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Abstract

It is not yet well understood how we become aware of the presence of other
people as being other subjects. In this thesis, we focused on the dyadic
interaction between two subjects and aimed to characterize the dynamics
which account for the feeling of the other’s presence. For this purpose, we
adopted two experimental settings, Perceptual Crossing Experiment, and
TypeTrace Messenger.

Perceptual crossing experiment was designed as the minimal experimen-
tal setup to investigate the dyadic interaction between two subjects. In this
experiment, two subjects were asked to identify the other in the 1D virtual
space. The dynamics of each trial was fully captured by 4 time series data,
which were each agent’s movement trajectory, and the time course of the sen-
sory feedback by vibrating device. We characterized these time series data
quantitatively using several different measures and compared these values
with the perceptual awareness scale to investigate the feature of dynam-
ics that was related to the feeling of other’s presence. First, we measured
the movement synchronization between two subjects and found that these
were related to the perceptual awareness scale, and the trial with the larger
movement synchronization was associated with the stronger feeling of other’s
presence. Next, we used local transfer entropy to quantify directions of in-
fluence in the dyadic interaction, and compared this value before and after
the click, at which subjects were convinced that they found the other sub-
ject. Before the click, we found the significant increase of passive reception
of the stimulation from the other subject, which was characterized by the
local transfer entropy from the other subject’s movement to the stimulation.
After the click, this was gradually switched to the active touching, which was
characterized by the local transfer entropy from the subject’s own movement
to the stimulation. This transition from passive to active was evident in the
trial with the high perceptual awareness scale.
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The experiment of TypeTrace Messengers is designed to investigate the
effect of medium during dyadic interactions. Social presence, or the subjec-
tive experience of being present with another existing person, varies with the
medium used for the interaction. Early theories argued that social presence
depends on the richness of information mediated through communication
system. Later, counters to this idea argued that even computer-mediated
communication systems, however, deprived of social cues compared to face-
to-face conversation, can generate as much social presence. Until now, so-
cial presence researches in general have mainly focused on uni-directional
aspects of each exchanged message. On the other hand, researches in so-
cial cognition have studied the importance of bi-directional interaction in
understanding dyadic interactions. Our primary purpose is to quantify the
degree of social presence among the participants of a realtime online chat
system with a few statistical measures. To this end, we developed a software
called “TypeTrace” that records all keystrokes of online chat interactants
and reenacts their typing actions. Our results show that when we just in-
crease the richness of information by presenting the typing process during
the chat, the subjective ratings of how strongly the subjects felt the other’s
presence does not significantly increase. When the information concurrency
of the chat is augmented, we found that transfer entropy between the in-
teractants becomes higher, and the social presence, as well as, emotional
arousal, intimacy increased. This result shows that the mere augmentation
of information richness does not necessarily lead to an increase in the so-
cial presence, and concurrent communication is another important factor for
fostering vivid conversation in virtual communication.
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Chapter 1

Introduction

In nature, many complex behaviors arise from the interaction between some
components. As a part of these behaviors, dyadic human interactions seem-
ingly constitute a class of unique complex dynamics, and these social encoun-
ters are also commonly observed and playing important role in our everyday
life. In this thesis, we are aiming at understanding the characteristics of the
dynamics and exploring the underlying principle of it.

As an introduction, we first describe conventional approaches for the un-
derstanding of social interactions, where social encounters are usually char-
acterized by the use of the particular type of cognition, called social cognition
(Frith and Frith, 2012). Social cognition is the cognitive ability of each agent
that is used to understand the internal state of the other agents. In this
context, as we will see later, dyadic human interaction is understood as the
combination of the two decomposed cognitive processes, in which each agent
tries to understand the other’s state from the observation of the other’s be-
havior.

In contrast to these approaches, some researchers have recently claimed
that the interaction dynamics itself should be investigated rather than the
individual cognitive ability. We will explain this approach to the social in-
teractions, “2nd person psychology”, putting more emphasis on the dyadic
interactions itself and claiming that these interactions provide the basis of
the cognition and not the other way round. We review the previous experi-
ments and simulations in favor of this approach and the analysis tools for the
characterization of the interaction dynamics. Lastly, we provide the overview
of the present thesis, which mainly consists of two experiments that were in
line with these researches and designed to investigate the characteristics of
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dyadic interaction dynamics.

1.1 Conventional Approaches in Social Cog-

nition

Social cognition is referred to as the cognitive process of how we understand
the other’s internal state or “mind”. This attribution of the “mind” to the
observation of the other’s behavior is called mentalization. To infer the in-
ternal state, agents are assumed to have a prototypical model, “Theory of
Mind”, as a basis for the inference (Premack and Woodruff, 1978). To ex-
plain the mechanism of how we obtain the prototypical model of the agents,
two paradigms were mainly proposed in this field, “Theory Theory” and
“Simulation Theory” (Frith and Frith, 2012; Wiltshire et al., 2015).

“Theory Theory” is the paradigm that agents have already had known the
“theory” of how the internal state of the agent works and how these appear
in their behaviors. Agents observe the others’ behaviors and infer the inter-
nal state of the others by applying this “theory” to observed behaviors. In
neuroscience researches, this mechanism is usually attributed to mentalizing
networks (MENT) (Frith and Frith, 2006). In contrast, “Simulation Theory”
claims that agents understand others by simulating how they feel when the
agents do the same behaviors as the others. This mechanism is attributed
to the mirror neuron system (MNS) in neuroscience (Gallese and Goldman,
1998). In this case, agents use internal simulation of others’ behaviors to
infer others’ internal states, so this can be regarded as an approach from 1st
person perspective. Until now many behavioral and neuroimaging studies
to investigate these systems and have confirmed the role of both systems
(Van Overwalle and Baetens, 2009). The inference in “Theory Theory” uses
the objective characterization of the other’s behavior, which is based on the
“third-person perspective”, and the inference in “Simulation Theory” uses
internal simulations, which is based on the first-person perspective. These
approaches will be contrasted to the “second person” approach, which will
be explained later.

Another important issue is that when these cognitive systems are trig-
gered. This can be rephrased as what kind of things were regarded as objects
with animacy, or agents. This problem is called agency detection. Many ex-
periments have been conducted to find out the condition to be judged as
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agents. These experiments have revealed that to be judged as agents, it
does not need much detail in appearance. For example, Johansson (1973)
conducted experiments using point-light displays. In this experiment, the ap-
pearance of the human was abstracted to points placed at major joints, and
only the motion of the points, which was named “biological motions”, were
displayed to the subjects, and they found that the subjects perceived these
moving points as a human. This experiment showed that motion cue was
effective in the perception of agency and the detailed body appearance is not
required. Furthermore, Kozlowski and Cutting (1977); Dittrich et al. (1996)
showed that the subjects also succeeded to recognize the age and gender only
from the movement of the points.

A single object can also be perceived as an agent when its movement has
certain characteristics (Scholl and Tremoulet, 2000). This was first shown by
Heider and Simmel (1944). In this experiment, they prepared the animation
films in which three geometrical objects were moving and interacting with
each other in a certain way, and they showed that the subjects who watched
the film perceived each geometrical object as an agent. This result was
further confirmed in the follow-up experiments (Kassin, 1981). After these
experiments, some studies attempted to systematically investigate the char-
acteristics of movement which induce the feeling of agency or animacy. For
example, Bassili (1976); Dittrich and Lea (1994) prepared several animations
of two moving objects changing the condition of their interactive movements,
such as contingency or the type of trajectories, and systematically estimated
which aspects of movements were responsible for the feeling of interaction,
intention, and animacy. Tremoulet and Feldman (2000) showed that, unlike
the previous experiments which displayed movement of several objects, just
displaying the movement of single objects could create the feeling of animacy,
and they concluded that the major factor was based on the magnitude of the
speed change, and the angular magnitude of the direction change in their ex-
perimental settings. Some investigations also targeted infants and reported
that self-propelled movements (Luo and Baillargeon, 2005) and contingent
movements (Johnson, 2003) were treated as agents by infants.

1.2 Interaction in Social Cognition

The two explanation paradigms for understanding others, “Theory Theory”
and “Simulation Theory” differ from each other, but they both implicitly
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assumed the same paradigm, which is a “detached observer”. They assume
the problem of cognition of others as the problem of how to passively process
the information (others’ behaviors), and interactive processes between two
agents were completely missing in the picture (Froese and Gallagher, 2012).
The experiments of agency detection introduced above also share the same
assumption. In these experimental settings, the presented stimulus moved
usually independent of the movement of the observer, and no realtime in-
teraction was involved in the experimental settings. They regarded that the
cause of the perception of an agency should be explained as the character-
istics of the movements of only the objects being observed, and the agency
detection mechanism should be understood as the individual mechanism to
detect such characteristics (Frith, 2008).

As an opponent to these detached observer views, some philosophers
started to propose “Interaction Theory” as an alternative paradigm to “The-
ory Theory” and “Simulation Theory”, which claimed that the interaction
was central to understanding others (Froese and Gallagher, 2012). For ex-
ample, De Jaegher et al. (2010) claims that, based on developmental studies
and dynamical systems, interactions are not the contextual factor, but an en-
abling factor for social cognition. The background of these theories is based
on the field of embodied cognition. In cognitive science, the traditional way
of thinking cognition as a symbol manipulation or an information processor
has been criticized by the approach called embodied cognition (Varela et al.,
1991; Clark, 1998). Embodied cognition claims that cognition is an active
process in the environment, not a passive information processing, and regards
the interaction to the environment itself constitute the cognitive process. In
this way, interaction theory claims that the interaction dynamics itself con-
tribute to the social cognitive process.

1.3 The 2nd Person Psychology

After the proposal by the philosophers that interaction should be central to
the study of social cognition, some researchers in psychology started to pay
attention to the interactive aspect of cognition (Sebanz et al., 2006; Gallotti
and Frith, 2013).

Recently, Schilbach et al. (2013) claimed that the investigation on social
cognition had not fully investigated the social encounters in a truly inter-
active manner, and it was representing the “dark matter” of social science.
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They claimed that the study on social cognition depended on spectatorial
accounts, which assume that when people make sense of other people, each
agent is a detached observer and intellectually infer the state of the other
from the information obtained by observation. For example, the “simulation
theory” account of social cognition provides the understanding of the other
by simulating myself, or the “first-person grasp”, and the “Theory Theory”
account regards the understanding of the other as the inference based on the
innate knowledge, or “third-person grasp”, but these two describe the way
how we process the information of the other and these are explanations from
spectatorial accounts. Also, the experiments on agency detection such as the
Heidler’s moving objects assumed the detached observer, not as the possible
interactant.

To overcome this paradigm, they proposed the “second-person” approach
(Schilbach et al., 2013; Redcay and Schilbach, 2019), which set social inter-
action and emotional engagement as central constituents. Emotional engage-
ments are feelings of engagement with and emotional responses to the other,
and social interactions are reciprocal interactions with others. Three propos-
als were presented towards the second-person approach, (i) a person being a
detached observer as compared to experiencing a social situation with an at-
titude of emotional engagement (“experience”), (ii) experimental paradigms
used to investigate social cognition allowing or not allowing for interaction
(“participation”), and (iii) data collection and analysis taking place at the
level of a single or two (or more) individuals (“data collection & analysis”).
In this approach, mutual interaction is indispensable and cannot be simply
decomposed into each agent’s inference process, therefore this approach is
regarded as a 2nd person perspective approach. We will review experimental
and theoretical studies of this approach in the next section.

1.4 Experimental Study

Below, I will present examples of the experimental paradigms of second-
person psychology that include realtime dyadic interactions.

1.4.1 Synchronized tapping

Synchronized tapping is an experimental paradigm using finger tappings in
which subjects are asked to maintain a given beat and also synchronize to
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a signal from the other subject’s tapping. This experiment aims to analyze
what kind of dyadic interaction pattern emerges as a result of the coordina-
tion of the pair. For example, Konvalinka et al. (2010) found that if only
one of the subjects can hear the other’s sound, i.e. unidirectional coupling,
“leader-follower relations”, in which one subject follow the movement of the
other, emerged. When both subjects can hear each other, then there are no
“leader-follower relations”, and bidirectional coupling occurred, based on the
analysis using windowed cross correlations. Also, Tognoli et al. (2007) used
brain-imaging and found that these components were suggested to belong
to the human MNS, hence inhibiting and enhancing the MNS. Despite the
simultaneous EEG recordings, however, this study did not look at inter-brain
interactions between interacting partners. As a variation of this study, syn-
chronized aiming Skewes et al. (2015) showed that the asymmetry in the task
difficulty in each subject causes leader-follower relations.

Movement synchronization can happen without any intention to couple
with each other and this phenomenon has been reported in many experi-
ments, such as pendulum (Schmidt et al., 1990; Schmidt and O’Brien, 1997;
Richardson et al., 2005), postural swaying (Shockley et al., 2003), rocking
chairs (Richardson et al., 2007) and so on. This synchronization happens
even the subjects are instructed not to synchronize (Schmidt and O’Brien,
1997; Richardson et al., 2007). Also, the synchronization to the other can
increase the affiliation to the other (Hove and Risen, 2009).

