
博　士　論　文
　
　
　

Automatic Deformation Refinement for
Animated Characters via Graph Neural Networks

(グラフニューラルネットワークを用いた
キャラクタ変形の自動精細化)

　
　
　
　
　
　
　
　　
　　　
　　　　
李　天行

Acknowledgement

I would like to thank:

Professor Takashi Kanai, who provided me a precious opportunity to come to the lab
and gave me constant support. Without your patience and advice, I would never have a
strong interest in the field of computer graphics, and have learned knowledge and skills
far more than ever before. You acted as a role model to me not only academically but
also in attitude. I hope I can become a teacher like you in the future.

The committee, who patiently gave me a lot of suggestions for completing this thesis.
With these valuable comments, I can better and logically summarize the research during
my Ph.D.

Rui Shi, who is my collaborator, my partner, and my best friend. Your advice, idea,
and encouragement have accompanied me throughout my Ph.D. period. Thank you for
spending countless moments of depression and excitement with me.

My family, my parents, grandparents, and other family members always here for me.
They have always tolerated me and allowed me to do things of interest as carefree as
a child. They are willing to help me in any way at any time. Special thanks to my
grandma, although I will never see her again, her encouragement and love are always
transmitted through my dreams.

Myself, my persistence, my optimism, and my luck.

1

Abstract

In animation production, animators always spend significant time and efforts to develop
high-quality deformation systems for characters with complex appearances and details.
However, achieving realistic deformations in real-time has always been a challenging
task. Traditional geometry-based skinning methods are popular in interactive applica-
tions for their high performance but fail to generate convincing deformations, which
have obvious artefacts. By formulating the deformation process within a simulation
framework, physics-based methods can solve the unrealistic problem but they often
trade performance for realism. As an alternative to traditional geometry-based and
physics-based methods, learning-based methods train a data-driven model to compute
deformation as a function of relative parameters, yet they cannot completely solve the
generalization problem and cannot generate pose-related deformations, i.e., the gener-
alization to any mesh topology in any posture, and be accompanied by pose-dependent
nonlinear effects.

In this work, we propose graph-learning-based, powerfully generalized methods for
automatically generating nonlinear deformation for characters with an arbitrary number
of vertices. Two cases are declared for different applications, i.e., the 1BC case where the
body and cloth are taken as a whole object, and the 2=3 case where the body and cloth
are taken as separate objects. For both two cases, we adopt the idea of regarding mesh
deformations as a combination of coarse and refined parts.

For the 1BC case, based on the coarse linear-based deformation, we propose novel
graph feature representation methods and design feature propagation strategies to au-
tomatically generate the nonlinear deformation. Our designed frameworks, densely
connected graph-attention-network (DenseGATs) and the multi-resolution graph net-
work (MultiResGNet), can effectively learn the huge amount of features from existing

2

3

characters and easily apply them to new objects.
For the 2=3 case, in order to use fewer models to produce detailed clothing de-

formation in different poses, we design the fit parameter to express the suitableness
between body and garment which is an important factor affecting wrinkles. Then, we
propose an output decomposition solution to narrow the output range, thus making the
learning much easier and avoiding overly smooth results. We call the framework as
garment-fit-network (GarFitNet).

Experimental results show that our proposed DenseGATs, MultiResGNet, and
GarFitNet can achieve better performance than prior studies in deformation approx-
imation for unseen characters and poses.

Contents

1 Introduction 12
1.1 Motivation and Purpose . 12
1.2 Statement of Deformation Cases . 14

1.2.1 1BC Case: Body and Cloth as a Whole Object 14
1.2.2 2=3 Case: Body and Cloth as Separate Objects 16

1.3 Contributions . 18
1.4 Thesis Organization . 21

2 Related Work 22
2.1 Related Works of the 1BC Case Deformation 22

2.1.1 Traditional methods . 23
2.1.1.1 Geometry-based skinning methods 23
2.1.1.2 Example-based skinning methods 26
2.1.1.3 Physics-based skinning methods 27

2.1.2 Learning-Based Deformation 29
2.1.2.1 Linear-based or MLP-based methods 29
2.1.2.2 Graph-learning based methods 30

2.2 Related Works of the 2=3 Case Deformation 31
2.2.1 Physics-based simulation . 31
2.2.2 Learning-based methods . 32

2.2.2.1 MLP-based methods 32
2.2.2.2 Graph-learning based methods 33

2.3 Graph Neural Networks . 34

4

CONTENTS 5

2.4 Summary . 36

3 Deformation Approximation - 1BC Case 38
3.1 Context . 38

3.1.1 Background of the 1BC case deformation 38
3.1.2 Unsolved problems in state-of-art studies 39
3.1.3 Our proposal outline . 40

3.2 Deformation with DenseGATs . 41
3.2.1 Mesh encoding . 41
3.2.2 Deformation refinement through DenseGATs 42

3.2.2.1 Issues of existing graph neural networks 42
3.2.2.2 GAT block . 43
3.2.2.3 Dense module . 46

3.2.3 Evaluation of DenseGATs . 48
3.2.3.1 Dataset . 48
3.2.3.2 Implementation details 50
3.2.3.3 Results of DenseGATs 51
3.2.3.4 Conclusion and discussion 56

3.3 Deformation with MultiResGNet . 57
3.3.1 Mesh encoding with improved graph features 57
3.3.2 Deformation refinement through MultiResGNet 59

3.3.2.1 Local branch . 60
3.3.2.2 Global branch . 60

3.3.3 Evaluation of MultiResGNet 62
3.3.3.1 Dataset . 62
3.3.3.2 Implementation details 63
3.3.3.3 Results of MultiResGNet 64
3.3.3.4 Comparison . 71
3.3.3.5 Conclusion and discussion 76

3.4 Summary of the 1BC Case Deformation Methods 76

CONTENTS 6

4 Deformation Approximation - 2=3 Case 78
4.1 Context and Observations . 78

4.1.1 Background of the 2=3 case deformation 78
4.1.2 Unsolved problems in state-of-art studies 79
4.1.3 Our observations and proposal outline 80

4.2 Coarse Deformation . 81
4.2.1 Fit parameter . 81
4.2.2 Coarse garment deformation 83

4.3 Refinement through GarFitNet . 85
4.3.1 Garment mesh encoding . 85
4.3.2 Output reconstruction . 86
4.3.3 GarFitNet architecture . 87

4.4 Evaluation . 90
4.4.1 Dataset . 90
4.4.2 Implementation details . 91
4.4.3 Accuracy results . 91
4.4.4 Comparison . 95

4.5 Summary of the of the 2=3 Case Deformation Methods 97

5 Conclusion and Future work 99
5.1 Conclusion . 99
5.2 Limitations . 100
5.3 Future Work . 101

List of Figures

1.1 Example characters of the 1BC case. 14
1.2 Mesh situation of the 1BC case. Body and cloth have a unit mesh. 15
1.3 Example characters of the 2=3 case. 16
1.4 Mesh situation of the 2=3 case. Body and cloth have their own mesh. . . 17

2.1 An example of illustration the process of LBS. The)1 is the transfor-
mation containing the rotation and translation of the elbow joint. 24

3.1 Outline of deformation approximation - 1BC case. 40
3.2 Proposed deformation approximation strategies for 1BC case. 41
3.3 Illustration of inside of GAT block by the node 1 (feature vector is ®E [;]

1
)

on its neighboring nodes. The blue color indicates the process of graph-
attention-based aggregation stream gathers features from neighboring
nodeswith differentweights [74]. The yellow color indicates the process
of self-reinforced stream that linearly transforms the features of the node
1. These two streams are then concatenated to produce new feature
representation. 43

3.4 The input feature dimension into one GAT block is 3 [;] , the output di-
mension of aggregation stream is �, the number of multi-head attention
is , and the hyper-parameters V. So the output feature dimension is
3 [;+1] = � + V �. 44

3.5 The structure of “DenseGATs”. The three boxes denote our proposed
“dense modules”. Each dense module comprises six densely connected
GAT blocks. 46

7

LIST OF FIGURES 8

3.6 The framework of DenseGATs. 47
3.7 Example characters with index 1-5 in our dataset of the 1BC case. These

characters have completely different representative dresses (tops, bot-
toms, shoes) and the same skeleton structure. 48

3.8 Example poses of our character. These include typical poses (walking,
running, jumping, and dancing) and random poses. 49

3.9 Distribution of vertex errors. The left is for dancing animation, and the
right is for running animation. 52

3.10 Close-up of our test character’s contact regions in three frames of
weightlifter motions. Based on rough linear deformation, our method
corrects linear deformations to nonlinear ones by per vertex displace-
ment correction. 53

3.11 Result of deformation approximation among different characters with
different poses. The vertices of the predicted mesh are colored to
indicate per-vertex distance prediction errors. 54

3.12 Comparison of ground truth (left), prediction results via DenseGATs
(center), and color map (right) indicating per-vertex distance error. . . . 54

3.13 Comparison of ground truth, color map of LBS, DQS, and our prediction. 55
3.14 Comparison of different network architectures. From left to right: (a)

ours, (b) originalGAT, (c)NeuroSkinning, (d) ours (no self-reinforcement
stream), (e) ours (no dense connection). 55

3.15 The framework of MultiResGNet. 59
3.16 Pooling and unpooling in action on mesh graph nodes. 61
3.17 Quantitative evaluation of generalization to new poses. The test motion

“playing golf” with 50 frames is applied with a character in training set.
We show the mean distance error, comparing our method with the input
rough deformation of linear-based deformation, LBS, and DQS. 65

3.18 Quantitative evaluation of generalization to new characters. Top plot:
Per-vertex mean error of a new character shape deformation with walk-
ing motion in 50 frames. Bottom plot: Per-vertex mean error of a new
subject model deformation with running motion in 50 frames. 66

LIST OF FIGURES 9

3.19 Evaluation of generalization to new poses. We show deformations of the
motions of a character playing golf in the 9th and 39th frames, and side-
by-side compare the ground truth (a), rough linear-based deformation
(b), LBS with weight refinements (c), DQSwith weight refinements (d),
our prediction (e) and our approximation colormap (f). The vertices of
the approximated mesh are colored to indicate the per-vertex distance
error in centimetres. 67

3.20 Evaluation of generalization to new shapes. Test thinner characters in
walking poses. Colormaps depict the per-vertex distance error of the
predicted deformation. 68

3.21 Evaluation of generalization to new subjects. Test new subject in a run-
ning pose. Based on the rough linear-based deformation, our method
corrects each vertex with a displacement so that the deformation be-
comes nonlinear, and no noticeable errors are found in the right colormap. 69

3.22 Evaluation of generalization to new characters with new poses. The
dancing motion is used for testing for two new characters. We show
ground truth, linear-based deformation(as input), our approximation
result and colormaps of per-vertex error. 70

3.23 Deformation results with vertex position features (a) and with our rela-
tive skinning features (b). 71

3.24 Comparison among different learning-basedmethods. Colormap shows
the distance error to ground truth. 72

3.25 Generalization to a new SMPL character body: DenseGATs [48] and
MultiResGNet. 74

3.26 Generalization to a new SMPL character body with new front kicking
poses: DenseGATs [48] and MultiResGNet. 75

4.1 The outline of our GarFitNet. 80
4.2 First observation: the fit of garment of body influences the wrinkles. . . 81
4.3 Overview of garment fit space. 83
4.4 Outline of approximating the coarse deformation. 84

LIST OF FIGURES 10

4.5 Overview of the proposed GarFitNet. 88
4.6 MultiResGModule is an integrated structure from MultiResGNet. 88
4.7 Bodies with different weights . 90
4.8 Garments with different length and they have different number of vertices. 90
4.9 Test on a character performing a dancing pose. (a) is the ground truth.

(b) is the coarse deformation. (c) is our prediction through GarFitNet. . 92
4.10 Deformations of different body shapes: thin, regular, and fat. 93
4.11 Deformations of different garment length: short, regular, and long. . . 95
4.12 Comparison between (a) ground truth, (b) coarse deformation, (c) ours

without GarFit parameter transformer branch, (d) ours without output
decomposition, and (e) ours followed mentioned setting. 96

4.13 Comparison between (a) FCGNN [75], (b) TailorNet [63], and (c) our
prediction. 97

List of Tables

3.1 Statistics for our example characters (as shown in Figure 3.7). 48
3.2 Prediction errors in “cm” between the ground truth and predicted vertices. 51
3.3 Evaluation of predicted distance errors (cm) using different network

architectures. 55
3.4 Evaluation of predicted distance errors (cm) using different learning-

based methods. 73

4.1 Mean error (cm) of per vertex of deformations in different body shapes
(corresponding to Figure 4.10). 94

4.2 Mean error (cm) of per vertex of deformations for different garments
(corresponding to Figure 4.11). 95

4.3 Comparison of our method with other state-of-art learning-based meth-
ods. Our method can achieve more functions with fewer models. 96

11

Chapter 1

Introduction

1.1 Motivation and Purpose

In the current virtualworld, the demand for three-dimensional content is growing rapidly.
More and more applications and industries such as games, movies, commercials et
al. require to design virtual worlds, especially to create realistic animated characters.
During the process of animating a character, rigging is a crucial task that involves steps
of skeleton embedding, motion definition, and deformation system development. In
principle, the first two steps can easily achieve automation thanks to the contributions
of prior researchers. However, the development of deformation systems is extremely
challenging which has been receiving considerable attention. The core problem is that
animators need to make choices in terms of realism and time.

For those interactive applications, traditional skinning methods such as linear blend
skinning (LBS) [54] and dual quaternion skinning (DQS) [33] are widely adopted be-
cause of their simplicity and efficiency. But both techniques tend to produce unrealistic
artefacts: volume loss and joint bulging. Despite the manual modification of skinning
weights, due to the nature of algorithms, their generated deformations often lack a
high-level of detail. For applications to films, the accuracy requirements are greatly
increased, physics-based approaches are actively adopted to formulate deformations
within simulation frameworks therefore achieving appealing visual effects. However,
the amount of computation makes it hard to run at interactive rates.

Tomake the deformation process easy, learning-based approaches train a data-driven

12

CHAPTER 1. INTRODUCTION 13

model that computes deformation as a function of designed feature parameters. Most
data-driven approaches use linear models or multi-layer perceptions (MLPs) [9, 52,63]
to achieve the prediction task. Although the solution is simple and easy to implement,
its underlying limitation is the dramatic inability to generalize to new characters and
mesh topologies. To address the generalization problem and account for the spatial
information, several studies achieve the deformation approximation by using graph
neural networks (GNNs) due to their ability to reasoning about irregular 3D mesh data.
Character meshes are regarded as graphs where each mesh node (vertex) contains its
own features and they are then input into the designed GNN. After multiple layers of
processing, the network will produce an output for each node based on its state. Such
graph-based operation makes training parameters no longer dependent on the number of
nodes and workable on general graphs. So far, the generalization problem of training for
specific objects seems to be solved via GNNs. However, existing graph-learning-based
deformation approaches still suffer from the following weaknesses. First, although the
generalization to new mesh topologies becomes possible, the prediction accuracy is not
ideal. For example, vanilla GNNs tend to produce overly smooth unrealistic results. The
training relies on a large number of training samples and parameters with redundancies,
which makes the learning task prone to overfitting. Second, pose-dependent effects
are not considered that latest studies are only able to approximate deformation in rest-
pose [75] or fixed skinning weights [51]. More elaborate nonlinear effects related to
posture (e.g., cloth wrinkles, muscle bulges et al.) are limited to achieve.

Based on the context, our overall goal is to successfully achieve deformation ap-
proximation in the following three aspects:

• Automation: enable the deformation process automated to avoid laborious time-
consuming manual painting and fine-tuning work.

• Accuracy: generate high-quality nonlinear deformation effects while being suit-
able for real-time applications.

• Generalization: make trained model generalized and be able to efficiently apply
the learned feature knowledge to new mesh deformation approximation.

CHAPTER 1. INTRODUCTION 14

These goals motivate the development of our unified deformation systems, so as to
end-to-end achieve fast and accurate nonlinear deformation approximation for diverse
characters in various poses.

1.2 Statement of Deformation Cases

Animating digital characters has numerous applications in 3D content production such
as entertainment (games, virtual reality, and films) and commerce (online-shopping,
virtual try-on). For different applications, the characteristics of animated characters and
the technical difficulties that produce their deformations are also different. Therefore, at
the beginning, we divide the character deformation into two cases according to different
applications and technology.

1.2.1 1BC Case: Body and Cloth as a Whole Object

In animation production such as game, cartoon, and animation feature films, the appear-
ance of characters is mostly similar to Figure 1.1.

Figure 1.1: Example characters of the 1BC case.

In this situation, the garment and the body always follow closely (the garment is
relatively near to the body). The deformation emphasizes the integrity that details of
the clothes are often not wrinkled, while people tend to pay more attention to overall

CHAPTER 1. INTRODUCTION 15

deformation quality like whether there exist artefacts like volume loss near the joints,
etc. In the modeling process, animators always design outfits for one specific character
which are not shared with other characters. Therefore, in this case, the body and the
garment have a unit mesh (as shown in Figure 1.2). Libraries like mixamo [3] and
Adobe Fuse cc [1] provide this type’s characters that can be directly used in games,
virtual reality, and films.

Figure 1.2: Mesh situation of the 1BC case. Body and cloth have a unit mesh.

In this context, due to the richness of animated characters, what is lacking is a unified
model capable of producing nonlinear deformations for arbitrary animated characters
in arbitrary poses. To achieve it, several technical challenges have to be addressed:

• Case1-chall.1: how to encode the various mesh features from diverse animated
characters in the arbitrary pose?

• Case1-chall.2: how to achieve the complicated mapping from mesh features to
nonlinear offsets for each mesh vertex?

• Case1-chall.3: how to make the training task easy to converge and resolve the
gradient vanishing problem?

• Case1-chall.4: how to enhance the generalization ability to unseen characters and
poses?

CHAPTER 1. INTRODUCTION 16

To this end, we introduce two frameworks: DenseGATs (densely connected graph-
attention-based network) and MultiResGNet (multi-resolution graph network), both of
which effectively approximate deformations in each pose step by adding nonlinear re-
finements. Meanwhile, they all inherit the advantages of GNNs that allow generalization
to any mesh topology and achieve stronger generalization through our improvements.

