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ABSTRACT

Recent advances of long read sequencers including Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (Nanopore) sequencers have been accelerating studies on
genome, epigenome, transcriptome, and others. It is known that reads generated by long
read sequencers include more errors than those generated by short read sequencers (e.g.
Illumina HiSeq), and many tools and algorithms that target specifically for the long read
sequencers have been developed. In the development of the tools/algorithms for long
read sequencers, however, it is generally difficult to evaluate the tools/algorithms by
using real data. Therefore, simulators that generate reads with error information such
as alignments between reads and the reference sequences are useful for the evaluation of
new tools/algorithms. Those simulators are also useful for experimental design such as
estimating the depth coverage required for genome assembly and variant detection.

My analysis of 13 PacBio datasets showed characteristic features of PacBio reads.
I have developed a read simulator, PBSIM, that captures these features using either a
model-based or sampling-based method. Using PBSIM, I conducted several hybrid error
correction and genome assembly tests for PacBio reads, suggesting that a continuous long
reads coverage depth of at least 15 in combination with a circular consensus sequencing
coverage depth of at least 30 achieved extensive genome assembly results.

PacBio sequencers have less systematic (or context-specific) errors than short read
sequencers. On the other hand, it has been reported that PacBio reads have regional
bias of error distribution within the reads, and very low quality regions are sometimes
observed. The low quality regions are caused by chimeras and undetected adapter se-
quences, and also by non-uniformity of errors. To capture characteristics of errors in
reads for long read sequencers more precisely, especially to simulate the non-uniformity
of quality scores, I developed a generative model for quality scores, based on a hidden
Markov Model in combination with latest model selection criteria. My computational
experiments show that PBSIM2, the new version of PBSIM, simulates quality scores
that are more consistent with real reads of PacBio and Nanopore than other existing
simulators. Also, I improved the correlation between read length and accuracy, and the
relationship between error rate and quality scores, both of which PBSIM was unable to
simulate properly.
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Chapter 1

General Introduction

Next-generation sequencing (NGS) techniques are the current standard for the
generation of genomic data, producing amounts of information rapidly and at
a low cost [1]. NGS facilitates the acquisition of large amounts of massive ge-
nomic, transcriptome, DNA-protein interactions, and epigenetics data, which is
rapidly changing our view of biological process, but the downstream processing
of these data is still a serious bottleneck. NGS presents many bioinformatics
challenges, and to overcome them, improved computational methods and more
efficient software are constantly being developed to provide faster processing and
more accurate inferences [2, 3, 4].

Sanger method differs from NGS, especially it works with relatively large
fragments which simplifies assembling [5]. Despite it is laborious, and there-
fore time consuming and expensive, the Sanger method is still respected as the
most reliable technique and therefore serves as the ’gold standard’. Compared
with the conventional Sanger method, NGS allows massively parallel acquisition
of nucleotide sequences, resulting in higher data throughput, shorter sequenc-
ing times, and reduced cost. These feature allows second-generation sequencers
(also called high-throughput sequencing), such as Illumina, Roche454, SOLiD,
and Ion Torrent, to perform unprecedented analysis [6, 7]. However, their read
length are incomparably shorter than that of the Sanger method. Their read
length range from 75 nt for SOLiD to 400 nt for Ion Torrent, which are shorter
than many repetitive sequences, so it is difficult to accurately map and locate
them on the genome or transcriptome, and analyses of repetitive sequences and
structural variants are limited [8]. The error rate of Roche 454 and Ion Torrent
is 1-2%, which is very high compared to the Sanger sequence, but it is reduced
to about 0.01% for Illumina and SOLiD. However, platform-specific artefacts are
also reported, which makes it difficult to analyze [9].

In general, The tools/algorithms for analyzing data must be designed to prop-
erly capture the characteristics of the data and overcome any drawbacks in the
data. Since the advent of NGS, many tools/algorithms have been developed for
these reads. Most of them are used for each of the downstream processes after
sequencing, such as read alignment, genome assembly, transcriptome analysis,
and epigenetic analysis. Since the analysis result often changes depending on the
tool, it is essential that these tools/algorithms are properly evaluated in order
for the user to properly choose the one that suits their research from among
them [2, 3, 4]. There are many tools with similar functionality, each with its
own strengths and weaknesses. In addition, some tools, especially most of the
de facto standard tools, are upgraded frequently, and the de facto standard tools
are often replaced by new tools. Therefore, it is very difficult to choose the
best tool. In general, tools/algorithms are evaluated using real and simulation
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data, and evaluation with real data is more important. However, real data that
meets the necessary conditions cannot always be prepared and the true error
information of real data is not easy to obtain. Simulators, on the other hand,
are very useful because they allow users control data conditions and generate
error information, such as alignments between reads and the reference sequences.
In addition, In silico data can significantly reduce tools/algorithms development
costs and time. The demand for simulation data is increasing not only in the
evaluation of tools/algorithms, but also in the validation of biological models,
understanding of biological processes, and design of sequence experiments [10].

It is crucial for the simulator to be able to properly simulate the charac-
teristics of real reads, especially the characteristics of errors. The error model
determines the probability of substitution, insertion, or deletion at each position
in the read. In second-generation sequencers, errors are not uniformly distributed
along a read, and errors rates vary widely between reads within the same dataset
[11]. Various error statistics are measured for each sequencing pratform, and
each error model is created based on the statistics. It has been reported that
each platform has specific error biases. For example, Illumina has been observed
to frequently replace A>C [9]. Another example is the high frequency of errors
in the homopolymer region in Illumina and Ion Torrent (insertion and deletion
in Illumina, only deletion in Ion Torrent). In the case of Ion Torrent, this is
due to the limited ability of terminator-free chemistry to accurately sequence
long homopolymers [12]. Another important bias is known as GC bias, which is
the difference between the observed GC content of reads and the expected GC
content based on the reference sequence. For example, Illumina and Ion Torrent
have a low GC bias, which affects the depth of coverage and is a major cause
of gaps in genome assembly. [12, 13]. Simulation of these sequencing biases is
expected to be useful in designing sequencing experiments that can avoid the
harmful effects of these biases. More complex simulations include simulations
of SNPs, structural variants, and heterozygosities in genomic sequences, as well
as simulations of each transcriptome expression level, alternative splicing, and
intron retention in transcriptome sequences. In assembling these complex simu-
lations, the simulation of the read and the simulation of the genome sequence or
transcriptome from which the read is derived will be designed separately.

Third-generation sequencing technologies including the PacBio and Nanopore
sequencing are causing a revolution in genomics study as they provide researchers
to study genomes at an unprecedented sequencing read length [14]. Third genera-
tion sequencing read is also called ’long read’. The characteristics of PacBio reads
is quite different from that of the second-generation sequencing reads. PacBio
uses Single Molecule Real Time (SMRT) technology, which enables the real-time
detection of nucleotide incorporation events during the elongation of the repli-
cated strand from the non-amplified single stranded template . SMRT technology
uses nucleotides containing a fluorescent label on the phosphate chain of the nu-
cleotide rather than on the base. Thus, incorporated nucleotides are detected
based on the associated fluorophore that is released and dissipated upon cleav-
age of the phosphate chain [15]. There are two types of reads in PacBio. The
first type is Continuous Long Read (CLR), which averages thousands to tens of
thousands bases in length and has a maximum length of hundreds of thousands
bases. CLR is much longer than the second-generation sequencing reads, but its
error rate is very high at 15%. The second type is Circular Consensus Sequencing
(CCS, also called HiFi read), which has improved the error rate to 1-2% by error
correction with multi-path sequencing. Due to the constraints of the multi-path
sequencing, the read length is shorter than the CLR, but recent technological
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innovations have increased the CCS length to over ten thousand on average and
also reduced the error rate to 0.1%. In Nanopore sequencing, a single stranded
DNA or RNA fragment pass through a protein embedded in a membrane via a
nanometre-sized channel (this protein is the‘ nanopore ’) [16]. The sequenc-
ing process involves a nucleotide fragment passing through the pore leading to
variations in a measured ionic current. The current at any given time primarily
depends on a nucleotide subsequence of length 5 or 6 inside the pore at that in-
stant. This raw current signal is sampled, and is used by the base-caller to infer
the most likely base sequence that could have induced the raw signal. Nanopore
reads average tens of thousands bases, with some exceeding 1M at maximum. Its
error rate is 15%, which is the same as PacBio. These long reads can be used to
more accurately determine the mapping position on the genome by utilizing their
length, which is useful for studying complex regions such as repetitive sequences
and structural variants [16, 17]. Also, unlike short reads, these are known to have
less error bias. According to the announcement by Pacific Biosciences of Califor-
nia, Inc., errors occur almost randomly, and statistical analysis of reads confirms
the randomness, although some weak biases are observed [18]. In Nanopore, it
has been reported that there are many errors in homopolymers, but apart from
that, the errors are highly random [19]. Notably, long reads have less coverage
bias such as GC bias observed in short reads, so using long reads is expected to
reduce gaps in genome assembly [19].

Long reads have a much higher error rate than short reads, but their weak-
nesses has been quickly overcome by the development of tools/algorithms. In the
genome assembly, hybrid error correction using high–quality short reads achieved
a genome assembly with an error rate of 0.1% or less [20]. Immediately after this,
the same or better accuracy was achieved by error correction using only long reads
[21]. Many tools/algorithms have been developed to analyze long reads, and the
speed of innovation in PacBio and Nanopore technologies has further accelerated
their development [22, 23, 24].

