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Abstract

This thesis is devoted to a study of differential extensions of the Anderson
duals (IΩG)∗ to the stable tangential G-bordism theories. The cohomology
theory (IΩG)∗ is conjectured by Freed and Hopkins [FH21] to classify defor-
mation classes of possibly non-topological invertible quantum field theories
(QFT’s). This work is motivated by this conjecture, and each of the results
has the corresponding physical interpretation.

This thesis consists of the following two parts.

• In Part 1, we construct new models for the Anderson duals (IΩG)∗

to the stable tangential G-bordism theories and their differential ex-
tensions. In a physical interpretation, an element in the differential
extension plays a role of the partition function of an invertible QFT.
Using these models, we construct differential refinements of mod-
ule structures by bordism cohomology theories and pushforwards in
(IΩG)∗. Physically, these maps corresponds to the compactifications
of QFT’s.
• In Part 2, we construct transformations between differential coho-
mology theories which is induced by the Anderson duals to multi-
plicative genera. This gives us a unified understanding of an impor-
tant class of elements in the Anderson duals with physical origins.

Part 1 is based on the paper [YY21] with Kazuya Yonekura. Part 2 is based
on the paper [Yam21].
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Part 1.

1. Introduction to Part 1

In Part 1, we construct new models for the Anderson duals (IΩG)∗ to the
stable tangential G-bordism theories and their differential extensions. Freed
and Hopkins [FH21] conjectured that the generalized cohomology theory
(IΩG)∗ classifies deformation classes of possibly non-topological invertible
quantum field theories (QFT’s) on stable tangentialG-manifolds. Our model
is motivated by this conjecture, since it is made by abstractizing certain
properties of invertible QFT’s.

Associated to a generalized cohomology theory E∗, its Anderson dual
([HS05, Appendix B], [FMS07, Appendix B]) is a generalized cohomology
theory which we denote by IE∗. The crucial property of this theory is that
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it fits into the following exact sequence for any spectra X.

· · · → Hom(En−1(X),R)→ Hom(En−1(X),R/Z)→ IEn(X)
(1.1)

→ Hom(En(X),R)→ Hom(En(X),R/Z)→ · · · (exact).
In this paper we are interested in the Anderson dual to stable tangential G-
bordism theories ΩG. Here G = {Gd, sd, ρd}d∈Z≥0

is a sequence of compact
Lie groups equipped with homomorphisms sd : Gd → Gd+1 and ρd : Gd →
O(d,R) for each d which are compatible with the inclusion O(d,R) ↪→ O(d+
1,R). The homology theory corresponding to ΩG is given by the stable
tangential G-bordism groups ΩG∗ (X), and the exact sequence (1.1) becomes

· · · → Hom(ΩGn−1(X),R)→ Hom(ΩGn−1(X),R/Z)→ (IΩG)n(X)

(1.2)

→ Hom(ΩGn (X),R)→ Hom(ΩGn (X),R/Z)→ · · · (exact).
The starting point of this work is the following conjecture by Freed and

Hopkins.

Conjecture 1.3 ([FH21, Conjecture 8.37]). There is a 1 : 1 correspondence1

{
deformation classes of reflection posi-
tive invertible n-dimensional fully extended
field theories with symmetry type G

}
≃ (IΩG)n+1(pt).(1.4)

There are many difficulties in Conjecture 1.3, and here we point out two
of them. First, we do not have the axioms for non-topological fully extended
QFT’s. Thus the left hand side of (1.4) is not a mathematically well-defined
object.2 Second, although the cohomology theory (IΩG)∗ is mathematically
defined, its definition is abstract. So the right hand side of (1.4) is difficult to
treat directly, in particular from the physical point of view. Actually, those
difficulties are overcome if we are interested in topological QFT’s, and Freed
and Hopkins proves the version of Conjecture 1.3 for topological QFT’s,
where the right hand side of (1.4) is replaced by its torsion part [FH21,
Theorem 1.1].

This work is intended to overcome the second difficulty mentioned above,
and to give a new approach to Conjecture 1.3. We construct a physically
motivated model for the theory (IΩG)∗, which is made by abstractizing
certain properties of invertible QFT’s. This result can be regarded as sup-
porting Conjecture 1.3. On the other hand, our results also turn out to be
mathematically interesting, in view of its relations to differential cohomology
theories.

In the rest of the introduction, we first explain the main results in Sub-
section 1.1, and then explain its physical and mathematical significances in
Subsections 1.2 and 1.3, respectively.

1Here symmetry types of QFT’s in [FH21] are certain classes of G’s in this paper which
satisfy an additional set of conditions.

2On the other hand, there is the axiom system by Kontsevich and Segal [KS21] for
non-extended QFT’s which are physically reasonable. It would be interesting to prove the
modified version of Conjecture 1.3 by using it.
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1.1. A sketch of the main results. The first main result of Part 1 is the
construction of models for the generalized cohomology theory (IΩG)∗ and
its differential extension. The model of (IΩG)∗ is denoted by (IΩGdR)

∗, and

the differential extension is denoted by (ÎΩGdR)
∗. Both are defined on the

category MfdPair of pairs of manifolds. The precise definition is given in
Definition 4.22. The physical meaning of this construction is explained in
Subsection 1.2 below. For simplicity, in this subsection we concentrate on
the absolute case, and we only consider the case where G is oriented, i.e.,
the image of ρd : Gd → O(d,R) lies in SO(d,R) for each d.

Let X be a manifold and let n be a nonnegative integer. The differential

group (ÎΩGdR)
n(X) consists of pairs (ω, h), where

• ω ∈ Ωnclo(X; lim←−d(Sym
•/2g∗d)

Gd), i.e., ω is a closed differential form
on X with values in invariant polynomials on g := lim←−d gd, of total
degree n, where gd is the Lie algebra of Gd.
• h is a map which assigns an R/Z-value to a triple (M, g, f), where
M is a closed (n − 1)-dimensional manifold with a stable tangen-
tial G-structure with connection, which we call a differential stable
tangential G-structure and symbolically denoted by g, and a smooth
map f : M → X.
• ω and h should satisfy the following compatibility condition. Sup-
pose we have two triples (M−, g−, f−) and (M+, g+, f+) as above,
and a bordism (W, gW , fW ) between them, by a compact n-dimensional
manifold with differential stable tangential G-structure and a map
to X. The data of gW allows us to define a top form on W ,

cwgW (f∗Wω) ∈ Ωn(W ),(1.5)

by applying the Chern-Weil construction with respect to gW to the
coefficient of f∗Wω. We require that,

h([M+, g+, f+])− h([M−, g−, f−]) =
∫

W
cwgW (f∗Wω) (mod Z),(1.6)

To define (IΩGdR)
n(X), we introduce the equivalence relation∼ on (ÎΩGdR)

n(X).

We set (ω, h) ∼ (ω′, h′) if there exists α ∈ Ωn−1(X; lim←−d(Sym
•/2g∗d)

Gd) such
that

ω′ = ω + dα,

h′ ([M, g, f ]) = h ([M, g, f ]) +

∫

M
cwg(f

∗α).(1.7)

We define

(IΩGdR)
n(X) := (ÎΩGdR)

n(X)/ ∼ .(1.8)

For the functor (ÎΩGdR)
∗, we construct the structure homomorphisms R,

I and a (Definition 4.26) as well as the S1-integration map
∫

(Definition
4.39). The first main result of this paper concerning the differential model
is the following.
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Theorem 1.9 (Theorem 4.56). (IΩGdR)
∗ gives a model for the generalized

cohomology theory (IΩG)∗, restricted to the category of manifolds. Moreover,

(ÎΩGdR, R, I, a,
∫
) is a differential extension with S1-integration of

(
(IΩG)∗, ch′

)
.

Here the homomorphism ch′ is defined in (4.5) and coincides with the
Chern-Dold homomorphism for examples of G we are usually interested in.

For example, in the case G = SO, if we have a hermitian line bundle
with unitary connection (L,∇) over X, the pair of first chern form c1(∇) =√−1
2π F∇ ∈ Ω2

clo(X) and the holonomy functional with respect to ∇ gives

an element (c1(∇),Hol∇) ∈ (ÎΩSO
dR)

2(X). See Example 4.59 for details.
The compatibility condition (1.6) follows from the relation of curvature and
holonomy. For more examples, see Subsection 4.3.

We remark that in this paper we mainly focus on tangential G-bordism

theories, as opposed to normal G-bordism theories which we denote by ΩG
⊥
.

But a straightforward modification of the tangential case gives a model for

the Anderson dual to normal G-bordism theories (IΩG
⊥
)∗, as explained in

Subsection 4.5.
With these physically-motivated models at hand, we can sometimes un-

derstand known operations in physics regarding QFT’s as natural trans-
formations between differential cohomology theories, thus giving a math-
ematical understanding. As we now explain, the results in Section 5 and
Section 6 are such examples. In Part 2 we will see another type of natural
transformations.

Assume we have a homomorphism µ : G1 ×G2 → G3 of tangential struc-
ture groups. Typical examples arise from multiplicative tangential structure
groups G such as SO and Spin, where we set G = G1 = G2 = G3. On the
topological level, the homomorphism µ induces the following.

• The natural transformation

(IΩG3)n(−)⊗ (ΩG2)−r(−)→ (IΩG1)n−r(−),(1.10)

where (ΩG2)−r(X) is the stable tangential G2-bordism cohomology
theory group.
• The pushforward maps for tangentially stably G2-oriented proper
maps (p : N → X, gtopp ),

(p, gtopp )∗ : (IΩG3)n(N)→ (IΩG1)n−r(X).(1.11)

We remark that our terminology “pushforward”, explained in Sub-
section 6.1, is a certain generalization of the most usual notion of
pushforwards, which is associated to multiplicative genera.

In Section 5 and Section 6, we construct differential refinements of each of

the above maps, respectively. Here, for the differential refinement (Ω̂G2),
we use a tangential variant of the cycle-based model constructed by Bunke
and Schick Schröder and Wiethaup [BSSW09], which turns out to be very

much suited to our model of Anderson duals. The model (Ω̂G2) is defined in
terms of differential relative stable tangential G2-cycles, and the differential
refinements of (1.10) and (1.11) are given in terms of fiber products be-
tween differential relative stable tangential G2-cycles and differential stable
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tangential G1-cycles. As we explain in Subsubsection 1.2.3, in the physi-
cal interpretation, these homomorphisms correspond to compactifications of
invertible QFT’s.

1.2. Physical significance. Our results are motivated by the problem of
classification of invertible field theories, and this problem is also related
to the classification of action functionals of background fields up to local
counterterms. Let us explain some background in physics. In the follow-
ing discussion, whenever we say “manifolds”, they are always supposed to
be equipped with some differential structure such as Riemannian metric,
bundles and their connections, and so on. What differential structure we
consider should be specified in advance. Another remark is that whenever
we say “invertible field theory” in this subsection, we only consider non-
extended versions of QFT’s unless otherwise stated, as opposed to fully
extended versions of QFT’s as in [FH21]. In other words, we only consider
Hilbert spaces, amplitudes, and partition functions as explained below.

1.2.1. Some backgrounds on QFT and TQFT. Very roughly speaking, a D-
dimensional QFT (which is not extended) is a functor from some geometric
bordism category to the (super)vector space category as follows. A QFT
assigns a Hilbert space of physical states H(N) to each (D− 1)-dimensional
closed manifold N . In particular, we assume that for the empty manifold
N = ∅, we have a canonical isomorphism H(∅) ≃ C. It assigns a linear map
Z(M) : H(N1)→ H(N2) to each D-dimensional compact manifold M with
boundaries ∂M = N1 ⊔N2 where N1 is a manifold which has the opposite
structure to that of N1 (such as orientation reversal), and we have assumed
thatM has appropriate collar structure near the boundaries, [0, ϵ)×N1 and
(−ϵ, 0]×N2 for some ϵ > 0. We do not try to make these axioms precise, but
we remark that they are motivated by (Euclidean) path integrals in physics.

An invertible field theory is a QFT in which the Hilbert space of states
H(N) on any closed manifold N is one-dimensional, dimH(N) = 1. In-
vertible field theories play crucial roles in the study of anomalies. (See
e.g. [Fre14, Mon19] for overviews.) In fact, the classification of deforma-
tion classes of invertible QFT’s in D-dimensions is believed to be the same
as the classification of anomalies in (D − 1)-dimensions.3 (We will explain
what we mean by “deformation classes” in a little more detail later.) In the
context of condensed matter physics, deformation classes of invertible field
theories are also called symmetry protected topological (SPT) phases or in-
vertible phases of matter. Anomalous (D − 1)-dimensional theories appear
on the boundaries of these invertible phases and have various applications in
physics. Therefore, it is an important problem to classify invertible phases.

In the case of topological QFT (TQFT), the classification of invertible
phases has been conjectured to be given by certain cobordism groups [Kap14,
KTTW14], and later proved at least for some physically motivated classes
of structure types. It is proved under the axioms of fully extended TQFT
in [FH21], and Atiyah-Segal axioms in [Yon18]. Let S be the structure type
under consideration. For instance, we can consider manifolds equipped with

3We neglect anomalies which do not fit into the general framework, such as Weyl
anomalies. Also, there may be subtleties in reflection non-positive theories [CL20].
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Spin structures, and in that case we denote S = Spin. Then we may define a
bordism group ΩS

D(pt) of D-dimensional manifolds equipped with structure
of the type S roughly as follows. We introduce a monoid structure on the
set of (isomorphism classes of) manifolds by disjoint union, M1 ⊔M2. The
empty manifold ∅ is the unit of this monoid since M ⊔ ∅ ≃ M . Then we
divide this monoid by an equivalence relation. If a closed D-manifold M is
a boundary of some (D+1)-manifold W , M = ∂W , then it is defined to be
equivalent to the empty set, M ∼ ∅. By using the fact that W = [0, 1]×M
has the boundary ∂W = M ⊔M , one can see that we get a group whose
elements are represented in terms of manifolds M as [M ]. In particular, the
inverse of [M ] is [M ]. This group is denoted as ΩS

D(pt).
According to [Kap14, KTTW14, FH21, Yon18], deformation classes of

invertible TQFT’s are classified by the group Hom((ΩS
D(pt))tor,R/Z), where

the subscript tor means to take the torsion part of the group. The reason
that we take the torsion part is that we are considering deformation classes.
To explain this point, let us first consider the group Hom(ΩS

D(pt),R/Z).
Then the relation between this group and the above axioms of QFT is the
following. If we are given an element h ∈ Hom(ΩS

D(pt),R/Z), it means that
we can assign to each closed D-dimensional manifold M a number

Z(M) = exp
(
2π
√
−1h([M ])

)
,(1.12)

where [M ] ∈ ΩS
D(pt) is the bordism class represented by M . Notice that

for a closed manifold ∂M = ∅, a QFT should assign a linear map Z(M) :
H(∅) → H(∅). Since H(∅) ≃ C, the quantity Z(M) can be regarded just
as a number Z(M) ∈ C. The function which assigns a number Z(M) ∈ C
to each closed manifold M is called a partition function in physics. From
an element h ∈ Hom(ΩS

D(pt),R/Z), we can construct a partition function
by (1.12).

A partition function itself does not give full data for the axioms of QFT.
However, the theorems proved in [FH21, Yon18] imply that we can construct
a TQFT from a given h ∈ Hom(ΩS

D(pt),R/Z). (See Theorem 4.3 of [Yon18]
for explicit construction in the case of Atiyah-Segal axioms.) Conversely, the
partition function of any invertible TQFT can be deformed continuously to
a partition function given by some h ∈ Hom(ΩS

D(pt),R/Z). Among the
elements of Hom(ΩS

D(pt),R/Z), the ones which come from Hom(ΩS
D(pt),R)

can be deformed continuously. In this way, we arrive at the classification of
deformation classes of invertible TQFT’s by Hom((ΩS

D(pt))tor,R/Z).

1.2.2. The exact sequence and classification of invertible phases. How about
the cases which are not necessarily topological? Freed and Hopkins have
conjectured a classification of fully extended QFT’s [FH21] in terms of the
Anderson dual of bordism groups as stated in Conjecture 1.3. The author
expect that the classification of QFT’s which are not extended is given by the
same group. Before going to discuss it, let us first explain some additional
background.

Suppose we are given a manifold X. Then we can consider a new struc-
ture given as follows. In addition to the differential structure already present
in a manifold M , we consider an additional datum f : M → X which is a
map from M to X. In the context of invertible phases and anomalies in
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physics, we can consider various types of X. If the manifold X is taken to
be the target space of a sigma model, it is relevant to sigma model anom-
alies [MN84, MN85, Tho17]. On the other hand, ifX is taken to be the space
of coupling constants, it is relevant to more subtle anomalies discussed in
e.g. [TY17, STY18, ST19, LMSN18, CFLS19a, CFLS19b, HKT20]. Let us
denote the new structure type as (S, X), where S is the original one already

considered on M . Then we denote ΩS
D(X) := Ω

(S,X)
D (pt). For appropriate

structure types S, it is known that ΩS
∗ gives a generalized homology theory,

and ΩS
∗ (X) are the generalized homology groups of X.

Given a generalized homology theory E∗, we have the Anderson dual coho-
mology theory IE∗ satisfying the exact sequence (1.1). This exact sequence
is analogous to the one in the ordinary cohomology theory associated to the
short exact sequence of coefficient groups 0→ Z→ R→ R/Z→ 0.

The conjecture mentioned above, with a generalization including sigma
models and more general types of S, is as follows; deformation classes of
invertible field theories (extended or not) with the structure type (S, X) is
given by (IΩS)D+1(X), where (IΩS)∗ is the Anderson dual of ΩS

∗ . It fits
into the exact sequence

· · · → Hom(ΩS
D(X),R)→ Hom(ΩS

D(X),R/Z)→ (IΩS)D+1(X)

→ Hom(ΩS
D+1(X),R)→ Hom(ΩS

D+1(X),R/Z)→ · · · .
Let us explain physical reasons to believe that this conjecture is reasonable,
following [LOT20]. (See also [DL20] for some applications.)

First, let us consider elements of (IΩS)D+1(X) which are in the kernel
of the map (IΩS)D+1(X) → Hom(ΩS

D+1(X),R). We denote the homomor-

phism Hom(ΩS
D(X),R)→ Hom(ΩS

D(X),R/Z) as p. By the exact sequence,
the kernel is isomorphic to

Hom(ΩS
D(X),R/Z)/Im(p) ≃ Hom((ΩS

D(pt))tor,R/Z).(1.13)

This is what we have discussed before in the case of TQFT. Any element
of Hom(ΩS

D(X),R/Z) gives a TQFT. The division by the image of the map
p : Hom(ΩS

D(X),R)→ Hom(ΩS
D(X),R/Z) is due to the fact that we are con-

sidering deformation classes. The group Hom(ΩS
D(X),R) is a vector space

over R, and any two elements of this group can be continuously deformed
into one another. Therefore, we should divide Hom(ΩS

D(X),R/Z) by Im(p)
when we consider deformation classes of TQFT’s.

Next, let us consider the physical meaning of the map (IΩS)D+1(X) →
Hom(ΩS

D+1(X),R). In physics, we may expect the following property of
invertible QFT. Suppose that a closed D-manifold M is the boundary of
a (D + 1)-manifold W with a collar structure (−ϵ, 0] ×M ⊂ W near the
boundary, including geometric data such that (−ϵ, 0] has the trivial differ-
ential structure. We expect to have a closed differential (D + 1)-form ID+1

on W (which is sometimes called an anomaly polynomial in the context of
anomalies). It is constructed from geometric data on W . For example, W
may have connections of some bundles from which we can construct char-
acteristic forms. Also, W is equipped with a map fW : W → X and hence
we can pullback differential forms from X to W by using fW . The closed
form ID+1 is constructed by using such differential forms, and it is given by
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cwgW (f∗Wω) which appeared in (1.5) in the case of S = G. Then, physicists
may expect that the partition function of an invertible QFT evaluated on
M = ∂W is given (after some continuous deformation of the theory4) by

Z(∂W ) = exp

(
2π
√
−1

∫

W
ID+1

)
.(1.14)

When ID+1 = 0, this equation is precisely the bordism invariance of the
partition function as implied by (1.12), since [∂W ] = [∅] by the definition
of bordism groups.

Now, by using ID+1, we can define an element of Hom(ΩS
D+1(X),R) by

ΩS
D+1(X) ∋ [W ] 7→

∫

W
ID+1 ∈ R(1.15)

for any closed (D+1)-manifoldW . Its well-definedness (i.e. it only depends
on the equivalence class [W ] rather than a representative W ) is immedi-
ate from the Stokes theorem and dID+1 = 0. Moreover, for the partition
function (1.14) to be well-defined, the integral

∫
W ID+1 on any closed W

must be an integer since ∂W = ∅ implies Z(∂W ) = 1. Therefore, (1.15)
is actually an element of Hom(ΩS

D+1(X),Z), and, equivalently, it is in the

kernel of the map Hom(ΩS
D+1(X),R) → Hom(ΩS

D+1(X),R/Z). For appro-

priate (but not all)5 S, the fact that any element of Hom(ΩS
D+1(X),Z) can

be realized in this way by some ID+1 will follow from the Chern-Weil theory
and the Hurewicz theorem as we will see later in the paper. This gives the
exactness at Hom(ΩS

D+1(X),R). Also, if ID+1 = dJD for some JD which is

constructed by geometric data, we get Z(∂W ) = exp
(
2π
√
−1

∫
∂W JD

)
. This

kind of contribution can be continuously deformed to zero by considering a
one parameter family of QFT’s parametrized by t ∈ [0, 1] as

Zt(M) = exp

(
2π
√
−1

∫

M
tJD

)
,(1.16)

so it does not contribute to the deformation classes of QFT’s. This cor-
responds to taking the equivalence classes as in (1.8). The R/Z-valued
functions h which appeared in the definition of elements of (ÎΩGdR)

n(X) cor-

respond to partition functions as Z = exp(2π
√
−1h), and cwg(f

∗α) in (1.7)
corresponds to JD.

The author is not aware of completely general proof of the expectation
that the partition function can be expressed as (1.14). However, there are
various evidence supporting this claim. First, (1.14) is exactly what is used
in the construction of Wess-Zumino-Witten terms [WZ71] with the target

4In generic theories, there can be nonuniversal terms such as the cosmological constant
of the background Riemannian metric and the Euler number term. We need to eliminate
them by continuous deformation of the theory for the following claim to be valid. This
deformation can be done by a procedure similar to (1.16) below.

5The following statement fails when the Chern-Weil construction does not give an
isomorphism. It happens in some noncompact groups, such as SL(2,R). Thus we have
assumed that the groups Gd in this paper are compact. However, there are also groups
which are noncompact but the Chern-Weil isomorphism holds. An example is SL(2,Z)
which has a trivial real cohomology H∗(BSL(2,Z),R). This group can also have anomalies
which are physically relevant [STY18, HTY19, HTY20].
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space X by extending a manifold M to W [Wit83]. In physics literature,
Chern-Simons invariants are also described by (1.14). (See Example 4.61 for
more precise discussions.) Second, invertible field theories constructed from
massive fermions in the large mass limit satisfy (1.14). (See e.g. [WY19]
for a systematic discussion). Third, other nontrivial examples of invertible
QFT’s also satisfy (1.14), such as the one relevant for the anomalies of chiral
p-form fields [HTY20]. Finally, it is possible to give a physically reasonable
derivation of a weaker version of the claim as follows. The functional deriv-
ative of the log of the partition function logZ(M) in terms of a background
field ϕ (i.e. geometric data such as Riemann metric, connections, etc.) is
given by a one-point function of some local operator O,

∂ logZ(M)

∂ϕ(x)
= ⟨O(x)⟩. (x ∈M)(1.17)

In theories whose low energy limits are invertible QFT’s, there is no light
degrees of freedom and all Feynman propagators are short range. Thus we
expect that the one-point function ⟨O(x)⟩ is given by local geometric data at
the point x ∈M . Therefore, if two manifolds equipped differential structure,
M and M ′, are homotopy equivalent, the ratio of their partition functions
is given by an integral of some local quantity. 6

So far, we have argued that the exact sequence satisfied by (IΩS)D+1(X)
is physically reasonable. However, the above physical arguments do not tell
us anything about the group (IΩS)D+1(X) itself beyond the exact sequence.
The Anderson dual is defined in a very abstract way, and it is hard to find a
direct physical interpretation of the Anderson dual. One of our main results
stated in Theorem 1.9 is a natural isomorphism of the cohomology theory
IΩG to the theory IΩGdR. Here the structure type S is taken to be a specific

kind specified by G. The cohomology theory IΩGdR is constructed in a way
which closely follows the above physical discussions. Therefore, our results
give a very strong support of the conjecture that the deformation classes of
invertible QFT’s are given by (IΩS)D+1(X).

Although (IΩGdR)
n(X) is the group which is believed to classify the defor-

mation classes of invertible field theories, the group (ÎΩGdR)
n(X) before tak-

ing the deformation classes is also physically very relevant. When we make
background fields to dynamical fields, invertible field theories give topologi-
cally interesting terms in the action of the dynamical fields. Examples of this
kind include topological θ-terms in gauge theories and Wess-Zumino-Witten

terms in sigma models. The elements of (ÎΩGdR)
D+1(X) which are realized

by α ∈ Ωn−1(X; lim←−d(Sym
•/2g∗d)

Gd) in Theorem 1.9 are, in physics language,
the terms in the Lagrangian which are manifestly gauge invariant and local
in D-dimensions. These terms are gauge invariant even if we evaluate them
on a D-manifoldM with boundaries, so they do not contribute to anomalies
via anomaly inflow. But they are interesting terms in the path integral.

Let us comment on reflection positivity which is an important physical
condition. In the context of partition functions, reflection positivity is the
following requirement. Consider a D-manifold M with a boundary. We

6This argument itself also applies to the case in which the theory is not invertible but
is topologically ordered. Thus this argument does not give a complete proof of the claim.
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glue M and its opposite M along their boundaries to get a closed manifold
M ∪M which is called a double. Reflection positivity is a requirement that
Z(M ∪M) is a nonnegative real number. In the case of TQFT, reflection
positivity is an important ingredient in the classification of [FH21, Yon18].
Indeed, there are counterexamples to the classification if we do not impose
reflection positivity. See [FH21, HTY20] for these examples. The parti-
tion function on a sphere SD becomes negative, Z(SD) = −1, although SD
can be constructed as the double of a hemisphere. These examples have
the property that ID+1 discussed above contains 1

2E, where E is the Euler
density which gives the Euler number of the manifold when it is integrated.
The Euler density is excluded in this paper by imposing a stability condition
which we will define later in this paper. But the stabilization is not impor-
tant for the types of G considered in [FH21]. We will make more comments
on this point in Subsection 4.1.2.

1.2.3. Compactification. We can get a QFT in (D− d)-dimensions by com-
pactification of another QFT in D-dimensions on a d-dimensional manifold.
Let us consider a d-manifold L on which we will compactify the theory. We
put a geometric structure on L. Actually, it is better to consider a family of
geometric structures on L. For example, we can consider various Riemann-
ian metrics on L and connections of a G-bundle on L, and the parameter
space may be called the moduli space of geometric structures. Usually, it
is enough for many purposes to consider a finite dimensional approximation
to the full moduli space of geometric structures. For instance, if L is a two
dimensional torus T 2, we may only consider its complex structure modulus
and the total area as a finite dimensional approximation to the full moduli
space of Riemannian metrics on T 2. If there is an internal symmetry group,
we may also consider holonomies of connections around cycles on T 2. From
the point of view of the lower dimensional theory after compactification, the
space of these parameters are the target space of a new sigma model in lower
dimensions. If the target space of the D-dimensional theory is X, the new
target space of the (D − d)-dimensional theory may be X × Y where Y is
such a moduli space.

