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Abstract

Machine translation, dialogue, automatic summarization, and story generation –
technologies for text generation are deeply related to the important NLP tasks.
Researchers have eagerly explored methods for text generation with high quality.
The large diversity of probable outputs causes major difficulties in text generation.
Compared to tasks with only one correct answer, the patterns of probable outputs
(i.e., sequences of words) are countless. Moreover, the criterion for evaluating
outputs depends significantly on the goal, the situation, and the domain where
text generation is needed. For this reason, employing text generation for practical
use has often required developers to spend high costs of designing and manually
customizing a system for each purpose.

Recently, the rapid increase in data on the Web and advances in machine learning
represented by neural networks have motivated researchers to adopt data-driven
approaches for text generation. Although the approaches allowed developers to
reduce the costs notably, it also raised another problem; the performance of data-
driven models significantly drops in specialized domains that are different from
training data. However, sufficient in-domain data for training is not necessarily
available. As a result, in the age of data-driven approaches, developers have difficulty
in collecting a large amount of in-domain data instead of manually designing an
in-domain system.

Many practitioners have explored methods to handle the difference in domains to
resolve the problem, also known as domain adaptation. Assuming a situation where
the amount of in-domain data is small, they exploit a large amount of out-domain
data with methods such as data-selection, fine-tuning, and multi-domain learning.
In the existing studies, the difference in domains is often treated as the difference in
datasets. This tradition is due to the convenience of experiments and the high costs
of annotating fine-grained domain tags to data.

Although such attempts have had some success, it is still unclear which factors
in domain differences can affect models’ performance. We consider there is room for
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improvement by exploiting fine-grained domains in a multi-faceted approach. Our
challenges and approaches are threefold:

• Vocabulary adaptation: Domain differences can affect the vocabulary that
appears in the text and its meaning. However, due to the scarcity of in-domain
parallel data available for training, differences in vocabulary and meaning
of words were difficult problems to solve by the existing domain adaptation
methods. In particular, in a model based on a neural network that has been
frequently used in recent years, the vocabulary is often built in the phase of
pre-processing. The scheme has hindered us from applying domain adaptation
methods to embedding layers of models. We propose a method to directly
adapt the embedding layers of a trained model by using the embeddings
pre-trained from in-domain monolingual corpora.

• Situation-aware generation: Examples in a dataset for text generation are
not made under the same situation even if they are in the same dataset; who,
when, where, and under what circumstances an example was created can all
potentially affect generation, particularly in tasks where outputs can have high
diversity. We attempt to exploit the situations in dialogue with conversation
data collected from social media.

• Speculative sampling of latent variables: The difficulty in handling fine-
grained domains in data is mainly attributed to the cost of labeling or collection.
Domains that can affect generated outputs are not necessarily available; they
may not be publicly available due to privacy concerns or not recorded as a
label. Such inaccessible domains can also involve what output a model should
generate. We try to capture such inevitable randomness in text generation
by latent variables of variational models and propose a method for solving
the problem that makes it difficult to train models that can generate diverse
outputs.
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Chapter 1

Introduction

1.1 Data-driven Text Generation

In the history of natural language processing (NLP), teaching machines to generate
high-quality texts has been one of the most important goals. This is not only
because text generation technologies are useful but also because the ability to
express one’s thoughts or choice as a text – the ability of communication – was
considered as one of the forms of intelligence [111, 110].

Early approaches mainly relied on rule-based, template-based, or IR-based
methods. The considerable advantage of these approaches is the controllability
of outputs. By manually defining rules, filtering, and alignments between inputs
and outputs, developers can avoid the risk of generating low-quality outputs.
However, the obvious problem is that probable outputs, sequences of words,
are countless in text generation. This requires developers to spend high costs
to prepare a sufficient amount of patterns for achieving high-quality generation.
Thus, the research trend shifted to data-driven text generation with the rapid
increase of data on the Web [92].

As with many NLP methods in recent years, data-driven text generation
has eagerly been studied in machine translation and has spread to other tasks.
In the age of statistical machine translation (SMT) [11], the methods for SMT
were applied to dialogue modeling [92]. In recent years, the encoder-decoder
framework, a standard method of neural-based machine translation (NMT), is
an epoch-making development and fascinated NLP researchers. Although it
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was originally proposed for machine translation, nowadays, it is employed as a
common tool even for other generation tasks [106, 113, 125, 88, 77, 76].

One of the considerable advantages of the method is its versatility; In the
approach, text generation is modeled as a one-to-one projection on a shared
framework among tasks, which allows us to quickly transfer promising techniques
proposed in an NLP task to another task. Thus, we employ neural-based text
generation methods as core technologies in this thesis and propose task-agnostic
methods to improve existing methods.

Despite the enormous efforts of our predecessors, however, it is hard to say
that current neural-based text generation satisfies humans’ requirements. It is
still in the middle of being put into practical use except in several tasks such as
machine translation. We will discuss the issues of current approaches and our
challenges in Section 1.2.

1.2 Research Challenges

In common settings, models are trained and tested under the closed-world
assumption [90] – the domains of training and testing are the same. The training
data is also expected to contain a sufficient number of examples. The assumption
often does not hold due to the large costs of data collection. Practically, in
many cases, it is inevitable to employ a model trained from out-domain training
data. The performance of such a model tends to drop substantially, as reported
by Koehn and Knowles [49]. Therefore, many existing studies to address the
problem, collectively referred to as domain adaptation, have tried to handle the
domains of data [19, 67, 43, 48, 115, 109, 55, 17].

The important problems we focus on in this thesis are as follows: 1) domain
specificity of words and meaning, and 2) domain specificity of input-output
correspondence. Related to the first problem, methods for handling unknown
words in general domains have been eargerly explored for machine translation,
separately from the efforts for domain adaptation [39, 64, 98, 51, 20]. The
major recent approaches were based on dictionaries, copying, and subwords (or
characters). However, such approaches are inadequate to cover the problems
caused by domains. It is costly to prepare a large domain-specific dictionary



1.2 Research Challenges 3

or a knowledge-base for each domain. It is not necessarily possible to infer
the meaning from the surface of a word because domain-specific terms are
proper nouns in many cases (e.g., “alsa/pulseaudi”, the name of a package in the
computer domain). Additionally, for text generation tasks such as non-factoid
question answering or dialogue modeling in specialized domains, copying or
transliteration can be inapplicable since it is probable that such domain-specific
terms appear only in either the input or the output. Thus, it is essential to develop
a method for handling the word-level domain specifity even in data-scarse and
specialized domains.

Next, we discuss the second problem. Although we mentioned earlier that text
generation is typically modeled as a one-to-one mapping from input to output,
the relation between inputs and outputs is practically many-to-many due to the
fine-grained domains of data. Even in machine translation, where the output
is likely to be constrained by the input text strictly, the style, the length, and
the word choices can be diverse. For example, in En→Ja translation, a pronoun
“you” can be translated into “あなた,” “君,”, and “お前.” The suitable choice from
probable outputs is affected by many factors; when assuming a formal situation,
“あなた” would be an appropriate choice. In a conversation with a friend with
whom you can feel at ease, “君” can be used. We generally build a dataset by
collecting examples made under similar situations and treat the whole dataset as
a coarse-grained domain. However, even among examples in the same dataset,
there exist implicit differences in fine-grained domains (e.g., writer, time, etc.),
and they can affect the input-output correspondences. We collectively refer to
these factors as domains, regardless of whether or not the factors are explicitly
given to data as labels. Failing to handle the diversity in data can skew the
training of models and lead them to a generation of too bland and less informative
outputs [53].

Conversely, the utilization of domains is helpful in diversifying and controlling
system outputs. In the tasks such as dialogue response generation or story
generation, the high diversity of system outputs is naturally preferred to keep
users attracted. Even for tasks such as machine translation or grammatical error
correction, where the diversity of outputs is often not experimentally evaluated, it
would be useful in practical use to display various probable output candidates for
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users and would help non-native writers write sophisticated sentences depending
on their purpose.

We aim to handle the aforementioned domain-specific input-output corre-
spondence with two approaches in this thesis. In the first approach, we assume
that domains of each example in a dataset are explicitly available as discrete
labels and explore methods for effectively utilizing them. In the second approach,
we assume that fine-grained domain differences implicitly exist even in the same
dataset and aim to model them as randomness.

We here list overviews of our challenges:

1. Handling domain-specific words and meanings: Domain differences can
affect the vocabulary that appears in the text and its meaning. However, due
to the scarcity of in-domain parallel data available for training, differences
in vocabulary and meaning of words were difficult problems to solve by
the existing domain adaptation methods. In particular, a neural-based
model’s vocabularies are often built in the phase of pre-processing without
paying attention to the difference in domains. This manner hinders us
from applying domain adaptation methods to the meaning of words or
subwords.

2. Explicit modeling of domain-specific input-output correspondence: Ex-
amples in a dataset for text generation are not made under the same condition
even if they are in the same dataset; who, when, where, and under what
circumstances an example was created can all potentially affect the result,
particularly in tasks where outputs can have high diversity. We collectively
treat such fine-grained domains as situations. Conventional models without
taking situations into consideration tend to be uninformative and cannot
adjust the outputs to users’ preferences.

3. Implicit modeling of domain-specific input-output correspondence: The
difficulty in handling fine-grained domains in data is mainly attributed to the
cost of labeling or collection. Domains that can affect generated outputs are
not necessarily available; they may not be publicly available due to privacy
concerns or not recorded as a discrete label. Such inaccessible domains can
also involve what output a model should generate. Variational models are
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a promising approach to implicitly capture latent and inaccessible domains
in text generation. However, the training of variational models is unstable,
and it often happens that diversification of outputs is not achieved.

We target two major text generation tasks in this thesis – machine translation
and dialogue modeling. Although both of the two tasks are major and expected
to be put into practical use, their characteristics and problems are different.

The first approach will be evaluated on machine translation, and the second
and third approaches will be evaluated on dialogue modeling. The reason why
we selected machine translation for the first approach is the ease of analysis in
the task. In translation, the alignments between input and output allow us to
confirm how domain-specific words are translated by a model. On the contrary,
in text generation tasks where the outputs are diverse, the safe response problem
makes it difficult to perform detailed analysis focusing on vocabulary and word
meanings.

We selected dialogue modeling for the second and third approaches because
the approaches are proposed for handling the diversity of outputs. In dialogue,
responses to an utterance can be affected by a wide variety of factors than other
generation tasks such as machine translation and automatic summarization,
which is suitable for confirming the effects of our proposed method to consider
fine-grained domains and diversify outputs.

In the following section, we will explain our approaches corresponding to the
three challenges and the contribution in this thesis.

1.3 Contribution

In this thesis, we work on the three following approaches to address the challenges
described in Section 1.2.

1. Vocabulary adaptation: To handle domain-specific words and meanings,
we propose vocabulary adaptation, an inexpensive method to directly adapt
the embedding layers of a trained model by using the embeddings pre-
trained from in-domain monolingual corpora. While conventional neural-
based models assume static vocabularies constructed before applying
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domain adaptation, our proposed method enables us to change them
and provides more suitable vocabularies depending on the domain. The
evaluation results on machine translation showed that our method improved
the performance of models by 3.28 – 3.86 bleu score in situations where a
large amount of in-domain parallel data is not available.

2. Situation-aware generation: To explicitly model fine-grained domains that
can affect text generation, we attempt to exploit the situations of conversation
data in dialogue modeling. Concretely, we propose two models: 1) local-
global Seq2Seq and 2) Seq2Seqwith situation embeddings assuming that
situations are available as discrete labels. The response selection tests on a
massive amount of Twitter datasets confirmed the effectiveness of using
situations.

3. Speculative sampling of latent variables We try to handle implicit subdo-
mains in a dataset based on variational models. To resolve the problem in
conventional variational models, we proposed speculative sampling that
samples multiple latent variables from the posterior distribution of a model
and chooses the most probable one for modulating the latent space. The
results of automatic and human evaluation confirmed that our method
mitigated KL vanishing, and generated outputs were specific while keeping
relevance to contexts.

For achieving the practical use of text generation, domain-aware methodolo-
gies are indispensable because: 1) users naturally expect a system to process
domain-specific terms, and 2) the ability to generate diverse outputs and the
customizability depending on the situation motivate users to continue using the
system. We expect that our attempts in this thesis will help the future activities of
domain-aware text generation.

1.4 Thesis Structure

This thesis is structured as follows. In Chapter 2, we first explain preliminary
knowledge of core technologies that our approaches are based on. The following
three chapters, we present the details of our approaches to the challenges. In
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Chapter 3, we focus on the difference of vocabulary and meanings of words
between domains and propose a method for directly adapt the embedding layers
of an NMT model. In Chapter 4, we propose a method of introducing situations of
conversations to a dialogue model. In Chapter 5, we aim to resolve KL vanishing,
an important problem of training variational text generation models that are
promising approaches to handling implicit and fine-grained domains. Finally,
we present a conclusion of our work in Chapter 6.





Chapter 2

Preliminary Knowledge

In this chapter, we introduce preliminary knowledge of the methods our studies
are based on, mainly neural networks employed for NLP. Although many types
of neural networks have been employed for NLP, we here describe the overview
of feed-forward neural network (FNN), word embeddings [71], recurrent neural
network (RNN) [22], and RNN-based encoder-decoder model [15, 106] attention-
mechanism [4], and Transformer [112] as core architectures of our systems.

2.1 Basis of Neural Network

We first explain how an input text is processed through a neural-based model
while taking a feed-forward neural network (FFN) for classification as an example.
We here suppose that the input is a sentence (= a list of words), and the output
is a probability distribution of output classes. In text generation, the output is
a sequence of probability distributions. The output classes correspond to each
word in the vocabulary. About neural networks for text generation, we will
discuss in Section 2.2.

One of the simplest form of FFN, also known as multi-layered perceptron
(MLP) consists of three layers: an input layer (a.k.a. embedding layer) X =
{x0,x1, · · · ,xTx−1}, hidden layers H = {h0,h1, · · · ,hn}, and an output layer y. We
here denote a sequence of input words by X = {x0,x1, · · · ,xTx−1} and their vector
representations (a.k.a. word embeddings) as X = {x0,x1, · · · ,xTx−1}. Tx means the
length of inputs and n is the number of hidden layers.
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In the standard use of neural networks for NLP, input features (i.e., a list of
words) are predefined word-IDs represented as one-hot vectors. The input layer
transforms the inputs into a list of continuous vectors X. The continuous vectors,
called word embeddings, are the representations of words in the feature space of
the network. It then computes the sentence-level representation by summarizing
the continuous vector sequence h0 (by an operation such as averaging).

The subsequent non-linear transformation is iteratively applied to the previous
hidden layers hi. Finally, the last hidden layer is transformed into a probability
distribution y.

The whole process of the model is formulated as follows:

h0 = avg (Wx X) (2.1)

hi+1 = fh (Whi hi+bhi) (2.2)

y = fy (Wy hn+by) (2.3)

Here, W∗ and b∗ are trainable parameters of the model. Tx and n denote the
number of input words and hidden layers, respectively. f (·) is an activation
function for introducing non-linearity to the model.

For the activation function of the hidden layers fh, sigmoid function:

f (z) j =
1

1+ e−z j
, (2.4)

hyperbolic tangent:

f (z) j = tanh(z) j =
ez j − e−z j

ez j + e−z j
, (2.5)

and rectified linear unit (ReLU):

f (z) j =max(0,z j) (2.6)

are commonly employed. In the formulas above, f (z) j denotes the the jth
dimension value of the vector z that is input to the activation function.
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Typically, the softmax function is employed as fy that is defined by the formula:

f (z) j =
ez j∑K

k=1 ezk
(2.7)

This function is used for normalizing the transformed last hidden layer into a
probability distribution. K is the number of output classes.