1.2.2 2=3 Case: Body and Cloth as Separate Objects

In many application areas including virtual try-on, online shopping, and fashion design
games, the digitization of clothing (as shown in Figure 1.3) is a long-standing goal in
computer animation. In these scenarios, how the garment interacts with the human body
usually gets more attention from users. Computer graphics technology promises an op-
portunity to support these applications through deformation approximation, but to date
deformation approximation solutions lack the visual sense of real clothes deformation.

Figure 1.3: Example characters of the 2=3 case.

In this situation, different fits or designs of garments usually have different inter-
actions with bodies, such as detailed folds. As the pose changes, these details will
increase/decrease and move around in various positions of garments. More realistic
contact effects will give users a better experience, and guide their purchase in online

CHAPTER 1. INTRODUCTION 17

shopping or arouse their interest in continuously playing games.
Therefore, in this case, the body and the garment have separate meshes (as shown in

Figure 1.4) where the designed garments are usually worn by many bodies. Softwares
such as Marvelous Designer [2], TUKA3D [5], and Optitex [4] provide a convenient
way to make realistic garments and drape them to avatars.

Figure 1.4: Mesh situation of the 2=3 case. Body and cloth have their own mesh.

Compared with the deformation of the 1BC case, this 2=3 case’s deformation tends
to represent more complicated wrinkles of the clothing appearance. Most previous
data-driven cloth deformation approaches only work for a specific garment topology
or for a specific pose to guarantee the realism of the approximated result. However,
models that do not have generalization are obviously limited to large-scale predictions
and cannot meet practical needs. We conclude the major limitations and challenges in
related studies as follows:

• Case2-chall.1: how to find and encode the implicit features that have an important
influence on the detail wrinkles?

• Case2-chall.2: how to simplify the learning task while ensuring the output of
high-quality deformation?

• Case2-chall.3: how to achieve superior generalization capabilities to unseen
garment topologies, body shapes, and animated poses?

CHAPTER 1. INTRODUCTION 18

These challenges motivate the proposal of our GarFitNet (garment-fit-based net-
work), which is able to generate deformations for diverse garments and animate them
on any body shape in any pose while retaining rich wrinkle details.

1.3 Contributions

Our research provides artists with a novel perspective of deformation calculations,
which can automatically generate better visual effects than traditional geometry-based
techniques and other state-of-art learning-based approaches while keeping real-time
performance. To make a better performance to achieve the automatic approximation
task, we solve the problem of huge amounts of complicated learned features and the
problem of weak generalization ability from three aspects: (a), designing input fea-
tures, (b), designing the novel convolution operation and network structures, and (c),
reconstructing output structures.

To summarize, the main contributions of our work for the overall deformation
approximation are:

• To achieve deformations for animated characters in different applications, we first
propose to divide the character deformation into two cases in order to meet the
quality requirements in different scenarios.

• Tomake deformations learnable, we create two datasets for two cases with various
deformations (characters and garments) in possible poses. With the datasets, we
then use them to train and test to verify the effectiveness of our proposed methods.

For the first case deformation, the main technical contributions of our work are:

• To express the features of meshes, we propose novel graph construction solutions
and introduce mesh descriptors for each mesh node which encode the skinning
features along with poses, geometry attributes of meshes, and the relationships
between meshes and skeletons. (Solution for case1-chall.1)

• To deal with arbitrarily structured mesh graph data, our method leverages graph-
attention-based (GAT) blocks for effectively learning complicated mesh features.

CHAPTER 1. INTRODUCTION 19

Specifically, in each GAT block, we extend the original GAT structure by adding a
self-reinforced stream that linearlymaps the individual features of each node. This
stream is then concatenated with the graph-attention-based aggregation stream to
form aGAT block. In this way, the GAT block can effectively compile information
on complex graph features from neighboring vertices as well as information on
self-features. (Solution for case1-chall.2)

• To extract high-level features with deep layers and ensure the propagation of
information on a large amount of features, we introduce “dense module” that
adopts dense connectivity patterns between several GAT blocks to resolve the
vanishing gradient problem and effectively improve information flow by fusing
multiple levels of features. (Solution for case1-chall.3)

• To improve the generalization ability of the network, we propose a novel multi-
resolution graph network called MultiResGNet enabling the reuse of existing
artist-created skinning features and the easy application to new character meshes.
To improve the ability of expressing arbitrary graphs, we designed the MultiRes-
GNet with two branches, i.e., a global branch that deals with lower-resolution
graphs for integrating structural information and a local branch that handles
original-resolution graphs for enhancing and propagating detail features. To ad-
dress the limitations of insufficient training samples, for the global branch, we
designed graph pooling and corresponding unpooling operations to extract the
holistic features of various characters and poses, thereby realizing better general-
ization and performance. (Solution for case1-chall.4)

For the second case deformation, the main technical contributions of our work are:

• To account for complicated and irregular detailed wrinkles, we first discuss that
the fit between garment and body influences the degree of wrinkles: loose clothes
have smoother, sparse, and wide folds, while tight clothes have thinner, denser,
and narrow folds. We therefore propose the fit parameter and transfer it through
the novel GarFit parameter transfer branch. (Solution for case2-chall.1)

CHAPTER 1. INTRODUCTION 20

• To make the learning task easy and avoid overly smooth results, we narrow the
range of output, i.e., vertex displacement, whose degree of freedom ranges is from
negative infinity to positive infinity. We decompose the three-dimensional output
vector as the combination of length and unit, where the range of length is greater
than zero and the range of the unit is from -1 to 1. Based on this decomposition,
we design a novel loss function to reduce the distance of the prediction to the
ground truth and make training easier to converge. (Solution for case2-chall.2)

• To improve the generalization ability for the clothing deformation model, we
design a novel garment-fit-based network named GarFitNet which consists of
three branches, i.e., the GarFit parameter transformer branch, the unit direction
prediction branch, and the length prediction branch. Specifically, the GarFit
parameter transformer branch can generate more powerful feature representations
so that the model can use this information to predict detailed folds in a more
targeted manner. The unit prediction branch and the length prediction branch are
used to respectively predict the unit and the length of output displacements. This
separate prediction solution keeps the approximation error within a very small
range when predicting deformations for unseen geometries, body shapes, and
poses. (Solution for case2-chall.3)

All in all, the novelty of our research lies in the design of graph-learning based
frameworks together with the features of animated meshes to achieve their deformation
approximation. Instead of manually setting skinning weights or fine-tuning blend
shapes, we utilize existing skinning features from the training set to make predictions
for new characters while allowing any number of mesh nodes and arbitrary geometric
topologies. We discuss and evaluate the advantages of the proposed solutions, and
compare them with existing methods and other network structures. To the best of
our knowledge, our approach is the first pose-based, graph-learning-based nonlinear
deformation method for data-driven characters.

CHAPTER 1. INTRODUCTION 21

1.4 Thesis Organization

The main body of our thesis is organized as below. We introduce related works of
our research in Chapter 2. For different applications in animation production, the first
and second case deformation methods and evaluations will be respectively introduced
in Chapter 3 and 4. Finally, Chapter 5 concludes the research and the tasks for future
work.

Chapter 2

Related Work

Character animation is an important part of contemporary computer games, anima-
tion films, online-shopping, and virtual reality applications. The key challenge for
generating credible deformation is to meet the conflicting requirements of real-time
interactivity and credibility. Existing research in the area of character deformation,
ranging from geometry-based skinning, example-based approaches, physics-based ap-
proaches to learning-based methods. Recently, with the increasing interest of graph
learning in recent years, applying graph neural networks to reason about irregular 3D
data such as meshes has achieved success to some extent.

In this chapter, we first respectively review various techniques of character defor-
mation for two cases. Then, we summarize the graph neural networks for 3D mesh
processing. Lastly, we summarize the problems and challenges encountered in the
current research and lead to our research goals and proposals.

2.1 Related Works of the 1BC Case Deformation

For the first case deformation, most relevant related works can be classified into tradi-
tional methods and learning-based methods.

Traditionally, character deformations can be calculated by blending the bone trans-
formations (geometry-based skinning), or by formulating the deformation processwithin
the simulation framework (physics-based skinning). These two types of approaches are
excellent in real-time interactivity and quality credibility, but satisfying these two as-

22

CHAPTER 2. RELATED WORK 23

pects at the same time is challenging. To permit more attractive deformation effects
for geometry-based methods, some studies generate desired deformations by interpo-
lating a series of examples in some poses. This example-used solution is called the
example-based skinning method.

With the development of deep learning, learning-based deformation has gradually
gained particular attention recently. Generalizing the learned information to the defor-
mation of new characters in new poses while ensuring high accuracy has always been a
typical difficulty for researchers.

In this section, we will respectively introduce the advantages and disadvantages of
these classified methods.

2.1.1 Traditional methods

Traditional methods can be categorized into geometry-based skinning, example-based
skinning, and physics-based skinning methods.

2.1.1.1 Geometry-based skinning methods

The most common way to deform a character object is to define the mesh surface as a
function of the transformation of skeletal joints. Because of the simplicity and intuitive
manipulation, geometry-based skinning is widely adopted in real-time applications such
as games and virtual reality systems. Here, linear blend skinning and dual quaternions
skinning are the two most well-known methods.

Among many proposed geometry-based deformation techniques, linear blend skin-
ning (LBS) is the most popular method because of its directness and effectiveness.
Although it has never been formally introduced in the literature, linear blending was
first proposed and proven to be able to calculate the deformation of hand in anima-
tion [54].

CHAPTER 2. RELATED WORK 24

Figure 2.1: An example of illustration the process of LBS. The)1 is the transformation containing
the rotation and translation of the elbow joint.

The process of LBS is demonstrated in Figure 2.1: the surface mesh is deformed
according to a given list of joint transformations. Each vertex is associated with skinning
weights, which quantifies the influence of each joint on the vertex. Therefore, the basic
idea of LBS is to linearly blend the transformation matrices. The whole process can be
expressed in a straightforward way:

?′8 =
<∑
9=1

F8, 9)9'
−1
9 ?8, (2.1)

where ?8 is a vertex of mesh in rest pose, ?′
8
is a vertex after deformation. < indicates

the total number of skeletal joints.)9 is the transformation matrix of the elbow joints
and '−1

9
is the inverse transformation of the same bone in the rest pose '. F8, 9 is a scalar

weight that describes the amount of influence of joint 9 to vertex 8.
When the transformation of joints is not rotating largely, the deformation effect

of LBS looks good. Issue arises if the joint is blending, the linear interpolation will
produce the inadequate location of vertices, which results in the volume loss artefacts.
The artefacts are obvious in the areas of joints as depicted in the right sub-figure of
Figure 2.1.

To address the limitation mentioned in LBS, dual quaternion skinning (DQS) [33]
express the joint transformations based on dual quaternions. The method is just slightly
lower than LBS and becomes popular in the professional software like Maya or Blender.

In stead of using the blend matrices
∑<
9=1 F8, 9)9'

−1
9
in LBS, DQS blends quaternions

@̂ 9 , weighted by F8, 9 . The result is normalized with ‖∑<
9=1 F8, 9 @̂ 9 ‖ to produce the final

CHAPTER 2. RELATED WORK 25

dual quaternion, which is used to transform a vertex from the rest pose to the specific
position:

?′8 = @̂ 9 ?8 @̂ 9
∗, (2.2)

where @̂ 9 =
∑<

9=1 F8, 9 @̂ 9

‖∑<
9=1 F8, 9 @̂ 9 ‖ is a unit dual quaternion and @̂ 9

∗ is the conjugate of @̂ 9 . Details
to perform dual quaternion additions can be found in the work of [33]. The method of
DQS gives encouraging results and solves the biggest volume loss problem of LBS, but
produces the joint-bulging artefacts while bending.

In general, the dual quaternion skinning method is slightly complicated than linear
blend skinning in terms of implementation and produces its own artefacts. Despite
the drawbacks, DQS is always considered to be a good alternative over LBS since its
artefacts are hardly found during the animation and can be avoided by additional manual
modification. And the run-time of DQS is almost the same with LBS can be real-time.
The appealing extension of DQS is the application to Disney’s film Frozen [42].

In addition to LBS and DQS, there are many studies that can be classified into
geometry-based skinning methods. What these methods have in common is that the
resulting deformation largely relies on the skinning weights, and few works have been
proposed to automatically generate skinning weights. Prior studies utilize heat diffusion
[10], illumination models [77], Laplacian energy [31], and elastic energy function [35]
to calculate skinning weights. After that, Multi-weight enveloping [76] tries learning
weights from example poses of rigs. Dionne and de Lasa [22] propose the approach
using geodesic voxel binding to compute the skinning weights, which is also capable of
handling non-manifold meshes. To compensate for the unnatural deformations of naive
LBS and generate more natural and plausible behaviors, helper bone rigs that can create
the muscle bulging and soft tissue jiggling effects have been adopted in [57, 58]. Such
helper bone rig techniques have been successfully used in practice for game productions.
Despite the high flexibility of secondary dynamics, it is difficult to control deformations
stably in some cases.

CHAPTER 2. RELATED WORK 26

2.1.1.2 Example-based skinning methods

Example-based methods permit more complex skinning effects such as skin slides,
muscle bulges, and wrinkling of clothing. Methods treat deformations as a shape
interpolation problem that takes a series of scattered data poses as input, to obtain
the desired deformation. Those examples can be manually made by the user, including
sculpting the character pose into the desired shape. The example-making process is quite
long and tedious, which however enables animators to control the exact desired shape.
After preparing the example deformations, while animating, these created examples are
interpolated to produce realistic transitions for new poses that are not in the set.

One of the first example-based approaches is pose space deformation (PSD) [44]
which is also widely adopted in big animation companies. For example, it is used in
Walt Disney’s “Bolt" for more realistic effects to Rhino the hamster. For the process
of PSD method, the geometry-based method like linear blend skinning is first used as
the basic deformation, and then mesh shapes are further refined at some key positions
by sculpting meshes. The shape deviations between refined meshes and basic meshes
are stored as a set of displacements to each pose of the skeleton. Once all example
poses are defined, a radial basis function is used to interpolate the displacement vectors
among the example poses. In practice, this technology enables users to gradually perfect
the deformation. Whenever the shape is unsatisfactory, users can add an example in a
specific pose. The challenge for users is to visualize a large pose space. As the number
of examples increases, it can be overwhelming to figure out what effect each pose has
on the final deformation. The parameters that define the distance between poses may
also be unintuitive to set up.

On the basis of PSD, further extensions like [39,65] are proposed with less demand
of the number of example poses. Despite these methods can deal with large-scale defor-
mations well, they cannot provide detailed deformations and require more calculations
than the original work of PSD. In these methods, the number of memory increases with
the number of examples, therefore they are more popular in animated feature films than
in real-time applications.

In addition to sculpting shapes, other example-based approaches use scanned and

CHAPTER 2. RELATED WORK 27

photographed data as examples. In the work of [8] , they propose a body deformation
calculationmethod by interpolating shapes using scattered data interpolation from range
scans of bodies in a variety of poses. Huang et al. [30] present a robust framework that
can generate fine detailed as well as large-scale deformations using scanned hands. To
further enrich the animation, dynamic skinning effects can be achieved in real-time by
learning from physics-based simulation [69]. More recently, Le et al. [41] present a
method for generating linear blend skinning models by using a set of example poses.
The obtained model includes skeletal structure, skinning weights, joint positions, and
corresponding bone transformations.

Example-based approaches can improve the deformation effect of geometry-based
methods by learning from well-designed examples. However, one major problem of
example-based approaches is the requirement of examples. In addition to the fact that
the example poses cannot be captured on real humans or characters, creating these
poses needs significant effort by artists or requires complex physical simulations of the
volumetric version of the mesh. With the development, example-based methods have
gradually developed into learning-based methods, which we will discuss in Section 2.4.

2.1.1.3 Physics-based skinning methods

One underlying limitation of geometry-based approaches is their struggle to generate
deformations far from realism such as fatty tissues, muscle bulging, and skin contact.
These effects require animators to configure the deformation in each keyframe, which
is tedious and time-consuming. To this end, physics-based simulation is introduced
into the skinning process, in order to enhance the credibility and realism of character
animations. The physics-based approaches manage to bring skeleton-driven animation
beyond pure kinematics by simulating secondary motions like soft tissues jiggling. The
additional effects enrich the visual experience of animations and become essential for
creating appealing characters for movie productions.

One most popular techniques for simulating soft bodies in computer animation are
the force-based method. In particular, due to simplicity and efficiency, most techniques
used to simulate dynamics rely on mass-spring systems. The general idea is to represent
the vertices of the mesh as mass points, controlled by Newton’s second law of motion,

CHAPTER 2. RELATED WORK 28

and represent the edges as elastic links (springs). Therefore, when the length of the
elastic link changes, the mesh is deformed. This happens when the relative position
of the mass point changes due to external forces. The mass-spring system is based
on a local description of the material, where the physical principle of such a system is
simple, and the simulator is easy to implement. However, to simulate a specificmaterial,
it is important to carefully choose the parameters of the spring, such as stiffness and
damping. Although these systems are easy to implement, they still suffer from instability
and overshoot at long time steps. In addition, mass-spring systems are usually inaccurate
because they strongly rely on topology and are not constructed based on elastic theory.

Earlier studies proposed in [16, 71] are the first to apply mass-spring systems to
deformation simulations. In their methods, they use a finite difference scheme to apply
Lagrangian equations of motion to simulate elastic characters with regular parameter
settings. Here, the physical material properties can be described using only a few
parameters that are used to model soft bodies in an accurate manner. Studies in [14,40]
use layered representations which consist of a deformable volume for the tissue layer,
rigidly attached to a kinematic skeleton. By choosing a volumetric mesh that aligns
with the bones, methods are able to meet bone constraints rapidly. McAdams et al. [55]
present a robust method to simulate a deformed soft tissue shape based on a hexahedral
lattice, but it cannot achieve real-time performance. To make the simulation fast,
position-based dynamics (PBD) [60] solvers have been proposed and widely applied
in the game industry and virtual reality. Different from the force-based method that
first solves the force and then performs numerical integration based on the force value,
PBD first constructs constraints, then obtains position information through constraint
projection, and updates the velocity value accordingly. Despite the effectiveness and
rapidity of PBD, its disadvantage is that different constraints sharing the same vertex
are alternately projected to different target positions, resulting in jumps between these
positions. On the basis of it, Bouaziz et al. [12] introduce projective dynamics (PD) for
implicit time integration of physical systems which overcomes the artefacts of PBD and
converges in fewer iterations. More recently, based on PD, a skinning technique named
projective skinning [38] is proposed to produce high-quality skin deformations and can
handle local self-collisions between skins.

