing system, and 

even how much energy will be consumed when rebalancing the numbers of bicycles 

across the system). These are the significant parameters that determine the potential 

reduction in emissions that may be achieved by bicycle-sharing. Therefore, a 

rebalancing optimization model is necessary to determine those decision parameters. 

Since there must be uncertainties in the usage demand of each bicycle-sharing station 

and the probability distribution of those uncertainties could be indicated by statistical 

analysis of daily trajectory data, the stochastic optimization method can be used to solve 

this issue. Based on the Monte Carlo method, a multi-scenario ILP model is developed 

for the rebalancing optimization issue, based on the optimal layout derived previously. 

5.1.4.1 Model Requirements 

The model is formulated as a multi-scenario ILP and is solved using the Gurobi 

optimization mathematical programming solver.  

Inputs: 

• Studied horizon. 

• Cost information: Unit purchasing and maintenance (P&M) costs of the bicycle, 

unit P&M costs of docking facility, unit rebalancing cost. 

• Demand information: Probability distribution of the usage demand at each station, 

containing the number probability of people who will select/return a bicycle at this 

station during a given time window (this may be obtained by statistical analysis of 

daily trajectory data for the whole year) 

• Station information: Layout of the station network (solved by geometry-based 

probability model and improved PSO), actual road distance between each station 

(between paired centers of probability areas).  

• Technical parameters: Turnover coefficients. 

Determine: 

• The number of docking facilities at each station. 

• The number of bicycles needs to be purchased.  
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• Detailed rebalancing schedule (how many bicycles need to be transferred between 

stations during each time window). 

• Total construction and operating costs of the bicycle-sharing system. 

Objective: 

Minimize the total cost to design and operate the bicycle-sharing system under various 

operational and technical constraints. Total cost includes P&M costs of bicycles, P&M 

costs of docking facilities, and cost of rebalancing operations. 

Model assumption: 

In order to build and solve the model effectively, it is assumed that the cost of 

rebalancing is simplified to be linear with the product of the number of transferring 

bicycles and the road distance between stations; that is, the detailed vehicle routing 

problem (VRP) is not taken into consideration. 

5.1.4.2 Mathematical Model 

Based on the Monte Carlo simulation, a multi-scenario ILP model is developed to 

transfer the uncertain optimization to a specific two-stage optimization. Specifically, 

since the demand parameters of each station are uncertain, the issue could be divided 

into many specific scenarios. In each scenario, by sampling method, one set of specific 

demand parameters is generated based on their probability distributions. Therefore, 

with generating enough scenarios and set the average costs of all scenarios as the 

objective, according to Monte Carlo theory, the result is equivalent to that of the 

uncertain model. The proposed mathematical model is shown as follows. 

Objective function: 

, , , , , ,

min i i

i i

i i i i t i i s i i

t i i s i i

f Cb BNb Cd Nd

Co L Un Co L fUn sm



   

 

=   + 

+  + 

 

 
  

,i i I  , s S  , t T              (5.8) 

Constraints: 

( ) ( ), , 1 , , , , , , , , , ,s i t s i t s i t s i t i i t i i t

i

Nb Nb Tin Tout Un Un +


= + − + −     

,i i I  , s S  , t T              (5.9) 
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, ,0i s iBNb Nb=         i I  , s S       (5.10) 

( ), , , , , ,i s i tm s i i s i i

i

BNb Nb fUn fUn 



− = −    ,i i I  , s S      (5.11) 

, , 0s i tNb           i I  , s S  , t T     (5.12) 

, ,s i t iNb Nd         i I  , s S  , t T     (5.13) 

i iNd Ndm          i I         (5.14) 

where, i I   is the subscript and set of bicycle-sharing stations. s S   is the 

subscript and set of scenarios, the maximum number of scenarios is sm . t T  is the 

subscript and set of time windows, the maximum number of time windows is tm .Cb  

is unit P&M costs per bicycle (0.11 $ per day). Cd  is unit P&M costs per docking 

facility (0.091 $ per day). Co  is unit rebalancing cost (0.029 $/km).  is the turnover 

coefficient for purchasing bicycles (0.15).   is the turnover coefficient for setting 

docking facilities (0.9). ,i iL   is the road distance between station i  and i . , ,s i tTin  

and , ,s i tTout are the return and picking number of bicycles at station i  during time 

window t  in scenario s . iNdm  is the maximum number of docking facilities that 

can be set at station i . , ,s i tNb is the number of bicycles held at station i  during time 

window t  in scenario s . iNd  is the number of docking facilities set at station i . 

, ,i i tUn   is the number of bicycles transferred from station i  to i  during time window 

t , t tm . , ,s i ifUn   is the number of bicycles transferred from station i  to i  during 

the last time window in scenario s  . iBNb   is the initial number of bicycles set at 

station i .  

The objective function of Eq. 5.8 contains four terms. The first is the P&M costs of 

bicycles, which equals the product unit cost, turnover coefficient, and the total initial 

number of bicycles. The second is the P&M costs of docking facilities. The equation is 

similar to that for bicycles. The third and fourth terms are rebalancing cost, which is 

designed based on the model assumption. Considering the demand uncertainty, the 

rebalancing during the final time window in different scenarios will not be the same.  

Constraint (5.9) is the quantity conservation equation. Here, the discrete-time is adopted 

to present the model. The number of bicycles held at a station during the following time 

window is equal to that during the last time window plus the net flow number by the 

client’s usage and the net flow number by rebalancing. 

Constraint (5.10) refers to the number of bicycles held at a station during the initial time 

window, which must be the initial setting number. 
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Constraint (5.11) refers to the rebalancing during the final time window, which is 

dependent on the difference between the initial setting number and the holding number 

during the second to last time window. 

Constraints (5.12) and (5.13) determine that the holding number at each station must 

not be less than zero or more significant than the product of the number of docking 

facilities and its turnover coefficient. 

Constraint (5.14) means the set number of a docking facility cannot be larger than the 

maximum capacity of the station. 

5.1.4.3 Emission Reduction Potentiality Analysis  

The potentiality of total emission reduction generated by previous calculations could 

be affected by other production and system operation processes. Considering those 

influential potential variables, emission reduction potentially analysis is helpful to 

reveal the emission potentiality difference, which could also provide valuable insight 

into the approaching bicycle-sharing system regulations and policies. Here, it is 

assumed that emission reduction performance will be attenuated by the bicycle 

production process and affected by truck types, truck fuel selection, and loading 

capacity.  Assuming there are 𝑛 types of bicycle rebalancing need (𝑅𝑒𝑏𝑛), Emission 

reduction potentiality (𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛) can be described as:     

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝐵𝑖𝑘𝑒𝑃𝑟𝑜/𝑌 −
𝑅𝑒𝑏𝑛

𝐶𝑎𝑝𝑖,𝑗
𝑚𝑎𝑥∗𝑅𝑡𝑖,𝑗

𝑚/𝐵𝑤𝑡
∗ 𝑇𝑖,𝑗 ∗ 𝐸𝐼𝑖         (5.15) 

where 𝐸𝑡𝑜𝑡𝑎𝑙 is a full year of travel emission reduction potentiality, 𝐸𝐵𝑖𝑘𝑒𝑃𝑟𝑜 is the 

emission emitted by bicycle production, and 𝑌  is the bicycle durable years. Here, 

bicycle production-related emission is set up of 0.456 tones CO2 per bicycle 111. 

𝐶𝑎𝑝𝑖,𝑗
𝑚𝑎𝑥 is the maximum loading capacity of truck type 𝑗 that adopting fuel type 𝑖. 

𝑇 refers to energy consumption (𝑙/𝑘𝑚) and 𝐸𝐼 is emission intensity. Here, it is set 

that truck types include both light and medium trucks. Light trucks (LGT), used in the 

rebalancing process, have an average maximum loading capacity of around 0.35t and 

0.5t. Based on the different loading capacities of the LGT, energy consumption 

distribute from 2.74 𝑙/𝑘𝑚 (10%) to 0.324 𝑙/𝑘𝑚 (100%)112. Moreover, medium truck 

(MD) indicates those trucks of average maximum loading capacity at 2t. Therefore, 

each loading capacity could generate eight forms of emission reduction potentiality by 

considering truck types and truck fuel selection. 
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5.2 Results and Discussion 

5.2.1 Study Case 

In order to apply our model to real-world human activity, the GPS trajectories in 

Setagaya Ward, Tokyo, throughout 2012 are utilized. As introduced in Chapter 2, the 

GPS data is extracted from the 'Konzatsu-Tokei(R)'GPS dataset collected by NTT 

DOCOMO INC. The GPS trajectories are classified into different transportation modes 

(stay, walk, bicycle, car, and train) using the method introduced above and utilize the 

GPS trajectories representing walk, bicycle, and car modes in the subsequent 

experiment. Here, since the stay and train modes have nothing to do with our subject, 

it will not be considered in following. The data set comprises 3 659 703 trajectories, of 

which the walk, bicycle, and car modes account for 2 904 820, 481 660, and 273 223 

trips, respectively. The OD information of these trajectories is shown in Figure 5. 5. In 

order to indicate the macro results for this area, the input parameters are modified when 

calculating energy consumption and optimal rebalancing schedule, according to 

statistics on the actual population of this area. 

5.2.2 Layout Result 

The PP-PSO is used for the layout optimization and set N=30, 50, 70, and 90, 

respectively. The optimal layout of the bicycle-sharing system is shown in Figure 5. 6. 