Motivated by the above considerations, let us consider a fiber bundle
N → Y in which the fiber is a d-manifold L and Y is a smooth base man-
ifold. Here, Y is what we intuitively want to consider as a moduli space of
geometric structures Y, but we remark that Y is just an arbitrary smooth
manifold. We assume that each fiber is equipped with a geometric structure,
and Y may be intuitively regarded as parametrizing a family of geometric
structures. (We will discuss more general situations in Sec. 5 than fiber bun-
dles, where precise definitions are also given.) If we are given an element of

(ÎΩGdR)
D+1(X), then the compactification on L with a family of geometric

structures Y may be expected to give an element of (ÎΩGdR)
(D−d)+1(X×Y ).
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This is an interpretation of (1.10). By making the target spaces more ex-
plicit, it is the transformation we construct in Section 5, 7

(ÎΩG3
dR)

D+1(X)⊗ (Ω̂G2)−d(Y )
·−→ (ÎΩG1

dR)
(D−d)+1(X × Y ),(1.18)

Here, the groupG2 is the structure type of fiber manifolds L, and (Ω̂G2)−d(Y )
is roughly the abelian group of fiber bundles N → Y equipped with geo-
metric structures of fiber manifolds. The abelian group structure is given
by fiber-wise disjoint union with the fixed base Y . The group G1 is the
structure type of (D − d)-manifolds M , and we assume that products of
manifolds (or more generally fiber bundles L → M ′ → M with base M
and fiber L) with the G1 and G2 structures can be equipped with the G3

structure. For example, we can obtain a Pin+ D-manifold from a product
of a Pin+ d-manifold and a Spin (D−d)-manifold. This means that if a the-
ory defined on Pin+-manifolds is compactified on a Pin+-manifold, we get
a theory defined on Spin-manifolds. See [TY21, Section 2.2.7] for another
example.

We can also consider a slightly different type of compactification, which
corresponds to the construction in Section 6. Let M ′ be the D-manifold
which is the fiber bundle with the base (D − d)-manifold M and the fiber
d-manifold L. The compactification obtained by the above procedure is
restricted to the case that the map M ′ → X factors as M ′ → M → X,
where M ′ → M is the bundle projection. For some applications, it is also
useful to have a variant of the above construction. Consider a fiber bundle
p : X ′ → X where the fiber is a d-manifold L with G2-structure. By a
similar construction as above, we get a map

(ÎΩG3
dR)

D+1(X ′)→ (ÎΩG1
dR)

(D−d)+1(X).(1.19)

Here, the map M → X is uplifted to M ′ → X ′. A simple example is given
by compactification of brane actions in string theory. We interpret X ′ as
a target spacetime manifold of string theory, M ′ as the worldvolume of a
brane, and we have a map f ′ : M ′ → X ′ which describes how the brane is
placed in X ′. Now, we compactify the target spacetime from X ′ to X, and
“wrap” the brane to the fiber L of X ′ → X. This situation describes the
above map (1.19). The left and right hand sides describe the (imaginary part
of) the brane actions before and after the compactification, respectively.

Both of (1.18) and (1.19) are useful for describing compactification of
different types. There can be more general situations, but we do not discuss
them in this paper.

1.3. Mathematical significance. In this subsection we explain our results
from a mathematical point of view, especially its relation with the differ-
ential cohomology theories. Given a generalized cohomology theory E∗, its
differential extension Ê∗, defined on manifolds, refines E∗ with additional

7This map is in the form of the external product, which is recovered by the internal
product we use in Section 5 by pulling back to X × Y and multiply there. Conversely, we
can recover the internal product from the external one by pulling back by the diagonal
map.
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differential-geometric data. Ê∗ itself is also called a generalized differen-
tial cohomology theory. For example, H2(X;Z) classifies line bundles on X,

whereas Ĥ2(X;Z) classifies hermitian line bundles with connections on X.
See 2.2 for necessary backgrounds.

One interesting point of the construction of (ÎΩGdR)
∗ lies in its similarity

with the differential character group of Cheeger-Simons [CS85], which is a
model for differential ordinary cohomology theory. For the ordinary coho-
mology HZ∗, there are several known models for its differential extension,

and the relevant one for us is the differential character group Ĥ∗
CS(−;Z)

of Cheeger-Simons [CS85] (Example 2.14). For a manifold X, Ĥn
CS(X;Z)

consists of pairs (ω, k), where

• A closed form ω ∈ Ωnclo(X),
• A group homomorphism k : Z∞,n−1(X;Z)→ R/Z,
• ω and k satisfy the following compatibility condition. For any c ∈
C∞,n(X;Z) we have

k(∂c) ≡ ⟨c, ω⟩X (mod Z).
Here Z∞,∗ and C∞,∗ are the groups of smooth singular cycles and chains, re-

spectively. We immediately see that the definition of the group (ÎΩGdR)
n(X)

explained in Subsection 1.1 is analogous to that of Ĥn
CS(X;Z). The essential

difference is the domains of h and k, which, in the physical interpretation
explained in Subsection 1.2, play the roles of the partition functions of in-
vertible QFT’s. The author feels that it is interesting that we found an
analogy of differential characters out of classifications of invertible QFT’s.

This is actually not just the analogy, but related to the Anderson self-
duality of the ordinary cohomology. By the universal coefficient theorem
we have HZ∗ ≃ IHZ∗, with the duality element γH ∈ IHZ0(pt), equiva-
lently, the natural transformation γH : HZ∗ → (IΩfr)∗(= IZ∗). The above

analogy allows us to construct the differential refinement γ̂ndR : Ĥ∗
CS(−;Z)→

(ÎZdR)
∗(−) := (ÎΩfr

dR)
∗(−) of the above transformation in Subsection 4.4.

1.4. The structure of Part 1. Part 1 is organized as follows. We provide
necessary preliminaries in Section 2. In Section 3 introduce the differential
cycles and related constructions which we use throughout this paper. The
first main result in this paper is in Section 4. We define the differential

models IΩGdR and ÎΩdR in Subsection 4.1, and prove the first main result,
Theorem 1.9, in Subsection 4.2. Using these models, we give a refinement
of the transformation (1.10) in Section 5 and of the pushforward map (1.11)
in Section 6.

1.5. Notations and Conventions.

• By a topological space, we always mean a compactly generated topo-
logical space.
• By manifolds, we mean a smooth manifold with corners (Subsection
2.3). A pair of manifolds (X,Y ) is a manifold X and its submanifold
Y , which is a closed subset of X. We set

C∞((X,Y ), (X ′, Y ′)) := {f : X → X ′ | f is smooth and f(Y ) ⊂ Y ′}.
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The category of pairs of manifolds are denoted by MfdPair.
• The space of R-valued differential forms on a manifold X is denoted
by Ω∗(X). For a pair of manifolds (X,Y ), we set

Ωn(X,Y ) := {ω ∈ Ωn(X) | ω|Y = 0}.
• We also deal with differential forms with values in a graded real
vector space V •. In the notation Ωn(−;V •), n means the total de-
gree. In the case if V • is infinite-dimensional, we topologize it as
the colimit of all its finite-dimensional subspaces with the caoni-
cal topology, and set Ωn(X;V •) := C∞(X; (∧T ∗X ⊗R V

•)n). This
means that, any element in Ωn(X;V •) can locally be written as a
finite sum

∑
i ξi⊗ϕi with ξi ∈ Ωmi(X) and ϕi ∈ V n−mi for some mi

for each i. The space of closed forms are denoted by Ωnclo(−;V •).
• For a manifold X and a real vector space V , we denote by V the
trivial bundle V := X × V over X.
• For a topological space X, we denote by pX : X → pt the map to pt.
We set X+ := (X ⊔ {∗}, {∗}).
• For two topological spaces X and Y , we denote by prX : X×Y → X
the projection to X.
• We set I = [0, 1].
• For a real vector bundle V over a topological space, we denote its
orientation line bundle (rank-1 real vector bundle) by Ori(V ). For a
manifold M , we set Ori(M) := Ori(TM).
• For a spectrum {En}n∈Z, we require the adjoints En → ΩEn+1 of
the structure homomorphisms are homeomorphisms. For a sequence
of pointed spaces {E′

n}n∈Z≥a
with maps ΣE′

n → E′
n+1, we define its

spectrification LE′ := {(LE′)n}n∈Z to be the spectrum given by

(LE′)n := lim−→
k

ΩkE′
n+k.

2. Preliminaries

2.1. The Anderson duals. In this subsection we collect basics on the An-
derson duals for generalized cohomology theories. For more details, see for
example [HS05, Appendix B] and [FMS07, Appendix B]. In this subsection
we entirely work with spectra. The corresponding statement for CW-pairs
(X,Y ) is obtained by considering the suspension spectrum Σ∞(X/Y ). Re-
mark that πst∗ (X,Y ) = π∗(Σ∞(X/Y )).

First note that the functor X 7→ Hom(π∗(X),R/Z) on the stable homo-
topy category of spectra Ho(Sp)op satisfies the Eilenberg-Steenrood axioms,
so it is represented by an Ω-spectrum denoted by I(R/Z). We also have
the functor X 7→ Hom(π∗(X),R), and the corresponding Ω-spectrum IR.
By the Hurewicz isomorphism we have Hom(π∗(X),R) = H∗(X;R) and IR
is isomorphic to the Eilenberg-MacLane spectrum HR. Therefore we just
take IR = HR. The morphism in Ho(Sp) representing the transformation
Hom(π∗(−),R)→ Hom(π∗(−),R/Z) is denoted by

π : HR→ I(R/Z).(2.1)

Definition 2.2 (The Anderson dual to the sphere spectrum). The Anderson
dual to the sphere spectrum, IZ, is the homotopy fiber of the map (2.1).
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Applying the homotopy fiber exact sequence, for each spectrum X we get
the following exact sequence.

· · · → Hn−1(X;R) π−→ Hom(πn−1(X),R/Z)→ IZn(X)

(2.3)

→ Hn(X;R) π−→ Hom(πn(X),R/Z)→ · · · (exact).

Definition 2.4 (The Anderson dual to a spectrum). Let E be a spectrum.
The Anderson dual to E, denoted by IE, is a spectrum defined as the
function spectrum from E to IZ,

IE := F (E, IZ).

This implies that we have the following exact sequence.

· · · → Hom(En−1(X),R) π−→ Hom(En−1(X),R/Z)→ IEn(X)

(2.5)

→ Hom(En(X),R) π−→ Hom(En(X),R/Z)→ · · · (exact).
Hopkins and Singer gave a model for IZ∗(X) in terms of functors be-

tween Picard groupoids in [HS05, Corollary B.17]. A symmetric monoidal
category is called a Picard groupoid if all the objects are invertible under
the monoidal product and all morphisms are invertible under the compo-
sition. For example, a homomorphism ∂ : A → B between abelian groups

associates a Picard groupoid (A
∂−→ B). Namely, the objects are elements of

B, and the morphism from b to b′ is given by an element a ∈ A such that
b′−b = ∂(a). The monoidal structure is given by the addition. Another class
of examples comes from spectra X = {Xn}n∈Z. The fundamental groupoid
π≤1(Xn) of its each n-th space Xn can be equipped with a structure of a
Picard groupoid, uniquely up to equivalence ([HS05, Example B.7]).

Fact 2.6 ([HS05, Corollary B.17]). Let X = {Xn}n∈Z be a spectrum and n
be an integer. We have an isomorphism

IZn(X) ≃ π0FunPic
(
π≤1(X1−n), (R

mod Z−−−−→ R/Z)
)
,(2.7)

where the right hand side means the group of natural isomorphism class of
functors of Picard groupoids8. The isomorphism (2.7) fits into the commu-
tative diagram,

Hom(πn−1(X),R/Z) // IZn(X) //

≃
��

Hn(X;R)

Hom(πn−1(X),R/Z) // π0FunPic (π≤1(X1−n), (R→ R/Z)) // Hn(X;R)

(2.8)

Here the top row is (2.3) and the bottom row is defined in the obvious way.

8In [HS05, Corollary B.17] they use (Q → Q/Z) instead of (R → R/Z). We can use the
latter because the inclusion is an equivalence. Also note that there is an obvious typo in
the statement of [HS05, Corollary B.17], where X1−n is written as Xn−1
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In the above model, the Picard groupoid (R → R/Z) arises because we
have

π≤1(IZ1) ≃ (Z 0−→ 0) ≃ (R→ R/Z).

The isomorphism (2.7) assigns, to an element IZn(X) = [X,ΣnIZ], the
induced functor between the fundamental Picard groupoids. The commuta-
tivity of (2.8) is implicit in the discussion in [HS05, Appendix B.3], but this
commutativity easily follows by the fact that the homotopy fiber sequence
Σ−1IR/Z → IZ → HR induces the sequence (0 → R/Z) → (R → R/Z) ≃
(Z → 0) → (R → 0) on the fundamental Picard groupoids of their first
spaces. The above model for IZ is crucial to the proofs of our main results
of this paper.

In this paper, we are interested in the case where E is the stable tangential
G-bordism theory. Let G = {Gd, sd, ρd}d∈Z≥0

be a sequence of compact
Lie groups equipped with homomorphisms sd : Gd → Gd+1 and ρd : Gd →
O(d,R) for each d such that the following diagram commutes.

Gd
ρd //

sd

��

O(d,R)

��
Gd+1

ρd+1 // O(d+ 1,R)

⟳

.

Here we use the inclusion O(d,R) ↪→ O(d+ 1,R) defined by

A 7→
[
1 0
0 A

]

throughout this paper. We call such G tangential structure groups. Given
G, the stable tangential G-bordism homology theory assigns the stable tan-
gential bordism group (ΩG)∗(−). It is represented by the Madsen-Tillmann
spectrum MTG, which is a variant of the Thom spectrum MG. For details
see for example [Fre19, Section 6.6]. In this paper we take MTG and MG
to be a spectrum (as opposed to a prespectrum) as in [HS05, (4.60)]. In this
case, the exact sequence (2.5) becomes

· · · → Hom(ΩGn−1(X),R) π−→ Hom(ΩGn−1(X),R/Z)→ (IΩG)n(X)

(2.9)

ch′−−→ Hom(ΩGn (X),R) π−→ Hom(ΩGn (X),R/Z)→ · · · (exact).
Example 2.10. Here are some examples of tangential structure groups G and
the corresponding stable tangential G-structures.

(1) The case where Gd = {1} for all d. Since the stable tangential G-
structure is a stable tangential framing in this case, we denote this
G by fr.

(2) SO := {SO(d,R)}d with ρd and sd given by the inclusions. A stable
tangential SO-structure is an orientation with a Riemannian metric.

(3) Spin := {Spin(d)}d with ρd : Spin(d)→ O(d,R) given by the double
covering of SO(d,R) composed with the inclusion, and sd given by
the inclusion. A stable tangential Spin-structure is a Spin-structure
in the usual sense.
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(4) Let H be a compact Lie group, and set SO×H := {SO(d,R)×H}d
with ρd given by the composition of the projection SO(d,R)×H →
SO(d,R) and the inclusion, and sd given by the inclusion. A stable
tangential SO × H-structure is an orientation with a Riemannian
metric, together with a choice of principal H-bundle. This group H
is called the internal symmetry group in physics.

2.2. Generalized differential cohomology theories. In this subsection
we give a brief review of generalized differential cohomology theories, based
on the axiomatic framework given in [BS12] (see also [BS10]). A differential
extension (also called a smooth extension) of a generalized cohomology the-

ory E∗ is a refinement Ê∗ of the restriction of E∗ to the category of smooth
manifolds, which containes differential-geometric data.

Let E∗ be a generalized cohomology theory. Let N• be a graded vector
space over R equipped with a transformation of cohomology theories

ch: E∗ → H∗(−;N•).(2.11)

The universal choice is N• = E•(pt) ⊗ R =: V •
E with ch the Chern-Dold

homomorphism ([Rud98, Chapter II, 7.13]) for E.
For a manifold X, set Ω∗(X;N•) := C∞(X;∧T ∗M ⊗R N

•) with the Z-
grading by the total degree. Let d : Ω∗(X;N•) → Ω∗+1(X;N•) be the de
Rham differential. We have the natural transformation

Rham: Ω∗
clo(X;N•)→ H∗(X;N•).

Definition 2.12 (Differential extensions of a cohomology theory, [BS12,
Definition 2.1]). A differential extension of the pair (E∗, ch) is a quadruple

(Ê, R, I, a), where

• Ê is a contravariant functor Ê : Mfdop → AbZ.
• R, I and a are natural transformations

R : Ê∗ → Ω∗
clo(−;N•)

I : Ê∗ → E∗

a : Ω∗−1(−;N•)/im(d)→ Ê∗.

We require the following axioms.

• R ◦ a = d.
• ch ◦ I = Rham ◦R.
• For all manifolds X, the sequence

E∗−1(X)
ch−→ Ω∗−1(M ;N•)/im(d)

a−→ Ê(X)
I−→ E∗(X)→ 0(2.13)

is exact.

In the case N• = V •
E and ch is the Chern-Dold homomorphism, we simply

call it a differential extension of E∗.

Such a quadruple (Ê, R, I, a) itself is also called a generalized differential
cohomology theory. We usually abbreviate the notation and just write a

generalized cohomology theory as Ê∗.
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Example 2.14 (Differential characters). Here we explain a model for a differ-
ential extension of HZ given by Cheeger and Simons, in terms of differential

characters [CS85]. Actually, our definition of the group (ÎΩGdR)
∗ (Definition

4.22) is analogous to it. We relate them in Subsection 4.4. For later use, we
explain the relative version. For another formulation see [BT06].

For a pair of manifolds (X,Y ) and a nonnegative integer n, the group of

differential characters Ĥn
CS(X,Y ;Z) is the abelian group consisting of pairs

(ω, k), where

• A closed differential form ω ∈ Ωnclo(X,Y ),

• A group homomorphism9 k : Z∞,n−1(X,Y ;Z)→ R/Z,
• ω and k satisfy the following compatibility condition. For any c ∈
C∞,n(X;Z) we have

k(∂c) ≡ ⟨ω, c⟩X (mod Z).(2.15)

We have homomorphisms

RCS : Ĥ
n
CS(X,Y ;Z)→ Ωnclo(X,Y ), (ω, k) 7→ ω

aCS : Ω
n−1(X,Y )/Im(d)→ Ĥn

CS(X,Y ;Z), α 7→ (dα, α).

and the quotient map gives

ICS : Ĥ
n
CS(X,Y ;Z)→ Ĥn

CS(X,Y ;Z)/Im(aCS) ≃ Hn(X,Y ;Z).

The quadruple (Ĥ∗
CS, RCS, ICS, aCS) is a differential extension of HZ.

We can also consider the differential refinement of S1-integration maps in
E. We have the S1-integration map for differential forms,∫

: Ωn+1(S1 ×X;N•)→ Ωn(X;N•)(2.16)

for any manifold X, which realizes the S1-integration map in de Rham
cohomology. The sign is defined so that∫

pr∗S1τS1 ∧ pr∗XωX = ωX(2.17)

for ωX ∈ Ω∗(X;V ) and τS1 ∈ Ω1
clo(S

1) which represents the fundamental
class of S1 for the standard orientation.

Definition 2.18 (Differential extensions with S1-integrations, [BS12, Def-
inition 2.12]). A differential extension with integration of E∗ is a quintuple

(Ê, R, I, a,
∫
), where (Ê, R, I, a) is a differential extension of E∗ and

∫
is a

natural transformation ∫
: Ê∗+1(S1 ×−)→ Ê∗

such that

•
∫
◦(t × id)∗ = −

∫
, where t : S1 → S1 is given by t(x) = −x for

x ∈ [−1, 1]/{−1, 1} = S1.
•
∫
◦(pS1 × id)∗ = 0.

9Precisely speaking in [CS85] they use normalized smooth singular cubic chains, but
we can also work in terms of the usual smooth singular chains as in [BT06].
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• The diagram

Ω∗(S1 ×X;N•) a //

∫

��

Ê∗+1(S1 ×X)

∫

��

I //

R

++
E∗+1(S1 ×X)

∫

��

Ω∗+1
clo (S1 ×X;N•)

∫

��
Ω∗−1(X;N•) a // Ê∗(X)

I //

R
33

E∗(X) Ω∗
clo(X;N•)

(2.19)

commutes for all manifolds X.

2.3. Manifolds with corners. In this paper, we need to deal with man-
ifolds with corners. There are some variants in the definition among the
literatures. In this paper the appropriate notion is ⟨k⟩-manifolds defined in
[Jän68], which we recall here.

A manifold with corners of dimension n is a paracompact topological
space M with an equivalence class of local coordinate system {Vi, φi}i∈I ,
where Vi is an open subset of M for each i with M = ∪iVi,

φi : Vi → Rn≤0 := (−∞, 0]n

is a homeomorphism onto an open subset of Rn≤0 for each i, and

φiφ
−1
j : φj(Vi ∩ Vj)→ φi(Vi ∩ Vj)

is a diffeomorphism for all pairs (i, j). In this paper, by manifolds we always
mean manifolds with corners. For a point x ∈M , we define the depth of x,
denoted by depth(x), to be the number of zeros in a local chart. For each
nonnegative integer k, we set

Sk(M) := {x ∈M | depth(x) = k}.(2.20)

Each Sk(M) has the structure of (n − k)-dimensional manifold without
boundary. The tangent bundle TM →M can be defined as a vector bundle
of rank n over M .

A map f : M → N between manifolds with corners is called smooth if,
taking a local coordinate system {Vi, φi}i∈I and {Uj , ψj}j∈J for M and N

respectively, the map ψj ◦f ◦φ−1
i : φ−1

i f−1(Uj)→ RdimN
≤0 is a restriction of a

smooth map between open subsets of RdimM to RdimN for each (i, j) ∈ I×J .
A smooth map f induces a vector bundle map df : TM → TN . f is called
an embedding if f is injective and df : TxM → Tf(x)N is injective for all
x ∈ M . In such a case, we also regard M as a subspace of N and call
M a submanifold of N . A smooth map f : M → N is called a submersion
if df : TxM → Tf(x)N and df : TxS

depth(x)(X) → Tf(x)S
depth(f(x))(X) are

surjective for all x ∈ N .
A manifold with corners is called a manifold with faces if each x ∈ M

belongs to the closure of depth(x)-different components of S1(M)10. For a
manifold with facesM of dimension n, the closure of a connected component
of S1(M) is called a connected face ofM , which has the induced structure of

10For example, this excludes the case of the “teardrop”, the 2-dimensional disk with a
corner.
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an (n− 1)-dimensional manifold with faces. Any union of pairwise disjoint
connected faces is called a face of M .

Definition 2.21 (⟨k⟩-manifolds, [Jän68, Definition 1]). Let k be a nonneg-
ative integer. A ⟨k⟩-manifold is a manifold with faces M together with an
k-tuple (∂0M,∂1M, · · · , ∂k−1M) of faces of M , satisfying

(1) ∂0M ∪ · · · ∪ ∂k−1M = ∂M .
(2) ∂iM ∩ ∂jM is a face of ∂iM and of ∂jM for i ̸= j.

In particular, a ⟨0⟩-manifold is equivalent to a manifold without boundary,
and a ⟨1⟩-manifold is equivalent to a manifold with boundary. See Figure 1
for k = 2. Note that each ∂iM can be empty. For I = {0 ≤ i1 < · · · < im ≤
k− 1}, the intersection ∂IM := ∂i1M ∩ · · · ∩ ∂imM is called an ⟨k−m⟩-face
of M . It has the induced structure of an ⟨k−m⟩-manifold so that the order
of the labels of the faces are preserved.

In this paper we are particularly interested in ⟨0⟩, ⟨1⟩ and ⟨2⟩-manifolds.

Figure 1. A ⟨2⟩-manifold

3. Differential stable tangential G-structures

In this section we introduce the differential stable tnagential G-cycles
and related constructions which we use throughout this paper. Let G =
{Gd, sd, ρd}d∈Z≥0

be tangential structure groups.

Definition 3.1 (Differential stable G-structures on vector bundles). Let V
be a real vector bundle of rank n over a manifold M .

(1) A representative of differential stable G-structure on V is a quadruple
g̃ = (d, P,∇, ψ), where d ≥ n is an integer, (P,∇) is a principal Gd-
bundle with connection over M and ψ : P ×ρd Rd ≃ Rd−n ⊕ V is an
isomorphism of vector bundles over M .

(2) We define the stabilization of such g̃ by g̃(1) := (d + 1, P (1) :=
P ×sd Gd+1,∇(1), ψ(1)), where ∇(1) and ψ(1) are naturally induced
on P (1) from ∇ and ψ, respectively.

(3) A differential stable G-structure g on V is a class of representatives
g̃ under the relation g̃ ∼stab g̃(1).

(4) Suppose we have two representatives of the forms g̃ = (d, P,∇, ψ)
and g̃ = (d, P,∇, ψ′), such that ψ and ψ′ are homotopic. In this
case, the resulting differential stable G-structures g and g′ are called
homotopic.
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If we forget the information of the connection ∇, we get the correspond-
ing notion of (topological) differential stable G-structures. For a differential
stable G-structure g, we denote the underlying topological structure by gtop.
Similar remarks apply to the various definitions below.

Definition 3.2 (Differential stable tangential G-structures). Let M be a
manifold. A differential stable tangential G-structure is a differential stable
G-structure on the tangent bundle TM .

Definition 3.3 (Opposite differential stable tangential G-structure). Let
M be an n-dimensional manifold. Given a differential stable tangential G-
structure g represented by g̃ = (d, P,∇, ψ) on M with d > n, we define its
opposite differential stable tangential G-structure gop to be the one repre-

sented by g̃op :=
(
d, P,∇, (idRd−n−1 ⊕−idR ⊕ idTM ) ◦ ψ

)
.

Definition 3.4 (Differential stable tangential G-cycles). Let (X,Y ) be a
pair of manifolds. A differential stable tangential G-cycle of dimension n
over (X,Y ) is a triple (M, g, f), where M is an n-dimensional compact ⟨1⟩-
manifold, g is a differential stable tangential G-structure on M and f ∈
C∞((M,∂M), (X,Y )). We define isomorphisms between two differential
stable tangential G-cycles in an obvious way.

In the case (X,Y ) = pt, we use the notation (M, g) := (M, g, pM ).

Definition 3.5 (CG∇
n (X,Y )). Let (X,Y ) be a pair of manifolds. We intro-

duce the equivalence relation ∼ on differential stable tangential G-cycles of
dimension n over (X,Y ), generated by

• Isomorphisms.
• (M, g, f) ⊔ (M, gop, f) ∼ ∅.
• (M, g, f) ∼ (M, g′, f) if g and g′ are homotopic (Definition 3.1 (4)).

The set of equivalence classes under ∼ is denoted by CG∇
n (X,Y ). The class

of (M, g, f) is denoted by [M, g, f ]. We introduce an abelian group structure
on CG∇

n (X,Y ) by disjoint union.

Next we proceed to define the bordism Picard groupoid of differential
stable tangential G-cycles. Let J ⊂ R be an interval. For anM and a differ-
ential stable tangential G-structure g on it represented by g̃ = (d, P,∇, ψ)
with d > dimM , we define gJ to be the differential stable tangential G-
structure on J ×M represented by

g̃J := (d,pr∗MP,pr
∗
M∇, pr∗Mψ).(3.6)

Definition 3.7 (Bordism between differential stable tangential G-cycles).
Let (M−, g−, f−) and (M+, g+, f+) be two differential stable tangential G-
cycles of dimension n over (X,Y ). A bordism from (M−, g−, f−) to (M+, g+, f+)
consists of the following set of data.

• An (n+1)-dimensional ⟨2⟩-manifoldW and a differential stable tan-
gential G-structure gW on W .
• A disjoint decomposition ∂0W = ∂0,−W ⊔ ∂0,+W and open neigh-
borhoods U± of ∂0,±W , respectively, such that U+ ∩ U− = ∅.
• Isomorphisms φ− : (U−, gW |U−) ≃

(
[0, ϵ)×M−, (g−)[0,ϵ)

)
and φ+ : (U+, gW |U+) ≃(

(−ϵ, 0]×M+, (g+)(−ϵ,0]
)
of ⟨2⟩-manifolds with differential stable tan-

gential G-structures for some ϵ > 0.
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• A map fW ∈ C∞ ((W,∂1W ), (X,Y )) such that fW |U± = f± ◦prM± ◦
φ±, respectively.

Given such a set of data, for any 0 < ϵ′ < ϵ we get another set of data
by restriction. We regard them as defining the same bordism. We denote
a bordism data typically as (W, gW , fW ), with the understanding that the
collar structures U±, φ± are also included.