CHAPTER 2. RELATED WORK 29

2.1.2 Learning-Based Deformation

To make the deformation process automatic, learning-based methods are aimed to learn
mappings from input parameters to perform deformations using neural networks. Here,
we would like to discuss deformation studies according to the type of neural networks:
deformations based on the linear-based model or fully-connected layers (also known as
multilayer perceptions, MLP), and deformations based on graph neural networks.

2.1.2.1 Linear-based or MLP-based methods

Loper et al. [53] present a learned skinned multi-person linear model (SMPL) of human
body shape and pose-dependent shape variation. The method is vertex-based and
can accurately represent a wide range of body shapes in natural human poses that
significantly improves over previous methods [29]. The advantage of SMPL lies in the
calculation of pose and shape blend shapes, by simply adding vertex displacements to
a template mesh to generate compelling articulated 3D meshes. Specifically, for pose
blend shapes, the model is trained to build the relationship between the input pose vector
to output pose-dependent blend shapes (displacements). For shape blend shapes, the
model is trained to mapping from shape coefficients to shape displacements.

Based on SMPL, Casas et al. [15] enrich the human bodies by adding soft-tissue
dynamics. Dynamic blend shapes are predicted by inputting the vector which consists
of previous blend shapes and poses in multiple frames. More recently, Santesteban
et al. [67] propose SoftSMPL that also aims at producing soft-tissue dynamics. They
present a novel motion descriptor to achieve a better generalization that encompasses the
velocity and acceleration of body root, pose descriptor, and the velocity and acceleration
of the pose descriptor. It should be noted that, the generalization here means the
generalizations to new motions or new shapes (with the same vertices number and same
mesh geometry) , but the generalization to different character meshes is still limited.

To make film-quality character rigs able to run in real-time with modest computing
platforms such as mobile devices or game consoles, Bailey et al. [9] propose a defor-
mation system and successfully implement it on an iPad. Characters such as Shifu from
“Kung Fu Panda 3" and Astrid from “How to Train Your Dragon 2" can easily and

CHAPTER 2. RELATED WORK 30

rapidly interact with the application. Due to the complexity of the rigs, it needs a large
number of models to train for one specific character.

2.1.2.2 Graph-learning based methods

To address the fundamental limitation of generalization in learning-based deformations,
the latest research tries to approximate deformation using graph neural networks due to
their ability to handle 3D data in non-Euclidian domains. We will introduce types and
algorithms of GNNs in detail in Section 2.3. Here, we would like to first discuss their
applications to deformation approximations.

For production characterswith non-manifoldmeshes and complicated skeleton struc-
tures, Liu et al. [51] introduce a deformationmethod calledNeuroSkinning. Themethod
can automatically compute skinning weights for geometry-based deformation for new
characters with complicated dressing. Here, there is no limit to the number of vertices
or skeletal structures of characters, the trained network can be easily applied to arbi-
trary charters in game production. The proposal of this research created a precedent
for applying graph neural networks to character deformations. However, because the
predicted skin weight is fixed and its essence is still a skeleton-based method, it is
impossible to achieve additional complicated nonlinear deformations related to poses,
e.g., skin slide, and muscle bulges.

To automatically generate character rigs for animations, Xu et al. [78] present RigNet
to predict skeletons with joint placement and topology as well as surface skinning
weights based on the skeleton. A deep modular structure is designed, which contains
severalmodules to complete tasks. Themodule of predicting the number of joints and the
module of skinning weights both utilize graph neural networks. Thanks to these graph-
learning-based strategies, the approach can provide a complete solution for character
rigs in various scenarios. However, like the drawback of the above NeuroSkinning, it is
still unable to generate pose-based realistic deformation effects.

CHAPTER 2. RELATED WORK 31

2.2 Related Works of the 2=3 Case Deformation

For the second case deformation, the focus of the research is on clothing deformation
approximation. In this section, we discuss the existing studies by grouping them into
physics-based simulation and learning-based methods.

2.2.1 Physics-based simulation

Physics-based simulation methods use discretizations of classical mechanics to deform
cloth by solving an ordinary differential equation. There are three major processes of
cloth simulation: computation of internal cloth forces, collision detection, and collision
response; and the total simulation cost results from the combined influence of the three
processes. Several approaches have been proposed, with differences in the underlying
representation, numerical solution methods, collision detection, and constraints. In the
work of [32], they propose a method for approximating penalty-based contact forces in
yarn-yarn collisions by computing the exact contact response. Despite the high level
of realism, the computation time costs too much and cannot be applied to interactive
applications. Recently, Cirio et al. [20] propose an efficient method to simulate knitted
cloth at the yarn level. The simulation results show details with high-resolution while
requiring significant runtime computational costs.

To fight with high computational cost, several studies try to use PBD to produce
the cloth simulation. For example, Kim et al. [36] propose a long-range attachment
method that applies unilateral distance constraint between free particles of the cloth to a
distant attachment point on the character. This constraint provides an efficient shortcut
for enforcing global inextensibility that can be readily implemented into existing game
physics methods such as position-based dynamics (PBD). Also based on PBD, instead
of constraining the distances on edges, Müller et al. [59] present a method to derive
sets of positional projections for the deformation modes corresponding to the entries
of the Green - St Venant strain tensor. The common point of these methods is: even
if the simulation becomes fast to a certain extent, the realism is lacking for real-world
applications.

To make the simulation process rapid, the sub-space technique is used in [21].

CHAPTER 2. RELATED WORK 32

They learn a low-dimensional representation for both the cloth and the outer surface
of the body by constructing two low-dimensional linear subspace models. The learned
model is efficient and allows for real-time running. Kavan et al. [34] speed up physics-
based simulation by adding details to low-resolution simulated meshes. The process
starts by pre-computing a pair of coarse and fine training simulations aligned with
tracking constraints using harmonic test functions and then training the upsampling
operators for cloth simulation. A similar idea of adding details to low-resolution cloth
meshes, research in [81] defines an algorithm to synthesize cloth wrinkles based on
the deformation of low-resolution cloth and a set of example poses. Gillette et al. [26]
introduce a real-time method for dynamic cloth wrinkle simulation. The proposed
method is suitable for interactive wrinkling of cloth and fabrics for video games and
hardware. By simplify physical models, Rohmer et al. [66] present an automated-post-
processing step for generalizing cloth wrinkles based on coarse simulation. The shapes
of wrinkles look quite believable, but they cannot ensure that the pattern has precise
equidistant lines, nor that the surface created is developable.

2.2.2 Learning-based methods

Inspired by the success of deep learning and its application to skin deformations. More
and more studies propose to learn clothing deformation as a function of the underlying
body and pose. In this subsection, we will respectively introduce relevant works using
MLPs and graph-based models.

2.2.2.1 MLP-based methods

To combat the high computational cost of physics-based simulation while realizing
clothing nonlinear behaviors, Santesteban et al. [68] present a two-level strategy to
learn deformations of garments dressed by SMPL bodies. Two-level denotes the process
of generating the clothing deformation dependent on the target body’s shape by using
MLPs, and the process of generating detailed wrinkles dependent on both the shape
and the pose by using Gate Recurrent Unit (GRU). Following this strategy, the method
is able to capture nonlinear wrinkle effects. One drawback is that the method requires
independent training for different garment sizes or mesh geometries.

CHAPTER 2. RELATED WORK 33

Also in order to estimate the cloth deformations with fine details, research in Tailor-
Net [63] uses multiple MLPs to realize the task. They decompose the deformation into a
high-frequency component and a low-frequency component. While the low-frequency
component is approximated from pose, shape, style parameters with one MLP model,
the high-frequency component is approximated with several MLP models and their
mixture. TailorNet delivers garments that retain the wrinkles from the physics-based
simulations it is learned from while running faster.

To model how people wear the same garments in different sizes, Tiwari et al. [72]
propose a SizerNet to approximate the wearing effect of a garment in different sizes.
Because the dataset only consists of A-pose garments and garments, the proposed
method cannot generate a variety of deformations in different poses.

Although the above-mentioned studies have achieved success in the automatic cloth-
ing deformation approximation, a common issue of these methods is that the inability
of generalization to other objects with different mesh topologies. The reason for this
problem is that when using this type of ordinary network, input or output values are just
flattened into vectors, which enforces meshes to have the same topology with the fixed
number of vertices.

However, in real applications such as games, virtual try-on, etc., the shape and
topology of character objects are often various and have a different number of vertices.
Therefore, the applicability of this learning method is still insufficient.

2.2.2.2 Graph-learning based methods

More recent research in [18] introduces a graph convolution network for cloth and body
skin deformation approximation. They improve the graph convolution operator and
define the pooling and unpooling operations on the mesh. The proposed framework can
be applied to several problems including cloth upsampling, pose-to-cloth regressions,
PCA coefficients to cloth deformation, and joint angles to hand-skin deformation. There
also exists some limitations of this work. First, all proposed solutions, such as convolu-
tion, pooling, and unpooling, are based on triangle mesh, and they cannot be applied to
other mesh topologies, like quadrilateral meshes. Furthermore, the prediction accuracy
is substantially dependent on a large training set, because tasks to be regression are

CHAPTER 2. RELATED WORK 34

extremely complex and the generalization of the network is still insufficient.
Focusing on fast cloth deformation, Vidaurre1 et al. [75] present a fully convolutional

graph neural network (FCGNN) to predict deformations with fine-scale details. Before
the learning, they initially build a parametric space for garment design that is capable
of representing a large number of garment types. Then, they train two GNNs for
predicting the coarse 3D draping of a garment onto the mean body shape and the final
deformation refinement. These two networks have a similar network structure with a
different number of layers. The proposed pipeline is able to generalize to unseen mesh
topologies, garment parameters, and body shapes. However, it still suffers the weakness
that pose-dependent parameters are not considered in the approach that deformations
are only approximated in the rest-pose. More elaborate effects related to posture are
limited to achieve.

2.3 Graph Neural Networks

Convolutional neural networks (CNNs) have achieved great success in various challeng-
ing tasks, especially for dealing with 2D images and regular 3D grids. Alternatively,
there are many irregular data structures that can be represented as graphs such as point
clouds, social networks, and meshes. These complicated graph data cannot be di-
rectly processed with the traditional convolution. In recent years, many attempts have
been made to explore the extension of the CNNs to graph neural networks in order to
reasoning about irregular 3D data.

There are many variants of GNNs which use different aggregators to gather the
neighbor’s information and then forward it to the next state. In the up-to-date survey on
GNNs [80], GNNs are categorized into several groups based on their propagation steps:
convolution, gate mechanism, skip connection, and attention mechanism.

Existing works with convolution operations on graph could be divide into spectral
approaches [13, 27, 28, 47] and spatial approaches [7, 25, 56]. Specifically, for spectral
networks, the convolution is defined in the Fourier domain by computing the eigende-
composition of the graph Laplacian. In all of the spectral approaches, the learned filters
depend on the Laplacian eigenbasis, which depends on the graph structure, that is, a

CHAPTER 2. RELATED WORK 35

model trained on a specific structure could not be directly applied to a graph with a
different structure. For spatial networks, they directly define convolution operations on
spatially close neighboring nodes. And themajor challenge of this type’s network is how
to define the convolution operation with various sized neighborhoods and maintaining
the local invariance of CNNs. Several works address this challenge by using differ-
ent weight matrics for nodes with different degrees [17], by transforming to diffusion
convolutional representations, and by using univariate functions.

Some studies try to use gate mechanisms in the propagation step, such as gated graph
neural network (GGNN) [50] which uses the gate recurrent units in the propagation step,
unrolls the recurrence for a fixed number of steps) and uses backpropagation through
time in order to compute gradients. Based on the basic LSTMs architecture, the work
in [70] proposes two extensions for graph data.

Training deep networks to benefit from their advantages is a common operation in
CNNs. There are also attempts to unroll or stack graph neural network layers aiming
to achieve better results. Some experiments [37] show that directly use deeper models
could not improve the results and even perform worse. Rahimi et al. [64] present a
Highway GCN that uses layer-wise gates similar to highway networks. By following
this strategy, the performances peaks at 4 layers for the specific problem.

The attention mechanism has been successfully used in many sequence-based tasks,
such as machine translation, machine reading, etc. One of the benefits of attention
mechanisms is that they allow the processing of variable-sized inputs, focusing on
the most relevant parts of the input to make decisions. Inspired by the attention
mechanism, a graph attention network (GAT) [74] is proposed to compute the hidden
representation of each node by attending over its neighbors, following a self-attention
strategy. This network has several advantages: first, the computation of node and
neighbors is parallel, so the efficiency becomes high. Second, by assigning arbitrary
weights to neighbors, it can be applied to graph nodes of different degrees. Furthermore,
it can be easily applied to inductive learning problems. Mesh deformation method
in [51] utilizes GAT for skinning weight prediction. In our work, due to its efficient
and easy implementation on arbitrary graphs, we extend and improve the original GAT
by designing self-reinforced stream, densely connection, and applying pooling and

CHAPTER 2. RELATED WORK 36

unpooling operations for producing nonlinear deformation effects.
Graph pooling plays an important role, as it can avoid overfitting and improve the

generalization ability of networks. Because of the complicated and irregular charac-
teristics of graph nodes, few graph pooling studies have been done. Ying et al. [79]
propose DiffPool which learns the assignment matrix of clusters based on node features.
The number of clusters needs to be decided beforehand. Gao and Ji [24] introduced
TopKPool in Graph U-Net. The strategy of their pooling is to simply keep nodes with
top-k scores and drop all other nodes. One drawback of this approach is poor robustness
where small local changes will affect the whole pooling results. Recently, Lee et al. [43]
present SAGPool that uses a self-attention mechanism to calculate node scores and then
mask all but the top nodes. Different from their masking nodes, inspired by the method
of computing attention coefficients mentioned in [74], we conduct merging neighboring
nodes according to maximum attention coefficients, which has the effect for contracting
edges so that both nodes features and topologies will be considered for graph processing
and conveyed to deeper layers.

2.4 Summary

Finally, we take an overview of the main character deformation techniques.
For the 1BC case deformation, traditional methods are hard to balance the deformation

accuracy and speed. Geometry-based solutions trade realism for performance, while
physics-based solutions are the opposite.

To make the deformation process automatic, learning-based studies are proposed
to compute deformation as a function of designed parameters. Pioneer studies [9, 53]
use linear-based models or MLPs to achieve the task, but their trained models are
only applicable to the specific object and cannot be generalized to new characters with
different topologies or different numbers of nodes. The adoption of graph learning
solves this generalization problem. However, existing research [51, 78] is only able to
generate fixed skinning weights without nonlinear deformation effects in each pose step.

For the 2=3 case deformation, physics-based simulation approaches can bring a per-
fect visual effect with fine-scale fabric wrinkles. However, they are also computationally

CHAPTER 2. RELATED WORK 37

expensive with high-end machines and usually avoided in real-time applications.
The situation of learning-based deformation for garments is about the same as the

learning-based deformation for the 1BC case. Methods use MLPs can achieve good non-
linear effects, but they require a large number of models [63] and lack the generalization
ability [63, 68] to approximate the deformation for new garments. For graph-learning-
based methods, due to the complexity of wrinkles deformation, existing research [75]
only guarantees the deformation in one posture (A-pose) and does not have the ability
to predict folds in different postures.

To conclude the learning-based deformation methods of both two cases, we list the
limitations that exist in the previous learning-based work:

• Generalization (able or not). Most learning-based solutions (linear models or
MLPs) are trained for a specific object or mesh topology.

• Generalization (strong or weak). Although some latest solutions (GNNs) are
able to generalize to other characters or topologies, approximation relies on huge
amounts of training samples (sometimes over-fitting) and results tend to be over-
smooth without rich nonlinear details.

• Pose-depend effects. Recent graph-learning-based based approaches only allow
for predicting fixed skinning weights or deformations in one pose.

Therefore, our work aims at addressing the above-mentioned limitations using novel
graph neural networks and feature processing strategies in order to automatically gen-
erate high-quality deformations for characters with an arbitrary number of vertices in
various poses.

The development of GNNs has been discussed in Section 2.3. To achieve our defor-
mation goals, we also improve the graph convolution and design graph neural networks
that can better perform the task of predicting deformation for animated characters.

Chapter 3

Deformation Approximation - 1BC Case

3.1 Context

3.1.1 Background of the 1BC case deformation

In the field of games, virtual reality, and films, the demand for diverse, high-quality,
animation-ready characters is growing rapidly. For the animated characters in this
situation, we have already introduced their mesh features in Section 1.2.1 (Figure 1.2).

During the process of animating this type’s character, rigging is a crucial task that
involves defining motion, control, and deformation systems. In principle, the first two
processes are relatively easy and can be conducted automatically if using a standard
skeleton structure with a fixed number of joints for the humanoid character. By contrast,
the process of the developing deformation system is always labor-intensive and this
has been receiving considerable attention in recent years. Traditional methods using
geometry-based skinning and physic-based skinning usually require a struggle between
sacrificing realism and sacrificing real-time performance. In addition, this deformation
process also needs a large amount of back and forth manual modification of skinning
weights and parameters setting by highly skilled animators.

To make the deformation process automatic, more recently, a number of learning-
based methods address this topic by using linear-based model [53], MLPs [9] and
graph neural networks [51, 78]. None of them has satisfactorily achieved the goal of
producing high-quality nonlinear effects in each pose step and simultaneously allows the
trained model to be generalized to characters with any number of vertices. In the next

38

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 39

subsection, we will discuss in detail the problems of these learning-based deformation
methods.