1.4.2 Gaze Interaction

Gaze has been known to be an important component in social interactions
(Emery, 2000), and some experiments using realtime gaze interaction have
been reported (Schilbach, 2015). Bayliss et al. (2013) used a gaze-contingent
eye-tracking system and showed that presenting a picture of a face with
congruent and incongruent gaze affected the gaze behavior and affective be-
haviors. Using this type of system, Pfeiffer et al. (2011) constructed an
interactive system that presented a virtual character whose gaze was con-
gruent or contingent to the subject’s gaze and showed that the congruent
movement enhance the ascription of humanness to the avatar, and if the
subject believed that the other was cooperative, the contingent movement
drives the ascription.

Hirsch et al. (2017) recorded the brain activities of two subjects dur-
ing eye-to-eye contact and found cross-brain coherence in signals originating
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within the left superior temporal, middle temporal, and supramarginal gyri
as well as the pre and supplementary motor cortices.

1.4.3 Conversation

During conversations, postural coordination has been reported to happen
spontaneously in many studies (Shockley et al., 2009), and unconscious mimicry
occurred when they had a desire to create rapport (Lakin and Chartrand,
2003). Suda et al. (2010) recorded brain activity during face-to-face conver-
sation and found a robust activation over the frontal and superior temporal
regions. Also, some reported that the use in linguistic expression was aligned
during a conversation (Pickering and Garrod, 2004).

In the context of developmental studies, Murray and Trevarthen (1985)
investigated the dyadic interaction between infants and their mothers, and
compared the reaction of infants when communicating through live video
chats, and recorded videos. In this study, they showed that 2-month old
infants can distinguish the live video and the recorded video of their mother.
However, some concerns were raised about this classic research. For example,
the infants may have become simply fussy over time, or the transition from
the live videos to the recorded videos can be noticed by infants because these
were not smoothly connected by the limitation of the technology at that time.
Nadel et al. (1999) replicated this experiment with a more controlled setup
to answer these concerns and confirmed that the babies showed different
behavior between live and recorded conditions.

Perceptual Crossing Experiment (Auvray et al., 2009), which we study
in this thesis and will be explained in the next chapter, was designed to
make the minimalistic parallel of these experiments to investigate what is
happening during the dyadic interactions.

1.5 Simulation Study using Dynamical Sys-

tems

Interactionists claimed that the interaction dynamics itself can explain vari-
ous experimental results that were previously considered impossible without
the inference of others. To claim this, constructing the example that these
phenomena can be constructed using simple dynamics is important. Below
we will show the example of these models using numerical simulations.
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The simplest case is interpersonal synchronizations, which were observed
in, for example, pendulums, rocking chairs, and postures. For the explana-
tion of alignments, coupled oscillator models were widely used (Haken et al.,
1985). For example, Richardson et al. (2007) analyzed the synchronization
in rocking chairs based on coupled-oscillator models.

For the modeling of more complex behaviors, for example, Iizuka and
Ikegami (2004), and Ikegami and Iizuka (2007) focused on the particular
dyadic behavior called “turn-taking”, which indicate that the two agents be-
have alternately. They simulated this behavior as a tag-game with the role
of the chaser and the evader switches spontaneously in a 2D environment.
Each agent possessed a recurrent neural network and sensed another agent’s
relative position, velocity, and angle. Agents were evolved using a genetic
algorithm based on the ability of turn-taking. They found there emerged
mainly two types of agents, regular turn-takers and chaotic turn-takers, and
chaotic turn-takers were more adaptive to different generations of agents,
and also sensitive to live agents and recorded agents. Also, their simula-
tions showed that during turn-taking the predictability of the other agent’s
behavior decreased.

Di Paolo et al. (2008) and Iizuka and Di Paolo (2007) simulated the
perceptual crossing experiment, which we will explain later, by evolutionary
robotic techniques, which will be described in the next chapter.

1.6 Characterization of Dyadic Interactions

In this section, we will review the methods to quantify the dyadic interactions.

1.6.1 Cross Correlation

Cross correlation between two timeseries X(t) and Y(t) with lag τ is defined
as,

RXY (τ) =
1

T

∑
t

X(t) ∗ Y (t− τ)

σXσY

,

where T is the total time steps, σX and σY were standard deviation of X(t)
and Y(t), respectively. Cross correlation is widely used to quantify the degree
of synchronization between two time series data. Konvalinka et al. (2010)
used cross correlation to analyze the synchronized tapping experiments, and
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measured the degree of synchronization between pairs. Also, they identified
the leader-follower relationship by calculating cross correlation changing the
lag τ .

1.6.2 Recurrence Quantification Analysis (RQA)

Recurrence quantification analysis (RQA) is a method to characterize the dy-
namical system using the structure of recurrence in its phase space (Marwan
et al., 2007). RQA uses a recurrence matrix Ri,j calculated as follows,

Ri,j =

{
1 (x⃗i ≈ x⃗j)

0 (x⃗i ̸≈ x⃗j)
,

where {x⃗i} is a trajectory in its phase space and x⃗i ≈ x⃗j means equality up
to an error ε.

Fusaroli and Tylén (2016) applied this method to analyze the lexical,
prosodic, and speech/pause data during conversations and quantified the
structure by the average length of the recurrent trajectory of the system,
which was used as a measure of the regular patterns, and the entropy of the
length distribution, which was used as a measure of the presence of a plurality
of patterns. They used RQA in three ways. First, they applied RQA to the
time series data from each subject to check the presence of structure in each
subject’s speech. They claimed this as the test for “self-consistency”. Second,
they used cross recurrence quantification analysis (CRQA), which quantifies
not the recurrence in single time series, but calculates the similarity between
two time series, to quantify “interactive alignment”. Third, they used RQA
to the time series data which was constructed by merging two time series
data from each pair, and they claimed that this enabled to quantify the
“interpersonal synergy”.

1.6.3 Allan Factor

Allan factor was originally proposed in Allan (1966) and has been used to
characterize fluctuations of point processes in different time scales, especially
to identify the flicker noise in the process. Allan factor A(T ) is defined as
follows,

A(T ) =
⟨(Ni(T ) −Ni+1(T ))2⟩2

2⟨Ni(T )⟩
,

10



where Ni(T ) is an event count in the ith window segmented in size T .
Kello et al. (2017) calculated Allan Factor from different categories of

sound such as speech, music from different genres, and vocalization of non-
human animals, and compared the results across all categories. From the
results, they classify the sound data based on the degree of the presence of
a hierarchical temporal structure. Abney et al. (2014) applied Allan Factor
to acoustic onset times of the audio of conversations, and by calculating the
similarity of Allan Factor between each dyad, ”complexity matching”, they
found that, when the conversation was affiliative, Allan Factor resembled
each other.

1.6.4 Transfer Entropy

Transfer entropy was developed by Schreiber (2000) to identify the informa-
tional flow between two time series, and defined as follows,

TY→X = I(Y
(l)
n+1;Xn+1|X(k)

n ),

where X
(k)
n = {Xn−k+1, ..., Xn}, Y

(l)
n = {Yn−l+1, ..., Yn} (k: target history

length, l: source history length).
The use of transfer entropy for the identification of directional influence

between dyads was proposed (Hasson and Frith, 2016), but at present, in
very few researches transfer entropy is used to analyze the dyadic behav-
ioral data (Trendafilov et al., 2020). Granger-Causality is another method
to identify the information flow, and in some researches in neuroscience,
Granger-Causality is used to analyze information flow between brain activi-
ties of dyads (Schippers et al., 2010) .

1.7 Studies in Computer Mediated Commu-

nications

Schilbach et al. (2013) claimed that the aspect missing in conventional social
cognition research is emotional engagements, which are feelings of engage-
ment and emotional responses to the other, in addition to realtime inter-
actions. The different line of research, computer mediated communication
(CMC), is related to these aspects, and the study of CMC has been inter-
ested in how CMC influences interpersonal relations. Here, I will briefly
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review some theories from CMC researches, which will be reviewed in detail
in chapter 6.

Short et al. (1976) argued that various communication media differed in
their capacity to transmit classes of nonverbal communication in addition to
verbal content. The fewer the number of cue systems a system supported, the
less warmth and involvement users experienced with one another. Culnan
and Markus (1987) called this type of theory as “cue-filtered out theory”.
This line of research continued to gain support in the 1980s, where Daft
and Lengel conducted seminal analyses of the richness of information and
media (Daft and Lengel, 1984, 1986). In the 1990s, Walther argued in op-
position to media richness theories, stating that if enough time is spent on
CMC, interactants can achieve a level of interpersonal relationship as high
as face-to-face (FtF) communications (Walther, 1992). Walther later argued
that communication means specific to CMC could even create a more robust
social bond compared to FtF (Walther, 1996) because it stimulates more self-
disclosure than FtF and thus can lead to higher social attraction. This school
of thought, called the social information processing theory (SIPT) (Walther,
2015), has helped researchers to transcend the simple dichotomy of rich and
poor media and to scrutinize the social phenomena in CMCs more in-depth.
These researches, however, investigated the characteristics of the messages
and not the interaction dynamics between the agents, which will be the focus
of our second experiments.

1.8 Overview of the Thesis

The present thesis consists of mainly two parts. In the first part, we will
present the result from the reanalysis of perceptual crossing experiments
(PCE). This part is aimed at showing how we can quantitatively character-
ize the dyadic dynamics especially using the information theoretical value,
Transfer Entropy, and how these values are related to the presence of others
in this minimal interactive experiment. In this part, we will start by re-
viewing the previous studies on PCE, and its interpretations. Next, we will
explain the experimental data that we used in our analysis, and the analyti-
cal methods we used here. Then we will show the result of our analysis, and
discuss the results by especially emphasizing the comparison to the previous
researches of PCE.

In the next part, we will present the experimental research on the ef-
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fect of communication medium using our newly developed text chat system
“Type Trace Messengers”. The main focus of this part is how the difference
in settings of our text chat system alters the subjective reports, physiolog-
ical responses, and typing patterns of the subjects. After a brief review of
the background research of CMC, we will explain the chat system that we
developed for this experiment, the experimental setups, and methods for our
analysis. Then we will report the results of our experiments, which include
the comparison to the phone call dataset.
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Part II

Perceptual Crossing
Experiment
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Chapter 2

Review of Previous
Experiments

Perceptual crossing experiment (PCE) was designed as simplified parallel of
Murray and Trevarthen (1985)’s “double TV experiment”. In this experi-
ment, two subjects were asked to identify the other in the one-dimensional
(1D) virtual space.

Two subjects were placed in different space, and each had a computer
mouse and a tactile stimulation device. By moving the mouse, subjects can
move their avatars in virtual 1D space. If both avatars were in the same
position in the 1D space, both subjects received feedback from the tactile
stimulation device.

In the virtual space, in addition to avatar objects two kinds of different
objects existed. One was “static object” which stayed at the same position
in the 1D space, and the other object was “shadow” which located at the
certain distance from the other avatar. If the avatar and these objects are
in the same position, the subject also received tactile feedback. The task of
each subjects was to click during the tactile stimulation if they thought this
stimulation came from the other avatar.

2.1 Result from Auvray (2009)

Auvray et al. (2009) did this experiment to 20 subjects (10 pairs) and found
that the number of correct click (clicking when the avatar touched the other
avatar) was significantly larger than the number of wrong click (clicking when
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the avatar touched the fixed object or the shadow).
However, they found that the probability of click (the number of click

divided by the number of encounter with the objects) was not significantly
different between the avatar and the shadow, which meant that the subject
cannot distinguish between the avatar and the shadow.

They concluded when two avatars interacted with each other the dynam-
ics were stabilized, so the duration of the tactile stimulation from the avatar
increased and as a result they tended to click correctly.

They also reported that the subject tended to reverse the direction of the
movement when they crossed a source of stimulation, which might be the
mechanism to stabilize the interaction between the agents.

2.2 Simulation study on the PCE

Di Paolo et al. (2008) and Iizuka and Di Paolo (2007) simulated the percep-
tual crossing experiment by agent simulation using recurrent neural networks.
They used the same setup with the original perceptual crossing experiment,
and agents were evolved to stay close with each other as long as possible.

They found that the agents were evolved to be able to achieve the task,
and this evolved agents show the behavior that after crossing the source of
the simulation the agents tended to reverse the direction of movement, which
was also observed in Auvray et al. (2009).

2.3 Lenay’s variation

After the Auvray et al. (2009)’s experiment, some variations of the exper-
iment have been conducted. One example was Lenay and Stewart (2012).
In this variation, subjects received feedback not as tactile stimulation, but 3
kinds of sounds. When agents encounter different kinds of object, subjects
received different sounds and the subjects were asked to identify which sound
is assigned to the other agent.

In this setup, they found that subjects can successfully detect the avatar
from the shadow. They explained this success because each object is accom-
panied with always the same sound, so the subjects can simply compare the
intrinsic properties for the three objects.
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2.4 Froese’s variation

Froese et al. (2014a) and Froese et al. (2014b) also did the variation of the
PCE. In this experiment, the scores are evaluated on the pair not on the
single subject and promote the subjects to cooperate with each other, and
also each subject was allowed to click only once in a single trial to enhance
attention on the stimulation.

In this case, they found that the subjects significantly succeeded to dis-
tinguish between the agent and the shadow.