Given (M−, g−, f−) and (M+, g+, f+), we introduce the bordism relation
between two bordisms (W−, gW− , fW−) and (W+, gW+ , fW+) between them
in a routine way. Namely, they are called bordant if there exists the following
set of data.

• an (n + 1)-dimensional ⟨3⟩-manifold N equipped with a differential
stable tangential G-structure gN and fN ∈ C∞((N, ∂2W ), (X,Y )).
• a decomposition ∂0N = ∂0,+N ⊔ ∂0,−N and ∂1N = ∂1,+N ⊔ ∂1,−N
with isomorphisms ∂0,±N ≃ W± and ∂1,±N ≃ [0, 1] ×M± of ⟨2⟩-
manifolds.
• Collar structures near ∂0,±N and ∂1,±N which restricts to the collar
structures on W± in Definition 3.7.
• Corresponding isomorphisms of differential stable tangentialG-structures
on the collars, extending those on W± in Definition 3.7.

The bordism class of a bordism (W, gW , fW ) : (M−, g−, f−)→ (M+, g+, f+)
is denoted by [W, gW , fW ]

Definition 3.8 (hBordG∇
n (X,Y )). Let n be a positive integer and (X,Y ) be

a pair of manifolds. We define the symmetric monoidal category hBordG∇
n (X,Y )

by the following.

• The objects are differential stable tangential G-cycles (M, g, f) of
dimension n over (X,Y ).
• The morphisms from (M−, g−, f−) to (M+, g+, f+) are the bordism
classes [W, gW , fW ] of bordisms between them.
• The identity morphism on (M, g, f) is the cylinder (I×M, gI , f◦prM )
with the obvious collar structure.
• The monoidal product is the disjoint union, with the unit ∅.

Remark 3.9. The notation is due to the fact that the above category hBordG∇
n (X,Y )

is the homotopy 1-category of an (∞, 0)-category version of it. Although we
do not introduce the higher categories, we use this notation.

The symmetric monoidal category hBordG∇
n (X,Y ) is equivalent to the

fundamental groupoid of the (−n)-th space of the Madsen-Tillmann spec-
trum via the Pontryagin-Thom construction, as follows.

Lemma 3.10. Let (X,Y ) be a pair of manifolds. There is a equivalence of
symmetric monoidal categories

hBordG∇
n (X,Y ) ≃ π≤1(L((X/Y ) ∧MTG)−n),(3.11)

which is natural in (X,Y ).

Proof. The theorem of Pontryagin-Thom implies there is an equivalence of
symmetric monoidal categories which is natural in (X,Y ),

π≤1(L((X/Y ) ∧MTG)−n) ≃ hBordGn (X,Y ).(3.12)
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where hBordGn (X,Y ) is obtained from hBordG∇
n (X,Y ) by forgeting the con-

nections. In turn, the forgetful functor hBordG∇
n (X,Y )→ hBordGn (X,Y ) is

obviously an equivalence, so we get the result. □
By [HS05, Example B.7], the right hand side of (3.11) is a Picard groupoid.

Thus we get the following.

Corollary 3.13. The category hBordG∇
n (X,Y ) is a Picard groupoid.

Explicitly, the inverse under the monoidal product of an object (M, g, f) is
(M, gop, f). The inverse under the composition of a morphism [W, gW , fW ] : (M−, g−, f−)→
(M+, g+, f+) is essentially given by “reversing gW ”. If G is such that “re-
versing” gW 7→ gW makes sense so that (W, gW , fW ) is a bordism from
(M+, g+, f+) to (M−, g−, f−), this represents the required inverse. Such G
includes SO and Spin. However, for general G, for example G = 1, such
a reversal does not make sense, so the explicit description of the inverse is
complicated (given by a suitable deformation of gW on the collar). In any
case, Corollary 3.13 implies that we can take the inverse [W, gW , fW ]−1 on
the level of bordism classes.

4. Physically motivated models for the Anderson duals of
G-bordisms

Let G = {Gd, sd, ρd}d∈Z≥0
be tangential structure groups. In this section,

we give models (IΩGdR)
∗ and (ÎΩGdR)

∗ of the Anderson dual to G-bordism
theory and its differential extension, respectively.

Let us define a Gd-module RGd
with the underlying vector space R, and

the Gd-module structure given by the multiplication via Gd
ρd−→ O(d,R) det−−→

{±1}.
Lemma 4.1. We have

H∗(MTG;R) = lim←−
d

H∗(Gd;RGd
).

Here H∗(Gd;RGd
) is the group cohomology of Gd with coefficient in RGd

.

Proof. Recall that the Madsen-Tillmann spectrum MTG is defined as the
direct limit of the Thom spaces of the normal bundles of the universal
bundles over (approximations of) BGd [Fre19, Section 6.6]. We see that
their orientation bundle is the pullback of the bundle EGd ×Gd

RGd
over

BGd. The result follows by the Thom isomorphism and the isomorphism
Hn(BGd;EGd ×Gd

RGd
) ≃ Hn(Gd;RGd

). □
Lemma 4.2. Fix a nonnegative integer d. For each integer n, we have

H2n(Gd;RGd
) ≃ (Symng∗d ⊗R RGd

)Gd ,

H2n+1(Gd;RGd
) = 0.

Here gd is the Lie algebra of Gd and g∗d is its dual. The notation (−)Gd

means the Gd-invariant part, where Gd acts on gd by the adjoint.

Proof. Let Kd be the kernel of the homomorphism det ◦ ρd : Gd → {±1}.
In the case where Gd = Kd, the Gd-module RGd

is trivial R, and the de-
sired results follow from the Chern-Weil isomorphism for Gd. In the case
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where Gd ̸= Kd, apply the Hochschild-Serre spectral sequence for the group
extension

1→ Kd → Gd → {±1} → 1

and theGd-module RGd
. We get the isomorphismH∗(Gd;RGd

) ≃ (H∗(Kd;R)⊗R
RGd

){±1} = (H∗(Kd;R)⊗R RGd
)Gd . Using the Chern-Weil isomorphism for

Kd, we get the result. □

We denote

N•
G := H•(MTG;R) = lim←−

d

H•(BGd;RGd
) = lim←−

d

(Sym•/2g∗d ⊗R RGd
)Gd .

(4.3)

In the case where G is oriented, i.e., the image of ρd lies in SO(d,R) for each
d, the Gd-module RGd

is trivial and N•
G is the projective limit of invariant

polynomials on gd. In general cases, N•
G can be regarded as the projective

limit of polynomials on gd which change the sign by the action of Gd.
For any CW-complex X, by the Kunneth formula and the Hurewicz the-

orem we have

H∗(X;N•
G) ≃ Hom(ΩG∗ (X),R),(4.4)

so the fourth arrow in (2.9) gives the transformation

ch′ : (IΩG)∗ → H∗(−;N•
G).(4.5)

In general, N•
G is not isomorphic to V •

IΩG = (IΩG)•(pt)⊗R. The relation is
the following. Let E be any spectrum. Applying the exact sequence (2.5)
to X = pt, we get the following short exact sequence,

0→ Ext(En−1(pt),Z)→ IEn(pt)→ Hom(En(pt),Z)→ 0.(4.6)

Since R is a flat Z-module, we get the short exact sequence

0→ Ext(En−1(pt),Z)⊗ R→ V n
IE → Hom(En(pt),Z)⊗ R→ 0.(4.7)

The group Ext(En−1(pt),Z) ⊗ R does not vanish in general, but it van-
ishes for example if En−1(pt) is finitely generated. Furthermore, we have a
canonical map

Hom(En(pt),Z)⊗ R→ Hom(En(pt),R),(4.8)

and it is an isomorphism if En(pt) is finitely generated. Thus we see that

Proposition 4.9. For any tangential structure groups G, we have a canon-
ical homomorphism

q : V •
IΩG → N•

G.(4.10)

It is an isomorphism if ΩGn (pt) is finitely generated for all n.

The finiteness condition in Proposition 4.9 is satisfied in examples we are
usually interested in.

4.1. The models.
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4.1.1. The differential models. In this subsubsection, we define the models.
The definition uses a variant of Chern-Weil construction, as we now explain.

Definition 4.11. (1) Let W be a manifold and (P,∇) be a principal
Gd-bundle with connection. Let n be an even nonnegative integer
and ϕ ∈ Nn

G. Apply the forgetful map11

N•
G → N•

Gd
= (Sym•/2g∗d ⊗R RGd

)Gd .(4.12)

to ϕ and denote by ϕd the resulting element. We set

cw∇(ϕ) = cw∇(ϕd) := ϕd(F∇) ∈ Ωnclo(W ;P ×Gd
RGd

),(4.13)

where F∇ ∈ Ω2
clo(W ;P ×ad gd) is the curvature form for (P,∇), and

we used the identification RGd
= R∗

Gd
of Gd-modules. This con-

struction gives a homomorphism cw∇ : Nn
G → Ωnclo(W ;P ×Gd

RGd
).

Extending it Ω∗(W )-linearly, we get a homomorphism of Z-graded
real vector spaces,

cw∇ : Ω∗(W ;N•
G)→ Ω∗(W ;P ×Gd

RGd
),(4.14)

which restricts to a homomorphism cw∇ : Ω∗
clo(W ;N•

G)→ Ω∗
clo(W ;P×Gd

RGd
).

(2) If V → W is a real vector bundle with a differential stable G-
structure g represented by g̃ = (d, P,∇, ψ), the isomorphism ψ in-
duces the isomorphism ψ : P ×Gd

RGd
≃ Ori(V ). Composing the

homomorphism (4.14) with this ψ on the coefficient, we define a
homomorphism of Z-graded real vector spaces,

cwg := ψ ◦ cw∇ : Ω∗(W ;N•
G)→ Ω∗(W ; Ori(V )),(4.15)

which restricts to the homomorphism cwg : Ω
∗
clo(W ;N•

G)→ Ω∗
clo(W ; Ori(V )).

In particular, if we have a differential stable tangential G-structure g on
W , the homomorphism (4.15) becomes

cwg : Ω
∗(W ;N•

G)→ Ω∗(W ; Ori(W )).

Remark 4.16. In Definition 4.11 (2), the homomorphism cwg actually de-
pends on g only through its homotopy class (Definition 3.1 (4)). This is be-
cause we only used ψ to construct the isomorphism ψ : P ×Gd

RGd
≃ Ori(V ),

and it does not change when we replace ψ to a homotopic one.

Remark 4.17. Definition 4.11 admits the following generalization, which we
use in Section 5 and Section 6, as well as in the next paper [Yam21]. Let V∗
be any Z-graded vector space over R. We can generalize N•

G = H•(MTG;R)
in the above definition to H•(MTG;V∗). Then the homomorphism (4.15)
becomes

cwg : Ω
n(W ;H•(MTG;V∗))→ Ωn(W ; Ori(V )⊗R V∗).(4.18)

The construction is basically by just applying the above procedure V∗-
linearly. But we need some care because we need to allow V∗ to be infinite-
dimensional, since H•(MTGd;V∗) ̸= (N∗′

Gd
⊗R V∗)• in general. To fix this

11Here we denoted by Gd = {(Gd)d′ , (sd)d′ , (ρd)d′}d′∈Z≥0
the tangential structure

groups defined by trancating G at degree d, i.e., (Gd)d′ := G′
d for d′ ≤ d and (Gd)d′ := Gd

for d′ ≥ d, with (sd)d′ = id for d′ ≥ d and the other structure maps are obvious ones.
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point, in the construction corresponding Definition 4.11 (1), take a closed
manifold B with a (dimW + 1)-connected map B → BGd. Then consider
the pullback

H•(MTGd;V∗)→ H•(B; (B ×Gd
RGd

)⊗R V∗) = ⊕dimB
k=0 Hk(B;B ×Gd

RGd
)⊗R V∗−k.

(4.19)

We have Nk
Gd
≃ Hk(B;B ×Gd

RGd
) for 0 ≤ k ≤ dimW . Thus we can

apply the image under the composition (4.19) to the curvature F∇ to get
the Chern-Weil form. The result does not depend on the choice of B.

Suppose we are given a pair of manifolds (X,Y ) and a form ω ∈ Ω∗(X,Y ;N•
G).

IfW is a manifold equipped with a differential stable tangential G-structure
g, given a map f ∈ C∞((W,∅), (X,Y )), the homomorphism (4.15) gives

cwg(f
∗ω) ∈ Ω∗(W, f−1(Y ); Ori(W )).

If ω ∈ Ωnclo(X,Y ;N•
G), the resulting form is closed, so the above construction

induces a homomorphism

cw(ω) : Hom
hBord

G∇
n−1(X,Y )

((M−, g−, f−), (M+, g+, f+))→ R

(4.20)

[W, gW , fW ] 7→
∫

W
cwgW ((fW )∗ω),

for each pair of objects (M±, g±, f±) in hBordG∇
n−1(X,Y ). In particular,

applying this to (M±, g±, f±) = ∅, we get

cw(ω) : ΩGn (X,Y )→ R, [W, gW , fW ] 7→
∫

W
cwgW ((fW )∗ω).(4.21)

The map Rham(ω) 7→ cw(ω) gives the isomorphismHn(X,Y ;N•
G) ≃ Hom(ΩGn (X,Y ),R).

Definition 4.22 ((ÎΩGdR)
∗ and (IΩGdR)

∗). Let (X,Y ) be a pair of manifolds
and n be a nonnegative integer.

(1) Define (ÎΩGdR)
n(X,Y ) to be an abelian group consisting of pairs

(ω, h), such that
(a) ω is a closed n-form ω ∈ Ωnclo(X,Y ;N•

G).

(b) h is a group homomorphism h : CG∇
n−1(X,Y )→ R/Z.

(c) ω and h satisfy the following compatibility condition. Assume
that we are given two objects (M−, g−, f−) and (M+, g+, f+) in

hBordG∇
n−1(X,Y ) and a morphism [W, gW , fW ] from the former

to the latter. Then we have

h([M+, g+, f+])− h([M−, g−, f−]) = cw(ω)([W, gW , fW ]) (mod Z),
(4.23)

where the right hand side is defined in (4.20).

Abelian group structure on (ÎΩGdR)
n(X,Y ) is defined in the obvious

way.
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(2) We define a homomorphsim of abelian groups,

a : Ωn−1(X,Y ;N•
G)/Im(d)→ (ÎΩGdR)

n(X,Y )(4.24)

α 7→ (dα, cw(α)).

Here the homomorphism cw(α) : CG∇
n−1(X,Y ) → R/Z is defined by

(see Remark 4.16)

cw(α)([M, g, f ]) :=

∫

M
cwg(f

∗α) (mod Z).(4.25)

We set

(IΩGdR)
n(X,Y ) := (ÎΩGdR)

n(X,Y )/Im(a).

For negative integers n, we set (ÎΩGdR)
n(X,Y ) := 0 and (IΩGdR)

n(X,Y ) := 0.
For a smooth map ϕ ∈ C∞((X,Y ), (X ′, Y ′)) between two pairs of man-

ifolds, by the pullback we get the homomorphisms ϕ∗ : (ÎΩGdR)
n(X ′, Y ′) →

(ÎΩGdR)
n(X,Y ) and ϕ∗ : (IΩGdR)

n(X ′, Y ′) → (IΩGdR)
n(X,Y ). Thus we get

contravariant functors,

(ÎΩGdR)
∗, (IΩGdR)

∗ : MfdPairop → AbZ.

In the case where Gd = 1 for all d, i.e., the case of the stably framed bor-
dism theory Ωfr, the corresponding Madsen-Tillmann spectrum is the sphere

spectrum and (IΩfr)∗ = IZ∗. So in this case, we also denote (ÎZdR)
∗ :=

(ÎΩfr
dR)

∗ and (IZdR)
∗ := (IΩfr

dR)
∗.

We sometimes say that “evaluate (ω, h) on [M, g, f ]” to just mean getting
the value h([M, g, f ]).

The functor (ÎΩGdR)
∗ is equipped with the following structure maps. In

Theorem 4.56, we will see that the functors R, I and a makes (ÎΩGdR)
∗ into

a differential extension of
(
(IΩG)∗, ch′

)
where ch′ is defined in (4.5).

Definition 4.26 (Structure maps for (ÎΩGdR)
∗ and (IΩGdR)

∗). We define the
following maps natural in (X,Y ). The well-definedness is easy by Definition
4.22.

• We denote the quotient map by

I : (ÎΩGdR)
∗(X,Y )→ (IΩGdR)

∗(X,Y ).

• We define

R : (ÎΩGdR)
∗(X,Y )→ Ω∗

clo(X,Y ;N•
G), (ω, h) 7→ ω.

• We define

ch′ : (IΩGdR)
∗(X,Y )→ Hn(X,Y ;N•

G)
(
≃ Hom(ΩG∗ (X,Y ),R)

)
, I((ω, h)) 7→ Rham(ω) (7→ cw(ω)) .

• We define

p : Hom(ΩG∗−1(X,Y ),R/Z)→ (IΩGdR)
∗(X,Y ), h 7→ I((0, h)),

where we regard h ∈ Hom(ΩGn−1(X,Y ),R/Z) as a group homomor-

phism h : CG∇
n−1(X,Y )→ R/Z.
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In the physical interpretation of the group (ÎΩGdR)
n(X) explained in Sub-

section 1.2, an invertible (n − 1)-dimensional QFT on manifolds equipped
with differential stable tangential G-structures and maps to X gives an ele-

ment (ω, h) ∈ (ÎΩGdR)
n(X). In this picture, the value exp(2π

√
−1h([M, g, f ]))

corresponds to the value of partition function applied to [M, g, f ] ∈ CG∇
n−1(X).

Now we make some easy observations on these models. An important
consequence of the compatibility condition of ω and h in Definition 4.22 is
the following integrality condition.

Lemma 4.27 (The integrality condition). We have

Im(ch′) ⊂ Hom(ΩG∗ (X,Y ),Z),(4.28)

i.e., any element (ω, h) ∈ (ÎΩGdR)
∗(X,Y ) induces a Z-valued homomorphism

cw(ω) : ΩG∗ (X,Y )→ Z.

Remark 4.29. The inclusion (4.28) is actually an equality by Proposition
4.30.

Proof. This follows from the condition (c) in Definition 4.22 (1) applied to
M = ∅. □

Now we show that IΩGdR fits into the same exact sequence as in (2.9),
which is an important property of the Anderson dual.

Proposition 4.30.
For any pair of manifolds (X,Y ) and integer n, the following sequence is
exact.

Hom(ΩGn−1(X,Y ),R)→ Hom(ΩGn−1(X,Y ),R/Z) p−→ (IΩGdR)
n(X,Y )(4.31)

ch′−−→ Hom(ΩGn (X,Y ),R)→ Hom(ΩGn (X,Y ),R/Z).

To prove Proposition 4.30, we need the following lemma.

Lemma 4.32. Let (X,Y ) be a pair of manifolds and n be a nonnegative
integer. Let ω ∈ Ωnclo(X,Y ;N•

G) be a closed form such that the associated

homomorphism cw(ω) in (4.21) is Z-valued, cw(ω) : ΩGn (X,Y )→ Z.
Let (M−, g−, f−) and (M+, g+, f+) be two objects in hBordG∇

n−1(X,Y ).
Given any two morphisms [W, gW , fW ], [W ′, gW ′ , fW ′ ] : (M−, g−, f−)→ (M+, g+, f+),
we have

cw(ω)([W, gW , fW ]) = cw(ω)([W ′, gW ′ , fW ′ ]) (mod Z).(4.33)

Proof of Lemma 4.32. By Corollary 3.13 (also see the remarks following it),
we can take the inverse [W ′, gW ′ , fW ′ ]−1 of the morphism. We have

cw(ω)([W ′, gW ′ , fW ′ ]) + cw(ω)([W ′, gW ′ , fW ′ ]−1)

= cw(ω)
(
[W ′, gW ′ , fW ′ ] ◦ [W ′, gW ′ , fW ′ ]−1

)

= cw(ω)
(
id(M+,g+,f+)

)

= 0,
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by the obvious additivity of cw(ω) under composition of morphisms. We
also have

cw(ω)([W, gW , fW ]) + cw(ω)([W ′, gW ′ , fW ′ ]−1)

= cw(ω)
(
[W, gW , fW ] ◦ [W ′, gW ′ , fW ′ ]−1

)
∈ Z,

by the integrality assumption of ω. Combining these, we get Lemma 4.32.
□

Proof of Proposition 4.30. The composition at Hom(ΩGn (X,Y ),R) is zero by
Lemma 4.27. The other compositions are obviously zero.

First we show the exactness at Hom(ΩGn−1(X,Y ),R/Z). Suppose that

h ∈ Hom(ΩGn−1(X,Y ),R/Z) satisfies I((0, h)) = 0. Then there exists α ∈
Ωn−1
clo (X,Y ;N•

G)/Im(d) with h = cw(α). Since the homomorphism cw(α)
lifts to an R-valued homomorphism defined by the same formula as (4.25),
we see that h is in the image from Hom(ΩGn−1(X,Y ),R).

Next we show the exactness at (IΩGdR)
n(X,Y ). Suppose that I((ω, h)) ∈

(IΩGdR)
n(X,Y ) satisfies Rham(ω) = 0. There exists α ∈ Ωn−1(X,Y ;N•

G)
such that ω = dα. Thus we have I((ω, h)) = I((0, h− cw(α))). This implies
p (h− cw(α)) = I((ω, h)).

Finally we show the exactness at Hom(ΩGn (X,Y ),R). It is equivalent to
the claim that ch′ : (IΩGdR)

n(X,Y )→ Hom(ΩGn (X,Y ),Z) is surjective. Take
any element in Hom(ΩGn (X,Y ),Z) ⊂ Hom(ΩGn (X,Y ),R) ≃ Hn(X,Y ;N•

G)
and take a representative ω ∈ Ωnclo(X,Y ;N•

G). We would like to find a group

homomorphism h : CG∇
n−1(X,Y )→ R/Z which satisfies the compatibility con-

dition in Definition 4.22 (1) (c) with ω.
The compatibility condition with ω already determines the value of h on

the kernel of the forgetful map CG∇
n−1(X,Y )→ ΩGn−1(X,Y ). Namely, given a

differential smooth stable tangential G-cycle (M, g, f) over (X,Y ) of dimen-
sion (n − 1) which is null-bordant, take any morphism [W, gW , fW ] : ∅ →
(M, g, f) in hBordG∇

n−1(X,Y ) and set

h([M, g, f ]) := cw(ω)([W, gW , fW ]) (mod Z).(4.34)

The right hand side does not depend on the choice of [W, gW , fW ] by Lemma
4.32. The fact that the formula (4.34) induces a group homomorphism h on

the kernel of the forgetful map CG∇
n−1(X,Y ) → ΩGn−1(X,Y ) can be checked

easily. Since R/Z is an injective group, there exists a group homomorphism

h : CG∇
n−1(X,Y )→ R/Z extending it, so we get the result. □

In Subsection 4.2 we show that IΩGdR is a model for the Andeson dual
to the G-bordism theory. The following result, combined with this result,

implies that the quadruple ((ÎΩGdR)
∗, R, I, a) is the differential extension of

the pair
(
(IΩG)∗, ch′

)
with ch′ in (4.5).

Proposition 4.35. (1) We have R ◦ a = d.
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(2) For any pair of manifolds (X,Y ), the following diagram commutes.

(ÎΩGdR)
∗(X,Y )

R //

I
��

Ω∗
clo(X,Y ;N•

G)

Rham

��
(IΩGdR)

∗(X,Y )
ch′ // H∗(X,Y ;N•

G)

.

(3) For any pair of manifolds (X,Y ), the following sequence is exact.

(IΩGdR)
∗−1(X,Y )

ch′−−→ Ω∗−1(X,Y ;N•
G)/Im(d)

a−→ (ÎΩGdR)
∗(X,Y )

I−→ (IΩGdR)
∗(X,Y )→ 0.

(4.36)

Proof. (1) and (2) are obvious. For (3), the exactness at Ω∗−1(X,Y ;N•
G)/Im(d)

easily follows from the exactness of (4.31) at Hom(ΩGn (X,Y ),R). The re-
maining parts are exact by definition. □

Our differential model (ÎΩGdR)
∗ also has an S1-integration. As shown in

Theorem 4.56, it makes our model a differential extension with S1-integration
in the sense of [BS12, Definition 2.12] (Definition 2.18). Actually, as we will
see in Remark 6.17, the S1-integration map is a special case of the differential
pushforwards which we introduce in Section 6.

In order to define the S1-integration map, we need some preparation.
Let M be an n-dimensional ⟨k⟩-manifold and g be a differential stable tan-
gential G-structure on M represented by g̃ = (d, P,∇, ψ) with d ≥ n + 2.
For the 2-dimensional disk D2 = {(x, y) ∈ R2 |x2 + y2 ≤ 1}, let gD2 be
the differential stable tangential G-structure on D2 × M represented by
g̃D2 := (d,pr∗MP,pr

∗
M∇, pr∗Mψ), where we identify Rd−n−2 ⊕ T (D2 ×M) ≃

pr∗M (Rd−n−2 ⊕ R2 ⊕ TM) = pr∗M (Rd−n ⊕ TM). We can take the obvious
collar structure near the boundary ∂D2 ×M which is induced by the polar
coordinates (x, y) = (r cos θ, r sin θ). Then we get an isomorphism

ψS1 : pr∗MP ×ρd Rd ≃ Rd−n−1 ⊕ T (S1 ×M)(4.37)

such that (D2×M, gD2 , f ◦prM ) is a bordism from ∅ to (S1×M, gS1 , f ◦prM )
for any f : M → X, where gS1 is represented by g̃S1 := (d,pr∗MP,pr

∗
M∇, ψS1).

Definition 4.38 (The bounding differential stable tangential structure).
Let M be an n-dimensional manifold and g be a differential stable tan-
gential G-structure on M represented by g̃ = (d, P,∇, ψ) with d ≥ n + 2.
The bounding differential stable tangential G-structure gS1 on S1 × M is
represented by

g̃S1 := (d,pr∗MP,pr
∗
M∇, ψS1),

where ψS1 is defined in (4.37).

Definition 4.39 (The S1-integration map for (ÎΩGdR)
∗). Let n be a non-

negative integer. We define the following map natural in (X,Y ),
∫

: (ÎΩGdR)
n+1(S1 × (X,Y ))→ (ÎΩGdR)

n(X,Y ),

by mapping (ω, h) to (
∫
ω,

∫
h), where (see Remark 4.42)
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•
∫
ω is the image of ω under the S1-integration of differential forms

(2.16).

• We define the homomorphism
∫
h : CG∇

n−1(X,Y )→ R/Z by
(∫

h

)
([M, g, f ]) := −h([S1 ×M, gS1 , idS1 × f ]).(4.40)

Here gS1 is given by Definition 4.38.

The natural transformation
∫
induces a natural transformation on the topo-

logical level, also denoted by
∫

: (IΩGdR)
n+1(S1 ×−)→ (IΩGdR)

n(−).(4.41)

We call them the S1-integration map for (ÎΩGdR)
∗ and (IΩGdR)

∗, respectively.

Remark 4.42. The minus sign in (4.40) is due to the fact that the assign-
ment g 7→ gS1 does not preserve the bordism relation. Rather, we need an
additional automorphism on Rd−n−1⊕T (S1×M) for objects which reverses
the orientation. Also we have

cwgW

(∫
ω

)
=

∫
cw(gW )S1

(ω).(4.43)

Using these, the compatibility of the pair (
∫
ω,

∫
h) can be checked easily.

4.1.2. The models in terms of equivalent Picard subgroupoids of hBordG∇
− (−).

In the definition of the model IΩGdR so far, we have used the Picard groupoid

hBordG∇
− (−). However, in some cases the partition function h is naturally

defined only for objects of a Picard subgroupoid of it, and it has enough
information to define an element in IΩGdR.

Let D ⊂ hBordG∇
n−1(X,Y ) be a Picard subcategory such that the inclusion

is an equivalence. We define CD ⊂ CG∇
n−1(X,Y ) to be the subgroup generated

by the isomorphism classes of objects in D. Then, consider the following
group.