3.1.2 Unsolved problems in state-of-art studies

State-of-art learning-based methods have been proposed and demonstrated that it is
possible to learn an efficientmodel for deformation approximation. From the perspective
of model type, most of these methods leverage linear-based model [53] or MLPs [9]
that take shape and/or pose parameters (e.g., flattened joint transformation matrix or
rotation angle) as input, and output the predicted deformations. Despite the realism of
the result, a common underlying limitation of existing learning-based approaches is the
dramatic inability to generalize to new character meshes with different topologies and
the different number of vertices. Furthermore, even if the training is only for one specific
object, the methods usually require a large number of models to ensure high-quality
predictions for the deformed object.

The reason for such limitations can be concluded as follows: first, MLP architectures
(or linear-based models), which are known to be easy use in any domain, are adopted
for deformation approximation. This type of architecture constrains the size of the
input and output vector to a fixed number, which enforces input parameters and output
meshes to have always the same dimension. Second, practical character meshes have
complicated varying shapes, topologies, and the number of vertices. It is unreasonable
to directly apply MLPs or common CNNs to process these 3D mesh data because they
ignore spatial information and flatten vectors as input, which will lead to the loss of
important local or neighboring information. Third, the architecture of MLPs requires a
large number of parameters, since all input nodes are densely connected to each other.

To this end, in order to address the generalization problem and account for non-
manifold meshes with various topologies, the latest studies [51,78] introduce the graph
into the deformation approximation since graphs are capable of representing spatial
information of mesh vertices (nodes) and edges. Although these methods allow the
application of the trained model to predict deformations for new character meshes with
different mesh topologies and the number of nodes, they still only propose to predict
fixed weights that do not change with postures. Also, because of the complicated of

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 40

graph data and vanilla GNNs, sometimes the prediction accuracy is not ideal and the
result is unrealistic.

In summary, using GNN is feasible to estimate deformations for various characters,
but generating pose-dependent deformations is still blank in the past research due to
the difficulty of this task. Specifically, the difficulty of this task lies in two aspects:
processing graph features of a large amount of personalized characters and poses, and
designing effective graph neural networks tomap the features to nonlinear offsets in each
pose step. More specifically, from these two aspects, we further expand the challenges
in four terms as listed in Section 1.2.1: case1-chall.1-4.

3.1.3 Our proposal outline

To automatically approximate deformations for new characters based on existing well-
skinned meshes and address all challenges mentioned in the last subsection, we propose
a two-step outline depicted in Figure 3.1. We assume that character deformation can
be regarded as a combination of two parts: the coarse deformation, and the nonlinear
refinement. The part of coarse deformations on the one hand is simple and therefore
can be directly computed by using linear-based skinning, although not precisely. Based
on a coarse deformed mesh "coarse ∈ R3×# with # vertices, we first extract its mesh
graph G, and then learn the function to produce corresponding nonlinear mesh shape
corrections. The final deformed mesh " ∈ R3×# can be expressed as:

" = "coarse +, (G;Ψ), (3.1)

where, (·) is the refinement through the graph-learning-based nonlinear regressor, that
takes graph G as input and calculates shape offsets for each vertex by learning a set of
parameters Ψ.

Figure 3.1: Outline of deformation approximation - 1BC case.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 41

Concretely, in the process of achieving , (G;Ψ), to account for non-manifold
meshes with various topologies, we encode meshes by introducing graphs that are capa-
ble represent spatial information of mesh vertices and edges. Then, to deal with graphs,
we propose graph neural networks to perform node regression of graph-structured data.
In the next sections, we will describe how to encode meshes from various characters
in arbitrary poses, and how to design graph neural networks to build the relationship
between input graphs and output deformation refinements.

We successively proposed and published two works, i.e., DenseGATs [48] and
MultiResGNet [49], to solve the above two technical problems (mesh encoding and
designing graph neural networks). DenseGATs is based on graph neural networks care-
fully designed to avoid typical problems such as gradient vanishing. MultiResGNet
further improves DenseGATs from two perspectives: mesh encoding based on relative
positions and introduction of the global branch that captures lower-resolution, i.e., over-
all structural, information. The relationship between DenseGATs and MultiResGNet is
shown in Figure 3.2.

Figure 3.2: Proposed deformation approximation strategies for 1BC case.

3.2 Deformation with DenseGATs

3.2.1 Mesh encoding

Having the linear-deformed mesh "coarse directly computed, we need to construct a
parametric space that is capable of representing different mesh topologies and varying
poses. Here, we consider the input of our framework to be a mesh graphG = (V, E,U)

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 42

which stores features of vertices and edges. Here, V = {1, ..., #} and E ⊆ V × V
denote the set of vertices (nodes) and edges respectively. U ∈ [0, 1]#×# is the adjacency
matrix where u(8, 9) ∈ [0, 1] indicates whether there is an edge between nodes 8 and 9 ,
(8, 9) ∈ E. For the node 8 ∈ V, the set of neighboring nodes is represented by N(8).

For a node E8 ∈ V, the attribute vector is defined as E8 = [?)8 , =)8 , G)8], where ?8 ∈ R3

is the vertex position, =8 ∈ R3 is the normal of the vertex. G8 = [G8,1, ..., G8,B, ..., G8,(] ∈ R(,
where G8,B refers to the volumetric geodesic distance [23], i.e., the shortest distance from
vertex E8 to joint B passing though the interior voxels. Here, all characters in our dataset
have the same humanoid standard skeleton, where the joint number (is 65.

Thus, the total dimension of the node feature E8 is 6 + (. E8 contains both mesh
skinning appearance attributes which indicate the features of the vertex itself, connec-
tivity between other vertices, and the distance attributes from the vertex to joints which
implies a positional relationship between the vertex and control skeleton.

3.2.2 Deformation refinement through DenseGATs
3.2.2.1 Issues of existing graph neural networks

Graph neural networks are capable of dealing with non-Euclidean data like mesh.
For our character deformation prediction, one challenge is to use prior mesh graph
information to inductively generalize the graph features of mesh that have never been
seen before. [74] introduces an graph-attention-based architecture to compute the hidden
representation of each node by aggregating neighborhood featureswith differentweights,
without the need to know the entire graph structure upfront. This GAT model has
successfully achieved or matched state-of-the-art performance across well-established
node classification benchmarks, and well completed the skinning weight prediction
in [51].

However, different from previous tasks such as classification and skinning weight
prediction (the sum of one joint’s weights is equal to one), our goal is to directly predict
deformation refinements, i.e., vertex deviations for diverse characters, which tend to
be extremely irregular and complicated. Therefore, it is impossible to directly use the
ready-made graph neural networks such as original GAT to complete the prediction

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 43

of accurate nonlinear deformation. Considering the large number of mesh vertices
and complex features, it is necessary to design effective network architecture which is
capable of mapping mesh graphs to corrective displacement of per mesh vertex for more
complicated nonlinear effects.

3.2.2.2 GAT block

We propose a GAT block architecture shown in Figure 3.3. The GAT block consists of a
graph-attention-based aggregation stream and a self-reinforced stream. The aggregation
stream is used to compute the hidden representations of each node in graphs, by applying
its adjacent features using a graph attention network. In addition to the neighboring
nodes aggregated by graph convolution, strengthening single node features is also
necessary to accurately convey information to deeper layers. Therefore, we design a
self-reinforced stream to transform the node’s own features and concatenate them with
the output of the graph convolution. These features, along with the aggregation stream
obtained features, are then fed into next GAT block.

Figure 3.3: Illustration of inside of GAT block by the node 1 (feature vector is ®E [;]
1
) on its

neighboring nodes. The blue color indicates the process of graph-attention-based aggregation
stream gathers features from neighboring nodes with different weights [74]. The yellow color
indicates the process of self-reinforced stream that linearly transforms the features of the node
1. These two streams are then concatenated to produce new feature representation.

After nonlinear transformation, the node features are input into GAT blocks. Here,
we use v [;] =

{
®E [;]
1
, ..., ®E [;]

8
, ..., ®E [;]

#

}
, ®E [;]
8
∈ R3 [;] and v [;+1] =

{
®E [;+1]
1

, ..., ®E [;+1]
8

, ..., ®E [;+1]
#

}
,

®E [;+1]
8
∈ R3 [;+1] to represent an input and output of one GAT block, where 3 [;] and 3 [;+1]

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 44

indicate the feature dimensions after previous ; and ; + 1 layers’ feature transformation.
The overall process of feature transformation inside one GAT block can be expressed
as ®E [;+1]

8
= 5GATB(®E [;]8).

Figure 3.4: The input feature dimension into one GAT block is 3 [;] , the output dimension of
aggregation stream is �, the number of multi-head attention is , and the hyper-parameters V.
So the output feature dimension is 3 [;+1] = � + V �.

Specifically, for the graph-attention-based aggregation streams, given a set of node
features, they firstly need to be pre-processed so that they can be applied to each node
by linear transformation to obtain higher dimensional expressions. The transformed
features can be expressed as:

®I [;]
8
=]®E [;]

8
(3.2)

where the trainable parameter of the transformation] is a weight matrix] ∈ R�×3 [;] .
� denotes the transformed feature dimension of a node in the aggregation stream.

Although aggregation streams could integrate features from first-order neighboring
nodes, the features of the node itself are diminished in this aggregation. We designed a
self-reinforced stream which is a linear transformation process for ®E [;]

8
:

®2 [;]
8
= N®E [;]

8
(3.3)

where N is a trainable weight matrix N ∈ RV�×3 [;] . Here, V is the hyper-parameter
determining the importance of the self-reinforce stream.

For aggregation steam, as stated in [74], a shared, masked attention mechanism is
performed that only computes attention coefficients with the neighboring nodes N(8)
of a node which ensures that structural information is not lost. Furthermore, to make
the results of attention coefficients across different neighborhoods comparable, they are
normalized using the softmax function to obtain attention weights:

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 45

U
[;]
8 9
=

exp(LeakyReLU(®0 [;]) (®I [;]
8
‖®I [;]

9
)))∑

:∈N (8) exp(LeakyReLU(®0 [;]) (®I [;]
8
‖®I [;]
:
)))

(3.4)

where U[;]
8 9
∈ R. ®0 [;] ∈ R2� indicates the weight vector and (·)) represents its transpo-

sition. ‖ is the concatenation operation that features ®I8 [;] and features from neighboring
nodes are firstly concatenated, and then this concatenation embedding result with a
learnable weight vector ®0 [;]) are executed by dot product. During the process of calcu-
lating attention coefficient, to enhance nonlinear expression, LeakyReLU is applied as
the activation function.

The obtained attention weights are then linearly combined with their corresponding
features to yield the output features of the aggregation steam. To improve the stability and
representation ability of themodel, multi-head attentionmechanism introduced in [73]
is also adopted to execute transformation times with different training parameters of
aggregation operations. In addition to the aggregation steam, to enhance the expression
of self-features, our designed self-reinforced steam is concatenated with the features
from the graph-attention-based aggregation steam (as shown in Figure 3.3) to form the
final output features of one GAT block:

®E [;+1]
8

= 5GATB(®E [;]8) = f
(
‖::=1

∑
9∈N (8)

U
[;]:
8 9

]: ®E [;]
9︸ ︷︷ ︸

aggregation

‖ ®2 [;]
8︸︷︷︸

self-reinforced

)
, (3.5)

where f represents the nonlinear transformation tanhshrink. Since the output type is
displacement which could be positive and negative, tanhshrink is able to retain negative
information. Meanwhile, it can alleviate gradient vanishing problem (tanh cannot) and
therefore is selected in our network. U[;]:

8 9
and]: respectively indicate the attention

weights and input linear transformation’s weight matrix computed by the :Cℎ attention
mechanism in the ;Cℎ layer. For one GAT block, the dimension of output features 3 [;+1]

equals the concatenation dimension of aggregation stream and self-reinforced stream
 � + V � (as depicted in Figure 3.4).

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 46

3.2.2.3 Dense module

Due to the complexity and significant amount of features in our mesh graph, there is a
need to apply very deep networks to benefit from their advantages. However, for training
deep graph convolutional networks, the problem of gradient vanishingwill becomemore
serious as the number of network layer increases. To address this problem, DenseGCNs
[46] borrows the concept from DenseNet [45] by introducing dense connections to
deep GCN frameworks and successfully be applied on segmentation task with specific
point cloud graph structure. Inspired by it, we densely connect our GAT blocks as
a dense module for further training deep layers of GAT blocks to better help process
large volumes of complicated mesh data. As opposed to DeepGCNs, our dense module
allows for handling unseen graph structures and efficiently computing with different
importance to nodes of a same neighborhood.

Figure 3.5: The structure of “DenseGATs”. The three boxes denote our proposed “dense
modules”. Each dense module comprises six densely connected GAT blocks.

The overall of dense connection pattern is shown in Figure 3.5. For simplicity, we
use a single function 5GATB to represent the transformation process of one GAT block in
the rest of this paper. In a dense module, among several GAT blocks, direct connections
are introduced from one block to all subsequent blocks. Suppose, there are < GAT
blocks in one dense module, the layer of the first GAT block is ;, thus, the (; + <)Cℎ
layer receives features of all layers starting from the ;Cℎ layer. The propagation can be
defined as:

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 47

®E [;+<]
8

= 5GATB(®E [;+<−1]8
, \ [;+<−1])‖®E [;+<−1]

8

= 5GATB(®E [;+<−1]8
, \ [;+<−1])‖...‖ 5GATB(®E [;]8 , \

[;])‖®E [;]
8

(3.6)

where \ [·] represents all parameters of the transformation function 5GATB in different
layers. The ®E [;+<]

8
is the result of fusing all the intermediate GAT block layer outputs.

Since we connect GAT blocks in a dense pattern, we refer to this architecture as “dense
module”, and the whole network refers to “DenseGATs”. Note that, because of the
dense connection, for each GAT block (except the first block) in a dense module, the
output features will consist of all preceding blocks’ features, not only one block feature
(� + V �) for each node.

Between two adjacent dense modules, we adopt one GAT block as the transition.
This operation plays the role of information integration.

Figure 3.6: The framework of DenseGATs.

In summary, the overall framework of our DenseGATs method is shown in Figure
3.6, where the detail of DenseGATs architecture is depicted in Figure 3.5. We found that
our data can reach the ideal approximation accuracy under this number of GAT blocks
and modules. At runtime, our deformation model works by computing deviations for
correcting nodal linear deformations to nonlinear ones. By learning skinning features in
the train set, our method yields more accurate deformations for new character meshes,
thereby significantly reducing the time and efforts taken for performing the skinning
process.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 48

3.2.3 Evaluation of DenseGATs
3.2.3.1 Dataset

To evaluate our proposed methods, we created dataset for training and testing.

Figure 3.7: Example characters with index 1-5 in our dataset of the 1BC case. These characters
have completely different representative dresses (tops, bottoms, shoes) and the same skeleton
structure.

Table 3.1: Statistics for our example characters (as shown in Figure 3.7).
Character Index Vertices Heights Joints

1 9035 177 cm 65
2 10220 166 cm 65
3 9303 167 cm 65
4 9005 181 cm 65
5 10320 182 cm 65

There are about 150 character models with different customizations in DenseGATs’
dataset created with Adobe Fuse CC, and all of them are embedded with corresponding
skeleton structures properly. To produce basic skinning data for training, the linear
blend skinning method is used with eight maximum of joints influencing each vertex for
rough deformation. For the ground truth data, to reduce the tedious rigging workload,
the characters are firstly auto-skinned by Mixamo [3]. Then, for the inaccurate defor-
mations with obvious artefacts in specific poses (e.g., elbow bending, twisting, etc.),
manual refinements [44] were done by animators for more realistic effects. Figure 3.7
shows several test example characters with the rest pose in our dataset. These example
characters with the statistics are shown in Table. 3.1 including the number of vertices,
heights, and the number of joints. With all characters in our dataset, in order to save

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 49

GPU memories and training time, several character bodies without head parts are taken
into account. All characters are set with a standard skeleton structure, for a total of
65 joints for the entire skeleton. To accurately predict the mesh deformation generated
under any poses, we use two strategies to create the training examples. Firstly, in order
to cover the range of many possible poses, we manually set each skeletal joint in a
reasonable range for the rotation and scaling, and then generate poses by independently
and randomly sampling in the range of all joints. This sampling method ensures that
the full range of motion for each joint is contained in the training set. Furthermore, we
animate our character models with motions that appear frequently in animation such as
walking, jumping, running, and dancing provided by TurboSquid [6]. In total, there are
about 8500 poses generated with these methods for our characters, and several examples
are shown in Figure 3.8. Because the number of pose samples in the dataset is large, and
it also contains many possible random poses and common motions, our approximator
can accurately learn from the data and can robustly predict deformations for new poses.
Then, due to a large amount of computation during the training, we randomly select one
thousand consecutive vertices from each character mesh at each training epoch to en-
sure stable training while saving memories. To verify the effectiveness of our proposed
network, we use 125 training character models and five validation character models of
the dataset with about 8500 poses. The remaining 20 character models with random
poses are used for testing the network.

Figure 3.8: Example poses of our character. These include typical poses (walking, running,
jumping, and dancing) and random poses.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 50

3.2.3.2 Implementation details

Based on the amount of training data available, we explored a set of parameters which
can ensure the satisfied result while balancing the size of the network.

As shown in Figure 3.5, we first feed the input graph features into a nonlinear
transformation module which involves two fully connected hidden layers with 32 hidden
units and followed by tanh activation. Then the transformed features are fed into dense
modules. The network we propose involves three dense modules, each of which consists
of six GAT blocks. We found this setting is sufficient to approximate satisfactory results
without excessively increasing training time. To ensure maximum information flow
between GAT blocks in one module, all blocks are densely connected. For the internal
structure of the GAT block, we adopt a graph-attention-based aggregation stream with
the hidden features number of 8 and the multi-head number of 8. To increase the
effectiveness of the interpenetration, in the self-reinforced stream, input features are
processed by a linear layer with the feature size of 0.125 times the aggregation stream
output feature size (V = 0.125). The final layer of one GAT block is applied a tanhshrink
activation function. We refer to GAT blocks between each dense module as transition
blocks which have the same parameters with GAT blocks inside the dense module.
After all three dense modules, the resulting features are taken as being input to two fully
connected hidden layers with 512 and 128 hidden units and followed by tanh activation.
All the outputs of layers in the network are applied with 1D batch normalization.