2.2 RNN-based Encoder-Decoder Model

Recurrent Neural Network

The weak point of the architecture we described in Section 2.1 is that it cannot
handle the order of input words when inducing a sentence-level representation.
Furthermore, when taking the order of words into consideration (e.g., by assigning
different parameters to each word position), the maximum length of inputs has
to be fixed. For this reason, the simple FFN is not suitable to be used for data
represented as a sequence such as a text. Employing Recurrent Neural Network
(RNN) has been considered as one of the promising approaches for such data.

There exist many variants of RNN, including modern architectures such as
Long-short Term Memory (LSTM) [35] and Gated Recurrent Unit (GRU) [15]. We
here introduce Elman network [22] as the simplest form of RNN while assuming
that it takes a sequence of words as an input. Recurrent neural network is a
model that has a directed acyclic graph inside. Concretely, it takes an input word
embedding xt and the previous output (i.e., hidden layer) ht−1 at each time step t,
and computes the next output ht−1.

The computation of RNN is defined as:

ht = fh (Wh xt+Uh ht−1+bh)

yt = fy (Wy ht+by) (2.8)

W∗, U∗, and b∗ are trainable parameters of the model. xt is an embedding of the
word input at the time step t. The state at t = 0 is randomly initialized or fixed to a
trainable vector learned through the same process as other trainable parameters.
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Figure 2.1: Overview of encoder-decoder model: illustrative example.

As the formula shows, the length of outputs from RNN {h0,h1, · · · ,hTx−1} is
equal to the length of the input words {x0,x1, · · · ,xTx−1} when the length of inputs
is m. For tasks such as language modeling [70, 65], where a model needs to
predict the output word for each input word, yt is the output corresponding to
xt. For tasks where a model requires a sentence-level representation to generate
outputs such as sentence classification and text generation, the hidden layers
are summarized by taking the average/maximum, or the last hidden layer is
used as the representation of the sentence [15, 102, 101, 41]. These operations are
called average-/max-/last-pooling, respectively. For example, using only yTx−1

corresponds to last-pooling in Eq. (2.8).

Encoder-Decoder Model

The encoder-decoder, also known as seq2seq is a model for text generation that
consists of two RNNs [15, 106]. As we discussed in the previous part, RNN can
encode a sentence at an arbitrary length while considering the order of words in
the sentence (Figure 2.1).
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One naive approach to using RNN for text generation is to select each
of the most probable words from the sequence of probability distributions
y = {y0,y1, · · · ,yTx−1} in Eq. (2.8). However, there are drawbacks in this approach;
the length of output has to be identical to the input words. Besides, each of the
output words is independently sampled from the distribution without knowing
which word a model sampled in the previous time step.

To solve these problems, encoder-decoder models have another RNN for
iteratively generating the output sentence. The RNN is called decoder-RNN,
while the RNN for reading an input sentence is called encoder-RNN. As the
architecture of the encoder-decoder model is the combination of two RNNs, the
computation is similar to Eq. (2.8).

Specifically, the encoder-RNN first computes the hidden states of an input
sentence by encoding each input word. The hidden state at the last time step is
then fed to decoder-RNN as the initial hidden state.

2.3 Attention Mechanism

After the emergence of the encoder-decoder model, many studies have reported
promising performance in NLP tasks. However, the architecture assumed that the
length of the input and the output are relatively short. When handling long-term
dependency, the performance tended to drop. The problem was mainly attributed
to the iterative computations in conventional RNNs; they update the hidden state
for each time step, and tokens appearing at the beginning of an input sentence
tend to be forgotten.

To resolve the problem, attention mechanism was proposed [4, 63] for paying
attention to each token depending on the model’s state instead of using the
last hidden state of the encoder. The key idea of the attention mechanism is to
dynamically weight multiple vectors (i.e., encoder’s hidden states) by using a
state vector (i.e., a decoder’s hidden state) as a query vector. Suppose that we
have a query vector q and N pairs of key-value vectors K = {k0,k1, · · · ,kN−1} and
V = {v0,v1, · · · ,vN−1}, the computation is defined as:
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c =
N−1∑
i=0

αivi

ei = qT
·ki

αi =
exp(ei)∑N−1

i′=1 exp(ei′)
(2.9)

where c is the output of the computation by the attention mechanism. In standard
RNN-based NMT models, K and V denote outputs from an encoder. q denotes
a hidden state of a decoder. The computation of ei we introduced in Eq. (2.9) is
called multiplicative (or dot-product) attention. Meanwhile, the other commonly
used computation is called additive attention, where ei is computed as:

ei = aT
· tanh

(
Wq+Uki+b

)
(2.10)

a, W, U, and b are trainable parameters of the model.

2.4 Transformer

In this section, we describe an overview of Transformer [112], a recent encoder-
decoder model that fully exploits the attention mechanism. Transformer is a
de facto standard model for text-to-text generation. As the overall structure of
Transformer is complicated, we only mention the major differences compared to
the RNN-based encoder-decoder model.

The important difference of Transformer from traditional RNN-based encoder-
decoder models is the computation of sentence-level representations. It does not
rely on recursive computations for encoding a sequence of vector representations.
Instead, it aggregates the sequence by the attention-mechanism called self-attention.
The computation by self-attention on the i th encoder layer is as follows. Suppose
that there is a sequence of representation Hi = {hi

0,h
i
1, · · · ,h

i
N−1} as inputs to the

layer. The layer computes the outputs Hi+1 fed to the next layer. Here, to compute
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hi+1
j following Eq. (2.9), hi

j is used as a query vector, and Hi is used as key-value
vectors.

Also, in the decoder, the computation of self-attention is the same as the encoder.
However, a decoder layer has no access to the representations {hi

j+1,h
i
j+2, · · · ,h

i
N}

when computing hi+1
j because they correspond to future tokens to be generated

in the decoder. Thus, the tokens are masked when applying self-attention; the
attention weight α is fixed to zero in Eq. (2.9).

We should also mention that the self-attention-based computation is not aware
of the positions of tokens differently from iterative encoders such as RNN. To
complement them, standard Transformers employ positional embeddings. Trans-
former concatenates word (or subword) embeddings with additional embeddings
that represent the feature of each position.





Chapter 3

Vocabulary Adaptation for Neural
Machine Translation

3.1 Introduction

The performance of neural machine translation (nmt) models remarkably drops
in domains different from the training data. Since a massive amount of parallel
data is available only in a limited number of domains, domain adaptation is often
required to employ nmt in practical applications. Researchers have therefore
developed fine-tuning, a dominant approach for this problem [61, 24, 16, 107, 42, 8]
(Section 3.2). Assuming a massive amount of out-domain and small amount
of in-domain parallel data, fine-tuning adjusts the parameters of a out-domain
pre-trained model.

However, in fine-tuning, inheriting the embedding layers of the out-domain
pre-trained model causes vocabulary mismatches; namely, a model can handle
neither domain-specific words that are not covered by a small amount of in-
domain parallel data (unknown words) nor words that have different meanings
across domains (semantic shift). Moreover, adopting the standard subword
tokenization [98, 51] accelerates the semantic shift. domain-specific words are
often finely decomposed into out-domain subwords (e.g., “alloy”→ “_all” + “o”
+ “y”), which introduces improper subword meanings and hinders adaptation
(Table 3.8 in Section 3.5).
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Figure 3.1: Vocabulary adaptation for domain adaptation in NMT using cross-
domain embedding projection.

To resolve these vocabulary-mismatch problems in domain adaptation, we
propose vocabulary adaptation (Figure 3.1), a method of directly adapting the vo-
cabulary (and embedding layers) of a pre-trained nmtmodel, to perform effective
fine-tuning (Section 3.3). Given an out-domain pre-trained nmt, we first induce
a wide coverage of in-domain word embeddings from in-domain monolingual
data. We then fit the obtained in-domain word embeddings to the embedding
space of the pre-trained nmtmodel by inducing a cross-domain projection from
the in-domain embedding space to the out-domain embedding space. To perform
this cross-domain and cross-task embedding projection, we explore two methods:
cross-lingual [123] and cross-task embedding projection [93].

We evaluate fine-tuning with the proposed vocabulary adaptation for two
domain pairs: 1) from JESC [86] to ASPEC [74] for English to Japanese translation
(En→Ja) and 2) from the IT domain to Law domain [49] for German to English
translation (De→En). Experimental results demonstrate that our vocabulary
adaptation improves the bleu scores [84] of fine-tuning [61] by 3.86 points (21.45



3.2 Related Work 19

to 25.31) for En→Ja and 3.28 points (24.59 to 27.87) for De→En (Section 3.5). More-
over, it shows further improvements when combined with back-translation [97].

The contributions of this work are as follows.

• We empirically confirmed that vocabulary mismatches hindered domain
adaptation.

• We established an effective, model-free fine-tuning for nmt that adapts
the vocabulary of a pre-trained model.

• We showed that vocabulary adaptation exhibited additive improvements
over back-translation that uses monolingual corpora.

3.2 Related Work

In this section, we first review two approaches to supervised domain adaptation
in nmt: multi-domain learning and fine-tuning. We then introduce unsuper-
vised domain adaptation using in-domain monolingual data and approaches to
unknown word problems in nmt.

Multi-domain learning induces an nmt model from parallel data in both do-
mains [48, 115, 10]. Since this approach requires training with a massive amount
of out-domain parallel data, the training cost becomes problematic when we
perform adaptation to many domains.

Fine-tuning (or continued learning) is a standard domain adaptation method in
nmt. Given an nmt model pre-trained with a massive amount of out-domain
parallel data, it continues the training of this pre-trained model with a small
amount of in-domain parallel data [61, 16, 107, 8, 30]. Due to the small cost of
training, research trends have shifted to fine-tuning from multi-domain learning.
Recent studies focus on model architectures, training objectives, and strategies
in training. Meanwhile, no attempts have been made to resolve the vocabulary
mismatch problem in domain adaptation.

Unsupervised domain adaptation exploits in-domain monolingual data to train
a language model to support the model’s decoder for generating natural in-
domain sentences [32, 21]. Data augmentation using back-translation [97, 37] is
another approach to using in-domain monolingual data.
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These approaches can partly address the problem of semantic shift. However,
it is possible that the out-domain encoder will fail to handle domain-specific
words. In such cases, a decoder with the in-domain language model becomes
less helpful in the former approach, and the generated pseudo-parallel corpus
has low-quality sentences on the encoder side in the latter approach.

Handling unknown words has been extensively studied for nmt since the
vocabulary size of an nmt model is limited due to practical requirements (e.g.,
GPU memory) [39, 64]. The current standard approach to the unknown word
problem is to use token units shorter than words such as characters [56, 62] and
subwords [98, 51] to handle rare words as a sequence of known tokens. However,
more drastic semantic shifts will occur for characters or subwords than for words
because they are shorter than words and naturally ambiguous.

Besides these studies mentioned above, we introduce related work that
appeared after this study was published as Sato et al. [94]. Aji et al. [2] reported
that transferring embeddings and vocabulary mismatches between parent and
child models significantly affected the performance of models also in cross-lingual
transfer learning. The idea of Poerner et al. [85] is quite similar to our approach
although their method was for adapting pre-trained language models to NER
and QA tasks.

3.3 Vocabulary Adaptation for Domain Adaptation
in nmt

As we have discussed (Section 3.1), the vocabulary mismatch problem between
domains is the important challenge in domain adaptation for nmt. This section
proposes fine-tuning-based methods of directly resolving this problem. Although
our methods are applicable to any nmtmodel with embedding layers, we assume
here subword-based encoder-decoder models [4, 112] for clarity.

3.3.1 Vocabulary Adaptation Prior to Pre-training

One simple approach is to use in-domain vocabularies in pre-training. Specifically,
we first construct vocabularies from in-domain data for each language. We then pre-
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train an out-domain nmtmodel with the in-domain vocabularies and embeddings.
Finally, we fine-tune the pre-trained model with in-domain parallel data.

In this approach, however, employing the in-domain vocabularies will hinder
out-domain pre-training. In addition, since the embeddings induced from the
in-domain data are tuned to the domain of pre-training, the problem of semantic
shifts still remains and will hinder fine-tuning.

3.3.2 Vocabulary Adaptation Prior to Fine-tuning

Another approach is to replace the encoder’s embeddings and the decoder’s
embeddings of the pre-trained nmtmodel with word embeddings induced from
in-domain data before fine-tuning. However, as in transplanting organs from a
donor to a recipient, this causes rejection; the embedding space of a pre-trained
model is irrelevant to the space of the in-domain word embeddings.

We therefore project the in-domain word embeddings onto the embedding
space of the pre-trained model in order to make the embeddings compatible with
the pre-trained model (Figure 3.1 in Section 3.1). This approach is inspired by
cross-lingual and cross-task word embeddings that bridge word embeddings
across languages and tasks.

An overview of our proposed method is given as follows.

Step 1 (Inducing in-domain embeddings) We induce word embeddings from
in-domain monolingual data for each language. Although we can use any method
for induction, we adopt Continuous Bag-of-Words (cbow) [71] here since cbow
is effective for initializing embeddings in nmt [75], which suggests embedding
spaces of cbow and nmt are topologically similar.

Step 2 (Projecting embeddings across domains) We project the in-domain
embeddings of the source and target languages into the embedding spaces
of the pre-trained encoder and decoder, respectively, to obtain cross-domain
embeddings.
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Step 3 (Fine-tuning) We replace the vocabularies and the embedding layers
with the cross-domain embeddings and apply fine-tuning using the in-domain
parallel data.

To induce cross-domain embedding projection, we regard the two domains
as different languages/tasks and explore the use of methods for inducing cross-
lingual [123] and cross-task word embeddings [93]. In what follows, we explain
each method.

Vocabulary Adaptation by Linear Transformation

The first method exploits an orthogonal linear transformation [123] to obtain
cross-lingual word embeddings. We use subwords shared across two domains
for inducing an orthogonal linear transformation from the in-domain embedding
space to the out-domain embedding space. The obtained linear transformation is
used to map all in-domain embeddings to the out-domain embedding space to
address semantic shift across domains.

Concretely, suppose that we have an embedding xi to be projected, a target
embedding zi, and trainable parameters W, the projection method maximizes the
cosine similarity between the projected embedding Wxi and the target embedding
zi as follows:

max
W

∑
i

(Wxi)
T zi. (3.1)

After updating the parameters for projection W, W is orthogonalized by
solving the following constrained quadratic problem:

min
W̄
‖W−W̄‖ s.t. W̄TW̄ = I. (3.2)

Vocabulary Adaptation by Locally Linear Mapping

Due to the difference between the domains and tasks (cbow and nmt) in inducing
the embeddings, the linear transformation is likely to fail. Thus, we employ a
recent method for cross-task embedding projection called “locally linear mapping”
(LLM) [93]. An overview is illustrated in Figure 3.1 (lower left).
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LLM learns a projection that preserves the local topology (positional rela-
tionships) of the original embeddings after mapping while disregarding the
global topology. This property of LLM is suited to our situation because the local
topology is expected to be the same across the semantic spaces of two domains,
while globally, they can be significantly different due to semantic shift between
domains as illustrated in Figure 3.2.

Here, we explain the essence of LLM. Interested readers may consult Sakuma
and Yoshinaga [93] for details. Suppose that TLM is the in-domain word em-
beddings induced by a language model task, and SNMT is the out-domain
word embeddings induced by the translation task (the embedding layer of the
pre-trained model). We denote the vocabulary of TLM by VT, the vocabulary
of SNMT by VS and the vocabulary of words shared across both domains by
Vshared = VT∩VS.

Our goal is to produce embeddings TNMT with a vocabulary of VT in the
embedding space of SNMT. We accomplish this by computing the TNMT that best
preserves the local topology of TLM in the embedding space of SNMT. Concretely,
for each word wi in VT, we first take the k-nearest neighbors N(wi) ⊂ Vshared in
TLM. We use cosine similarity as the metric for the nearest neighbor search.