Definition 4.44 (( ̂IΩGdR,D)
n(X,Y ) and (IΩGdR,D)

n(X,Y )). In the above set-

tings, we define ( ̂IΩGdR,D)
n(X,Y ) and (IΩGdR,D)

n(X,Y ) to be the abelian

groups defined by replacing hBordG∇
n−1(X,Y ) with D and CG∇

n−1(X,Y ) with
CD in Definition 4.22.

Thus, an element in ( ̂IΩGdR,D)
n(X,Y ) is a pair (ω, hD) where ω ∈ Ωnclo(X,Y ;N•

G)

as before, but the domain of hD is now smaller, hD : CD → R/Z. We show
that the resulting groups are isomorphic.

Proposition 4.45. The obvious forgetful maps by the restriction of h,

fgt : (ÎΩGdR)
n(X,Y )→ ( ̂IΩGdR,D)

n(X,Y )(4.46)

fgt : (IΩGdR)
n(X,Y )→ (IΩGdR,D)

n(X,Y )(4.47)

are isomorphisms.



32

Proof. We can construct the inverse of (4.46) easily as follows. Given an ele-

ment (ω, hD) ∈ ( ̂IΩGdR,D)
n(X,Y ), we need to extend hD to h : CG∇

n−1(X,Y )→
R/Z. SinceD ↪→ hBordG∇

n−1(X,Y ) is an equivalence, any object in hBordG∇
n−1(X,Y )

is bordant to an object in D. By the compatibility condition in Definition
4.22 (1) (c), we are forced to define the value of h using such a bordism.

The well-definedness follows from the fact that D ↪→ hBordG∇
n−1(X,Y ) is full,

and the compatibility of (ω, hD). It is obvious that this assignment gives
the inverse of (4.46). The result for (4.47) also follows from this. □

A typical class of examples of such situations is the following. In the
context of unitary QFT’s in physics, we are usually interested in G with the
following properties. First we require that the image of ρd contains at least
SO(d,R),

SO(d,R) ⊂ ρd(Gd).(4.48)

Next we require that the following commutative diagram is a pullback dia-
gram,

Gd
ρd //

sd

��

O(d,R)

��
Gd+1

ρd+1 // O(d+ 1,R)

.(4.49)

In Example 2.10, (2), (3) and (4) satisfy these assumtions, but (1) does not.
For G satisfying these properties, we define

Definition 4.50. Let M be an n-dimensional manifold. A physical tangen-
tial G-structure on M is a triple gph = (P,∇, ψ), where

• The quadruple (n, P,∇, ψ) is a representative of differential stable
G-structure (Definition 3.1) for TM . In particular, there is no sta-
bilization of TM .
• We have a Riemannian metric on TM induced from the standard
metric on P×ρdRdimM by the isomorphism ψ : P×ρdRdimM ≃ TM .

The connection induced on P ×ρd RdimM ≃ TM from ∇ coincides
with the Levi-Civita connection of the Riemannian metric.

A physical tangential G-structure can be regarded as a differential stable

tangential G-structure in the obvious way. Then, we define hBord
Gph

n−1(X,Y )

to be the full subcategory of hBordG∇
n−1(X,Y ) spanned by the objects with

physical tangential G-structures. It is a standard fact that the inclusion is
an equivalence, by the requirements (4.48) and (4.49). We remark that any

morphism in hBord
Gph

n−1(X,Y ) can be represented by a bordism with physical
tangential G-structure by the same reason.

We often encounter such situations. For example in [FH21], they require
the conditions (4.48) and (4.49) in the definition of “symmetry types”. Also
see Examples 4.67 and 4.69 below. Since they are so typical, we use the

notations (ÎΩGph)
∗ and (IΩGph)

∗ for the groups in Definition 4.44 in the case

D = hBord
Gph

− (−).
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We also encounter another type of D in Section 5. There, we use Pi-
rard subgroupoids spanned by objects (M, g, f) such that f satisfies certain
transversality conditions.

4.2. The proof of the isomorphism (IΩGdR)
∗ ≃ (IΩG)∗. In this subsec-

tion we prove the main result of this section, Theorem 4.56.
First we relate our models with functors from the bordism Picard cat-

egories. Recall that, as explained in Subsection 2.1, a homomorphism

∂ : A → B between abelian groups associates a Picard groupoid (A
∂−→ B).

Given an element (ω, h) ∈ (ÎΩGdR)
n(X,Y ), we get the associated functor of

Picard groupoids,

F(ω,h) : hBord
G∇
n−1(X,Y )→ (R→ R/Z)(4.51)

by F(ω,h)(M, g, f) := h([M, g, f ]) on objects and F(ω,h)([W, gW , fW ]) :=
cw(ω)([W, gW , fW ]) on morphisms. Moreover, given two elements (ω, h) and
(ω′, h′), and an element α ∈ Ωn−1(X,Y ;N•

G)/Im(d) so that (ω′, h′)−(ω, h) =
a(α), we get the associated natural transformation,

Fα : F(ω,h) ⇒ F(ω′,h′),(4.52)

by Fα(M, g, f) := cw(α)(M, g, f). Summarizing, we get the following.

Lemma 4.53. The assignment (4.51) and (4.52) gives a symmetric monoidal
functor

F(X,Y ) :
(
Ωn−1(X,Y ;N•

G)/Im(d)
a−→ (ÎΩGdR)

n(X,Y )
)
→ FunPic

(
hBordG∇

n−1(X,Y ), (R→ R/Z)
)(4.54)

which is natural in (X,Y ). Here FunPic is regarded as a symmetric monoidal
category. In particular, passing to the isomorphism classes of objects, we get
the following natural transformation of functors MfdPairop → Ab,

F : (IΩGdR)
n(−)→ π0FunPic

(
hBordG∇

n−1(−), (R→ R/Z)
)
.(4.55)

Now we show the main result of this section.

Theorem 4.56. There is a natural isomorphism of the functors MfdPairop →
AbZ,

F : IΩGdR ≃ IΩG,
which fits into the following commutative diagram.

0 // Ext(ΩGn−1(−),Z)
p // (IΩGdR)

n ch′ //

≃ F
��

Hom(ΩGn (−),Z) // 0

0 // Ext(ΩGn−1(−),Z) // (IΩG)n // Hom(ΩGn (−),Z) // 0

(4.57)

Moreover, the quintuple (ÎΩGdR, R, I, a,
∫
) in Definitions 4.26 and 4.39 is a

differential extension of
(
(IΩG)∗, ch′

)
with integration, where ch′ is defined

in (4.5). In particular, if ΩGn (pt) is finitely generated for all n, it gives a
differential extension with integration, with respect to the Chern-Dold homo-
morphism ch: (IΩG)∗ → H∗(−;V •

IΩG).
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Proof. With Lemma 4.53 in hand, the proof is essentially the same as a part
of the proof of [HS05, Proposition 5.24]. By Fact 2.6, there is an isomorphism

(IΩG)n(X,Y ) ≃ π0FunPic(π≤1(L((X/Y ) ∧MTG)1−n), (R→ R/Z))
(4.58)

natural in (X,Y ). Combining the isomorphism (4.58) and Lemma 3.10 with
the transformation (4.55), we get the natural transformation F : IΩGdR ≃
IΩG. Moreover, by construction it makes the diagram (4.57) commutative.
Evaluating on each (X,Y ), the bottom row of (4.57) is exact by (2.9), and
the top row is also exact by Proposition 4.30. By the five lemma, we see
that F gives the desired natural isomorphism.

For the remaining statement, the fact that (ÎΩGdR, R, I, a) is a differential
extension follows from Proposition 4.35. For the S1-integration

∫
, as we

will see in Remark 6.17,
∫

is a special case of the differential pushforwards
in Section 6. The statement on the S1-integration follows by Theorem 6.12.
But we also remark that it is easy to give a direct proof in this case, using the
fact that the bounding stable fr-structure gS1 on S1 = S1× pt in Definition
4.38 defines the element in Ωfr

1 (S
1) which maps to the suspension of the unit

in Ωfr
1 (S

1,pt) and maps to the trivial element in Ωfr
1 (pt). The last statement

follows from Proposition 4.9. This completes the proof. □

4.3. Examples of elements in ( ̂IΩGdR)∗. In this subsection, we give ex-

amples of elements in (ÎΩGdR)
∗(−) along with the corresponding invertible

QFT’s. In this subsection we only list examples. In the subsequent paper
[Yam21] we will give topological characterization of some of the examples.

Example 4.59 (The holonomy theory (1)). In this example we consider G =
SO. Fix a manifold X and a hermitian line bundle with unitary connection
(L,∇) over X. Then we get an element

(c1(∇),Hol∇) ∈ (ÎΩSO
dR)

2(X).

Here,

• c1(∇) =
√−1
2π F∇ ∈ Ω2

clo(X) is the first Chern form of ∇. Identifying
R with the degree-zero component of N•

SO, we regard Ω2
clo(X) ⊂

Ω2
clo(X;N•

SO).

• The homomorphism Hol∇ : CSO∇
1 (X) → R/Z is given by the ho-

lonomy along the closed curve in X. More precisely, an element

[M, g, f ] in CSO∇
1 (X) consists of a closed oriented one-dimensional

manifoldM with a map f ∈ C∞(M,X), together with additional in-
formation on metric and connection. Regarding it just as an oriented
closed curve in X, we define Hol∇([M, g, f ]) to be the holonomy of
(L,∇) along the curve, by identifying R/Z ≃ U(1).

Example 4.60 (The holonomy theory (2)). In this example we consider G =
SO×U(1). Here U(1) is the internal symmetry group explained in Example
2.10 (4). We have an element

(1⊗ c1,Hol) ∈ (
̂

IΩ
SO×U(1)
dR )2(pt).



35

Here,

• We haveN•
SO×U(1) =

(
lim←−d(Sym(so(d,R))∗)SO(d;R) ⊗R (Sym(u(1))∗)U(1)

)•
.

The first Chern polynomial c1 ∈
(
(Sym(u(1))∗)U(1)

)2
gives the ele-

ment 1⊗ c1 ∈ Ω2
clo(pt;N

•
SO×U(1)) = N2

SO×U(1).

• The homomorphism Hol : CSO×U(1)∇
1 (pt)→ R/Z is given by the ho-

lonomy of the internal U(1)-connection. More precisely, an element

[M, g] in CSO×U(1)∇
1 (pt) consists of a closed oriented one-dimensional

manifold M with a principal U(1)-bundle with connection, together
with other data. We define Hol([M, g]) to be the holonomy of the
U(1)-connection, by identifying R/Z ≃ U(1).

Example 4.61 (The classical Chern-Simons theory). Fix a compact Lie group
H and an element λ ∈ Hn(BH;Z). The corresponding classical Chern-
Simons theory ([Fre95], [Fre02]) is an invertible QFT on (n−1)-dimensional
manifolds equipped with orientations and principal H-bundle with connec-
tion. This generalizes Example 4.60, which corresponds to c1 ∈ H2(BU(1);Z).
Its partition functions are given by the Chern-Simons invariants of H-
connections. Here we recall its definition.

Let λR ∈ H∗(BH;R) be the R-reduction of the element λ. Consider the
category CH of triples (P,M,∇), where P → M is a smooth principal H-
bundle over a manifold and ∇ is a H-connection on P . We fix the following
data.

(1) An object (E ,B,∇E) which is (n + 1)-classifying, i.e., any object
(P,M,∇) in CH with dimM ≤ n admits a morphism to (E ,B,∇E),
and any such morphisms ϕ1 and ϕ2 are smoothly homotopic. By the
theorem of Narasimhan-Ramanan [NR61] such an object exists.

(2) A differential lift λ̂ ∈ Ĥn(B;Z) of the element λ ∈ Hn(B;Z) ≃
Hn(BH;Z) such that R(λ̂) = cw∇E (λR) ∈ Ωnclo(B). Here Ĥn(−;Z)
is the differential ordinary cohomology group, for example given by
the Cheeger-Simons model explained in Example 2.14.

The Chern-Simons invariants are defined using the pushforward in dif-

ferential ordinary cohomology ĤZ. In terms of the Cheeger-Simons model

ĤZCS in Example 2.14, the pushforward map (pM , o)∗ : ĤdimM+1(M ;Z)→
Ĥ1(pt;Z) ≃ R/Z for a closed oriented manifold (M,o) is given by the eval-
uation on the fundamental cycle.

Definition 4.62 (The Chern-Simons invariants). Let λ ∈ Hn(BH;Z) and fix
the data (1) and (2) above. LetM be an (n−1)-dimensional closed manifold
equipped with an orientation oM and a principal H-bundle with connection
(P,∇). Choose a morphism ϕ : (M,P,∇) → (E ,B,∇E) in CH . We define
the Chern-Simons invariant of (M,o, P,∇) by

hCS
λ̂
(M, o, P,∇) := (pM , o)∗ϕ∗λ̂ ∈ Ĥ1(pt;Z) ≃ R/Z.(4.63)

The value (4.63) does not depend on the choice of ϕ.

The classical Chern-Simons theory corresponds to the element

(1⊗ λR, hCS
λ̂
) ∈ ( ̂IΩSO×H

dR )n(pt).(4.64)
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Here 1⊗λR is as in Example 4.60, and hCS
λ̂
is regarded as a homomorphism

from CSO×H∇
n−1 (pt).

Now we analyze the dependence on the choice of a lift λ̂ of λ in (2). By the
axioms of differential cohomology (Definition 2.12), we see that two choices

λ̂1 and λ̂2 differs by an element in Hn−1(B;R) ≃ Hn−1(BH;R), i.e., there
exists an element α ∈ Hn−1(B;R) with

aCS(α) = λ̂1 − λ̂2.(4.65)

In particular, if n is even, the lift λ̂ is unique because Hodd(BH;R) = 0.
In general it is possible that the difference (4.65) is nonzero, and in such a
case the two elements (4.64) constructed from them are different. But they

define the same element in (IΩSO×H
dR )n(pt),

I(1⊗ λR, hCS
λ̂1
) = I(1⊗ λR, hCS

λ̂2
) ∈ (IΩSO×H

dR )n(pt).

This is because

(1⊗ λR, hCS
λ̂1
)− (1⊗ λR, hCS

λ̂2
) = a(1⊗ α).

Here the domain of a in (4.24) in this case is Ωn−1(pt;N•
SO×H)/Imd =

(H∗(BSO;R)⊗R H
∗(BH;R))n−1. Thus we see that, the deformation class

I(1⊗ λR, hCS
λ̂
) ∈ (IΩSO×H

dR )n(pt).(4.66)

is independent of the choice of the lift λ̂.

Example 4.67 (The theory of massive free complex fermions). In this ex-
ample we consider G = Spinc. Let k be a positive integer. Recall that we

have constructed a model (ÎΩGph)
∗ in Subsubsection 4.1.2 which is isomor-

phic to (ÎΩGdR)
∗ by Proposition 4.45. We are going to construct an element

in

(
̂
IΩSpinc

ph

)2k

.

Given a closed (2k−1)-dimensional manifoldM with a physical tangential
Spinc-structure g (Definition 4.50), we set

η(M, g) := η(DM ) =
η(DM ) + dimkerDM

2
∈ R.

where DM is the Spinc-Dirac operator onM with respect to g and η(DM ) ∈
R is its eta invariant. Note that we have used the assumption that the
connection in g is compatible with the Levi-Civita connection.

Recall that the Atiyah-Patodi-Singer index theorem ([APS76], [APS75a],
[APS75b]) says that, if (W, gW ) is a compact 2k-dimensional manifold with
boundary with a collar structure equipped with a geometric Spinc-structure
which is compatible with Levi-Civita connection, we have

IndAPS(DW ) =

∫

W
Todd(gW )− η(∂W, ∂gW ).(4.68)
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Here the left hand side of (4.68) is the Atiyah-Patodi-Singer index of the
Dirac operator on W , which is an integer. Thus, regarding η as a homomor-

phism η : CD(pt)→ R/Z with D = hBord
Spincph
2k−1 (pt), we get the element

((Todd)|2k, η) ∈
(

̂
IΩSpinc

ph

)2k

(pt) ≃
(
IΩSpinc

ph

)2k
(pt) ≃

(
IΩSpinc

dR

)2k
(pt).

This example can be generalized to include target spaces. Fix a manifold
X and a hermitian vector bundle with unitary connection (E, hE ,∇E) over
X. Then, using the reduced eta invariants η∇E for Dirac operators twisted
by the pullback of (E, hE ,∇E), we get the element

(
(Ch(∇E)⊗ Todd)|2k, η∇E

)
∈
(

̂
IΩSpinc

ph

)2k

(X) ≃
(

̂
IΩSpinc

dR

)2k

(X).

Its deformation class in
(
IΩSpinc

ph

)2k
(X) only depends on the class [E] ∈

K0(X).

Example 4.69 (The theory of massive free real fermions). Here we consider
the real version of Example 4.67. Now G = Spin. We consider the theory
on (8m + 3)-dimension with nonnegative integer m, the dimension where
the difference from Example 4.67 appears. On Spin manifolds, the Atiyah-
Patodi-Singer index theorem (4.68) becomes

IndAPS(DW ) =

∫

W
Â(gW )− η(∂W, ∂gW ).(4.70)

Moreover, if dimW ≡ 4 (mod 8), the APS index is an even integer. This
allows us to define the element
(
1

2
Â|8m+4,

1

2
η

)
∈
(
ÎΩSpin

ph

)8m+4

(pt) ≃
(
IΩSpin

ph

)8m+4
(pt) ≃

(
IΩSpin

dR

)8m+4
(pt).

4.4. The refinement of the Anderson self-duality in HZ. In this sub-
section, we relate our model IZdR with the ordinary cohomology theory. The
ordinary cohomology theory HZ is Anderson self-dual, with the self-duality
element γH ∈ [HZ, IZ], whose multiplication gives the isomorphism HZ ≃
IHZ. Using the obvious analogy of the Cheeger-Simons differential charac-

ter model ĤZCS (Example 2.14) and our differential model ÎZdR, we can

refine γH : HZ→ IZ to a transformation γ̂dR : Ĥ∗
CS(−;Z)→ (ÎZdR)

∗(−).
In order to define γ̂dR, we remark the following. Let (ω, k) ∈ Ĥn

CS(X,Y ;Z).
Then we get a group homomorphism also denoted by the same symbol k
(here fr∇ = fr in the obvious sense),

k : Cfrn−1(X,Y )→ R/Z

by, given a (differential) smooth stable tangential fr-cycle (M, g, f) of dimen-
sion (n− 1) over (X,Y ), choosing any representative tM ∈ Z∞,n−1(X,Y ;Z)
of the fundamental class and applying k to tM . This value does not depend
on the choice of tM because of the compatibility condition for (ω, k).
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Definition 4.71 (γ̂dR and γdR). For a pair of manifolds (X,Y ) and n ∈ Z,
we define a homomorphism

γ̂ndR : Ĥn
CS(X,Y ;Z)→ (ÎZdR)

n(X,Y )

by sending an element (ω, k) to (ω, k). The compatibility condition (Defini-
tion 4.22 (1) (c)) for the pair (ω, k) follows from the compatibility condition
(2.15) for the pair (ω, k).

We easily see that we have adR = γ̂ndR ◦ aCS, so it induces the homomor-
phism on the quotient,

γndR : Hn(X,Y ;Z)→ (IZdR)
n(X,Y ).

We also easily see that these homomorphisms are functorial, so gives natural

transformations γ̂dR : Ĥ∗
CS(−;Z) → IZ∗

dR and γdR : HZ∗ → IZ∗
dR between

functors MfdPairop → AbZ.

Proposition 4.72. Under the isomorphism IZdR ≃ IZ in Theorem 4.56,
the natural transformation γdR coincides with the self-duality map γH : HZ→
IZ.

To show Proposition 4.72, we need to describe the Anderson self-duality
homomorphism γH : HZ→ IZ in the model of IZ by Hopkins-Singer (Fact
2.6). We work in the category of CW-pairs. We use the topological variant

of the framed bordism Picard groupoid hBordfrn−1(X,Y )top, which is defined
for any CW-pair (X,Y ), by requiring the map to (X,Y ) continuous rather
than smooth in Definition 3.8. By the theorem of Pontryagin-Thom, we
have an equivalence

hBordfrn−1(X,Y )top ≃ π≤1((L(X/Y ))1−n).(4.73)

Lemma 4.74. Let (X,Y ) be a CW-pair. Choose a functor of Picard groupoids,

TX,Y : hBordfrn−1(X,Y )top →
(
Cn(X,Y ;Z)/Bn(X,Y ;Z) ∂−→ Zn−1(X,Y ;Z)

)
,

(4.75)

where C∗, Z∗ and B∗ denote the singular chains, cycles and boundaries, by
choosing fundamental cycles on objects and morphisms of hBordfrn−1(X,Y )top.

Given a singular cohomology class [c] ∈ Hn(X,Y ;Z), Take a representa-
tive by a singular n-cocycle c ∈ Zn(X,Y ;Z). Consider the functor of Picard
groupoids,

evc :
(
Cn(X,Y ;Z)/Bn(X,Y ;Z) ∂−→ Zn−1(X,Y ;Z)

)
→ (Z→ 0),(4.76)

defined by the evaluation of c on morphisms. Then the natural isomorphism
class of the composition of the functors evc◦TX,Y is independent of the choice
of TX,Y and the cocycle c representing [c], and defines a homomorphism

Hn(X,Y ;Z)→ π0FunPic

(
hBordfrn−1(X,Y )top, (Z→ 0)

)
≃ IZn(X,Y )

(4.77)

[c] 7→ [evc ◦ TX,Y ],
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where the last isomorphism use the Fact 2.6 and the equivalences (Z→ 0) ≃
(R→ R/Z) and (4.73). Moreover, the homomorphism (4.77) coincides with
the transformation given by the Anderson self-duality element,

γH : Hn(X,Y ;Z)→ IZn(X,Y ),

Proof. The first claim is easy, because both the natural isomorphism classes
of the functors TX,Y and evc are independent of the choices. We can easily
check that the homomorphism (4.77) is functorial and compatible with the
relative coboundary maps, thus defining a transformation HZ → IZ of
cohomology theories on CW-pairs.

Since we have [HZ, IZ] = IZ0(HZ) = Hom(π0(HZ),Z) = Z and we have
[HZ, IZ] = lim←−n[HZn, IZn] by the vanishing of phantoms lim←−n[HZn, IZn−1] =

0 ([Rud98, Chapter III, Theorem 4.21]), the transformation of cohomology
theories HZ → IZ on CW-pairs are classified by its value on pt. We can
easily check that the transformation given by (4.77) coincides with γH on
pt, thus we conclude that it coincides with γH as a transformation of coho-
mology theories. This finishes the proof. □

Now we prove Proposition 4.72.

Proof of Proposition 4.72. Here we use the model ĤZHS of the ordinary
differential cohomology theory in terms of differential cocycles [HS05]. An

element in Ĥn
HS(X,Y ;Z) is represented by a triple (c, hR, ω) ∈ Zn(X,Y ;Z)×

Cn−1(X,Y ;R) × Ωnclo(X,Y ) such that δhR = c − ω (as smooth singular R-
cochains). Such a triple is called a differential cocycle. The forgetful functor
I is given by

I : Ĥn
HS(X,Y ;Z)→ Hn(X,Y ;Z), ([c, hR, ω]) 7→ [c].

The models ĤZHS and ĤZCS are isomorphic with the isomorphism given
by

Ĥn
HS(X,Y ;Z) ≃ Ĥn

CS(X,Y ;Z), [c, hR, ω] 7→ (ω, h),(4.78)

where we set h := hR (mod Z) : Zn−1(X,Y ;Z) → R/Z, and its restriction
to Z∞,n−1(X,Y ;Z) is denoted by the same symbol.

Assume that we are given an element (ω, h) ∈ Ĥn
CS(X,Y ;Z). Take a

differential cocycle (c, hR, ω) which maps to (ω, h) under the map (4.78).
Then consider the diagram of functors,

(
C∞,n(X,Y ;Z)/B∞,n(X,Y ;Z) ∂−→ Z∞,n−1(X,Y ;Z)

)
evc //

ev(ω,h) ++

(Z→ 0)

≃
��

(R→ R/Z)

(4.79)

Here the top arrow is the restriction of (4.76) to smooth singular chains,
and the rightdown arrow is given by the evaluation of h on objects and ω
on morphisms. We can easily check that the two compositions of functors
in (4.79) are naturally isomorphic, with natural transformation given by
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hR. Moreover, by definition of γ̂dR we see that the functor (4.51) Fγ̂dR(ω,h)

associated to the element γ̂dR(ω, h) ∈ ÎZ
n

dR(X,Y ) satisfies

Fγ̂dR(ω,h) = ev(ω,h) ◦ T∞,X,Y ,

where T∞,X,Y denotes an obvious smooth singular version of the fuctor
(4.75). As explained in Subsection 4.2, the isomorphism IZdR ≃ IZ sends
the class γdR([ω, h]) to the class of the associated functor Fγ̂dR(ω,h). By the
natural isomorphism between two compositions in (4.79) and Lemma 4.74,

together with the equivalence (C∞,n(X,Y ;Z)/B∞,n(X,Y ;Z) ∂−→ Z∞,n−1(X,Y ;Z)) ≃
(Cn(X,Y ;Z)/Bn(X,Y ;Z) ∂−→ Zn−1(X,Y ;Z)), we see that the class of the
functor Fγ̂dR(ω,h) coincides with the class γH([c]). This completes the proof.

□
4.5. The normal case. So far we have focused on the tangential G-bordism
theories and its Anderson duals. However, by a straightforward modifica-
tion, we can construct the corresponding models for the Anderson duals

(IΩG
⊥
)∗ to the normal G-bordism theories ΩG

⊥
corresponding to the Thom

spectrum MG. In this subsection we outline the construction.

Definition 4.80 (Differential stable normal G-structures on vector bun-
dles). Let V be a real vector bundle of rank n over a manifold M .

(1) A representative of differential stable normal G-structure on V is a
quadruple g̃⊥ = (d, P,∇, ψ), where d ≥ n is an integer, (P,∇) is
a principal Gd−n-bundle with connection over M and ψ : (P ×ρd−n

Rd−n)⊕ V ≃ Rd is an isomorphism of vector bundles over M .
(2), (3) We define the stabilization of such g̃⊥ in the same way as Definition

3.1, and a differential stable normal G-structure g⊥ on V is defined
to be a class of representatives under the stabilization relation.

(4) We define the homotopy relation between two such g⊥’s also in the
same way.

Definition 4.81 (Differential stable normalG-structures). LetM be a man-
ifold. A differential stable normal G-structure is a differential stable normal
G-structure on the tangent bundle TM .

Then, the various objects introduced in Section 3 can be modified to the
normal case easily. We get the notion of differential stable normal G-cycles

(M, g⊥, f), the abelian groups CG
⊥
∇

n (X,Y ), the bordism relations and the

Picard groupoids hBord
G⊥

∇
n (X,Y ).

First note that we have

N•
G⊥ := H∗(MG;R) = lim←−

d

H∗(Gd;RGd
) = lim←−

d

(Sym•/2g∗d ⊗R RGd
)Gd .

The proof is the same as that of Lemma 4.1, where now the Madsen-Tillmann
spectrum MTG is replaced by the Thom spectrum MG. Note that we have
N•
G = N•

G⊥ . This is because the orientation bundles of a vector bundle
and its normal bundle are canonically identified. We use the transformation
analogous to (4.5),

ch′ : (IΩG
⊥
)∗ → H∗(−;N•

G⊥) ≃ Hom(ΩG
⊥

∗ (−),R).(4.82)
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The variant of the Chern-Weil construction in Definition 4.11 also applies
to the normal settings. Given a differential stable normal G-structure g⊥

on a vector bundle V → W , by the same procedure to the tangential case
in Definition 4.11 we get a homomorphism

cwg⊥ : Ω∗ (W ;N•
G⊥

)
→ Ω∗(W ; Ori(V )).(4.83)

Applied to V = TW , (4.83) induces the homomorphisms corresponding to
(4.20) and (4.21).

Definition 4.84 ((ÎΩG
⊥

dR )∗ and (IΩG
⊥

dR )∗). Let (X,Y ) be a pair of manifolds
and n be a nonnegative integer.