The blue circles represent the probability area of setting a bicycle-sharing station, with 

circle size-adjusted proportionally to the probability area. The results show that most 

stations are at locations with a high density of OD information and along main roads. 

Meanwhile, the probability area would be small if the station is set at a position with a 

high OD density. This is because: from Eq. 5.5, the relationship between the size of the 

probability area and its contribution to the objective function is nonlinear. The 

parameters of this nonlinear function are dependent on the area’s OD density. If the OD 

density is high, the corresponding optimal size of the probability area will tend to be 

small, which could increase the contribution to the model’s objective. Meanwhile, there 

are interactions among the stations. When N is increased, some alternative stations will 

be divided into two or three adjacent stations. The probability area size of those divided 

stations will be small to avoid inter-competition. 
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Figure 5. 5 OD information for different travel modes 

(a) O for walk, (b) D for walk, (c) O for bicycle, (d) D for bicycle 

Figure 5. 7 shows the replacing travel distance (km) of each transport mode by sharing 

bicycle in the presence of an optimally laid out and operated bicycle-sharing system. 

From the results, the adoption of a bicycle-sharing system can decrease vehicle travel, 

especially during peak weekday commuting periods and on weekend afternoons. Most 

stations are at locations with a high density of OD information and along main urban 

roads. 

  

(a)             (b)  

  

(c)             (d)  
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Figure 5. 6 Optimal layout of bicycle-sharing system 

 with N= (a) 30, (b) 50, (c) 70, and (d) 90 docking stations. 

 

Figure 5. 7 Replacing distance by sharing bicycle 

 (a) weekday, (b) weekend with 30 to 90 bicycle-sharing stations. 

5.2.3 Emission Reduction Potential Analysis 

Here, three scenarios are presented for analyzing the potential reduction in emissions 

of a bicycle-sharing scheme. 

Scenario 1: analyzing the emission reduction associated with modal shift (from vehicle 

  

(a)             (b) 

  

(c)             (d) 

 

 

(a)             (b)  

「混雑統計®」©ZENRIN DataCom CO., LTD. 
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to bicycle-sharing) and assuming that all the people whose journey could be served by 

bicycle-sharing will adopt this travel mode. Since few previous studies on layout design 

for bicycle-sharing stations considered rebalancing, this scenario enables comparative 

analysis of the optimality of the layout results with this kind of study. 

Scenario 2: analyzing both the emission reduction caused associated with modal shift 

(from vehicles to bicycle-sharing) and the emissions associated with the production, 

maintenance, and recycling of bicycles and facilities as well as rebalancing. Meanwhile, 

it is assumed that all of the people whose journeys could be served by bicycle-sharing 

will adopt this travel mode. The purpose of setting this scenario is to determine the 

impacts of emissions of bicycles and facilities and the emissions of rebalancing and 

how these affect the final reduction in emissions. 

Scenario 3: As in Scenario 2, but it is assumed that just 10% of people whose trips could 

be served by bicycle-sharing will adopt this mode. This scenario is intended to test the 

sensitivity of the model to the rate of bicycle-sharing adoption. In both scenario 2 and 

scenario 3, the truck loading capacity adopted in the bicycle rebalancing system is 80%. 

For Scenario 1 (see Figure 5. 8), based on the TripEnergy model 113, car travel speed, 

and ambient temperature of this year, the CO2 emission of each car journey trajectory 

is calculated. The detailed technological data sources, description, and sample results 

were reported previously 88. The results show that with an increase in docking stations, 

from 30 to 90, the adoption of a bicycle-sharing system can reduce CO2 emissions by 

approximately 3.1–3.8 thousand tonnes annually. Here, the methods proposed by Chen 

and Sun 84 and García-Palomares, et al. 114 are taken as baselines for comparative 

analysis. The results show that the proposed model performs better than other methods 

and that with the increase in the number of stations, the performance gap becomes more 

considerable. When N=90, the results obtained by the proposed method could reduce 

emissions by a further 6.4% and 4.4% compared with the results of the other two 

methods. The reason is that the previous method 114 took the density of generated trips 

within a given area as the metric for deciding where bicycle-sharing stations should be 

located, which is a type of greedy method. However, subsequent adoption occurs only 

when the network of stations can cover both the origin and destination of a trip. Some 

trips' origins may be at locations with a high density of generated trips (such as a 

subway station). At the same time, the destinations may be low-density locations (such 

as residential areas). If the density of generated trips is taken as the sole metric, the final 

designed bicycle-sharing system may not cover such trips. Meanwhile, with the 

increased scale of the system, this disadvantage will become more prominent. In 

addition, although the other previous method 84 avoided this disadvantage by taking the 

transformation of trips into consideration, the method was based on mesh modeling, 

which cannot represent the trajectory information accurately if the grid size is large, 

and become computationally time-consuming if the grid size is small. 
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Figure 5. 8 The relationship between station number and emission reduction in Case 1 

For Scenario 2 (see Figure 5. 9), consideration of energy consumption resulting from 

bicycle rebalancing and bicycle production is included. To begin with, it is assumed 

that all of the people whose travel could be served by bicycle-sharing will adopt this 

travel mode. Moreover, by adopting the different types of truck and fuels, the emission 

variation could be found in Figure 5. 9. Compared with scenario 1, bicycle production 

emission and truck-generated emission resulting from bicycle rebalancing need to 

attenuate reduction emission performance around 11.30% to 21.26%. The offset 

emission increases along with the number of stations. Medium-sized truck shows lower 

offset volume; whist light truck is not environmentally preferable. Under this 

circumstance, policymakers are recommended to consider the emission offset brought 

by bicycle rebalancing. In Figure 5. 9, the abbreviation in the legend is defined as: the 

first term represents the number of the scenario. The second term represents the type of 

transportation truck, and the third term represents the type of consuming oil. 

 

Figure 5. 9 Emission reduction potentiality of scenario 2 at the 80% truck locating capacity 

Scenario 3 (see Figure 5. 10) assumes that just 10% of the people whose travel could 

be served by bicycle-sharing will adopt this travel mode. Different from scenario 2, the 

offset emissions do not show a distinct gap among four truck-related forms, and the 

emission variation trend is close to that of scenario 1. Therefore, when the reality is 

close to scenario 3, the environmental restrictions of the truck and its fuel selection 

could have much more freedom than that of scenario 2.  
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Scenarios 2 and 3 are calculated at the truck loading capacity of 80%. Based on our 

observation, higher loading capacity offset fewer reduction potentiality in all the tuck 

and fuel selection forms, while the substantial reduction potentiality varies greatly. In 

the supporting material, the reason for how the truck loading capacity rate impacts 

emission reduction potentiality is given out.  

 

Figure 5. 10 Emission reduction potentiality of scenario 3 at the 80% truck locating capacity 

5.3 Conclusions 

This chapter analyzes the potential reduction in CO2 emissions for adopting a bicycle-

sharing system. A method for detecting human travel modes and a geometry-based 

probability model is proposed to support particle swarm optimization. Then, based on 

the resulting optimal layout of bicycle docking stations and considering demand 

uncertainty, a multi-scenario mixed-integer linear programming model is proposed for 

optimal rebalancing to obtain the detailed design-scale information required for 

potential reduction analysis. The proposed model is tested using a data set of 

approximately 3 million GPS trajectories obtained in Setagaya Ward, Tokyo. The 

results obtained by the proposed method could reduce emissions by a further 6.4% and 

4.4% compared with previous methods. Three scenarios are selected to simulate 

emission reduction volume after an offset by bicycle production and bicycle 

rebalancing. In the bicycle rebalancing process, a different number of station truck 

loading capacity rates, truck types, and truck fuel selection will affect the total emission 

reduction potentiality. Therefore, the emission reduction volume by considering those 

influential factors can be evaluated. From purely environmental insight, results show 

that the medium size of truck and fuel selection on diesel is preferable. For example, in 

scenario 2, the offset phenomena are significantly alleviated based on selecting medium 

trucks, especially when diesel medium trucks are adopted. To maintain the emission 

reduction brought by the bicycle-sharing system, two sets of policies are taken into 

consideration. Firstly, if scenario 2 is expected as much closer to reality, the usage of 

the bicycle-sharing system should be closely monitored to generate the corresponding 

rebalancing transportation form. Here, diesel medium trucks will help alleviate the 

offset emission, which is the priority for environmental consideration. If scenario 3 is 

much closer to reality, truck selection could consider the economic cost. Both sets of 
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policies aimed at realizing the bicycle-sharing system with a lower environmental or 

economic cost under the realistic constitutions. As a representation of intelligent and 

sustainable city development, the bicycle-sharing system is one of the hottest topics in 

transportation, public health, urban planning. Additionally, the bicycle-sharing system 

has become increasingly popular in many countries. Our findings are not limited to 

Japan but can be theoretical guidelines for bicycle-sharing companies and policymakers 

to promote an intelligent transportation grid.  
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Chapter 6 

Ride-Sharing System: City-level Potential 

Analysis 

Spreading green and low-consumption transportation methods is becoming an urgent 

priority. Ride-sharing, which refers to the sharing of car journeys so that more than one 

person travels in a car, and prevents the need for others to have to drive to a location 

themselves, is a critical solution to this issue. Before being introduced into one place, 

it needs a potential analysis. However, current studies did this analysis based on home 

and work locations or social ties between people, which is not precise and straight 

enough. 