The most common approach to read simulation is to understand the charac-
teristics of read generation process and to accurately imitate the process. The
process of PacBio sequencing is the formation of DNA double strand by poly-
merase and the accompanying generation of fluorescent signals, which are de-
coded by the base-caller. In the case of PacBio CCS, the process of multi-path
sequencing and consensus sequence generation is added. In the CCS simulation
by SimLoRD [25], the number of passes expected from the read length is first
calculated, and the error rate of the read is calculated based on the number of
passes. In Nanopore, an electrical signal is emitted from the nucleotide sequence
that enters the pore, and the base-caller converts it to a base. Nanopore Sim-
ulatION [26] and DeepSimulator [27] first simulate an electrical signal and then
use a real base-caller, such as Guppy and Albacore [23] to convert that electrical
signal to the expected base. In the short read simulation, a simulator such as
ART [28] simulates the bias during PCR amplification. Another approach to
read simulation is to learn and imitate the characteristics of the read, which is
the final product of sequencing. LongISLND [29], which is one of PacBio read
simulators, uses a learn-and-simulate approach. In this approach, LongISLND
learns the statistical features of the reads from alignments between the reads
and the reference sequences, and simulates reads using the model of statistical
features. For Nanopore read simulation, simulators such as NanoSim [30] have
adopted a similar approach. If it is difficult to understand the characteristics of
the read generation process, this method will be the only option. In this thesis,
chapter 2 describes the first software PBSIM [31], which uses the former approach
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(i.e., imitating sequencing process), and chapter 3 describes the second software
PBSIM2 [32], which uses the latter approach (i.e., learn-and-simulate approach).
PBSIM is a simulator of PacBio reads, and simulations are performed based on
the observation that the process of PacBio read generation is almost random.
After that, it has been reported that PacBio reads also have various error biases,
albeit weakly [12]. Error bias in the homopolymer region and context-specific
errors have been reported, but all causes of the error bias have not been clarified
[29]. Therefore, in PBSIM2, learning by Factorized Information Criteria Hidden
Markov Model (FIC-HMM) [33, 34] was performed and a read generation model
was created. PBSIM2 can also simulate Nanopore reads using the same meth-
ods used to simulate PacBio reads. PBSIM precisely simulated the randomness
that is characteristic of the PacBio sequencer, and used the simulation of genome
assembly as an example to show that the simulation is effective in designing se-
quence experiments. PBSIM2 modeled characteristics of long reads by machine
learning and achieved more accurate simulation than that of PBSIM.
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Chapter 2

PBSIM: PacBio reads simulator.toward

accurate genome assembly

2.1 Introduction

The advent of high-throughput sequencing technologies enables us to determine
various genomes rapidly. A number of sequencers have been developed (e.g. Il-
lumina, 454 and SOLiD), and Pacific Biosciences, or‘ PacBio ’for short, has
provided a unique sequencer, which produces two types of reads: (i) continuous
long reads (CLR) (long reads with high error rates), and (ii) circular consensus
sequencing (CCS) reads (short reads with low error rates) (see Table 2.1–2.3 for
empirical statistics of CLR and CCS reads). These two types of read set could
be useful for hybrid de novo genome assembly, and, using the PacBio sequencers,
Chin and colleagues have determined the genome sequences of two clinical Vibrio
cholerae strains [35]. There are several simulators for reads produced by high-
throughput sequencing technologies, such as pIRS [36], ART [28], Grinder [37],
FlowSim [38], MetaSim [39] and dwgsim in SAMtools [40] (see also Table 2.4).
However, no read simulator has targeted the specific generation of PacBio libraries
so far. I have therefore developed a simulator (called PBSIM) that simulates both
CLR and CCS reads of PacBio sequencers. I adopted two simulation approaches:
(i) a sampling-based simulation (in which both length and quality scores are
sampled from a real read set), and (ii) a model-based simulation. In addition, I
conducted hybrid error correction and assembly tests for datasets simulated by
PBSIM, suggesting that a CLR coverage depth of at least 15 in combination with
a CCS coverage depth of at least 30 achieved extensive assembly results.
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Table 2.2. Statistics of real CLR generated by PacBio RS with the C2
chemistry

E.coli V.cholerae V.cholerae
Type of data K12 N5 H1

center PacBio PacBio PacBio

coverage depth 47 116 –
#reads 31,815 76,129 3,790

read length
average 2,997 5,690 3,550
SD 2,145 2,738 1,986
min. 101 428 536
max. 13,640 19,557 13,705

read accuracy
average 83.81% 80.04% 76.19%
SD 3.39% 3.15% 1.01%
min. 76.00% 76.00% 76.00%
max. 93.00% 91.00% 82.00%

Table 2.3. Statistics of CCS generated by PacBio RS with the C1 and C2
chemistry

E.coli E.coli
Type of data C227-11 K12

center PacBio PacBio

coverage depth 41 19
#reads 502,157 91,473

read length
average 446 963
SD 168 344
min. 116 500
max. 1,864 2,605

read accuracy
average 98.23% 97.43%
SD 1.94% 2.09%
min. 76.00% 93.00%
max. 100.00% 100.00%
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2.2 Methods

2.2.1 Analyses of real datasets

Models of read length and quality score were derived from features observed in
real PacBio reads publicly available. Only PacBio reads filtered by length (>100
bp) and accuracy (>75%) were used in constructing the models because only
the filtered PacBio reads were used in de novo assemblies [35, 41]. To learn
how to simulate differences (errors) introduced to reads, I analyzed real PacBio
reads by aligning them to reference sequences. LAST [42, 43] was used for the
alignment with parameters: match=1, mismatch=-2, gap existence=-1 and gap
extension=-1. The detailed results are shown in Table 2.5 (basic statistics),
Figure 2.1 (patterns of substitutions), Figure 2.2, Table 2.6 (patterns of insertion
and deletion) and Figure 2.3 (length of insertion and deletion).

Table 2.5. Alignment results for real PacBio data

read chemi- aligned aligned substitu- insertion deletion total error
type stry rate (read) rate (base) tion rate rate rate rate

λ-phage CLR C1 96.06% 86.69% 0.67% 10.00% 1.59% 12.26%
E.coli C227-11 CLR C1 98.40% 92.78% 1.40% 8.40% 4.42% 14.22%
(PacBio)
E.coli C227-11 CLR C1 90.22% 79.34% 0.89% 10.80% 1.60% 13.29%
(BI)
E.coli 55989 CLR C1 97.46% 90.53% 1.48% 8.84% 4.63% 14.95%
S.cerevisiae CLR C1 87.02% 70.97% 0.80% 9.26% 1.81% 11.87%

E.coli K12 CLR C2 95.94% 91.57% 1.48% 10.79% 3.06% 15.33%
V.cholerae N5 CLR C2 94.01% 67.30% 1.75% 10.24% 3.93% 15.92%

E.coli C227-11 CCS C1 97.40% 94.98% 0.19% 0.70% 2.34% 3.23%

E.coli K12 CCS C2 99.99% 99.86% 0.09% 0.86% 1.04% 1.99%

LAST [43] was employed for the alignment with parameters: match=1,
mismatch=-2, gap existence=-1, gap extension=-1. LAST was employed for
the alignment with parameters: match=1, mismatch=-2, gap existence=-1, gap
extension=-1.

Table 2.6. Pattern of INDELs

read type chemistry insertion deletion

λ-phage CLR C1 73.56% 65.35%
E.coli C227-11 (PacBio) CLR C1 72.80% 57.92%
E.coli C227-11 (BI) CLR C1 73.66% 60.85%
E.coli 55989 CLR C1 68.77% 57.57%

E.coli K12 CLR C2 57.72% 57.30%
V.cholerae N5 CLR C2 55.17% 53.67%

E.coli C227-11 CCS C1 75.32% 75.99%

E.coli K12 CCS C2 75.45% 82.82%

The values show the probability that the nucleotide of an INDEL is the same
as either of its neighbors. Notice that the probability is equal to 44% when an
INDEL occurs randomly.
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Figure 2.1. Pattern of substitutions of real PacBio data.
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The bar graphs are (a) the mean of seven CLR, and (b) two CCS. See Table 2.5
for the details of the datasets. The frequencies of substitution pattern were
normalized by dividing by nucleotide frequencies in the reference sequence.
Note that I do not include this pattern in the current version of PBSIM (i.e.,
substitutions are simulated by using a uniform distribution.).

Figure 2.2. Nucleotide that corresponds to insertion and deletion (INDELs).
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The bar graphs are (a) the mean of seven CLR, and (b) two CCS. See Table 2.5
for the details of the datasets. The frequencies of INDELs were normalized by
dividing by nucleotide frequencies in the reference sequence.

Figure 2.3. Length of INDELs.
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The bar graphs are (a) the mean of seven CLR, and (b) two CCS. See Table 2.5
for the details of the datasets.
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2.2.2 Model-based simulation

According to observed distributions of read length, I used log-normal distributions
to model the length of CLR and CCS reads (Figure 2.4–2.6).

For CLR reads, the average accuracy over the length of each read is taken from
a normal distribution with parameters (mean, and standard deviation) given by
the user. For CCS reads, an exponential function,

f(x) =

{
exp(0.5(x− 75)) 75 ≤ x ≤ 100
0 0 ≤ x < 75

was utilized for modeling the accuracy of every read (Figures 2.7–2.9).
Errors from single molecule sequencing are considered to be stochastic (ran-

dom). In fact, no position-specific error profile in CLR and CCS reads was found
(cf. Figure 2.10). Quality scores are therefore simulated stochastically, i.e., in the
model-based simulation, a quality score at each position of a simulated read is
randomly chosen from a frequency table of quality scores. For each accuracy of a
read, frequencies of quality scores were precomputed using E.coli C227-11/55989
CLR datasets and C227-11 CCS dataset. For accuracies of 0–59% and 86–100%
of CLR and 0–84% of CCS, uniform distributions are used because datasets are
not sufficiently large. Note that these CLR and CCS datasets were not filtered
by the length (>100 bp) and accuracy (>75%).

Simulated read sequences are randomly sampled from a reference sequence,
and differences (errors) of the sampled reads are introduced as follows.