(1) Define (ÎΩG
⊥

dR )n(X,Y ) to be an abelian group consisting of pairs
(ω, h), such that
(a) ω is a closed n-form ω ∈ Ωnclo

(
X,Y ;N•

G⊥
)
.

(b) h is a group homomorphism h : CG
⊥
∇

n−1(X,Y )→ R/Z.
(c) ω and h satisfy the compatibility condition analogous to Defini-

tion 4.22 (1) (c) with respect to morphisms in hBord
G⊥

∇
n−1(X,Y ).

(2) We define a homomorphsim of abelian groups,

a : Ωn−1
(
X,Y ;N•

G⊥
)
/Im(d)→ (ÎΩG

⊥
dR )n(X,Y )

α 7→ (dα, cw(α)).

We set

(IΩG
⊥

dR )n(X,Y ) := (ÎΩG
⊥

dR )n(X,Y )/Im(a).

For negative integer n we set (ÎΩG
⊥

dR )n(X,Y ) := 0 and (IΩG
⊥

dR )n(X,Y ) := 0.

The structure homomorphisms I, R, a and p, and the S1-integration map∫
, are also defined in the same way as Definitions 4.26 and 4.39. We can

check that the following sequence is exact,

Hom(ΩG
⊥

n−1(X,Y ),R)→ Hom(ΩG
⊥

n−1(X,Y ),R/Z) p−→ (IΩG
⊥

dR )n(X,Y )

ch′−−→ Hom(ΩG
⊥

n (X,Y ),R)→ Hom(ΩG
⊥

n (X,Y ),R/Z) (exact).

The normal version of Theorem 4.56, which says that the above IΩG
⊥

dR is

indeed a model for IΩG
⊥
, and that the quintuple (ÎΩG

⊥
dR , R, I, a,

∫
) is its

differential extension of
(
(IΩG

⊥
)∗, ch′

)
with S1-integration, can be shown

by the exactly same proof, replacing MTG with MG.

5. The multiplications by the bordism cohomology theories

Assume we are given three tangential structure groupsGi := {(Gi)d, (si)d, (ρi)d}d∈Z≥0

for i = 1, 2, 3, and a homomorphism

µ : G1 ×G2 → G3(5.1)

of tangential structure groups, inducing a morphism between the Madsen-
Tillmann spectra,

MTG1 ∧MTG2 →MTG3.(5.2)
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Here a homomorphism (5.1) is defined in a fairly obvious way, whose precise
definition is given in Remark 5.8 below. It consists of group homomorphisms
(G1)d × (G2)d′ → (G3)d+d′ , which are compatible with the structure homo-
morphisms (si)d, (ρi)d’s and the multiplicative structure on O. There are
many interesting examples as follows.

Example 5.3. (1) An important class of examples arises from multiplica-
tive G, whereMTG is a ring spectrum. In this case we set G = G1 =
G2 = G3. For example O, SO, Spin and fr are equipped with the
natural multiplicative structure.

(2) The case G1 = G3 = Pin+ and G2 = Spin.
(3) For any G, we have a homomorphism G × fr → G. Here recall

that fr = {1}d∈Z. The group homomorphism Gd × frd′ = Gd ×
1 → Gd+d′ is the composition sd+d′−1 ◦ · · · ◦ sd of the stabilization
homomorphisms in G. Actually, as we will see in Remark 6.17,
the differential pushforwards we introduce in Section 6 in this case

recovers the S1-integration map
∫
of ÎΩGdR (Definition 4.39).

In general, if we have a morphism of spectra

t : E1 ∧ E2 → E3,

we get the following morphism on the Anderson duals.

IE3 ∧ E2

It∧idE2−−−−−→ I(E1 ∧ E2) ∧ E2

evE2−−−→ IE1.(5.4)

Here It is the Anderson dual to t, and the second arrow is the evaluation
on E2 (recall I(E1 ∧ E2) = [E1 ∧ E2, IZ]). Applying (5.4) to (5.2), we get
the morphism

IMTG3 ∧MTG2 → IMTG1,(5.5)

inducing the following homomorphism for each pair of integers (n, r),

(IΩG3)n(X,Y )⊗ (ΩG2)−r(X)→ (IΩG1)n−r(X,Y ),(5.6)

which is natural in (X,Y ). The purpose of this section is to get its differential
refinement,

(ÎΩG3
dR)

n(X,Y )⊗ (Ω̂G2)−r(X)
·−→ (ÎΩG1

dR)
n−r(X,Y ).(5.7)

Here, for (Ω̂G2)−r(X) we use a cycle-model constructed by Bunke and Schick
Schröder and Wiethaup [BSSW09], which we explain in Subsection 5.1.

Before proceeding, we explain the rough idea of the construction. A

particularly nice class of elements in (Ω̂G2)−r(X) are represented by cycles
of the form (p : N → X, gp), where p is a fiber bundle whose fibers are closed
r-dimensional manifold and gp is a differential stable G2-structure on the
relative tangent bundle. The multiplication (5.7) by such an element is given

as follows. For an object [M, gM , f ] ∈ C(G1)∇
n−r−1(X,Y ), we can define an object

µ ([M, gM , f ]×X [p : N → X, gp]) ∈ C(G3)∇
n−1 (X,Y ) by the fiber product over

X (the pullback of the bundle) in a fairly obvious way. Then, for an element

(ω, h) ∈ (ÎΩG3
dR)

n(X,Y ), we assign an element in (ÎΩG1
dR)

n−r(X,Y ) whose

evaluation on [M, gM , f ] ∈ C(G1)∇
n−r−1(X,Y ) is given by the evaluation of h
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on this fiber product. As explained in Subsubsection 1.2.3, in a physical
interpretation, this process corresponds to compactification of QFT’s.

Remark 5.8. Here we give the definition of homomorphism µ : G1 × G2 →
G3 in (5.1). µ consists of group homomorphisms µd,d′ : (G1)d × (G2)d′ →
(G3)d+d′ for each (d, d′) with the following conditions.

(1) For any (d, d′), the following diagram commutes.

(G1)d × (G2)d′
µd,d′ //

(ρ1)d×(ρ2)d′
��

(G3)d+d′

(ρ3)d+d′
��

O(d,R)×O(d′,R) // O(d+ d′,R)

,(5.9)

where the bottom arrow is the diagonal map in O.
(2) For any (d, d′), the left diagram below commutes, and the right di-

agram commute up to confugation by an element of (G3)d+d′+1 in
the unit component.

(G1)d × (G2)d′
µd,d′ //

(s1)d×id
��

(G3)d+d′

(s3)d+d′
��

(G1)d+1 × (G2)d′
µd+1,d′// (G3)d+d′+1

(G1)d × (G2)d′
µd,d′ //

id×(s2)d′
��

(G3)d+d′

(s3)d+d′
��

(G1)d × (G2)d′+1

µd,d′+1// (G3)d+d′+1

(5.10)

Here, for Condition (2), we may as well assume only the homotopy-
commutativity also for the left diagram in order to produce the morphism
of Madsen-Tillmann spectra in (5.2). However, the strict-commutatibity is
satisfied in most of the examples of interest. (In contrast to this, for the
right diagram we can only expect the homotopy-commutatibity by the obvi-
ous reason. ) We choose the above formulation to simplify the construction
below.

5.1. A preliminary–A cycle-model for (Ω̂G)∗ following [BSSW09].
Bunke and Schick Schröder and Wiethaup [BSSW09] gave a model for a

differential extension of (Ω̂G⊥)∗ (normal G-bordism cohomology theory, rep-
resented byMG). They provide the detail for the case of complex bordisms,
but as they note, their construction directly generalizes to any G. Moreover,

their construction can be modified to give a model for (Ω̂G)∗ (tangential G-
bordisms). In this subsection we briefly explain it. For further details see
[BSSW09]. Remark that sometimes we use different definitions from those
for corresponding objects in [BSSW09] in order to make it compatible with
the conventions in the main body of this paper. The differences are not
essential.

Definition 5.11 (Stable relative tangent bundles). Let p : N → X be a
smooth map between manifolds with relative dimension r := dimN−dimX.
Let us choose (k, ϕ), where ϕ : Rk → p∗TX is a map of vector bundles over N
such that ϕ⊕dp : Rk⊕TxN → Tp(x)X is surjective for all x ∈ N . Given such
(k, ϕ), we define the associated stable relative tangent bundle for p associated
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to (k, ϕ) to be the following real vector bundle of rank (k + r) over N .

T (ϕ, p) := ker(ϕ⊕ dp : Rk ⊕ TN → p∗TX).

Using stable relative tangent bundles, we define the relative version of
differential stable tangential G-structures as follows.

Definition 5.12 (Differential stable relative tangential G-structures). Let
p : N → X be a smooth map between manifolds.

(1) A representative of differential stable relative tangential G-structure
on p consists of g̃p = (k, ϕ, P,∇, ψ), where (k, ϕ) is a choice as in
Definition 5.11, P is a principal Gk+r-bundle over N and ψ : P×Gk+r

Rk+r ≃ T (ϕ, p) is an isomorphism of vector bundles over N .
(2) For such a g̃p, we can define its stabilization g̃p(1) in the obvious

way.
(3) A differential stable relative tangential G-structure gp on p is a class

of such representatives under the relation g̃p ∼ g̃p(1).
In particular, if p : N → X is a submersion, we can take ϕ = 0: Rk →

p∗TX and we have T (0, p) = Rk ⊕ T (p), the stabilization of the relative
tangent bundle T (p) := ker dp. Thus a differential stable G-structure (Def-
inition 3.1) on T (p) can be regarded as a special case of differential stable
relative tangential G-structure on p. But note that the latter notion is more
general.

Recall that our manifolds are allowed to have corners. To define the
differential stable relative tangential G-cycles, we need to use the following
class of maps between manifolds with corners.

Definition 5.13 (Neat maps, [HS05, Appendix C]). A smooth map p : N →
X between manifolds is called neat if it preserves the depth of points, and
the map

dp : TxN/TxS
k(N)→ Tp(x)(X)/Tp(x)S

k(X)(5.14)

is an isomorphism for all points x ∈ N , where k := depth(x) = depth(p(x)).

For example, the map pX : X → pt is neat only if X has no boundary.
The map [0,∞) → [0,∞), x 7→ x2, is not neat. We collect necessary facts
on neat maps in Subsubsection 5.2.1 below. As we explain there, neatness
guarantees a nice theory on fiber products.

Definition 5.15 (Differential stable relative tangential G-cycles). Let X be
a manifold and r be an integer. A differential stable relative tangential G-
cycle of dimension r overX is a pair ĉ = (p : N → X, gp), where p is a proper
neat map with relative dimension r and gp is a differential stable relative
tangential G-structure on p. A representative of differential stable relative
tangential G-cycle of dimension r over X is a pair c̃ := (p : N → X, g̃p),
where g̃p is now a representative.

Definition 5.16 (Differential stable relative tangential G-bordism data).
Let X be a manifold and r be an integer. A Differential stable relative
tangential G-bordism data of dimension r is a differential relative stable

tangential G-cycle b̂ = (q : W → R×X, gq) of dimension r over R×X such
that q is transverse (Definition 5.28) to {0} × X and q−1((−∞, 0] × X) is
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compact. It defines a differential relative stable tangential G-cycle ∂b̂ :=(
q|q−1({0}×X), gq|q−1({0}×X)

)
over X by Proposition 5.29.

On the topological level, we have the Chern-Dold homomorphism

ch: (ΩG)−r(X)→ H−r(X;V •
ΩG).(5.17)

A differential relative stable tangential G-cycle ĉ over X represents a class
[ĉ] ∈ (ΩG)−r(X), so we get a class ch([ĉ]) ∈ H−r(X;V •

ΩG).
On the differential level, the homomorphism (5.17) is refined as follows.

Applying (5.17) to the identity element idMTG ∈ (ΩG)0(MTG), we have an
element ch(idMTG) ∈ H0(MTG;V •

ΩG). Given a differential relative stable
tangential G-cycle ĉ = (p : N → X, gp) over X, by the Chern-Weil construc-
tion in Remark 4.17 with coefficient V∗ = V ∗

ΩG , we get12

cwgp(ch(idMTG)) ∈ Ω0(N ; Ori(T (p))⊗R V
•
ΩG).(5.18)

Here we abuse the notation to write Ori(T (p)) := Ori(T (ϕ, p)) for any choice
of a representative of gp, since the orientation bundle for stable relative
tangent bundles do not depend on the choice of ϕ.

We would like to integrate it along the fiber of p : N → X. Note that un-
less p is a submersion, the resulting form on X is singular, so we need to deal
with differentiable currents Ω∗

−∞. Recall that in general the fiber integration
of differentiable current along the map p : N → X is the following.

p! : Ω
∗
−∞(N ; Ori(T (p)))→ Ω∗−r

−∞(X).(5.19)

Here we choose the sign of the integration (5.19) so that it is compatible
with the left Ω•(X)-module structure, i.e.,

η ∧ p!(ω) = p!(p
∗η ∧ ω)(5.20)

for any η ∈ Ω•(X) and Ω∗
−∞(N ; Ori(T (p))). Remark that it is different from

the sign convention on the S1-integration in (2.16) and (2.17). We set

T (ĉ) := p!(cwgp(ch(idMTG))) ∈ Ω−r
−∞(X;V •

ΩG).(5.21)

This current represents the class ch([ĉ]) under the isomorphism between the
de Rham and the currential cohomologies.

Definition 5.22 ((Ω̂G)∗-cycles). Let X be a manifold and r be an integer.

An (Ω̂G)−r-cycle over X is a pair (ĉ, α), where ĉ is an r-dimensional dif-
ferential relative stable tangential G-cycle over X and α ∈ Ω−r−1

−∞ (X;V •
ΩG)

such that

R(ĉ, α) := T (ĉ)− dα ∈ Ω−r(X;V •
ΩG).(5.23)

The role of α in Definition 5.22 is to replace T (ĉ) with a smooth differential
form, without changing the cohomology class.

The set of isomorphism classes of (Ω̂G)−r-cycles over X is denoted by

(ZΩ̂G)−r(X). It has a structure of an abelian semigroup by the disjoint
union on cycles and the addition on currents.

12The element (5.18) can be understood as follows. It induces a degree-preserving R-
linear homomorphism from N•

G to Ω•(N ; Ori(T (p))). This homomorphism coincides with
cwgp in (4.15).
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For an r-dimensional bordism data b̂ = (q : W → R×X, gq), we define

T (̂b) :=

∫

(−∞,0]
q!
(
cwgq(ch(idMTG))|q−1((−∞,0]×X)

)
∈ Ω−r−1

−∞ (X;V •
ΩG).

(5.24)

Then we can show that (∂b̂, T (̂b)) ∈ (ZΩ̂G)−r(X).

Definition 5.25 ((Ω̂G)∗(X)). Let X be a manifold and r be an inte-

ger. On (ZΩ̂G)−r(X) we introduce the equivalence relation ∼ generated

by (∂b̂, T (̂b)) ∼ 0 for a bordism data b̂. We define

(Ω̂G)−r(X) := (ZΩ̂G)−r(X)/ ∼ .

We denote the class of (ĉ, α) in (Ω̂G)−r(X) by [ĉ, α].

We can define the structure maps R, a and I for (Ω̂G)∗(X) in an analogous

way to [BSSW09]. The fact that the quadruple (Ω̂G, R, a, I) is a differential
extension of ΩG can be easily checked as in the normal case.

5.2. The differential multiplication by (Ω̂G2)∗. Now assume we are
given a homomorphism µ : G1×G2 → G3. The definition of the transforma-
tion (5.7) uses the fiber products between differential relative stable tant-
gential G2-cycles and differential stable tangential G1-cycles. To form the
fiber products, we want to restrict our attention to differential stable tangen-
tial G1-cycles (M, g, f) with f satisfying certain transversality conditions.
For this, the result of Subsubsection 4.1.2 is useful. In Subsubsection 5.2.1

below, we construct a certain equivalent subcategory of hBord
(G1)∇
n−r (X,Y )

consisting of objects with a suitable transversality. This point is technical,
and the reader who is willing to admit the existence of a nice subcategory
to form fiber products can go directly to Subsubsection 5.2.2.

5.2.1. A technical point : The construction of hBord
(G1)∇
n−r (X,Y )⋔ĉ. There

are substantial technicalities concerning fiber products between manifolds
with corners. For example see [Joy12]13. But recall that we required the
neatness (Definition 5.13) of the map in Definition 5.15. As we explain now,
the theory on fiber products is very simple for neat maps.

First we explain a useful local picture of neat maps. The following lemma
directly follows by Definition 5.13.

Lemma 5.26. Let p : N → X be a neat map between manifolds. Let x ∈ N
be any point. Then there exist open neighborhoods x ∈ V ⊂ N and p(x) ∈
U ⊂ X, manifolds without boundaries V̂ and Û with embeddings V ↪→ V̂

and U ↪→ Û , a smooth map p̂ : V̂ → Û extending p|V such that

• p̂−1(U) = V , and
• p̂ is transverse to corners of U .

13Be careful that “smooth” in this paper corresponds to “weakly smooth” in [Joy12].
The neatness in Definition 5.13 implies the “smoothness” in that paper. Using this, it is
also possible to obtain the results in this subsubsection by applying the results in [Joy12,
Section 6]. But since neat maps can be treated in an elementary way, we take a direct
approach here.
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Conversely, neatness is characterized by this local property.

In the following we call a set of data appearing in Lemma 5.26 a local
extension of p. If we have a smooth map f : M → U from another manifold,
the property p̂−1(U) = V implies that

M ×U V ≃M ×Û V̂(5.27)

as a topological space. Using (5.27), we can reduce the local theory on fiber
products between a smooth map f : M → X and a neat map p : N → X to
the case where N and X are boundaryless.

Now we introduce the transversality condition.

Definition 5.28 (Transversality between smooth maps). Let f : M → X
and p : N → X be smooth maps. We say that f is transverse to p or f and
p are transverse, if for any points x ∈ M and y ∈ N with f(x) = p(y) = z,
we have

(1) The images of df : TxM → TzX and dp : TyN → TzX span TzX, and

(2) The images of df : TxS
k(M)→ TzS

j(X) and dp : TyS
l(N)→ TzS

j(X)
span TzS

j(X). Here k, j and l are the depths of the corresponding
points.

If p is neat, the condition (2) in Definition 5.28 is equivalent to the con-
dition that the images of df : TxS

k(M) → TzX and dp : TyN → TzX span
TzX. This implies that, in a local extension in Lemma 5.26, the transver-
sality of f and p is equivalent to the transversality of f and p̂.

Proposition 5.29. Let f : M → X be a smooth map and p : N → X be a
neat map. Assume f is transverse to p, and we assume one of the following
condition for f .

(1) f is an embedding.
(2) M is equipped with a structure of ⟨k⟩-manifold with (∂0M,∂1M, · · · , ∂k−1M),

and there exists a collar structure near each ∂jM on which f is con-
stant in the collar direction.

Then in the fiber product

M ×X N
f̃ //

p̃
��

N

p

��
M

f // X,

(5.30)

the space M ×X N is equipped with a canonical structure of manifold with
corners so that

Sk(M ×X N) = Sk(M)×X N,

and the map p̃ is neat. Moreover in the case (2) above, M ×X N is also
equipped with a canonical structure of ⟨k⟩-manifold with ∂j(M ×X N) =
∂jM ×X N .

Proof. We can reduce to the case where N and X are boundaryless as ex-
plained above, and for such cases this result is well-known and easy to prove.
We also remark that a part of this proposition follows from [HS05, Appendix
C.22]. □
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Now we define the subcategory hBord
(G1)∇
m (X,Y )⋔ĉ of hBord

(G1)∇
m (X,Y ).

Definition 5.31 (hBord
(G1)∇
m (X,Y )⋔ĉ). Let (X,Y ) be a pair of manifolds

and ĉ = (p : N → X, gp) be a differential stable relative tangential G2-cycle

overX. We define a Picard subcategory hBord
(G1)∇
m (X,Y )⋔ĉ of hBord

(G1)∇
m (X,Y )

spanned by objects (M, g, f) with the following conditions.

(1) There exists a collar structure near ∂M ofM on which the restriction
of the map f : (M,∂M)→ (X,Y ) is constant in the collar direction.

(2) The map f : M → X is transverse to p : N → X.

In particular if p is a submersion, we have hBord
(G1)∇
m (X,Y )⋔ĉ = hBord

(G1)∇
m (X,Y ).

Proposition 5.29 implies the following.

Corollary 5.32. For any object (M, g, f) ∈ hBord(G1)∇
m (X,Y )⋔ĉ with ĉ =

(p : N → X, gp), the fiber product M ×X N is equipped with a structure of a

⟨1⟩-manifold with ∂(M×XN) = ∂M×XN , with map f̃ : (M×XN, ∂(M×X
N))→ (N, p−1(Y )).

Given a pair of manifolds (X,Y ), We say that a differential stable relative
tangential G2-cycle ĉ = (p : N → X, gp) is transverse to Y if the underlying

map p is transverse to Y . Remark that (Ω̂G2)−r(X) is generated by (ĉ, α)
with ĉ satisfying this transversality.

Lemma 5.33. If ĉ is transverse to Y , the inclusion hBord
(G1)∇
m (X,Y )⋔ĉ ⊂

hBord
(G1)∇
m (X,Y ) is an equivalence.

Proof. It is enough to show that any elements in the relative bordism group

ΩG1
m (X,Y ) can be represented by an object in hBord

(G1)∇
m (X,Y )⋔ĉ. Take

any element e ∈ ΩG1
m (X,Y ). First we consider its image of the boundary

map, ∂e ∈ ΩG1
m−1(Y ). Applying Proposition 5.29 case (1) to the embedding

ι : Y ↪→ X and p : N → X, we get a canonical structure of a manifold
with corners on p−1(Y ) so that the map p : p−1(Y ) → Y is neat. We claim
that we can represent ∂e by a smooth map f∂ : M∂ → Y transverse to
p : p−1(Y )→ Y . Indeed, using the homotopy equivalence Y̊ ∼ Y , it is easy
to reduce to the genericity of transversality in the case without boundary.

By the transversality of p : N → X with ι : Y ↪→ X, we see that the
composition ι ◦ f∂ : M∂ → X is transverse to p : N → X. This also implies
that the map f∂ ◦ prM∂

: (−1, 0] ×M∂ → X is transverse to p : N → X,
and we use it as a collar of the desired object. Now that we have defined

the maps on the collar, the desired object in hBord
(G1)∇
m (X,Y )⋔ĉ which

represents f∂ can be obtained by reducing to the case where N and X are
boundaryless as before, and using the usual genericity of transversality in
the relative form. □

By Lemma 5.33, fixing ĉ which is transverse to Y , we can apply the ma-

chinery of Subsubsection 4.1.2 to the equivalent Picard subcategory hBord
(G1)∇
m (X,Y )⋔ĉ.

We use the notation C(G1)∇
m (X,Y )⋔ĉ for the corresponding subgroup of C(G1)∇

m (X,Y ),

which is denoted by CD with D = hBord
(G1)∇
m (X,Y )⋔ĉ in Subsubsection

4.1.2.
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5.2.2. The differential multiplication by (Ω̂G2)∗. Now we proceed to con-
struct the transformation (5.7). Let (X,Y ) be a pair of manifolds and let
ĉ = (p : N → X, gp) be a differential stable relative tangential G2-cycle of
dimension r which is transverse to Y . First we define a functor between
bordism Picard categories, essentially given by the fiber product over X
composed with the homomorphism µ, but technically speaking we need to
take a little care regarding stabilizations. In order to define a functor, we
need the following additional choices (which eventually yields the same ho-
momorphisms between CG∇ ’s).

• A representative c̃ = (p : N → X, g̃p) of c with g̃p = (k, ϕ, Pp,∇p, ψp),
and we require that k is even.
• A subbundle Hp ⊂ Rk ⊕ TN over N which induces a splitting Rk ⊕
TN = Hp ⊕ T (ϕ, p).
• A Riemannian metric gmet

X on X.

Then we define a functor

×X(c̃, Hp, g
met
X ) : hBord

(G1)∇
n−r−1(X,Y )⋔ĉ → hBord

(G3)∇
n−1 (N, p−1(Y )),(5.34)

as follows. For an object (M, gM , f) in hBord
(G1)∇
n−r−1(X,Y )⋔ĉ, we consider

the fiber product M ×X N and use the notation of maps as in (5.30). Then
by Corollary 5.32, M ×X N is a smooth ⟨1⟩-manifold with ∂(M ×X N) =
∂M ×XN of dimension (n−1). Moreover, the horizontal subbundle Hp and
the Riemannian metric gmet

X gives the identification14

Rk ⊕ T (M ×X N) ≃ p̃∗TM ⊕ f̃∗T (ϕ, p).(5.36)

Take a representative g̃M = (d, PM ,∇M , ψM ) for gM so that d ≥ n− r =
dimM+1. We use the following isomorphism Ψ defined by the composition,

Ψ: Rd−(n−r−1)+k ⊕ T (M ×X N) = Rd−(n−r) ⊕ Rk ⊕ R⊕ T (M ×X N)

flip−−→ Rd−(n−r) ⊕ R⊕ Rk ⊕ T (M ×X N)(5.37)

(5.36)−−−→ (Rd−(n−r)+1 ⊕ p̃∗TM)⊕ f̃∗ ker(ϕ, f).

14The identification (5.36) is explicitely given as follows. Notice that TM and TN are
equipped with Riemannian metrics by the data gM , gp, g

met
X and Hp. This gives a splitting

of vector bundles over M ×X N of the form

p̃∗TM ⊕ f̃∗TN = T (M ×X N)⊕H ′.(5.35)

The restriction of df − dp : p̃∗TM ⊕ f̃∗TN → (p ◦ f̃)∗TX to H ′ is an isomorphism,

(df − dp)|H′ : H ′ ≃ (p ◦ f̃)∗TX.

Denote by h⊥ : Rk ⊕ TN → T (ϕ, p) the projection induced by Hp. Then the map (5.36)
is given by mapping an element

(v,m, n) ∈ Rk ⊕ T (M ×X N) ⊂ Rk ⊕ TM ⊕ TN

to the element(
m+ prp̃∗TM ((df − dp)|−1

H′ (ϕ(v))), h⊥
(
v, n+ prf̃∗TN ((df − dp)|−1

H′ (ϕ(v)))
))

.

We can check that this is indeed an isomorphism. Here we note that when p is a submer-
sion, the resulting identification (5.36) does not depend on the choice of gmet

X because the
splitting (5.35) becomes the obvious one induced by Hp.
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Here the second map flips Rk and R (the “flip” is necessary to make a
functor). Then the representative g̃M ×X g̃p of differential stable tangential
G3-structure on M ×X N is defined to be

g̃M ×X g̃p :=
(
d+ k, µd,k

(
p̃∗(PM ,∇M )× f̃∗(Pp,∇p)

)
,Ψ−1 ◦

(
p̃∗(ψM )× f̃∗(ψp)

))
.

(5.38)

Here for the last item we use the obvious isomorphism of the associated
bundles given by the commutativity of (5.9). Then by the commutativity
of the left square of (5.10) we have (g̃M ×X g̃p)(1) = (g̃M (1))×X g̃p. Thus,
denoting the resulting differential stable tangential G3-structure by gM ×X
g̃p, we can define the following object of hBord

(G3)∇
n−1 (N, p−1(Y )).

(M, gM , f)×X (c̃, Hp, g
met
X ) := (M ×X N, gM ×X g̃p, f̃).

For morphisms in hBord
(G1)∇
n−r−1(X,Y )⋔ĉ, note that we can always take rep-

resentatives whose underlying maps to X are transverse to p and satisfy
the condition (2) in Proposition 5.29. Then the corresponding morphisms

in hBord
(G1)∇
n−1 (N, p−1(Y )) is defined in a similar way by the fiber product

over X using Proposition 5.29, but in this case we do not insert the “flip” in
(5.37). Then we can easily check that we get the functor (5.34) as desired.