We trained our model with nVIDIA GeForce RTX2080Ti GPU and set batch size
of 8. During the training process, we trained the model using the Adam optimization
method, with the initial learning rate of 1e-3. We further set the reducing learning rate
with decay factor of 0.75 when the loss has stopped decreasing beyond eight epochs.
The lower boundary on the learning rate of all param groups is set as 5e-7. For the
loss function of our network, we choose Mean Squared Error (MSE) to minimize the
distance between predicted displacement distributions and the ground truth displacement
distribution.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 51

3.2.3.3 Results of DenseGATs

To quantitatively evaluate the performance of our network, we measured the average
distance error, max distance error, and minimum distance error of our predicted de-
formations. For each character model in the test set, we animated them using walking
motions and computed the prediction vertex errors across all frames. Table. 3.2 shows
the prediction errors for the test models. It can be observed that our proposed method
can effectively predict the deformation for new characters with very low errors. With
our network, the prediction time for one character (e.g., No.2 character) in each frame
is about 31ms. In Figure 3.9, we further plot the average error of the No.2 test character
to visualize error distribution over the mesh for all frames of dancing and running ani-
mations. From these two plots, most of deviation distances are around 0.1cm within the
allowable range of accuracy. And the number of vertices decreases exponentially with
increasing distance errors. We found that the performance of predicting deformation
with running animation is better than with dancing animation, where there exist several
vertices in the dancing motion that have the estimated errors of more than 0.5cm. This
is because the dancing animation includes some extreme poses which are beyond the
range of network it was trained on.

Table 3.2: Prediction errors in “cm” between the ground truth and predicted vertices.
Character Index mean error max error min error

1 0.0662 1.1639 0.0003
2 0.1045 1.5832 0.0006
3 0.0947 1.4909 0.0003
4 0.0820 1.4201 0.0003
5 0.1289 1.6966 0.0005

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 52

Figure 3.9: Distribution of vertex errors. The left is for dancing animation, and the right is for
running animation.

To verify that our trained network is able to predict satisfactory and natural defor-
mation results, we animate the test models with weightlifter motion as shown in Figure
3.10. We focus on some contact regions where mesh deformation volume always cannot
be maintained and is highly prone to artefacts. The results approximated by our method
are hardly distinguishable from the ground truth, which demonstrates that our network
is able to correct the rough linear deformation to the more complex nonlinear one.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 53

Figure 3.10: Close-up of our test character’s contact regions in three frames of weightlifter
motions. Based on rough linear deformation, our method corrects linear deformations to
nonlinear ones by per vertex displacement correction.

We provide further intuitive deformation results with multiple poses in different
animations using error color map to qualitatively evaluate our method in Figure 3.11.
In Figure 3.12, we also provide a side-by-side comparison of the ground truth, the
approximated deformation, and the error color map of a test character with a walking
posture. With our proposed network, the approximated deformation results are visually
similar to the ground truth. It can be noted that the largest deformation errors are mainly
in the trousers (especially the top of trousers) of the character. The deformations in
these regions are always influenced by multiple bones. In addition, the trousers worn by
the test character are quite loose, whose mesh features are significantly different from
those in our training set. And these reasons result in some inaccurate approximation.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 54

Figure 3.11: Result of deformation approximation among different characters with different
poses. The vertices of the predicted mesh are colored to indicate per-vertex distance prediction
errors.

Figure 3.12: Comparison of ground truth (left), prediction results via DenseGATs (center), and
color map (right) indicating per-vertex distance error.

We compare our method with classical deformation methods LBS and DQS. As
shown in Figure 3.13, the deformation with LBS method shows the obvious artefact
of volume loss when twisting the elbow. Unnatural deformations are always found in
the areas near the shoulder, elbow, waist and the bottom of the pants. It is hard to
assign reliable weights with direct LBS method especially for those areas influenced
by multiple bones. For DQS result, bulging artifacts near the joints are very obvious
which still need artistic corrections. Our method, in contrast, given the inaccurate LBS
deformation, can accurately approximate most displacements of vertices and correct
them to nonlinear ones with no noticeable errors.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 55

Figure 3.13: Comparison of ground truth, color map of LBS, DQS, and our prediction.

Table 3.3: Evaluation of predicted distance errors (cm) using different network architectures.

Network mean error max error min error
DenseGATs (Ours) 0.0961 1.2551 0.0004

Ori.GAT 0.1693 2.1643 0.0009
NeuroSkinning network 0.1378 1.7689 0.0006

Ours w/o self-reinforcement 0.1153 1.3986 0.0002
Ours w/o dense connection 0.1425 1.4852 0.0006

Figure 3.14: Comparison of different network architectures. From left to right: (a) ours, (b)
original GAT, (c) NeuroSkinning, (d) ours (no self-reinforcement stream), (e) ours (no dense
connection).

To verify the effectiveness of our proposed network, we also conducted experiments

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 56

on character models in the test set with hip-hop dancing motion to compare the perfor-
mance with different network structures like those shown in Table 3.3. We first compare
with the original GAT [74] network which contains four graph convolutional layers.
Next, we evaluated the network described in NeuroSkinning [51] and followed the same
experimental settings. Based on our proposed structure, we respectively removed the
designed self-reinforced stream in each GAT block and dense connections between
each GAT block. The prediction results are summarized in Table 3.3 and an example
frame of the animation is shown in Figure 3.14. It could be observed that the original
GAT network sometimes fails to represent complicated graph information and produces
highest errors due to the limited representation of the shallow convolutional layers. The
NeuroSkinning network has the same problem as the original GAT because there are
only three graph convolutional layers in the whole structure. For DenseGATs structure
without self-reinforced stream and the structure of multiple GAT blocks without dense
connection, features can be well learned and the obvious approximation errors can be
improved to a certain extent, but they still cause some undesirable deformation in sev-
eral joint regions. In contrast, with our proposed network, the best prediction result
can be obtained with improvement rates of about 16.7% and 32.6% compared with the
DenseGATswithout self-reinforced stream andwithout dense connection. This suggests
that our network has better generalization ability owing to its self-reinforcement step
and dense propagation step.

3.2.3.4 Conclusion and discussion

We have presented a DenseGATs network that leverages existing well-designed skinning
features of characters to accurately predict deformation for new characters. To the best
of our knowledge, our method is the first deformation approximation solution based on
graph learning to perform nonlinear refinement of different characters in various poses.
Our GAT blocks and dense modules allow for efficient utilization and transmission of
self and adjacent information throughout the network. Experimental results demonstrate
that through these strategies, the skinning features from other characters can be reused
and the network is able to generate realistic nonlinear deformation results that are very
close to ground truth. The high-quality deformation predicted with our method can be

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 57

directly used for masses of similar characters in films, thus reducing the efforts made
by artists to re-rig for new characters each time.

Despite the success of addressing all challenges as mentioned in Section 1.2.1:
case1-chall.1-4, large-scale character datasets with a significant number of poses are
normally required for training to learn such automatic deformation tasks for the 1BC case.
Therefore, it is necessary to further figure out ways to further improve the generalization
ability of the model, so that case1-chall.4 can be solved more thoroughly.

There is still room for improvement in two aspects. First, when expressing de-
formations through graph node features, using the vertices position as features cannot
provide the spatial invariance. For example, this representation will result in graphs with
different spatial positions (but with the same pose) corresponding to the same output
deformations, which will greatly increase the requirements for the number of poses in
training. Therefore, our next first goal is to design representative graph features to con-
cisely express character deformations in different poses independent of spatial position.
Once the expressive features are obtained, next, a graph network needs to be designed
for building the relationship between encoded graph features and final deformation pre-
dictions. Although the network of DenseGATs can handle graph features effectively
thanks to the designed GAT block and dense module, it cannot essentially simplify
different mesh graphs and extract more general features to further avoid overfitting and
improve generalization ability. To this end, our next second goal is to propose a novel
network structure with better generalization ability that can summarize features from
existing character samples. The above two aspects inspired our next MultiResGNet
research.

3.3 Deformation with MultiResGNet

3.3.1 Mesh encoding with improved graph features

To make graph nodes informative and discriminative among diverse meshes with differ-
ent geometries and different transformations, it requires to assign attributes to each node.
While the feature design method mentioned in the last subsection can be followed, we
found that the approximated results are affected by the amount of character translations

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 58

due to the global position of the node attribute of the methods. To strengthen the feature
expression, we replace the original vertex position vector ?8 with the novel designed
feature descriptor A8 ()).

Concretely, to represent skinned mesh features with various poses, given the pose
vector) = [8)

0
, ...,8)B , ...,8

)
(
], where (is the total number of joints of a rig, and

8B ∈ R3 denotes the axis-angle of joint B. We define a novel relative skinning feature
descriptor as A8 ()) ∈ R3. When the joint B is rotated by an angle, the corresponding
rotation matrix can be expressed as:

�B ()) =
∏

?∈A(B)
/ (8 p), (3.7)

/ (8 p) = O + sin (‖8? ‖) ˆ̄l? + (1 − cos (‖8? ‖)) ˆ̄l2?, (3.8)

where ? ∈ A(B) is the ordered set of joint ancestors of joint B. / (8 p) is a local rotation
matrix computed by Rodrigues formula through axis angle 8 p, skew symmetric matrix
ˆ̄l? corresponding to vector 8 p, and identity matrix O.

Then, to reflect the influence of bone movement on each mesh node, we combine
the rotation matrix, linear skinning weight and rest pose position. Thus, our relative
skinning feature descriptor can be defined as:

A8 ()) =
(∑
:=B

FB,8�B ())�B ()∗)−1Ā8, (3.9)

where�B ()∗) is the rotation matrix of joint B in the rest pose)∗. FB,8 and Ā8 respectively
denote the skinning weight of the vertex E8 influenced by the joint B, and the rest pose
position of the vertex 8. Note that A8 ()) is translation-invariant instead of the simple
vertex position, because �B ()∗) is independent of joint position.

In total, together with the normal of vertex =8 ∈ R3 and the distance vector G8 =
[G8,1, ..., G8,B, ..., G8,(] ∈ R(, the final feature vector of graph nodes can be expressed as:
E8 = [A)8 ()), =)8 , G)8]. The dimension of E8 is also 6+(. Such graph feature representation
has the expressive power of basic linear-based deformations that can capture the skinning
features across different joint transformations (i.e., A8 ())), the whole range of mesh
surface features of different shapes (i.e., =8), and the binding relations between joints
and meshes (i.e., G8). The designed feature descriptors are translation-invariant and

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 59

enable the network to handle data more effectively. This improved graph construction
solution is proposed in our published work of MultiResGNet [49].

3.3.2 Deformation refinement through MultiResGNet

The network of DenseGATs has achieved success on automatically approximating non-
linear deformations for new animated characters. The designed operations for networks
(e.g., self-reinforced stream, dense connection) are workable to a certain extent that
make the prediction results satisfactory, the generalization ability of the trained net-
works are relatively not strong enough that output predictions sometimes are sensitive
to tiny changes of the features in the input.

Graph Construction

𝑣𝑖 = 𝑟𝑖
𝑇 , 𝑛𝑖

𝑇 , 𝑥𝑖
𝑇

F
ea

tu
re

T
ra

n
sf

o
rm

G
A

T
 B

lo
ck

G
A

T
 B

lo
ck

U
n
p
o
o
l

G
A

T
 B

lo
ck

G
A

T
 B

lo
ck

s
w

/

d
en

se

co
n

n
ec

ti
o

n

F
ea

tu
re

T
ra

n
sf

o
rm

⨁
∆

Deformation Approximation via MultiResGNet

global branch

(resolution: N, N*)

local branch

(resolution: N)

⨁

(linear + batch norm + activation)≡

𝑁
×

3
2

𝑁
*
×

3
2

P
o
o
l

𝑁
*
×

3
8

4

𝑁
*
×

3
8

4

𝑁
×

3
8

4

𝑁
×

3
2

0

𝑁
×

7
6

8

𝑁
×

3≡ self-reinforced stream || aggregation stream

Feature Transform

GAT Block

GAT Blocks w/

dense connection
≡

ሻ
𝓖
=
(𝒱
,ℰ
,𝐔

Figure 3.15: The framework of MultiResGNet.

We therefore propose a novel and effective approach to address limitations of network
generalization capabilities. Our proposedmodel (Figure 3.15), namedMulti-Resolution
Graph Network (MultiResGNet), integrates multi-resolution graph features for training
and inferencing. It contains a local branch and a global branch, dealing with original-
resolution graphs and down-sampled lower-resolution graphs respectively. At last,
processed features from two branches will be concatenated, and then pass through
a feature transformation module to generate the final predictions. Here, the number
of GAT blocks and pooling/unpooling operations in the two branches are designed
according to the optimal computing time and accuracy of our data.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 60

3.3.2.1 Local branch

The local branch utilizes several densely connected graph-attention-network (GAT)
blocks to deal with local features. We adopt the same GAT structure with dense
connection pattern as mentioned in DenseGATs [48]. Specifically, feature nodes ®E [;]

8
is

processed after < GAT blocks with the dense connection pattern, resulting in ®E [;+<]
8

.
Despite the outstanding performance in extracting detail features, pure single-

resolution graph convolution is not enough for complicated character deformation ap-
proximation. It neglects the entire graph structure information and tends to overfit the
relationship between input features and output deformations, thus sometimes general-
izing poorly to new characters and poses. To address the aforementioned limitations,
we additionally propose the global branch with the attention-based pooling operation to
globally summarize all the node feature representations.

3.3.2.2 Global branch

The global branch utilizes lower-resolution graphs (with sparse vertices) to capture
the overall structural information. To achieve the coarse representation of the original
graph, there is a need to first define the pooling strategy. In our work, we present an edge
contraction operation which follows the attention mechanism to calculate the coefficient
U
[;]
8 9

of a node with its neighbors in Equation (3.4). We regard the obtained coefficient
as being the edge score of each pair of nodes. By sorting all edges of their scores, the
node which is adjacent to 8 with the highest attention coefficient can be depicted as:

9∗ = arg max
9∈N (8)

U
[;]
8 9
. (3.10)

Iteratively, we implement edge contraction on the overall mesh. Edges with highest
score are contracted and the nodes that belong to the contracted edges are ignored for
other edge contractions. For example, if 9∗ is selected by 8, they will be merged and then
j will no longer participate in other node’s merging. In this way, after all nodes have
been traversed, that is, nodes have been merged once or the node cannot join the merge
of its adjacent nodes (because all adjacent nodes have been merged with others), one
pooling ends. The defined pooling operation allows both nodal features and topology
features to yield hierarchical representations. Through this process, the total number of

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 61

nodes will become #∗ that roughly equals to 50% of the original # as shown in Figure
3.16 left. Specifically, if all graph nodes have been merged (every two nodes becomes
one node), the #∗ is exactly 50% of the original #; if there remain some separate nodes
which have not been merged, the #∗ is larger than 50% of the original # .

Figure 3.16: Pooling and unpooling in action on mesh graph nodes.

The pooling operation will create newly merged nodes. Together with the edge
score, we combine the features from the previous pair of nodes to obtain the new node
features:

®6 [;+1]
8 9∗ = U

[;]
8 9∗ (®E

[;]
8
+ ®E [;]

9∗). (3.11)

In order to learn the global information, the new node features ®6 [;+1]
8 9∗ of the lower-

resolution mesh graph are then fed as input for several GAT blocks. After processing
with 1 GAT blocks, the features are transformed into ®6 [;+1+1]

8 9∗ .
For the inverse of pooling, we also perform the corresponding unpooling operation.

To restore the graph to its original structure, nodes are given the mapping of location
information from the pooling layer. After this step, the number of nodes will be restored
from #∗ to # as shown in Figure 3.16 right. Moreover, the unpooled features of nodes
are computed with the edge score:

®6 [;+1+2]
8

= ®6 [;+1+2]
9∗ = ®6 [;+1+1]

8 9∗ /U[;]
8 9∗ . (3.12)

Lastly, the output features from the local branch and global branch are concatenated
together. This strategy enables fusion of the fine detail information and spatial context

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 62

information. These fused features finally undergo a feature transformationmodule 5CA0=B
to enable the final prediction:

Δ8 = 5CA0=B (®E [;+<]8
‖ 5GATB(®6 [;+1+2]8

)), (3.13)

where Δ8 ∈ R3 is the corrective displacement of the node 8 in the graph. While
forwarding a linear-deformed mesh graph into our MultiResGNet, (·), it can produce
a set of refined displacements Δ of mesh vertices. It should be noted that the trainable
weights (], N, etc.) in the network are related to the dimension of node features but
are not affected by the number of mesh vertices # . Therefore, the trained networks has
no constraints on the number of vertices and can be applied to meshes with different
topologies. Ideal properties of such multi-resolution graph network include having a
strong generalization ability of deformation approximation for unseen characters and
the ability to refine details with the help of existing deformation knowledge.

3.3.3 Evaluation of MultiResGNet
3.3.3.1 Dataset

Weuse 75 charactermodels by different shapes and customizations for training, five char-
acters for validation, and 10 characters for testing with Adobe Fuse CC. All characters
share the same standard skeleton with 65 joints. Each character contains linear-based
deformations as the baseline, and high-quality nonlinear deformations as the learning
objective. Specifically, the LBS method is used to create linear-based deformations
where skinning weights are directly determined by the geodesic voxel distance without
modification and a vertex is set to be influenced by no more than four joints. Here,
we have tried to replace this LBS baseline with Dual Quaternion Skinning (DQS)
method [33], and found that the accuracy of the approximation results has no obvi-
ous improvement. In particular, each character in our training set is animated with
250 poses, of which 150 poses are randomly generated and the remaining 100 poses
are from frequent motions of walking, jumping, and running. Here, because of our
translation-invariant features, the number of training poses is significantly decreased
compared with DenseGATs. Although our features are not rotation-invariant (because
the features are still related to the rotation angle of the bones), by randomly sampling

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 63

joints range to create various random poses, our method can ensure accurate predictions
of deformations under the pose within a reasonable range. To further ensure the robust-
ness of the approximator, data augmentation (e.g., randomly rotating meshes) could be
used when creating the dataset in the future.