They called the situation that two subjects click correctly in the same
trial, “Joint success”, and only one subject click correctly “single success”.
They found that the number of joint success was significantly larger than the
single success.

Also they found characteristic dynamics “turn-taking”, which indicated
the behavior that two agents moved alternately, and this was related to the
subjective scale of the other’s presence “Perceptual Awareness Scale” (PAS).

2.5 Aim of the following analysis

In the following chapters, I will present the re-analysis of Froese et al.
(2014a)’s experiment.

The aim of this analysis was to clarify the characteristics of the dynamics
which caused the feeling of the other’s presence. In the previous papers, we
only had turn-taking as a measure to investigate the dynamics, and this can
only capture the one aspect of it. Here, we will use synchronization measure,
such as cross correlation, and directed information measures to investigate
the dyadic dynamics from different point of view.
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Chapter 3

Methods

In this study, we re-analyzed the experimental data originally reported by
Froese et al. (2014a) by characterizing the time series data quantitatively
using different measures from the previous works.

In this chapter, first I will describe the detail of the experiment of Froese
et al. (2014a), and then I will introduce the measures which we used to
re-analyze the experimental data. The main part of chapter 3 and 4 was
published in Kojima et al. (2017).

3.1 Participants

Participants were healthy volunteers recruited from acquaintances at the Uni-
versity of Tokyo and at Osaka University (N = 34). There were 25 Japanese
nationals, the rest were from various countries. Six were female. The mean
age was 29 years. Teams of participants were created as volunteers became
available.

The study protocol was approved by the local ethics research committee
of the Graduate School of Information Science and Technology, Osaka Uni-
versity, and by the local ethics research committee of the Graduate School of
Arts and Sciences, the University of Tokyo, and has been performed in ac-
cordance with the ethical standards laid down in the Declaration of Helsinki.
All of the participants gave their written informed consent before taking part
in the study.

18



3.2 Experimental Setup

In Froese et al. (2014a)’s version of the perceptual crossing paradigm, two
adults are placed in distinct locations such that they cannot perceive each
other; their sight is blocked and they wear noise-cancelling headphones (see
Figure 3.1). Their only manner of making contact is via a simple interface
consisting of a trackball that records horizontal movements and a hand-
held vibration motor that is either on or off. The trackball is operated
with the dominant hand while the motor is held in the other hand. Their
movements control the motions of an avatar located in an invisible 1D virtual
environment (see Figure 3.2). This 1D virtual environment was 600 unit long
with periodic boundaries, and each object was embodied as 4 unit long. The
motor continuously vibrates whenever their avatar overlaps with another
object in the virtual space. Position and sensor data was recorded every 10
ms (100 Hz).

This version of perceptual crossing experiment was designed to enhance
the cooperativity between the subjects, which was the main difference from
the Auvray et al. (2009)’s original perceptual crossing experiment. In order
to do this, the score of the task was evaluated on the pairs of players, not
on the score of the single player, and also explicitly instructed to help each
other to find each other in the virtual space.

They are to click once using the trackball (and only once per trial) in
order to signal to the experimenters when they become aware of interacting
with the other player; the other player is not aware of the click. No feedback
is provided during the experiment, which meant that each participant was
not told whether the click was correct or not after each trial. Each pair can
interact in a sequence of 15 trials, each with a duration of 60 seconds.

3.3 Subjective Reports

After each trial the experience of the players is evaluated in several ways if
they happened to click in that trial.

In particular, they were asked to rate the clarity of their experience of
the other’s presence at the moment of their click on the basis of a social
version of the perceptual awareness scale (PAS), based on the PAS that was
proposed by Ramsøy and Overgaard (2004).

This scale was constructed by studying which scale participants prefer
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to use for reporting conscious experiences if allowed to construct the scale
themselves(Ramsøy and Overgaard, 2004), and these scales was shown to be
related to the particular neural response, the visual awareness negativity in
the case of visual conscious experiences by a magnetoencephalographic study
(Andersen et al., 2015).

This scale is a four-point scale, and 1 means having had no experience, 2
means having had an ambiguous experience, 3 means having had an almost
clear experience, and 4 means having had a clear experience (table 3.1).

They were also asked to give a short free-text description of that experi-
ence and their strategy. (Figure 3.3)

Figure 3.1: Experimental setup of perceptual crossing paradigm. The two
participants can only engage with each other via a human-computer interface
that reduces their scope for embodied interaction to a minimum of transla-
tional movement and binary tactile sensation. Each player’s interface consists
of two parts: a trackball that controls the linear displacement of their virtual
avatar, and a hand-held haptic feedback device that vibrates at a constant
frequency for as long as a player’s avatar overlaps with another virtual ob-
ject and remains off otherwise. Three small lights on each desk signal the
start, halftime (30 seconds), and completion of each 60-second trial. Figure
originally published in Froese et al. (2014a).
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Figure 3.2: Virtual environment of perceptual crossing paradigm. Players Pa
and Pb are virtually embodied as“avatars”on a line that wraps around after
600 units of space. This virtual space is invisible to the participants. Each
avatar consists of a binary contact sensor and a body object. Unbeknownst
to the players a “shadow” object is attached to each avatar body at a
fixed distance of 150 units. There are also two static objects, one for each
player. All objects are four units long and can therefore only be distinguished
interactively in terms of their qualitatively different affordances for tactile
engagement. No other forms of interaction were possible. Figure originally
published in Froese et al. (2014a).

3.4 Analysis of Sensorimotor Trajectories

The dynamics of each trial was fully captured by 4 time series data, which
were each agent’s movement trajectory, and the time course of the sensory
feedback by vibrating device. Here, I will introduce the methods that we
used to characterize the data, turn-taking, cross correlation, windowed cross-
lagged regression and transfer entropy.

3.4.1 Turn-Taking

First measure was the degree of turn-taking (TT). Turn-taking corresponds
to the behavior that two agents moves alternately, and this measure was
designed to capture this behavior by Froese et al. (2014a). Basically, this
measure is high if two agents don’t move simultaneously, and the movement
duration of each agent is close.

At each time step we classified the state of each player’s behavior in
binary terms as either moving (1) or non-moving (0) by evaluating his or her
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PAS Experience of other’s presence

1 No experience
2 Ambiguous experience
3 Almost clear experience
4 Clear experience

Table 3.1: Froese et al. (2014a)’s social version of the perceptual awareness
scale (PAS) adapted from the PAS by Ramsøy and Overgaard (2004).

trackball movement (I will refer to these binary movement time series as B1
and B2 for participants Pa and Pb, respectively). Movement was considered
to have taken place whenever the change in avatar position dx from one time
step to the next was bigger than an 8th of the avatar’s length (i.e. 4/8 =
0.5 so that if dx > 0.5 unit long, 1, else 0). Since avatar positions tend
to fluctuate during a player’s “turn” We chose to set a lower limit to the
duration of movement pauses so as not to accidentally end up with a turn
being divided into micro-turns. Thus, we only set movements to 0 if there
was no motion over at least 50 consecutive time steps (500 ms), otherwise
they remain set to 1.

In order to determine the differences between players’ activity we applied
the logical“Not-And”operator to their movement time series, which resulted
in a time series of activity differences D (i.e. D = B1 Not-And B2). Then,
we assigned to each participant their active contribution of this exchange by
applying the logical “And” operator and summing the result (i.e. C1 =
sum(B1 And D); C2 = sum(B2 And D)). The overall TT performance for
a given time period was then calculated by multiplying the player’s active
contributions. This multiplication means that one-sided situations, in which
one player is continuously active while the other is continuously passive, get
low TT scores. Finally, we normalized the outcome such that the turn-taking
score TT = (4 * C1 * C2) / T2, where T is the number of time steps. The
range of TT is therefore [0, 1], with 0 representing a complete absence of TT
interactions and 1 representing a perfect exchange of periods of activity and
passivity between the subjects. We analyzed the TT in the 10s preceding a
click.
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3.4.2 Movement Synchronization: Cross Correlation
and WCLR

The measure of turn-taking (TT) interaction that was proposed by Froese
et al. (2014a) can tell us whether players were exchanging periods of activ-
ity and passivity in an orderly manner, but it does not say much about the
similarity of the patterns of activity that were being exchanged. Given that
interpersonal synchrony is widely considered to reflect psychological connect-
edness, we applied measures of movement synchrony, namely cross correlation
(CC) and windowed cross-lagged regression (WCLR)(Altmann, 2011).

Cross correlation (CC) between two timeseries X(t) and Y(t) with lag τ
is calculated as,

(CC) =
∑
t

X(t) ∗ Y (t− τ)/σXσY

σX and σY were standard deviation of X(t) and Y(t), respectively. Here
we divided by these standard deviation in order to take into account of indi-
vidual difference in the motion.
　
Windowed cross-lagged regression (WCLR) between two timeseries X(t)

and Y(t) with lag τ is calculated in the following way. First, we models one
time series X(t) in two different ways.

Model1:

X(t) = β10 + β11X(t− τ) + ϵ1t

Model2:

X(t) = β20 + β21X(t− τ) + β22Y (t− τ) + ϵ2t

　
Both models are linear regression using lagged time series, but model1

only use only own past time series data and model2 use not only own past
data but also time series data from the other time series data.

Then using the coefficients of determination (R2
Model1 and R2

Model2), win-
dowed cross-lagged correlation (WCLR) is quantified as below.

(WCLR) = R2
Model2 −R2

Model1
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CC is a common measure of movement synchrony but can be confounded
by auto-correlation, which may lead to inflated measures of interpersonal
synchrony, a problem which is avoided by WCLR. Therefore, we decided to
use WCLR in addition to CC.

We calculated CC and WCLR between two agents’ velocity data in the
periods of 10s before each click with a time lag in the range of [-5, 5] seconds,
which means that clicks occurring during the first 15s of a trial were excluded
from CC and WCLR analysis. In total 28 clicks had to be excluded.

We also used WCLR to calculate the windowed time delay yielding the
largest WCLR value, which gives an indication of the most relevant timescales
in which synchrony can be measured.

3.4.3 Local Transfer Entropy

Lastly, we looked more specifically at the influence of players’ movements on
each other’s tactile sensations preceding a click using a measure known as
local transfer entropy (Lizier et al., 2008).

Transfer entropy was originally proposed by Schreiber (2000), and this
measure can capture the directional influence from one time series to the
other time series. This transfer entropy can be also formulated in temporally
local form (Lizier et al., 2008), which allows us to calculate transfer entropy
for specific segments of a time series.

First, transfer entropy TY→X is defined as

TY→X =
∑
un

p(un) log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

Here, n is a time index, un represents the state transition tuple (xn+1, x
(k), y(l)),

x(k) and y(l) represent the k and l past values of x and y up to and including
time n. In the following analysis, we used k = l = 4.

This can also be formulated using mutual information.

TY→X(k, l) = I(Y (l)
n ;Xn+1|X(k)

n )

When this value is calculated from the experiment, the probability of un

is calculated as

p(un) =
c(un)

N
=

∑c(un)
a=1 1

N
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Here, N is the total number of the observation, and c(un) is the count of
the un.

If we substitute this to the definition of transfer entropy, we can derive
the following equations.

TY→X =
1

N

∑
un

(

c(un)∑
a=1

1) log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

=
1

N

N∑
n=1

log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

Therefore, if we define tY→X(n + 1) as

tY→X(n + 1) = log
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

transfer entropy can be described as the average of tY→X .

TY→X = ⟨tY→X(n + 1)⟩

This value tY→X(n+ 1) depends on the time index and this is temporally
local, so Lizier et al. (2008) called this local transfer entropy and this can
provide the spatiotemporal information transfer profiles from the time series
data.

We applied this measures to the time series data from PCE experiment.
This analysis of the whole sensorimotor loop is a significant methodological
advance because previous time series analyses of perceptual crossing have
only focused on movement by itself, thus leaving the interdependency be-
tween movement and sensation underlying meaningful perception (Mossio
and Taraborelli (2008); Noë (2004)) unexamined.

Transfer entropy uses a joint probability distribution from two time series,
and to calculate this distribution function empirically from the time series,
we need to discretize the time series. The simplest way is to convert the
movement time series to a binary sequence is in terms of the directional
change of movement, i.e. we label the point in time as a state 1 when it
changes, otherwise we turn it into a state 0. The sensory time series was
also converted to a binary sequence, i.e. when the haptic feedback turns
on or off we label the point in time as a state 1, otherwise it set to 0 to
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mark the absence of a change in sensor state. In order to determine the most
important time scale of the time series, first we calculated transfer entropy by
utilizing the whole trial while adjusting the down-sampling rate. We found
there was a peak of transfer entropy around 50ms from the movement data
to the sensory input data. We therefore took 50ms as the characteristic time
scale and used it for the further analysis of the local transfer entropy.

Given that we are interested in determining the sensorimotor signature
of social awareness, we related these objective measures with the subjective
PAS ratings of the clarity of the other’s presence. In particular, we excluded
clicks that were not reported to have been associated with an experience
(i.e. PAS 1 or no PAS report), and restricted the data to ambiguous, almost
clear, and clear experiences (i.e. PAS 2, 3, and 4, respectively). In addition,
we did not further discriminate between the clicks that are associated with
these conscious reports in terms of their objective correctness since we were
interested in studying the general conditions of the transition to a social
experience rather than to a veridical social experience per se. The final
dataset consisted of 101, 122, and 143 clicks associated with reports of a
PAS score of 2, 3, and 4, respectively. Out of these 366 clicks 321 correctly
identified the other’s avatar.