As a result, we get a group homomorphism between CG∇ ’s. Notice that
the homotopy class (Definition 3.1 (4)) of the representative (5.38) does not
depend on the choice of Hp or gmet

X . Moreover, recall that we have assumed
that k is even. If we use the two-fold stabilization g̃(2) := (g̃(1))(1), by the
homotopy commutativity of (5.10) we see that (g̃M ×X g̃p)(2) and g̃M ×X
(g̃p(2)) are homotopic. Thus, for a differential stable relative tangential
G2-cycle ĉ, we get a group homomorphism

×X ĉ : C(G1)∇
n−r−1(X,Y )⋔ĉ → C(G3)∇

n−1 (N, p−1(Y )).(5.39)

using any choice of (c̃, Hp, g
met
X ) lifting ĉ as above. Recall that we have

N•
G = Hom(ΩG• (pt),R) and V •

ΩG = ΩG−•(pt) ⊗ R. Thus the homomorphism
µ : G1 ×G2 → G3 induces the homomorphism

µ : N q
G3
⊗ V p

ΩG2
→ N q−p

G1
(5.40)

for each p and q.

Definition 5.41. Let Z be a manifold. We define the linear maps

∧µ : Ωn(Z;N•
G3

)⊗ Ω−r(Z;V •
ΩG2

)→ Ωn−r(Z;N•
G1

),(5.42)

∧µ : Ωn(Z;N•
G3

)⊗ Ω−r
−∞(Z;V •

ΩG2
)→ Ωn−r−∞(Z;N•

G1
),

by the wedge product on forms and currents, and the homomorphism µ in
(5.40) on the coefficients.

By the definition of the functor (5.34), for any morphism [W, gW , fW ] in

hBord
(G1)∇
n−r−1(X,Y )⋔ĉ and ω ∈ Ωnclo(N, p

−1(Y );N•
G3

), we have

cw(ω)
(
[W, gW , fW ]×X (c̃, Hp, g

met
X )

)
= cw(p!(ω ∧µ cwgp(ch(idMTG2))))([W, gW , fW ]),

(5.43)

where (c̃, Hp, g
met
X ) is any choice lifting ĉ, cwgp(ch(idMTG2)) ∈ Ω0(N ; Ori(T (p))⊗R

V •
ΩG2

) is defined in (5.18) and p! is the fiber integration of currents (5.19).
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In the right hand side of (5.43), we use the obvious currential version of
(4.20). We use this generalization throughout the rest of the paper.

In particular, for ω ∈ Ωnclo(X,Y ;N•
G3

), we have

cw(ω) ◦ p∗
(
[W, gW , fW ]×X (c̃, Hp, g

met
X )

)
= cw(ω ∧µ T (ĉ))([W, gW , fW ]).

(5.44)

Here we denoted the functor p∗ on the bordism Picard categories over
(N, p−1(Y )) to (X,Y ) given by the composition of p. We will use the same

notation for the corresponding homomorphism between C(G1)∇ ’s.
Now we proceed to define the multiplication (5.7). First, we define the

multiplication of each element (ĉ, α) ∈ (ZΩ̂G2)−r(X) such that the un-
derlying map p is transverse to Y ⊂ X. Given such an element, we set

(ÎΩG1

⋔ĉ )
n−r(X,Y ) to be the group in Definition 4.44 forD = hBord

(G1)∇
n−r−1(X,Y )⋔ĉ.

It is isomorphic to (ÎΩG1
dR)

n−r(X,Y ) by Proposition 4.45 and Lemma 5.33.

Definition 5.45. Let (X,Y ) be a pair of manifolds and r be an integer.

Given (ĉ, α) ∈ (ZΩ̂G2)−r(X) such that ĉ is transverse to Y , we define a
linear map

×X(ĉ, α) : (ÎΩG3
dR)

n(X,Y )→ (ÎΩG1

⋔ĉ )
n−r(X,Y ),(5.46)

by sending (ω, h) to (ω ∧µ R([ĉ, α]), (ĉ, α)∗h), where
(ĉ, α)∗h := h ◦ p∗ ◦ (×X ĉ)− cw(ω ∧µ α) : C(G1)∇

n−r−1(X,Y )⋔ĉ → R/Z.(5.47)

The compatibility condition for (ω ∧µ R([ĉ, α]), (ĉ, α)∗h) is checked as
follows. Take a morphism [W, gW , fW ] : (M−, g−, f−) → (M+, g+, f+) in

hBord
(G1)∇
n−r−1(X,Y )⋔ĉ. We have, choosing any (c̃, Hp, g

met
X ),

h ◦ p∗ (([M+, g+, h+]− [M−, g−.f−])×X ĉ) = cw(ω) ◦ p∗
(
[W, gW , fW ]×X (c̃, Hp, g

met
X )

)

= cw(ω ∧µ T (ĉ))([W, gW , fW ])

by the compatibility of (ω, h) and (5.44). Moreover we have

cw(ω ∧µ α) ([M+, g+, h+]− [M−, g−.f−]) = cw(ω ∧µ (T (ĉ)−R([ĉ, α])))([W, gW , fW ])

by (5.23). Thus we get the desired compatibility.

Lemma 5.48. The composition of the map (5.46) with the isomorphism

(ÎΩG1

⋔ĉ )
n−r(X,Y ) ≃ (ÎΩG1

dR)
n−r(X,Y ) in Proposition 4.45 only depends on

the class [ĉ, α] ∈ (Ω̂G2)−r(X) of (ĉ, α).

Proof. By Definition 5.25, it is enough to check that for any r-dimensional

bordism data b̂ = (q : W → R×X, gq) and any element [M, g, f ] ∈ C(G1)∇
n−r−1(X,Y )⋔∂b̂,

we have

h ◦ (q|∂)∗
(
[M, g, f ]×X ∂b̂

)
= cw

(
ω ∧µ T (̂b)

)
([M, g, f ]) (mod Z).

(5.49)

To check it, take an object (M, g, f) ∈ hBord
(G1)∇
n−r−1(X,Y )⋔∂b̂ representing

[M, g, f ] and a data (̃b,Hq, g
met
R×X) lifting b̂, where we require gmet

R×X to be a

cylindrical metric induced by some gmet
X on X. Then we can construct a
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bordism over (X,Y ) (in the sense of Definition 3.7) from ∅ to (M, g, f)×X
(∂b̃,Hq|∂ , gmet

X ), essentially by “(M, g, f)×X
(
pr∗X((̃b,Hq, g

met
R×X)|(−∞,0]×X)

)
”.

Here the fiber product over X is extended to this case in the obvious way,
and we need a suitable deformation to have a collar structure. Since any
choice are bordant, we abuse the notation and denote the resulting morphism

in hBord
(G3)∇
n−1 (X,Y ) by q∗

[
(M, g, f)×X

(
pr∗X((̃b,Hq, g

met
R×X)|(−∞,0]×X)

)]
.

Now the compatibility condition of (ω, h) implies that

h ◦ (q|∂)∗
(
[M, g, f ]×X ∂b̂

)
= cw(ω)

(
q∗

[
(M, g, f)×X

(
pr∗X((̃b,Hq, g

met
R×X)|(−∞,0]×X)

)])

(mod Z).

On the other hand, (5.21) and (5.24) implies that the right hand side is
equal to the right hand side of (5.49). This completes the proof. □

Thus, we can define the following.

Definition 5.50. Let (X,Y ) be a pair of manifolds. We define a linear map

(ÎΩG3
dR)

n(X,Y )⊗ (Ω̂G2)−r(X)
·−→ (ÎΩG1

dR)
n−r(X,Y ).(5.51)

by sending (ω, h)⊗[ĉ, α] to (ω, h)×X(ĉ, α) ∈ (ÎΩG1

⋔ĉ )
n−r(X,Y ) ≃ (ÎΩG1

dR)
n−r(X,Y ).

This does not depend on the representative (ĉ, α) by Lemma 5.48.

Finally we show the following.

Theorem 5.52. The map (5.51) refines the transformation (5.6) defined by
(5.4).

Proof. We use the arguments in Subsection 4.2. Recall that for an element

(ω, h) ∈ (ÎΩGdR)
N (X,Y ) we associated a functor F(ω,h) in (4.51). By the

proof of Theorem 4.56, the isomorphism IΩGdR ≃ IΩG is given by mapping
I((ω, h)) to the natural isomorphism class of F(ω,h).

Take any element (ĉ, α) ∈ (ZΩ̂G2)−r(X) such that ĉ is transverse to Y

and (ω, h) ∈ (ÎΩG3
dR)

n(X,Y ), so that we get (ω, h) · [ĉ, α] ∈ (ÎΩG1
dR)

n−r(X,Y ).

Then we claim that the restriction to hBord
(G1)∇
n−r−1(X,Y )⋔ĉ of the associated

functor (4.51),

F(ω,h)·[ĉ,α] : hBord
(G1)∇
n−r−1(X,Y )⋔ĉ → (R→ R/Z),(5.53)

is naturally isormorphic to the composition,

hBord
(G1)∇
n−r−1(X,Y )⋔ĉ

p∗◦(×X(c̃,Hp,gmet
X ))−−−−−−−−−−−−→ hBord

(G3)∇
n−1 (X,Y )

F(ω,h)−−−−→ (R→ R/Z),

(5.54)

for any choice of (c̃, Hp, g
met
X ) lifting ĉ. Indeed, we have a natural isomor-

phism given by the transformation Fω∧µα. Here ω∧µα ∈ Ωn−r−1
−∞ (X,Y ;N•

G1
)

is now a differential current, and the definition of the natural transformation
(4.52) is extended to currents in the obvious way.

We use the equivalence of Picard groupoids in Lemma 3.10. By recalling
the Pontryagin-Thom construction, we see that the first arrow in (5.54)
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is naturally isomorphic to the induced functor on π≤1((−)−n+r+1) to the
following compostion of maps of spectra.

(X/Y ) ∧MTG1
diag∧id−−−−→ (X/Y ) ∧X+ ∧MTG1(5.55)

id∧[c]∧id−−−−−→ (X/Y ) ∧ Σ−rMTG2 ∧MTG1

id∧µ−−−→ (X/Y ) ∧ Σ−rMTG3.

The Anderson dual to this composition is the definition of the multiplication
by [c] ∈ (ΩG2)−r(X) on the topological level (5.6) defined by (5.4). This
completes the proof. □

6. Differential pushforwards

Let µ : G1×G2 → G3 be a homomorphism of tangential structure groups
as in Section 5 (Remark 5.8). In this section, we introduce the differential
refinement of pushforward maps associated to µ. Here, what we call the
pushforwards here is a generalization of pushforward maps (also called inte-
grations) associated to multiplicative genera, which we explain in Subsection
6.1. For each pair of manifolds (X,Y ) and differential relative stable tan-
gential G-cycle (Definition 5.15) ĉ = (p : N → X, gp) of dimension r over X
whose underlying map p is a submersion, we define a homomorphism which
we call the differential pushforward map along ĉ,

ĉ∗ : (ÎΩ
G3
dR)

n(N, p−1(Y ))→ (ÎΩG1
dR)

n−r(X,Y ),(6.1)

which refines the topological pushforward map defined for a topological rel-
ative stable tangential G2-cycle c = (p : N → X, gtopp ),

c∗ : (IΩG3)n(N, p−1(Y ))→ (IΩG1)n−r(X,Y ),(6.2)

by the general procedure in Subsection 6.1 applied to the morphism IMTG3∧
MTG2 → IMTG1 in (5.5) associated to µ. Actually, the homomorphism
(6.1) is given by a straightforward modification of the multiplication by

Ω̂G2 in Section 5. As we explain in Remark 6.17, we can recover the S1-

integration map
∫

of ÎΩGdR (Definition 4.39) as a special case of the con-
struction in this section. Also we explain in Remark 6.18 that if we use

the obvious currential version of ÎΩGdR, we can generalize the results in this
section to the case where p is not necessarily a submersion.

6.1. Generalities on topological pushforwards. Here we introduce the
definition of (topological) pushforward maps which we use in this paper.
This is a generalization of the most common notion of pushforward maps
associated to multiplicative genera. We only explain the tangential version,
but the normal version also works by just replacing MTG to MG.

The setting is the following. Assume we have tangential structure groups
G and two spectra E and F , together with a homomorphism of spectra,

µ : E ∧MTG→ F.(6.3)
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We claim that (6.3) defines, for a topological relative stable G-cycle c =

(p : N → X, gtopp ) of dimension r, a homomorphism

c∗ : En(N, p−1(Y ))→ Fn−r(X,Y ),(6.4)

which we call the (topological) pushforward map along c.
For simplicity we first explain the absolute case, Y = ∅. Given c =

(p : N → X, gtopp ) as above, choose an embedding ι : N ↪→ Rk × X over X
(i.e., prX ◦ ι = p) for k large enough. Choose a tubular neighborhood U of

N in Rk ×X with a vector bundle structure π : U → N . Then gtopp induces

a homotopy class of stable normal G-structures g⊥,topπ on the vector bundle
π : U → N . Thus we get the (universal) Thom element for this vector bundle
in ΩG,

ν(g⊥,topπ ) ∈ (ΩG)k−r(Thom(π : U → N)).

The pushforward map (6.4) is defined as the following composition.

En(N)
·ν(g⊥,top

π )−−−−−−→ Fn+k−r(Thom(π : U → N))
ι∗−→ Fn+k−r(Thom(Rk ×X → X))

desusp−−−−→ Fn−r(X),

(6.5)

where the first multiplication uses µ, and the middle arrow is associated to
the open embedding ι : U ↪→ Rk ×X.

In the general case Y ̸= ∅, the definition is basically the same, but we
need to be careful because (Rk×Y )∩π−1(N \p−1(Y )) ̸= ∅ in general. This
subtlety does not arise when p is a submersion, because we can take π to be
a map over X. In general, we need to perturb the map p by a homotopy so
that p is transverse to the inclusion Y ↪→ X. Then we can take the choices
above so that (Rk×Y )∩π−1(N \ p−1(Y )) = ∅. Applying this procedure to
the morphism IMTG3 ∧MTG2 → IMTG1 in (5.5), we get the topological
pushforward maps (6.2).

An important class of the examples of homomorphisms (6.3) comes from
multiplicative genera, i.e., homomorphisms of ring spectra

G : MTG→ E,(6.6)

for multiplicative G and E. In this case, G induces aMTG-module structure
on E,

µG : E ∧MTG→ E.(6.7)

Applying the construction in this subsection to µG , we recover the usual
pushforward in E for tangentially G-oriented proper maps.

6.2. The differential pushforwards. Now let us fix a homomorphism
µ : G1×G2 → G3. We construct the differential pushforward maps (6.1). Ac-
tually, we have already prepared the necessary ingredients in Section 5. Re-
call that, given a differential relative stable tangential G2-cycle ĉ = (p : N →
X, gp) of dimension r such that p is transverse to Y ⊂ X, we defined a group
homomorphism (5.39)

×X ĉ : C(G1)∇
n−r−1(X,Y )⋔ĉ → C(G3)∇

n−1 (N, p−1(Y )).
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If p is a submersion, we have C(G1)∇
n−r−1(X,Y )⋔ĉ = C(G1)∇

n−r−1(X,Y ). Also recall
that we have (5.18)

cwgp(ch(idMTG2)) ∈ Ω0(N ; Ori(T (p))⊗R V
•
ΩG2

),

Given ω ∈ Ωn(N, p−1(N);N•
G3

), using the wedge product in Definition 5.41
and the fiber integration (5.19), we have

p!(ω ∧µ cwgp(ch(idMTG2))) ∈ Ωn−r−∞(X,Y ;N•
G1

).(6.8)

If p is a submersion, the element (6.8) is in Ωn−r(X,Y ;N•
G1

).

Definition 6.9 (The differential pushforward maps associated to µ : G1×G2 → G3).
Let (X,Y ) be a pair of manifolds and n and r be nonnegative integers
such that n ≥ r. For each differential relative stable tangential G2-cycle
ĉ = (p : N → X, gp) of dimension r over X whose underlying map p is a
submersion, we define a homomorphism which we call the differential push-
forward map along ĉ,

ĉ∗ : (ÎΩ
G3
dR)

n(N, p−1(Y ))→ (ÎΩG1
dR)

n−r(X,Y ),(6.10)

by mapping (ω, h) to
(
p!(ω ∧µ cwgp(ch(idMTG2))), ĉ∗h

)
, where

ĉ∗h := h ◦ (×X ĉ) : C(G1)∇
n−r−1(X,Y )→ R/Z.(6.11)

The compatibility condition for the pair
(
p!(ω ∧µ cwgp(ch(idMTG2))), ĉ∗h

)

can be checked by the same way as the corresponding compatibility checked
for Definition 5.45, by using (5.43) instead of (5.44).

Theorem 6.12. The differential pushforward map (6.10) refines the topo-
logical pushforward map (6.2) defined by (6.5).

Proof. Let us fix an element (ω, h) ∈ (ÎΩG3
dR)

n(N, p−1(Y )). As we did in
the proof of Theorem 5.52, the proof is given by checking the natural iso-
morphism class of the functor (4.51) associated to the element ĉ∗(ω, h) ∈
(ÎΩG1

dR)
n−r(X,Y ),

Fĉ∗(ω,h) : hBord
(G1)∇
n−r−1(X,Y )→ (R→ R/Z),(6.13)

coincides, under the equivalence in Lemma 3.10, with the element in

π0FunPic (π≤1(L((X/Y ) ∧MTG1)1−n+r), (R→ R/Z)) ,

specified by the topological pushforward (6.2).
Recall that the group homomorphism (5.39) between CG∇ ’s comes from

the functor between the bordism Picard groupoids (5.34),

×X(c̃, Hp) : hBord
(G1)∇
n−r−1(X,Y )→ hBord

(G3)∇
n−1 (N, p−1(Y )),(6.14)

by choosing additional data of (c̃, Hp) lifting ĉ (In the case here p is submer-
sion, so we do not need the choice of a Riemannian metric gmet

X as remarked
at the end of Footnote 14). We easily see that the functor (6.13) coincides
with the following composition.

hBord
(G1)∇
n−r−1(X,Y )

×X(c̃,Hp)−−−−−−→ hBord
(G3)∇
n−1 (N, p−1(Y ))

F(ω,h)−−−−→ (R→ R/Z).

(6.15)
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On the other hand, the topological pushforward map (6.2) is defined as
the composition (6.5). On the level of spectra, this homomorphism is given
by the Anderson dual of the composition

MTG1 ∧ Σk(X/Y )
id∧ι−−→MTG1 ∧

(
Thom(π : U → N)/π−1(p−1(Y ))

)
(6.16)

→MTG1 ∧ Σk−rMTG2 ∧ (N/p−1(Y ))

µ∧id−−−→ Σk−rMTG3 ∧ (N/p−1(Y )),

where the second morphism is the classifying map of the stable normal

G-structure g⊥,topπ on π : U → N and the identity on MTG1. Recalling
the Pontryagin-Thom construction, we see that the functor between the
fundamental Picard groupoids

π≤1(L((X/Y ) ∧MTG1)1−n+r)→ π≤1(L((N/p
−1(N)) ∧MTG3)1−n)

induced by (6.16) is naturally isomorphic to the fiber product functor (6.14)
under the equivalences in Lemma 3.10. This completes the proof. □

Remark 6.17. We can recover the S1-integration map
∫
of ÎΩGdR (Definition

4.39) as a special case of the construction in this section. As explained in
Example 5.3 (3), for any G we have a canonical homomorphism G × fr →
G. Let X be a manifold. The bounding (differential) stable tangential fr-
structure gS1 on S1 = S1 × pt in Definition 4.38 induces the differential
stable relative tangential fr-structure on prX : X × S1 → X. We easily see
that the differential pushforward along this differential stable relative fr-
cycle coincides with the S1 integration map, but up to sign. The difference
of the sign is due to the fact that the suspension multiplies S1 from the
left. This difference also appears in the difference between the signs for the
S1-integration on forms in (2.16), (2.17) and the fiber integration in (5.19),
(5.20).

Remark 6.18. We have only defined differential pushforwards for proper
submersions. This requirement is necessary for the element (6.8) to be a
differential form. Actually, we can get refinements of pushforwards along
general differential stable relative cycles if we introduce currential refine-
ment of IΩG’s. In general, currential refinements of cohomology theories
are axiomatized by simply replacing forms to currents in Definition 2.12.
Such refinements are used for example in [FL10] in the case of K-theory.
In our case, it is obvious that we obtain the currential refinement of IΩG,

which we denote by ÎΩG−∞, by just allowing ω in (ω, h) to be closed currents.
Then, given any differential stable relative G2-cycle ĉ = (p : N → X, gp)

of dimension r over X such that p is transverse to Y ⊂ X, by the same
construction we get the refinement of the pushforward map,

ĉ∗ : (ÎΩ
G3
dR)

n(N, p−1(Y ))→ (ÎΩG1
−∞)n−r(X,Y ).(6.19)

We remark that in the construction we use the obvious currential version of
Subsection 4.1.2.
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Part 2.

7. Introduction to Part 2

In Part 1, we constructed a model IΩGdR of IΩG and its differential ex-

tension ÎΩGdR by abstractizing certain properties of invertible QFT’s. Part
2 is devoted to their relations with multiplicative genera. We show that
pushforwards (also called integrations) in generalized differential cohomology
theories allow us to construct differential refinements of certain cohomology
transformations which arise from the Anderson dual to multiplicative genera
and the module structures of the Anderson duals. This gives us a unified
understanding of an important class of elements in the Anderson duals with
physical origins.

First, we explain the motivations of Part 2. As we saw in Part 1, the differ-

ential group (ÎΩGdR)
n(X) consists of pairs (ω, h), where ω ∈ Ω∗

clo(X;H•(MTG;R))
with total degree n, and h is a map which assigns R/Z-values to differen-
tial stable tangential G-cycles of dimension (n − 1) over X, which satisfy
a compatibility condition with respect to bordisms. For example, given a
hermitian line bundle with unitary connection over X, the pair of the first
Chern form and the holonomy function gives an element for G = SO and
n = 2 (Example 4.59). Similarly, given a hermitian vector bundle with uni-
tary connection, we can construct even-degree elements for G = Spinc using
the reduced eta invariants of twisted Dirac operators (Example 4.67). Then,
a natural mathematical question arises: what are these elements mathemati-
cally? It is natural to expect a topological characterization of these elements.
Questions of this kind also appears in [FH21, Conjecture 9.70]. Part 2 is
devoted to this question. Actually, these examples are special cases of the
general construction in this paper which we now explain.

Now we explain the general settings. In this paper, the tangential struc-
ture groups G = {Gd, sd, ρd}d∈Z≥0

is assumed to be multiplicative, i.e., the
corresponding Madsen-Tillmann spectrum MTG is equipped with a struc-
ture of a ring spectrum. Assume we are given a ring spectrum E with a
homomorphism of ring spectra,

G : MTG→ E.

such G is also called a multiplicative genus, and examples include the usual
orientation τ : MTSO→ HZ and the Atiyah-Bott-Shapiro orientations ABS: MTSpinc →
K and ABS: MTSpin→ KO.

On the topological level, a ring homomorphism G : MTG→ E gives push-
forwards in E for proper G-oriented smooth maps. Pushforwards in differen-
tial cohomology, or differential pushforwards, are certain differential refine-
ments of topological pushforwards. Basically, they consist of corresponding

maps in Ê for each proper map with a “differential E-orientation”. The for-
mulations depend on the context. To clarify this point, in Part 2 we use the

differential extension ÊHS of E constructed by Hopkins-Singer [HS05], and
use the formulation of differential pushforwards in that paper. Throughout
Part 2, we assume that E is rationally even, i.e., E2k+1(pt)⊗R = 0 for any
integer k. In this case, by [Upm15] there exists a canonical multiplicative
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structure on the Hopkins-Singer’s differential extension Ê∗
HS(−; ιE) associ-

ated to a fundamental cycle ιE ∈ Z0(E;V •
E). The theory of differential

pushforwards gets simple in this case. This point is explained in Subsection
8.1 and Appendix A. Of course our result applies to any model of differen-

tial extension Ê of E which is isomorphic to the Hopkins-Singer’s model.
Practically, most known examples of differential extensions are isomorphic
to Hopkins-Singer’s model (see Footnote 15). The holonomy functions are
examples of differential pushforwards in the case τ : MTSO→ HZ, and the
reduced eta invariants are those for ABS: MTSpinc → K by the result of
Freed and Lott [FL10] and Klonoff [Klo08].

Let n be an integer such that E1−n(pt)⊗R = 0. As we show in Subsection
8.3, the above data defines the following natural transformation,

ΦG : Ê∗
HS(−; ιE)⊗ IEn(pt)→ (ÎΩGdR)

∗+n(−),(7.1)

on Mfdop (Definition 8.29).
The main result of Part 2 is the following topological characterization of

the transformation (7.1).

Theorem 7.2. In the above settings, let X be a manifold and k be an in-

teger. For ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt), the element I(ΦG(ê ⊗ β)) ∈
(IΩG)k+n(X) = [X+ ∧MTG,Σk+nIZ] coincides with the following compo-
sition,

X+ ∧MTG
e∧G−−→ ΣkE ∧ E multi−−−→ ΣkE

β−→ Σk+nIZ.(7.3)

Here we denoted e := I(ê) ∈ Ek(X).

As we will see in Subsection 8.4, the transformations Φτ (− ⊗ γHZ) and
ΦABS(− ⊗ γK) in (7.1), where γHZ ∈ IHZ0(pt) and γK ∈ IK0(pt) are the
Anderson self-duality elements of HZ andK respectively, recovers the above
mentioned examples. Applying Theorem 7.2, we get the desired topological
characterization of such examples.

Part 2 is organized as follows. We construct the natural transformation
(7.1) and prove Theorem 7.2 in Subsection 8.3. We explain some examples
in Subsection 8.4. As we explain in Subsection 8.1, there are certain sub-
tleties regarding the formulations of differential pushforwards. In Appendix
A, we collect the necessary results concerning differential pushforwards for
submersions when E is rationally even.

8. Pushforwards in differential cohomologies and the
Anderson duality

8.1. Preliminary–Differential pushforwards in the Hopkins-Singer
model. In this subsection, we briefly explain the differential extensions of
generalized cohomology theories constructed by Hopkins-Singer and the dif-
ferential pushforwards (called integration in [HS05]) in that model. We
explain it in more detail in Appendix A.

On the topological level, a ring homomorphism G : MTG→ E gives push-
forwards in E for G-oriented proper smooth maps. For proper smooth maps
p : N → X of relative dimension r := dimN − dimX with (topological)
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stable relative tangential G-structures gtopp , we get the corresponding push-
forward map,

(p, gtopp )∗ : E∗(N)→ E∗−r(X).(8.1)

In particular in the case X = pt, for a closed manifold M of dimension n
with a stable tangential G-structure gtop, we get

(pM , g
top)∗ : E∗(M)→ E∗−n(pt).

There are notions of differential refinements of the pushforward maps in

Ê. For example see [HS05, Section 4.10], [BSSW09, Section 2] and [Bun12,

Section 4.8 – 4.10]. Basically, they consist of corresponding maps in Ê
for each proper map with a “differential E-orientation”. The formulations
depend on the context. In this paper, we adopt the one by Hopkins-Singer15.

Hopkins and Singer gave a model of differential extensions, which we

denote by Ê∗
HS(−; ιE), for any spectrum E, in terms of differential function

complexes. In general we choose a Z-graded vector space V •, and a singular
cocycle ιE ∈ Z0(E;V •) = lim←−n Z

n(En;V
•). Then for each n and for each

manifold X, we get a simplicial complex called differential function complex,

(En; ιn)
X = (E; ι)Xn ,

consisting of differential functions X ×∆• → (En; ιn). This complex has a
filtration filts(E; ι)Xn , s ∈ Z≥0. The differential cohomology group is defined
as (it is denoted by E(n)n(X; ι) in [HS05]),

ÊnHS(X; ι) := π0filt0(E; ι)Xn .

In particular this means that an element in ÊnHS(X; ι) is represented by
a differential function (c, h, ω) : X → (En; ιn), consisting of a continuous
map c : X → En, a closed form ω ∈ Ωnclo(X;V •) and a singular cochain
h ∈ Cn−1(X;V •) such that δh = c∗ιn − ω as smooth singular cocycles.