Second, we learn the local topology around wi by reconstructing TLM
wi

from
the embeddings of its nearest neighbors as a weighted average. For this purpose,
we minimize the following objective:

α̂ααi = argmin
αααi

∥∥∥∥∥∥∥∥TLM
wi
−

∑
w j∈N(wi)

αi jTLM
w j

∥∥∥∥∥∥∥∥
2

, (3.3)

with the constraint of
∑

jαi j = 1; the method of Lagrange multipliers gives the
analytical solution.

We then compute the embedding TNMT
wi

that preserves the local topology by
minimizing the following objective function:

TNMT = argmin
TNMT

∥∥∥∥∥∥∥∥TNMT
wi
−

∑
w j∈N(wi)

α̂i jSNMT
w j

∥∥∥∥∥∥∥∥
2

. (3.4)
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Figure 3.2: Unwanted cross-domain projection by linear transformation due to
difference of topology in vector-based embedding space: illustrative example.

This optimization problem has the trivial solution:

TNMT
wi

=
∑

w j∈N(wi)

α̂i jSNMT
w j
. (3.5)

Note that subwords shared across domains will have different embeddings
after projection (TNMT

w , SNMT
w for w ∈ Vshared). This captures the semantic shift

of subwords across domains. We conduct a detailed analysis of this matter in
Section 3.6.3.

3.4 Experimental Setup

We conducted fine-tuning with our vocabulary adaptation for domain adaptation
in En→Ja and De→En machine translation. In what follows, we describe the
setup of our experiments.
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3.4.1 Datasets and Preprocessing

We selected domain pairs to simulate a plausible situation where in-domain data
is specialized and similar out-domain parallel data is not available.

For En→Ja translation, we chose the Japanese-English Subtitle Corpus (JESC) [86]1

as out-domain data and Asian Scientific Paper Excerpt Corpus (ASPEC) [74]2 as
in-domain data. JESC was constructed from subtitles of movies and TV shows,
while ASPEC was constructed from abstracts of scientific papers. These domains
are substantially distant, and ASPEC contains many technical terms that are
unknown in the JESC domain. We followed the official splitting of training,
development, and test sets, except that the last 1,000,000 sentence pairs were
omitted in the training set of the ASPEC corpus as they contain low-quality
translations.

For De→En translation, we adopted the dataset constructed by Koehn and
Knowles [49] from the OPUS corpus [108]. This dataset includes multiple domains
that are distant from each other and is suitable for experiments on realistic domain
adaptation. We chose the IT domain and the Law domain from the dataset as the
out-domain and in-domain data, respectively. We followed the same splitting of
training, development, and test sets as Koehn and Knowles [49].

Preprocessing As preprocessing for the En→Ja datasets, we first tokenized the
parallel data using the Moses toolkit (v4.0)3 for English sentences and KyTea
(v0.4.2)4 for Japanese sentences. We then truecased the English sentences by
using the script in the Moses toolkit. As for the De→En datasets, we used the
same tokenization and truecasing as Koehn and Knowles [49]. The statistics of
the datasets are listed in Table 3.1.

We applied SentencePiece (v0.1.83)5 [52] trained from the monolingual data in
each domain to the tokenized datasets. The number of subwords was 16,000 for
all languages. In the training of SentencePiece, we did not concatenate the input

1https://nlp.stanford.edu/projects/jesc/
2http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
3https://github.com/moses-smt/mosesdecoder
4http://www.phontron.com/kytea
5https://github.com/google/sentencepiece

https://nlp.stanford.edu/projects/jesc/
http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
https://github.com/moses-smt/mosesdecoder
http://www.phontron.com/kytea
https://github.com/google/sentencepiece
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En→Ja JESC → ASPEC

# examples
training (all) 2,797,388 2,000,000
development 2,000 1,790
testing - 1,812

# distinct words (En) 161,695 637,377
# distinct words (Ja) 169,649 384,077
# shared words (En) 46,950 (7.4% in ASPEC)
# shared words (Ja) 50,003 (13.0% in ASPEC)

De→En IT → Law (Acquis)

# examples
training (all) 337,817 715,372
development 2,526 2,000
testing - 2,000

# distinct words (De) 140,508 189,084
# distinct words (En) 70,650 92,316
# shared words (De) 21,912 (11.6 % in Law)
# shared words (En) 17,165 (18.6 % in Law)

Table 3.1: Statistics of out-domain and in-domain parallel corpus. #distinct/shared
words are counted in training sets.

language and output language to maximize the portability of the pre-trained
model.

From each of the preprocessed datasets, we used 1) 100,000 randomly sampled
sentence pairs or 2) all sentence pairs in the training set for in-domain training.
This was for evaluating models in both cases where we have a small/large
in-domain dataset.

To prepare reproducible in-domain monolingual data, we shuffled and divided
all sentence pairs of the in-domain training set except the 100,000 sentence pairs
into two equal portions. We then used the first half and the second half as
simulated monolingual data for the source language and the target language,
respectively.

The monolingual data was used for training in-domain SentencePiece, cbow
vectors, and data augmentation by back-translation. When models did not use
the monolingual data, the data used for training SentencePiece and cbow vectors
was exactly identical to the training set in each domain.
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# encoder/decoder layers 6 Label smoothing rate 0.1
# attention heads 8 Init. learning rate 1e-3
Dim. of embeddings 512 (warmup) 1e-7
Dim. of Transformer 2048 Dropout rate 0.1
Vocab. size (enc&dec) 16k Beam size for decoding 5
Max. tokens in batch 64k Length penalty 1.2

Table 3.2: Hyperparameters of nmtmodels.

3.4.2 Models and Embeddings

We adopted Transformer-base [112] implemented in fairseq (v0.8.0)6 [83], as the
core architecture for the nmt models.7 Major hyperparameters are shown in
Table 3.2.8 We evaluated the performance of the models on the basis of bleu
[84]. Before pre-training the models, we induced subword embeddings from the
monolingual corpus by Continuous Bag-of-Words (cbow) [71] to initialize the
embedding layers of the nmtmodels.

To evaluate the effect of vocabulary adaptation, we compared the following
settings (and their combinations) that used either or both the out- and in-domain
parallel data.

Out-/In-domain trains a model only from the training set in the out-/in- domain.

Fine-tuning w/out-domain vocab. (FT-outV) continues to train the Out-domain
model using the in-domain training set without any vocabulary adaptation [61].

Fine-tuning w/ in-domain vocab. (FT-inV) Refer to Section 3.3.1.

Multi-domain learning (MDL) trains a model from both out- and in- domain
training sets. We employed domain token mixing [10] as a method of multi-
domain learning. In this setting, we jointly used the training sets of both domains

6https://github.com/pytorch/fairseq
7Note that since Transformer shares the embedding and output layers of the decoder, vocabulary

adaptation is applied to the embedding layer of the encoder and the tied embedding/output layer
of the decoder, respectively.

8For De→En translation, we made minor modifications to the architecture to follow Hu et al.
[37]. Concretely, we added layer normalization [3] before each of the encoder and decoder stacks.
We also applied dropout to the outputs of the activation functions and self-attention layers.

https://github.com/pytorch/fairseq
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for training subword tokenization models, cbow vectors, and training nmtmodels
(e.g., 2797k + 100k for En→Ja translation). This method prepends a special token
of the current domain (e.g., <src>) to the target sentence in training. This enforces
the decoder to predict the current domain from the input, which works as
regularization.

Vocabulary Adaptation (VA) Refer to Section 3.3.2. We compared two projec-
tion methods: linear orthogonal transformation (VA-Linear) and locally linear
mapping (VA-LLM) described in Section 3.3.2. For VA-LLM, the number of
nearest neighbors, k, was fixed to 10.9 To highlight the importance of embed-
ding projection for the proposed method, we also evaluated settings using the
in-domain cbow vectors for the re-initialization as is (VA-CBoW).

Back-translation (BT) applies a backward translation to in-domain monolingual
data in the target language. We employed the most standard back-translation
proposed by Sennrich et al. [97]. For this back-translation, a backward model
(e.g., Ja→ En) is independently trained from the out-domain parallel data with
the same setting and data as Out-domain. The subsequent fine-tuning is applied
with the generated pseudo-parallel in-domain corpora and a in-domain training
set.

Among the above methods, Out-domain and In-domain do not perform
domain adaptation. FT-outV, FT-inV, and MDL are baseline domain adaptation
methods. BT is applied to FT-outV, FT-inV, and VA for data augmentation.

Note that FT-inV and MDL assume that the target domain is given before
training with the out-domain data. Although this assumption enables us to build
in-domain suitable vocabularies, it sacrifices the domain portability of trained
models. As a result, it requires us to perform training for a long period of each
combination of domains.

We used Adam [44] to train each model with the above settings. During both
pre-training and fine-tuning, the learning rate linearly increased for warm-up
for the first 4,000 training steps and then decayed proportionally to the inverse
square root of the number of updates. Prior to fine-tuning, we reset the optimizer

9We tested VA-LLM with k={1, 5, 10, 20} in preliminary experiments, and the default value
(k=10) was the best.
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# In-domain data
En→ Ja De→ En

100k 2000k 100k 715k

No adaptation
Out-domain 4.61 2.58
In-domain 11.69 41.83 18.79 34.16

Baselines
MDL 21.65 41.92 24.03 37.74
FT-outV 21.45 43.09 24.59 38.43
FT-inV 28.08 42.32 24.87 36.38

Proposed
VA-CBoW 15.28 41.44 21.88 36.34
VA-Linear 22.26 42.70 25.20 37.00
VA-LLM 21.79 43.96 26.40 39.41

Table 3.3: Case-sensitive bleu scores for nmt domain adaptation: En→Ja from
JESC to ASPEC and De→En from IT to Law. Size of training set for Out-domain
was 2797k for JESC and 338k for Law.

Enc Dec En→ Ja De→ En

100k 2000k 100k 715k

FT-outV 21.45 43.09 24.59 38.43

X 22.69 43.48 25.64 39.48
VA-LLM X 20.75 43.66 25.69 40.19

X X 21.79 43.96 26.40 39.41

Table 3.4: bleu scores on ablation tests for VA-LLM.

and the learning rate and then continued training on the in-domain training set.
For vocabulary adaptation, we replaced the embedding layers of the out-domain
pre-trained models with the projected in-domain word embeddings except for the
four special tokens (<pad>, <unk>, </s>, <s>). Both in training and fine-tuning,
we saved checkpoints at the end of epochs, and we adopted the model at the
checkpoints with the best validation loss on the development set.
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3.5 Results

3.5.1 BLEU Scores

Table 3.3 shows the results for the domain adaptations. Among all the methods,
VA-LLM achieved the best bleu score in three out of the four cases. The low
bleu scores for Out-domain show how much domain mismatch degraded the
nmt performance, as pointed out in [49]. There were large differences in the
performance among VA-* models that perform vocabulary adaptation prior to
fine tuning. The results confirmed that not only the differences in the vocabulary
(set of subwords) but also the initial embeddings matter in fine-tuning nmt
models.

VA-* methods did not work well in En→Ja translation when only the 100k
in-domain parallel data was used. This is probably because the more noisy
emebeddings (ambiguous subwords) introduced by the large number of domain-
specific words in the ASPEC dataset (Table 3.1) hinders the embedding projection
of VA-LLM and VA-Linear with low-quality cbow vectors trained from the 100k
sentences. In this setting, we need more parallel data for fine-tuning to adjust the
noisy initial embeddings.

Table 3.4 shows results of ablation tests to examine for which side (encoder or
decoder) VA-LLM benefited. The results confirmed that the poor performance in
En→Ja translation with the 100k in-domain parallel data is due to the failure of
handling semantic shifts in the decoder.10

The improvements obtained by VA-Linear were modest overall. This was
due to the nature of the linear projection employed for cross-domain embedding
mapping as discussed in Section 3.3.2. We analyze the difference between the
two types of projected embeddings in Section 3.6.3.

3.5.2 Effects of Monolingual Data

Table 3.5 shows how employing in-domain monolingual data affected domain
adaptation. In the settings, the in-domain SentencePiece and cbow vectors were
trained from both the 100k parallel data and the monolingual data (950k and 308k

10We observed the same tendency when we conducted the ablation tests for Ja→En translation
with the ASPEC datasets.
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# In-domain data
En→ Ja De→ En

100k +BT 100k +BT

FT-outV 21.45 24.63 24.59 25.81

w/ monolingual data for training CBoW
FT-inV 18.85 21.75 21.87 24.49
VA-Linear 19.35 22.19 24.09 25.79
VA-LLM 25.31 29.73 27.87 28.43

Table 3.5: Case-sensitive BLEU scores when employing target-domain monolin-
gual data (950k for En→Ja and 308k for De→En). +BT indicates that monolingual
data was used also for data augmentation.

for En→Ja and De→En, respectively). We also evaluated the orthogonality of the
proposed method to BT since both methods exploit in-domain monolingual data.

Interestingly, the results of FT-inV and VA-Linear were worse than the results
in Table 3.3. We consider the reason to be as follows. When additionally using the
in-domain monolingual data, the resulting in-domain SentencePiece model and
cbow vectors become more suitable thanks to the increase of data. However, this
also means that domain-specific words appearing only in the monolingual data
accelerated the vocabulary mismatches, the semantic shifts, and the difference
of topology in the embedding space. As the result, the vocabulary mismatches
degraded the out-domain pre-trained model for FT-inV and linear transformation
failed to handle the semantic shifts for VA-Linear.

In contrast, due to the capability of the projection method, the performance of
VA-LLM was successfully improved by the use of the monolingual data. Table 3.5
also shows the orthogonality of VA-LLM to BT, since the increase of bleu scores
for VA-LLM + BT from FT-outV + BT were substantial (5.10 pt and 2.61 pt for
En→Ja and De→En translation, respectively).

We should mention that the proposed model did not work well and generated
ungrammatical outputs in fully unsupervised situations without fine-tuning.
The model was largely degraded and its BLEU score for En→Ja translation was
0.01, almost zero. It is not surprising because in such a situation the out-domain
model was required to utilize the in-domain vocabulary and the cross-domain
embeddings that had been optimized for different training objectives. The
degree of the degradation could depend on the noises caused by the embedding
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En→ Ja De→ En

FT-outV 12.19 10.79
VA-LLM 12.94 11.19

Table 3.6: Case-sensitive bleu scores when using only out-domain parallel data
and pseudo parallel data generated by back-translation.

projection and the sensitivity of the out-domain nmt model to the change of
paramters. Ideally, although the embedding projections resolve the difference in
the embedding space, noises could remain and drastically degrade the model.
The combination with back-translation or employing small in-domain parallel
data for fine-tuning is a solution for mitigating the problem as shown in the
results above. However, vocabulary adaptation only by embedding projections
is fascinating considering the convenience. As future work, we will analyze
how the noises degrade pre-trained models before fine-tuning and improve the
methods for embedding projection.

Furthermore, Table 3.6 shows that how our method performed in a extreme
setting where no in-domain parallel data is available. Concretely, in the fine-tuning
step, we retrained Out-domain with only the pseudo-parallel data generated by
back-translation. In this setting, in-domain cbow vectors were also trained only
from in-domain monolingual data (i.e., the number of in-domain sentences was
changed from 1050k to 950k for En→Ja). However, the quality of cross-domain
embeddings was similar to those in Table 3.5. Although VA-LLM performed
better than FT-outV, the improvements were modest. We consider there were
two reasons. First, when no in-domain parallel data was available and the overall
performance of a baseline model was poor, it even failed to handle frequent
phrases, and thus the capability of processing domain-specific terms was less
influential. Second, as the in-domain data used for fine-tuning was generated by
back-translation using out-domain nmtmodel. Sentences on the source-language
side did not contain in-domain terms and thus the embeddings of transferred
in-domain subwords were infrequently updated through fine-tuning.
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# Updates in training w/
source target BT
(2797k) (100k) (950k)

w/o monolingual data
In-domain - 3,440 -
MDL 36,342 -
FT-outV 28,750 2,480 -
VA-LLM 28,750 3,200 -

w/ monolingual data
FT-outV + BT 56,350 31,280
VA-LLM + BT 56,350 32,895

Table 3.7: Number of updates until convergence for En→Ja translation.