To further evaluate our method on standard human models, we also leverage the
SMPL dataset [52] which contains detailed deformations of different bodies performing
animation sequences. For our training set, it includes five female subjects and three
male subjects. These characters are deformed with sample poses, with the total number
of 2955, which are selected from motion sequences of dancing, jumping, and butterfly
kicking. For testing, we use one female and one male characters and animate them
separately with dancing and front kicking motions.

3.3.3.2 Implementation details

As shown in Figure 3.15, after graph construction, the graph features are first normalized
using the mean and variance for each dimension and input into a feature transformation
module that contains two hidden layers with hidden neurons of (64, 32) and applied
with batch normalization and tanh nonlinear activation function. Then, the transformed
features are forwarded into two branches for the processing of multi-resolution graphs.
To learn the overall structural features, pooling is implemented so that the number of
nodes is reduced by roughly half to become #∗. The size of the feature dimension
remains unchanged. The lower-resolution graph features are then processed by two
GAT blocks. Each GAT block involves a graph-attention-based aggregation stream
with hidden feature size of 16, multi-head number is 8, and a self-reinforced stream
with hidden feature size of 128. Features will be transformed with tanhshrink activation
function in the last layer of the GAT block. Unpooling operation, which is the inverse
operation of pooling, is conducted to restore the original graph resolution of # . For
the local branch, the parameters setting of GAT block is the same as that mentioned for
the global branch. Finally, features from two branches are concatenated together and
fed into the last feature transformation module with two hidden layers, where hidden
neurons are (256, 64).

Training was implemented on nVIDIAGeForce RTX2080Ti GPU. During the train-

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 64

ing, we used the Adam optimization algorithm with an initial learning rate of 0.01 and
set the decay factor with 0.75 to reduce the learning rate when loss stopped decreasing
for eight epochs. To minimize errors between approximated and ground truth displace-
ments, the mean squared error is used as the loss function. To ensure stable training,
we randomly located a vertex and selected the surrounding 1024 consecutive vertices
each time until traversing the entire meshes. The total training with our created dataset
and with SMPL dataset took roughly one week, and 25 hours respectively.

3.3.3.3 Results of MultiResGNet

To demonstrate the generalization capabilities of our method to new poses, we evaluated
a character appearing in the training set and animated it with an unseen motion of
playing golf. Figure 3.17 shows the per-vertex mean distance error of rough linear
based deformation, LBS method, DQS method and our proposed method in 50 frames.
It can be observed that through our MultiResGNet prediction, the generated nonlinear
shape corrections are relatively average, with about 0.28cm improvement compared
with the input rough linear-based deformation. For the deformation of LBS and DQS,
even if the skinning weights are manually adjusted, due to the inherent limitation of the
algorithms, the overall mean errors are still relatively large. In contrast, with our graph-
learning-based approximation, the mean error of the deformation reaches to 0.09cm.
Based on significantly decreased pose training samples, our approximation with lower
errors demonstrates that our proposed network with novel graph descriptors has a good
generalization ability for predicting nonlinear deformation with new poses.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 65

Figure 3.17: Quantitative evaluation of generalization to new poses. The test motion “playing
golf” with 50 frames is applied with a character in training set. We show the mean distance error,
comparing our method with the input rough deformation of linear-based deformation, LBS, and
DQS.

To evaluate the generalization ability of our method to new characters, we first define
the new characters as having different shapes (but the same number of vertices) or
different subject models (different mesh geometries) from the characters in training set.
For these two cases, we separately conducted experiments with walking and running
motions to evaluate our trained networks. As shown in Figure 3.18, the per-vertex
distance error of the new shape case is about 0.06cm and of the new subject case is
about 0.11cmon average. Comparedwith the input rough linear-based deformations, our
approximations can increase the average accuracies of 0.16cm and 0.13cm respectively.
We found that our approximation has less errors and higher accuracy improvement
for new shape deformations. It illustrates that our networks have better generalization
abilities for new shapes where the geometry structure of meshes is unchanged from the
character in the training set. When approximating for new subject models, the trained
networks also have certain inference although the mesh geometry is completely new.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 66

Figure 3.18: Quantitative evaluation of generalization to new characters. Top plot: Per-vertex
mean error of a new character shape deformation with walking motion in 50 frames. Bottom
plot: Per-vertex mean error of a new subject model deformation with running motion in 50
frames.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 67

frm9

frm39

(a) (b) (c) (d) (e) (f)

>1

0

0.5

(cm)

Figure 3.19: Evaluation of generalization to new poses. We show deformations of the motions
of a character playing golf in the 9th and 39th frames, and side-by-side compare the ground truth
(a), rough linear-based deformation (b), LBS with weight refinements (c), DQS with weight
refinements (d), our prediction (e) and our approximation colormap (f). The vertices of the
approximated mesh are colored to indicate the per-vertex distance error in centimetres.

To illustrate Figure 3.17 in a more intuitive way, we show the qualitative deforma-
tion results under the animation of playing golf in Figure 3.19. We focused on the
representative frames which have the largest distance error (frm9) and the average error
(frm39) of all frames. In the 9th frame, the largest errors tend to occur in the armpits
and shoulders due to bending and substantial stretches. Since the skinning weight are
automatically generated without modification, rough linear-based deformation has the
significant artefacts in the right armpit. The deformations of LBS and DQS have im-
proved this problem to a certain extent due to the manual refinements, but the visible
volume loss and joint bulging (in the shoulder area) still exist in the results of LBS
and DQS respectively which cause the mean errors of the entire body to be still large
in Figure 3.17. Our deformation tends to produce the result that is most similar to the
ground truth. The overall approximation error of upper body is higher than other body
parts, this is because the large movements are concentrated on this area. However, these

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 68

errors are relatively small compared to the whole body and barely noticeable during
the animation. In the 39th frame, we provide the detail of deformation results when
the elbow is bent. Visually, the approximation with our method can nicely mimic the
desired elbow bending behavior around the joint and give the best deformation effect
than other methods. Also, the whole character can be deformed well so that is hardly
distinguishable from the ground truth.

Training sample Different shape Our prediction Distance error

>1

0

0.5

(cm)

Figure 3.20: Evaluation of generalization to new shapes. Test thinner characters in walking
poses. Colormaps depict the per-vertex distance error of the predicted deformation.

Figure 3.20 shows the sample frames of walking motion for two test characters
with new body shapes. For the character in the lower row, the error colormap on the
mesh demonstrates the outstanding generalization ability of our trained network where
the approximated deformation closely matches the ground truth. The numerical error
of each frame corresponds to the Figure 3.18 - generalization to new shapes. In the
upper row of Figure 3.20, because of the change in the body shape and the lower edge
of the camisole does not fit the body, the biggest deformation error occurs when the
character takes a step. In addition, the inaccurate deformation in the right armpit area
is approximated because mesh vertices in this region are affected by multiple joints and

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 69

the region is also the edge of camisole that is adjacent to the body, thus tending to be
problematic.

Ground truth Linear-based Our prediction Distance error

>1

0

0.5

(cm)

Figure 3.21: Evaluation of generalization to new subjects. Test new subject in a running
pose. Based on the rough linear-based deformation, our method corrects each vertex with a
displacement so that the deformation becomes nonlinear, and no noticeable errors are found in
the right colormap.

Additionally, in Figure 3.21, we visually evaluated the quality of our proposed
approach on generalization to new subject models, where we compared the deformations
between ground truth, linear-based method, and our approximations. The test character
model is a new subject that its mesh geometries are completely different from characters
in training set. As shown in the figure, the overall deformation is successfully predicted
using our MultiResGNet, with better performance than the linear-based deformation.
Detailed improvements are achieved especially in the area where the pants and belly
contact. The prediction error distribution of the whole body is very small and relatively
average, for the reason that the clothing is fitted and the running motion is a whole-body
movement. Here, the hair part was not approximated by our network, so it remained the
same as linear-based results.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 70

Ground truth Linear-based Our prediction Error of linear-based Error of our prediction

>1

0

0.5

(cm)

Figure 3.22: Evaluation of generalization to new characters with new poses. The dancingmotion
is used for testing for two new characters. We show ground truth, linear-based deformation(as
input), our approximation result and colormaps of per-vertex error.

Finally, we further demonstrate the generalization ability of our network to approx-
imate nonlinear deformations for new characters with new poses. As shown in Figure
3.22, we selected two test characters, and animated them with dancing motions. As
expected, plausible and realistic deformations can be produced without particularly
noticeable artefacts. The areas with large errors are concentrated in the armpits and
crotch, and near the joints which are controlled by multiple bones. As our network is
only trained with a small number of representative character models and poses, they are
still able to produce visually plausible deformation effects that can meet the animation
production needs.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 71

(a) (b)

Figure 3.23: Deformation results with vertex position features (a) and with our relative skinning
features (b).

To verify the effectiveness of our proposed graph features, we performed an abla-
tion study to compare deformations between common position features and our newly
proposed relative skinning features. The graphs containing these two different features
were respectively input into the same MultiResGNet, following the training settings
mentioned in Section 6.2.1. We used the inverted pose for testing, and its position is
not at the origin. In Figure 3.23, the approximated deformation with our features is
more natural than with position features, especially in the areas of knees, wrists, and
inner thighs. Specifically, the mean error of (a) and (b) is about 0.26cm and 0.15cm
respectively. Because of the translation-invariance of ours, the local predicted offsets
remain unchanged even though the global position changes significantly. In this way, the
trained network can learn a variety of deformations through a small number of training
poses (250 poses per character), and is effective for all spatial positions.

3.3.3.4 Comparison

we conducted experiments with two types dataset, i.e., our created humanoid characters
with different customizations and the SMPL realistic human bodies, to measure the
generalization ability of our proposed deformation method.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 72

Figure 3.24: Comparison among different learning-based methods. Colormap shows the dis-
tance error to ground truth.

Comparison on our created dataset. We compared our DenseGATs and MultiRes-
GNet with other learning-based methods. In addition, to further evaluate the general-
ization ability of our proposed MultiResGNet, we also compared the performance of
the different network structure and the different number of training samples, where the
global branch used in our method was removed and the amount of training characters
was decreased to 25 and 50. As listed in Table 3.4, we respectively compared with
MLP (with hidden neurons of (256, 512, 512, 128), batch normalization and tanh ac-
tivation function), NeuroSkinning [51], DenseGATs [48], MultiResGNet without the
global branch (with single-resolution graphs), and MultiResGNet trained with 25 and
50 samples. Since the network of NeuroSkinning also uses GAT, here we compared
with its structure and predict our output (instead of the weights in its original paper).
For the NeuroSkinning and DenseGATs, we adopted the same features in their original
work and trained the networks with 75 characters and 8500 poses per character. For the
training of MLP, we utilized our proposed features and also trained it with 75 characters
and 8500 poses per character.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 73

Table 3.4: Evaluation of predicted distance errors (cm) using different learning-based methods.

Structure mean error max error min error
MultiResGNet 0.1121 0.5795 0.0038

MLP 0.3962 13.0968 0.0017
NeuroSkinning 0.2377 1.3316 0.0104
DenseGATs 0.1887 1.0324 0.0099

MultiResGNet single res 0.1610 1.2328 0.0101
MultiResGNet train 25 samples 0.2594 1.4826 0.0101
MultiResGNet train 50 samples 0.1728 1.3570 0.0103

To evaluate the generalization ability of our MultiResGNet method, we respectively
trained it with 75 characters (original training data setting), 50 characters, and 25 charac-
ters, and each of the character was animated with 250 poses. To verify the effectiveness
of themulti-resolution strategy, we removed the global branch from the original structure
and used the same training amount with 75 characters and 250 poses. The qualitative
results are shown in Figure 3.24. As observed, the greatest approximation errors are
generated by the MLP network, which shows that the pure fully connected network
cannot achieve large amounts of complicated approximations of nonlinear offsets and
hardly apply the prior skinning knowledge to new character models. As graph-learning-
based methods, NeuroSkinning and DenseGATs successfully predict the overall vertex
displacements for characters whose translation does not change dramatically. Also,
there are still undesirable effects on the areas near the armpits and belly. For the Mul-
tiResGNet without the global branch, since the graph resolution throughout the network
is constant that equals to # , it can produce convincing effects in most mesh areas but
also causes some obvious errors. With less training data, the approximation accuracy
of our method could maintain to some degree, but deformation errors near joints are
also produced. We found that setting the number of training characters to 75 allows
the deformation predicted by the network achieve visually plausible effects that errors
of mesh vertex deviations are within a small range. Thanks to the representative graph
features and multi-resolution graph operation, our method enable easier generalization
to new characters with new poses based on knowledge which is learned from existing
deformations.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 74

Comparison on the SMPL dataset. Since DenseGATs [48] and MultiResGNet both
approximate deformations by estimating the nonlinear residuals based on rough defor-
mations, and both achieved the good result in the previous experiment, next we will
apply the SMPL dataset to conduct further comparison.

In Figure 3.25, we demonstrate the generalization capabilities to a new SMPL
character body. In particular, we followed the training setting mentioned in Section
6.2.1 and then test the trained network using one female character (height: 169cm)
with new body mass performing the dancing motion sequence. Since this task is
not complicated, both two methods have achieved satisfactory results with a very low
average error (DenseGATs: 0.15cm; MultiResGNet: 0.08cm) relative to the ground
truth. In contrast, the MultiResGNet generates more natural deformations in the areas
of base of the thigh and the chest near the upper arm that is clamped.

Figure 3.25: Generalization to a new SMPL character body: DenseGATs [48] and MultiRes-
GNet.

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 75

Figure 3.26: Generalization to a new SMPL character body with new front kicking poses:
DenseGATs [48] and MultiResGNet.

Furthermore, with the SMPL data, we also quantitatively demonstrate the general-
ization capacities to the new character body and poses. Specifically, we used the trained
network to predict deformations for a male subject (height: 177cm) with the front
kicking motion, while both the character and the motion are unseen in the training set.
As shown in Figure 3.26, the deformation results of DenseGATs tend to generate large
approximation errors in regions near joints. Unlike DenseGATs, the relative skinning
descriptor of ours includes rich pose knowledge which can be used to approximate new
complicated poses. To this end, our proposed method could make full use of prior
feature knowledge and outperforms DenseGATs for unseen cases. Numerically, the
average and maximum errors of the results using our method are (0.14cm, 1.32cm),
which are also better than theirs (0.23cm, 1.80cm).

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 76

3.3.3.5 Conclusion and discussion

We present a graph-learning-based method MultiResGNet for automatically approx-
imating nonlinear deformations. Compared with DenseGATs, the advantage of our
approach is that the proposed network has better generalization ability, that can use
fewer training samples for accurate deformation approximation. Our novel relative
skinning feature descriptor breaks through the lack of translation-invariance of using
vertex position to represent pose information in the past learning-based methods. Even
if it is not rotation-invariant (because it is calculated by joints rotation angles), through
encoding it and the other two feature descriptors, the graph mesh attributes along with
poses still can be effectively expressed in a more efficient way. Next, by using our
proposed novel expressive graph features, we are able to model nonlinear offsets as
a function of mesh graphs, with the help of the multi-resolution graph network. We
conducted experiments to evaluate our method and the results demonstrate that the
generalization abilities to new poses and new character models outperform existing
methods.

3.4 Summary of the 1BC Case Deformation Methods

In this chapter, we have presented methods of DenseGATs and MultiResGNet for the
1BC case deformation approximation, that both take mesh graph as the input and use
the graph-based network to output nonlinear correction offsets. The proposed methods
can predict deformations of new characters with new poses, so they can be applied to
animation pipelines to reduce the manual labor of animators. DenseGATs is the first
method to propose the pioneering idea of using a graph-based framework to predict the
nonlinear deviation under each action. Two technical contributions: GAT blocks and
densemodules enable the network to effectively process huge numbers of complex graph
features andmake reasonablemappings. On the basis ofDenseGATs, we further propose
the method of MultiResGNet to improve the generalization ability of the model. By
designing the novel relative skinning features and processing multi-resolution graphs
with two-branch MultiResGNet, the method is able to use fewer training samples to
achieve realistic deformation approximation. We showed the importance of all proposed

CHAPTER 3. DEFORMATION APPROXIMATION - 1() CASE 77

solutions. Experimental results illustrated that our methods achieve better performance
than prior studies in deformation approximation for unseen humanoid characters and
poses.

Since our DenseGATs and MultiResGNet are both learning-based methods, the
quality of the deformation approximation also depends on the data in the dataset. In
order to make the network easier to learn, the baseline deformation (coarse deformation)
in the dataset should have the same settings, so that the model can better learn the
deviation from the baseline to the final accurate deformation. In addition, currently,
our dataset only contains tight-fitting characters (with bare legs or wearing tight pants),
so it is better to ensure that the test character is also such situations in order to have
high-quality deformation predictions. Finally, because the dimension of graph features
input into the network are related to the number of skeletal joints, when using the well-
trained network, the test character must have the same number of joints. Currently, the
characters in our dataset have the standard humanoid skeleton with 65 joints, which can
be applied to most two-limbed animated characters in animations.

Chapter 4

Deformation Approximation - 2=3 Case

4.1 Context and Observations

4.1.1 Background of the 2=3 case deformation

In application fields including virtual try-on, online shopping, and fashion design games,
generating the interaction between clothes and body is an important research content
in the field of computer graphics. The classic –and still nowadays prevalent– approach
is based on physics-based methods [61, 62] which formulate deformations within a
simulation framework. Despite the convincing effects generated by these methods, the
expensive computational cost and potential instabilities obstruct their deployment in
real-time applications.

As shown in Figure 1.4, the deformation in this situation tends to represent com-
plicated wrinkles of clothing appearance. To achieve such visual effects and reduce
computing time, as an alternative approach to physics-based deformation methods,
learning-based solutions have recently received more attention from researchers. Their
core idea is to learn a model which can mimic the deformation behaviors after training
with the dataset. Studies [18,63,68,72,75] have demonstrated the possibility of realiz-
ing nonlinear deformations using trained models for clothing animation. However, two
obvious limitations of these learning-based models still exist: the dramatic inability to
generalize to new garments and new poses, and the inability to produce highly complex
folds. In the next subsection, we will discuss the reasons for these limitations.