The substitutions and insertions are introduced according to the quality scores
which are chosen as described above. Their probabilities are computed for each
position of a simulated read from the error probability of the position (computed
from the quality score of the position) and a ratio of differences (substitution/
insertion/deletion) given by a user. The deletion probability is uniform for all po-
sitions of each simulated read, which is computed from the mean error probability
of the read set and the ratios of differences:

Pdel = µerror ×
Rdel

Rsub + Rins + Rdel

where Pdel is the deletion probability, µerror is the mean error probability
of the read set, Rsub is the ratio of substitution, Rins is the ratio of insertion
and Rdel is the ratio of deletion. The substitution and insertion probabilities
are computed for each position of a simulated read from the error probability of
the position (computed from the quality score of the position) and the ratios of
differences:

Perror = 10
−Q
10

Psub = Perror ×
Rsub

Rsub + Rins + Rdel

Pins = Perror ×
Rins

Rsub + Rins + Rdel

where Perror is the error probability of a quality score Q, Psub is the substitution
probability and Pins is the insertion probability.

From the observations of the real PacBio reads, I found a weak frequency
bias in the substitution pattern (Figure 2.1), but the cause of this bias is not
clear; Hence, I do not include this pattern in the current version of PBSIM (i.e.,
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substitutions are simulated by using a uniform distribution.). On the other hand,
I found that the probability that inserted nucleotide is the same as either of its
neighbors, is significantly higher than that of random choice (Table 2.6), and this
bias is considered to be caused by the mechanism known as cognate sampling
[18]; Therefore half of inserted nucleotides are chosen to be the same as their
following nucleotides and the other half are randomly chosen.

From the observations of the real PacBio reads, I found that the nucleotide
frequency of deletion is uniform (Figure 2.2(c),(d)), and that the distribution
of deletion length is similar to the geometric distribution (Supplementary Fig-
ure 2.3). Therefore the deletion probability is uniform throughout all positions
of every simulated read, which is computed from the mean error probability of
the read set and the ratio of differences.

It was reported that coverage depth of PacBio reads across a genome and
against GC content is nearly uniform [11, 20, 44]. I therefore do not introduce
coverage bias and GC bias to simulated sequence reads.

Figure 2.4. Distributions of lengths of CLR generated by PacBio RS with the
C1 chemistry.

(a) λ-phage (b) E.coli C227-11 (PacBio) (c) E.coli C227-11 (BI)
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The red and blue lines indicate the distribution of lengths of real reads and a
log-normal distribution, respectively. See Table 2.1 for the detailed information
of the references (a)–(h).
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Figure 2.5. Distributions of lengths of CLR generated by PacBio RS with the
C2 chemistry.

(a) E.coli K12 (b) V.cholerae N5 (c) V.cholerae H1
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The red and blue lines indicate the distribution of lengths of real reads and a
log-normal distribution, respectively. See Table 2.2 for the detailed information
of the references (a)–(c).

Figure 2.6. Distributions of lengths of CCS generated by PacBio RS with the
C1 and C2 chemistry.

(a) E.coli C227-11 (C1 chemistry) (b) E.coli K12 (C2 chemistry)
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The red and blue lines indicate the distribution of lengths of real reads and a
log-normal distribution, respectively. See Table 2.3 for the detailed information
of the references (a) and (b).
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Figure 2.7. Distributions of read accuracies of CLR generated by PacBio RS
with the C1 chemistry.
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The red and blue lines indicate the distribution of accuracies of real reads and a
normal distribution, respectively.

Figure 2.8. Distributions of read accuracies of CLR generated by PacBio RS
with the C2 chemistry.
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Figure 2.9. Distributions of read accuracies of CCS generated by PacBio RS
with the C1 and C2 chemistry.

(a) E.coli C227-11 (C1 chemistry) (b) E.coli K12 (C2 chemistry)
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The red and blue lines indicate the distribution of accuracies of real reads and a
model by exponential function, respectively.

Figure 2.10. Accuracy of each position in CLR and CCS reads.
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computed by using actual quality scores produced by the PacBio sequencer.
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2.2.3 Sampling-based simulation

In the sampling-based simulation, lengths and quality scores of reads are simu-
lated by randomly sampling them in a real library of PacBio reads (provided by
the user). Subsequently, their nucleotide sequences are simulated by the same
method with the model-based simulation.
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2.3 Results and Discussion

PBSIM is implemented using the C language. PBSIM produces a set of simulated
reads in the FASTQ format [45] and a list of alignments between a reference
sequence and simulated reads in the MAF format
(https://cgwb.nci.nih.gov/FAQ/FAQformat.html#format5).

2.3.1 Simulator performance

To test PBSIM’s speed, I chose three genomes from Supplementary Table 2.7 as
reference sequences, and simulated CLR and CCS reads at 10x, 20x, 50x and
100x coverage to each of the reference sequences. Supplementary Table 2.8 shows
the computational time for simulating reads by PBSIM, indicating that PBSIM
is sufficiently fast (at most 200 s). On the other hand, the memory requirement
of PBSIM depends on the length of the reference sequence.

Because the length and accuracy are selected stochastically, the difference
between a set of real reads and a set of simulated reads tends to be larger when
the number of simulated reads is smaller. I evaluated this point by using the
λ-phage genome (which is the shortest genomes in this study; see Supplementary
Table 2.7). In the sampling-based simulation, I used E.coli C227-11 real reads
as the sample reads. Figures 2.11 and 2.12 show a comparison of real reads and
simulated reads. Note that the variance would be much smaller if I used a longer
reference sequence. Alignment tests of simulated reads show that simulated reads
reproduced CLR and CCS reads well (Table 2.9, compared to Table 2.5).

Table 2.7. Reference sequences used in this study

Reference sequence Length (bp) %GC

λ phage genome 48,502 49.85%
E.coli C227-11 genome 5,413,634 50.62%
E.coli 55989 genome 5,154,862 50.66%
E.coli K12 genome 4,639,675 50.79%
V.cholerae N5 genome 3,718,269 47.48%
S.cerevisiae genome 12,157,105 38.15%
D.melanogaster chr2L 23,011,544 41.84%
H.sapiens chr21 48,129,895 40.83%
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Table 2.8. Computation time in seconds

Depth

Reference read type sim. type 10 20 50 100

λ-phage CLR sampling-based 19 (9) 21 (9) 16 (8) 20 (8)
genome (48K) CLR model-based 1 (1) 1 (1) 1 (1) 1 (1)

CCS sampling-based 4( 2) 3 (2) 3 (2) 4 (2)
CCS model-based 1 (1) 1 (1) 1 (1) 1 (1)

E. coli 55989 CLR sampling-based 20 (12) 21 (15) 31 (25) 49 (41)
genome (5.1M) CLR model-based 5 (4) 10 (9) 25 (23) 50 (47)

CCS sampling-based 10 (5) 10 (8) 20 (17) 36 (31)
CCS model-based 5 (4) 10 (8) 23 (21) 47 (43)

D. melanogaster CLR sampling-based 28 (23) 44 (38) 92 (82) 176 (159)
chr2L (23M) CLR model-based 22 (21) 45 (42) 112 (106) 219 (208)

CCS sampling-based 19 (16) 37 (29) 78 (70) 151 (138)
CCS model-based 22 (20) 44 (40) 109 (100) 216 (200)

Averaged real time in seconds for 10 simulations is shown. A Linux machine
with 2.67 GHz Intel Xeon CPU was used. Times in parentheses indicate CPU
times. Memory requirement is the length of the reference genome plus several
megabytes.

Table 2.9. Alignment results for simulated data

read sim. accuracy aligned aligned substitu- insertion deletion total error
type type rate(read) rate(base) tion rate rate rate rate

E.coli CLR sampling 78.30% 99.30% 99.79% 3.23% 10.53% 3.98% 17.74%
55989 CLR model 77.98% 99.70% 99.81% 3.31% 10.58% 4.00% 17.89%

CCS sampling 98.23% 100.00% 99.97% 0.13% 0.39% 1.25% 1.77%
CCS model 98.40% 100.00% 99.97% 0.11% 0.32% 1.42% 1.85%

LAST [42] was employed for the alignment with parameters: match=1,
mismatch=-2, gap existence=-1, gap extension=-1.
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Figure 2.11. Comparison of the simulated lengths and sample (or setting)
lengths.
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I ran PBSIM 10 times for each depth (10, 20, 50 and 100) for sampling- and
model-based simulations. The colors indicate the simulated lengths. The cross
indicates the sample (or setting) lengths.
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Figure 2.12. Comparison of the simulated accuracies and sample (or setting)
accuracies.
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I ran PBSIM 10 times for each depth (10, 20, 50 and 100) for sampling- and
model-based simulations. The colors indicate the simulated accuracies. The
cross indicates the sample (or setting) accuracies.
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2.3.2 Assembly test for simulated reads

Finally, I conducted hybrid error correction and assembly tests using datasets
simulated by PBSIM. I simulated CLR and CCS reads with coverage depth of 5,
10, 15, 20, 30, 40 and 50 (by both model-based and sampling-based simulations),
and tested all the combinations of these coverage depth. In the model-based
simulation, for CLR reads, the length and accuracy are set to be about 3000 bp
and 78%, respectively; For CCS reads, the length and accuracy are set to be about
450bp and 98%, respectively. In the sampling-based simulation, I used E.coli
C227-11 real reads (from which reads are sampled). Reference sequences tested
were E.coli 55989, D.melanogaster chr2L and H.sapiens chr21 (cf. Table 2.7).

For a hybrid assembly of CLR and CCS reads, I employed the PacBioToCA
[20], a hybrid error correction method and de novo assembly of single-molecule
sequencing reads. In the pipeline, error correction of CLR reads was first con-
ducted using CCS reads, and then the corrected (CLR) reads were assembled
with the Celera assembler [46]. CLR reads without error correction can not be
assembled by the Celera assembler due to the high error rate.