This chapter proposed a new MaaS framework for ride-sharing and emission reduction 

potential analyses. This work's contributions are shown as follows: (1) The potential 

analysis of ride-sharing is based on the actual travel demand, which is more precise and 

reliable than the base of urban population distribution. (2) I proposed a deep learning-

based method for real-time matching feasibility estimation. (3) Based on the proposed 

high-effective matching algorithm, the big data-based potential and emission reduction 

analyses are carried out. (4) Tokyo is taken as the case study with mining millions of 

trajectories data of mobile phone users in one year. 

The remainder of this chapter is organized as follows. In Section 6.1, the methodology 

is proposed. Then, the case study is introduced in Section 6.2. Section 6.3 presents the 

experimental methodology and the result. Finally, conclusions are given in Section 6.4. 

6.1 Methodology 

6.1.1 Framework 

The proposed framework shown in Figure 6. 1 provides a comprehensive methodology 

for the comprehensive potential analyses of urban ride-sharing and emission reduction 

based on smartphone GPS data. The method is decomposed into three parts: (1) Human 

travel mode detection: detecting the travel mode of trajectories from GPS data (contain 

longitude, latitude, and time information); In this chapter, I utilized the travel mode 

detection method, which was proposed in our previous work 88. The process contains 

four steps: extraction of staying and moving segments, splitting travel segments, traffic 

mode classification, and segment merging. After these processing steps, the trajectories 

can be clustered into four groups by travel modes: walking, bike, public transit and 
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vehicle. (2) Matching feasibility estimation: considering the, estimate the matching 

feasibility of each two trips. (3) Potential of ride-sharing and emission reduction 

potential analyses: based on the estimate results, indicating the relation among rate, 

emission reduction, and policy support. 

Walk travel

Bike travel

Vehicle travel

Smart phone users

GPS data

Human travel mode 
detection model

Public transit travel

Part I

Trajectories

Matching probability model

Emission reduction potential 
analyses

Part II Part III

Adoption and energy 
consumption reduction 

analyses 

 

Figure 6. 1 Method framework for ride-sharing system city-level potential analysis 

6.1.2 Matching Feasibility Estimation Model 

6.1.2.1 Elaboration on Model 

The model I use for matching feasibility estimation is the deep learning method, the 

structure of model training is shown in Figure 6. 2.  

 
Figure 6. 2 Model training structure 

I used the GPS trajectory and did the training data preparation process as the base of a 

deep learning model. It includes the process of marking the matching feasibility of a 

pair of ODs. A comprehensive training dataset with different matching feasibility value 

is needed to make the deep learning model well trained. However, in the original 

trajectory set, there is no direct mark of feasibility. Thus, a reliable strategy to generate 
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training data is necessary. Finally, the generated data will be fed to the deep learning 

model to finish the training. 

 

Figure 6. 3 Generation and training process of deep learning 

The training data process is shown in Figure 6. 3. We extract a piece of complete and 

continuous trajectory record from the dataset, randomly choose two records (at least 

with two other records in the interval of these two records) in this trajectory as the OD 

of the driver. Then we randomly choose two other points at the interval of these points 

as the perfect matched rider (Rider*). Taking the OD information of the original 

trajectory (driver) ( ), ,,i k i kODx ODt  and perfect matched OD information (rider) 

( )
*

,
,

i k
ODx ODt  as the input, the corresponding feasibility output is ( ) ( ), , ,

=1
i k i k

P
  . Then, 

We generate some noises z  into ( )
*

,
,

i k
ODx ODt  both from the aspect of location and 

time as the “not perfectly matched samples.” In these samples, the feasibility output is 

a value between 0 and 1 based on the noise. We generate this kind of training data 

because comprehensive training data assures the accuracy of the deep learning model. 

When the noises are more significant than a threshold, these samples can be the “bad 

matched sample” ( ( ) ( ), , ,
=0

i k i k
P

  ). After that, We will put these training samples into the 

deep learning model. Finally, this model could be used to operate feasibility estimation 

for real-world samples when finishing the training. 

Definition 1 (Perfect matching): To a matching issue for the ride-sharing system, if the 

rider’s OD exactly belongs to a driver’s trajectory, meanwhile the departure and arrival 

time are the same with the passing time of the driver to those two points, I would say 

that the rider and driver are perfectly matched, and the matching feasibility is 1 

(introduced in Section 5). 

( ) ( ) ( ) ( ) , , , ,, , ,
= 1| , ,i k i k i k i ki k i k

P ODx ODt x t    
          (6.1) 

Here the set of OD coordinates, departure and arrival time information for perfect 

matching is denoted as ( )
*

,
,

i k
ODx ODt  

Definition 2 (Noise matching): To label some “bad matching samples”, here I added an 
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unacceptable noise into the ( )
*

,
,

i k
ODx ODt  and set the matching feasibility of this 

sample to 0. 

( ) ( ) ( ) ( )  *

, ,, , , ,
= 0 | , ,i k i ki k i k i k

P ODx ODt ODx ODt z    
 +       (6.2) 

Where  z  is an unacceptable noise. 

6.1.2.2 Deep Learning Architecture 

Deep Learning is a branch of machine learning, the main idea of simulating the 

mechanics of the human brain. Therefore, deep learning applies layer-based 

construction to propagate information, just like the electricity passing among brain 

neurons. Deep learning algorithms process data and imitate the thinking process of 

understanding the hidden key factors of output. Therefore, it is widely applied in 

complex data computation, image processing, natural language processing, and other 

fields.  

In deep learning, motivated by the human brain, information is passed at a layer level 

constructed by neuron units. In detail, the general architecture of deep learning contains 

three parts: input layer, hidden layers, and output layer. The input data are put into the 

input layer. Each input value is treated as a neuron unit, such as 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛. Then, 

these input neurons are connected with hidden layers, which contain hidden neuron 

units ℎ1, ℎ2, ℎ3, … , ℎ𝑛. The number of hidden layers is not limited to one. There are 

usually well-designed and determined sequences connecting properly hidden layers for 

better training or learning of the model in many cases and these hidden layers. One 

hidden layer will receive the input from the hidden layer before it. These hidden layers 

can extract the features of their inputs and turn these learned features into the 

coefficients of layer computation matrix to best fit the desired output in the training 

dataset. Finally, the neuron units in the last hidden layers are also connected with the 

output layer, representing the results I want. Simply speaking, the hidden layers learn 

the latent relations from input data to output data. 

In general, the output of adjacent layers is defined as: 

n n n nA W X B= +                (6.3) 

where nW is the layer computation matrix and nB is the bias of 𝑛-th layer. nA is the 

output of neurons at 𝑛-th layer, and the input to (𝑛 + 1)-th layer.   

Once we have designed the construction of deep learning, we need to train the network 

and optimize parameters 𝑊  and 𝐵 . Combining the Forward and Backpropagation 

method is widely used in training neural networks with the gradient-based optimization 

technique. However, the error cannot be correctly propagated with the increase of layer 
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number when the number of hidden layers is larger than two, making the 

backpropagation method has bad performance for deep construction. Recently, a greedy 

layer-wise approach has been proposed to tackle this problem. The main idea is to train 

the neural network in a bottom-up way. Once the first 𝑛 layers are trained, the (𝑛 +

1)-th layer is trained as the latent features are now computed from the layers below. 

Optimization algorithms play an essential role in deep learning. They help us to find a 

proper set of parameters for our model. In order to achieve this purpose, the 

optimization algorithm will try to minimize the loss function. The problem of 

minimizing loss function is generally expressed as: 

Min (L(𝜃) =
1

𝑛
(∑ (𝑦 − ℎ𝜃)𝑛

𝑖=1 ))            (6.4) 

( ) ( )( )mean i
i

L L =              (6.5) 

Where y is the true output in the training set; ℎ𝜃 is the hypothesize of output computed 

by the deep learning network under the parameter set of θ including 𝑊𝑛 and 𝐵𝑛 in 

each layer; 𝑛 is the size of the training set.  

In this study, I adopt the input layer 𝑥1  as (𝑂𝑥
𝑑 , 𝑂𝑦

𝑑 , ∆𝑡𝑂 , 𝑂𝑥
𝑟 , 𝑂𝑦

𝑟 , 𝐷𝑥
𝑑 , 𝐷𝑦

𝑑 , 𝐷𝑥
𝑟 , 𝐷𝑦

𝑟) 

according to the principle of training data generation and the output layer y as 

𝑃(𝑖,𝑘),(𝑖′,𝑘′). Where, 𝑂𝑥 and 𝑂𝑦 refer to the longitude and latitude of origin; 𝐷𝑥 and 

𝐷𝑦 refer to the longitude and latitude of destination of destination; 𝑑 and 𝑟 refer to 

driver and rider respectively; ∆𝑡𝑂 refers to the time difference between departure time.  

In this model, given a set of ,i kRid    and ,i kDri , the matching feasibility estimation 

model will construct a model 
( ) ( ) ( )( ), ,, , ,

| ,i k i ki k i k
P P Dri Rid   

, in which ( ) ( ), , ,i k i k
P

   is the 

predicted matching feasibility. It will be built as a regression model, and its parameters 

𝜃  can be obtained by minimizing the prediction error 
( ) ( ) ( ) ( )( ), , , , , ,

,
i k i k i k i k

L P P
   

  with 

generated training samples: 

𝜃 = argmin 𝐿(𝑃̃(𝑖,𝑘),(𝑖,,𝑘,), 𝑃(𝑖,𝑘),(𝑖,,𝑘,)) = argmin
1

𝑛
(𝑃̃(𝑖,𝑘),(𝑖,,𝑘,) − 𝑃(𝑖,𝑘),(𝑖,,𝑘,))2 (6.6) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2

, , , , , , , , , , , ,
arg min , arg min

i k i k i k i k i k i k i k i k
L P P P P

 


       

= = −     (6.7) 

In the Result and Discussion Section, I will illustrate and elaborate on the accuracy of 

the trained model. 
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6.2 Case Study 

The training data is one of the essential factors that influence the performance of the 

deep learning model. In this case, we want the deep learning model to compute the 

matching feasibility of two trajectories, which is a highly complex case. So, many 

factors should be considered. The first one is that the training cases should be 

comprehensive and cover various situations, which is the basic rule of the training set. 