A particularly important case is when V = V •
E and ιE ∈ Z0(E;V •

E) is the
fundamental cocycle, i.e., a singular cocycle representing the Chern-Dold
character of E. In this case the associated differential cohomology groups

ÊnHS(X; ιE) satisfies the axioms of differential cohomology theory in [BS10].
The isomorphism class of the resulting group is independent of the choice
of the fundamental cocycle ιE , with an isomorphism given by a cochain
cobounding the difference.

In [HS05, Section 4.10], a differential pushforward is defined simply as
maps of differential function spaces16,

Ĝ :
(
MTG−r ∧ (En)

+;VG(ιMTG)−r ∪ (ιE)n
)
→ (E; ιE)n−r,(8.2)

15In particular we use the differential extension ÊHS. Practically this is not restric-

tive. We are assuming E is rationally even and multiplicative, so ÊHS is equipped with a
canonical multiplicative structure by [Upm15]. Thus, when the coefficients of E are count-
ably generated, we can apply the uniqueness result in [BS10, Theorem 1.7] to conclude
that any other multiplicative differential extension (defined on the category of all smooth

manifolds) is isomorphic to ÊHS.
16This point is important in the proof of Proposition 8.17, which is the main ingredient

of the proof of the main result (Theorem 7.2). This is the reason why we want to use the
Hopkins-Singer’s formulation.
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refining the map MTG ∧ (En)
+ G∧id−−−→ E ∧ (En)

+ multi−−−→ ΣnE. Here we are
taking V = V •

E , and the cocycle VG(ιMTG) ∈ Z0(MTG;V •
E) is obtained by

applying VG : VMTG → VE on the coefficient of ιMTG. Then17, the map Ĝ
associates to every proper neat map of p : N → X of relative dimension r
with a differential (tangential) BG-orientation gHS

p with a map

(p, gHS
p )∗ : Ê∗

HS(N ; ιE)→ Ê∗−r
HS (X; ιE),(8.3)

called the differential pushforward map.
As we explain in Appendix A.2 and A.3, the definition of (the tangen-

tial version of) differential BG-oriented maps in [HS05] differs from the
differential stable relative G-structure in Definition 5.12. Fix a funda-
mental cocycle ιMTG ∈ Z0(MTG;V •

MTG). Given a proper smooth map
p : N → X, a topological tangential BG-orientation consists of a choice of
embedding N ↪→ RN × X for some N , a tubular neighborhood W of N
in RN ×X with a vector bundle structure W → N , and a classifying map
W := Thom(W )→MTGN−r. A differential tangential BG-orientation gHS

p

consists of its lift to a differential function

t(gHS
p ) = (c, h, ω) : W → (MTGN−r, (ιMTG)N−r),(8.4)

Then the map (8.3) is given by (8.2) and the Pontryagin-Thom construction.
The resulting pushforward maps depend on the various choices.

However, using the assumption that E is rationally even, in the case where
p is a submersion the situation is simple. First of all, the relative tangent
bundle T (p) = ker(TN → TX) makes sense, and we restrict our attention to
the case where we are given a differential stable G-structure gp on T (p) (as
opposed to the more general notion of differential stable relative tangential
G-structure on p in Definition 5.12). Then, associated to such gp there is a
canonical set of choices of gHS

q which gives the same map (8.3). We explain

this point in details in Appendix A. We call such gHS
p a lift of gp (Definition

A.44). The map (8.3) defined by any choice of a lift gHS
p of gp is the unique

map denoted by

(p, gp)∗ := (p, gHS
p )∗ : Ê∗

HS(N ; ιE)→ Ê∗−r
HS (X; ιE).(8.5)

We simply call it the differential pushforward map (Definition A.40 and
Proposition A.45).

In the case where p : N → X is a submersion and equipped with a differ-
ential stable G-structure gp on T (p), there is also the corresponding push-
forward map on the level of differential forms. The Chern-Dold character of
the multiplicative genus G ∈ E0(MTG) is the element

ch(G) ∈ H0(MTG;V •
E).(8.6)

For example, for G = τ : MTSO→ HZ, the Chern-Dold chacacter is trivial,
1. For G = ABS: MTSpinc → K and G = ABS: MTSpin→ K, the Chern-

Dold characters are the Todd polynomial and the Â polynomial, respectively.

17As we explain in Appendix A.2, this process needs some additional choices of
cochains. By the assumption that E is rationally even, the resulting map on the dif-
ferential cohomology level does not depend on the choices.
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Applying the Chern-Weil construction in (4.18), we get the Chern-Dold
character form for the relative tangent bundle,

cwgp(ch(G)) ∈ Ω0
clo(W ; Ori(T (p))⊗R V

•
E).(8.7)

Using this, the pushforward map on Ω∗(−;V •
E) is given by

∫

N/X
− ∧ cwgp(ch(G)) : Ωn(N ;V •

E)→ Ωn−r(X;V •
E).(8.8)

Restricted to the closed forms, the induced homomorphism on the coho-
mology, Hn(N ;V •

E) → Hn−r(X;V •
E), is compatible with the Chern-Dold

character for E and the topological pushforward (8.1). The differential push-
forward map in (8.5) is compatible with the map (8.8) (tangential version
of (A.19)).

In particular, if X = pt, for every n-dimensional differential stable tan-
gential G-cycle (M, g) over pt, the differential pushforward map (8.5) is

(pM , g)∗ : Ê∗
HS(M ; ιE)→ Ê∗−n

HS (pt; ιE).(8.9)

As we explain in the last part of Appendix A.1, an important property of
the pushforward is the following Bordism formula, relating the pushforward
of differential forms (8.8) on the bulk and the differential pushforward (8.9)
on the boundary.

Fact 8.10 (Bordism formula, [Bun12, Problem 4.235]). For any morphism

[W, gW ] : (M−, g−) → (M+, g+) in hBordG∇
n−1(pt), the following diagram

commutes.

Ê∗
HS(W ; ιE)

R //

(−i∗M− )⊕i∗M+
��

Ω∗(W ;V •
E)

∫
W −∧cwg(ch(G))// Ω∗−n(pt;V •

E)

a
��

Ê∗
HS(M−; ιE)⊕ Ê∗

HS(M+; ιE)
(pM− ,g−)∗⊕(pM+

,g+)∗
// Ê∗−n+1(pt)

.

For example, in the case G = τ : MTSO → HZ, the nontrivial degree of

pushforwards (pM , g)∗ : ĤdimM+1(M ;Z)→ Ĥ1(pt;Z) ≃ R/Z are called the
higher holonomy function which appears in the definition of Chern-Simons

invariants. In terms of the Cheeger-Simons model of ĤZ in terms of differ-
ential characters [CS85], it is given by the evaluation on the fundamental
cycle. In particular for the case dimM = 1 it is the usual holonomy, and the
Bordism formula is satisfied because of the relation between the curvature
and the holonomy for U(1)-connections.

In the case G = ABS: MTSpinc → K, Freed and Lott [FL10] con-

structed a model of K̂ in terms of hermitian vector bundles with hermit-
ian connections, and the refinement of pushforwards when dimM is odd,

(pM , g)∗ : K̂0(M) → K̂− dimM (pt) ≃ R/Z, is given by the reduced eta in-
variants. The Bordism formula is a consequence of the Atiyah-Patodi-Singer
index theorem.

8.2. Differential Pushforwards in terms of functors. As a prepara-
tion to the main Subsection 8.3, in this subsection we translate the data of

differential pushforwards into functors from hBordG∇
− (−).
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Definition 8.11. In the above settings, let X be a manifold, k be an integer

and ê ∈ ÊkHS(X; ιE). Let n be an integer with k + n − 1 ≥ 0. Then define
the functor of Picard groupoids,

TG,ê : hBord
G∇
k+n−1(X)→

(
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
,(8.12)

by the following.

• On objects, we set

TG,ê(M, g, f) := (pM , g)∗f∗(ê) ∈ Ê1−n
HS (pt; ιE)(8.13)

• On morphisms, we set

TG,ê([W, gW , fW ]) := cw(R(ê) ∧ ch(G))([W, gW , fW ]).

Here R(ê) ∈ Ωkclo(X;V •
E) is the curvature of ê and we use (4.20).

The well-definedness of the functor follows by the Bordism formula in Fact
8.10.

As is easily shown by the Bordism formula, the formula (8.13) defines the
homomorphism

TG,ê : CG∇
k+n−1(X)→ Ê1−n

HS (pt; ιE).(8.14)

As expected, the transformation (8.12) is induced by the first arrow in
(7.3). To show this, first remark that for any spectrum F and its any
fundamental cycle ιF , the forgetful functor gives the equivalence of Picard
groupoids,

π≤1((F ; ιF )
pt
n ) ≃ π≤1(Fn),(8.15)

where the left hand side means the simplicial fundamental groupoid, whose
objects are differential functions tpt : pt → (F ; ιF )n, and morphisms are
bordism classes of differential functions tI : I → (F ; ιF )n. The right hand
side is the fundamental groupoid for the space Fn, which is equipped with
the structure of a Picard groupoid by [HS05, Example B.7].

We have a functor of Picard groupoids,

ev : π≤1

(
(E; ιE)

pt
1−n

)
→

(
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
,(8.16)

given by assigning the element [tpt] ∈ Ê1−n
HS (pt; ιE) for an object and the

integration of the curvature R([tI ]) ∈ Ω1−n
clo (I;V •

E) for a morphism.

Proposition 8.17. The functor (8.12) of Picard groupoids is naturally iso-
morphic to the following composition,

hBordG∇
k+n−1(X) ≃ π≤1(L(X

+ ∧MTG)1−k−n)
e∧G−−→ π≤1(E1−n)→

(
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
,

(8.18)

where the first arrow is the equivalence in Lemma 3.10, and the last arrow
is the composition of (8.15) and (8.16).

Proof. Choose a differential function t(ê) : X → (Ek; (ιE)k) representing

ê. For each object (M, g, f) in hBordG∇
k+n−1(X), choose a Hopkins-Singer’s
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differential G-structure gHS lifting g. By the discussion in Appendix A.2
and its tangential variant in Appendix A.3, we get a functor

hBordG∇
k+n−1(X)→ π≤1((Ek)

+ ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n)
pt).

(8.19)

Indeed, for objects, given (M, g, f) with the chosen lift gHS, denote the un-
derlying embedding and tubular neighborhood by M ⊂ U ⊂ RN . We have
differential functions f∗t(ê) : M → (E; ιE)k and t(g

HS) : U → (MTG; ιMTG)N−(k+n−1).
Applying the (MTG-version of the) left vertical arrow of (A.28) to them and
using the open embedding U ↪→ RN (the Pontryagin-Thom collapse), we get
the differential function pt→ (Ek ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n).

For morphisms [W, gW , fW ] : (M−, g−, f−) → (M+, g+, f+), choose any
representative (W, gW , fW ) and smooth map pW : W → I (not necessarily
a submersion) so that it coincides with a collar coordinates of each objects
(M±, g±, f±) near the endpoints, respectively. The structure gW induces

gpW , in particular the topological structure gtoppW , on pW . Take any Hopkins-
Singer’s differential tangential BG-oorientation gHS

pW
(Appendix A.3) for pW

which coincides with the chosen lifts at the boundary, and whose underlying
map classifies gtoppW . Then applying the same procedure as that we did for
objects above, we get a differential function I → (Ek ∧MTG1−k−n; (ιE)k ∪
VG(ιMTG)1−k−n) which restricts at the boundary to the ones assigned to
objects above. Since any of the choices we have made is unique up to
bordisms, the resulting morphism in the right hand side of (8.19) is uniquely
determined. This gives the desired functor.

By Definition 8.11 and Proposition A.45, the functor TG,ê coincides with
the composition of (8.19) with

π≤1

(
(Ek ∧MTG1−k−n; (ιE)k ∪ VG(ιMTG)1−k−n)

pt) Ĝ−→ π≤1((E; ιE)
pt
1−n)

(8.20)

ev−→
(
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
.

The fact that it is naturally isomorphic to (8.18) is just the cosequence of the

fact that ê and Ĝ are refinements of e and G, respectively. This completes
the proof. □

8.3. The construction and the proof. In this main subsection, we con-
struct the transformation 7.1 and give a proof to Theorem 7.2. In this
subsection, we fix an integer n so that V 1−n

E = 0. As a preparation, we show

that there exists a canonical homomorphism18

s : IEn(pt)→ HomCh

((
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
, (R→ R/Z)

)
,(8.21)

18The existsnce of a canonical pairing IE−n(pt) ⊗ Ê1−n
HS (pt; ιE) → R/Z is used in

[FMS07, Proposition 6], in particular in the last arrow of the second line of the proof of
that proposition. They do not state any condition on E, but they use the assumption
V 1−n
E = 0 implicitely.
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where HomCh denotes the group of chain maps of complexes of abelian
groups. Indeed, by [HS05, (4.57)], we have a canonical isomorphism19

ker
(
R : Ê∗

HS(−; ιE)→ Ω∗
clo(−;V •

E)
)
≃ E∗−1(−;R/Z).(8.22)

Here, for any abelian group G, the cohomology theory E∗(−;G) is repre-
sented by the spectrum EG := E ∧ SG, where SG is the Moore spectrum.
As explained there, this is because the differential function complexes can
be fits into the homotopy Cartesian square [HS05, (4.12)]. Applied to pt
and ∗ = 1− n, we get the identification

Ê1−n
HS (pt; ιE) = ker

(
R : Ê1−n

HS (pt; ιE)→ V 1−n
E

)
≃ E−n(pt;R/Z).(8.23)

An element β ∈ IEn(pt) = [E,ΣnIZ] induces the element βG ∈ [EG,ΣnIZ∧
SG] for any G, and using IZ ∧ SR ≃ HR and IZ ∧ SR/Z ≃ IR/Z, we get
the induced homomorphisms on pt, which we also denote as

βR : V
−n
E = E−n(pt;R)→ R,(8.24)

βR/Z : Ê
1−n
HS (pt; ιE)

≃−−−→
(8.23)

E−n(pt;R/Z)→ R/Z,(8.25)

The homomorphism (8.24) coincides with the one obtained by the map
IEn(X) → Hom(En(X),R) in (2.5). The homomorphism (8.21) is given
by mapping β to the pair (βR, βR/Z). The well-definedness follows by the
construction.

On the other hand, by Fact 2.6, we have an isomorphism for any spectra
E,

IEn(pt) ≃ π0FunPic (π≤1(E1−n), (R→ R/Z)) .(8.26)

By (8.15), (8.16) and (8.26), we get a homomorphism

ev∗ : π0FunPic
((
V −n
E

a−→ Ê1−n
HS (pt; ιE)

)
, (R→ R/Z)

)
→ IEn(pt).(8.27)

It directly follows from the definition of the identification (8.22) that we
have

id = ev∗ ◦ s : IEn(pt)→ IEn(pt).(8.28)

Definition 8.29 (ΦG). In the settings explained in the introduction20, for
each manifold X we define a homomorphism of abelian groups

ΦG : Ê∗
HS(X; ιE)⊗ IEn(pt)→ (ÎΩGdR)

∗+n(X),(8.30)

by the following. For ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt), set ΦG(ê ⊗ β) :=

(βR(R(ê) ∧ ch(G)), βR/Z ◦ TG,ê) ∈ (ÎΩGdR)
k+n(X), where

• The element βR(R(ê)∧ch(G)) ∈ Ωn+kclo (X;V •
IΩG) is obtained by apply-

ing (8.24) on the coefficient ofR(e)∧ch(G) ∈ Ωkclo(X;H∗(MTG;V •
E)).

• βR/Z ◦ TG,ê is the composition of (8.14) and (8.25).

19This isomorphism does not follow from the axiom of differential cohomology theory
in [BS10]. For more on this point, see [BS10, Section 5].

20Recall that we assumed E1−n(pt)⊗ R = 0 there.
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The fact that the pair (βR(R(ê) ∧ ch(G)), βR/Z(TG,ê)) satisfies the compati-
bility condition follows from the well-definedness of (8.21) and the fact that
TG,e in Definition 8.11 is a functor.

Now we prove Theorem 7.2.

Proof of Theorem 7.2. We use the argument in Subsection 4.2. Recall that,

for an element (ω, h) ∈ (ÎΩGdR)
N (X) we associated a functor F(ω,h) : hBord

G∇
N−1(X)→

(R→ R/Z) in (4.51). The natural isomorphism

IΩG ≃ IΩGdR,(8.31)

where for the former we use the model of IZ by Fact 2.6, was given as follows.

Using Lemma 3.10, we have (IΩG)N (X) = π0FunPic

(
π≤1(hBord

G∇
N−1(X)→ (R→ R/Z)

)
.

The map (8.31) is given by mapping the isomorphism class of the functor
F(ω,h) to I(ω, h) ∈ (IΩGdR)

N (X).

Now fix ê ∈ ÊkHS(X; ιE) and β ∈ IEn(pt). By Definitions 8.29 and 8.11,
the functor associated to ΦG(ê⊗β) coincides with the following composition.

FΦG(ê⊗β) : hBord
G∇
k+n−1(X)

TG,ê−−→
(
V −n
E

a−→ Ê1−n
HS (pt; ιE)

) s(β)=(βR,βR/Z)−−−−−−−−−→ (R→ R/Z).

(8.32)

Combining this with Proposition 8.17 and (8.28), we see that, under the

equivalence hBordG∇
k+n−1(X) ≃ π≤1(L(X

+ ∧MTG)1−k−n), (8.32) coincides
with

π≤1(L(X
+ ∧MTG)1−k−n)

e∧G−−→ π≤1(E1−n)
β−→ (R→ R/Z),

up to a natural isomorphism. This completes the proof of Theorem 7.2. □

8.4. Examples.

8.4.1. The holonomy theory (1) : Example 4.59. Here we explain the “Ho-
lonomy theory (1)” in Example 4.59. This corresponds to the case E = HZ,
G = τ : MTSO→ HZ is the usual orientation, and n = 0.

Recall that, given a manifold X and a hermitian line bundle with unitary
connection (L,∇) over X, we get the element

(c1(∇),Hol∇) ∈ (ÎΩSO
dR)

2(X).(8.33)

On the other hand, in the case E = HZ we have the canonical choice of
an element in IHZ0(pt), namely the Anderson self-duality element γH ∈
IHZ0(pt). Thus we have the homomorphism

Φτ (−⊗ γH) : Ĥ2(X;Z)→ (ÎΩSO
dR)

2(X).

Using the model of ĤZ
2
in terms of hermitian vector bundles with U(1)-

connections (for example see [HS05, Example 2.7]), the pair (L,∇) defines

a class [L,∇] ∈ Ĥ2(X;Z). We have the following.

Proposition 8.34. We have the following equality in (ÎΩSO
dR)

2(X),

(c1(∇),Hol∇) = Φτ ([L,∇]⊗ γH).(8.35)
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Moreover, the element I(c1(∇),Hol∇) ∈ (IΩSO
dR)

2(X) coincides with the fol-
lowing composition,

X+ ∧MTSO
c1(L)∧τ−−−−−→ Σ2HZ ∧HZ multi−−−→ Σ2HZ γH−−→ Σ2IZ.

Proof. The last statement follows from (8.35) and Theorem 7.2. The equal-
ity (8.35) follows from the fact that the self-duality element γH induces the

canonical isomorphism Ĥ1(pt;Z) ≃ R/Z and H0(pt;Z) ≃ R, together with
the following well-known facts about ĤZ (for example see [HS05, Section

2.4]). The element [L,∇] ∈ Ĥ2(X;Z) satisfies

γH ◦R([L,∇]) = c1(∇) ∈ Ω2(X),

and, given a map f : M → X from an oriented 1-dimensional closed manifold

(M, g), the pushforward (pM , g)∗ : Ĥ2(M ;Z)→ Ĥ1(pt;Z) γH−−→
≃

R/Z

γH ◦ (pM , g)∗f∗[L,∇] = Holf∗∇.

□

8.4.2. The classical Chern-Simons theory : Example 4.61. Here we explain
the classical Chern-Simons theory which appeared in Example 4.61. This
is essentially a generalization of Subsection 8.4.1, corresponding to the case
E = HZ, G = τ : MTSO→ HZ is the usual orientation, and n = 0.

Recall that, given a compact Lie groupH and an element λ ∈ Hn(BH;Z),
the corresponding classical Chern-Simons theory of level λ is defined by
choosing an (n + 1)-classifying object (E ,B,∇E) in the category of man-
ifolds with principal H-bundles with connections, and fixing an element

λ̂ ∈ Ĥn(B;Z) lifting λ. Then we have the element

(1⊗ λR, hCS
λ̂
) ∈ ( ̂IΩSO×H

dR )n(pt),(8.36)

whose equivalence class in (IΩSO×H
dR )n(pt) does not depend on the lift λ̂.

Proposition 8.37. The element I(1⊗λR, hCS
λ̂
) ∈ (IΩSO×H

dR )n(pt) coincides
with the following composition,

BH+ ∧MTSO
λ∧τ−−→ ΣnHZ ∧HZ multi−−−→ ΣnHZ γ−→ ΣnIZ.

Proof. The classifying map induces an equivalence π≤1(L(B+∧MTSO)n−1) ≃
π≤1(L(BH

+∧MTSO)n−1). Moreover, by the pullback of the universal con-
nection ∇E it is refined to a functor of Picard groupoids,

hBordSOn−1(B)
≃−→ hBordSO×H

n−1 (pt)(8.38)

which is naturally isomorphic to the above one under the equivalences hBordSOn−1(X) ≃
π≤1(L(X

+ ∧MTSO)n−1).
We have the element

Φτ (λ̂⊗ γH) ∈ (ÎΩSO
dR)

n(B).(8.39)

Recall that an element (ω, h) ∈ (ÎΩGdR)
n(X) associates a functor F(ω,h) : hBord

G∇
n−1(X)→

(R→ R/Z) by (4.51). We claim that the functors associated to the elements
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(8.39) and (8.36) are related by

F
Φτ (λ̂⊗γH)

: hBordSOn−1(B)
(8.38)−−−→ hBordSO×H

n−1 (pt)
F(1⊗λR,hCS

λ̂
)

−−−−−−−−→ (R→ R/Z).

Indeed, this follows from the fact that the Chern-Simons invariants are given
by the pushforward in differential ordinary cohomology (4.63). Applying
Theorem 7.2 to the element (8.39), we get the result. □

8.4.3. The theory of massive free complex fermions : Example 4.67. Here we
explain the example of the theory on massive free complex fermions which
appeared in Example 4.67. This example corresponds to the case E = K,
G = ABS: MTSpinc → K and n = 0.

Recall that, given a hermitian vector bundle with unitary connection
(W,∇W ) over a manifold X, we get an element

(
(Ch(∇W )⊗ Todd)|2k, η∇W

)
∈
(

̂
IΩSpinc

ph

)2k

(X) ≃
(

̂
IΩSpinc

dR

)2k

(X).

On the other hand, in the case E = K we have the canonical choice of an
element in IK0(pt), namely the self-duality element γK ∈ IK0(pt). Thus
we have the homomorphism

ΦABS(−⊗ γK) : K̂2k(X)→ (
̂
IΩSpinc

dR )2k(X).(8.40)

Using the model of K̂ in terms of hermitian vector bundles with unitary
connections by Freed-Lott ([FL10]), we have the class [W,hW ,∇W , 0] ∈
K̂0(X) ≃ K̂2k(X).

Proposition 8.41. We have the following equality in (
̂
IΩSpinc

dR )2k(X),

((Ch(∇W )⊗ Todd)|2k, η̄∇W ) = ΦABS([W,h
E ,∇E , 0]⊗ γK).(8.42)

Moreover, the element I((Ch(∇W )⊗Todd)|2k, η̄∇W ) ∈ (IΩSpinc)2k(X) coin-
cides with the following composition,

X+ ∧MTSpinc
[E]∧ABS−−−−−→ K ∧K multi−−−→ K

Bott−−−→
≃

Σ2kK
γK−−→ Σ2kIZ.

Proof. The last statement follows from (8.42) and Theorem 7.2. Denote
the Bott element by u ∈ K−2(pt). The equality (8.42) follows from the
fact that the self-duality element γK induces the canonical isomorphism

K̂1(pt) ≃ R/Z and K0(pt) ≃ Z, together with the following facts about K̂

in [FL10]. The element [W,hW ,∇W , 0] ∈ K̂0(X) satisfies

R([W,hE ,∇E , 0]) = Ch(∇W ) ∈ Ω0(X;V •
K) = Ω0(X;R[u, u−1]),

and, given a map f : M → X from an oriented (2k − 1)-dimensional closed

manifold with a physical Spinc-structure (M, g), the pushforward (pM , g)∗ : K̂0(M)→
K̂−2k+1(pt) is given by

(pM , g)∗f∗[W,hW ,∇W , 0] = η̄∇W (M, g, f) · uk ∈ K̂−2k+1(pt) = (R/Z) · uk.
□
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Remark 8.43. In the examples in this subsection, we used the Anderson self-
duality elements in IEn(pt) for E = HZ,K. However, the results in this
subsection do not use the self-duality, and indeed there are many other inter-
esting examples given by non-self-duality elements in IEn(pt). For example,
in the analysis of anomalies of the heterotic string theories in [TY21], we
encounter such examples when E = TMF and E = KO((q)) with the Witten
genus G = Wit: MTString→ TMF and G = WitSpin : MTSpin→ KO((q)).

Appendix A. Differential pushforwards for proper submersions

As mentioned in Subsection 8.1, there are certain subtleties regarding the
formulations of differential pushforwards. In this appendix, we explain that
there is a nice theory on differential pushforwards for proper submersions
under the assumption that E is rationally even. The author believe that
the results in this Appendix well-known among experts. It is convenient to

start with multiplicative differential extensions Ê which are not necessarily
the one given by the Hopkins-Singer. The minimal requirements for the

differential extension Ê are,

• For real vector bundles V → X over manifolds, the properly sup-
ported differential cohomology groups

Ê∗
prop/X(V )(A.1)

are defined with a module structure over Ê∗(X), so that they refine
properly supported cohomologies and forms.
• If we have a vector bundle W → N and we have an open embedding
ι : W ↪→ V in the total space of another vector bundle V → X, we
have the corresponding map

ι∗ : Ê∗
prop/N (W )→ Ê∗

prop/X(V ),

refining the topological and form counterparts.
• We have the desuspension map,

desusp: Ê∗
prop/X(R

k ×X)→ Ê∗−k(X),

refining the topological and form counterparts.

Since we are assuming E is rationally even, the Hopkins-Singer’s differ-

ential extension Ê∗
HS(−; ιE) admits a canonical multiplicative structure by

[Upm15], and the above properties are also satisfied.

A.1. The normal case. In this subsection we explain the normal case. The
content of this subsection basically follows the unpublished survey by Bunke
[Bun12, Section 4.8–4.10]. Let G and E be multiplicative with E rationally
even, and assume we are given a homomorphism of ring spectra,

G : MG→ E,(A.2)

where MG is the Thom spectrum. Then for each real vector bundle V of
rank r over a topological space X equipped with a stable G-structure gtop,
we get the Thom class ν ∈ Er(V ), where we denote V := Thom(V ). Its
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multiplication gives the Thom isomorphism E∗(X) ≃ E∗+r(V ). Its Chern-
Dold character is an element ch(ν) ∈ Hr(V ;V •

E). We set

Td(ν) :=

∫

V/X
ch(ν) ∈ H0(X; Ori(V )⊗R V

•
E).

Definition A.3 (Differential Thom classes, Td(ν̂), homotopy). Let V be
a smooth real vector bundle over a manifold M of rank r equipped with a
stable G-structure gtop.

(1) A differential Thom class ν̂ ∈ Êrprop/M (V ) is an element such that

I(ν̂) ∈ Êrprop/M (V ) is the Thom class for (V, gtop).

(2) For such a ν̂, we define

Td(ν̂) :=

∫

V/M
R(ν̂) ∈ Ω0

clo(M ; Ori(V )⊗R V
•
E).(A.4)

(3) A homotopy between two differential Thom classes ν̂0 and ν̂1 is a

differential Thom class ν̂I ∈ Êrprop/(I×M)(I × V ) for pr∗MV with

ν̂I |{i}×V = ν̂i for i = 0, 1 such that

Td(ν̂I) = pr∗MTd(ν̂0).(A.5)

The homotopy class of ν̂ is denoted by [ν̂].