The results are shown in Figures 2.13 (the number of contigs), 2.14 (aligned
reference bases by PBcR), 2.15 (aligned reference bases by contigs), 2.16 (N50
of contigs) and 2.17 (maximum length of contigs). For every reference sequence,
an extensive assembly was obtained with a CLR coverage depth of at least 15
in combination with a CCS coverage depth of at least 30 ( Figures 2.16 and
2.17). Additionally I simulated and assembled error-free CLR reads for all the
CLR coverage depth tested above. Although the error correction of PacBioToCA
improved assembly metrics, assembly of error-free reads was more comprehensive
still. Also, higher read coverage did not always translate into larger assembly.
These results suggest that there is room for progress in the correction of PacBio
errors and read assembly. (see the “error-free” parts in Figures 2.13–2.17).

In this section I have shown that users can employ PBSIM to design sequenc-
ing experiments (e.g., to determine the depths of CLR and CCS reads). Note that
users can design sequencing experiments of hybrid-assembly of PacBio CLR (sim-
ulated by PBSIM) combined with Illumina’s short reads (simulated by existing
Illumina simulators e.g. pIRS [36]). PBSIM will be also useful for comparisons
of hybrid assembly algorithms.
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Figure 2.13. Number of contigs in the assembly tests.
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(d) E.coli 55989 (e) D.melanogaster chr2L (f) H.sapiens chr21
(model-based) (model-based) (model-based)
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In each figure, the horizontal axis (with the exception of the label “error free”)
indicates circular consensus sequencing (CCS) coverage depth and the vertical
axis shows the number of contigs. Both continuous long reads (CLR) and
CCS reads were simulated by using a sampling-based simulation in PBSIM for
three reference sequences: (a) E.coli 55989, (b) D.melanogaster chr2L and (c)
H.sapiens chr21 (cf. Table 2.7). The “error-free” in the horizontal axis shows the
case of using only CLR with no error (for assembly), where the color indicates
the coverage depth of CLR.
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Figure 2.14. Aligned reference bases by PBcR in the assembly tests.
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(d) E.coli 55989 (e) D.melanogaster chr2L (f) H.sapiens chr21
(model-based) (model-based) (model-based)
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Aligned reference bases indicates the percentage of the reference covered by
PBcR. MUMmer (http://mummer.sourceforge.net/) was employed to compute
this value. PBcR means PacBio corrected reads (i.e. reads after error correction
by PacBioToCA). ”error-free” at the CCS coverage depth is assembled results of
error-free CLR reads.

Figure 2.15. Aligned reference bases by contigs in the assembly tests.
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(d) E.coli 55989 (e) D.melanogaster chr2L (f) H.sapiens chr21
(model-based) (model-based) (model-based)
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Aligned reference bases indicates the percentage of the reference covered by
contigs. MUMmer (http://mummer.sourceforge.net/) was employed to compute
this value. ”error-free” at the CCS coverage depth is assembled results of
error-free CLR reads.
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Figure 2.16. N50 in the assembly tests.

(a) E.coli 55989 (b) D.melanogaster chr2L (c) H.sapiens chr21
(sampling-based) (sampling-based) (sampling-based)

CCS coverage depth

N
50

 (
bp

)

x5 x10 x15 x20 x30 x40 x50 error−free

0
2e

+
06

4e
+

06
6e

+
06

CLR x5
CLR x10
CLR x15
CLR x20
CLR x30
CLR x40
CLR x50

CCS coverage depth

N
50

 (
bp

)

x5 x10 x15 x20 x30 x40 x50 error−free

0
1e

+
06

2e
+

06
3e

+
06

CLR x5
CLR x10
CLR x15
CLR x20
CLR x30
CLR x40
CLR x50

CCS coverage depth

N
50

 (
bp

)

x5 x10 x15 x20 x30 x40 x50 error−free

0
3e

+
06

6e
+

06
9e

+
06

1.
2e

+
07

1.
5e

+
07

CLR x5
CLR x10
CLR x15
CLR x20
CLR x30
CLR x40
CLR x50

(d) E.coli 55989 (e) D.melanogaster chr2L (f) H.sapiens chr21
(model-based) (model-based) (model-based)
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N50 is the contig length such that using equal or longer contigs produces half
the bases of the genome. In each figure, the horizontal axis (with the exception
of the label “error free”) indicates circular consensus sequencing (CCS) coverage
depth and the vertical axis shows N50. Both continuous long reads (CLR) and
CCS reads were simulated by using a sampling-based simulation in PBSIM for
three reference sequences: (a) E.coli 55989, (b) D.melanogaster chr2L and (c)
H.sapiens chr21 (cf. Table 2.7). The “error-free” in the horizontal axis shows the
case of using only CLR with no error (for assembly), where the color indicates
the coverage depth of CLR.

Figure 2.17. Maximum length of contigs in the assembly tests.
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(d) E.coli 55989 (e) D.melanogaster chr2L (f) H.sapiens chr21
(model-based) (model-based) (model-based)
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”error-free” at the CCS coverage depth is assembled results of error-free CLR
reads.
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Chapter 3

PBSIM2: a simulator for long read

sequencers with a novel generative model of

quality scores

3.1 Introduction

High-throughput DNA sequencing technology has markedly changed the style
of biological research, from hypothesis-driven biology to data-driven biology.
Notably, recent advances in long read sequencers, including Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (Nanopore), have accelerated stud-
ies on the genome [19, 47, 48, 49, 50], epigenome [51], and transcriptome [52],
among others [14, 53].

It is known that reads generated by long read sequencers include more errors
than those generated by short read sequencers (e.g., Illumina HiSeq), and many
tools and algorithms that specifically target long read sequencers have been de-
veloped [22, 23, 24]. However, in the development of tools/algorithms for long
read sequencers, it is generally difficult to evaluate those using real data. This is
because real data that meets the necessary conditions cannot always be prepared;
in addition, the true error information of real data is not easy to obtain. There-
fore, simulators that generate reads with error information, such as alignments
between reads and the reference sequences, are useful for the evaluation of new
tools/algorithms. (See [10, 54] for comprehensive reviews of read simulators.)
Moreover, these simulators are useful for experimental design such as estimating
the depth coverage required for genome assembly and variant detection. To make
this possible, it is crucial to be able to properly simulate the characteristics of
real reads, especially the characteristics of errors.

PacBio sequencers have lesser systematic (or context-specific) errors (e.g., er-
rors in high- and low-GC regions and at homopolymer runs) than that of short
read sequencers, such as Illumina [12, 18, 55]. In contrast, it has been reported
that PacBio reads have regional bias of error distribution within the reads, and
very low quality regions are sometimes observed (For example, see Myers’ re-
port, https://dazzlerblog.wordpress.com/2015/11/06/). Low quality regions are
caused by chimeras and undetected adapter sequences, as well as non-uniformity
of errors. Figure 3.1 clearly shows the non-uniformity of quality scores, with the
distributions of accuracy of 800 bp disjoint intervals in reads. Here, quality scores
are used instead of actual errors, because it is difficult to obtain the true error
information for reads, especially long reads. Note that the quality score is loga-
rithmically related to error probability [45]. ‘Random models’ randomly generate
quality scores according to real frequencies of quality scores, leading to a normal
distribution of quality scores. Compared with random models, the distributions
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of real reads have broader accuracy ranges of 800 bp interval, especially for low
read accuracy. My previously developed simulator, PBSIM [31], employs a ran-
dom model [18], and the reads generated by it are simpler and easier to handle
than real reads; this is a problem when evaluating the tools/algorithms for long
read sequencers.

Currently, there are several simulators that generate long reads (see Sup-
plementary Table 3.1 for summary). With regard to simulation of low quality
regions, NanoSim [30] generates a set of read profiles from alignment-based anal-
ysis, and simulates low quality regions using the profiles. PaSS [56] adopts pre-
set high error rates for both ends of the reads, to simulate low quality regions.
Badread [57] can introduce chimeras, adapter sequences, low quality regions, and
low-complex repetitive sequences into simulated reads. However, there is still
room for improvement in the simulation of the non-uniformity of errors (or qual-
ity scores).

To simulate the non-uniformity of quality scores, in this study, I developed a
generative model for quality scores, based on a hidden Markov Model in combi-
nation with latest model selection criteria. My computational experiments show
that PBSIM2, the new version of PBSIM, simulates reads that have a tendency
similar to real reads.

This article is organized as follows: In Section 3.2, after introducing a novel
generative model for quality scores, I describe the detailed design of PBSIM2.
In Section 3.3 I report comprehensive evaluations of PBSIM2 and related discus-
sions. PBSIM2 newly added the function to simulate Nanopore reads, whereas it
removed the function to simulate circular consensus sequencing (CCS also known
as HiFi) reads. This is because the average accuracy of CCS exceeds 99%, which
is outside the purpose of PBSIM to simulate error-prone reads. PBSIM2 is freely
available from https://github.com/yukiteruono/pbsim2, and it will be useful
for various studies using long reads.

26



T
a
b
le

3
.1
.