As said in the previous section, we chose the generate bias to the original trajectories 

to make the imperfect matching cases. Here we will give a more comprehensive 

explanation. Those who serve as drivers in the ride-sharing decide whether to pick 

someone up or not mainly based on a detour or further, we can say the time shift they 

have to make on their original schedule if they accept the job. So, the more biased the 

passenger’s trajectory is from the driver’s, the less possible the matching stands. By the 

same principle, if a passenger’s trajectory coincides with drivers, the more feasibly the 

matching stands. To make the perfect matching cases, we choose the first and last GPS 

trajectory point as the OD of a driver and randomly choose another two points in the 

trajectory as the OD of the passenger, then mark them with the score of 1. Then, to 

make corrupted matching cases, we consider adding bias from two aspects: time and 

location. Location bias will bring the detour time, and time bias will bring schedule 

change to driver. After that, we will estimate the extent of bias and mark the cases with 

a value between 0 and 1 based on the extent. 

6.3 Results and Discussion 

6.3.1 Model Accuracy Verification 

After completing the training of our deep learning model, we need to verify our model. 

A part of the training set is selected to test the accuracy. We randomly choose 29,138 

groups of data as the test set. In each group, there is a random quantity of individual 

trajectories. A metric is set for the verification. 

Verification Metric: In each group of test data, we randomly chose one piece of 

individual trajectory and assumed it as the driver, and match it to the rest of the 

individual travels. The deep learning model will give the matching score to each pair 

of matching. Then, we will rank the matching pairs and treat the one with the highest 

matching score as the best matching. Simultaneously, we also compute the detour time 

that the driver has to take to pick up the passenger in each matching pair by Google API 

to evaluate how well the driver is matched to each passenger. The shorter the detour 

time is, the better the matching is. Thus, the matching pair with the least detour time is 

the best matching in a real case. After that, we will check if the passenger in the best 

matching selected by the deep learning model is the same as the one selected by Google 

API. If they are the same, the computation can be treated as an accurate one. Then, after 



59 

 

testing all 29,138 groups in the test set, we will calculate the accurate computation rate 

among all groups. 

We chose this metric mainly because when matching passengers to a driver, only the 

most suitable passenger will be assigned to the driver, and the rest shall be left for the 

next time. Thus, we only need to find the most suitable passenger for the driver and 

neglect the rest. The accurate calculation rate among all groups is 87.93%, which means 

25,621 groups are accurate by the verification metric out of 29,138. 

Here, we provide one sample in our test set for a more comprehensive presentation to 

understand the metric better. We separately took one driver OD and time stamp and 

eight-passenger ODs and time stamps and put them into our model and Google API 

separately. Our model would give the matching possibility(score) of these eight 

passengers related to the diver. Then, we will rank these scores from high to low. On 

the other hand, the Google API would compute the detour time the driver had to pick 

up the corresponding passenger. Then, we would rank these detour times from low to 

high.  

The visualization of OD of these eight passengers and one driver are shown in Figure 

6. 4: 

 
Figure 6. 4 The visualization of ODs of passengers and driver 

The details of their ODs are shown in Table 6. 1: 

Table 6. 1 ODs of passengers and driver 
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 time O Longitude O Latitude O time D Longitude D Latitude D 

Driver 6:47:00 139.526603 35.784649 7:07:00 139.564562 35.837553 

P1 7:00:00 139.529303 35.83515 7:10:00 139.521191 35.856586 

P2 6:42:00 139.55291 35.844473 6:57:00 139.551194 35.818874 

P3 6:44:00 139.50699 35.789039 6:59:00 139.516379 35.766091 

P4 6:47:00 139.584785 35.852181 7:02:00 139.550269 35.809756 

P5 6:44:00 139.558051 35.862995 6:59:00 139.608957 35.827895 

P6 6:49:00 139.551752 35.787352 6:59:00 139.52508 35.806289 

P7 6:54:00 139.620814 35.861773 7:10:00 139.573013 35.845066 

P8 6:43:00 139.615117 35.873407 6:53:00 139.626719 35.845575 

The results from Google API and our deep learning model are shown in Table 6. 2: 

Table 6. 2 Computation result comparison between Google API and Deep Learning Model 

Ranking Google API (detour time) Deep Learning Model (score) 

1 P6 (10 mins) P6 (0.10935) 

2 P1 (29 mins) P1 (0.07304) 

3 P3 (32 mins) P3 (0.01724) 

4 P4 (34 mins) P4 (0.00563) 

5 P7 (38 mins) P7 (0.00557) 

6 P5 (58 mins) P2 (0.00526) 

7 P2 (70 mins) P8 (0.00229) 

8 P8 (79 mins) P5 (0.00116) 

The ranking of the first five ranked passengers by the deep learning model is precisely 

the same as Google API. During the matching, we only choose the first one as the 

matched passenger to the driver. 
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Figure 6. 5 Sample cases from matching result 

a. Initial trajectories of passenger and driver in case 1 b. Matched trajectories in case 1 c. Initial trajectories of 

passenger and driver in case 2 d. Matched trajectories in case 2 

6.3.2 Result of Matching and Spatial Analysis 

In the dataset, we detected the travel mode of collected GPS trajectories, then took the 

first record in one complete piece of trajectory as the origin and the last destination. 

There are a total of 1,046,190 pieces of trajectories. This study would use the proposed 

deep learning model to find the best match for all these trajectories and calculate the 

emission and travel distance that could be potentially reduced by shared transportation. 

From the matching result, nearly 81.29% of trajectories, which is said to be 850,400 

pieces, can be matched to another proper trajectory. Averagely, each matching pair can 

reduce the travel distance by 26.97% compared to their actual travel distance. It tells us 

that there are relatively high similarities in the travel pattern of people in Tokyo. The 

potential of ride-sharing in the Tokyo area is considerable. In this case, a total of over 

135 million kilometers of travel distance can be reduced. Here are two samples from 

the results of matching to illustrate how ride-sharing saves travel distance. 

Figure 6. 5 shows the probable trajectories if they are matched by ride-sharing, and their 

original trajectories, are shown in b and d. There are some similarities between their 

trajectories. In both cases, one can detour a little distance or change the initial routine 

to simultaneously pick the other up and complete both travels. According to the 

computation, if this ride-sharing matching is adopted, the travel distance can be reduced 

by 26.95% and 26.94%, respectively. 

  

(a) (b) 

  

(c) (d) 
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Figure 6. 6 Heat map of origins of trajectories 

In order to illustrate the case study, we plot a heat map of all the origins of matchable 

trajectories in the study area, as shown in Figure 6. 6. We found that most of the cases 

were distributed in the center of Tokyo and Tokyo station, where many government 

offices and financial facilities are located around it and the subcenters, typically the 

area of Ikebukuro Shinjuku, Shibuya, and Kawazaki. They are the central business 

districts distributed around the city center. Commonly in Japan, more mobility flows 

appear in these places because of activities, such as commuting and daily shopping, 

thus causing more travel demands around these areas. Here is the detailed explanation. 

According to the investigation conducted by the Ministry of Land, Infrastructure, 

Transport, and Tourism, in the Tokyo area, a considerable part of people travel every 

day with the railway. The stations with extremely high traffic volumes include the 

Ikebukuro, Shinjuku, Shibuya, Tokyo, and Kawasaki station. So, these areas become a 

large distribution center of origins of travels. Therefore, it is evident that more ride-

sharing potentials around these areas and ride-sharing service providers like Uber can 

consider paying more attention to these places if they want to develop ride-sharing 
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services in the Tokyo area. 

6.3.3 Emission Analysis 

After obtaining all the computation results, we can compute the emission proportion 

that can be reduced if users adopt ride-sharing. In the computation results, there are 

about 22.10% of trajectories use public transit. In the following analysis, we consider 

two scenarios. The first one assumes all the travelers in the original dataset traveling 

with private cars will all adopt ride-sharing. Half of the users who initially used public 

transit adopt ride-sharing. The second one assumes all the travelers in the dataset adopt 

ride-sharing. The computation method of emission from on-road vehicles is mainly 

based on the test on the CO2 emission of on-road Japanese vehicles operated by the 

National Institute for Land and Infrastructure Management. After investigating their 

test results, I found that the CO2 emission of vehicles depends on the average spend of 

the entire trip. According to the result, the relationship between the average speed and 

CO2 emission can be fitted as a polynomial shown as Eq. (6.8). 

𝑄 =
1611.23

𝑣
+ 96.62 − 1.10𝑣 + 0.01𝑣2                        (6.8) 

where Q (g/km) is the quantity of CO2 emission per kilometer, and v (km/h) is the 

average velocity 

For people who adopted public transit, the emission by statistics result conducted by 

the Ministry of Land, Infrastructure, Transport, and Tourism show that the emission 

quantity of CO2 is 19 g/km*person. Next, we will discuss the emission results into two 

scenarios introduced above. 