3.5.3 On Efficiency: Training Steps

Table 3.7 shows the number of updates until convergence in En→Ja translation
with the 100,000 in-domain training set.11 We confirmed that all models were
trained over a sufficient number of steps. The validation loss did not improve
over at least five epochs after the best model was chosen. We used four GPUs
(NVIDIA Quadro P6000) for training, and it took 0.9 sec/update on average.

Here, we emphasize that VA-LLM achieved superior performance with a
small number of updates (3,200 steps, less than 50 minutes) similarly to FT-outV.
Note that the overhead time of our vocabulary adaptation was negligible since
embedding projection took only several minutes. Meanwhile, FT-outV + BT took
31,280 steps due to the size of the augmented data even when we ignore the time
taken to generate back-translated parallel data.

Additionally, our proposed method is based on fine-tuning and the target
domain is not supposed to be given before out-domain pre-training, differently
from MDL. Therefore, the pre-trained Out-domain can be reused each time when
the target domain or settings are changed, which enables us to omit the long
training time (28,750 steps, about 7.2 hours) per model training. As the training
steps of VA-LLM + BT show, the overhead caused by employing the proposed
method with back-translation was also small. Nevertheless, the improvements of
VA-LLM + BT compared with FT-outV + BT were substantial (Table 3.5).

11As for FT-outV + BT and VA-LLM + BT, the number of updates in the pre-training phase is
the sum of the training steps for both forward and backward models.
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Input (JESC vocab.) _the _function _of _server _was _strengthen ed _in _order
_to _strengthen _the _I nt ra net1 ś _mechanism _.

Input (ASPEC vocab.) _the _function _of _server _was _strengthened _in _order
_to _strengthen _the _Intra net1 ś _mechanism _.

Reference イントラネットのしくみを強化するためにサーバー機
能の強化を行った。

FT-outV Imagenetの機構を強化するために ,サーバの機能を
強化した。

FT-outV + BT サーバの機能を強化するために , Intelligentの機能を
強化した。

VA-LLM + BT サーバ機能はイイインンントトトラララネネネッッットトト1 の機能を強化するため

に強化された。

Input (JESC vocab.) _3 _cases _of _the _lu m bar _spinal1 _can al _ste no s is2 · · ·

Input (ASPEC vocab.) _3 _cases _of _the _lumbar _spinal1 _canal _stenosis2 · · ·

Reference · · · 腰部脊脊脊柱柱柱1 管狭狭狭窄窄窄症2 の 3例について · · ·

FT-outV · · · 腰部 <unk>柱管狭 <unk>症の 3症例について · · ·
FT-outV + BT · · · 腰部 <unk>柱管狭 <unk>症の 3症例について · · ·
VA-LLM + BT · · · 腰部脊脊脊柱柱柱1 管狭狭狭窄窄窄2の 3症例について · · ·

Input (IT vocab.) _falls _der _Austausch _der _Rat if ik ation s ur ku nden1
_zwischen · · ·

Input (Law vocab.) _falls _der _Austausch _der _Ratifikation surkunde n1
_zwischen · · ·

Reference should the instruments of ratification1 be exchanged be-
tween · · ·

FT-outV if the exchange of the ratification of ratification between · · ·
FT-outV + BT where the exchange of the Council takes place between · · ·
VA-LLM + BT if the instruments of ratification1 are met between · · ·

Table 3.8: Translation examples of the models with 100k target-domain parallel
data in Table 3.3 and Table 3.5. Bolded words are rare or unknown when
pretraining. Underlined words and subscript numbers indicate correspondence.
Input (JESC, IT) and Input (ASPEC, Law) were fed to FT-outV/FT-outV + BT
and VA-LLM + BT, respectively.
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3.6 Analysis

3.6.1 Translation Examples

Table 3.8 shows translation examples generated by FT-outV in Table 3.3, FT-outV
+ BT and VA-LLM + BT in Table 3.5. The size of in-domain parallel data for
training was 100k.

FT-outV and FT-outV + BT often failed to translate in-domain words that
were tokenized into short subwords. In such cases, the models tended to ignore or
transliterate them. For instance, the De→En examples (lower) show that FT-outV
and FT-outV + BT failed in translating “Ratifikationsurkunden (instruments of
ratification).”

Moreover, in the En→Ja examples (upper), the decomposed domain-specific
words “脊柱 (spinal)” and “狭窄症 (stenosis)” contained domain-specific sub-
words such as “脊” and “窄.” The models without vocabulary adaptation also
failed to handle these subwords when both the out-domain training set and the
in-domain 100k training set rarely contained them.

Meanwhile, VA-LLM + BT successfully translated both of the cases with the
help of in-domain monolingual data. These examples imply the difficulty in
translating domain-specific words without vocabulary adaptation.

We observed that the outputs generated byVA-LLM + BT contained various
domain-specific words. To quantitatively confirm this, we calculated the percent-
age of distinct words included in both the generated outputs and the references.
The outputs in En→Ja translation generated by VA-LLM + BT, FT-outV + BT,
and FT-outV contained 57.9%, 53.4%, and 49.5% of distinct words in the references,
respectively.

3.6.2 Effect of Vocabulary Size in Fine Tuning

As reported in [99], the vocabulary size of an nmtmodel can affect its translation
quality in a low-resource setting. How about in fine-tuning? To explore this,
we varied only the in-domain vocabulary size of VA-LLM before fine-tuning by
vocabulary adaptation.

Figure 3.3 shows that VA-LLM preferred large vocabulary sizes when ad-
ditional in-domain monolingual data was used for training cbow, whereas it
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Figure 3.3: BLEU scores of va-llm while varying in-domain vocabulary size. The
out-domain vocabulary size was fixed to 16k.

preferred small vocabulary sizes when the data was not used. We consider
the reason to be as follows. In the former case, a large vocabulary contains
low-frequency subwords of which representation is unlikely to be well-trained as
discussed in [99]. In the latter case, however, in-domain monolingual data can
cover such low-frequency subwords.

As this analysis showed, the vocabulary size also had large effects on fine-
tuning (3.52 pt difference at most). Besides the vocabulary mismatch problem, our
vocabulary adaptation could make further improvements by the vocabulary size
were adjusted depending on the amount of in-domain parallel and monolingual
data with a low training cost.

3.6.3 Quality of Cross-domain Embeddings

The advantage of our approach is that it adjusts the meanings of subwords
(embeddings) as well as the vocabulary (set of subwords) to the target domain.
We thus examined to what extent our vocabulary adaptation captures the semantic
shift.
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Nearest neighbors in ASPEC-cbow embedding space

_branches _branch, _roots, _veins, _arteries, _trees
_experimentally _systematically, _numerical, _theoretical,

_experimental, _experiments

Nearest neighbors in JESC-nmt embedding space

via linear transformation (Linear)
_branches _trees, _sides, _birds, _parts, _pieces
_experimentally _rope, _tanks, _laser,

_gravitational, _simulation

via locally linear mapping (LLM)
_branches _branch, _trees, _roots, _veins, _arteries
_experimentally _by, _experiment, _experiments,

_experimental, _simulation

Table 3.9: Top-5 nearest neighbors of “_branches” and “_experimentally” in ASPEC-
cbow embedding space and JESC-nmt embedding space via cross-domain em-
bedding projection: bold-faced subwords are nearest neighbors shared across
both top-5. The ASPEC-cbow vectors are trained from the 100k target-domain
parallel data and the monolingual data.

We first observed the nearest neighbors based on cosine similarity for each of
the in-domain subword embeddings (hereafter, ASPEC-cbow).12 Note that the
nearest neighbors should be unchanged even after embedding projection to keep
the in-domain meanings.

Next, we compute cosine similarities between each of the projected ASPEC-
cbow and the embeddings of Out-domain to find their nearest neighbors in
the embedding space of Out-domain (hereafter, JESC-nmt). The obtained near-
est neighbors show how the ASPEC-cbow embeddings projected by linear-
transformation or LLM performed during fine-tuning.

Table 3.9 shows the nearest neighbors of two words: “_branches,” which
appears in both domains and can have different meanings across domains, and
“_experimentally,” which is only in the ASPEC domain.

While the cbow vector for “_branches” and the embedding projected by LLM
have the meaning of “_veins” and “_arteries”, the embedding projected by linear
transformation lost it. “_experimentally” is a subword that only the in-domain

12Through this analysis, the candidates of nearest neighbors were limited to the shared subwords
across JESC and ASPEC domains for clear comparison.
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(ASPEC) vocabulary contains. As illustrated in Figure 3.2, the mapping of
domain-specific subword embeddings is likely to fail due to the difference of
topology in the embedding space. We found that LLM relatively accurately
computed its embedding in the JESC-nmt space while linear transformation
failed. This tendency was also observed when using only the 100k parallel data
for training of SentencePiece and cbow vectors. These observations demonstrate
the capability of LLM in cross-task/domain embedding projection.

3.7 Chapter Summary

In this study, we tackled the crux of the vocabulary mismatch problem in domain
adaptation for nmt, and we proposed vocabulary adaptation, a simple but
direct solution to this problem. It adapts the vocabulary of a pre-trained nmt
model for performing effective fine-tuning. Regarding domains as independent
languages/tasks, our method makes wide-coverage word embeddings induced
from in-domain monolingual data be compatible with a out-domain pre-trained
model.

We explored two methods for projecting word embeddings across two domains:
linear transformation and locally linear mapping (LLM). The experimental
results for English to Japanese translation and German to English translation
confirmed that our domain adaptation method with LLM dramatically improved
the translation performance. We will release all code to promote the reproducibility
of our results.13

Although the vocabulary adaptation was evaluated only for nmt, where it
was easy to conduct solid analyses, it is also applicable to a wider range of
neural network models and tasks, and it can even be combined with existing fine-
tuning-based domain adaptations. In other text generation tasks, the problem of
differences in vocabularies and meanings is the same or can be larger. In machine
translation, copying or transliteration without understanding the meaning of
words can be one of the possible methods to handle infrequent terms. For example,
when translating a sentence “Why is alsa/pulseaudi not working?”, models do
not necesarily the meaning of “alsa/pulseaudi.” However, for example, in tasks

13https://github.com/jack-and-rozz/vocabulary_adaptation

https://github.com/jack-and-rozz/vocabulary_adaptation
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such as question answering or dialogue modeling, users often require agents
to be an expert of a field and a good assistant that can not only superficially
process but also understand such infrequent terms; otherwise, the agents will
only say “I am sorry, I do not understand alsa/plseaudi.” to the question. We
leave empirically confirming the effect of our method in other text generation
tasks as future work where the diversity of outputs is high and thus it is difficult
to conduct an evaluation.





Chapter 4

Situation-Aware Dialogue

4.1 Introduction

The increasing amount of dialogue data in social media has opened the door
to data-driven modeling of non-task-oriented, or chat, dialogues [92]. The
data-driven models assume a response generation as a sequence to sequence
mapping task, and recent ones are based on neural Seq2Seqmodels [114, 102, 53,
54, 124]. However, the adequacy of responses generated by these neural models
is somewhat insufficient, in contrast to the acknowledged success of the neural
Seq2Seqmodels in machine translation [40].

The contrasting outcomes in machine translation and chat dialogue modeling
can be explained by the difference in the degrees of freedom on output for a given
input. An appropriate response to a given utterance is not monolithic in chat
dialogue. Nevertheless, since only one ground truth response is provided in the
actual dialogue data, the supervised systems will hesitate when choosing from
the vast range of possible responses.

So, how do humans decide how to respond? We converse with others
while (implicitly) considering not only the utterance but also other various
conversational situations (Section 4.3) such as time, place, and the current context
of conversation and even our relationship with the listener. For example, when a
friend says “I feel so sleepy.” in the morning, a probable response could be “Were
you up all night?” (Figure 4.1). If the friend says the same thing at midnight, you
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Figure 4.1: Conversational situations and responses.

might say “It’s time to go to bed.” Or if the friend is driving a car with you, you
might answer “If you fall asleep, we’ll die.”

Modeling situations behind conversations has been an open problem in chat
dialogue modeling, and this difficulty has partly forced us to focus on task-
oriented dialogue systems [119], the response of which has a low degree of
freedom thanks to domain and goal specificity. Although a few studies have tried
to exploit conversational situations such as speakers’ emotions [34] or personal
characteristics [54] and topics [124], the methods are specially designed for and
evaluated using specific types of situations.

In this study, we explore neural conversational models that have general
mechanisms to incorporate various types of situations behind chat conversations
(Section 4.4.2). These models take into account situations on the speaker’s side
and the listener’s side (or those who respond) when encoding utterances and
decoding its responses, respectively. To capture the conversational situations, we
design two mechanisms that differ in how strong of an effect a given situation
has on generating responses.

In experiments, we examined the proposed conversational models by incor-
porating three types of concrete conversational situations (Section 4.3): utterance,
speaker/listener (profiles), and time (season), respectively. Although the models
are capable of generating responses, we evaluate the models with a response
selection test to avoid known issues in automatic evaluation metrics of generated
responses [57]. Experimental results obtained using massive dialogue data from
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Twitter showed that modeling conversational situations improved the relevance
of responses (Section 4.5).

4.2 Related Work

Conversational situations have been implicitly addressed by preparing datasets
specific to the target situations and by solving the problem as a task-oriented
conversation task [119]; examples include troubleshooting [114], navigation [117],
interviewing [47], and restaurant search [118]. In what follows, we introduce
non-task-oriented conversational models that explicitly consider conversational
situations.

Hasegawa et al. [34] presented a conversational model that generates a
response so that it elicits a certain emotion (e.g., joy) in the listener mind. Their
model is based on statistical machine translation and linearly interpolates two
conversational models that are trained from a small emotion-labeled dialogue
corpus and a large non-labeled dialogue corpus, respectively. This model is
similar to our local-global Seq2Seq but differs in that it has hyperparameters for
the interpolation, whereas our local-global Seq2Seq automatically learns WWWG and
WWWL from the training data.

Li et al. [54] proposed a neural conversational model that generates responses
taking into consideration speakers’ personalities such as gender or living place.
Their model cannot handle unknown speakers, because it feeds a specific speaker
ID to their model and represent individual (known) speakers with embeddings. In
contrast, our model can consider any speakers with profiles because we represent
each cluster of profiles with an embedding and find an appropriate profile type
for the given profile by nearest-neighbor search.

Sordoni et al. [105] encoded a given utterance and the past dialogue exchanges,
and combined the resulting representations for rnn to decode a response. Zhao
et al. [129] used a conditional variational autoencoder and automatically induced
dialogue acts to handle discourse-level diversity in the encoder.

Xing et al. [124] proposed to explicitly consider topics of utterances to generate
topic-coherent responses. They used latent Dirichlet allocation while we use k-
means clustering. Both methods confirmed the importance of utterance situations.
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The way to obtain specific situations is still an open research problem. As
demonstrated in this study, our primary contribution is the invention of neural
mechanisms that can consider various conversational situations.

Our local-global Seq2Seqmodel is closely related to a many-to-many multi-
task Seq2Seq proposed by Luong et al. [60]. The critical difference is in that
their model assumes only local tasks, while our model assumes many local tasks
(situation-specific dialogue modeling) and one global task (general dialogue
modeling).

Hereafter, we also review related work that appeared after this study was
published [96]. First, we describe studies of personalization that have been
eargely explored due to its importance. The study of Zhang et al. [128] is closely
related to our study. The most standard method proposed by Li et al. [54]
relied on past conversations of each spearker, and thus it was difficult to handle
unknown speaker’s persona. For the reason, Zhang et al. [128] also employed a
profile (description) of speakers and directly encoded for inducing the speaker’s
embeddings. Mazare et al. [68] constructed a large dataset for personalization
from reddit data. Their method can be regarded as the combination of Li et al.
[54] and Zhang et al. [128]. Chu et al. [18] proposed a character trope classification
task to handle personas from dialogues. While we aim to obtain such character
tropes by clustering (i.e., speaker profile clusters), their model learned them
through the classification task by using the CMU Movie Summary dataset [7]. Bak
and Oh [6] used a speaker’s persona for inducing distributions in a variational
model.