3.5 Statistical Analysis

In order to analyze the relationship between the perceptual awareness scale
(PAS) and the movement coordination measures (TT, CC, WCLR), first we
averaged those movement measures with the same PAS, and applied one-way
ANOVA followed by post hoc Bonferroni test.

In the analysis of local transfer entropy, we used Welch’s t-test to examine
whether the average transfer entropy were different before and after a click.
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	 	 Doc.	v1.6	

	 4	

Trial	#1/15:	
Q1.	If	you	clicked	during	the	trial,	how	clearly	did	you	experience	that	you	were	interacting	
with	your	teammate	just	before	the	time	of	the	click?		
	
Please	select	a	category	to	describe	the	experience	of	your	partner:	
	

1. No	experience		
2. Vague	impression		
3. Almost	clear	experience		
4. Clear	experience		

	
Q2.	If	you	chose	category	2,	3	or	4,	please	describe	the	sensation	(or	the	experience,	feeling,	
etc.)	of	your	partner’s	presence	more	precisely	in	your	own	words.		
	

	
Q3.	If	you	clicked	during	the	trial,	how	confident	are	you	now	that	you	correctly	identified	
a	moment	during	which	you	were	interacting	with	your	partner?		
	
Please	select	a	category	to	describe	your	confidence	in	your	click’s	accuracy:	
	

1. No	confidence		
2. Low	confidence		
3. Medium	confidence		
4. High	confidence		

	
Q4.	Please	briefly	describe	your	strategy	for	helping	your	team	in	this	trial.	For	example:	
Ø How	did	you	help	your	partner	to	recognize	which	of	the	objects	was	your	avatar?	
Ø How	did	you	know	when	you	were	interacting	with	your	partner’s	avatar?		
Ø How	did	you	know	when	you	were	interacting	with	a	static	or	a	prerecorded	object?	

	

Figure 3.3: The questionnaire after each trial.
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Chapter 4

Results

Players’ activity during a typical trial is shown in Figure 4.1. Note the
extended period of interpersonal interaction in the first half of the trial,
followed by nearly instantaneous clicks by both players. This is followed by
disengagement, then a short interaction with their respective static objects,
and finally re-engagement just before the end of the trial.

4.1 Qualitative Analysis of Movement Coor-

dination

We can use the example trial shown in Figure 4.1 to illustrate the cross
correlation (CC) and windowed cross-lagged regression (WCLR) measures
(Figure 4.2). It can be seen that CC greatly overestimates the amount of
movement synchrony, while WCLR picks out only a few temporal regions.
For example, there is a bright blue patch from x = 15 s to 20 s for time
lags of around -3 s. This tells us that during the preceding 10 s periods,
starting from 5 s to 15 s and ending during the period of 10 s to 20 s of
that trial, player Pb leads Pa with a delay of around 3s. If we check this
result against what is happening during that time in Figure 3, we can see
that indeed player Pb (blue line) leads Pa (red line) beginning around 8 s by
inducing the latter to also start oscillating. In the 10 s preceding the clicks,
Figure 4.1 shows that the direction of influence has become reversed, with Pa
staring to oscillate from around 25 s and then pausing, while Pb continues
to oscillate until pausing around 30 s. If we compare this with Figure 4.2, we
see some bright blue bands following the clicks for time lags of around 2 s,
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Figure 4.1: Example of time course of an illustrative trial (E1T1). Thick red
and blue lines show the change in position of the avatars of players Pa and
Pb, and red and blue dotted lines trace their“shadow” objects. Horizontal
lines at y = -150, 150 correspond to the position of the player-specific static
objects. Red and blue arrows indicate the time of clicking by Pa and Pb,
which occurred practically instantaneously (within 0.05 seconds). After the
trial players Pa and Pb reported that their experience of the other’s presence
at the moment of the click consisted in a“vague impression” (PAS 2) and
a “clear experience” (PAS 4), respectively.

which suggests that in the seconds preceding the clicks Pa’s behavior leads
Pb’s behavior.

Nevertheless, it can also be observed that the WCLR method may be con-
founded when the players happen to move similarly but without interacting
directly. For example, it turns out that the highest values in Figure 4.2 are
given for the period from around x = 42 s to 50 s for lag times of around 0.5 s,
even though Figure 3 reveals that in the corresponding period starting from
32 s onwards the players had already separated and just happened to move
in roughly similar ways, with Pa slightly leading Pb but without direction
interaction. However, we do not arbitrarily want to exclude such cases of
behavioral coordination because they may still tell us something meaningful
about the quality of the interaction. After all, one possible reason why these
two players continued to move similarly even after spatially disengaging is
that they had already become entrained during the first half of the trial.
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Figure 4.2: Heat maps of cross correlation (CC, left) and windowed cross-
lagged regression (WCLR, right) for an illustrative trial (E1T1). Measures
are applied to periods of 10 seconds. The x-axis corresponds to the end point
of the time window. The y-axis corresponds to the length of the windowed
time lag; a positive sign means that behavior of participant Pa can explain
that of Pb after the given delay (conversely, a negative sign means that the
direction of influence instead goes from Pb to Pa). Thus, it starts at 15 s
because a lag time of 5 s means that we compare Pa’s activity from 0 s to 10
s with Pb’s activity from 5 s to 15 s (or vice versa for a lag time of -5 s). The
vertical lines after 30 seconds represent the nearly instantaneous moment of
clicking by both players.

We note that turn-taking interaction and synchrony can both give high
values for a trial when the players exchange periods of activity and passivity
whereby that activity is similar in form, too. But they can also be mutually
dissociated in other cases. As illustrated in Figure 4.3, players can exchange
periods of activity and passivity whereby that activity itself does not have
much resemblance (high TT and low WCLR), and players can greatly overlap
in their activity but still share a lot of similarity in their movements (low TT
and high WCLR). Here we applied the measures to the 10 seconds preceding
a click, and we calculated the WCLR value to be the maximum value from
a range of window time lags [-5 s, 5 s].

4.2 Quantitative Analysis of Movement Co-

ordination

Turn-taking interaction and movement synchrony could spontaneously emerge
from the interaction dynamics without necessitating any explicit intention to
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Figure 4.3: Illustrative comparison between turn-taking (TT) and windowed
cross-lagged regression (WCLR) measures. For clarity we only plot the
change in position of the avatars of players Pa and Pb (blue and red lines).
Arrows mark the moment of player Pa’s click. Taking turns by exchang-
ing periods of movement and passivity does not entail a similarity between
players’ movement patterns (left, E7T6), and a similarity between players’
movement patterns does not entail a turn-taking interaction (right, E17T15).
The values for TT and WCLR for the 10 seconds before Pa’s click (shaded
regions) are 0.49 and 0.015 for the example on the left and 0.0 and 0.18
for the example on the right, respectively. The lag times that yielded these
maximum WCLR values were -4.4 s (left) and -2.8 s (right).

coordinate behaviors or awareness that this is in fact occurring (Froese and
Gallagher, 2012). In other words, conscious experience of social interaction
cannot be reduced to objective measures of coordination; both subjective
and objective aspects must be taken into account in an integrated manner.

Here, we compared each movement coordination measures with different
PAS ratings (CC: 0.27 ± 0.01, 0.30 ± 0.01, 0.31 ± 0.01, WCLR: 0.084 ±
0.005, 0.095 ± 0.005, 0.11 ± 0.01, TT: 0.15 ± 0.01, 0.18 ± 0.02, 0.23 ± 0.01,
with PAS 2, 3, 4, respectively), and we found that there was difference among
different PAS ratings for all the objective measures. (ANOVA, F(2,337) =
4.969, p < .01, F(2,337) = 3.792, p = 0.024, F(2,364) = 8.178, p < .001 for
CC,WCLR, and TT, respectively). Especially we found that all movement
coordination measures accompanying with PAS 4 were higher than with PAS
2. (t(225) = 3.160, p < .0.01, t(225) = 2.728, p = 0.021, t(242) =4.055,

31



p < 0.001 for CC, WCLR, and TT, respectively, with Bonferroni correction.)
(Figure 4.4)

Figure 4.4: Three measures of interpersonal movement coordination and the
clarity of the other’s presence (PAS). We averaged the three measures of
interpersonal movement coordination, cross-correlation (CC, left), windowed
cross-lagged regression (WCLR, middle), and turn-taking (TT, right) scores
for each PAS rating. The measures were applied to the 10 seconds preceding
a click. * : p < 0.05, ** : p < 0.01, *** : p < 0.001 (With Bonferroni
correction.)

This is an indication that these measures are characterizing some part of
the real-time sensorimotor interaction signature of a clear experience of the
other’s presence. This seems to suggest that elevated levels of turn-taking
and movement synchrony are a common feature of the transition to social
awareness during genuine interactions.

4.3 Timescales of Movement Coordination

In order to learn more about the timescales in which synchrony of movements
is most pronounced, we used WCLR to calculate the delay giving the highest
cross correlation value for each trial. Since here we were not interested in
which of the two players was leading the interaction, we took the absolute
value of the lag times. We related these values with players’ PAS ratings
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to determine whether some timescales are more relevant for explaining a
clearer experience of the other’s presence (Figure 4.5). Averaged lag time
with each PAS rating were evaluated as 2.7 ± 0.1s, 2.5 ± 0.1 s, 3.0 ± 0.1 s.
We found that the average lag time was significantly different among different
PAS ratings(F(2,337) = 4.395, p = 0.013), and especially we found that the
lag time with PAS4 was significantly longer than that with PAS3 (t(240) =
2.915, p = 0.012, with Bonferroni correction). Those findings suggest that
phenomenologically more salient forms of movement synchrony are based on
a longer timescale of interaction.

Figure 4.5: The timescale at which movement imitation is most pronounced
(WCLR lag) and the clarity of other’s presence (PAS). We calculated the size
of the windowed time lag yielding the maximum value for windowed cross-
lagged regression (WCLR) and averaged it over the same ratings of clarity
of other’s presence (PAS). * : p < 0.05 (With Bonferroni correction.)
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4.4 Analysis of Direction of Influence

We used local transfer entropy (TE) to quantify directions of influence be-
fore and after a click at different timescales (a period of 10s, 5s, and 1 s
before a click and 1 s, 5 s, and 10 s after a click), which meant that we first
calculated local transfer entropy and take average over each period. The
periods of 1 s and 10 s were chosen to coincide with the two cognitive scales
of Varela’s (1999) three scales of duration of the temporal horizon: (1) ba-
sic or elementary neural events (the ‘1/10’ scale); (2) relaxation time for
large-scale neural integration of cognitive or perceptual acts (the ‘1’ scale);
(3) descriptive-narrative assessments of the situation (the ‘10’ scale). The 5
s scale was chosen as an intermediate scale that is consistent with the lag
times used for the synchrony analyses. It is also of interest as an expression
of cognitive events taking place at the ‘1’ scale: spontaneous speech in many
languages is organized such that utterances last 2-3 seconds and short inten-
tional movements (such as self-initiated arm motion) are embedded within
windows of this duration (Varela, 1999). I return to this point in the discus-
sion. We denote S1 as the“self’s”sensor time series and S2 as the“other’s”
sensor time series. Self and other are determined relative to the player who
made the click. Who clicks first was not considered here. When one player
touches the other, both sensors get activated at the same time (i.e. S1 = S2).
They are only different (i.e. S1 ≠ S2) when either player touches the static
objects or the shadows. Yet even though this means that Figure 4.6 and 4.7
are expected to return similar values for situations of perceptual crossing, we
separate M1/2 → S1 (Figure 4.6) and M1/2 → S2 (Figure 4.7) for the sake
of clarifying active/passive touch differences.

In support of the hypothesis of passive touch we found that the transition
to perception of the other’s presence was characterized by passively received
tactile stimulation (Figure 4.6). In general, there tends to be more influence
from the other’s movements (M2) on the self’s sensations (S1) compared
with the influence of the self’s movements (M1). However, we did not find
a continuous period of passive touch (period >= 5s), a result that is con-
sistent with our finding that significant lag times are < 3 s. A statistically
significant heightened influence of M2 on S1 was only observed in the second
immediately before the click and only for high PAS ratings (t(214.0) = 2.83
p < .01, t(279.9) = 3.54 p < .001 for PAS 3 and 4, correspondingly.).

This pattern is reversed after the click: moments of awareness rated as
PAS 3 and 4 are followed by heightened influence of the self’s movements on
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the self’s sensations (i.e. comparatively more transfer entropy from M1 to S1
compared to M2 to S1). Moreover, this difference in influence only becomes
significant after a few seconds and remains so until at least 10 s. (t(274.8)
= 5.16 p < 10−6 , t(263.2) = 4.47 p < 10−4 , for 5 s and 10 s with PAS 4,
respectively.)