Scenario 1: In this scenario, we assume that half of the original public transit riders will 

use the ride-sharing system, which refers to about 11.05% trajectories. Initially, these 

trips are completed on their original travel mode. The total emission would be 

20425.2134 tons of CO2. That would be an average of 12.0 kg CO2 per trip. If that 

11.05% of trajectories that initially used public transit turn to adopt ride-sharing and all 

the trajectories that originally traveled with private vehicles turn to adopt ride-sharing, 

the total emission would be averagely reduced by 6478.6 tons of CO2, which would be 

6.9 kg of CO2 per trip. 

Scenario 2: In this scenario, we assume that all original public transit riders will use the 

ride-sharing system, which refers to about 22.10% trajectories. If that 22.10% of the 

trajectories that initially used public transit turn to adopt ride-sharing and all the 

trajectories that originally traveled with private vehicles turn to adopt ride-sharing, the 

total emission would be averagely reduced 2179.2 tons of CO2, which would be 2.1 kg 

of CO2 per trip. 
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Thus, we can see that ride-sharing can truly bring emission reduction of CO2 to city air. 

In our case, when half of the public transit riders turn to adopt ride-sharing and all 

private car drivers adopt ride-sharing, around 68.2813% of CO2 emission can be 

reduced; when all the travelers adopt ride-sharing, around 89.3311% of total CO2 

emission can be reduced. Combining the result that 81.2854% of trajectories can be 

feasibly matched with another trajectory, there is much potential for ride-sharing in the 

Tokyo area.  

Here, we plot the spatial distribution of CO2 that can be reduced in Scenarios 2 by ride-

sharing in Figure 6. 7.  

 
Figure 6. 7 Heat map of the distribution of the quantity of emission that can be reduced 

The figure mainly shows the origins of exhaust emission and the total quantity of CO2 

that can be reduced by ride-sharing in the study area. According to the map, the main 

areas like Ikebukuro, Shinjuku, Shibuya, and Tokyo station can be improved much 

more in exhaust emission. This is because of the high concentration of travel origins in 

these areas explained in the previous subsection. A relatively high quantity of travels in 

these areas can be matched with other trips and a high potential for ride-sharing. Thus, 

ride-sharing can bring a lot of emission reduction caused by vehicle traffic in these 

areas. This also indicates that the population of ride-sharing can primarily alleviate the 
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heavy traffic congestion and exhaust emission in populated areas. 

6.4 Conclusions 

Ride-sharing based on MaaS achieves the purpose of saving energy and cutting exhaust 

emissions from transportation by allowing people to provide mobility services and 

share trips with others. The introduction of ride-sharing into places with high car 

exhaust emission areas can be an urgent issue. In the meantime, the service provider 

should also consider the regional potential of adopting ride-sharing from making a 

profit. Combining two factors, an analysis method for mining the potential of a place 

to adopt ride-sharing and exhaust emission estimation is necessary. The spread of ride-

sharing in an area depends mainly on people's travel patterns over an extended period.  

In this chapter, we proposed an analysis method to mine the potential of ride-sharing in 

an area based on quantitative historical GPS trajectories. The deep learning model in 

the method aims to find out how well the trajectories can be matched, thus sharing. 

Then we chose the case study of the Tokyo area because Tokyo is a city faced with 

heavy traffic congestion and exhaust emission under the background of rising usage of 

fossil fuel in Japan. By the computation of the deep learning model and exhaust 

emission, we found that travels in the Tokyo area mainly concentrated in the center and 

subcenters of Tokyo, like Shibuya, Shinjuku, and Ikebukuro, which makes these places 

the sources of exhaust emission. If ride-sharing is adopted, the exhaust emission 

reduction effect by ride-sharing can perform well in these areas.  
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Chapter 7 

Bus-Sharing System: City-level Dynamic Lines 

Design 

Bus-sharing (Customized Bus) is a new type of Internet-supported public transportation 

mode that can be one of the major strategies to reduce the usage of private cars and 

mitigate greenhouse gas emissions from road traffic. For a customized bus system, a 

dynamic bus line planning system based on the demand can primarily improve the 

performance and the public acceptance of customized bus service. 

This chapter introduced a method to generate planning suggestions for bus-sharing lines 

and stops based on massive demand data. Using the car trajectory extracted from the 

mobile phone dataset as the input of the method, a case study is conducted in Tokyo 

and generates 29 bus-sharing lines.  

The rest of this chapter is organized as follows —Section 7.1 defines the problem that 

is going to be solved. Section 7.2 presents the detailed methodology of this work, 

including the bus-sharing line extraction and hotspot analysis for bus-sharing stop 

deployment. Section 7.3 presents the result of the case study in Tokyo using car travel 

demand extracted from mobile phone data. Section 7.4 proposes the conclusions of this 

study. 

7.1 Problem Description 

A dynamic bus-sharing line planning system is a crucial element for a bus-sharing 

service, Figure 7. 1 shows an overview of the system. First of all, passengers will submit 

their demands via the online platform. After each specific period, the demand will be 

upload into the cloud server and aggregated into origin(O) and destination(D) as the 

input for the dynamic bus-sharing line planning system. Then, the system will search 

for the best route choice for each OD pairs. Based on the routes, the system will bus-

sharing lines in the city to meet the demand. The stops of the bus-sharing lines will then 

be deployed so that the bus-sharing system can publish bus-sharing riding information 

to passengers and telling the location and time to get on the bus. 
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Figure 7. 1 Overview of a dynamic customized bus line planning system 

In this system, the most challenging part is the bus-sharing line planning. The aim is to 

generate bus-sharing lines and their directions base on the massive volume of travel 

routes. The system has to decide how many bus-sharing lines to deploy and how is the 

direction of each bus-sharing line. Naturally, the more bus-sharing lines deployed as 

possible, the more demands will be served, but at the same time, the more of the bus-

sharing lines will be uneconomical with less demand for each bus-sharing line. So the 

solution to this problem involves the balance between two objectives: 1. The lesser 

number of bus-sharing lines with higher demand assembled for each bus-sharing line 

yielding higher profits. 2. More demand can be effectively served.  

Planning a bus line is a highly complex task in real-world situations. Many factors will 

affect the chosen bus line, including the difficulty of dispatch and management, the 

accessibility of the stop, the preference and acceptance of passengers, etc. The resulting 

bus lines are usually a compromise of interest from three parties: government, bus 

company, and passenger. Thus, to generate a result with too detailed route choice of the 

bus line and the exact location of bus stops from an optimization model may not be 

suitable in real-world situations and challenging to implement.  

The methodology aims to generate suggestions of the line direction and a range of 

regions to set bus stops with possibilities for further detailed design. The bus line 

planner can further design and adjust the detailed route choice and bus stop location 

according to the real-world situation. The result generated by the methodology will 

answer the following questions: 1. the bus-sharing line will serve which part of the 

transportation demand and connect which part of the city? Moreover, based on that, 

how the direction of the bus-sharing line should be? 2. which range of areas along the 

bus-sharing line is suitable to arrange the bus stops?   

7.2 Methodology 

7.2.1 Framework 

The framework of this chapter design is shown in Figure 7. 2. Mobile phone data is 

used here to offer suggestions for bus-sharing lines design. The input of our 

methodology is the demand routing trajectories of bus-sharing services. In this study,  
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the trajectory of car mode is identified from the mobile phone GPS data by using the 

data mining method introduced in our previous work 8,88. A basic assumption is that 

urban car travel demand shares the same distribution as bus-sharing demand. Here, the 

car trajectories sampled from the dataset are used as the dynamic input for the bus-

sharing line design methodology. 

The dynamic, customized bus line design methodology is as follows: After matching 

the input trajectories into mesh grids, a link network is constructed to represent the route 

sharing of trajectories. The network community detection method is applied to segment 

the link network into communities that reflect travel demand clusters with similar 

traveling patterns. By detecting the core-peripheral structure of communities, the core 

part of communities is extracted to suggest the direction of bus-sharing lines. Boarding 

and alighting hotspots of potential demand are also identified to suggest choosing the 

location of bus-sharing stops. Finally, the bus-sharing lines' potential travel demand is 

identified to analyze the travel pattern and emission reduction potential. 

 

Figure 7. 2 Framework of bus-sharing lines design 

7.2.2 Construction of Link Network 

The basic concept of bus-sharing line design is to discover the clusters of trajectories 

sharing their routes. Moreover, the critical routes in each cluster indicate the direction 

of bus-sharing lines. To reach this goal, instead of matching and clustering the 

trajectories, this study aims to generate a link network to describe the sharing routes 

from the trajectory data set and segment the network nodes into network communities 

that indicate the travel demand clusters. 

First of all, the spatial resolution is decided for matching the sharing route of trajectory. 