Overall, the persona of speakers has been regarded an important factor to
model a conversation and many methods for exploiting personas have been
developed. However, the problem of how to collect persona information still
remains; although most of the studies relied on past utterances or his/her profile
to infer a speaker’s persona, such clues are not necesarily available and do not
represent all of their preferences, thoughts, and demographic factors. As a future
direction, we consider that it is still necessary to explore methods for utilizing
more various types of factors for inferring personas as we aimed in this study.

Second, we discuss the relation to task-oriented dialogue modeling. In task-
oriented dialogue modeling, one of the main focuses is on dialogue state tracking
(DST), where models fill in predefined slots with values that are extracted or
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estimated from conversations (e.g., {price=cheap, location=New York}). Traditional
approaches prepared a dataset specific to a single situation and it was a difficult
challenge to handle multiple situations because predefined slots and probable
values were inevitably dependent on the domain.

Recently, the emergence of a large-scale multi-domain dataset, MultiWOZ [12],
motivated researchers to tackle multi-domain dialogue state tracking [89, 121,
26, 91, 127, 13]. However, the domains targeted by these approaches were
coarse-grained and the aim was different from that of non-task-oriented dialogue
modeling. Specifically, the main difficulty in multi-domain DST appeared as the
difference in probable slot-value pairs between domains.

As an important difference, we should mention that the response to a dialogue
state tended to be predefined in task-oriented dialogue modeling. This is because
the main aims of task-oriented dialogue systems are to work as the interface of
services (e.g., information retrieval, booking, and the like). Thus, the diversity of
outputs is not required there and it can be not costly to manually prepare responses
or templates for each dialogue state type. Recently, neural-based response
generation in task-oriented dialogue has also begun to be explored [12, 14]. In
the method of Budzianowski et al. [12], extracted dialogue states are fed to
models as jointly trained embeddings similarly to Li et al. [54] and Sato et al.
[96]. In more advanced approaches, attention-based methods were employed to
represent dialogue states and dialogue acts as hierarchical graph for response
generation [14].

Conversely, is it possible to use a dialog state as a helpful clue even in
non-task-oriented dialogue? For such a use, the problem is that predefined
dialogue states in current conventional DST are typically domain-specific (e.g.,
price range for hotel booking) while non-task-oriented dialogues contain various
domains. Thus, we consider it is an important but difficult issue how to design
dialogue states and state trackers that can be used in many domains of non-task-
oriented dialogue. For example, the predition and employment of emotions of
speakers [34, 104] could be reasonable approaches where they assume emotions
can work as relatively universal dialogue states but not given explicitly. Our
approach can also be categorized into these approaches that try to design dialogue
states for open-domain non-task-oriented dialogue. This study pioneered the use
of situations and confirmed its effect in end-to-end dialogue response generation.
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As for the persona of speakers, one of situations we targeted, a similar approach
that exploits the profile of speakers was investigated [128].

4.3 Conversational situations

Various types of conversational situations could affect our response (or initial
utterance) to the listener. Since neural conversational models need massive data
to train a reliable model, our study investigates conversational situations that
are naturally given or can be identified in an unsupervised manner to make the
experimental settings feasible.

In this study, we represent conversational situations as discrete variables.
That allows models to handle unseen situations in testing by classifying them
into appropriate situation types via distributed representations or the like as
described below, and helps to analyze the outputs. We consider the following
conversational situations to each utterance and response in our dialogue dataset
(Section 4.5), and cluster the situations to assign specific situation types to the
utterances and responses in the training data of our conversational models.

Utterance The input utterance (to be responded to by the system) is a primary
conversational situation and is already modeled by the encoder in the neural
Seq2Seqmodel. However, we may be able to induce a different aspect of situations
that are represented in the utterance but are not captured by the Seq2Seq sequential
encoder [95]. We first represent each utterance of utterance-response pairs in our
dialogue dataset by a distributed representation obtained by averaging word2vec1

vectors (pre-trained from our dialogue datasets (Section 4.5.1)) for words in the
utterances. The utterances are then classified by k-means clustering to identify
utterance types.2

User (profiles) User characteristics should affect his/her responses as Li et al.
[54] have already discussed. We classify profiles provided by each user in our
dialogue dataset (Section 4.5.1) to acquire conversational situations specific to the

1https://code.google.com/p/word2vec/
2We set k to 10. Although we also evaluated our method with another k, the difference of

values does not affect our conclusion.

https://code.google.com/p/word2vec/
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addressers and listeners. The same as with the input utterance, we first construct
a distributed representation of each user’s profile by averaging the pre-trained
word2vec vectors for verbs, nouns and adjectives in the user profiles. The users
are then classified by k-means clustering to identify user types.3

Time (season) Our utterances can be affected by when we speak as illustrated
in Section 4.1, we thus adopted time as one conversational situation. On the
basis of timestamp of the utterance and the response in our dataset, we split the
conversation data into four season types: namely, spring (Mar. – May.), summer
(Jun. – Aug), autumn (Sep. – Nov.), and winter (Dec. – Feb.). This splitting reflects
the climate in Japan since our data are in Japanese whose speakers mostly live in
Japan.

In training our neural conversational models, we use each of the above
conversational situation types for the speaker side and listener (those who
respond) side, respectively. Note that the utterance situation is only considered
for the speaker side since its response is unseen in response generation. In testing,
the conversational situation types for input utterances (or speaker and listener’s
profiles) are identified by finding the closest centroid obtained by the k-means
clustering of the utterances (profiles) in the training data.

4.4 Method

Our neural conversational models are based on the Seq2Seq model [106] and
integrate mechanisms to incorporate various conversational situations (Section 4.3)
at speaker side and listener side. In the following, we briefly introduce the Seq2Seq
conversational model [114] and then describe two mechanisms for incorporating
conversational situations.

4.4.1 Seq2Seq conversational model

The Seq2Seq conversational model [114] consists of two recurrent neural networks
(rnns) called an encoder and a decoder. The encoder takes each word of an

3We set k to 10, and add another cluster for users whose profiles were not available (6.3% of
the users in our datasets).
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Figure 4.2: Local-global Seq2Seq.

utterance as input and encodes the input sequence to a real-valued vector
representing the utterance. The decoder then takes the encoded vector as its
initial state and continues to generate the most probable next word and to input
the word to itself until it finally outputs EOS.

4.4.2 Situation-aware conversational models

The challenge in designing situation-aware neural conversational models is how
to inject given conversational situations into rnn encoders or decoders. In this
thesis, we present two situation-aware neural conversational models that differ
in how strong of an effect a given situation has.
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Local-global Seq2Seq

Motivated by a recent success in multi-task learning for a deep neural net-
work [59, 58, 33, 60], our local-global Seq2Seq trains two types of rnn encoder
and decoder for modeling situation-specific dialogues and universal dialogues
jointly (Figure 4.2).

Local-rnns are meant to model dialogues in individual conversational situ-
ations at both the speaker and listener sides. Each local-rnn is trained (i.e., its
parameters are updated) only on dialogues under the corresponding situation. A
salient disadvantage of this modeling is that the size of training data given to
each local-rnn decreases as the number of situation types increases.

To address this problem, we combine another global-rnn encoder and decoder
trained on all the dialogue data and take the weighted sum of the hidden states
hs of the two rnns for both the encoder and decoder to obtain the output as:

h(enc)
i =WWW(enc)

G rnn
(enc)
G (h(enc)

i−1 ,xi)+

WWW(enc)
L rnn

(enc)
Lk′

(h(enc)
i−1 ,xi), (4.1)

h(dec)
j =WWW(dec)

G rnn
(dec)
G (h(dec)

j−1 , y j−1)+

WWW(dec)
L rnn

(dec)
Lk′′

(h(dec)
j−1 , y j−1), (4.2)

where rnn(·)
G (·) and rnn(·)

L (·) denote global-rnn and local-rnn, respectively, and
the WWWs are trainable matrices for the weighted sum. The embedding and softmax
layers of the rnns are shared.

Seq2Seq with situation embeddings

The local-global Seq2Seq assumes that dialogues with different situations involve
different domains (or tasks) that are independent of each other. However, this
assumption could be too strong in some cases and thus we devise another weakly
situation-aware conversational model.

We represent the given situations at speaker and listener sides, sk′ and sk′′ , as
situation embeddings and then feed them to the encoder and decoder prior to
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Figure 4.3: Seq2Seqwith situation embeddings.

processing sequences (Figure 4.3) as:

h(enc)
0 =rnn(hinit,sk′), (4.3)

h(enc)
i =rnn(h(enc)

i−1 ,xi−1), (4.4)

h(dec)
0 =rnn(h(enc)

I+1 ,sk′′), (4.5)

h(dec)
j =rnn(h(dec)

j−1 , y j−1), (4.6)

where hinit is a vector filled with zeros and h(enc)
I+1 is the last hidden state of the

encoder.

This encoding was inspired by a neural machine translation system [40] that
enables multilingual translation with a single model. Whereas it inputs the target
language embedding only to the encoder to control the target language, we input
the speaker-side situation to the encoder and the listener-side one to the decoder.
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Average length in words (utterances) 15.7
Average length in words (responses) 10.1
Average length in words (user profiles) 37.4
Number of users 386,078

Table 4.1: Statistics of our dialogue datasets (training, validation, and test portions
are merged here).

4.5 Evaluation

In this section, we evaluate our situation-aware neural conversational models
on massive dialogue data obtained from Twitter. We compare our models
(Section 4.4.2) with Seq2Seq baseline (Section 4.4.1) using a response selection
test instead of evaluating generated responses, since Liu et al. [57] pointed out
several problems of existing metrics such as bleu [84] for evaluating generated
responses.

4.5.1 Settings

Data We built massive dialogue datasets from our Twitter archive that have
been compiled since March, 2011. In this archive, timelines of about 1.5 million
users4 have been continuously collected with the official API. It is therefore
suitable for extracting users’ conversations in timelines.

On Twitter, a post (tweet) and a mention to it can be considered as an
utterance-response pair. We randomly extracted 23,563,865 and 1,200,000 pairs
from dialogues in 2014 as training and validation datasets, and extracted 6000
pairs in 2015 as a test dataset in accordance with the following procedure. Because
we want to exclude utterances that need contexts in past dialogue exchanges to
respond from our evaluation dataset, we restrict ourselves to only tweets that are
not mentions to other tweets (in other words, utterances without past dialogue
exchanges are chosen for evaluation). For each utterance-response pair in the
test dataset, we randomly chose four (in total, 24,000) responses in 2015 as false
response candidates which together constitute five response candidates for the
response selection test. Each utterance and response (candidate) is tokenized

4Our collection started from 26 popular Japanese users in March 2011, and the user set has
iteratively expanded to those who are mentioned or retweeted by already targeted users.
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Vocabulary size 100,000
Dropout rate 0.25
Mini-batch size 800
Dimension of embedding vectors 100
Dimension of hidden states 100
Learning rate 1e-4
Number of samples in sampled softmax 512

Table 4.2: Hyperparameters for training.

by MeCab5 with NEologd6 dictionary to feed the sequence to the word-based
encoder decoder.7 Table 4.1 shows statistics on our dialogue datasets.

Models In our experiments, we compare our situation-aware neural conversa-
tional models (we refer to the former model in Section 4.4.2 as L/G Seq2Seq and
the latter model in Section 4.4.2 as Seq2Seq emb) with situation-unaware base-
line (Section 4.4.1) for taking each type of conversational situations (Section 4.3)
into consideration. We also evaluate L/G Seq2Seq without global-rnns (referred
to as L Seq2Seq) to observe the impact of global-rnns.

We used a long-short term memory (lstm) [126] as the rnn encoder and
decoder, sampled softmax [39] to accelerate the training, and TensorFlow8 to
implement the models. Our lstms have three layers and are optimized by Adam
[44]. The hyperparameters are fixed as in Table 4.2.

Evaluation procedure We use the above models to rank response candidates
for a given utterance in the test set. We compute the averaged cross-entropy
loss for words in each response candidate (namely, its perplexity) by giving
the candidate following the input utterance to each conversational model, and
used the resulting values for ranking candidates to choose top-k plausible ones.
We adopt 1 in t P@k [120] as the evaluation metric, which indicates the ratio of

5http://taku910.github.io/mecab/
6https://github.com/neologd/mecab-ipadic-neologd
7The number of words in the utterances and the response candidates in the test set is limited

to equal or less than 20, since very long posts do not constitute usual conversation.
8https://www.tensorflow.org/

http://taku910.github.io/mecab/
https://github.com/neologd/mecab-ipadic-neologd
https://www.tensorflow.org/
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Model 1 in 2 P@1 1 in 5 P@1 1 in 5 P@2
Baseline 64.5% 33.9% 56.6%
Situation: utterance
L Seq2Seq 67.2% 37.2% 60.6%
L/G Seq2Seq 68.5% 38.2% 62.1%
Seq2Seq emb 65.6% 35.4% 58.2%
Situation: speaker/addressee (profiles)
L Seq2Seq 67.3% 38.0% 60.9%
L/G Seq2Seq 66.4% 36.4% 59.2%
Seq2Seq emb 67.8% 37.5% 61.1%
Situation: time (season)
L Seq2Seq 62.0% 30.8% 54.8%
L/G Seq2Seq 65.9% 35.8% 58.1%
Seq2Seq emb 67.3% 37.6% 60.7%

Table 4.3: Results of the response selection test.

utterances that are provided the single ground truth in top k responses chosen
from t candidates. Here we use 1 in 2 P@1,9 1 in 5 P@1, and 1 in 5 P@2.

4.5.2 Results

Table 4.3 lists the results of the response selection test. The proposed conver-
sational models successfully improved the relevance of selected responses by
incorporating conversational situations.

The proposed model that performed best is different depending on the
situation type. We found from the dataset that many of the conversations did not
seem to be affected by the seasons, that is, time (season) situation is less influential
than other situations. This explains the poor performance of L Seq2Seqwith time
(season) situations due to the data sparseness in training local-rnns, although the
sparseness is mostly addressed by global rnns in L/G Seq2Seq.

As stated in Section 4.4.2, L/G Seq2Seq is expected to capture situations more
strongly than Seq2Seq emb. To confirm this, we plotted scattergrams of the
utterance vectors (Figure 4.4) and the user profile vectors (Figure 4.5) in the
training data by using t-SNE [66]. We provide cluster descriptions by manually

9We randomly selected one false response candidate from the four pre-selected ones when
t = 2.
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Figure 4.4: The scattergram of sampled utterance vectors visualized using t-SNE.

looking into the content of the utterances and user profiles in each cluster. The
descriptions are followed by↗ if L/G Seq2Seq performed better than Seq2Seq
emb in terms of 1 in 5 P@1 for test utterances with the corresponding situation
type, by↘ if the opposite and by→ if comparable (differences are within ± 1.0%).
Elements of clusters were randomly sampled.

L/G Seq2Seq tends to perform better for utterances with densely concentrated
(or coherent) speaker profile clusters (Figure 4.5). This is because utterances
given by the speakers in these coherent clusters (and the associated responses)
have similar conversations, situations of which are captured by local-rnns in the
local-global Seq2Seq.

This explains the reason why L/G Seq2Seq outperformed the other situation-
aware conversational models when utterance situations are considered (Figure 4.4).
Conversations in the same clusters are naturally consistent, and conversations
assigned to the same clusters form typical activities or specific tasks (e.g., greetings,
following other users, and questions (and answering)) in Twitter conversation.
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Figure 4.5: The scattergram of sampled user profile vectors visualized using
t-SNE.

L/G Seq2Seq, designed as a kind of multi-task Seq2Seq, literally captures these
task-specific behaviors in the conversations.