In particular, if ν̂0 and ν̂1 are homotopic, we have Td(ν̂0) = Td(ν̂1). Thus
we use the notation Td([ν̂]) ∈ Ω0

clo(M ; Ori(V )⊗R V
•
E).

Lemma A.6. Let M and (V, gtop) be as before, and ν be the Thom class
for (V, gtop). Assume we are given an element ω ∈ Ω0

clo(M ; Ori(V ) ⊗R V
•
E)

such that Rham(ω) = Td(ν).

(1) There exists a differential Thom class ν̂ with Td(ν̂) = ω.
(2) The set of homotopy classes [ν̂] of differential Thom classes with

Td([ν̂]) = ω is a torsor over

H−1(M ; Ori(V )⊗R V
•
E)

Td(ν) ∪ a(E−1(M))
.(A.7)

Proof. The proof is in [Bun12, Problem 4.186], and essentially the same
proof appears in [GS21, Proposition 49] in the case of KO-theory. We need
the orientation bundles here because we allow G to be un-oriented. □

If V is equipped with a stable differential G-structure g, applying the
Chern-Weil construction (4.18) to ch(G) ∈ H0(MG;V •

E), we have

cwg(ch(G)) ∈ Ω0
clo(M ; Ori(V )⊗R V

•
E).(A.8)

This satisfies Rham(cwg(ch(G))) = Td(ν).

For (V, gV ) of rank r represented by g̃V = (d, P,∇, ψ : P ×ρd Rd ≃ Rd−r⊕
V ) with d ≥ r + 1, we associate a differential stable G-structure gR⊕V on

R⊕ V which is represented by (d, P,∇, ψ : P ×ρd Rd ≃ Rd−r−1 ⊕ (R⊕ V )).

For a topological stable G-structure gtopV , we define gtopR⊕V in the same way.
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If we have a homotopy class of diffential Thom classes [ν̂R⊕V ] for (R ⊕
V, gtopR⊕V ), the integration

∫

R
[ν̂R⊕V ]

defines a well-defined homotopy class of differential Thom classes for (V, gtopV ).
Moreover, by Lemma A.6, the above integration gives a bijection between
the sets of homotopy classes of diffential Thom classes for (R⊕V, gtopR⊕V ) and

for (V, gtopV ).

Proposition A.9. 21 There exists a unique way to assign a homotopy class

[ν̂(g)] of differential Thom classes ν̂(g) ∈ ÊrankV
prop/M (V ) to every real vector

bundle with differential stable G-structure (V, g)→M such that the following
three conditions hold.

(1) It is compatible with pullbacks.
(2) We have

∫
R[ν̂(gR⊕V )] = [ν̂(gV )].

(3) We have cwg(ch(G)) = Td([ν̂(g)]).

Moreover, the resulting homotopy class [ν̂(g)] only depends on the homotopy
class (Definition 3.1 (4)) of differential stable G-structure g.

Proof. By the condition (2), it is enough to consider only (V, g) such that
g is represented by a representative of the form g̃ = (rank(V ), P,∇, ψ), i.e.,
without stabilization.

The proof basically follows that for [Bun12, Problem 4.197]. Suppose
we have (V, g) of rank r over M with dimM = n with a representative
g̃ = (r, P,∇, ψ). Take a manifold B with an (n+1)-connected map B → BGr.

We can factor the classifying map for P as M
f−→ B → BGr with f smooth.

Take a Gr-connection ∇B on the pullback P → B of the universal bundle,
and denote by the resulting differential G-structure on V := P ×Gr Rr by
gV . We have maps fP : P → P and fV : V → V covering f . We may assume
that gV pulls back to g by (f, fP , fV ).

The difference of any two choices of the homotopy classes [ν̂(gV)] of differ-

ential Thom classes on (V, gV) is measured by an element in
H−1(B;Ori(V)⊗RV •

E)

Td(ν(gV ))∪a(E−1(B))
by Proposition A.6. The pullback map f∗ : H−1(B; Ori(V)⊗RV

•
E)→ H−1(M ; Ori(V )⊗R

V •
E) is zero because B → BGr is (n+1)-connected and we haveH−1(BGr; (EGr×Gr

RGr) ⊗R V
•
E) = 0 since E is rationally even. Thus, taking any homotopy

class [ν̂(gV)] of differential Thom classes for (V, gV), the pullback

f∗V [ν̂(gV)](A.10)

defines a homotopy class of differential Thom classes for (V, g) which does
not depend on the choice of [ν̂(gV)]. By the condition (1) and (2), we are
forced to define the required homotopy class as

[ν̂(g)] := f∗V [ν̂(gV)],(A.11)

21In the proof we use the assumption that E is rationally even. However, by a small
modification of the proof, this assumption can be weakened to H−1(MG;V •

E) = 0. As a
result, the results in this subsection hold under this weaker condition. The same remark
applies to Proposition A.35.
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by taking any [ν̂(gV)] on (V, gV).
We need to check that the element (A.11) does not depend on the other

choices made above. But this easily follows from the cofinality of such
choices. Namely, given two choices with the underlying manifolds fi : M →
Bi for i = 1, 2, we may take another B with maps gi : Bi → B so that
g1 ◦ f1 = g2 ◦ f2, and other data on B which pulls back to those given on
Bi. From this, we conclude that the elements (A.11) defined using B1 and
B2 coincide with the one defined using B, so the element (A.11) is well-
defined. By the arguments so far, they satisfy the required conditions and
the uniqueness.

For the last statement, changing a differential stable G-structure g on V
to a homotopic one amounts to changing the vector bundle map fV : V →
V by a homotopy while fixing f and fP in the above procedure. Pulling
back the homotopy class [ν̂(gV)] by such a homotopy, we get a homotopy of
differential Thom classes between the differential Thom classes pulled back
at the endpoints. This completes the proof. □

Now we turn to differential pushforwards for proper submersions. Let
p : N → X be a proper submersion between manifolds of relative dimension
r, and assume it is equipped with a differential stable normal G-structure
g⊥p (Definition 4.80) on the relative tangent bundle T (p). Take a represen-

tative g̃⊥p = (k, P,∇, ψ) of g⊥p . It induces a differntial stable G-structure on

P ×Gk−r
Rk−r which we denote gP , represented by g̃P = (k − r, P,∇, id).

By Proposition A.9 we have a differential Thom class whose homotopy class
[ν̂(gP )] is canonically determined,

ν̂(gP ) ∈ Êk−rprop/N (P ×Gk−r
Rk−r)(A.12)

If we stabilize k to k + 1, the homotopy classes of (A.11) are related as
Proposition A.9 (2).

Now, choose an embedding ι : N ↪→ Rk ×X over X (i.e., prX ◦ ι = p) for
k large enough, a tubular neighborhood W of N in Rk × X with a vector
bundle structureW → N so that it is a map over X (this is possible because
p is a submersion). Replacing k larger if necessary, choose an isomorphism
ψW : W ≃ P ×Gk−r

Rk−r of vector bundles over N so that the isomorphism

(P ×Gk−r
Rk−r) ⊕ T (p) ψ−1

W ⊕id−−−−−→ W ⊕ T (p) ≃ Rk is homotopic to ψ. The
isomorphism ψW induces a differential stable G-structure gW on W , and
the element (A.12) induces a differential Thom class on (W, gW ) denoted by

ν̂(gW ) := ψ∗
W ν̂(gP ) ∈ Êk−rprop/N (W ).(A.13)

We consider the composition,

Ên(N)
·ν̂(gW )−−−−→ Ên+k−rprop/N (W )

ι∗−→ Ên+k−rprop/X(R
k ×X)

desusp−−−−→ Ên−r(X),(A.14)

where the first map uses the module structure of the properly supported Ê,
and the middle arrow is induced by the open embedding W ↪→ Rk ×X.

Proposition A.15. The composition (A.14) only depends on the differential
stable normal G-structure g⊥p on T (p).
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Proof. The above procedure includes the following ambigiuities : the choice
of ν̂(gP ) representing [ν̂(gP )] and the choice of the data of embedding with
a tubular neighborhood and an isomorphism ψW . The independence on ψW
directly follows from the last statement of Proposition A.9.

First we show the independence on the choice of ν̂(gP ), with the other data
fixed. Since its homotopy class [ν̂(gP )] is fixed by Proposition A.9, any two

choices ν̂i(gP ), i = 0, 1, are connected by a homotopy ν̂I ∈ Êk−rprop/(I×N)(I ×
(P ×Gk−r

Rk−r)). Its pullback by ψW gives a homotopy ν̂I×W := ψ∗
W ν̂I

between the corresponding differential Thom classes on (W, gW ). Denote
the inclusion by it : N ≃ {t} × N ↪→ I × N for t = 0, 1. Consider the
following commutative diagram,

Ωn(I ×N ;V •
E)
∧R(ν̂I×W )// Ωn+k−rprop/(I×N)(I ×W ;V •

E)

∫
(I×W )/(I×X) // Ωn−r(I ×X;V •

E)

∫
(I×X)/X// Ωn−r−1(X;V •

E)

a

��

Ên(I ×N)
·ν̂I×W //

R

OO

Ên+k−rprop/(I×N)(I ×W )
(desusp)◦(idI×ι)∗ //

R

OO

Ên−r(I ×X)

R

OO

i∗1−i∗0 // Ên−r(X)

.

(A.16)

The commutativity of the middle square is because the vector bundle struc-
ture W → N is a map over X. The commutativity of the right square is by
the homotopy formula ([BS10, Lemma 1]).

Take any element ê ∈ Ên(N). Then the image of pr∗N ê ∈ Ên(I×N) under
the composition of the bottom arrows in (A.16) is equal to the difference of

the elements in Ên−r(X) obtained by applying to ê the composition (A.14)
using ν̂0(gP ) and ν̂1(gP ). By the commutativity of (A.16), it is enough to
check that the element R(pr∗N ê) ∈ Ωnclo(I ×N ;V •

E) maps to zero under the
composition of the top arrows in (A.16). Indeed, since W → N is a map
over X, we can factor the upper middle horizontal integration in (A.16) on
I ×N , and the result is equal to

∫

(I×X)/X

∫

(I×N)/(I×X)
pr∗NR(ê) ∧

∫

(I×W )/(I×N)
R(ν̂I×W ),(A.17)

and by (recall (A.5))
∫

(I×W )/(I×N)
R(ν̂I×W ) = Td(ν̂I×W ) = pr∗NTd(ν̂0(gP )),

so (A.17) is equal to
∫

(I×X)/X
pr∗X

∫

N/X
R(ê) ∧ Td(ν̂0(gP )) = 0,

as desired. Thus we conclude that, fixing the data of an embedding with a
tubular neighborhood, the composition (A.14) only depends on the homo-
topy class [ν̂(gP )].

Now consider the stabilization of the embeddings, increasing k to (k+1)
and W to R ⊕W . By the condition (2) in Proposition A.9 and the result
so far, we also conclude that the composition (A.14) is invariant under this
stabilization.
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The desired independence of (A.14) on the remaining choices is also
proved in a parallel way, by choosing corresponding objects on the cylin-
der so that they restrict to stabilizations of the given ones on the endpoints.
This completes the proof of Proposition A.15.

□

Thus we define the following.

Definition A.18. Let p : N → X be a proper submersion of relative di-
mension r, equipped with a differential stable normal G-structure g⊥p on the
relative tangent bundle T (p). We define the differential pushforward map,

(p, g⊥p )∗ : Ê
n(N)→ Ên−r(X)

to be the composition (A.14). This does not depend on any choices by
Proposition A.15.

By the construction, the following diagram commutes.

Ωn−1(N ;V •
E)/im(d)

a //

∫
N/X −∧cw

g⊥p
(ch(G))

��

Ên(N)

(p,g⊥p )∗
��

I //

R

**
En(N)

(p,g⊥,top
p )∗

��

Ωnclo(N ;V •
E)

∫
N/X −∧cw

g⊥p
(ch(G))

��
Ωn−r−1(X;V •

E)/im(d)
a // Ên−r(X)

I //

R
44

En−r(X) Ωn−rclo (X;V •
E)

.

(A.19)

In this sense, Definition A.18 refines the pushforwards on E∗ and Ω∗(−;V •
E).

An important property of differential pushforwards is the Bordism for-
mula [Bun12, Problem 4.235], which says that if we have a bordism (W, g⊥W ) : (M−, g⊥−)→
(M+, g

⊥
+), the differential pushforwards at the boundary can be computed

by the integration of the characteristic form on the bordism. Its normal
variant is stated in the form we use in this paper as Fact 8.10. To prove it,
we need to consider differential pushforwards for proper maps which is not
submersions, namely boundary defining functions W → I. The result easily
follows by the homotopy formula ([BS10, Lemma 1]). For the details of the
proof we refer [Bun12, Problem 4.235].

A.2. Differential pushforwards in Hopkins-Singer’s differential ex-
tensions. Now we turn to the Hopkins-Singer’s differential extensions. As
we explain, the definition of differential pushforwards in [HS05] differs from
the one in Subsection A.3. In this subsubsection, we clarify their relation in
the settings of our interest (Proposition A.33).

Fix fundamental cocycles ιE ∈ Z0(E;V •
E) and ιMG ∈ Z0(MG;V •

MG) for
E and MG, respectively. Since E is rationally even, the Hopkins-Singer’s

model Ê∗
HS(−; ιE) admits a canonical multiplicative structure by [Upm15].

We briefly explain it here. We only explain the even-degrees. The remain-
ing cases are induced by requiring the compatibility with the S1-integration.
Let n and m be even integers, and denote by µnm : En∧Em → En+m a mul-

tiplication map. We need to choose a reduced cochain cnm ∈ C̃n+m−1(En ∧
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Em;V
•
E) so that

δcnm = ιn ∪ ιm − µ∗nmιn+m.(A.20)

Since E is rationally even, we have H̃n+m−1(En ∧Em;V •
E) = 0 by the proof

of [BS10, Lemma 3.8]. Thus any two choices of such cochains cnm differ
by a coboundary. Using cnm we get the map of differential function spaces
([HS05, Remark 4.17]),

(En ∧ Em; (ιE)n ∪ (ιE)m)
M → (E; ιE)

M
n+m,(A.21)

for any manifold M . Also choose a natural cochain homotopy B : Ωn(−)⊗
Ωm(−)→ Cn+m−1(−) cobounding the difference between ∧ on forms and ∪
on singular cochains as in [HS05, (3.8)], [Upm15, Section 6]. Any two such
choices are naturally cochain homotopic. It induces the map

(E; ιE)
M
n × (E; ιE)

M
m → (En ∧ Em; (ιE)n ∪ (ιE)m)

M ,(A.22)

for any M . Combining (A.21) and (A.22), we get the multiplication map,

· : ÊnHS(M ; ιE)⊗ ÊmHS(M ; ιE)→ Ên+mHS (M ; ιE).(A.23)

This does not depend on any of the choices above. For a real vector bundle
V → M , in the same way we get a map using the properly supported
differential functions ([HS05, Section 4.3])

(E; ιE)
M
n × (E; ιE)

V
m → (E; ιE)

V
n+m,(A.24)

which gives the module structure,

· : ÊnHS(M ; ιE)⊗ ÊmHS,prop/M (V ; ιE)→ Ên+mHS,prop/M (V ; ιE).(A.25)

As we mentioned in Subsection 8.1, Hopkins-Singer’s normal differential
BG-orientations are defined in terms of differential functions to (MG; ιMG).
A differential pushforward is defined by fixing a map of differential function
spaces

Ĝ :
(
MG−r ∧ (En)

+;VG(ιMG)−r ∪ ιE
)
→ (E; ιE)n−r.(A.26)

whose underlying map factors as MG−r ∧ (En)
+ G∧id−−−→ E−r ∧ (En)

+ µ−r,n−−−→
En−r. Here VG : V •

MG → V •
E is induced by G, so that VG(ιMG) ∈ Z0(MG;V •

E)
represents ch(G). We can take a cG ∈ C−1(MG;V •

E) so that δcG = G∗ιE −
VG(ιMG), and it is determined up to coboundary becauseH−1(MG;V •

E) = 0.
We may take (A.26) to be the composition

Ĝ :
(
MG−r ∧ (En)

+;VG(ιMG)−r ∪ (ιE)n
)
→ (E−r ∧ En; (ιE)−r ∪ (ιE)n)

(A.21)−−−−→ (E; ιE)n−r,

(A.27)
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where the first map uses cG . Let V → M be a real vector bundle, and
consider the following diagram.

(MG; ιMG)
V
−r × (E; ιE)

M
n

//

��

(E; ιE)
V
−r × (E; ιE)

M
n

��

(A.24)

))
(MG−r ∧ (En)

+;VG(ιMG)−r ∪ (ιE)n)
V //

Ĝ

22(E−r ∧ En; (ιE)−r ∪ (ιE)n)
V // (E; ιE)

V
n−r

(A.28)

Here the top horizontal arrow uses cG , the left vertical arrow uses the cochain
homotopy B, and the remaining arrows are as before. The two triangles
commute. The square does not commute on the level of differential function
spaces, but we can easily check that the difference is a coboundary so the
induced maps on the differential cohomology level,

(M̂G)−rHS,prop/M (V ; ιMG)⊗ ÊnHS(M ; ιE)→ Ên−rHS,prop/M (V ; ιE)(A.29)

are the same. Using the top factorization of (A.28), we see that (A.29)
factors as

(M̂G)−rHS,prop/M (V ; ιMG)⊗ ÊnHS(M ; ιE)→ Ê−r
HS,prop/M (V ; ιE)⊗ ÊnHS(M ; ιE)

·−→ Ên−rHS,prop/M (V ; ιE)

(A.30)

To put them into the picture in Subsection A.1, apply the discussions
there in the case E = MG and G = id: MG→MG. Assume that we have
a proper submersion p : N → X equipped with a differential stable normal
G-structure g⊥p on the relative tangent bundle T (p), represented by g̃⊥p =
(k, P,∇, ψ). A Hopkins-Singer’s normal differential BG-orientation ([HS05,

Section 4.9.2]) g⊥,HS
p consists of choices of an embedding N ↪→ Rk ×X over

X, a tubular neighborhood with a vector bundle structure W → N , an
isomorphism ψW : W ≃ P ×Gk−r

Rk−r as in Subsection A.1 (in general
W → N is not required to be a map over X), and a lift of a classifying map

for the induced G-structure (W, gtopW ) on W → N to a differential function

t(g⊥,HS
p ) : W → (MGk−r; (ιMG)k−r). Then, the differential function t(g

⊥,HS
p )

represents a differential Thom class for (W, gtopW ),
〈
t(g⊥,HS

p )
〉
∈ (M̂G)k−rHS,prop/N (W ; ιMG),(A.31)

where we denoted by ⟨(c, h, ω)⟩ the differential cohomology class represented
by a differential function (c, h, ω). Now we define the following.

Definition A.32. Let p : N → X be a proper submersion between mani-
folds of relative dimension r, and assume it is equipped with a differential
stable normal G-structure g⊥p on T (p). A Hopkins-Singer’s normal differ-

ential BG-orientation g⊥,HS
p is said to be a lift of g⊥p if, in the notations

above,

• The vector bundle structure W → N is a map over X, and
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• The homotopy class
[〈
t(g⊥,HS

p )
〉]

of the differential Thom class
〈
t(g⊥,HS

p )
〉
is the one associated to gW by Proposition A.9 (applied

to E =MG).

In particular, this means that,

cwgW (ch(idMG)) = Td
(〈
t(g⊥,HS

p )
〉)

:=

∫

W/N
R
(〈
t(g⊥,HS

p )
〉)

.

where ch(idMG) ∈ H0(MG;V •
MG).

Now assume we are given an element ê ∈ ÊnHS(N ; ιE). Then, in [HS05,
Section 4.10] the differential pushforward of ê is formulated as follows. Take
a differential function t(ê) : N → (E; ι)n representing ê. Apply the left
bottom composition of (A.28) for the vector bundle W → N to the pair

(t(g⊥,HS
p ), t(ê)) to get a differential function in (E; ιE)

W
n+k−r. By the open

embedding W ↪→ Rk × X we get a differential function in (E, ιE)
Rk×X
n+k−r,

and this represents the desired element (p, g⊥,HS
p )∗ê ∈ Ên−rHS (X; ιE). By the

discussion so far, the result is the same if we use the top right composition
in (A.28), and it is given by the composition (A.30). Then we see that

the above definition of (p, g⊥,HS
p )∗ê exactly translates into the definition of

differential pushforwards (A.14) in the Subsection A.1. Thus we conclude
that

Proposition A.33. In the settings of Definition A.32, the differential push-

forward map (p, g⊥p )∗ : Ê
∗
HS(N ; ιE) → Ên−rHS (X; ιE) in Definition A.18 ap-

plied to ÊnHS(−; ιE) coincides with the differential pushforward map (p, g⊥,HS
p )∗

in [HS05] as long as we use g⊥,HS
p lifting g⊥p .

A.3. The tangential case. Now we explain the tangential variants of the
last Subsections A.1 and A.2. The constructions and verifications are par-
allel to the normal case, so we go briefly.

In this case, we are given a homomorphism of ring spectra,

G : MTG→ E,(A.34)

where MTG is the Madsen-Tillmann spectrum. MTG is constructed as a
direct limit of Thom spaces of stable normal bundles to the universal bun-
dles over approximations of BGd’s, so classifies vector bundles with stable
normal G-structures. Then for each real vector bundle V of rank r over a
topological space X equipped with a topological stable normal G-structure
g⊥,top, we get the Thom class ν ∈ Er(V ), whose multiplication gives the
Thom isomorphism E∗(X) ≃ E∗+r(V ).

We formulate the notion of differential Thom classes as a differential re-
finements of the Thom classes, as well as differential forms Td(ν̂) and ho-
motopies in the same way as Definition A.3. By the exactly the same proof,
the classification result of differential Thom classes corresponding to Lemma
A.6 also holds in the case here. The Chern-Dold character for (A.34) is an
element ch(G) ∈ H0(MTG;V •

E). If V → M is equipped with a stable nor-

mal G-structure g⊥, the characteristic form (A.8) is replaced by the form
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cwg⊥(ch(G)), where we use the Chern-Weil construction in (4.83). Then,
the same proof as that of Proposition A.9 shows the following.

Proposition A.35. There exists a unique way to assign a homotopy class

[ν̂(g⊥)] of differential Thom classes ν̂(g⊥) ∈ ÊrankV
prop/M (V ) to every real vector

bundle with differential stable normal G-structure (V, g⊥) → M such that
the following three conditions hold.

(1) It is compatible with pullbacks.
(2) We have

∫
R[ν̂(g

⊥
R⊕V )] = [ν̂(g⊥V )].

(3) We have cwg⊥(ch(G)) = Td([ν̂(g⊥)]) :=
∫
V/M R(ν̂(g⊥)).

Moreover, the resulting homotopy class [ν̂(g⊥)] only depends on the homo-
topy class (Definition 4.80 (4)) of differential stable normal G-structure g⊥.

Let p : N → X be a proper submersion between manifolds of relative di-
mension r, equipped with a differential stable G-structure gp on the relative
tangent bundle T (p) represented by g̃p = (d, P,∇, ψ). Choose an embedding

ι : N ↪→ Rk×X over X for k large enough, a tubular neighborhood W of N
in Rk ×X with a vector bundle structure W → N so that it is a map over
X (this is possible because p is a submersion). Then we get an isomorphism

ψW : (P ×Gd
Rd)⊕W ≃ Rd−n ⊕ T (p)⊕W ≃ Rd−n+k(A.36)

of vector bundles over N . As a result, we get a differential stable normal
G-structure g⊥W on the vector bundle W → N , represented by g̃⊥W = (d −
n+k, P,∇, ψW ). For g⊥W , Proposition A.35 assigns a differential Thom class
whose homotopy class is canonically determined,

ν̂(g⊥W ) ∈ Êk−rprop/N (W ).(A.37)

We consider the composition,

Ên(N)
·ν̂(g̃⊥W )−−−−→ Ên+k−rprop/N (W )

ι∗−→ Ên+k−rprop/X(R
k ×X)

desusp−−−−→ Ên−r(X).(A.38)

The following proposition can be shown in the same way as Proposition
A.15.

Proposition A.39. The composition (A.38) only depends on the differential
stable G-structure gp on T (p).

Proposition A.39 allows us to define the following.

Definition A.40. Let p : N → X be a proper submersion between mani-
folds of relative dimension r, equipped with a differential stable G-structure
gp on the relative tangent bundle T (p). We define the differential pushfor-
ward map,

(p, gp)∗ : Ên(N)→ Ên−r(X)

to be the composition (A.38).

Now we turn to the Hopkins-Singer’s models as in Subsection A.2. Take
fundamental cocycles ιE and ιMTG for E and MTG, respectively. As ex-

plained there, Ê∗
HS(−; ιE) admits a canonical multiplicative structure. In the
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normal case, a differential pushforward is defined by a map of differential
function spaces

Ĝ :
(
MTG−r ∧ (En)

+;VG(ιMTG)−r ∪ ιE
)
→ (E; ιE)n−r.(A.41)

whose underlying map factors as MTG−r ∧ (En)+ G∧id−−−→ E−r ∧ (En)+
µ−r,n−−−→

En−r. By the same argument to the normal case, the map (A.41) induces
the map of differential cohomologies for any real vector bundle V →M ,

(M̂TG)−rHS,prop/M (V ; ιMTG)⊗ ÊnHS(M ; ιE)→ Ê−r
HS,prop/M (V ; ιE)⊗ ÊnHS(M ; ιE)

·−→ Ên−rHS,prop/M (V ; ιE).

(A.42)

Let p : N → X be a proper submersion between manifolds of relative
dimension r, equipped with a differential stable G-structure gp on the rel-
ative tangent bundle T (p) represented by g̃p = (d, P,∇, ψ). A Hopkins-
Singer’s tangential differential BG-orientation gHS

p consists of choices of

an embedding N ⊂ Rk × X, a tubular neighborhood W , a vector bun-
dle structure W → N as in the first part of this subsection (in general
W → N is not required to be a map over X), and a lift of a classifying

map for (W, g⊥,topW ) of the induced normal structure to a differential func-

tion t(gHS
p ) : W → (MTGk−r; (ιMTG)k−r). Then, the differential function

t(gHS
p ) represents a differential Thom class for (W, g⊥,topW ),

〈
t(gHS

p )
〉
∈ (M̂TG)k−rHS,prop/N (W ; ιMTG).(A.43)

Now we define the following.

Definition A.44. In the above settings, Hopkins-Singer’s tangential dif-
ferential BG-orientation gHS

p is said to be a lift of gp if, in the notations
above,

• The vector bundle structure W → N is a map over X, and
• The homotopy class

[〈
t(gHS

p )
〉]

of the differential Thom class
〈
t(gHS

p )
〉

is the one associated to g⊥W by Proposition A.35 (applied to E =
MTG).

In particular, this means that,

cwg⊥W
(ch(idMTG)) = Td

([
t(gHS

p )
])

:=

∫

W/N
R
([
t(gHS

p )
])
.

where ch(idMTG) ∈ H0(MTG;V •
MTG).

Let us take ê ∈ ÊnHS(N ; ιE). By the same procedure as in the last para-
graph of Subsection A.2, the tangential variant of [HS05, Section 4.10] using
the map (A.41) and the open embeddingW ↪→ Rk×X produces the element

(p, gHS
p )∗ê ∈ Ên−rHS (X; ιE). We get

Proposition A.45. In the settings of Definition A.44, the differential push-

forward map (p, gp)∗ : ÊnHS(N ; ιE)→ Ên−rHS (X; ιE) in Definition A.40 applied

to Ê∗
HS(−; ιE) coincides with the tangential variant of the differential push-

forward map (p, gHS
p )∗ in [HS05] as long as we use gHS

p lifting gp.
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Thus we conclude that the differential pushforward maps in Definition

A.40 for Ê∗
HS(−; ιE) comes from maps between differential function spaces

(A.41). As we mentioned in Footnote 16, this is the reason why we want to
use the Hopkins-Singer’s formulation.
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