Here, the spatial resolution is set as 500m*500m mesh grids. Considering a set of 

trajectory 𝑇 = {𝑇𝑟𝑎𝑗1, 𝑇𝑟𝑎𝑗2, . . . , 𝑇𝑟𝑎𝑗𝑛𝑢𝑚𝑡𝑟𝑎
} ,  each trajectory is denoted as 

𝑇𝑟𝑎𝑗𝑖 = {𝑝𝑗(𝑙𝑜𝑐𝑗)}(1 < 𝑖 ≤ 𝑛𝑢𝑚𝑡𝑟𝑎, 1 ≤ 𝑗 ≤ 𝑙𝑒𝑛𝑖). Where 𝑛𝑢𝑚𝑡𝑟𝑎 is the number of 
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trajectories, 𝑙𝑒𝑛𝑖  is the length of  𝑇𝑟𝑎𝑗𝑖 , 𝑙𝑜𝑐𝑗  is the index of the mesh grid 

representing the location of point 𝑝𝑗. Each trajectory can also be transformed into the 

set of links 𝑇𝑟𝑎𝑗𝑖 = {𝑙(𝑝1, 𝑝2), 𝑙(𝑝2, 𝑝3), … 𝑙(𝑝𝑗, 𝑝𝑗+1) … 𝑙(𝑝𝑙𝑒𝑛𝑖−1, 𝑝𝑙𝑒𝑛𝑖
)} . If we 

consider the links between mesh grids as vertices in a network, each trajectory indicates 

a set of connections between nodes. Moreover, a weighted undirected link network can 

be constructed. The detail of link network construction is shown in Algorithm 1.  

The advantage of constructing a link network from trajectory is that the most important 

routes which the trajectories shared the most will be the links with the strongest 

connection in the link network. For example, Figure 7. 3 shows a link network 

constructed from three trajectories. 𝑇𝑟𝑎𝑗1 and 𝑇𝑟𝑎𝑗2 share the links 𝐶 and 𝐸, and 

𝑇𝑟𝑎𝑗1, 𝑇𝑟𝑎𝑗2 and 𝑇𝑟𝑎𝑗3 share the link 𝐸. It is evident that link 𝐸 is the most critical 

link and link 𝐶 is the second important, and, respectively, vertices 𝐶 and 𝐸 are in 

the core position of the link network. Thus, analyzing the structure of the link network 

allows us to discover routes sharing patterns in trajectories. 

Algorithm 2 Generating link network from trajectories 

Input: A set of trajectories 𝑇 = {𝑇𝑟𝑎𝑗1, 𝑇𝑟𝑎𝑗2, . . . , 𝑇𝑟𝑎𝑗𝑛𝑢𝑚𝑡𝑟𝑎
} 

Output: A link network 𝐺(𝑉, 𝐸) 

Algorithm: 

1. Set the network vertex set 𝑉 = ∅, and the edge set 𝐸 = ∅ 

2. For each 𝑇𝑟𝑎𝑗 ∈ 𝑇 do 

3.   For each 𝑙(𝑝𝑗 , 𝑝𝑗+1) ∈ 𝑇𝑟𝑎𝑗 do 

4.     If 𝑙(𝑝𝑗 , 𝑝𝑗+1) do not exist in 𝑉 

5.       Append 𝑙(𝑝𝑗 , 𝑝𝑗+1) into 𝑉 

6.     End if 

7.     For each 𝑙(𝑝𝑘 , 𝑝𝑘+1) ∈ 𝑇𝑟𝑎𝑗, 𝑘 > 𝑗 do 

8.        If 𝑙(𝑝𝑗 , 𝑝𝑗+1) ≠  𝑙(𝑝𝑘 , 𝑝𝑘+1) 

9.          If 𝑒𝑑𝑔𝑒 (𝑙(𝑝𝑗 , 𝑝𝑗+1), 𝑙(𝑝𝑘 , 𝑝𝑘+1)) do not exist in 𝐸 

10.            Append 𝑒𝑑𝑔𝑒 (𝑙(𝑝𝑗 , 𝑝𝑗+1), 𝑙(𝑝𝑘 , 𝑝𝑘+1)) into 𝐸, and set the weight of this edge  𝑤 = 1  

11.          Else 

12.            Set the weight 𝑤 of 𝑒𝑑𝑔𝑒 (𝑙(𝑝𝑗 , 𝑝𝑗+1), 𝑙(𝑝𝑘, 𝑝𝑘+1)) to be 𝑤 = 𝑤 + 1 

13.          End if 

14.        End if 

15. Construct the link network 𝐺(𝑉, 𝐸) 
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Figure 7. 3 Construction of link network 

7.2.3 Community Detection 

Real-world networks are usually global community structures with local core-periphery 

structures (such as many social networks and the World Wide Web)115,116. Trajectories 

construct the link network. In the link network constructed by trajectory data, using 

community detection to segment the network into densely intro-connected communities 

can reach the goal of discovering travel demand clusters and yield the suggestion for 

bus-sharing line planning. 

In graph theory, a community is a collection of highly interconnected nodes. The nodes 

belonging to different communities are sparsely connected89. Studies of community 

structure have been very successful, and methods have been developed to find 

community structure. Here, the fast unfolding algorithm based on modularity 

optimization is adopted to decompose the link network into sub-communities. The 

modularity index of a partition is a scalar value between -1 and 1 that measures the 

density of links inside communities compared to links between communities 92. It is 

defined as follows: 

𝑀 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝑖,𝑗 𝛿(𝑐𝑖, 𝑐𝑗) (7.6) 

where 𝐴𝑖𝑗 represents the weight of the edge between 𝑖 and 𝑗, 𝑘𝑖 is the sum of the 

weights of the edges attached to vertex 𝑖, 𝑐𝑖 is the community to which vertex 𝑖 is 

assigned, the function 𝛿(𝑐𝑖, 𝑐𝑗) is defined as follows: 

𝛿(𝑐𝑖, 𝑐𝑗) = {
1 𝑐𝑖 = 𝑐𝑗

0 𝑐𝑖 ≠ 𝑐𝑗
 (7.2) 

In order to maximize the modularity efficiently, the fast unfolding algorithm repeatedly 
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iterate modularity optimization and community aggregation to obtain the maximum of 

global modularity. For detailed information on the algorithm, please refer to 117. We 

adopted the fast unfolding algorithm provided in igraph python package118 for this study. 

7.2.4 Detecting Core-Peripheral Structure in Communities 

After detecting link communities from the link network, determining which nodes are 

part of a densely connected core and part of a sparsely connected periphery in link 

communities allows us to extract the critical sharing routes in the travel demand clusters. 

Here, the Rombach’s algorithm is used to find continuous core-periphery structure in 

each community. The algorithm is a quantitative method to investigate the core-

periphery structure, which computes a constant value called ‘coreness’ for each node in 

the network. The objective of the algorithm proposed ‘coreness’ measurement 

maximizes the core quality of the network. The core quality is formulated as follows: 

𝑅 = ∑ 𝐴𝑖𝑗𝐶𝑖𝐶𝑗𝑖,𝑗  (7.7) 

where 𝐴𝑖𝑗 is the weight of the edge between nodes 𝑖 and 𝑗, and it equals to 0 if nodes 

𝑖 and 𝑗 are not connected and 𝐶𝑖  denotes the local coreness of the 𝑖𝑡ℎ node, which 

is given by follows: 

𝐶𝑖 = {

𝑖(1−𝛼)

2𝛽
                      , 𝑖𝜖{1, … , 𝛽𝑁}

(𝑖−𝛽)(1−𝛼)

2(𝑁−𝛽)
+

1+𝛼

2
, 𝑖𝜖{𝛽𝑁 + 1, … , 𝑁}

  (7.8) 

where 𝑁 is the total number of nodes, parameter 𝛼 sets the size of the score jump 

between the highest-scoring periphery node and the lowest scoring core node and the 

parameter 𝛽 sets the size of the core. The objective of the algorithm is to find a shuffle 

of node that yield 𝐶𝑖  for each node which maximizes the core quality 𝑅  of the 

network. To mitigate the computational cost, a label switching algorithm is 

implemented in the algorithm. Here, we set the parameters to be 𝛼 = 1 to classify each 

node to either the core or the periphery, 𝛽 = 0.8, and extract the nodes with the top 20% 

coreness as core nodes in a community. For detailed information on the algorithm, 

please refer to 116. 

7.2.5 Extracting bus-sharing Line Direction and Identifying 

Potential Demand 

The densely connected core nodes of link communities are the set of links connecting 

mesh grids. Because car trajectories construct the link network, the core links are 

mainly distributed along trunk roads in the city. The geographic Information 

System(GIS) based approach is applied here to extract bus-sharing lines directly from 

the links. The extracting method contains three steps: 1. Select the communities with 

an a-line shape and capable of extracting bus-sharing lines. 2. Merge the core links 
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within a tolerance distance and simplified into a single line. In this study, the tolerance 

distance is set to be 500m. 3. Match the simplified line into the road network as the bus 

line direction. 

After extracting bus-sharing lines, we set a rule to identify the potential demand for 

each line: 1. Generate a buffer area with a tolerance distance for each bus-sharing line. 

Here, we set the tolerance distance to be the same value in bus-sharing line extracting 

2. For each trajectory, the proportion of the trajectory shared with the bus-sharing line 

can be calculated as follows: 

𝑝 =
𝑙𝑠ℎ𝑎𝑟𝑒𝑑

𝑙𝑡𝑜𝑡𝑎𝑙
 (7.9) 

where 𝑙𝑠ℎ𝑎𝑟𝑒𝑑 is the length of the sub trajectory inside the buffer area, and 𝑙𝑡𝑜𝑡𝑎𝑙 is 

the total length of the trajectory. The trajectory with the 𝑝 over 80% can be regarded 

as the potential travel demand of the bus-sharing line, indicating that over 80% part of 

the trajectory is sharing the same route with the bus-sharing line. 

To evaluate the operational benefits of each bus-sharing line, I propose a measure for 

each bus-sharing line to access the potential demand trajectories per kilometer as 

follows: 

 𝑂𝑖 =
𝑛𝑖

𝑑𝑖
 (7.10) 

where 𝑛𝑖 is the number of potential travel demand (trajectories here) of bus-sharing 

line 𝑖, 𝑑𝑖 is the length of the bus-sharing line. A higher value of 𝑂𝑖 indicates that 

with the exact operation cost, the bus-sharing line can attract more potential travel 

demand with better operational benefits. 