78

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 79

4.1.2 Unsolved problems in state-of-art studies

Most state-of-art studies [63,68,72] adopt MLP models to predict clothing deformation
that they input a flattered vector consisting of body shape and pose parameters and
output the deformed garment. Although garments predicted by this method contain
plausible wrinkles, due to the limitation of MLPs architecture, the dimensions of the
input and output vectors, which are related to the number of vertices, need to be
fixed, enforcing training and test garments always have the same topology with the
same number of vertices. Succinctly, using MLPs will suffer from the fundamental
generalization problem that the trained model is only applicable to the specific garment.
In addition, because of the limited ability of MLPs to understand 3D information, a
large number of models are usually required to complete the deformation approximation
task.

To address the above limitations, recent work [18,75] propose graph-learning-based
solutions for clothing deformations. Even if they avoid the problems of MLPs and
allow the generalization to new meshes, the generalization ability is still weak that the
predicted results tend to be overly smooth without rich wrinkles. Moreover, due to
the weak generalization, the model [75] only estimates deformations in one pose (if
various poses are introduced, the task will become more complicated and the prediction
accuracy cannot be guaranteed). Essentially, existing graph-learning-basedmethods fail
to stably map large amounts of complex graph features to corresponding deformations;
therefore, they overfit between input and output, and generalize poorly to new subjects
and poses. Three aspects (as listed in Section 1.2.2: case2-chall.1-3) have led to
the above problems. First, the input parameters in previous studies do not consider
the parameters that implicitly have an important influence on the fold. Second, the
straightforward prediction of the clothing deformation (displacement with the body)
is an extremely difficult task, resulting in overly smooth unrealistic results. Last, the
network architecture is designed to directly approximate deformations as a function of
graphs which results in lower performance with weak generalization ability. These keys
challenges motivate the proposal of our GarFitNet.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 80

4.1.3 Our observations and proposal outline

Different from the 1BC case of deformation approximation for characters with an integral
mesh of the garment and the cloth, in the 2=3 case, the garment and the body are
designed separately with their own mesh. In this situation, the garment mesh "coarse

cannot be directly obtained as in the 1BC case (just direct use linear-based skinning
for the whole object who is already dressed), it requires an additional step: draping
the garment on different bodies first. Through this step, a dressed character with the
clothing deformation of"coarse can be approximated. Then, to accurately reflect detailed
deformations of garments, we learn a graph-learning-based model that produces fine-
scale wrinkles , (G;Ψ) for any given garment mesh topology. The outline including
these two steps is depicted in Figure 4.1.

Figure 4.1: The outline of our GarFitNet.

In order to achieve complex clothing deformation, we first made observations on
parameters that affect the quality of deformation. Our first observation is that the fit of
the garment and body influences the degree of wrinkles. As shown in Figure 4.2, for
the fixed clothing material, when the fit degree is from loose to tight, the wrinkles of
garments are from smoother and sparser with wider width to detailed and denser with
a narrower width. This observation inspired us to generate the fit parameter as one of
the network inputs, which can better target the different suitability of clothing thereby
producing more realistic deformations. We will discuss the detailed method based on
this observation in the next section.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 81

Figure 4.2: First observation: the fit of garment of body influences the wrinkles.

Another observation we made is that the task of directly outputting the deformation
refinement of three-dimensional offset adjustments per vertex is extremely difficult, and
the trainingwith one graph neural network is hard to converge, resulting in the prediction
results still being overly smooth. In response to this problem, past learning studies have
chosen to increase the number of networks (with more than 20 MLPs) while sacrificing
the generalization ability of the model [63], or reduce the difficulty of the task [75]
(each garment is only predicted with one posture’s deformation) to ensure the effective
output. These have not fundamentally solved the issue of the high degree of freedom
in the output dimension. In this work, we propose a novel decomposition method to
decompose the output with a wide range (−∞, +∞) to a narrow range which makes the
learning task easy to converge therefore producing the desired deformation results with
fine wrinkles for the arbitrary garment.

4.2 Coarse Deformation

In this section, we will describe the first step we address: the approximation of garment
coarse deformations caused by the target body shape.

4.2.1 Fit parameter

As stated in Figure 4.2, the fit of the garment and body plays a key role in resulting
deformation. In this work, we express the “fit" by generating fit variation U which
is computed by using factor analysis to build the relationship between garments and
bodies.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 82

For the target body, we adopt the SMPL model [53] which represents the human
body "1 (·) as a parametric function of shape (#) and pose ()):

"1 = ,smpl("̄1, � (#),) ,W), (4.1)

"̄1 =) + �B (#) + �? ()), (4.2)

where it computes a linear function "̄1 to add displacements caused by shape �B (#)
and pose �? ()) to base mesh vertices) ∈ R#1×3 in a t-pose, followed by learned
skinning (,smpl(·)). Here, V ∈ R|V |, |V | is the number of shape coefficients.) =

[8)
0
, ...,8)B , ...,8

)
(
], where (is the total number of joints of a rig, and 8B ∈ R3 denotes

the axis-angle of joint B. W denotes the skinning weights of skeletal structure � (·).
Specifically, given a set of garment-body pairs (#pairs) which consist of different

SMPLbody shapes and different garment sizes, at first, we compute the distance between
un-posed garments "̄6 and bodies "̄1. Here, "̄6 and "̄1 respectively have #6 and #1
vertices. The distance �8 of the 8Cℎ garment-body pair is:

�8 = ‖("̄6 − O"̄1)8‖2, (4.3)

where �8 ∈ R#6 . O ∈ {0, 1}#6×#1 is the indicator matrix to evaluates if the garment
vertex is associated with the body vertex. In total, there are #pairs of �8 to form the
J ∈ R#6×#pairs . This J can indicate the distance between the garment and the body,
so that can be used to measure whether the clothes are loose or tight. However, the
dimension of J is relatively high and complex, and it is impossible for animators
or users to have an intuitive experience, that is, to directly adjust a few numbers to
change the fit degree. Therefore, in order to seek expressive and simple expression,
we need a matrix decomposition method that studies optimal strategies for matrix
dimensionality reduction. Although there are many matrix decomposition methods, the
main advantage of factor analysis is that it can model the variance in every dimension
of the input space independently [19]. Moreover, the different dimensional features
generated from factor analysis seem more independent and semantically meaningful
than methods that do not model heteroscedastic noise; therefore, we compute the fit
parameter using factor analysis. Considering the speed of convergence, instead of using
the expectation maximization (EM) algorithm, which is commonly used in machine

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 83

learning for computing the factor loading matrix, we apply a faster method named
SVD-based likelihood optimization [11]. Factor analysis in matrix term is defined as:

J − - ≈ RG, (4.4)

where - ∈ R#6 is the mean vector. R ∈ R#6×3 and G ∈ R3×#pairs denote the loading
matrix and factors. R means the influence of each channel upon generating G in each
dimension. In this way, G consists of #pairs of vector U ∈ R3 which provide a lower-
dimensional suitableness presentation for each garment-body pair. As shown in Figure
4.3, the first component of U changes from small to large, resulting in the fit of the
garment and the body changing from tight to loose.

Figure 4.3: Overview of garment fit space.

4.2.2 Coarse garment deformation

Having the garment template provided by designers and parametric bodies from popular
SMPL model [53], the first step is to drape the garment onto bodies with the desired
fit. To produce the coarse effects "coarse of the garment deformation, we seek to learn
a regressor,coarse that outputs a smoothed draped of the garment onto the target body
shape with the fit degree U.

Two key elements are required to design the coarse regressor ,coarse to roughly
estimate the deformation effect of the garment according to the body and the degree
of fit. First, the regressor should have the generalization ability which is able to deal
with arbitrary garments and bodies. Second, the regressor should be able to realize
plausible performance that can infer the overall deformation based on features learned
during the training. Specifically, in our work, we use the 4-layer graph-attention-based
network to achieve this task (see Figure 4.4). we first build a mesh graph for body:
G1′ = (V1′, E1′,U1′) which stores features of a part of verticesV1′ = {1, ..., #1′} (#1′ is

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 84

a part of #1), edges E1′ ⊆ V1′×V1′, and the adjacency representationU ∈ [0, 1]#1′×#1′ .
Specifically, though indicator matrix O, we found the #1′ number of vertices from body
which is related to garment (#1′ = #6), and also apply the connection to edges E1′.

Based on the proposed graph construction method in Section 3.3.1, we assign fea-
tures to the graph nodes. The feature vector can be represented as: E1′8 = [A)1′8 ()), =

)
1′8, U].

For A1′8 ()), we multiply the skinning weight FB,1′8, the body joint rotation matrix�B ()),
�B ()∗), and the Ā1′8 by following Equation 3.9. Then, combining with the vertex normal
=1′8, and the fit degree U, to get the final mesh node presentation E1′8 ∈ R9.

Next, we input the graph into our coarse regressor,coarse

,coarse(G1′) = Δcoarse (4.5)

to approximate a vector of displacement from body to coarse garment Δcoarse ∈ R3×#6 .
Then, the predicted coarse garment "coarse is computed by adding the vertex offsets
onto the corresponding body mesh "1′:

"coarse = "1′ + Δcoarse. (4.6)

Figure 4.4: Outline of approximating the coarse deformation.

The whole process of generating the coarse deformation can be shown in Figure
4.4. Note that, we adopt the output decomposition way for accurately approximating the
garment coarse deformation. The detail of the output decomposition will be described
in Section 4.3.2. To train the regressor ,coarse, we create a dataset of ground-truth
deformations of garments with different sizes using physics-based deformation [61] on

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 85

different SMPL body shapes. To obtain the coarse data, we apply a Laplacian smoothing
operator to each generated garment meshes.

4.3 Refinement through GarFitNet

After the first step of generating garment coarse deformations "coarse due to target body
shape, pose, and fit parameters, we next add fine details on the roughly deformedmeshes.
The reasons for designing two steps rather than directly predicting final deformations
have two folds: first, it eases the learning task since it reduces the variance in data.
Direct mapping from the given parameters to the final result, i.e., draping garments on
bodies and estimating the precise deformation, is too difficult to guarantee the effective
learning of the network. The training processwill unavoidably suffer from the overfitting
problem, and the trained network has poor generalization ability for approximating new
objects. Second, it decouples target deformations (i.e., global stretching and draping
effects) from fine wrinkles deformations, which we will learn in a subsequent step.

In this section, we will describe how to refine the garment from "coarse to " with
our garment-fit network (GarFitNet).

4.3.1 Garment mesh encoding

Starting from the coarse garment mesh "coarse, we first build a mesh graph G =

(V, E,U) which stores features of vertices V =
{
1, ..., #6

}
, edges E ⊆ V × V, and

the adjacency representation U ∈ [0, 1]#6×#6 . We assign features to the graph nodes:
E8 = [A8 ())) , =)8 , G)8]. Here, A8 ()) denotes the relative skinning features of garment and
can be computed by:

A8 ()) = A1′8 ()) + Δcoarse,i. (4.7)

where A1′8 ()) ∈ R3 is computed in Section 5.2.2 following Equation 3.9. Δcoarse,i ∈ R3

is per vertex displacement. Together with the normal of vertex of the garment =8 and
the distance vector from the vertex of garment to joints G8, the dimension of the final
feature vector E8 = [A)8 ()), =)8 , G)8] is also 6 + (, where (is the number of joints. In
this way, the garment graph features can contain all the geometry and pose information

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 86

available in context. We then take the constructed graph as the input and forward it into
the graph-learning-based GarFitNet.

In addition to the constructed graph, we also input parameters (V, \, U) to our
GarFitNet. We call these parameters as GarFit parameters which are able to represent
the body shape, pose, and fit degree between the body to the garment. The reason
for such additional input is that only the graph of the coarse garment is insufficient
to yield rich details. As we discussed before, the relation between garment and body
plays a key role in detail generation. Therefore, GarFit parameters which provide the
body information (V, \) and the relationship information (U) are also forwarded into the
GarFitNet.

4.3.2 Output reconstruction

Most deformation approximation studies are plagued by the problem of highly nonlinear
output. Since the range of vertex offset adjustment is very wide, its value can range
from negative infinity to positive infinity, studies can only increase the number of
MLPs while sacrificing generalization [63] or predict for one pose [75] to ensure the
quality of deformation approximation. So far, there is no research to solve the problem
fundamentally from the perspective of optimizing output.

In our work, we propose an output reconstructionmethod by decomposing the output
displacement vector Δ8 ∈ R3 into the vector length Δ′8 ∈ R+ and the unit vector X8 ∈ R3.
Unlike other learning-based methods which directly predict Δ8 with a wide value range
of (−∞, +∞), our method indirectly predicts the vector length Δ′

8
and the unit vector X8

with the narrow value range of (0, +∞) and (−1, 1). With the two approximated items
of Δ8 and X8, we finally multiply them together to get the final nonlinear offset vector.
This decomposition step does not seem complicated, however, it plays a crucial role that
greatly eases the learning process since the value range of the output variable is largely
reduced.

With the decomposed output, we design the loss function based on their value range:

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 87

1

#

#∑
8=1

Δ′�)8 � X�)8 − Δ′8 � X8
2, (4.8)

Δ′8 = 5A4;D (E [;]8), (4.9)

X8 = 5=>A< ((5C0=ℎ (6 [;]8,0), 5C0=ℎ (6
[;]
8,1
), 5C0=ℎ (6 [;]8,2))), (4.10)

whereΔ�)
8

and X�)
8

respectively denote the ground truth length and direction unit. 5A4;D
is the relu activation function which can limit the value of output features E [;]

8
(where

E
[;]
8
∈ R) in the length prediction branch to a range greater than zero. 5C0=ℎ is the tanh

activation function which can limit the value of each dimension ((6 [;]
8,0
), (6 [;]

8,1
), (6 [;]

8,2
)) of

output features 6 [;]
8

in the unit prediction branchwithin the range of -1 to 1. Additionally,
5=>A< denotes the normalization operation (5=>A< (·) = ·

‖·‖) which can further make the
final result of X8 normalized, so that the square root of the sum of the squared each
dimensional values is equal to 1. In practice, we found the training becomes much easier
to converge following the decomposed output and loss function than othermethods using
plain outputs.

4.3.3 GarFitNet architecture

Once input the graph G of "coarse and optimized output are defined, we then describe
how to build the relationship by proposing the novel graph neural network GarFitNet
(shown in Figure 4.5).

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 88

Figure 4.5: Overview of the proposed GarFitNet.

Figure 4.6: MultiResGModule is an integrated structure from MultiResGNet.

For the architecture of the designed GarFitNet, it consists of three branches, i.e., the
GarFit parameter transformer branch, the unit direction vector prediction branch, and
the length prediction branch.

Although input garment mesh graphs have contained rich information of garment,
pose, and distances to joints, it cannot express the fit degree between garment and body
which we have explained (in Section 5.1) as an important factor that affects the final
wrinkle effect. To this end, we design a transformer branch that is capable of transferring
the GarFit parameters into high degree features as being the GarFit correction weight.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 89

Next, we conduct Hadamard multiplication between this GarFit correction weight and
the transferred graph features to obtain new features. In this way, graph features
have gained greater representative capabilities with fit information after weighting with
transferred GarFit parameters.

Based on the proposed output decomposition theory, we respectively design a unit
direction vector prediction branch and a length prediction branch. The reason for
designing them is that the value of two decomposed output elements differ greatly, as
the unit value is from -1 to 1 and the length value is greater than 0.

Due to the nonlinearity of the output from these two prediction branches, we therefore
apply the MultiResGNet idea to benefit from its powerful generalization and detail
refinement capabilities. According to the garment features and the amount of data,
we improve and integrate the MultiResGNet architecture into the MultiResGModule
(shown in Figure 4.6) which has a similar structure as MultiResGNet to deal with
original-resolution features and down-sampled lower resolution features respectively.
The predicted unit vector and length are calculated separately in two prediction branches,
where the normalized unit is additionally used in the direction prediction branch for
features normalization. Finally, output features from two branches are multiplied as the
final offset adjustment per vertex. Our garment after refinement can be expressed as:

" = "coarse + Δ, (4.11)

Δ = Δ′ � X = , (G, V, \, U;Ψ), (4.12)

where Δ ∈ R#6×3 is automatically approximated by training GarFitNet regressor, (·).
The trainable weights in the network are independent of the number of garment mesh
vertices, which makes it possible to generalize to new garments with different mesh
topologies. Thanks to our two observations and the designed network, various garments
worn by diverse body shapes under any pose can be well predicted with realistic visual
effects and highly nonlinear details.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 90

4.4 Evaluation

4.4.1 Dataset

To evaluate our proposed method, we create the dataset for training and testing. Our
dataset contains both character bodies and garments. In the training set, for different
body shapes, we obtain the data from the SMPL body model [52] and generate eight
types of the body shape V to represent different body weights as shown in Figure 4.7.
For the garment data, we utilize the commercial 3D cloth design and simulation tool
Marvelous Designer [2] to design and simulate the garments. As shown in Figure 4.8,
we design six types of garments with different lengths and different topologies. In total,
there are 48 garment-body pairs with the different fit degrees and garment lengths in
the dataset. For pose variations, we created 1525 poses with five motion sequences,
including dancing, walking, jumping, raising hands, and front kicking. To verify the
effectiveness of the GarFitNet, we use three new body shapes and three new garments
for testing.

Figure 4.7: Bodies with different weights

Figure 4.8: Garments with different length and they have different number of vertices.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 91

4.4.2 Implementation details

As depicted in Figure 4.5, the graph features are first normalized and input into two
GAT blocks for the feature transformation. Each GAT block involves a graph attention-
based aggregation stream with the hidden feature size of 64, the multi-head number
is 4, and a self-reinforced stream with hidden feature size of 256. Features after each
GAT block will be transferred with the tanh activation function. For the GarFit param-
eter transformer branch, it consists of three hidden layers with hidden neurons of (85,
256, 512) and is applied with batch normalization and relu activation function. The
dimension of transferred parameters from the transformer branch becomes 1024, and
they are multiplied with output features from two GAT blocks to obtain the weighted
features which contain the information of fit degree, shape, and pose. These features are
then respectively forward into the direction prediction branch and the length prediction
branch. For the MultiResGModule, pooling and unpooling operations play the role of
globally summarize features and follow the same definition as mentioned in MultiRes-
GNet. In the local branch of MultiResGModule, there are four GAT blocks with two
multi-head and 64 hidden feature sizes of two streams. Finally, output from both the
direction prediction branch and length prediction branch will forward into the feature
transformation module, and follow the tanh activation function or ReLu activation func-
tion respectively. In addition, the unit vector with three-dimensional features will be
normalized at last.