Figure 4.6: Average local transfer entropy to the self’s sensations before and
after clicks. We analyzed periods of 10 s, 5 s, and 1 s before a click and 1
s, 5 s, and 10 s after a click. Yellow and green bars indicate how much the
movements made by the self (M1), i.e. the player who made the click, and
by the other player (M2) contributed to the self’s tactile stimulation (S1),
respectively. Error bars represent standard error; significance was calculated
using the Welch’s t-test. * : p < 0.05, ** : p < 0.01, *** : p < 0.001
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4.5 Analysis of Switch from Passive to Active

touch

This post-click reversal in the flow of influences was unexpected. We con-
sidered two plausible explanations. On the one hand, this period of self-
generated activity could be an example of reciprocity, in which the self now
tries to make its presence clear to the other by providing them with an
opportunity for undergoing passive stimulation in return, which would inci-
dentally also stimulate the self’s own sensor due to the situation of perceptual
crossing. However, an alternative possibility, which is more in line with the
illustrative trial shown Figure 4.1, is that a click marks the end of a bout of
close interaction followed by a period of temporary disengagement, in which
the movements of the other participant play only a diminished role for the
self’s sensations. We therefore redid the analysis shown in Figure 4.6, but
this time focusing on the transfer entropy from the self to the other’s sen-
sations. The aim is to verify if the self’s movements comparatively increase
their influence on the other’s sensations or not (Figure 4.7).

We found that in the periods leading up the self’s click the other’s move-
ments dominated the other’s own sensations (M2 → S2), which is to be
expected if the self is mostly passive during the transition to social aware-
ness (M1) and the other is actively moving (M2). After a click the situation
becomes more complex. Following moments of clear awareness (PAS 4) the
other’s sensations are more influenced by the self’s movements (M1 → S2),
and significantly so in the longer post-click periods (t(276.8) = 3.93 p < .001
, t(263.6) = 3.26 p < .01, for 5 s and 10 s with PAS 4, respectively.). This is
consistent with the idea that the self returns the feeling of passive touch to
the other, which from the self’s perspective involves a transition from passive
to active touch, but this possibility is more typical for clear awareness. After
less clear experiences (PAS 2 and 3) there tends to be a stronger influence
from the other’s movements to other’s own sensations, a trend especially no-
table for the immediate post-click period (1 s and 5s) and for the least clear
experience (PAS 2). This is consistent with the idea that the self disengages
from its interaction with the other after making a click, thereby leaving the
other alone to generate their own sensations, but this decoupling is more
typical for when the other’s presence was not experienced sufficiently clearly.

Both of these situations can be confirmed in Figure 4.1, where the player
that first disengages after the clicks (Pa) was also the one who gave a PAS
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Figure 4.7: Average local transfer entropy to the other’s sensations before
and after clicks. We analyzed periods of 10 s, 5 s, and 1 s before a click and
1 s, 5 s, and 10 s after a click. Yellow and green bars indicate how much the
movements made by the self (M1), i.e. the player who made the click, and
by the other player (M2) contributed to the other’s tactile stimulation (S2),
respectively. Error bars represent standard error; significance was calculated
using the Welch’s t-test. * : p < 0.05, ** : p < 0.01, *** : p < 0.001

score of only 2, while the other player who apparently would have continued
interacting gave a PAS score of 4. These differences in the self’s awareness-
dependent post-click behavior, namely the transition from passive to ac-
tive touch compared with relative disengagement, deserve attention in future
studies.

37



Chapter 5

Discussion

In summary, we found that the feeling of the presence of the other, PAS, was
related to the degree of synchronization, CC and WCLR, and the degree of
turn-taking. Also, we characterized the information flow around the time of
click using local transfer entropy and found the transition from passive to
active around the click. This transition from passive to active was evident in
the trial with the high PAS. In this chapter, we compare the present results
to previous studies and discuss the implication of passive touch in wider
contexts.

5.1 Stability of the Dynamics and Social Cog-

nition

Murray and Trevarthen (1985) showed that infants realize the difference be-
tween live and recorded video images, and only in the live condition the
interaction between infants and mothers is maintained. Auvray et al. (2009)
designed perceptual crossing experiment as the minimal parallel of Murray
and Trevarthen (1985)’s experiment and showed that also in this setup sub-
jects tended to click more with the other agent than with the shadow object,
and the subjects spent more time with the other agent than with the other
objects.

However, the probability of clicks, which was the number of clicks di-
vided by the time duration of the stimulation, was found not qualitatively
different between the avatar and the shadow. It means that subjects cannot
recognize the difference from the dynamics pattern, and the reason for the
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larger number of clicks for avatars than for shadows was the contact between
agents were tended to be maintained for a longer time. Therefore, Auvray
et al. (2009) concluded that the difference between the avatar and the shadow
came only from the stability of the dynamics (Auvray and Rohde, 2012). The
problem here is that if we assume that the stable dynamics is the condition
to be recognized as the avatar, the static object also satisfies this condition
because this can also provide stable dynamics. This is conspicuous in the
simulation study (Iizuka and Di Paolo, 2007; Di Paolo et al., 2008), in which
the evolved agent found it hard to distinguish between the avatar and the
static object rather than between the avatar and the shadow. Therefore, the
stability of the dynamics only cannot fully explain the situation.

In the Froese et al. (2014a)’s version of perceptual crossing experiment,
the subjects were actually able to distinguish between the agent and the
shadow, which means that the probability of the click was also significantly
different between these two. This clearly showed that the subjects noticed
the difference between the agent and the shadow in this experiment. Also,
we found that the movement of the subjects tended to synchronize with each
other measured by cross correlation and WCLR, and co-create the temporal
structure, turn-taking. This showed that each subject did not simply react to
the input stimulus, but gradually change their movements to adapt with each
other. The result of local transfer entropy further confirmed that the ability
to distinguish between the agent and the shadow was not just a consequence
of dynamical stability, because the time of click was characterized by the
transition from passive touch to active touch, and they did not randomly
click during the interaction.

These results might depend on the difference in the experimental settings
between Auvray et al. (2009) and Froese et al. (2014a). One of the main
differences from the original version (Auvray et al., 2009) was to encourage
the subjects to cooperate to achieve the tasks, and this might enhance the
synchronization of the movement and the turn-taking structures. Another
main difference was that Auvray et al. (2009) allowed multiple clicks during
each trial, where as Froese et al. (2014a) allowed only once. The results of
Auvray et al. (2009) did not distinguish the click associated with the strong
feeling of the other’s presence and with the weak feeling, where as in Froese
et al. (2014a), the subjects were allowed to click once, so they clicked when
they were confident on the judgement. Therefore, the difference between
the results from Auvray et al. (2009) and Froese et al. (2014a) might be
the judgement with low confidence and high confidence. Our result that the

39



characteristic values such as cross correlation, WCLR, TT, and local transfer
entropy were less evident with less PAS, the subjective feeling of the other’s
presence, well accorded with this interpretation. For the rough detection of
agency, the stimulus input not caused by the self might be enough, but for
the strong sensation of the other’s presence, the co-regulated structure with
the other might be required.

5.2 Time scale in the interaction

Varela (1999) suggested the three scales of duration of the temporal horizon:
(1) basic or elementary neural events (the ‘1/10’ scale); (2) relaxation time
for large-scale neural integration of cognitive or perceptual acts (the ‘1’ scale);
(3) descriptive-narrative assessments of the situation (the ‘10’ scale). Here,
we discuss the timescales appeared in our experiments based on these three
scales.

The shortest time scale was the ‘1/10’ scale, ∼100 ms. This corresponds
to the window size (50 ms) used in local transfer entropy analysis. The local
transfer entropy detect the influence between the two time series, so the
window size corresponds to the temporal width treated as simultaneous. In
our experiment, we used the number of past values as the information source
of the present value as k = l = 4, which mean that the analysis detect the
possible influence within past 200 ms. This time scale accord with the time
scale in the study of sense of agency (Blakemore et al., 1999; Farrer et al.,
2013). The next time scale was the ‘1’ scale, ∼1 s. This time scale roughly
corresponds to the interval of touch, the rise of local transfer entropy from
the other’s movement before click, and the size of turn ,which was typically
around several seconds. Therefore, in this experiment, this scale correspond
to the time interval of signals that one subject emits to the other. The longest
time scale was the ‘10’ scale, ∼10 s. This time scale did not explicitly appear
in our result, but the exchange of several turns amounts to this scale, so this
scale correspond to the time scale of the co-regulation structure between the
dyads.
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5.3 Passive Touch

We found that the local transfer entropy from the movement of the other to
the sensation of the self was high preceding the clicks. This local transfer
entropy can be interpreted as ”Passive touch”, in contrast to ”Active touch”,
which corresponds to the transfer entropy from the movement of the self to
the sensation of the self. Passive touch and the perception of others were also
discussed in the context of phenomenology (Miyahara, 2015). He argued that
passive touch constitutes the experience of the perception of others from a
phenomenological point of view. In particular, he insists on the importance
of passive touch in detecting agency.

The importance of the passivity was also discussed in the context of de-
velopmental studies, related to the question, when infants can be aware that
someone is attending to them. From the standpoint of cognitive developmen-
tal psychology, this becomes possible after the formation of representation of
others, which happens around 12 months, and representation of self, which
occurs around 18 months. On the other hand, many studies have shown that
infants of about 2 months emotionally react to attention to self (Muir and
Hains, 1999; Nadel and Tremblay-Leveau, 1999; Reddy, 2000). From these
findings, Reddy (2003) argued that the awareness of others’ attention came
first, and after that representation of other and self was formed as an object
being attended. This is parallel to our results that the perception of the
other is based on the directed touch from the other towards self, ”passive
touch”.

These arguments suggested that passive experience is important in social
cognition. Passive means something coming towards me, so this is the con-
cept with direction. Therefore, the transfer entropy, which is an information
measure with direction, is suitable to quantitatively evaluate this aspect, and
we confirmed that the passive touch is qualitatively related to the subjective
experience of feeling the other’s presence. As far as I know, this is the first
time to apply local transfer entropy analysis to social psychological experi-
ments, and in this sense, this is the first study to quantitatively evaluate the
passive and active information transfer during the social interaction.
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Part III

TypeTrace Messenger
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Chapter 6

Introduction

Conversations are central to our social lives. In Face-to-face (FtF) circum-
stances, social interaction includes not just the exchange of verbal sentences,
but also interactions with non-verbal means such as body gestures, vocal
cues, temporal structures in speech like turn-taking, facial expressions, and
gaze exchanges. It is known that the medium of communication affects,
among other aspects of social interaction, affiliative behaviors and the re-
sulting outcomes (Sprecher, 2014).

Modern societies have become inundated by computer-mediated commu-
nication (CMC) systems. Since the early introduction of personal computers
in the 1980s until the universal dissemination of smartphones in the 2010s,
we have experienced a drastic influx of new CMCs. The lineage of CMC
has diversified since the age of simple text-based chats, with the burgeoning
of audiovisual teleconferencing systems and virtual, augmented, and mixed
reality devices.

Nevertheless, text-based CMC remains one of the dominant communica-
tion channels of today. For instance, as of 2019, among the 3.2 billion people
worldwide who own a smartphone (Statista, 2020), 1.6 billion use WhatsApp,
1.3 billion use Facebook Messenger, and 1.1 billion use WeChat (Clement,
2019) (all monthly active users). By contrast, in 2019, less than 10 million
people worldwide owned a virtual reality device (Statista, 2018). All of these
messenger applications include rich media functions such as making online
video or audio calls and sending high-resolution images or audio files, but
text-based chats also remain widely used among its users, albeit the exact
statistic is unknown.

Short et al. initially introduced the term“social presence”in the context
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of telecommunication (Short et al., 1976) and conceptualized the ability of
communication media to transmit social cues. Social cues consist of both
verbal and non-verbal information, such as facial expressions, gestures, and
physical appearance, and they serve to construct the ”sense of being with
another” (Biocca et al., 2003). Short et al. (1976) considered these cues
the foundation of intimacy (feeling of connectedness to the partner) and
immediacy (psychological distance to the partner). In the early period of
research, social presence was viewed as a variable depending on the quality
of media. In short, telecommunication generally was regarded as a lesser
communication channel compared to the FtF communication because of its
inability to transfer non-verbal cues.

This line of research continued to gain support in the 1980s, where Daft
and Lengel conducted seminal analyses of the richness of information and
media (Daft and Lengel, 1984, 1986). However, in the 1990s, Walther ar-
gued in opposition to media richness theories, stating that if enough time
is spent on CMC, interactants can achieve a level of interpersonal relation-
ship as high as FtF communications (Walther, 1992). Walther later argued
that communication means specific to CMC could even create a more robust
social bond compared to FtF (Walther, 1996) because it stimulates more self-
disclosure than FtF and thus can lead to higher social attraction. This school
of thought, called the social information processing theory (SIPT) (Walther,
2015), has helped researchers to transcend the simple dichotomy of rich and
poor media and to scrutinize the social phenomena in CMCs more in-depth.