Although some utterance clusters have general conversations (e.g., diverse
topics), the response performances in those clusters have still improved. This
is because these general clusters are free from harmful common responses that
are quarantined into situation-specific clusters (e.g., greetings etc.) and the
corresponding local-rnns should avoid generating those common responses.
Note that this problem has been pointed out and addressed by Li et al. [53] in a
totally different way.

Examples Table 4.4 lists the response candidate selected by the baseline and
our models. As we had expected, the situation-aware conversational models are
better at selecting ground-truth responses for situation-specific conversations.
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Situation: utterance (opinions, questions)
Input: ちょっと最近BOTのフォロー多いんですけど

(I’ve recently been followed by many bot accounts.)
Baseline お疲れ様やで(You’ve gotta be tired.)
L/G Seq2Seqブロックしちゃいましょう(Let’s block them.)
Situation: addressee profiles (girls)
Input: なにグラブル始めてるんだ原稿しろ

(Why am I starting Granblue Fantasy? I have to write the paper...)
Baseline おい、大丈夫か？(Hey, are you okay?)
Seq2Seq embフレンドなろ♥ (Let’s be friends♥)
Situation: time (season) (summer)
Input: 7月になって、流石にパーカーは暑くなってきた

(July is too warm to wear a hoodie.)
Baseline そうなんです! (Yes!)
Seq2Seq embまだ着てたの!? (Do you still wear one?)

Table 4.4: Responses selected by the systems.

4.6 Chapter Summary

We proposed two situation-aware neural conversational models that have general
mechanisms for handling various conversational situations represented by dis-
crete variables (Section 4.4.2): (1) local-global Seq2Seq that combines two Seq2Seq
models to handle situation-specific dialogues and universal dialogues jointly,
and (2) Seq2Seq with situation embeddings that feeds the situations directly
to a Seq2Seq model. The response selection tests on massive Twitter datasets
confirmed the effectiveness of using situations such as utterances, user (profiles),
or time.

Although we evaluated our method in dialogue response generation where
situations were explicitly available and likely to affect responses, the problem
and solution discussed in this study are applicable in other text generation task.
Even in machine translation, the task where the diversity of outputs is relatively
low, personalized machine translation have been explored [72, 87, 122, 69]. We
consider their focuses and ideas were partially similar to ours although the types
of situations are limited due to the difficulty in obtaining situations in such tasks.



Chapter 5

Speculative Latent Variables
Sampling for Handling Latent
Domains

5.1 Introduction

In early neural-based approaches in dialogue modeling, it has been a serious
problem that employing a simple encoder-decoder framework tended to generate
safe responses (a.k.a, dull responses) [53]. The first reason is that dialogue
datasets often contain short, trivial, and frequent utterances and responses such
as greetings. In training with such a dataset, it is an easy way for a model to
simply imitate such frequent responses for optimizing a training objective. The
second and more important reason is the nature of conversations. In dialogue,
there often exists many appropriate responses to a given untterance. However,
conventional encoder-decoder frameworks have modeled response generation as
a one-to-one projection from an input sentence to an output sentence [15, 106, 105].
The contradiction appears as the safe response problem; there is no reason for a
model to choose a specific and interesting response from probable responses. As
a result, it simply imitates a frequent and versatile response in training data.

The use of variational model is a promising approach to resolve the problem.
This was inspired by the success of Variational Auto-Encoder (VAE) in the field
of computer vision [46]. Variational dialogue models estimate the prior and
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posterior distributions of a conversation and latent variables sampled from the
distributions perform as randomness. The latent variables can work as additional
clues to generate a response with high context-/domain-/style- specificity.

While various variational attempts have been made for diversifying the output
of dialogue models [9, 45, 100, 129], it is still unclear what the latent space of a
model captures from the randomness in conversations. One reason is that sampled
latent variables and the parameters of the distributions are continuous vectors
approximated by an neural network, which are difficult to analyze. Moreover,
in traditional variational models, latent variables corresponding to the same
response can be scattered throughout the model’s prior distributions and are less
structured.

In this study, we aim to organize the latent space by a simple method focusing
on the sampling of latent variables in training. We consider the main reason
of the disorganization in latent spaces is the discrepancy between a sampled
latent variable and a training example. To resolve that, our proposed model
speculatively samples multiple latent variables and exploits only the one for
optimization that leads to the minimum loss.

5.2 Related work

Major existing approaches to preventing the generation of safe responses can be
broadly categorized into three types: 1) using additional contexts, 2) changing
decoding objectives, and 3) employing variational models. Here, we review the
overview of the approaches.

The first approch is represented as personalization. It is based on the idea
that by giving more information to the model and by making the context more
specific, the response will also obtain high specificity. To controll responses to be
generated, they relied on the speaker’s persona [128, 68, 18, 6], emotions to be
expressed [34, 130], topics [124], and situations [96] of a conversation as additional
contexts.

In the second approach, the criterion for response generation is explicitly
controlled by changing the decoding method. Concretely, they employed mutual
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information [53], inverse token frequency [73], topic or semantic similarity
between input and output [5].

Our method belongs to the third approach. We here review existing methods
for variational response generation. With the success of variational recurrent
hierarchical encoder-decoder (VHRED) in dialogue modeling [101], variational
models have been expected as one of the solutions to the safe response problem.
However, the difficulty in optimization of variational models raised another
problem – KL vanishing (or latent variable vanishing). With a sufficient number
of parameters, the use of a powerful network allows a model to pay attention
to the representations of the encoder and decoder. As the result, the model can
totally ignore latent variables and the prior and posterior distribution become
almost the same. Thus, many existing studies have proposed a method to control
the optimization of KL-divergence (Kullback–Leibler divergence) [9, 129, 45, 103,
55, 31, 25, 27, 28]. Many of these approaches were based on regularization.

To design a latent space where the relevance and diversity of outputs are
geometrically reflected, Gao et al. [27] proposed spacefusion, where regularization
terms are added to training objectives that fuse and interpolate the latent space.
Among the aforementioned existing studies, their approach shares with us a
similar goal of organizing the latent space by the meaning of output. While
their method was based on the regularization to latent variables and requires a
modification to model’s architecture, we propose a model-agnostic method that
focuses only on the sampling of latent variables and optimization. Kruengkrai
[50] proposed to sample multiple latent variables in text modeling, similarly to
our method. However, the intention is different as we aim to control sampling
procedures based on training losses to provide suitable latent variables. We will
also evaluate their method and discuss the difference in Section 5.4.

5.3 Speculative Latent Variables Sampling

5.3.1 Preliminary: T-CVAE

Before discussing our proposed method, we first introduce Transformer-based
conditioned variable auto-encoder (T-CVAE) that we employed as a core archi-
tecture of our model [116]. Namely, T-CVAE was one of conditioned variational
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Figure 5.1: The overview of T-CVAE. Dotted lines represent computations only
in training.

auto-encoders (CVAE) proposed for story complilation. The architecture is based
on Transformer [112], a recent promising architecture. The main purpose is to
handle uncertainty in text generation, similarly to Latent Variable Hierarchical
Recurrent Encoder-Decoder (VHRED) [101] .

The optimization of T-CVAE is similar to CVAE; we maxmize the evidence
lower bound (ELBO) instead of directly optimizating the conditional probability
logp(y | x) as follows:

logp(y | x) = log
∫

z
p(y | x,z)p(z | x)dz

≥ Eq(z|x,y)[logp(y | x,z)]

−DKL
(
q(z | x, y)‖p(z | x)

)
(5.1)

Here, we denote an inputm an output, and a latent variable by x, y, and z,
respectively. The prior and posterior distributions are denoted by p(z | x) and
q(z | x, y), respectively. In training, it computes the posterior distribution from
both a given input x and a given output y. And then, it samples a latent variable z
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and compute cross-entropy loss from q(y | x,z). In addition, it computes the prior
distribution p(z | x) only from the given input x and adds the KL-divergence DKL

to the loss.

Practically, the prior and the posterior distribution are supposed to be a
multivariate normal distribution whose covariance matrix is constrained to be a
diagonal matrix for convenience of computation.

The meanµ and covariance log
(
σ2
)

of the prior distribution p(z | x)∼N
(
µ′,σ′2I

)
are computed as:

h =Attention
(
c,EL

out(x),EL
out(x)

) µ

log
(
σ2
)  =MLPp (h) (5.2)

Similarly, the mean µ′ and covariance log
(
σ′2
)

of the posterior distribution

q(z | x, y) ∼N
(
µ,σ2I

)
are computed as:

h′ =Attention
(
c,EL

out(x; y),EL
out(x; y)

) µ′

log
(
σ′2
)  = h′Wq+ bq (5.3)

The differences in the two equations above are: 1. networks to induce the
distributions and 2. whether or not the output y is used for computation. The
outputs from the last encoder is denoted as EL

out(x; y) and x; y means concatenation
of the input and output. Attention(Q,K,V) means applying attention mechanism
to summarize the outputs from encoder. Q, K, and V are the query/key/value
vector, respectively. In the original T-CVAE [116], MLPp consists of two feed-
forward layers.

MLP∗(·) denotes a multi-layered perceptron.

After estimating the prior and the posterior distributions, T-CVAE conducts
a decoding process with a sampled latent variable z, similarly to CVAE. The
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computation in decoder is defined as:

Ct = tanh
([

z;DL
out,t

]
Wc
)

Ot =MLPo (Ct)

Pt = softmax(Ot) (5.4)

DL
out,t denotes outputs from the last decoder at time step t. As Eq. (5.4) shows, the

sampled latent variable z is simply concatenated with DL
out,t just before the output

layer. In other words, computations in the decoder is the same as the original
Transformer. Additionally, it should be mentioned that the FFN and multi-head
attention parameters are shared between the respective encoder and decoder
layers. This is because the architecture was proposed for story compilation.
Differently from machine translation, it was assumed that the language was
the same across an input and an output. We also adopt this setting in the
following experiments since sharing encoder and decoder can reduce the number
of trainable parameters.

5.3.2 Speculative Latent Variables Sampling

The problem we address in this work is the independence between the sampling
of latent variable and a given example during training. As explained in Section 5.3,
in the training of a typical variational model, the model computes prior and
posterior distributions p(z | x) and q(z | x, y) from the utterance x and response y in
a conversation given as an example. And then, the training objective is optimized;
the objective is typically the sum of the cross-entropy loss and the KL-divergence
between the prior and posterior distributions.

Ideally, the prior distribution should cover all possible responses to a given
context x while the response y is fixed when the posterior distribution is induced.
Here, what if a latent variable sampled from the posterior distribution is inappro-
priate to represent the observed response? For example, suppose that there is a
utterance-response pair, “Any musicians to recommend?” and “Why don’t you
listen to MJ?” (Figure 5.2). Although the posterior distribution is induced under
the observation of the given response, it can produce a latent variable that leads
to another probable response, “Jimi Hendrix is a rock guitar legend.” The reason
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Why don’t you
listen to MJ?

Given Response

Posterior

Any musicians to 
recommend?

Utterance

Prior

R&B

Jimi Hendrix is a rock
guitar legend.

Other Probable Response

Rock

Jazz

Pop

Figure 5.2: The overview of the problem in the training of CVAE-based models:
the posterior can produce a variable leading to another probable response.

is for the confusion is that parameters of a model are incomplete during training,
and thus the estimation of the posterior distribution can fail. Moreover, due to
the optimization of KL-divergence, the posterior distribution is encouraged to be
similar to the prior distribution that covers other probable responses too.

In this situation, the optimization becomes skewed; while the model tries to
minimize the cross-entropy loss computed from a given input, a given output,
and a sampled latent variable, the sampled latent variable might not represent
the given output in the latent space of the model. As the result of the discrepancy,
the model can lose track of the correspondence between a sampled latent variable
and the response to be generated, and the latent space becomes disorganized.

To resolve the problem, we propose a quite simple method to disentangle
the discrepancy. Part of our method was inspired by dynamic oracle [29] that
allows a shift-reduce dependency parser to choose an easy-to-decode oracle
operation among all the possible oracle operations that will ultimately reach the
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# encoder/decoder layers 6 Label smoothing rate 0.1
# attention heads 8 Init. learning rate 1e-3
Dim. of embeddings 512 (warmup) 1e-7
Dim. of Transformer 2048 Dropout rate 0.1
Vocab. size (enc&dec) 16k Beam size for decoding 5
Max. tokens in batch 40k Length penalty 1.2

Table 5.1: Hyperparameters of models.

gold dependency structure. Analogously, we aim to provide the most probable
latent variables that can reach a given response in training.

Specifically, we sample multiple latent variables {z0,z1, · · · ,zN−1} from the
posterior distribution and compute the loss respectively in training. And then,
we compute the gradients from only the sampled latent variable that leads to the
smallest loss. We minimize the training objective L(ẑ) defined as:

L(z) = −Eq(z|x,y)[logp(y | x,z)]+DKL
(
q(z | x, y)‖p(z | x)

)
ẑ = argmin

zi

L(zi) (5.5)

The objective is the same as Eq. (5.1) while the selection of ẑ is only the difference.
Note that our method affects only the training of models. In testing, the decoding
process is identical to conventional variational models; they sample one or several
latent variables, computes the probability distribution, and chooses the next token
according to the distribution.

5.4 Evaluation in Dialogue Response Generation

5.4.1 Models

We evaluate the effect of the proposed method in dialogue response genera-
tion. We adopted subword-based T-CVAE [116] that we implemented in fairseq
(v0.8.0)1 [83], as the core architecture for the dialogue models. We basically
followed the major hyperparameters of Transformer-base [112], as shown in
Table 5.1. Following the original settings, we shared the parameters of feed-

1https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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forward layers and attention mechanism between the encoder and decoder. The
embedding layers of the encoder and the decoder are also shared. Note that an
input utterance and an output response are encoded by the same encoder for
inducing the distributions.

We compared the following methods that aim to control the latent space of
variational models.

T-CVAE: refer to Section 5.3.1.

T-CVAE + Monotonic KL annealing: the optimization of KL-divergence is
linearly annealed for preventing KL vanishing [9]. Concretely, the second term in
Eq. (5.1) is weighted by λ that begins from 0 and is linearly increased to 1 for the
first epoch.

T-CVAE + Cyclical KL annealing: although the KL-divergence term is an-
nealed similarly to Monotonic KL annealing, the annealing scheme is namely
cyclical [25]. During the first half of an epoch, we start with λ = 0 and linearly
increase λ to 1. λ stays at 1 during the second half of the epoch.

SPACEFUSION: we add another loss for fusing the vector space of input
utterances and output responses, to the cross-entropy loss [27]. The aim of this
model to modulate the latent space is related to our approach. Note that the
covariance of Gaussian distribution of this model is not parametrized and thus
only this model is slightly different from T-CVAE.

T-CVAE + BoW loss: we add the bag-of-word (BoW) loss to the training
objective in Eq. (5.1) [129]. This is a loss to prevent a model from ignoring the
latent variable by a constraint that ties up a sampled latent variable with a given
response. Namely, the latent variable is also used for predicting bag-of-words
in the response as another task, which makes the latent variable capture global
information about the response.

T-CVAE +Monte Carlo sampling: similarly to the speculative sampling, we
sample multiple latent variables and use the average for computing the loss in
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training [50].2 Note that the original method, LSTM-VAE-AVG, takes the average
of the decoder’s outputs computed from each sampled latent variable. In T-CVAE,
however, latent variables do not affect the computation in the Transformer-decoder
stacks and they are concatenated with the decoder’s output before the output
layer instead. Thus, taking the average of the latent variables in T-CVAE is
equivalent to the procedure in the original model.

T-CVAE + Speculative sampling: refer to Section 5.3.2. We sample five latent
variables for each conversation considering computational costs.3

5.4.2 Dataset and Preprocessing

Similarly to Section 4.5.1, we constructed a Japanese dialogue dataset from our
Twitter archive while simulating a tweet and subsequent mentions between two
users as a conversation. Hereafter, we refer to messages sent to other users as
mentions, and otherwise as tweets. Other types of messages such as retweets (RT)
or quote tweets (QT) were excluded from collection in advance. The concrete
process for building the dataset is as follows.