S
im

u
la

to
rs

fo
r

lo
n

g
re

ad
s

S
im

u
la

to
r

L
on

g
re

ad
E

rr
or

m
o
d

el

P
B

S
IM

[3
1]

P
ac

B
io

n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
D

A
Z

Z
D

B
/s

im
u

la
to

r
a

P
ac

B
io

n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
R

ea
d

S
im

[5
8]

P
ac

B
io

,
N

an
op

or
e

n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
S

im
L

oR
D

[2
5]

P
ac

B
io

n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
S

iL
iC

O
[5

9]
P

ac
B

io
,

N
an

op
or

e
n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
L

o
n

gI
S

L
N

D
[2

9
]

P
ac

B
io

,
N

an
op

or
e

en
te

n
d

ed
-k

m
er

b
as

ed
er

ro
r

m
o
d

el
N

a
n

oS
im

[3
0
]

N
an

op
or

e
al

ig
n

m
en

t-
b

as
ed

tr
ai

n
ed

m
o
d

el
,

w
h

ic
h

d
o
es

n
ot

u
se

k
-m

er
er

ro
r

b
ia

s
S

N
aR

eS
im

[6
0
]

N
an

op
or

e
k
-m

er
b

as
ed

er
ro

r
m

o
d

el
N

P
B

S
S

[6
1
]

P
ac

B
io

n
u

cl
eo

ti
d

e
se

q
u

en
ce

-i
n

d
ep

en
d

en
t

er
ro

r
m

o
d

el
D

ee
p

S
im

u
la

to
r

[2
7]

N
an

op
or

e
p

or
e

m
o
d

el
ge

n
er

at
es

ra
w

si
gn

al
,

an
d

b
as

ec
al

le
r

co
n
ve

rt
s

ra
w

si
gn

al
in

to
fa

st
q

D
ee

p
S

im
u

la
to

r1
.5

[6
2]

N
an

op
or

e
p

or
e

m
o
d

el
ge

n
er

at
es

ra
w

si
gn

al
,

an
d

b
as

ec
al

le
r

co
n
ve

rt
s

ra
w

si
gn

al
in

to
fa

st
q

N
a
o
p

o
re

S
im

u
la

tI
O

N
[2

6]
N

an
op

or
e

p
or

e
m

o
d

el
ge

n
er

at
es

ra
w

si
gn

al
,

an
d

b
as

ec
al

le
r

co
n
ve

rt
s

ra
w

si
gn

al
in

to
fa

st
q

P
a
S

S
[5

6
]

P
ac

B
io

k
-m

er
b

as
ed

er
ro

r
m

o
d

el
B

ad
re

a
d

[5
7]

P
ac

B
io

,
N

an
op

or
e

k
-m

er
b

as
ed

er
ro

r
m

o
d

el

a
h
tt

p
s:

//
g
it

h
u

b
.c

om
/t

h
eg

en
em

ye
rs

/D
A

Z
Z

D
B

/b
lo

b
/m

as
te

r/
si

m
u

la
to

r.
c

27



Figure 3.1. Non-uniformity of quality scores for real and simulated reads.

(a) PacBio P6–C4 for C.elegans (b) Nanopore R9.5 for R.sphaeroides
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After grouping reads by their accuracy, reads were segmented into 800 bp disjoint
intervals, and accuracy of each interval was computed from quality scores. Each
graph shows the distribution of averaged accuracy of 800 bp intervals, where
colors of plotted lines represent read groups (e.g., ’Acc.78’ refers to a read group
with an accuracy of 77.5–78.4%). In random models, a house-made program
randomly sampled quality scores according to the quality score distribution of
each accuracy of real reads.

3.2 Methods

3.2.1 Datasets for long read sequencers

In this study, I utilized various types of datasets for PacBio (7 datasets of CLR)
and Nanopore sequencers (9 datasets), as summarized in Tables 3.2 and 3.3,
respectively.
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3.2.2 Basic statistics of long reads

To learn the features of long reads, I obtained basic statistics, such as read length,
accuracy distribution, and quality score distribution, from the real reads in Ta-
ble 3.2 and 3.3. As shown in Figure 3.2, in PacBio, quality score distributions
are very similar within the same chemistry. Conversely, Nanopore has a wider
range and more diverse distribution of quality scores than those of PacBio.

Additionally, I conducted local alignments of real and simulated reads to
reference sequences, and got error rates from the alignment results for several
analyses. These local alignments were executed by LAST version 1047 [43].
Alignments were filtered using last-map-probs. lastal was executed with pa-
rameters trained by last-train [63] and ‘-m100 -j7’. lastdb, last-train, and
last-map-probs were executed using the default parameters.

Figure 3.2. Quality score distributions of real reads.
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The frequency of quality scores was counted for each of the datasets in Tables 3.2
and 3.3. Colors of plotted lines represent datasets. Dataset name is species (e.g.,
E. coli K12) + chemistry (e.g., P4C2). The horizontal axis is PHRED33 quality
score defined in terms of the estimated error probability (e.g., quality scores 4,
7, and 10 represent error probabilities of 40, 20, and 10%, respectively) [45].

3.2.3 Generative model for quality scores

To construct a generative model for quality scores, I employed a hidden Markov
Model (HMM), which generates observed data from hidden states that follow the
Markov model. Note that HMMs are utilized in many bioinformatics tools (e.g.,
[64]). In my HMM, the emission probability distributions from each hidden state
are provided by a categorical distribution, whose output is one of the quality
scores. It should be emphasized that the parameters in categorical distribution
with hidden states are different from each other.

In conventional HMM, the number of hidden states should be provided be-
forehand. In this study, I utilized HMM with the latest model selection criteria,
called factorized information criteria (FIC-HMM) [34]. This method is theoret-
ically sound, enabling us to train not only parameters in HMM but also the
number of hidden states [33].

In this study, I adopted the model whose (lower bound of) FIC is maximum
among five trials with different initial parameters, because FIC-HMM affects
local optimal solutions in their training. The models were trained for each read
accuracy of each chemistry (e.g., for 80% accuracy, training data comprise a
read group with an accuracy of 79.5–80.4%). For read accuracy with insufficient
training data, constant quality scores that match the accuracy were used.
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3.2.4 Detailed design of PBSIM2

Given a reference sequence, PBSIM2 generates FASTQ file [45], including reads
with quality scores, where the generative process is summarized as follows:

1. determine read length according to the read length distribution .

2. determine read accuracy according to the read accuracy distribution.

3. generate quality scores of each position in the read using the generative
model, which was trained for each read accuracy of each chemistry.

4. sample a random position from the reference sequence and cut out a nu-
cleotide sequence of the read length.

5. introduce errors (substitution, insertion, and deletion) into the nucleotide
sequence according to a quality score at each position of the read and the
ratio of error types.

On both PacBio and Nanopore sequencers, I utilized gamma distribution
for read length, although log-normal distribution was employed in the previ-
ous version of PBSIM. This is because gamma distribution is more suitable than
log-normal distribution for latest real datasets of both PacBio and Nanopore
in my preliminary experiments (Figure 3.3). Note that DAZZ DB/simulator
(https://github.com/ thegenemyers/DAZZ DB/blob/master/ simulator.c), Sim-
LoRD [25], and NPBSS [61] employ log-normal distribution for PacBio; SiL-
iCO [59] employs log-normal distribution for PacBio, as well as gamma distribu-
tion for Nanopore; DeepSimulator1.5 [62] employs beta, exponential, and mixed
gamma distribution for Nanopore; and Badread employs gamma distribution for
both PacBio and Nanopore.

The distribution is defined by

f(x) = xk−1 exp(−x/θ)

Γ(k)θk
(3.1)

where shape and scale parameters (k and θ) are determined by averaged length
and standard deviation of reads in each dataset, respectively, which can be speci-
fied by the user as input parameters. PBSIM2 computes probability mass in each
length, between the maximum and minimum length.

Both PacBio and Nanopore sequencers utilize exponential distributions for
read accuracy, although normal distribution has been employed in the previous
version of PBSIM. In other simulators, Badread employs beta distribution for
both PacBio and Nanopore. My preliminary experiments indicated that expo-
nential distribution was more suitable than any other distribution for latest real
datasets of both PacBio and Nanopore (Figure 3.4).

Precisely, I define read accuracy distribution by

p(x) =
f(x)∑max

i=min f(xi)
(3.2)

where

f(x) = exp(0.22x) (3.3)

and the minimum and maximum of accuracy are determined by averaged accu-
racy of reads, which can be specified by the user as input parameters. PBSIM2
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computes probability mass in each accuracy between the maximum and minimum
accuracy.

A nucleotide sequence of a read is uniformly sampled from the reference se-
quence, and errors are introduced into the sequence as follows: For each position
of the read, all error types (substitution, insertion, and deletion) are introduced
according to quality score at that position. In the previous version of PBSIM,
deletion rate is uniform throughout all positions of every simulated read, but the
latest datasets show that the rates of all error types are related to the quality
scores (Figure 3.21). All error rates are calculated from quality scores and the
ratio of error types given by the user. With regard to a deletion, there is no qual-
ity score for the deletion itself; thus, the quality score of the 5’neighbor is used.
As in the previous version of PBSIM, half of the inserted nucleotides are chosen
to be the same as their following nucleotides, and the other half are randomly
chosen.

Sampling-based simulation implemented in PBSIM can also be used in PB-
SIM2. In this simulation, the length and quality scores of a read are randomly
sampled from real data provided by the user. Subsequently, a nucleotide sequence
is randomly extracted from the reference sequence, and errors are introduced in
the same way as model-based simulation.

Figure 3.3. Read length distribution for each of the datasets in Tables 3.2
and 3.3
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Dataset name is species (e.g., E. coli K12) + chemistry (e.g., P4C2). Each
graph shows distribution of real read length, as well as log-normal and gamma
distributions with parameters derived from real reads.
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Figure 3.4. Read accuracy distribution for each of the datasets in Tables 3.2
and 3.3
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Dataset name is species (e.g., E. coli K12) + chemistry (e.g., P4C2). Each
graph shows distribution of real read length, as well as beta and exponential
distributions with parameters derived from real reads. Read accuracy was
computed from quality scores.