7.2.6 Identifying Boarding and Alighting Hotspot for bus-

sharing Stop 

For determining the locations most suitable for setting the bus stop for each bus-sharing 

line, it is significantly helpful to identify the spatial hotspot clusters of the potential 

boarding and alighting location. After extracting the potential travel demand of bus-

sharing lines, the first point and the last point of the sub trajectory inside the buffer area 

can be regarded as the potential boarding and alighting location of this trajectory. Here, 

I apply the local Moran's I index to examines the boarding and alighting locations 94, 

enabling hotspots to be identified based on a comparison with the neighboring samples.  

The high positive local Moran's I index indicates that the number of potential bicycle-

sharing behaviors in the grid has similarly high or low values as its neighbors. The local 
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Moran's I index can identify two types of spatial clusters: high-high clusters (high 

values in a high-value neighborhood) and low-low clusters (low values in a low-value 

neighborhood); And two types of outliers: Spatial outliers include high–low (a high-

value in a low-value neighborhood) and low–high (a low value in a high-value 

neighborhood). In the scenario of bus-sharing line boarding and alighting hotspot 

identification, the high-high clusters and high–low clusters are the “regional hotspots”  

and “individual hotspots” with significantly higher demand for boarding and alighting 

along the bus-sharing lines but with different demand patterns. 

7.2.7 Emission Reduction Potential Model 

In order to estimate the potential of emission reduction for each bus-sharing line, an 

assumption is presented: assuming that all the potential travel demand can be served by 

bus-sharing travel mode,  the potential reduction of emission for bus-sharing lines will 

be the emission of all the potential car travel in the area. 

Here, COPERT (Computer Programme to calculate the Emissions from Road Transport) 

model is adapted to calculate fuel consumption (FC) and emissions of carbon monoxide 

(CO), nitrogen oxides (NOx), and hydrocarbon (HC). COPERT is a widely used 

emission model developed by the European Environment Agency (EPA). Based on 

distinguishing vehicle categories, fuel types, road categories, and other parameters, 

COPERT model determines the emissions of different pollutants and FC by adopting 

regression analysis for speeds and traveling distance of vehicles 95,96. For the detail of 

the emission model, please refer to  95.  Adding up the FC and emissions generated 

by each bus line's potential car trips, the potential FC and emission reduction can be 

calculated.  

7.3 Results and Discussion 

7.3.1 Data and Study Area 

Therefore, after identifying the travel modes, we sample the car trajectory data as the 

simulation of dynamic demand to input our algorithm. Figure 7. 4 shows the spatial 

distribution of car trajectory data. The data set comprises 1,409,451 car trips. We 

implement the methodology on the platform with Intel i7-8650U CPU and 16GB RAM. 

For a one-day sample data taken from the dataset (32,647 car trajectories in total), our 

algorithm takes 18.55s to construct the link network, 9.36s to community detection and 

43.57s core-peripheral structure of the network. The total computation time to generate 

the result is approximately 1 minute. 
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Figure 7. 4 Spatial distribution of trajectory dataset 

7.3.2 Result of Community Detection and Core-Peripheral 

Structure in Communities 

From the car trajectory dataset, a link network with  189,829 nodes and 2,336,738 

edges is generated. By applying the fast unfolding algorithm on the link network, the 

algorithm produces community segmentation with the modularity of 0.73, indicating 

that there is a community structure in the link network. As a result of community 

segmentation, there are 10,313 communities in total, 851 communities have over ten 

links, and only 152 communities have over 100 links. The complementary cumulative 

distribution function (CCDF) of the number of links in link communities is shown in 

Figure 7. 5. The CCDF curve decreases quickly in the small number of links, indicating 

that a relatively small number of communities contain a significantly large number of 

links and play an essential role in the link network. Examine the core-peripheral 

structure of the large communities. Most of the core links of link communities are in a 

line shape and suitable to extract bus lines. Figure 7. 6 shows two examples of the core-

peripheral structure of link communities and the bus line extracted. 
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Figure 7. 5 Complementary cumulative distribution function (CCDF) of the number of links for link 

communities 

 

Figure 7. 6 Example of Link communities and bus-sharing line extracted 

 

(a) 

 

(b) 

 1 
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7.3.3 Result of bus-sharing Line Direction and Bus Stop 

Hotspots 

From the core-peripheral structure of 152 link communities with over 100 links, 29 bus-

sharing lines are extracted in Tokyo. The average length of the bus-sharing lines is 18.7 

km, with the longest of 38.1 km and the shortest of 11.6 km. The number of bus-sharing 

lines is less than the number of link communities, and the reason is that the bus-sharing 

lines extracted from some of the small communities are much shorter. Most of them are 

in the same direction as the larger communities. The travel demand from these small 

link communities can be satisfied by the bus-sharing lines extracted from large 

communities if the location of bus stops are appropriately arranged. The core-peripheral 

structure of link communities that extract the 29 bus-sharing lines are shown in 

Supplementary materials A.  

After extracting bus-sharing lines, we identify the potential demand for each line. The 

bus-sharing lines are named in descending order from 1 to 29 according to the potential 

demand. Figure 7. 7 (a) shows the spatial distribution of bus-sharing lines direction. 

According to the shape and spatial location of the bus-sharing lines, they  can be 

classified into three types:  

• Radiation type lines: This type of bus-sharing line include line 2, 3, 4, 5, 7, 12, 13, 

14, 15, 16, 17, 19, 20, 21, 23, 25 and 29. These bus-sharing lines extend from the 

city center to suburban area in all directions. They offer an efficient transportation 

method for passengers from some specific suburban residential areas to rapidly 

enter the city center or sub-center. These bus-sharing lines are mostly in the 

straight-line shape as the shortest path from the origin to the destination, ensuring 

the efficiency of the bus-sharing lines.   

• Ring-type lines: This type of bus-sharing line include line 1, 6, 8, 9, 11, 22, 26 and 

28. This bus-sharing line is on the edge of the central urban district connecting 

subcenters of the city.  

• Suburban lines: This type of bus-sharing line include line 10,18,24 and 27. These 

bus-sharing lines are connecting multiple suburban centers. 

These three types of bus-sharing lines are reasonable and in line with bus-sharing lines 

as a supplement in the urban transportation system. Notice that the presenting bus-

sharing lines network does not connect multiple Central Business Districts(CBDs) in 

one line. The reason is that urban subway lines can well serve the travel demand from 

one CBD to another.  

Figure 7. 7 (b) shows the regional hotspots and individual hotspots identified from 

boarding and alighting potential demand from each bus-sharing line. Regional hotspots 

indicate the cluster of high-demand locations along the bus-sharing line, which can be 

the location for grouped bus stops. Grouped stops in a range of areas can assemble 
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passengers and reduce their walk distance to the bus stops; Individual hotspots indicate 

a high demand location in a low demand neighborhood. Intermediate bus stops can be 

arranged in these hotspots. Arranging these two types of stops according to the hotspots 

can ensure the satisfaction of demand without devastating the efficiency and directness 

of the bus-sharing line. 

 
Figure 7. 7 Bus-sharing lines planning suggestions from link communities 

(a) Direction of 29 bus-sharing lines extracted (b) Hotspot identified for bus stop 

7.3.4 Evaluation of Travel Demand for bus-sharing Lines 

To sum up the number of potential demand, there are 290,465 trajectories in total, which 

 1 
(a) 2 

 3 

(b) 4 
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can be potentially replaced by the bus-sharing travel mode (20.6% of the total number 

of all car trajectories and 13.1% of the total mileage).  

Figure 7. 8 shows the operation benefit of 𝑂𝑖 of each bus-sharing line. The  𝑂𝑖 of 

bus-sharing lines are around 400 to 600 trajectories per kilometer, indicating that with 

proper line detail design and operation management, the bus-sharing lines will have a 

similar level of operational performance. Among all the bus-sharing lines, line 2 is the 

one with the highest operation benefit, connecting Kawasaki city directly to the city 

center. 

 

Figure 7. 8 Operation benefit of each bus-sharing line 

 
Figure 7. 9 Hourly demand change of bus-sharing lines 
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Figure 7. 9 shows the hourly demand change of the bus-sharing lines, which can suggest 

the bus schedule arrangement and pricing strategy. In the hourly demand, the morning 

peak is around 6:00 to 8:00, and the evening peak is around 16:00 to 18:00. However,  

the hourly demand is distributed differently among bus-sharing lines. One of the 

demand patterns is the morning peak and evening peak can be identified, including bus-

sharing lines 1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16, 20, 21, and 28. These bus-sharing lines 

are in a tide traffic demand pattern with a high proportion of commuting trips. On the 

contrary, the morning and evening peak hours of bus-sharing lines 7, 8, 9, 11, 12, 17, 

18, 19, 22, 23, 24, 25, 26, 27, and 29 are not precise, with high demand during all day. 

This pattern indicates that the travel demand of these lines may vary with less 

repeatability.  

 

Figure 7. 10 Number of potential demand trajectories per day for each bus-sharing lines 

Figure 7. 10 shows the box plot of the number of potential demand for each bus line 

with a comparation of weekdays and weekends & holidays. The potential demand 

fluctuates within a small range, indicating that the bus-sharing lines will have 

sustainable demand. Comparing the weekdays with weekends & holidays, in general, 

the potential demand for bus-sharing lines are more significant and more stable on 

weekdays. Travel demand on weekdays is more stable with high repeatability. 