First, we collected messages from the Twitter archive in 2017 and 2018 for
training and development. We used the messages in 2019 for testing. In the
preprocessing to each message, we removed emoticons, hashtags (#hashtag) at
the end of a message, and usernames (@username) of Twitter at the beginning
of a mention from all messages. To reduce noises in conversations, we filtered
out messages that satisfied one of the following conditions. Note that part of the
message-level preprocessing and filtering was based on Adiwardana et al. [1].

• If a message contained URLs or several words implying it had additional
contexts outside the message such as “RT,” “QT,” etc.

• If a message was made by users whose username or profile contained “bot.”

• If a message contained a hashtag or a username in the middle of it because
removing it can make the message ungrammatical.

2We set the number of sampling to five as same as the speculative sampling.
3We also trained models where the number of sampling is 2, 5, 10, or 20. The tendency of the

results was similar and we select five as the number of sampling for the main results from the
validation results.
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Utterance Response

Accepted conversations

インターンシップで服装自由って
言われた時どうすりゃええねん

フルスーツ貸しましょうか?

やってしまった. . .大きく足首をひ
ねってしまった... 歩くのがきつ
い... だが病院はあいていない...

そーゆー時は救急車呼んで全然
オッケーですから...!!

今更PS4を買おうかと思ってるの
ですが、500GBと1TBどっちがい
いの?? 誰か教えて。

HDがいっぱいになる前に本体壊
れるので少なくていいんじゃない
かなーって思います笑

Rejected conversations

おはよー おはよん

当選おめでとうは!!!?!?!? おめでとうございます

フックでうらどうするの? クソ強
ドローぶち当て? 気合い使ったり
なんかな?

ドローで牽制牽制。あんまりス
トレートは振っちゃ駄目 気合
いはWR専用とエンゲツトウで無
かったことにされるんで歌えです
かね

Table 5.2: Examples of accepted/rejected conversations in filtering for human
evaluation. Rejected conversations were too short, generic, or difficult for
annotators to imagine the context behind them.

• If a preprocessed message was identical to another message in the same
month since such a message could often be generated by a bot or could be
trivial like greetings.

• If the the percentage of the same character in a message was more than 50%.

And then, we collected conversations starting from a tweet between two users.
The reason why we excluded conversations starting from a mention was that
they could include implicit contexts that had been made before the conversation.
The numbers of examples were 18,116,756 for training, 191,890 for development,
and 96,276 for testing.

Moreover, we sampled 100 conversations from the testing dataset for human
evaluation by manual filtering with observing only the contexts and the reference
responses. This was because human evaluation is costly and the randomly
selected testing data includes 1) immoral conversations, 2) trivial conversations
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BLEU dist-1 dist-2 Average Length

Reference - 4.11 30.60 12.01

T-CVAE 2.48 1.14 4.24 15.68
T-CVAE +Monotonic KL annealing 2.73 1.27 4.47 13.99
T-CVAE + Cyclical KL annealing 2.73 1.19 4.24 14.01
SPACEFUSION 2.86 1.50 4.74 8.27
T-CVAE + BoW loss 1.97 1.56 8.74 10.18
T-CVAE +Monte Carlo sampling 0.53 1.79 18.25 21.20
T-CVAE + Speculative sampling 2.91 1.57 6.48 11.31

Table 5.3: Results of automatic evaluation.

such as short greetings, 3) highly specialized conversations, and 4) conversations
that have many undescribed contexts outside the text (e.g., subsequent comments
to his/her retweet not as a mention, conversations about an image a speaker
uploaded, etc.). Such conversations are too difficult even for human evaluators
to judge what can be a good response, which hinder us from conducting solid
evaluations and analyses. As it is difficult to completely remove them only by
automatic preprocessing, we manually chose conversations that were suited to
human evaluation. In Table 5.2, we show several examples of accepted/rejected
conversations in data filtering for human evaluation.

The constructed dataset was tokenized by MeCab.4 And then, we train
a subword tokenization model with SentencePiece (v0.1.83)5 from randomly
sampled 1,000,000 sentences from the training data. [52] Similarly, we trained
cbow vectors6 of subwords from another 1,000,000 sentences randomly sampled
from training data for initialization of the models’ embedding layers. [71]

5.4.3 Automatic Evaluation

For automatic evalaution, we employed several common metrics: case-sensitive
BLEU [84], dist-n [53], and the average length of outputs. Table 5.3 shows the
results.

First, compared to the vanilla T-CVAE, the BLEU scores of the models em-
ploying the methods for preventing KL-vanishing (hereafter, advanced models)

4https://github.com/taku910/mecab
5https://github.com/google/sentencepiece
6https://code.google.com/archive/p/word2vec/

https://github.com/taku910/mecab
https://github.com/google/sentencepiece
https://code.google.com/archive/p/word2vec/
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BLEU dist-1 dist-2 Avg. length

T-CVAE + Speculative sampling (K = 2) 2.69 1.28 4.95 13.61
T-CVAE + Speculative sampling (K = 5) 2.91 1.57 6.48 11.31
T-CVAE + Speculative sampling (K = 10) 2.70 1.54 7.00 11.47
T-CVAE + Speculative sampling (K = 20) 2.40 1.51 7.28 10.64

Table 5.4: Automatic evaluation results of our proposed model with different K.

increased except T-CVAE + BoW Loss and T-CVAE +Monte Carlo sampling.
This is a side effect of the methods; we observed that the vanilla T-CVAE tend to
generate noisy or ungrammatical sentences containing repetitions. The repeta-
tions sometimes appeared in T-CVAE, T-CVAE + Monotonic KL annealing,
and T-CVAE +Monotonic KL annealing. The relatively longer average length
of the models compared to Reference also shows that. The BLEU scores in
the experiments show that responses generated by the advanced models with
a higher BLEU score were simply more grammatical rather than human-like.
SPACEFUSION was relatively grammatical and did not contain the too long
repetition. However, the outputs tended to be short and the improvement of
diversity was modest. In the proposed models, we consider that variational
response generation worked well and improved the skewed training, where
models try to learn one-to-one mappings from one-to-many conversational data.

Second, T-CVAE+BoW loss, T-CVAE+Monte Carlo sampling, and T-CVAE
+ proposed achieved remarkably high dist-1 and dist-2, which represents high
diversity of the generated responses. However, the outputs from T-CVAE + BoW
loss and T-CVAE +Monte Carlo sampling were noisy and less relevant to the
context as the low BLEU score shows. We will discuss the reason of the tendency
with the results in the following sections (Section 5.4.4 and Section 5.4.5).

Although we define K = 5 as the hyperparameter of the main proposed model
that was manually evaluated, we also show the results of the proposed method
with different k in Table 5.4. The model with K = 2 was similar to T-CVAE,
although all metrics were improved. The specificity of the models with relatively
larger K = {10,20}was high as shown by the dist-2 scores.

Overall, we conclude that our simple modification, the speculative latent
variables sampling worked well and made the generated outputs more diverse
without decreasing the BLEU score.
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Sensibleness Specificity Average

Reference 4.67 4.33 4.50

T-CVAE 3.58 1.35 2.46
T-CVAE +Monotonic KL annealing 3.49 1.22 2.35
T-CVAE + Cyclical KL annealing 3.58 1.29 2.44
SPACEFUSION 3.66 1.42 2.54
T-CVAE + BoW loss 3.04 1.58 2.31
T-CVAE +Monte Carlo sampling 1.42 0.70 1.06
T-CVAE + Speculative sampling 3.94 1.52 2.73

Table 5.5: Results of human evaluation. Pearson correlation coefficient between
evaluators was 0.69.

KL-divergence ‖µ ‖ ‖σ ‖

T-CVAE 0.003 0.240 21.742
T-CVAE +Monotonic KL annealing 0.060 0.216 15.155
T-CVAE + Cyclical KL annealing 0.088 0.330 15.268
T-CVAE + BoW loss 24.073 36.949 92.003
T-CVAE +Monte Carlo sampling 11.826 1.526 19.814

T-CVAE + Speculative sampling (K = 2) 0.621 0.638 21.746
T-CVAE + Speculative sampling (K = 5) 1.573 0.953 20.949
T-CVAE + Speculative sampling (K = 10) 2.192 1.053 20.347
T-CVAE + Speculative sampling (K = 20) 2.910 1.120 18.743

Table 5.6: Average KL-divergence, norm of mean vector µ, and norm of standard
deviation vector σ for prior distribution in validation.

5.4.4 Human Evaluation

We also conducted human evaluation shown in Table 5.5 following Adiwardana
et al. [1]. In the evaluation, annotators provided scores from 1 to 5 for each
anonymized response from the point of view of 1) sensibleness and 2) specificity.
Both metrics literally show how sensible and specific to a given context a response
was. In human evaluation, there could be responses that are less relevant to the
context and difficult to assess whether they are specific or noisy. Therefore, we
allowed annotators to label a response as unevaluable and such a response is
scored as specificity=0 in this experiment.

The tendency of the results was similar to that of Section 5.4.3. SPACEFUSION
and T-CVAE + Speculative sampling achieved relatively high sensibleness (i.e.,
relatedness to the context). The specificity of T-CVAE + BoW loss and T-CVAE
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+ Speculative sampling were remarkably higher than other models while the
sensibleness of T-CVAE+BoW loss was low. The specificity of T-CVAE+Monte
Carlo sampling was largely decreased because its outputs were too irrevant
and tended to be regarded as unevaluable (specificity=0) by the annotators.
We consider the reason for the decrease in sensibleness compared to T-CVAE
as follows. T-CVAE + BoW loss worked too strongly as a constraint on the
latent space and the distributions became enlarged. In T-CVAE +Monte Carlo
sampling, latent variables close to the mean of the posterior distribution were
more likely to be trained. As a result, in testing, it is possible for the two models to
sample latent variables from unreliable regions that were not optimized enough.

Overall, the proposed model achieved comparable results in both sensibleness
and specificity. While the compared methods could lose the sensibleness of
generated responses in return for the high specificities, the sensibleness of
T-CVAE + Speculative sampling was still kept.

5.4.5 Statistics of Distributions

Table 5.6 shows the average KL-divergence and the average norms of the mean
and variance of the prior distribution for each model in validation.7 The KL-
divergence of the vanilla T-CVAE almost vanished and the employmennt of KL
annealing methods slightly mitigated that.

Employing BoW loss significantly increased the KL divergence and the norms
of µ and σ. This is because BoW loss worked as a quite strong restriction in
training that required a sampled latent variable to predict all the tokens in the
output sentence. As a result, the prior distribution was extremely enlarged and
a latent variable sampled from the distribution could lead to generating less
sensible and relevant responses as shown in Table 5.5.

Meanwhile, the proposed model successfully prevented KL vanishing without
significantly enlarging the distribution. Interestingly, the larger K we chose, the
KL-divergence also became large. We consider that the tendency support our
hypothesis discussed in Section 5.3.2. Speculatively sampling latent variables

7SPACEFUSION does not have parametrized distributions. Instead, a Gaussian noise sampled
from a static distribution was added to outputs from the encoder.
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Input Utterance 北陸にお住まいの、あるいは北陸出身の方に訊きたいので

すが2月末の福井って気温的にはどうなんですか厚着してっ

たほうがいいんでしょうか

(I would like to ask someone who lives in Hokuriku or is from

Hokuriku. What is the temperature of Fukui at the end of February?

Should I wear thick clothes?)

Reference Response 本州は最近寒いようじゃな
(Honshu would be cold these days.)

T-CVAE 北海道の方がいいと思いますよ。
(I guess Hokkaido is better.)

T-CVAE +Monotonic KL annealing 上着でいいと思いますよ!
(I think you should wear a jacket!)

T-CVAE + Cyclical KL annealing 北海道の方が暖かいですよ。
(Hokkaido is warmer.)

SPACEFUSION 雪が降ってます。(It’s snowing there.)

T-CVAE + BoW loss 山手線は北上しないと寒いです。
(The Yamanote line is cold unless you go north.)

T-CVAE +Monte Carlo sampling 私もつかの間が感じられませんのでご気持ちは

わかりますが冬といえばすごく暖かいです

(I can’t feel the moment and I understand how you feel, but winter

is very warm.)

T-CVAE + Speculative sampling 普通に寒いと思いますよ。
(I think it’s usually cold there.)

Input Utterance 急募喉の痛みの緩和方法
(Any ideas on how to relieve sore throat?)

Reference Response マヌカハニーを舐める (Eat Manuka honey.)

T-CVAE 病院に行った方がいいですよ。
(You should go to a hospital.)

T-CVAE +Monotonic KL annealing 葛根湯を飲んでみては?
(Why don’t you try Kakkonto?)

T-CVAE + Cyclical KL annealing お大事にしてください...!
(I hope you get well soon.)

SPACEFUSION お大事になさってください...
(I hope you get well soon.)

T-CVAE + BoW loss 胃腸炎にならなくていいと思います。
(I think you don’t have to have gastroenteritis.)

T-CVAE +Monte Carlo sampling 自分のやつっ！ (Your own!)

T-CVAE + Speculative sampling ビタミンCを摂るといいよ。(Take vitamin C.)

Table 5.7: Examples of generated outputs in dialogue response generation.
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and selecting the most probable one for optimization resolved the discrepancy
between a given conversation and a sampled latent variable.

5.4.6 Output Examples

Table 5.7 shows several examples of the generated responses. As demonstrated
in many existing studies, responses generated by a vanilla T-CVAE still contained
a safe response or repetations of a same phrase in the context. Although this
tendency was also observed in T-CVAE-based models, the diversity was slightly
improved. However, it also made responses less context-specific as the first
example shows. This was due to the trade-off between relevance and specificity
discussed in existing studies [27].

We often observed that the proposed method helped model avoid the repetition
of context words. As represented in the examples, the generated responses by
the proposed model tended to contain more topic-specific words such as “ビタミ
ンC (vitamin C)”.

5.5 Evaluation in Machine Translation

Dialogue response generation is a task where the diversity of outputs is likely
to affect a model’s performance. However, also in other generation tasks, many-
to-many relations between inputs and outputs can be similarly problematic to
a varying degree. The ability of models to generate diverse output candidates
is beneficial. For example, in machine translation, where probable outputs are
relatively strictly restricted by the inputs, there still can exist many probable
outputs depending on the situation of the inputs or the number of patterns with
the same meaning in the target language. We also evaluated the proposed method
in machine translation to investigate how variational encoder-decoder models
perform in such tasks from the viewpoints of quality and diversity.

5.5.1 Models

We employed twonmtmodels. The first one is a non-variational model, the vanilla
Transformer [112]. The second one is a variational model, T-CVAE [116] with the
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speculative sampling described in Section 5.4.1. Note that their hyperparameters
were the same as those described in Section 3.4.2.

In addition, not only variational models but also decoding methods such as
sampling-based decodings can make the outputs diverse. We employed several
decoding methods and evaluated the combination. The decoding methods are as
follows.

Greedy decoding chooses the output token with the highest probability in the
estimated probability distribution for each time step. In Transformer, this method
generates only one output. In T-CVAE, we apply greedy decoding for each
sampled latent variable and it generates multiple outputs.

Beam search explores n-best paths of output sequences. We set the beam size
to five, the same as the number of outputs.

Pure sampling randomly samples the next token according to the estimated
probability distribution.

top-k sampling randomly samples the output token according to the estimated
probability distribution. The distribution is truncated; at each time step, the next
token is sampled only from the top k possible next tokens [23]. We tested the
method with k = 40 and k = 640, following Holtzman et al. [36].

Nucleus sampling randomly samples the output token according to the esti-
mated probability distribution. The distribution is truncated similarly to the top-k
sampling. In this method, the candidates of possible next tokens are defined by
selecting the highest probability tokens of which cumulative probability mass
exceeds the pre-defined threshold p [36]. We set p = 0.95, following the original
hyperparameter.