Since then, theoretical discussions of social presence concerning CMC
faced the need to reconcile technologically mediated social interaction with
unmediated interaction (Biocca et al., 2003). In remote learning environ-
ments, social presence has been measured to predict participants’ learning
satisfaction (Gunawardena and Zittle, 1997), and comparisons of different
types of CMC have been analyzed (Tu, 2002). Antheunis et al. (Anthe-
unis et al., 2010) conducted a thorough quantitative analysis of an Social
Networking Service (SNS) based on a hypothesized model of social presence
theories and found supportive evidence of SIPT. A recent systematic review
of mediated social presence research by Oh et al. (Oh et al., 2018) marshaled
different previously studied predictors of social presence, including new me-
dia such as virtual and augmented reality systems, while pointing out that
social presence does not always lead to positive outcomes. The relationship
between social presence and the valence of communication is yet to be further
elaborated.
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Moreover, the dominant trend in social presence research so far has been
to treat only the change in the characteristics of each message, which is uni-
directional. On the other hand, in the field of social cognition, researchers
have argued that bi-directional interaction plays a central role in understand-
ing dyadic interactions (Schilbach et al., 2013; Gallotti et al., 2017; Redcay
and Schilbach, 2019).

In this study, we investigated these relationships by recording and analyz-
ing the dyadic bi-directional interaction of CMC. We particularly focused on
the temporal dynamics of interaction and each interlocutor’s response dur-
ing several types of text chat systems. In order to find evidence for potential
factors that contribute to the generation of social presence in a dyadic CMC
setup, we formulated the following two questions and designed our series of
experiments accordingly.

First, how does the increase of informational richness affect interactions
in CMC? The pre-SIPT line of theories predicted that the lack of social
cues such as facial expressions would decrease social presence. However,
neither SIPT nor later research rigorously measured such richness of infor-
mation in text-based CMC. Secondly, how does the concurrency of infor-
mation exchange between the interactants influence the dynamics of a CMC
interaction? Past social presence research often mixed synchronous and asyn-
chronous CMC such as chat, e-mail, and teleconferencing. In our study, we
specialized in synchronous text chat in order to observe results varying on
the difference of information concurrency. We employ transfer entropy to
measure such degree of information concurrency.

Our analysis of keystroke dynamics focused on the coupling between the
two subjects of text chat. To capture the bi-directional aspect of the text
chat, analysis of time-series data of dyadic interaction is required. In this
direction, some studies characterized temporal dynamics using some mea-
sures such as recurrence quantification analysis (Fusaroli and Tylén, 2016)
and the Allan factor (Kello et al., 2017). In this study, we used transfer
entropy, which is a measure in information theory used to detect information
flow between two time-series data (Schreiber, 2000). In the previous sec-
tions, we analyzed the dyadic interactions in perceptual crossing experiment,
which consisted of a minimal CMC that only involved a vibration device and
a computer mouse, using the local form of transfer entropy (Lizier et al.,
2008), and we found that passive information flow was related to the feeling
of the presence of the others. Here, we measured changes in the amount of
transfer entropy between the four conditions of our experiment and also in
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relation with the phone call data set.
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Chapter 7

Methods

7.1 TypeTrace Messenger

TypeTrace is a software that records the entire typing processes of writing
and replays it by varying the font size as a function of writing speed of
each letter (i.e., the font size becomes larger when there is a slower writing
speed). The software has also been used for a quantitative analysis of a
professional creative writer’s process of writing a new novel (Kudo et al.,
2015). TypeTrace software has been demonstrated at several art exhibitions
(e.g., Aichi Triennale 2019 exhibition).

We here developed a new TypeTrace Messenger (TT Messenger) based
on the previous versions of TypeTrace. TT Messenger is a Web application
that enables users to take part in dyadic chat online on PC browsers. We use
Google Firebase for the backend system, and the software runs on modern
Chrome browsers. We wrote the software in JavaScript and recorded typing
data in the JSON format.

TT Messenger records all key typing during a chat session and is capable
of precisely reenacting each typing action. This playback includes all the
processes of typing, such as pauses, corrections, and deletions.

TT Messenger has four different conditions (Fig.7.1):

1. It looks like a regular online chat system. Before the partner sends a
message, the recipient can only see a dotted line, which shows that the
partner is typing something. When the partner sends the message, the
recipient can see it as a static text.
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2. The recipient sees the partner’s message in a dynamic playback (dy-
namically presenting the playback of the other’s text message typing)
as soon as she receives it. Therefore, recipient has to wait until the play-
back finishes in order to see the resulting final message. We designed
this setup to consider our first question on the richness of information
exchanged between interactants.

3. Just like in the second condition case, the messages play back as soon
as they are sent, but with an additional visual effect. The software
records the duration taken to type every word and changes each word’
s respective font sizes as it plays them back. For instance, when a user
takes three seconds to finish typing a word, that word would appear
with a bigger font size than the previous word that took only one second
to type. We added this effect in order to visualize the rhythm of the
typing. We hypothesized that this additional social cue would have
a comparable effect with facial expressions and body gestures in FtF
communication. We expected the results from this condition would
shed light on our first question about information richness.

4. The text chat becomes concurrent, and it works in real time. As soon
as the partner starts typing, the process is transmitted to the recipient’
s screen in real time, even without the partner sending the text. The
subjects can send the message at any moment, but they do not have
to. The two parties can simultaneously type, and each other’s messages
are displayed at the same time. We designed the fourth condition to
examine our second question on information concurrency.

In the following sections, we explain how we used these four configurations
for our experiment, in which we asked subjects to freely converse with each
other and compared the results of subjective reports, physiological markers,
and patterns in keystroke events among the four settings. We recruited the
subjects pairs who were acquainted with each other, so our experiment can
be regarded as an experiment of “Mediated social presence of (very) familiar
interactions” in the classification of Biocca et al. (2003).

7.2 Participants

Participants were healthy volunteers recruited from acquaintances at Waseda
University (N = 18). They were all Japanese nationals; 11 were female, and
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the median age was 22 years old. All pairs were already acquainted before the
experiments. The study protocol was approved by the local ethics research
committee of Waseda University (Ethics Review Procedures concerning Re-
search with Human Subjects; Application Number:2018-273; Approved on
25th of January, 2019), and the methods were carried out according to the
ethics committee guidelines and regulations. All of the participants gave
their written informed consent before taking part in the study.

7.3 Experimental Procedures

Two participants were placed in different rooms. Each were provided with
a laptop PC, and we asked them to freely converse with each other through
TT Messenger. We did not set a theme for the conversations. For each trial,
we asked the pairs to converse for 10 minutes and to answer questionnaires
after that. The experiments consisted of two rounds of four sessions, and
each session included every condition (1 to 4) of TT Messenger in random
order.

During each session, we recorded the keystroke events, galvanic skin re-
sponse (GSR), and facial expressions. An example of the keystroke timeseries
data is shown in Fig.7.2.

7.4 Subjective Reports

We used a five-point Likert scale to estimate the subjective rating of the
degree of nervousness, enjoyment, closeness, presence of the other, and time
delay. Actual questionnaire items in Japanese and English translations are
listed below.

- I got nervous during the conversation. (相手との会話に緊張した)
- I had an enjoyable conversation. (会話がはずんだ)
- I felt close to the partner. (相手との距離が近く感じられた)
- I strongly felt the presence of the partner. (相手の存在感を強く感じた)
- I felt the time delay when exchanging messages. (メッセージのやり取

りに時間がかかったと感じた)
We also asked each subject to report the Inclusion of Other in the Self

(IOS) scale before the experiment and after each trial. The IOS scale has
been used to measure the subjective closeness to others and is known to
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correlate well to other subjective markers of interpersonal closeness (Aron
et al., 1992).

7.5 Measurements

During the experiments, we recorded galvanic skin response (GSR) by Shim-
mer GSR sensors and facial expressions by the web camera mounted on the
computer, which were later analyzed by OpenFace (Baltrušaitis et al., 2016)
to extract action units (AU). We measured GSR of one subject from the pair
and switched to the other subject on the second round of experiments. Fa-
cial expressions were simultaneously recorded from both subjects. Keystroke
events are collected through TT Messenger.

7.6 Transfer Entropy

Transfer entropy (Schreiber, 2000) from time series process Y to X is formu-
lated using conditional mutual information as

TY→X = I(Y
(l)
n+1;Xn+1|X(k)

n )

, where X
(k)
n = {Xn−k+1, ..., Xn}, Y

(l)
n = {Yn−l+1, ..., Yn} (k: target history

length, l: source history length).
Effective transfer entropy (Marschinski and Kantz, 2002) is calculated by

subtracting the mean value of null distribution of transfer entropy, which is
constructed by calculating the transfer entropy with a resampled surrogate
source time series, from the original transfer entropy. We calculated the
effective transfer entropy between subjects’ keystroke event time series (or
phoneme event time series for the phone call data) downsampled to 100ms
windows. We used JIDT (Lizier, 2014) for the calculation, and we set k =
l = 2.

7.7 Phone call dataset

In order to compare the keystroke dynamics with the dyadic dynamics that
have different modalities, we used a conversation corpus, CallFriend (Yaeger-
Dror, 2004), which consists of telephone conversations data in Japanese.
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From this corpus, we used the audio data and age information of 10 con-
versations (file id were ja 4044, ja 4261, ja 6221, ja 6228, ja 6688, ja 6698,
ja 6700, ja 6707, ja 6717, ja 6739). The median age was 32 years old, and
we used the first 10 minutes from each audio file.

For the extraction of phoneme events from audio data, we applied the
phoneme segmentation method by Zió lko et al. (2006). This method is based
on a six-level discrete wavelet transform (DWT) analysis, and it detects the
boundary of phonemes as the time of rapid change in each subband power.
We used the sym6 wavelet and set a minimal threshold of subband DWT
power, pmin, to 0.005. The other parameters were kept the same as in the
original paper.

We used the boundaries of the phoneme segmentation as the phoneme
events’ time series, comparable to the keystroke events for TT Messenger
data, and applied the same analysis to the event sequences.
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Figure 7.1: Screenshots of the 4 different conditions of our chat system,
TypeTrace Messenger. The actual chats in our experiments were conducted
in Japanese, but we created this figure with English texts for explanation
purposes. In condition 1, the messages are displayed statically, which cor-
responds to a regular online chat system. In condition 2 the whole process
of typing is dynamically displayed, not just the static messages. In condi-
tions 2 and 3, the font size of the messages changed according to the time
to type that message. In condition 4, the content the subjects are typing is
simultaneously shown in the other’s display.
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Figure 7.2: Example of the keystroke data from two subjects in one trial.
Each vertical line corresponds to one keystroke event. Top: The keystroke
events of whole trial (10 min). Bottom: The keystroke events of first 15 s.
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Chapter 8

Results

Below, we report the results from subjective reports, physiological markers,
and keystroke dynamics, and compare among different conditions of the chat
system and telephone conversation data. If not otherwise stated, we used
the Friedman test for statistical testing and the Nemenyi test for post-hoc
testing.

8.1 Subjective Reports

First, we investigated the subjective reports after each session. The his-
togram of ratings for each item in different conditions of TT Messenger is
shown in Fig.8.1.

We found that in condition 4, the rating of Enjoyment was significantly
higher than it was in condition 2 (p < 0.05) and condition 3 (p < 0.05),
the rating of Closeness was significantly higher than it was in condition 3
(p < 0.05), and the rating of Presence was significantly higher than it was
in condition 1 (p < 0.05). The rating of Time delay was significantly smaller
in condition 4 than it was in conditions 1 (p < 0.05), 2 (p < 0.05), and 3
(p < 0.05). No significant difference was found in the rating of Nervousness.

Also, we investigated the change in IOS before and after each trial. We
found that the percentage of positive change was 22%, 14%, 22%, and 44% in
conditions 1, 2, 3, and 4 respectively, but there was no significant difference
among these conditions (p = 0.06).
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8.2 Physiological Markers

In order to confirm the result from subjective reports, we also recorded phys-
iological markers. Here, we used GSR and facial expressions extracted by
OpenFace (Baltrušaitis et al., 2016) to recognize the emotional state of the
subjects.

8.2.1 GSR

We recorded GSR, which is related to states of arousal (Dawson et al., 2017),
during each trial. We calculated the median value from the time series and
subtracted the initial value to characterize the amount of increase of GSR
during each trial.

The median values of GSR from all trials were 4.7×10−3µS, 4.7×10−2µS,
−3.0 × 10−3µS, 0.16µS for conditions 1, 2, 3, 4, respectively (Fig.8.2). Also,
we found the GSR values from condition 4 were significantly higher than the
values from conditions 1 (p < 0.005) and 3 (p < 0.05).

8.2.2 Cheek Raiser (AU6)

We recorded facial expressions with web cameras during each trial and an-
alyzed using OpenFace (Baltrušaitis et al., 2016). OpenFace extracted the
elementary facial motion unit, action unit (AU). We used AU6 (cheek raiser),
which is related to the feeling of happiness (Ekman, 1997; Sato et al., 2019).

The median values of AU6 from all trials were 0.13, 0.23, 0.15, 0.21 for
conditions 1, 2, 3, 4, respectively (Fig.8.2). Also, we found that the values of
AU6 from condition 4 were significantly higher than the values from condition
1 (p < 0.005) and 3 (p < 0.05).