3.2.5 Execution of other simulators

To evaluate the ability of PBSIM2 to simulate the non-uniformity of real reads, I
conducted simulations using other simulators and observed their non-uniformity.
For NPBSS, I simulated PacBio CLR using the default error model. For PaSS, I
simulated PacBio CLR using a prepared profile (sim.config). For LongISLND [29],
I built models from real reads and simulated PacBio CLR using the models. For
Badread, I built models from real reads and simulated PacBio CLR and Nanopore
reads using the models. For DeepSimulator1.5, I simulated Nanopore fast5 using
context-independent kmer pore model and basecalled using Guppy.
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Figure 3.5. Relationship between the quality score and error rate for real
reads and simulated reads

(a) PacBio P6–C4 for C.elegans
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(b) Nanopore R9.5 for R. sphaeroides
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Each graph shows averaged error rate for each quality score. The horizontal axis
is PHRED33, quality score defined in terms of the estimated error probability
(e.g., quality scores 4, 7, and 10 represent error probabilities of 40, 20, and 10%,
respectively) [45]. ”Error” is the sum of the substitution, insertion, and deletion
rates. Error rates were obtained from the alignment of the real and simulated
reads to the reference sequences.
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3.3 Result and Discussion

3.3.1 CPU time and memory consumption

For each simulator, CPU time and maximum memory usage were measured for
generating a total of 100 Mbp of reads. NPBSS was executed on a Windows
system equipped with Intel(R) Core(TM) CPU(i7-8565U@1.80GHz). The others
were executed on the National Institute of Genetics (NIS) supercomputer system.
The execution of DeepSimulator1.5 included basecalling by Guppy and checking
read accuracy by Minimap2, and used ”-c 8” option (CPU number). Results are
shown in Table 3.4. PBSIM is the fastest and consumes minimal memory, which
enables users to simulate reads on their laptops.

Table 3.4. CPU time and maximum memory for each simulator

Simulator CPU time (sec.) Maximum memory (Gbyte)

PBSIM 5 0.2
PBSIM2 (this work) 7 0.2
LongISLND 565 26.7
NPBSS 1,024 0.1
DeepSimulator1.5 113,344 15.3
PaSS 14 0.8
Badread 1,498 3.5

CPU time and maximum memory usage were measured for generating a total of
100 Mbp of reads. NPBSS was executed on a Windows system equipped with
Intel(R) Core(TM) CPU(i7-8565U@1.80GHz). The others were executed on the
National Institute of Genetics (NIS) supercomputer system. The execution of
DeepSimulator1.5 included basecalling by Guppy and assessing read accuracy by
Minimap2; when using ”-c 8” option (CPU number), wall-clock time was 20,662
seconds.
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3.3.2 Evaluation of a generative model of quality scores

To evaluate PBSIM2 that implemented a novel generative model of quality scores
trained using FIC-HMM, I compared simulated reads of PBSIM2 with real reads
in terms of non-uniformity of quality scores. PBSIM2 simulated reads with the
same parameters (e.g., mean and standard deviation of read length and accuracy)
as real reads. I also evaluated simulated reads of Markov Model (MM), because
in Nanopore sequencing, the raw current signal is mainly influenced by 5 or 6-mer
that occupies the pore simultaneously [65], and [60] showed that the strongest
feature for predicting the accuracy of each k-mer was the accuracy of neighboring
k-mers, one step away. MM generates quality scores by first- and second-order
MM (referred to as ’1st-order MM’ and ’2nd-order MM’, respectively) of transi-
tion probabilities of quality scores of real reads.

It is clear that the non-uniformity of simulated reads of PBSIM2 is sufficiently
similar to that of real reads in both PacBio and Nanopore (Figure 3.6, and Fig-
ures 3.7 and 3.8 show graphs of all the interval sizes). Figure 3.6 (b) also indicates
that 1st-order MM is able to simulate the non-uniformity, as well as PBSIM2 in
Nanopore. I utilized the Kullback-Leibler (KL) divergence for observing simi-
larity between non-uniformity (see Figure 3.6). For P (real distribution) and Q
(simulated distribution), the KL divergence from Q to P is defined to be;

DKL(P ||Q) =
∑
i

P (i) log2
P (i)

Q(i)
.

Figure3.9 show that features of the transition probability matrix are clearly
different between PacBio and Nanopore, and the transition ranges in Nanopore
are narrower than those in PacBio. Thus, MM is successful in Nanopore. Further-
more Figures 3.10 and 3.11 show that in FIC-HMM, the transition ranges of states
in Nanopore are narrower than those in PacBio, and the emission ranges of states
in Nanopore are narrower and simpler than those in PacBio. These observations
in MM and FIC-HMM are consistent. I decoded training data for FIC-HMM
into states using the Viterbi algorithm, and examined continuous length of state
(e.g., if the same state is lined up five times in a row, the continuous length is
five). Figure 3.12 shows that the continuous length of state in PacBio is longer
than that in Nanopore. In both PacBio and Nanopore R9.5, 2nd-order MM was
a slightly better simulation than 1st-order MM (Supplementary Figures 3.13,
3.14, 3.15, and 3.16). However, in Nanopore R10.3, they were almost the same
(Figures 3.17 and 3.18).

Figures 3.13-3.18 also show comparisons with other long read simulators. In
simulation of PacBio reads, PBSIM2 is able to simulate the non-uniformity of
real reads more than that of any other simulator (see Figure 3.14). Even in
the simulation of Nanopore reads, PBSIM2 is one of the best simulators for
overall read accuracy, but at 86-90% read accuracy of Figure 3.16 and at 84-88%
of Figure 3.18, DeepSimulator1.5 is the best. However, DeepSimulator1.5 has
narrow ranges of read accuracy.
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Figure 3.6. Simulation of non-uniformity of quality scores and evaluation by
Kullback-Leibler (KL) divergence

(a) PacBio P6–C4 for C.elegans (b) Nanopore R9.5 for R.sphaeroides
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Each graph shows distributions of accuracy of 800 bp disjoint intervals in reads
in the same way as Figure 3.1. Read groups (e.g., Acc.78) with insufficient data
are not shown in the graphs. PBSIM2, the new version of PBSIM, generated
reads using model-based simulation. ’1st-order MM’, our in-house software
tool, generated quality scores for each read group, by a first-order Markov
Model of transition probabilities of the quality score of real reads. Badread
built a model and generated reads. DeepSimulator1.5 generated Nanopore fast5
using context-independent kmer pore model and basecalled using Guppy. KL
divergence of distribution of accuracy of fixed size (50, 100, 200, 400, 800, 1600,
and 3200 bp) intervals between real and simulated reads. Upper-limit value of
KL divergence was 10.
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Figure 3.7. Non-uniformity of quality scores for real and simulated reads of
PacBio P6–C4 for C. elegans
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After grouping reads by their accuracy, the reads were segmented into fixed size
(50, 100, 200, 400, 800, 1600, and 3200 bp) disjoint intervals, and the accuracy
of each interval was computed from the quality scores. Each graph shows the
distribution of averaged accuracy of each interval, where the colors of the plotted
lines represent read groups (e.g.,“ Acc.78” is a read group whose accuracy is
77.5%–78.4%). Read groups (e.g., Acc.78) with insufficient data are not shown
in the graphs.
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Figure 3.8. Non-uniformity of quality scores for real and simulated reads of
Nanopore R9.5 for R. sphaeroides
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Each graph shows the distribution of averaged accuracy of each interval in the
same way as Figure 3.7.
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Figure 3.9. Transition probability matrices of quality scores of real reads

(a) PacBio P6–C4 for C.elegans
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(b) Nanopore R9.5 for R.sphaeroides
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The vertical and horizontal axes are PHRED33 quality scores defined in terms
of the estimated error probability (e.g., quality scores 4, 7, and 10 represent
error probabilities of 40%, 20%, and 10%, respectively) [45]. Quality scores
on the vertical axis transition to scores on the horizontal axis. The sum of
transition probabilities on each quality score of the vertical axis is 100%. These
are matrices of ’Acc.82’-’Acc.88’ (e.g., ’Acc.84’ refers to a read group with an
accuracy of 83.5%-84.4%). In the Nanopore matrix, quality scores above 25 are
not displayed.
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Figure 3.10. Transition probability matrices of states of FIC-HMM

(a) PacBio P6–C4 for C.elegans
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(b) Nanopore R9.5 for R.sphaeroides
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The vertical and horizontal axes represent states of FIC-HMM, which are sorted
in order of the increasing averaged quality score emitted by them. States on the
vertical axis transition to states on the horizontal axis. The sum of transition
probabilities on each state of the vertical axis is 100%. These are matrices
of ’Acc.82’-’Acc.88’ (e.g., ’Acc.84’ refers to a read group with an accuracy of
83.5%–84.4%).
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Figure 3.11. Emission probability matrices of states of FIC-HMM

(a) PacBio P6–C4 for C.elegans
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(b) Nanopore R9.5 for R.sphaeroides
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The vertical axis represents states of FIC-HMM, which are sorted in the order
of increasing averaged quality score emitted by them. The horizontal axis is
PHRED33 quality score defined in terms of the estimated error probability
(e.g., quality scores 4, 7, and 10 represent error probabilities of 40%, 20%, and
10%, respectively) [45]. States on the vertical axis emit quality scores on the
horizontal axis. The sum of emission probabilities on each state of vertical axis
is 100%. These are matrices of ’Acc.82’–’Acc.88’ (e.g., ’Acc.84’ refers to a read
group with an accuracy of 83.5%–84.4%). In the matrix of Nanopore, quality
scores above 25 are not displayed.