5.5.2 Dataset and Preprocessing

Similarly to the experiments in Section 3.4, we trained subword-based nmt
models for En→Ja machine translation from the Japanese-English Subtitle Corpus
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Max. BLEU self-BLEU

non-variational (#outputs=1)
Transformer + Greedy decoding 14.74 -
Transformer + Beam search (beam size=5) 15.40 -

non-variational (#outputs=5)
Transformer + Beam search (beam size=5) 22.49 72.13
Transformer + Pure sampling 13.50 12.58
Transformer + top-k sampling (k=40) 17.97 25.76
Transformer + top-k sampling (k=640) 16.84 19.84
Transformer + Nucleus sampling (p=0.95) 14.86 15.43

variational (#outputs=5)
T-CVAE + Spec. sampling (k=5) + Greedy decoding 20.67 57.79
T-CVAE + Spec. sampling (k=5) + Beam search (beam size=5) 21.82 62.32
T-CVAE + Spec. sampling (k=5) + top-k sampling (k=40) 17.50 22.73
T-CVAE + Spec. sampling (k=5) + Nucleus sampling (p=0.95) 13.63 13.66

Table 5.8: BLEU and self-BLEU scores to generated outputs. Low self-BLEU
scores indicate high diversity of model.

(JESC) [86] with the same preprocessings. As the JESC dataset was created from
movie subtitles, the diversity of outputs is high and translations are likely to fail
due to the subdomains of data.

5.5.3 Evaluation Metrics

Assuming a situation where a machine translation system provides several output
candidates and users choose the preferred one, we evaluated the quality and
diversity of five outputs generated by compared models. For evaluation of
the quality, we employed BLEU [84]. Concretely, we computed sentence-BLEU
scores for each output to an input and took the maximum since at least one of the
generated outputs should be similar to the reference. We used NLTK 3.5 for the
computation of sentence-BLEU.8 For evaluation of the diversity, we employed
self-BLEU [131] following Holtzman et al. [36]. In the metric, we compute and
take the average of BLEU scores between an output and the rest among multiple
generated outputs. In other words, this metric assesses how one output resembles
the rest; a low self-BLEU score indicates the high diversity of a model.

8https://www.nltk.org/_modules/nltk/translate/bleu_score

https://www.nltk.org/_modules/nltk/translate/bleu_score


76 Speculative Latent Variables Sampling for Handling Latent Domains

5.5.4 Results

Table 5.8 shows the BLEU and self-BLEU scores of the compared models. First,
employing sampling-based decoding made the outputs notably diverse. However,
compared to Transformer + Greedy decoding that generated only one output
sentence, the increase of the maximum BLEU score was modest. This result
means that even though the models generated various outputs, they tended to
be somewhat noisy and less similar to the reference. T-CVAE + Speculative
sampling (k=5) +Greedy decoding achieved a relatively high BLEU score while
the outputs were diversified. However, compared to Transformer+ Beam search
(beam size=5), the increase made by generating multiple outputs was still lower.
Combining the T-CVAE and sampling-based decoding made similar results to the
Transformers with the sampling-based decoding methods. Overall, the results
indicated the trade-off between the diversity of outputs and the similarity to the
reference.

Although the maximum BLEU scores and the average self-BLEU scores
quantitatively show the overall tendency, it is not clear how large the impact
is. Additionally, we should mention that the evaluation using the maximum
BLEU score does not guarantee that all generated outputs are suitable to inputs;
it is possible that generated outputs with low BLEU scores can also be suitable.
However, it is difficult to evaluate such outputs automatically, and conducting
human evaluations for all the outputs is too costly. Thus, we show examples of
generated outputs and qualitatively analyze the outputs of several models in
Table 5.9.

Comparing the outputs of Transformer + Beam search (beam size=5) and T-
CVAE+Speculative sampling (k=5)+Greedy decoding, the styles of the former
were consistent among the outputs; for example, as for the word “definitely” in
the first example, the former always translated it as “きっと” while the latter
translated it as “きっと,” “絶対” and “必ず.” In the second example, the latter
translated “work” as “研究,” “仕事,” and “作品.” Note that all of these translations
are correct when there are no constraints. Overall, in the former model, the
outputs tended to be biased to the most common pattern in the dataset. In the
latter model, many probable patterns depending on the subdomains appeared
in the outputs when using the dataset with relatively high output diversity. As
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shown in Table 5.8, this tendency could lead to a slight decrease of BLEU scores by
trying to generate less common patterns. However, employing variational models
achieved a promising performance also in machine translation. Also, in T-CVAE
+ Speculative sampling (k=5) + Beam search (beam size=5), applying beam
search made the outputs slightly less diverse and more similar to the reference.
However, the overall tendency was the same as T-CVAE+ Speculative sampling
(k=5) + Greedy decoding.

On the other hand, the outputs of Transformers with sampling-based decoding
methods tended to be noisy while being diverse. Not only grammatical errors, they
sometimes produced unrelated topic-words. For example, in the first example,
Transformer + top-k sampling (k=640) chose “doctor” instead of “nurse.” in the
output “きっといいドクターになっちゃうからね (I’ll definitely become a good
doctor.)” It is reasonable that a wrong expression could sometimes be generated
depending on the randomness. Although adjusting the hyperparameter k or p
could mitigate the emergence of noisy expressions in return for the diversity, it
is difficult to define them automatically. At least, even with the smaller k, we
observed Transformer + top-k sampling (k=40) still tended to generate noisy
outputs.

5.6 Chapter Summary

In this study, we aimed to solve KL-vanishing and to handle implicit domains in
latent variables. Fine-grained domains we targeted in the thesis can significantly
affect text generation while they are not necessarily available as a discrete label or
a text. To model such fine-grained domains as randomness in dialogue models,
we proposed a method called speculative sampling. This is for modulating the
latent space of variational models by sampling multiple latent variables and
adopting only the most probable latent variable for optimization. Although our
method is quite simple and easily applicable to any variational architectures,
experimental results showed that our proposed method improved the diversity
of outputs while keeping the relevance to the context.



78 Speculative Latent Variables Sampling for Handling Latent Domains

Example 1
Input you ’ll definitely become a good nurse .
Reference あんたきっといい看護師になるよ。

Transformer + Beam search (beam size=5)
-きっといい看護師になってくれるよ。
-きっといいナースになってくれるよ。
-きっといい看護師になってくれる。
-きっといいナースになってくれるから。
-きっといいナースになってくれる。

Transformer + top-k sampling (k=40)
-お前はきっといいナースになってくれる。
-あなたは絶対に良いナースになって下さい。
-いい看護師になってあげたら絶対にいい子にちゃうからね。
-アンタが良いナースになるのって絶対にね . . .
-きっと私に相応しい看護師になれてしまうよ。

Transformer + top-k sampling (k=640)
-きっといいドクターになっちゃうからね
-あなたもきっといい看護婦になって
- ((とてもいい看護師になってるよ間違いない ))
-パパはきっとねえいい看護師になるよ
-はぁ . . . . いいナースになってくれるよな。こんなのって。

Transformer + Nucleus sampling (p=0.95)
-あなたが優秀な看護師になってくれる箇所が僕らの心に響く
-絶対真面目になってくれるんだよ看護士さんうんだもんな 。
-春香はきっといいナースになるよ康介も。鹿かな ?
-亜美さんならきっとカッとなりますよ。
-梨々きっといいナースになってくれ輝かしいよ。

T-CVAE + Speculative sampling (k=5) + Greedy decoding
-きっといい看護師になれるわ
-絶対いい看護師になる。
-君は必ずいい看護師になる
-いいナースになるよ
-きっといい看護師になる

T-CVAE + Speculative sampling (k=5) + Beam search (beam size=5)
-絶対にいい看護師になる。
-絶対いい看護師さんになる。
-君は必ずいい看護師になる
-絶対いいナースになるよ。
-きっといい看護師になるよ
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Example 2
Input your work has been very impressive so far .
Reference あなたの仕事がとても印象的でした

Transformer + Beam search (beam size=5)
-あなたの仕事は今のところ非常に印象的でした
-君の仕事は今のところ非常に印象的だった
-あなたの仕事は今のところ非常に印象的だったわ
-あなたの仕事は今のところ非常に印象的だった
-君の仕事は今のところ非常に印象的だ

Transformer + top-k sampling (k=40)
-あなたの作品には目を見張られているわ
-ここまでのあなたの仕事は非常に良いものだったわ
-研究ではこれまでの成果は非常に感銘を受けています
-今のところ君の調査の成果はとても優秀だ。
-《君の作品よくぞ今までいっぱいこられたな》

Transformer + top-k sampling (k=640)
-これまであなたの働きは素晴らしいものでした
-あなたの仕事が本当に素晴らしかった
- [テレビ ]今日までのあなたの作品は見事だったわ。
-お前の働きが非常に影響を受けている
-鵜飼さんの勝ちです。

Transformer + Nucleus sampling (p=0.95)
-貴方の仕事は今の所非常に印象的でした
-ここまでご苦労されてウィンタースさんでしたね。
-君はよくやっていたよ。
-クソ君の運転の調子は今のところすごい
-この登山口に慎重だったこと坊も

T-CVAE + Speculative sampling (k=5) + Greedy decoding
-今までのあなたの研究は素晴らしい
-ここまでの仕事は素晴らしい
-今のところ、あなたの作品は素晴らしいです
-君の作品は素晴らしい
-今までのあなたの仕事は素晴らしい

T-CVAE + Speculative sampling (k=5) + Beam search (beam size=5)
-今までのあなたの研究は素晴らしかった
-とても素晴らしい作品だ
-今までのあなたの仕事は素晴らしかった
-ここまでのあなたの仕事は素晴らしかった。
-今までのあなたの仕事は見事だった

Table 5.9: Examples of generated outputs for En→Ja machine translation in JESC.





Chapter 6

Conclusions and Future Work

As discussed in Chapter 1, the difference in domains is a barrier that hinders
text generation from being put into practical use. Although many existing
studies have explored methods to resolve domain differences, recent neural-based
methods mainly focused on coarse-grained domain differences represented as
the difference in datasets. In this thesis, we expanded the target of domain
adaptation and presented a multi-faceted approach for handling fine-grained
domain differences that have tended to be ignored in existing studies. We
consider that 1) domain-specific words and meanings and 2) domain-specific
input-output correspondences are the crucial problems that can lead to the
decrease in the performance of non-domain-aware models. In the following, we
summarize our three attempts to the issues and future work. We believe our
efforts in this thesis will provide a future direction of domain adaptation for the
practical use of text generation.

6.1 Handling Domain-specific Words and Meanings

Related to the first problem, we proposed vocabulary adaptation. Although
many solutions have been proposed for unknown words, the data-scarcity still
makes it challenging to handle unknown words in specialized domains. Existing
attempts at domain adaptation for text generation have not paid much attention
to the differences in the vocabulary, the meanings of words, and the tokenization
between domains. One of the reasons is the training scheme of existing neural-
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based models; they often build static vocabularies before training from out-domain
parallel data. There has been no method to change the vocabularies themselves
directly. As in-domain parallel data is assumed to be small when we need domain
adaptation, it was difficult to learn the domain-specific meanings of words through
the task jointly. Thus, it has been unclear how much these differences across
domains affect the performance of models. To address the problem, we proposed
a method to directly adapt the embedding layers of a trained model by using the
embeddings pre-trained from in-domain monolingual corpora. Concretely, the
pre-trained in-domain embeddings are projected into the embedding space of an
out-domain nmtmodel for providing in-domain knowledge. We experimentally
confirmed that our simple method notably improved BLEU scores for both
En→Ja translation and De→En translation. Finally, although we compared
several existing methods for embedding projections, there is room for exploration
in the cross-domain embedding space. We plan to conduct more detailed analyses
of the embedding space and improve the projection method.

6.2 Explicit Modeling of Domain-specific Input-output
Correspondence

For the second problem, we proposed situation-aware models. We commonly
collect data that is relatively similar to the target domain and regard the whole
dataset as one domain. However, situations or fine-grained domains are different
from each other even among examples in the same data, which can inevitably affect
outputs of text generation models. For instance, we converse with others while
(implicitly) considering the utterance and other various conversational situations
(Section 3.3) such as time, place, and the current context of a conversation, and
even our relationship with the addressee. We aimed to explicitly introduce such
situations into text generation models as influential factors of the probable outputs
to a given input. Concretely, we proposed local-global Seq2Seq and Seq2Seqwith
situation embeddings while targeting the user, time, and topic of a conversation
as situations.

In this attempt, for investigating the effects of situations in end-to-end text
generation separately from the costs to obtain the situations and their accuracies,
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we focused on the situations that were relatively easy to obtain. To make more
clues available in text generation, we believe that it is necessary as future work to
explore techniques for estimation of various situations or methods for implicitly
utilizing the situation like the approach described in the next section.

6.3 Implicit Modeling of Domain-specific Input-output
Correspondence

As another approach to address the second problem, we proposed speculative
sampling for variational models that are a promising method to model implicit
domains. As shown in Chapter 4, fine-grained domains such as situations we
targeted can significantly affect text generation. However, such domains are not
necessarily available; they may not be publicly available due to privacy concerns
or not recorded as explicit labels. We considered that such inaccessible domains
could also involve the output of models and aimed to capture them in the latent
space of variational models implicitly. The problem we address in this work is
the discrepancy between a sampled latent variable and a training example. Even
under the observation of the ground-truth response to a given utterance, the latent
variable sampled from the posterior distribution of a model can be inappropriate
for the response, making the latent space of the model disorganized. We aimed to
resolve the problem by speculatively sampling latent variables and adopting only
the most probable and promising latent variable for optimization. Although our
proposed method is simple and easily applicable, experimental results showed
improved diversity in generated responses while it did not lose relevance to the
context. In the experiments, we employed a standard variational model that
hypothesis a multivariate Gaussian distribution for the latent space. However,
existing studies suggested that suitable distributions of variational models may
vary depending on the nature of data. We plan to conduct a further investigation
about how the distributions and the methods for training and decoding can affect
text generation as future work.
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6.4 Other Research Activities in Doctoral Course

Besides the three primary research efforts introduced in the thesis, I briefly
mention the overview of representative studies in the activities where I worked
as a co-author and their relation to the main researches [81, 82, 78–80, 38].

Modeling and analyzing personal biases in NN-based representations [78–80]:
In the trials for situation-aware dialogue modeling introduced in Chapter 4, we
considered personalized representations had room for being explored. Particu-
larly, personalized representations do not necessarily contain helpful information
(e.g., demographic factors or preferences of writers). Instead, personalized repre-
sentations learned through a task can contain task-specific biases. For example, in
text classification tasks, employing word representations personalized to a writer
can directly increase the probabilities of outputs that the writer preferred in the
training data regardless of the nuances in word meanings. We considered that
such biases make both analyzing and transferring the representations difficult,
and proposed a method for debiasing the personalized representations.

Dialogue agents autonomously inquiring missing information [81]: Related to
the motivation of the study described in Chapter 5, all fine-grained situations
of conversations are not available. However, it is unnecessary to have all such
situations before starting a conversation; even in human-to-human conversations,
we try to know the information about conversation partners by asking questions
or by the conversation itself. Analogically, we aimed to develop dialogue agents
that can supplement the important information through questions.

Describing the meanings of unknown or infrequent terms [38]: Related to the
study introduced in Chapter 3, we attempted another approach to understanding
and handling unknown or infrequent terms. In the study of vocabulary adaptation,
we hypothesized that it is relatively easier to obtain in-domain monolingual data
than in-domain parallel data and tried to transfer in-domain vocabularies and
embeddings to out-domain nmtmodels. However, even in-domain monolingual
data or a knowledge-base describing the unknown words are not necessarily
available. In such situations, it is inevitable to infer the meaning from contexts
where the unknown words appear. For this reason, we explored methods to
obtain the meaning of words as a description from contexts and investigated to
what extent existing NN-based representations capture the meanings of words.
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