8.3 Keystroke Dynamics

Dyadic conversations were characterized by synchrony of utterances and the
turn-taking patterns. We quantified them in each of the four conditions to
study the differences.
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8.3.1 Synchronization in Typing Patterns

In order to quantify the synchrony in typing patterns, we used two mea-
sures, Jensen-Shannon divergence (JS-divergence) between histograms of in-
ter keystroke intervals (IKSIs) and correlation coefficient in the medians of
IKSIs.

First, we used JS-divergence of the IKSI histograms between subjects in
pairs to measure the dissimilarity in typing patterns in each trial and compare
them among different TT Messenger conditions . The median values of JS-
divergence were 0.015, 0.034, 0.026, and 0.018 for conditions 1, 2, 3, and 4
respectively (Fig.8.3), and there was no significant difference among these
conditions (p = 0.5).

Secondly, in order to measure the degree of synchronization in typing
speed during each trial, we split each trial into 1-min windows, calculated
the median values of IKSIs of each subject for all ten windows, and calculated
the correlation coefficient of the median values between the two subjects. The
median values of results from all pairs were -0.07, -0.1, -0.04, and 0.07 for
conditions 1, 2, 3, and 4 respectively (Fig.8.3), and there was no significant
difference among these conditions (p = 0.4).

8.3.2 Pattern in Turns

In order to characterize the global typing patterns, we analyzed the pattern in
the chunk of keystroke events (which we call turns) as follows. We identified
each turn by chunking a keystroke event within the threshold interval, which
we set to 2 s. We used median size of turns (sec), number of turns, total
time of turns (sec), and overlapping ratio between two subjects in each trial
to characterize the turn structure (Fig8.4).

We found no significant difference among the median size of turns (the
median values were 3.0 s, 2.6 s, 2.8 s, and 2.5 s for conditions 1, 2, 3, and
4 respectively p = 0.9) and overlapping ratios (the median values were 0.24,
0.22, 0.25, and 0.20 for conditions 1, 2, 3, and 4 respectively, p = 0.2).

On the other hand, the median values of the number of turns were signifi-
cantly different for those conditions. They were 48.5, 44.0, 44.5, and 57.0, for
conditions 1, 2, 3, and 4 respectively, and the numbers in condition 4 were
significantly higher than those in conditions 2 (p < 0.05) and 3 (p < 0.001).
Also, the median values of total time for typing were 2.1 × 102s, 1.7 × 102s,
1.7 × 102s, and 2.0 × 102s for conditions 1, 2, 3, and 4 respectively. The
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numbers in condition 4 were significantly higher than those in conditions 2
(p < 0.01) and 3 (p < 0.01).

8.4 Information flow between keystrokes of

partners

A second remarkable aspect of dyadic communication is the direct perception
of the other’s presence. We assume that when a subject’s utterance is more
driven by the other, the sense of presence increases. In such moment, the
subject becomes less autonomous and more passive. The sense of passive
awareness becomes the source of producing the presence of others (Kojima
et al., 2017). This point will be revisited later.

We used effective transfer entropy (Schreiber, 2000; Marschinski and
Kantz, 2002) to measure the information flow between subjects’ keystroke
events. We downsampled the keystroke event time series to a 100ms window
and calculated effective transfer entropy with k = l = 2.

The median values of effective transfer entropy in each condition were
1.2× 10−3, 3.7× 10−4, 5.5× 10−4, and 2.3× 10−3 for conditions 1, 2, 3, and 4
respectively (Fig.8.5), and the values in condition 4 were significantly higher
than those in condition 1 (p < 0.001), condition 2 (p < 0.001), and condition
3 (p < 0.001).

We also calculated the transfer entropy using the keystroke events exclud-
ing the events of pressing return keys, which were used to confirm or send
messages and not to produce the sentences. (Fig.8.6) We found that the ef-
fective transfer entropy tended to decrease without return key events, but the
transfer entropy in condition 4 was still significantly higher than condition 1
(p < 0.05), condition 2 (p < 0.001), and condition 3 (p < 0.001). This im-
plies that the timely responses to the sent messages were partly responsible
for the value of transfer entropy, but also other types of interactions occurred
especially in condition 4.

8.5 Comparison to phone call dynamics

So far, we have analyzed the chat data obtained from our chat system, Type-
Trace Messenger. In order to compare these results with different types of
dyadic interactions, we also used publicly distributed telephone conversation
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data from CallFriend corpus (Yaeger-Dror, 2004) and analyzed the data in
the same way as we did to our chat data.

A phone call is not a CMC per se, but it is still omnipresent in modern
societies and is a common feature included in many CMC applications. At
the same time, although the modality differs radically between voice and
text, a phone call resembles our experimental settings of text chat where
participants are separated in different locations and converse without non-
verbal social cues such as facial expressions and eye gazes. In both phone
calls and text chats, participants spontaneously take turns, with overlaps
in their utterances. However, we did not compare with FtF conversation
because the structure of interaction differs even more substantially between
FtF and text-chat.

CallFriend consists of sound data of actual telephone conversations and
their scripts. We analyzed phone call sound data of 20 Japanese individuals
(Yaeger-Dror, 2004). For pre-processing, we first extracted phoneme events
from audio file (Zió lko et al., 2006) and analyzed these phoneme events’ time
series in the same manner as above.

First, we analyzed the turn structure of the telephone conversation (Fig.8.4).
The median values of the median size of turns, number of turns, total time
of turns, and overlapping ratio were 1.3s, 121.5, 2.9 × 102s, and 0.25 re-
spectively. For statistical testing, we performed a Kruskal-Wallis test with a
Mann-Whitney U test as post-hoc, and we found that median size of turns
was significantly smaller than that of our chat data with every condition
(p < 0.001), and the number of turns and total time of turns were signifi-
cantly longer than that of our chat data (p < 0.001, except between total
time of turns in with condition 4 and the telephone conversation, p < 0.01).

Secondly, we calculated effective transfer entropy between phoneme events
timeseries from dyads. We downsampled the phoneme event time series to
a 100ms window and calculated effective transfer entropy with k = l = 2, in
the same way as in the chat analysis. The median value of the effective trans-
fer entropy of the phoneme events from a telephone conversation was 0.014
(Fig.8.4). For statistical testing, we performed a Kruskal-Wallis test with a
Mann-Whitney U test as post-hoc and found that the transfer entropy of the
telephone conversation was significantly higher than the transfer entropy of
our chat data with every condition (p < 0.001).
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Figure 8.1: Histograms of subjective ratings in each condition of TT Messen-
ger for Nervousness, Enjoyment, Closeness, Presence, Time Delay and IOS
Change (from top left to bottom right). Enjoyment was significantly higher
in condition 4 than 2 (p < 0.05), and 3 (p < 0.05), Closeness was signif-
icantly higher in condition 4 than 3 (p < 0.05), Presence was significantly
higher in condition 4 than 1(p < 0.05), and Time Delay was significantly
smaller in condition 4 than 1 (p < 0.05), 2 (p < 0.05), and 3 (p < 0.05). No
significant difference was found in the rating of Nervousness (p = 0.4) and
IOS (p = 0.06).
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Figure 8.2: Results of physiological markers. Left: The median value of
GSR during each trial for different conditions of TT Messenger. Right: The
median value of AU6 (Cheek Raiser) during each trial for different conditions
of TT Messenger. (* : p < 0.05, ** : p < 0.01)
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Figure 8.3: Two synchronization measures between subjects’ keystroke event
timeseries. Left: JS-divergence between two subjects’ IKSIs histograms of
each trial for different TT Messenger conditions. Right: Correlation co-
efficient between IKSIs among 1-min segments in different TT Messenger
conditions.
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Figure 8.4: Four measures to characterize the structure of turns, which are
identified from chunking keystroke event timeseries, median size of turns
(sec), number of turns, total time of turns (sec), and overlapping ratio be-
tween dyads. Each measure was calculated using different TT Messenger
conditions and phoneme timeseries data obtained from the telephone conver-
sation dataset, using CallFriend.(* : p < 0.05, ** : p < 0.01, *** : p < 0.001)
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Figure 8.5: Effective transfer entropy between subjects’ keystroke events
timeseries data or phoneme events timeseries data from the telephone conver-
sation data. Effective transfer entropy was calculated between two timeseries
downsampled to 100ms windows, and k = l = 2. (*** : p < 0.001)
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Figure 8.6: Comparison of Effective transfer entropy calculated from sub-
jects’ keystroke events including return keys and without return keys. Effec-
tive transfer entropy was calculated between two timeseries downsampled to
100ms windows, and k = l = 2.
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Chapter 9

Discussion

9.1 Summary of our findings

With the aim to increase the social presence in our text chat system, we
escalated the measures of richness and concurrency by introducing 4 different
steps.

Richness of conversation designates the excess amount of information con-
veyed with communication. For example, in the case of a dyadic conversation,
the richness increases by introducing environmental sounds, bodily gestures,
facial expressions, eye directions, and so forth. We formally introduced the
richness of communication in our experiment in a systematic way. Con-
currency signifies multiple events happening simultaneously. For example,
while in a dyadic conversation, people often look away, unconsciously touch
things, and some unexpected disturbances (e.g., coffee is served by a waiter
or suddenly a dog barks) await. In this paper, TypeTrace emphasizes this
concurrency effect.

First, we can increase information richness by presenting the playbacks of
the typing process in TypeTrace chatting (in the case of conditions 2 and 3).
Transfer entropy between the interactants becomes lower, and the cognition
of the presence of others does not increase. We discuss the interpretation
of this result below. Secondly, we can increase the concurrency of interac-
tion, namely the concurrency of information flow, by adding “redundant”
elements to the main body messages (which is exemplified in condition 4).
Emotional arousal and intimacy increase as the result of condition 4 and
transfer entropy between the interactants becomes higher. We interpret the
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increase of transfer entropy from the other to self as the sign of increasing the
sense of presence (e.g., Kojima et al. (2017)). Together with the subjective
reports, we affirm that the concurrency of information is an important factor
for fostering vivid conversation in CMC.

As for the comparison to the phone call data set, the transfer entropy
of the phone conversation revealed to be close to that of condition 4. Ad-
ditionally, the number of turns and the total time of turns are significantly
greater in condition 4 when compared to conditions 2 and 3. And although
we have only found a tendential increase of the number of turns in condition
4 than in condition 1, we argue that the increase of concurrency of condition
4 makes its dynamics closer to a phone call conversation.

Sherman et al. (2013) investigated the influence of the communication
medium on the interaction between friends and found that the subjective
report of the bonding to the other was lower during text chats than during
FtF, video chats, and audio chats. This result was in line with our result in
the sense that the media with high concurrency induced the higher subjec-
tive feeling of the presence of the other. As a different experimental setting,
Sprecher (2014) investigated the influence of the communication medium on
relation development by investigating how well pairs of unacquainted subjects
can get acquainted with each other through different communication medi-
ums. They found that the same tendency that the dyads who got acquainted
with each other through text chats reported lower scores on affiliative out-
comes compared to FtF, video chats, and audio chats. This result might
suggest that the concurrency might also contribute to the development of
relationships when getting acquainted with each other.

9.2 Characteristics of keystroke patterns

In this study, we characterized the dyadic interaction during our text chat
system using several measures. First, we investigated whether the keystroke
dynamics of two subjects were synchronized by comparing the distribution of
the key stroke intervals, and the median keystroke interval in 1 min segments.
By both measures, we did not find significant synchronization in the key
stroke patterns. The movement synchronization was widely observed during
the dyadic interaction especially during conversations (Shockley et al., 2009),
but in the case of keystrokes, the pattern was quite unique to each individual
and even used to biomerics (Teh et al., 2013), so the typing patterns might
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be less likely to be affected by the other’s behavior.
We also analyzed the pattern in the turns, and found that the size of the

turn was around several seconds, which was comparable to the time scale
found in the WCLR analysis of PCE study. The window size used in the
transfer entropy analysis was 100 ms and this was also comparable to the
time scale used in PCE analysis. These commonality in the time scale might
suggest the shared mechanism behind these two experiments.

9.3 Social Presence

In the first part of our thesis, results from the perceptual crossing experi-
ment (PCE) suggest that the feeling of the presence of the partner, or social
presence, significantly correlates with the sense of being touched by the other
(passive touch). This is supported by our analysis of the transfer entropy of
the two interactants’ inputs. A high transfer entropy from A to B means that
the information that A possesses contributes more to determining the future
states of B. Another way to put it is that B’s actions are not self-determined,
but are determined by A. We adapted this interpretation to the results of
the calculations of this current study. Our subjective reports, physiological
measurements, and informational analysis confirm that social presence corre-
lates with intimacy (social attraction), immediacy (psychological distance),
and interactivity among CMC participants. Our results also suggest that
it is possible to augment the level of social presence evoked by a text-based
CMC by increasing the concurrency of information flow between participants.
Based on our results, we believe that transfer entropy can be a measure of
the social presence in a CMC environment and could serve as an important
design principle for such communication systems.

Our experiments gradually manipulated the granularity of the incoming
partner’s message. Our initial prediction was that the social presence could
be augmented by showing the typing process of the received messages (con-
dition 2) and the automatic changes of font sizes (condition 3). However,
neither transfer entropy nor subjective reports were higher in these condi-
tions than in the standard chat setting. We speculate the reason is that the
typing playback itself causes a delay in synchronous chat communication.
The receiver has to wait until the playback finishes to understand the mes-
sage entirely. This time delay causes a non-negligible effect on the perception
of social presence and transfer entropy. Indeed, scores of subjective reports
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and physiological data show that positive emotions in those circumstances
were lower than in the standard chat.