7.3.5 Result of Emission Reduction Potential 

Based on the speed and travel length of potential trips, the FC and emission are 

calculated. The potential FC and emission reduction can be calculated by summing the 

emission produced by the car trajectories covered by each bus-sharing line. Figure 7. 

11 shows the summing of the proportion of the potential emission reduction of each 

bus-sharing line to the total car emission in the whole city. The result shows that by 

implementing a total of 29 bus-sharing lines, there will be 13.6%, 13.4%, 13.0%, and 

  

(a) Weekdays (b) Weekends & Holidays 

 1 
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12.8% potential reduction of NOX, FC, HC, and CO. 

Figure 7. 12 shows the spatial distribution of the emission reduction potential. The 

spatial heat map shows the relative values ranging from 0 to 1, compared to the 

maximum volume, averaged by four types of emissions. As is shown in Figure 7. 12, a 

large part of potential emissions handled by bus-sharing lines is distributed on the 

periphery area of the city center, especially the southwest part of the city. Most 

emissions occur within the Central Business Districts(CBD), such as Setagaya, Shibuya, 

Shinagawa, and Toshima. This distribution pattern is that the three types of bus-sharing 

lines developed by our methodology can serve the travel demand from suburban areas 

to CBD areas in the city center. Such travel highly depends on the urban expressway. 

Therefore, bus-sharing lines can potentially reduce emission pressure on urban 

expressways by replacing private car travel. 

 

Figure 7. 11 Estimation of potential emission reduction of each bus-sharing lines 
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Figure 7. 12 Spatial distributions of emission reduction potential 

7.4  Conclusions 

As a new type of Internet-based transportation mode in the public transportation system, 

the bus-sharing system has a high potential to replace the private car and reduce road 

traffic GHG emissions in the urban area. However, designing a demand-oriented and 

efficient system is critical and highly related to the bus-sharing system's public 

acceptance and operation performance. Under this background, this chapter proposes a 

methodology to generate planning suggestions for bus-sharing lines and stops based on 

massive demand data with high computing speed capable of integrating into a dynamic 

bus-sharing planning system. The proposed method involving the following steps:  

The car trajectories are extracted from mobile phone data as the input of potential bus-

sharing travel demand. From the demand input, a link network is constructed to 

represent the sharing route of the demand. Community detection is applied on the link 

network to segment the link network into network communities with similar travel 

routes, and the core-peripheral structure of each community is examined. The bus-

sharing lines are generated by extracting the core part of the link network communities 

and match into the road network. Potential demand for bus-sharing lines is identified, 

and boarding and alighting hotspots are extracted as the suggestion for bus-sharing bus 

stops. A case study is conducted using mobile phone data in Tokyo. 29 bus-sharing lines 

are extracted. According to the shape and spatial location of the bus-sharing lines, three 

types of bus-sharing lines serving different travel patterns are classified, including 

radiation type lines, ring-type lines, and suburban lines. By analyzing the emission 

reduction potential of the bus-sharing lines extracted, the bus-sharing lines generated 

by the proposed method can reduce emission pressure on urban expressways and 

mitigate approximately 13% of road traffic emissions.  
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Chapter 8 

Conclusions and Future Directions 

This study reviews some state-in-art articles on MaaS regardless of policy, 

transportation, energy, computer science, economics, and even society filed journals. In 

that case, we could find that utilizing big data to analyze their hot issues is a noticeable 

trend. More and more researchers realized that big data could provide solid supports for 

their theories and conclusion. However, due to the technology gaps between data 

mining and other research backgrounds, how to scientifically and effectively utilize the 

data becomes an obstacle to the researchers. 

Due to the lack of works that summarized the development and frontiers of this new 

field, researchers are hard to get comprehensive and high-dimensional information 

about TST. This research aims to focus on the following questions: a) how to define 

and reinvent data-driven mobility models by studying urban dynamics, urban mobility, 

transportation behavior, and sharing potential. b) within a city-level urban mobility 

framework, how can we characterize the nature of data-enabled shared transportation 

services among different modes, and what are the similarities and differences. c) the 

existing positive and successful STSs that can be identified in the studied domain and 

how they can be best applied for practical success. 

To answer these questions, we took three shared transportation modes: bicycle-sharing, 

ride-sharing, bus-sharing, as the study cases and tried to discuss the issue of STS under 

the framework of MaaS, and developed a series of methods. The contributions of this 

study include: 

For bicycle-sharing system: market-oriented sub-area division 

• Using a dataset generated by real-world travel flow, the data-based methodology 

ensures the credibility of the link network constructed and the market-oriented 

subarea division.  

• The market-oriented sub-divisions of the coverage area are suggested by the 

community detection method, which generates the sub-communities by 

maximizing the connections inside communities and minimizing connections 

between communities. The sub-regions generated by this method can primarily 

reduce the effort of bicycle rebalancing. 

• The hotspot identification and the network indicators in the subarea can identify 

places with frequent bicycle-sharing handovers and their traveling patterns, giving 

suggestions for constructing bicycle-friendly facilities and infrastructures. 

• The emission reduction potential analysis will hopefully help promote bicycle-

sharing services to replace car trips and reduce the total emission in the city. 
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For bicycle-sharing system: layout optimization 

• The demand prediction is strictly based on mobility information, which ensures the 

credibility of the input parameters for the optimization model; 

• Uncertainty concerning site-specific construction conditions is taken into 

consideration, which is rarely discussed in previous studies and hence facilitates 

more practical solutions for real-world bicycle-sharing projects; 

• An integrated method is proposed which combines the layout optimization and the 

rebalance optimization for bicycle-sharing systems; 

• The method enables multi-sided sensitivity analysis of the potential for bicycle-

sharing to replace walking and vehicular trips. This can inform further research on 

potential emissions reduction analysis. 

For ride-sharing system: city-level potential analysis 

• The potential analysis of ride-sharing is based on the actual travel demand, which 

is more precise and reliable compared with the base of urban population 

distribution; 

• This study proposes a deep learning-based method for real-time matching 

feasibility estimation; 

• Based on the proposed high-effective matching algorithm, the big data-based 

potential and emission reduction analyses are carried out; 

• Tokyo is taken as the case study with mining millions of trajectories data of mobile 

phone users in one year. 

For bus-sharing system: city-level dynamic lines design 

• The method proposed can automatically generate bus line direction and stops 

location suggestions based on massive demand data input, which is more demand-

oriented and efficient than the existing traditional bus-sharing line planning method. 

• The algorithm can process massive demand data and generate results in time, which 

has a high potential of integrating into a dynamic bus-sharing line planning system. 

• By analyzing the case study in Tokyo, the bus-sharing lines generated by the 

proposed method have the potential to reduce emission pressure on urban 

expressways and to mitigate approximately 13% of road traffic emissions. 

In our analyses, only travel distance and travel mode were taken as the indicators to 

screen the potential shared transportation users. The individual adoption attitudes on 

each shared transportation mode were not considered. To evaluate the impacts of this 

introduced assumptions on the results, in future studies, field investigations 

(questionnaire investigations) on the adoption attitudes with demographic information 

fusion would be carried out to enable a more comprehensive conclusion. The future 

quantitative studies will be significant for building infrastructure, policymaking, 

potential market measurement, and further detailed analysis of environmental benefits. 
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For bicycle-sharing system: market-oriented sub-area division 

An optimization model can be considered based on the sub-area to give strategies and 

quantitative analysis for the accurate bicycle rebalancing demand. Our method only 

captures the possibility of bicycle-sharing but does not simulate the bicycle-sharing 

trips in a city. A simulation system for bicycle-sharing services considering human 

mobility and trip chain can be built to enable a more comprehensive conclusion in 

future studies. The quantitative studies are significant for building infrastructure, 

policymaking, potential market measurement, and further detailed analysis of emission 

reductions. 

For bicycle-sharing system: layout optimization 

Data acquisition in this study was affected by several factors, including loss of signal 

or battery power and the difficulty of discriminating between public and private vehicle 

travel trajectories based on mobile phone GPS data. In addition, many further studies 

are still required to enable a more comprehensive conclusion. For example, the vehicle 

routing problem should be considered in the rebalancing model, and a detailed survey 

is required on people’s attitudes to adopting bicycle-sharing as a travel mode. Such 

quantitative studies will play essential roles in infrastructure development, 

policymaking, and further detailed quantitative analysis of emission reductions. In the 

emission reduction potentiality analysis, a complete life-cycle assessment of bicycle-

sharing is not included in the current analysis due to data imperfection. The offset 

emission volume could be increased by introducing more influential factors such as 

biking recycling and infrastructure investment. In future studies, a complete life-cycle 

of the bicycle-sharing system is expected to conduct to provide more accurate 

environmental information to effective operation and promotion of the bicycle-sharing 

system.  

For ride-sharing system: city-level potential analysis 

In our analysis, the individual attitude on ride-sharing was not considered. This 

limitation may introduce an error in the results. Nevertheless, the analysis method I 

proposed is a configuration tool. A complete result can be obtained via our framework 

with a further work of attitude survey on ride-sharing. 

For bus-sharing system: city-level dynamic lines design 

The bus and crew dispatching model can be developed based on the bus lines generated 

from our method. In the real-world application, an integrated bus-sharing system with 

a dynamic bus line planning system, dispatching system, and real-time controlling 

system can be developed with our proposed method as a critical element. 
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