Figure 3.12. Distributions of continuous length of state

(a) PacBio P6–C4 for C.elegans (b) Nanopore R9.5 for R.sphaeroides
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Training data for FIC-HMM was decoded into stats using the Viterbi algorithm.
If the same state is lined up five times in a row, the continuous length is five. The
vertical axis (log scale) is the frequency of each continuous length of state. The
horizontal axis is the continuous length of state. Colors of plotted lines represent
the read groups (e.g., ’Acc.78 ’ refers to a read group with an accuracy of
77.5%–78.4%). Continuous lengths of state above 100 are not displayed.
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Figure 3.13. Non-uniformity of quality scores for real and simulated reads of
PacBio P6–C4 for C. elegans
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Each graph shows distributions of accuracy of 800 bp disjoint intervals in reads
in the same way as Figure 3.7. PBSIM (i.e., previous version) has frequency
tables of quality score for only Acc.60–85; thus, for Acc.86–90, 800 bp interval
accuracy is constant.
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Figure 3.14. Kullback-Leibler (KL) divergence of distribution between real
and simulated reads of PacBio P6–C4 for C. elegans
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Kullback-Leibler (KL) divergence of distribution of accuracy of fixed size (50, 100,
200, 400, 800, 1600, and 3200 bp) intervals between real and simulated reads of
PacBio P6–C4 for C. elegans in Figure 3.13. Upper-limit value of KL divergence
is 10.
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Figure 3.15. Non-uniformity of quality scores for real and simulated reads of
Nanopore R9.5 for R. sphaeroides
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Each graph shows distributions of accuracy of 800 bp intervals in reads in the
same way as Figure 3.7. Read groups (e.g., Acc.78) with insufficient data are
not shown in the graphs.
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Figure 3.16. Kullback-Leibler (KL) divergence of distribution between real
and simulated reads of Nanopore R9.5 for R. sphaeroides
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Kullback-Leibler (KL) divergence of distribution of averaged accuracy of fixed size
(50, 100, 200, 400, 800, 1600, and 3200 bp) intervals between real and simulated
reads of Nanopore R9.5 for R. sphaeroides in Figure 3.15. Upper-limit value of
KL divergence is 10.
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Figure 3.17. Non-uniformity of quality scores for real and simulated reads of
Nanopore R10.3 for E-coli K12
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Each graph shows distributions of accuracy of 800 bp intervals in read sequences,
in the same way as Figure 3.13.
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Figure 3.18. Kullback-Leibler (KL) divergence of distribution of averaged
accuracy between real and simulated reads of Nanopore R10.3 for E. coli K12
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Kullback-Leibler (KL) divergence of distribution of averaged accuracy of fixed size
(50, 100, 200, 400, 800, 1600, and 3200 bp) intervals between real and simulated
reads of Nanopore R10.3 for E. coli K12 in Figure 3.17. Upper-limit value of KL
divergence is 10.
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3.3.3 Correlation between read length and accuracy

The previous version of PBSIM was unable to simulate realistic correlation be-
tween length and accuracy for each read [25, 61]. As shown in Figures 3.19 and
3.20, PBSIM2 is able to simulate realistic correlations. This improvement was
mainly due to change in read accuracy distribution, as mentioned in Section 3.2.4.

Figure 3.19. Correlation between read length and accuracy for each read of
PacBio P6–C4 for E. coli K12 MG1655

0 10000 20000 30000 40000

60
70

80
90

10
0

Real reads

Read Length

A
cc

ur
ac

y 
(%

)

>1000
>750
>500
>250
>50

0 10000 20000 30000 40000

60
70

80
90

10
0

PBSIM

Read Length

A
cc

ur
ac

y 
(%

)
>1000
>750
>500
>250
>50

0 10000 20000 30000 40000

60
70

80
90

10
0

PBSIM2

Read Length

A
cc

ur
ac

y 
(%

)

>1000
>750
>500
>250
>50

Accuracy of each read was calculated from quality scores. PBSIM and PBSIM2
simulated reads with the same parameters (e.g., mean and standard deviation of
read length and accuracy) as real reads. Colors indicate the varying frequencies
of each cell.
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Figure 3.20. Correlation between read length and accuracy for each read

(a) Nanopore R9.5 for R. sphaeroides
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(b) Nanopore R10.3 for E. coli K12
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The accuracy of each read was calculated from the quality scores. PBSIM2
simulated reads with the same parameters (e.g., mean and standard deviation of
read length and accuracy) as real reads. Colors indicate the different frequencies
of each cell.
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3.3.4 Relationship between error rate and quality scores

In the previous version of PBSIM, the relationship between error rate and quality
score deviated from the correct one with increasing quality score [61]. As shown
in Figure 3.21, the relationship is improved by changing the deletion rate, as
mentioned in Section 3.2.4

Figure 3.21. Relationship between the quality score and error rate for real
reads and simulated reads
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(b) Nanopore R9.5 for R. sphaeroides
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Each graph shows averaged error rate for each quality score. The horizontal axis
is PHRED33, quality score defined in terms of the estimated error probability
(e.g., quality scores 4, 7, and 10 represent error probabilities of 40, 20, and 10%,
respectively) [45]. ”Error” is the sum of the substitution, insertion, and deletion
rates. Error rates were obtained from the alignment of the real and simulated
reads to the reference sequences.
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3.3.5 Nucleotide sequence-based error model

Using nucleotide sequence context (or k-mer)-based error models, generated from
alignment-based analysis of real reads, several simulators are able to simulate
features of real reads, such as error length [29, 56, 57, 60]. Thus, I investigated
6-mer error bias by analyzing alignments of reads to the reference sequences.
As shown in Figures 3.22 and 3.23, I observed that PacBio reads had small 6-
mer bias, while Nanopore reads had significant 6-mer bias, which is consistent
with a previous study [60]. It has been reported that homopolymers are diffi-
cult to be called accurately by base-callers; therefore, many deletions occur at
homopolymers in read sequence of Nanopore [65]. Concurrent with this report, I
observed high deletion rate at homopolymers in Nanopore (see Table 3.5–3.7). I
also observed that insertion and deletion (indels) were longer in Nanopore (R9.5)
than those in PacBio (Figure 3.24ab). Recently, the latest Nanopore chemistry,
R10, has improved resolution of homopolymeric regions [24]. Actually indels are
shorter in R10 than those in R9, and the indel length distribution becomes simi-
lar to that of PBSIM2 (Figure 3.24bc), compared with PBSIM. In contrast, with
regard to 6-mer error bias, R10 shows features similar to those of R9 (see Fig-
ure 3.23). Although it may be necessary to simulate 6-mer error bias, especially
homopolymer-specific error, to simulate Nanopore reads accurately, this version
of PBSIM2 does not address this issue because, as mentioned above, Nanopore
R10 has improved for homopolymer, and basecalling software is improving for
homopolymer basecalling [66].
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Figure 3.22. 6-mer error bias of PacBio
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Several types of error rate were calculated for each 6-mer from the alignment of
the real reads to the reference sequences. Colors of plotted lines represent each
dataset in Tables 3.2. Dataset name is species (e.g., E.coli K12) + chemistry
(e.g., P4C2). The vertical axis represents the error rate, while the horizontal
axis represents the k-mer index sorted by error rate. ”Error” is the sum of the
substitution, insertion, and deletion rates.
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Figure 3.23. 6-mer error bias of Nanopore

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

6−mer

R
at

e

H.sapiens_R94
C.elegans_R94
E.coli.O127_R94
S.cerevisiae_R94
D.melanogaster_R95
P.koreensis_R95
R.sphaeroides_R95
C.armoricus_R95
E.coli.K12_R103

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Substitution

6−mer

R
at

e

H.sapiens_R94
C.elegans_R94
E.coli.O127_R94
S.cerevisiae_R94
D.melanogaster_R95
P.koreensis_R95
R.sphaeroides_R95
C.armoricus_R95
E.coli.K12_R103

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Insertion

6−mer

R
at

e

H.sapiens_R94
C.elegans_R94
E.coli.O127_R94
S.cerevisiae_R94
D.melanogaster_R95
P.koreensis_R95
R.sphaeroides_R95
C.armoricus_R95
E.coli.K12_R103

0 1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Deletion

6−mer

R
at

e

H.sapiens_R94
C.elegans_R94
E.coli.O127_R94
S.cerevisiae_R94
D.melanogaster_R95
P.koreensis_R95
R.sphaeroides_R95
C.armoricus_R95
E.coli.K12_R103

Several types of error rates were calculated for each 6-mer from the alignment
of the real reads to the reference sequences. Colors of plotted lines represent
each dataset in Tables 3.3. Dataset name is species (e.g., H.sapiens) + chemistry
(e.g., R94). The vertical axis represents the error rate, while the horizontal
axis represents the k-mer index sorted by error rate. ”Error” is the sum of the
substitution, insertion, and deletion rates.
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Figure 3.24. Distributions of insertion and deletion length (indel) for real
reads and PBSIM2

(a) PacBio P6–C4 for C.elegans
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(b) Nanopore R9.5 for R.sphaeroides
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(c) Nanopore R10.3 for E-coli K12
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The vertical axis represents the percentage, while the horizontal axis represents
the indel length. Frequencies of indel length were obtained from the alignment
of the real and simulated reads to the reference sequences.
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Table 3.5. Top30 6-mer with high rate of insertion

C.elegans P6–C4 R.sphaeroides R9.5 E-coli K12 R10.3
6-mer rate 6-mer rate 6-mer rate

GTATAG 7.1% TAGAGT 10.4% CCTAGA 8.9%
GCACGC 7.0% TATTAA 9.7% CTAGAT 7.8%
GTATAC 6.9% TTAGCT 9.1% CCAGGA 7.8%
CACGCG 6.9% TAATTA 9.1% CTAGTC 7.7%
TACCGA 6.7% CACTAA 9.0% GCCTGG 7.6%
TACGTC 6.7% TAAGGA 8.9% CCAGGC 7.5%
CGGTGT 6.7% TGTACG 8.8% TCCTGG 7.4%
TCACGC 6.6% ACTAAG 8.6% CCAGGT 7.3%
GGTGTA 6.6% GGTACA 8.1% CCTGGT 7.3%
TACGCG 6.5% ACACTA 7.8% CGATCG 7.2%
ACACCG 6.5% TAACAT 7.7% ACCAGG 7.2%
GGCGTA 6.5% AATAAC 7.6% GAGATC 7.2%
GTACGT 6.5% GAGTCA 7.5% GATCTA 7.2%
GCGCGA 6.5% CTGTAC 7.5% TCTAGT 7.2%
GTATAA 6.5% GTACAC 7.4% ACCTGG 7.0%
TGTAGC 6.4% GTACAT 7.3% ATCTAG 6.8%
ACCGCG 6.4% CCTAGT 7.2% CGATCT 6.8%
TAACGC 6.4% CTAACA 7.1% AGATCG 6.8%
CGCGCA 6.4% ATACAG 6.9% CCCAGG 6.7%
ACGTCG 6.4% AGTACA 6.9% TGATCG 6.6%
GCGGTA 6.4% CGAGTC 6.9% GATCTC 6.6%
GTACCG 6.4% ACTTTA 6.8% AGATCA 6.6%
ACCGCA 6.4% TCTAGT 6.8% GATCAT 6.5%
TGCGGT 6.4% ACCTTA 6.7% GATCGG 6.5%
CGCGCG 6.3% CATGTA 6.7% GATCGC 6.5%
GTGTAG 6.3% CTAGTG 6.7% TGATCA 6.5%
GTCGTA 6.3% TAAGAG 6.7% GTCTAA 6.4%
ACGCGT 6.2% GTCATA 6.6% GATCAG 6.4%
TTATAC 6.2% ATCTAA 6.6% GATCGA 6.4%
GTGCAG 6.2% TATACA 6.6% ACGATC 6.4%