Early researches of CMC argued that their lack of non-verbal cues lowers
the social presence of their participants (Short et al., 1976; Daft and Lengel,
1984). Richness of information and media in CMC was considered the major
predictor for satisfactory communication. Later, the Social Information Pro-
cessing (SIP) theory (Berger et al., 2016) suggested that accustomed users
find and use alternative cues specific to CMC systems in order develop in-
terpersonal relationships, and rejected the idea that the quality of CMC is
merely determined by the richness of the media involved (Walther, 1992).
Since then, researchers have been pursuing the difference in the levels of
social presence depending on the richness of the medium involved in CMC
(Oh et al., 2018), but some researches suggest that the richness of media can
sometimes have a negative impact on the communication (Dinakar et al.,
2015).

We consider our current study contributes to the Social Presence liter-
ature, and more specifically, in relation to the field of Human-Computer
Interaction (HCI), by introducing transfer entropy, an informationally quan-
titative measurement that is congruous with psychological reports and phys-
iological markers. These results emphasize the significance of information
concurrency, which could be used for analyzing social presence in addition
to the richness of media. Further research is needed to evaluate the impact
of concurrency and social presence in a longitudinal setup, to understand its
benefits and drawbacks on the mind of CMC users. Finally, the fact that our
cognition of social presence and emotions are affected by the CMC system we
use suggests both social responsibility and further possibility for designing
better CMC systems to improve their users’ well-being (Liu et al., 2019).
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Part IV

Conclusions
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Chapter 10

Discussion

This thesis aimed to understand the properties of dyadic dynamics and es-
pecially to identify what constitutes the actuality of communication. In the
first part, we analyzed the result from the perceptual crossing experiment,
which is a minimal experiment that includes realtime dyadic interaction, and
found that the movement of two interactants synchronized with each other
and organized the long range temporal pattern like turn-takings, and the
time of identifying the other was associated with “passive touch”.

In the second part, we expanded the scope of our study to computer-
mediated communication systems and introduced the new text chat system
with different settings which modulate the richness of information and con-
currency. The results showed that the increasing the richness of information
did not significantly increase the presence of the others, but rather the con-
currency enhanced the presence and the dynamics were characterized by the
increase in transfer entropy between two interactants’ keystroke patterns.

In this section, based on these findings, we outlined a possible theory to
characterize the dyadic interaction and the dynamics which yield the pres-
ence of the others. We start with the definition of social interaction from
phenomenological studies. We compare this to our findings and aim to clar-
ify the statement by formulating in information theoretical terms. We will
explore the limitation of the present frameworks, and propose possible direc-
tions.
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10.1 Characterization of Social Interaction

In the context of phenomenological studies, De Jaegher et al. (2010) defined
the social interaction as a “co-regulated coupling between at least two au-
tonomous agents, where: (i) the co-regulation and the coupling mutually
affect each other, constituting an autonomous self-sustaining organization in
the domain of relational dynamics and (ii) the autonomy of the agents in-
volved is not destroyed (although its scope can be augmented or reduced)”.
From this definition, we especially discuss the three aspects, which are a
mutually engaged and co-regulated interaction, the autonomy of the agents,
and an autonomous self-sustaining organization of the interaction.

The first point is that the agents mutually affect each other, which means
that neither the agent behaves independently from the other nor just follows
the other’s behavior. The coupling between the dyads is widely characterized
as the synchronization of the movements (Schmidt et al., 1990; Shockley
et al., 2003; Lakin and Chartrand, 2003; Richardson et al., 2007), and in our
PCE experiments, we observed the synchrony as the cross correlation of the
movements. This synchronization shows the presence of the coupling with
each other, but usually does not provide the direction of the influence, so
cannot estimate the mutuality of the influence. On the other hand, Transfer
Entropy is a measure with direction, so it is suitable to characterize the
mutuality. We observed in both experiment that the feeling of the presence
of the other was associated with the high transfer entropy, and especially in
the PCE experiment, we found that the transition from “passive touch” to
“active touch” at the time of clicks, and this clearly showed the presence of
the mutuality in the interaction.

The second point is that the autonomy of each agent. This seems incom-
patible with the first point because autonomy implies independence from the
other’s behavior, so how to reconcile these aspects is important here (Au-
couturier and Ikegami, 2009). When two agents completely synchronize with
each other, the autonomy of the agent is missing, but when the agents move
independently with each other, then the mutual influence is missing. The
turn taking structure might be one of the solutions to this in a way that
the turn structure itself is co-regulated, but the content of each turn is up
to the agent. The degree of autonomy of the other is observed by the other
agent as the unpredictability of the input signals. The simulation study of
turn-takings (Iizuka and Ikegami, 2004) reported that at the time of switch-
ing roles of two agents, the predictability of the other agent’s movement
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dropped, so this structure enables to produce the unpredictability but the
timing of the unpredicted signals to be predictable.

The third point is the autonomous self-sustaining organization of the
interaction. This aspect points out that the interaction pattern itself, like
turn-takings, is organized and maintained during the interaction, and this
interaction pattern confines the behavior of each subject (De Jaegher and
Di Paolo, 2007). Fusaroli and Tylén (2016) characterized this aspect from
conversation data using “interpersonal synergy”. They quantified synergy by
how the pattern is more organized when combined the utterance data of two
compared to each individual data using recurrence quantification analysis.
We suspect that this aspect might be more clarified under the notion of
top-down causation, as we discuss later.

In the following sections, we use some information measures for the at-
tempt to integrate these aspects theoretically.

10.2 Empowerment Measure

In the previous sections, we argued three aspects of social interaction, mutual
coupling, the autonomy of the agents, and autonomy of the interaction. Here,
we focus on the first two aspects and sketch the possible theory based on the
information theoretical measure, Empowerment (Klyubin et al., 2005; Salge
et al., 2014).

In the following, we denote the sensor input of the self and the other
as S1 and S2, and the movement of the self and the other as M1 and M2,
respectively. We assume that the autonomy of the other, which is conceptu-
alized as the unpredictability of the other, can be described as the entropy of
the other’s movement H(M2) or the resulting sensory input H(S1), and the
mutual coupling can be described as the transfer entropy between M1 and
M2. From the argument above, these values should be high during social
interactions.

The information measure called Empowerment (Klyubin et al., 2005;
Salge et al., 2014) has been proposed as the values to be maximized by
biological agents, and defined as,

E = max
p(at)

I(S1
t+1;M

1
t ).

The relation of this to the values introduced for social interactions is
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as follows. First, the value related to the autonomy H(S1) is related to the
mutual information as I(S1

t+1;M
1
t ) = H(S1

t+1)−H(S1
t+1|M1

t ) . Also, when the
S1 is mostly produced by the other’s movement, like in the turn-takings and
S1 ≃ M2, then the mutual information can be approximated as I(M2

t+1;M
1
t ),

whereas the transfer entropy can be written as I(M2
t+1;M

1
t |M2

t ). In this
formulation, the timestep is important, because when it is small, I(S1

t+1;M
1
t )

just corresponds to active touch, so the time step for these calculations should
be around sec as we discuss in the following section.

At this moment we have not succeeded to directly model the social in-
teraction using this framework, mainly because the timescale of interaction
can be varied and co-regulated by the partners whereas the calculation of
Empowerment requires a fixed timestep value. We believe that our approach
aiming to formulate the dyadic interaction in terms of information theoret-
ical measures should contribute to the understanding of social interactions
by making the hypothesis testable and clarifying the underlying principles.

10.3 Top-down causation and Autonomy of

interaction

The third aspect, the autonomy of the interaction might be grounded by the
research in the context of top-down causation. For example, Rosas et al.
(2020) quantified the top-down causation from two aspects, causal decou-
pling, and top-down causation. They used partial information decomposition
(Williams and Beer, 2010) and Integrated Information decomposition (Medi-
ano et al., 2019) to quantify the information gained by combining the several
information sources, not by evaluated separately, and they call this quantity
informational synergy. Based on these measures, they claim that the causal
decoupling is quantified as the mutual information between the mutual in-
formation of the collective properties of different time steps, and the degree
of top-down causation is quantified as the mutual information between the
collective properties and individual information source. The degree of causal
decoupling of the dyadic interaction might well quantify the degree of au-
tonomy of social interaction, and the degree of top-down causation might be
used to identify how much each agent is affected by the dyadic dynamics.
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10.4 Timescale of interaction

We have developed possible theories on dyadic interaction based on informa-
tion theoretical measures, but these theories should also be constrained by
some physiological aspects such as time scales.

In both experiments of the present thesis, we found there were two char-
acteristic time scales, which are ∼1 s and ∼100 ms. The first time scale ∼s
roughly corresponds to the size of turns. In PCE, this was captured in the
time lag which maximizes the WCLR, and about 2 s. On the other hand, in
TypeTrace experiments, this was captured in the median size of turns, and
about 3s for TypeTrace Messengers, and 1 s for the phone call data. A sim-
ilar time scale was reported in the literature, and for example, Abney et al.
(2014) analyzed conversation audio data and found around 4s as a charac-
teristic time in Allan Factor analysis. Despite that the medium of the dyadic
interaction was different from each other among these experiments, they all
share a similar time scale implies that we all share similar order of time scales
in dyadic interaction, and we might use this for turn-takings. However, the
actual size of the turns can be varied within a similar order of time scales
depending on the interaction medium, as we found that the median size of
turns of phone call data was smaller than the size of TypeTrace Messengers.

The other time scale is ∼100 ms. This time scale is found in our exper-
iments as window size for the calculation of Transfer Entropy, which corre-
sponds to the temporal width treated as simultaneous. This time scale has
also been reported in the studies of sense of agency (Blakemore et al., 1999,
2000; Farrer et al., 2013) as the size of the time delay between the action and
the following sensory consequences which the subject fully felt the sense of
agency.

10.5 Multi-level Alignment and Predictive Cod-

ings

So far, we only investigated superficial dynamics of interactions, but when
we talk with each other, the content of each utterance also matters. In
the analysis of TypeTrace Messenger, we only used the keystroke pattern
and did not use the actual contents of the text. Some studies showed that
the alignment also present in the texts (Garrod and Pickering, 2004), and
propose that the multiple level alignment exists and influences with each
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other (Pickering and Garrod, 2004). To study the existence of multiple levels
and the influence among different levels, the modeling of dyadic interaction
between the agent with internal models seems to be required, and predictive
coding might be a good candidate for the theoretical frameworks.

From the perspective of active inference (Friston et al., 2016), agents have
their own generative models to predict the incoming sensory inputs and try
to minimize these prediction errors by their actions or by updating their
models. Their models predict the future sensory inputs using hierarchical
architecture, so the information in a low level will be propagated to the
higher level layers, resulting in changing the model parameters in the top
layers. So far, the complete model which includes the bodily movement to
the internal thought has not been constructed, but if we construct these
in single hierarchical generative models, the mutual influence between the
coordination in the behavior and the alignment in the representation during
the conversation might be clarified.

Another important issue is that the prediction of the other agent usu-
ally cannot be converged because the agent always behaves unpredictably
beyond our imaginations. Ikegami and Morimoto (2003); Taiji and Ikegami
(1999) used the term “hot prediction” to indicate the prediction based on
an unstable internal model, concerning the undeterministic nature of living
systems. Hot prediction is opposite to cold prediction, which refers to the
prediction of a physical cause-effect relationship, and the more we experience
the event the prediction will get more stable. On the other hand, the hot
prediction is a prediction of the behavior of agents, and this is always unpre-
dictable because it depends on the hidden context such as internal dynamics,
so the prediction will never become stable. They studied the dyadic inter-
action based on hot prediction. In those studies, two agents with recurrent
neural networks are trained to get a high score at a coalition game. Also,
each agent generates an internal model of the other agent that best imitates
the other’s past behavior pattern, this corresponds to hot prediction. When
they simulate a three-person coalition game using this, they found itinerant
phenomena that the agents exchange coalition pairs from time to time.

One of the characteristics of dyadic human interaction is that it usually
does not converge, but rather possesses nonstationarity and produces novel-
ties. This novelty might be originated from the internal complexity in the
generative models of each agent. In this case, the ability to create novelties
seems to be attributed to each agent and irrelevant to the dyadic interactions.
However, we argue that the internal complexity just implies that each agent
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can potentially generate various outputs, but not ensure that all potential
outputs can be internally generated. We suspect that the presence of the
other can enhance the generation from the unexplored region in the internal
model. Empowerment might be related to this aspect because it corresponds
to how many various responses can be generated in response to the other
agent’s action. The other route to the novelty might be in the dynamical
instabilities in mutual predictions, the hot prediction. In this setting, two
agents are assumed to be coupled strongly and the interaction dynamics are
central to the novelty production. In this case, it is hard to predict the be-
havior of each agent separately, so we expect that the causal decoupling and
the top-down causation should be observed. In both cases, we argue that the
dyadic interaction and underlying information theoretical structures are the
basis for the novelty production in social encounters and these might provide
the explanation why we are always longing for interactions with others.
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