Error rates were calculated for 6 bp long sequence on the reference sequence in
the alignment of real reads, while shifting the 6 bp long sequence by 1 bp from
end to end. Next, the averaged error rate of each 6-mer was calculated.
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Table 3.6. Top 30 6-mer with high rate of deletion

C.elegans P6–C4 R.sphaeroides R9.5 E-coli K12 R10.3
6-mer rate 6-mer rate 6-mer rate

GGGCCC 9.6% GGGGGG 22.9% GGGGGG 27.7%
GGGGCC 8.9% CCCCCC 22.7% CCCCCC 27.3%
GCCCCC 8.6% TTTTTT 18.9% TCCCCC 20.7%
AGGGGG 8.6% AGGGGG 18.3% GGGGGA 20.0%
CCCGGG 8.4% CCCCCT 18.3% CCCCCT 19.7%
CCCCCG 8.3% TCCCCC 17.5% AGGGGG 19.1%
GGGGGT 8.2% AAAAAA 17.3% CCCCCA 18.9%
CCCCCA 8.2% CTTTTT 17.2% CCCCCG 18.2%
CCCCCT 8.0% GGGGGA 16.7% TGGGGG 18.1%
TGGGGG 8.0% AAAAAG 14.9% CGGGGG 17.7%
CCGGGG 8.0% AAGGGG 14.7% GGGGGC 17.6%
GGGGAC 8.0% CCCCTT 14.7% ACCCCC 17.3%
ACCCCC 8.0% CCTTTT 14.5% GCCCCC 17.2%
CCCCCC 7.9% GGGGGT 14.4% GGGGGT 17.2%
GCCGGG 7.9% CGGGGG 14.4% TTCCCC 14.6%
AGGGCC 7.8% TTAAGC 14.3% GGGGAA 14.6%
CCCCGG 7.8% CTCCCC 14.2% CCCCGA 14.5%
GGCCCC 7.8% CCCCCG 14.2% CAGGGG 14.0%
GGGGTT 7.8% ACCCCC 14.1% CCCCTC 14.0%
GGGGGA 7.7% TAAAAA 13.9% CCGGGG 13.8%
GGGGGC 7.7% AGGGGA 13.9% CCCCAG 13.7%
GAGGGG 7.7% CTCTCT 13.8% TCGGGG 13.6%
GGCCCT 7.6% TAAGGG 13.8% CGGGGA 13.5%
CCGGCC 7.5% CTTAAG 13.7% AAAAAA 13.5%
GGCCCA 7.5% CCCCTC 13.7% TGCCCC 13.4%
TCCCCC 7.4% CAAAAA 13.7% GGGGAG 13.4%
GCCCGG 7.4% GCCCCC 13.6% GGGGTA 13.4%
AGGGGC 7.4% AAAAGG 13.6% TCCCCG 13.2%
GGGGGG 7.3% TCCCCT 13.5% GGGGCG 13.2%
GGGCCT 7.3% TAAAAG 13.5% CCCCGG 13.2%

Error rates were calculated the same as in Table 3.5.
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Table 3.7. Top 30 6-mer with high rate of substitution

C.elegans P6–C4 R.sphaeroides R9.5 E-coli K12 R10.3
6-mer rate 6-mer rate 6-mer rate

GTCTGG 2.7% CGAATC 10.8% GATCTA 14.2%
GGGGGG 2.3% GATTCG 10.4% TAGATC 14.1%
AGTCTG 2.1% ACTAGG 9.0% CTACTA 12.8%
ATTGGG 2.1% GTCTAG 8.5% CAGATC 12.8%
ACGGCC 2.0% TGTCTA 8.1% TCGATC 12.5%
CGGGGG 2.0% TACTAG 7.7% GATCGA 12.3%
GGGGGT 1.9% GACTAG 7.6% CTAGAC 12.3%
ACCCCC 1.9% CTAGGC 7.5% TCTAGT 12.2%
CCCCCC 1.9% GCCTAG 7.4% TCTAGG 12.2%
TTGGGA 1.8% CTAGAT 7.3% GATCAA 12.2%
CCCCCT 1.7% GAATCG 7.3% CTAGTA 12.2%
GTGGGG 1.7% CTAGTA 7.3% CCGATC 12.2%
TGGGGG 1.7% CGATTC 6.9% CTAGTG 12.1%
CCCCCA 1.7% GAATCC 6.9% CGATCA 12.0%
CACCCC 1.6% GGATTC 6.8% GATCTG 11.9%
GGTACC 1.6% AAGTTA 6.7% TAGTAT 11.9%
AGGGGT 1.6% AACTAG 6.7% TACTAG 11.9%
CAGGGG 1.6% GAATCT 6.7% CGATCG 11.8%
GGGGTG 1.6% GCTAGC 6.7% GTCTAG 11.6%
GGGGTT 1.5% TCTAGG 6.6% GATCGG 11.6%
AGGGAC 1.5% CTAAGT 6.5% TGATCA 11.6%
CCCCTA 1.5% AGATTC 6.5% TGATCG 11.5%
CTAGGG 1.5% CTAGCC 6.5% TTGATC 11.5%
TGGGAA 1.5% GTCTAC 6.4% TAGTAG 11.3%
GGCCAG 1.5% ACTGTA 6.3% ACTAGA 11.2%
CCCCTG 1.5% CTAATG 6.3% TATCTA 11.2%
CGGCCA 1.5% CTGTAG 6.3% AGATCA 11.1%
GGGGTA 1.5% GTCTAA 6.3% ACTAGT 11.1%
ACCCCT 1.5% CCTAGG 6.2% CGATCT 11.0%
CCGGTC 1.4% CAGACT 6.2% AGATCG 11.0%

Error rates were calculated the same as in Table 3.5.
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Chapter 4

Conclusions and future directions

4.1 Conclusions

In this thesis, I have developed two simulators for long read sequences to un-
derstand the characteristics of long read sequences , and to generate simulation
data that accurately imitate the characteristics, which is useful for developing
tools/algorithms to analyze long reads, designing sequencing experiences.

In chapter 2, my analysis of 13 PacBio datasets showed characteristic fea-
tures of PacBio reads (e.g. the read length of PacBio reads follows a log-normal
distribution). I have developed a read simulator, PBSIM, that captures these
features using either a model-based or sampling-based method. Using PBSIM, I
conducted several hybrid error correction and genome assembly tests for PacBio
reads, suggesting that a continuous long reads coverage depth of at least 15 in
combination with a circular consensus sequencing coverage depth of at least 30
achieved extensive assembly results.

In chapter 3, to capture characteristics of errors in reads for long read se-
quencers more precisely, especially to simulate the non-uniformity of quality
scores, I developed a generative model for quality scores, based on a hidden
Markov Model in combination with latest model selection criteria. My compu-
tational experiments show that PBSIM2, the new version of PBSIM, simulates
quality scores that are more consistent with real reads of PacBio and Nanopore
than other existing simulators. In addition, I improved the correlation between
read length and accuracy, and the relationship between error rate and quality
scores, both of which PBSIM was unable to simulate properly.

4.2 Future direction

PBSIM2 can generate better simulation data by accurately simulating low qual-
ity region. However, there are other artifacts such as chimeras and adapter
sequences, which are frequently observed in long reads (see Myers ’ report,
https://dazzlerblog.wordpress.com/2017/04/22/1344/). These errors are the ma-
jor cause of poor genome assembly. Badread [57] has previously simulated these
errors, and I also plan to implement similar functions in the next version of
PBSIM.

After PacBio Sequel sequencer, quality code is a fixed value and does not
represent the actual error rate, so in this thesis, only RS II CLR was used as
training data for quality scores. PBSIM2 is targeted at error-prone reads, so
I am unsure if it can properly simulate HiFi reads. However, if a generative
model of quality scores is created using the error information obtained from the
alignment of reads to the reference sequences instead of the quality score, the
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latest PacBio Sequel II data can be used as the training data of FIC-HMM. Even
though there are many problems, such as handling unaligned regions or regions
where it is difficult to obtain accurate error information, including low quality
regions, learning alignment by FIC-HMM is expected to significantly improve the
error model of long reads.

Both PBSIM and PBSIM2 were developed for the purpose of simulating ge-
nomic sequences. By replacing genome sequence with transcriptome sequence as
input data, it is possible to simulate long reads derived from the transcriptome,
but it is uncertain whether the simulated read imitate real reads accurately. The
demand for simulation of long read for transcriptome sequencing is increasing,
but few simulators have been developed for that purpose [67]. The transcriptome
is very complicated because the gene expression levels change depending on the
cell type, developmental stage, and external factors, and in addition, the alterna-
tive splicing generates multiple isoforms of gene transcripts [68]. Therefore, many
tools/algorithms for analyzing transcriptome have been developed [69]. I would
like to develop a long read simulator for transcriptome sequencing to evaluate
and improve these tools/algorithms. On the other hand, in the field of genome
assembly, it is also undergoing rapid development of tools/algorithms, especially
for haplotype-resolved or phased genome assembly, which provides a complete
picture of genomes and their complex genetic variations [70]. I would also like
to add a polypoid simulation function to PBSIM2 to evaluate and improve these
tools/algorithms.
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