4.4.3 Accuracy results

Qualitatively, as shown in Figure 4.9, based on the coarse deformation, our method is
able to produce as many wrinkles as ground truth data. All fine details can be well
retained by using our GarFitNet despite being test on the unseen garment and pose.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 92

Figure 4.9: Test on a character performing a dancing pose. (a) is the ground truth. (b) is the
coarse deformation. (c) is our prediction through GarFitNet.

Next, in Figure 4.10, we provide the result of our method for a variety of body
shapes, which do not exist in the training set. The fine-scale wrinkles predicted by our
GarFitNet naturally match the expected behavior of the garment and have no obvious
difference with ground truth data. In addition, the degree of wrinkles follows the law of
our first observation that loose-fitting wear (thin body) produces sparse wrinkles with
wider width whereas tight-fitting (fat body) produces denser wrinkles with a narrower
width. The approximation results demonstrate that our method generalizes well to new
body shapes with the new fit degree.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 93

Figure 4.10: Deformations of different body shapes: thin, regular, and fat.

In Table 4.1, we report the quantitative result of garments dressed on bodies in Figure
4.10 under the walking motion. As shown in the table, the accuracy of the result after
deformation refinement through GarFitNet can be improved by nearly 50% compared
to the rough deformation. The deformation prediction error of garments worn by a thin
body is relatively smallest because the garment folds tend to be smoother and simpler,
while the error for a fat body is relatively larger due to the complexity of the folds.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 94

Table 4.1: Mean error (cm) of per vertex of deformations in different body shapes (corresponding
to Figure 4.10).

Shape types Coarse Refinement
Thin 0.2817 0.1426

Regular 0.3010 0.1523
Fat 0.3268 0.1831

In Figure 4.11, we show the qualitative deformation approximations of our method
for various garments with different lengths. Here, we test our GarFitNet by using
garments with unseen mesh topologies and vertices number at train time. The results
demonstrate that ourmethod has the generalization abilities to approximate deformations
for arbitrary topology garment mesh with fine details. Then, in Table 4.2, we further
provide the quantitative results of characters dressed by the three types of garments
performing the jumping motion. The mean error of long garments tends to be relatively
largest because the length of the garment is long and the deformation will also be
affected by the movement of the legs to produce more wrinkles than in other cases.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 95

Figure 4.11: Deformations of different garment length: short, regular, and long.

Table 4.2: Mean error (cm) of per vertex of deformations for different garments (corresponding
to Figure 4.11).

Garment types Coarse Refinement
Short 0.3217 0.1491
Regular 0.3575 0.1660
Long 0.3931 0.1862

4.4.4 Comparison

We conduct an ablation study to highlight the influence of the proposedGarFit parameter
transformer branch and the proposed output decomposition operation. Specifically, we

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 96

trained the network by individually removing the GarFit parameter transformer branch
in the GarFitNet, and remaining the output as three-dimensional displacement vector
without decomposition. As shown in Figure 4.12, sub-figures in (c) and (d) have no
obvious wrinkles and just have tiny improvement than coarse deformation (b) in the
areas of the waist on both sides. In contrast, our proposed method with the transformer
branch and the output optimization can significantly help to generate more plausible
wrinkles.

Figure 4.12: Comparison between (a) ground truth, (b) coarse deformation, (c) ours without
GarFit parameter transformer branch, (d) ours without output decomposition, and (e) ours
followed mentioned setting.

Next, we compare our method to state-of-art learning-based methods. As listed in
Table 4.3, our method outperforms others that is able to use a fewer number of models
to approximate deformations for arbitrary mesh geometry, pose, and fit degree. To our
best knowledge, ours is the first graph-learning-based approach for garment deformation
prediction with high-quality pose-fit-dependent detail effects.

Table 4.3: Comparison of our method with other state-of-art learning-based methods. Our
method can achieve more functions with fewer models.

Methods Model
number

Geometry
variation

Pose
variation

Fit/Style
variation

Santesteban et al. [68] 2 7 3 7

TailorNet [63] 22 7 3 3

FCGNN [75] 3 3 7 3

Ours 2 3 3 3

In Figure 4.13, we qualitatively compare our method with other approaches of
FCGNN [75] and TailorNet [63]. Specifically, FCGNN (sub-figure(a) with the blue

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 97

t-shirt) also uses graph neural networks to predict the deformation of various garments
dressed by arbitrary target body shape. However, it is limited to produce pose-dependent
effects and is only able to predict t-pose deformations. The details of (a) are lacking
especially in the areas of the collar. For the method of TailorNet (sub-figure(b) with the
green t-shirt), the deformation quality is visually better than (a) with richer wrinkles.
But the method cannot generalize to other mesh topologies and the training for one
specific garment requires a large number of MLPs. In contrast, our method in (c) shows
the realistic behaviors of the garment with complicated fine-scale wrinkles and folds.
Furthermore, our GarFitNet allows for generalization to arbitrary geometry and body,
and provides a richer space of pose effects.

Figure 4.13: Comparison between (a) FCGNN [75], (b) TailorNet [63], and (c) our prediction.

4.5 Summary of the of the 2=3 Case Deformation Meth-
ods

In this chapter, we have presented a novel graph-learning-based method GarFitNet for
automatically generating rich detailed deformations for diverse garments worn by any
body shape in any pose. We address limitations of previous work including overly
smooth results and the inability of generalization through three main contributions.

CHAPTER 4. DEFORMATION APPROXIMATION - 2#� CASE 98

To account for complicated deformations, we first propose the fit parameter that has
an important impact on deformation wrinkles and take it as one of the inputs of the
network. Then, tomake the learning easywhile ensuring high-quality output, we narrow
the range of output by proposing the novel output reconstruction strategy. Also, with
improved input and output, to make the network have the strong generalization ability,
we introduce GarFitNet architecture with three branches. Thanks to these technical
contributions, our method is superior to other learning-based approaches and is the first
graph-learning-based approach to successfully produce high-quality deformations for
unseen garments, bodies, and poses.

Despite the step forward in fast and accurate clothing deformation, our method also
has the following weakness. First, all garments in our dataset have the same material
setting and their deformations are dependent on fit, shape, and pose. Since material
specification can also influence the deformation effect, if deformations with different
clothing materials need to be approximated using our method, it requires training the
network independently for each material. Second, we use the popular SMPL model
to represent character bodies of various shapes in our research. However, the SMPL
bodies do not have the appearance of muscles of different body parts. If the dressing
effect of clothes wants to be perfectly closer to the effect of real people trying on it,
exploring and developing a new character dataset, and then studying the deformation of
clothes based on this dataset is the next interesting study.

Chapter 5

Conclusion and Future work

5.1 Conclusion

We have presented unified deformation systems for rapidly and accurately approximat-
ing nonlinear deformations for diverse characters in various poses. Compared with
traditional geometry-based and physics-based methods, our methods provide an effi-
cient way of making use of existing well-designed features of characters for unseen
animated characters while ensuring high accuracy and real-time performance.

To achieve deformations for animated characters in different applications, we first
declare two deformation cases to meet the quality requirements in different animation
productions. For these two cases, in order to make the deformation learnable, we
respectively create the dataset with various deformations of characters and garments in
possible poses.

Technically, for the first case deformation, we successively propose DenseGATs and
MultiResGNet to achieve nonlinear deformations for animated characters. DenseGATs
pioneered the prediction of pose-dependent deformation based on graphs and make im-
provements on the network architecture. The proposed GAT blocks and dense modules
allow for efficient utilization and transmission of self and adjacent information through-
out the network. Based on DenseGATs, to make the network have better generalization
ability, our MultiResGNet approach makes further improvements on both the input side
and the network side. By designing expressive graph features and proposing the multi-
resolution graph processing strategy, the method can yield more accurate deformation

99

CHAPTER 5. CONCLUSION AND FUTURE WORK 100

results with fewer training samples. Next, for the second case deformation, we propose
GarFitNet for animated characters emphasizing more clothing details. Our work suc-
cessfully addresses the limitations in previous work involving overly smooth results and
the inability of generalization. The proposal of fit parameter, output reconstruction, and
three-branch GarFitNet architecture enables us to achieve high-quality deformations
with rich wrinkle effects for unseen garments, bodies, and poses.

All in all, our DenseGATs, MultiResGNet, and GarFitNet provide end-to-end de-
formation approximation systems, which allow the application to the game, film pro-
ductions, and virtual try-on. Using our systems, artists can directly produce a large
collection of characters with complicated deformation effects through the trained net-
work, thus avoiding troublesome manual processing.

5.2 Limitations

Although our presented approaches have a strong generalization ability and yield high
accuracy prediction results, they also have a few drawbacks. For the 1BC deformation
case, first, the learned network is dependent on the setting of linear-based deformation,
such as the skinning method, the number of bone influences, the binding distance, etc.
Thus, when generating the nonlinear deformation for a new character, the setting of
linear-based deformation should be modified to keep it consistent with the training data.
Secondly, in some cases where characters wear tight clothing, the produced deformation
results may have collision artefacts between the body and clothing. Thirdly, the training
samples we used mostly follow the body closely. For extremely loose clothing and
other garment types like skirts, the deformation would largely depend on the diversity
of training samples. If the test character is dramatically different from the training
characters, the trained model may fail to predict the accurate deformation. Additionally,
we currently focus on the deformation for humanoid characters which have the same
standard skeleton, and the dimension of input graph features is dependent on the number
of skeletal joints. Ideally, two-limbed characters with the same number of joints and
with the similar appearance to the training samples can use our trained network to
achieve the deformation approximation. But for four-limbed animals or characters with

CHAPTER 5. CONCLUSION AND FUTURE WORK 101

different joint counts, the network needs to be retrained.
For the 2=3 deformation case, first, while our deformations have contained garments

with arbitrary geometry, the garment material-dependent parameter is not considered
in our approach. While deforming new garments with different materials, using our
method requires retraining a new model for the specific material. Furthermore, our
method utilizes the existing SMPL bodies which are popular to represent a wide range
of human bodies, and this SMPL model is limited to express the appearance of muscles.
Therefore, the deformation of wearing clothes on the SMPL body by our method cannot
have the effect of muscles in real characters.

5.3 Future Work

For the 1BC deformation case, increasing the diversity of garments and add situations
where characters fit differently with garments in training samples will be meaningful for
actual animation needs in the future. Second, deformation research can be explored for
various types of objects (e.g., animals with two or four limbs). If the deformed objects
have a various number of joints, a union of joints can be defined to represent all the
conditions in the dataset, so as to keep the feature dimension of each object the same.

For the 2=3 deformation case, a larger garmentmaterial space remains open for future
research. Then, it would also be interesting to explore the additional material input and
extend our method to handle deformations betweenmultiple materials of clothing. Next,
to get closer to the real visual effect, the wider human dataset which is factorized of
muscle mass for different body parts can be created. Then, more realistic contact effects
between bodies and clothes can be produced by using data-driven approaches.

Appendix A

We provide the supplementary video to show our result of DenseGATs, MultiResGNet,
and GarFitNet: https://www.youtube.com/watch?v=giAINShfGHE

102

https://www.youtube.com/watch?v=giAINShfGHE

Bibliography

[1] Adobe fuse cc. https://www.adobe.com/wam/fuse.html. Accessed: 2021.

[2] Marvelous designer. https://www.marvelousdesigner.com/. Accessed:
2021.

[3] Mixamo auto-rigger. https://www.mixamo.com. Accessed: 2021.

[4] Optitex. https://optitex.com/. Accessed: 2021.

[5] Tuka3d. https://tukatech.com/tuka3d/. Accessed: 2021.

[6] Turbosquid. https://www.turbosquid.com/. Accessed: 2021.

[7] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong,
Theodore L. Willke, and Hoda Eldardiry. Inductive representation learning in
large attributed graphs, 2017.

[8] Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation
from range scan data. ACM Trans. Graph., 21(3):612–619, July 2002.

[9] Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. Fast and
deep deformation approximations. ACM Trans. Graph., 37(4):119:1–119:12, July
2018.

[10] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d characters.
ACM Trans. Graph., 26(3):72–es, July 2007.

[11] David Barber. Bayesian reasoning and machine learning. Cambridge University
Press, 2012.

103

https://www.adobe.com/wam/fuse.html
https://www.marvelousdesigner.com/
https://www.mixamo.com
https://optitex.com/
https://tukatech.com/tuka3d/
https://www.turbosquid.com/

BIBLIOGRAPHY 104

[12] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly.
Projective dynamics: Fusing constraint projections for fast simulation. ACMTrans.
Graph., 33(4), July 2014.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-
works and locally connected networks on graphs, 2013.

[14] Steve Capell, Seth Green, Brian Curless, TomDuchamp, and Zoran Popović. Inter-
active skeleton-driven dynamic deformations. ACMTrans.Graph., 21(3):586–593,
July 2002.

[15] Dan Casas and Miguel A. Otaduy. Learning nonlinear soft-tissue dynamics for
interactive avatars. Proc. ACM Comput. Graph. Interact. Tech., 1(1), July 2018.

[16] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for
deformable animated characters. SIGGRAPH Comput. Graph., 23(3):243–252,
July 1989.

[17] Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and
Chunhong Pan. Structure-aware convolutional neural networks. Advances in
neural information processing systems, 31:11–20, 2018.

[18] Nuttapong Chentanez, Miles Macklin, Matthias Müller, Stefan Jeschke, and Tae-
Yong Kim. Cloth and skin deformation with a triangle mesh based convolutional
neural network. SCA ’20, Goslar, DEU, 2020. Eurographics Association.

[19] Dennis Child. The essentials of factor analysis. Cassell Educational, 1990.

[20] Gabriel Cirio, Jorge Lopez-Moreno, andMiguel A. Otaduy. Efficient simulation of
knitted cloth using persistent contacts. InProceedings of the 14thACMSIGGRAPH
/ Eurographics Symposium on Computer Animation, SCA ’15, page 55–61, New
York, NY, USA, 2015. Association for Computing Machinery.

[21] Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. Stable
spaces for real-time clothing. ACM Trans. Graph., 29(4), July 2010.

BIBLIOGRAPHY 105

[22] Olivier Dionne and Martin de Lasa. Geodesic voxel binding for production char-
acter meshes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 173–180. ACM Press, New York, NY, USA, 2013.

[23] Olivier Dionne andMartin de Lasa. Geodesic voxel binding for production charac-
termeshes. InProceedings of the 12th ACMSIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’13, page 173–180, New York, NY, USA, 2013.
Association for Computing Machinery.

[24] Hongyang Gao and Shuiwang Ji. Graph U-Nets, 2019.

[25] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph
convolutional networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1416–1424, New
York, NY, USA, 2018. ACM Press.

[26] Russell Gillette, Craig Peters, Nicholas Vining, Essex Edwards, and Alla Sheffer.
Real-time dynamic wrinkling of coarse animated cloth. In Proceedings of the 14th
ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ’15,
page 17–26, New York, NY, USA, 2015. Association for Computing Machinery.

[27] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on
graphs via spectral graph theory. Applied and Computational Harmonic Analysis,
30(2):129–150, March 2011.

[28] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on
graph-structured data, 2015.

[29] D. Hirshberg, M. Loper, E. Rachlin, andM.J. Black. Coregistration: Simultaneous
alignment and modeling of articulated 3D shape. In European Conf. on Computer
Vision (ECCV), LNCS 7577, Part IV, pages 242–255. Springer-Verlag, October
2012.

[30] Haoda Huang, Ling Zhao, KangKang Yin, Yue Qi, Yizhou Yu, and Xin Tong.
Controllable hand deformation from sparse examples with rich details. SCA ’11,
page 73–82, New York, NY, USA, 2011. Association for Computing Machinery.

BIBLIOGRAPHY 106

[31] Alec Jacobson, Ilya Baran, Jovan Popović, andOlga Sorkine. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph., 30(4), July 2011.

[32] Jonathan M. Kaldor, Doug L. James, and Steve Marschner. Efficient yarn-based
cloth with adaptive contact linearization. ACM Trans. Graph., 29(4), July 2010.

[33] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. Skinning with
dual quaternions. I3D ’07, page 39–46, New York, NY, USA, 2007. Association
for Computing Machinery.

[34] Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan.
Physics-inspired upsampling for cloth simulation in games. In ACM SIGGRAPH
2011 Papers, SIGGRAPH ’11, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[35] Ladislav Kavan and Olga Sorkine. Elasticity-inspired deformers for character
articulation. ACM Trans. Graph., 31(6), November 2012.

[36] Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. Long range
attachments - a method to simulate inextensible clothing in computer games. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, SCA ’12, page 305–310, Goslar, DEU, 2012. Eurographics Association.

[37] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907, 2016.

[38] Martin Komaritzan and Mario Botsch. Projective skinning. Proc. ACM Comput.
Graph. Interact. Tech., 1(1), July 2018.

[39] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from
medical images. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’04, page 355–363, Goslar, DEU, 2004.
Eurographics Association.

BIBLIOGRAPHY 107

[40] Caroline Larboulette, Marie-Paule Cani, and Bruno Arnaldi. Dynamic skinning:
Adding real-time dynamic effects to an existing character animation. In Proceed-
ings of the 21st Spring Conference on Computer Graphics, SCCG ’05, page 87–93,
New York, NY, USA, 2005. Association for Computing Machinery.

[41] Binh Huy Le and Zhigang Deng. Robust and accurate skeletal rigging from mesh
sequences. ACM Trans. Graph., 33(4):84:1–84:10, July 2014.

[42] Gene S. Lee, Andy Lin, Matt Schiller, Scott Peters, Mark McLaughlin, and Frank
Hanner. Enhanced dual quaternion skinning for production use. In ACM SIG-
GRAPH 2013 Talks, SIGGRAPH ’13, New York, NY, USA, 2013. Association for
Computing Machinery.

[43] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling, 2019.

[44] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: A uni-
fied approach to shape interpolation and skeleton-driven deformation. In Proc.
SIGGRAPH ’00, pages 165–172. ACM Press, New York, NY, USA, 2000.

[45] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2261–2269, Washington, DC, USA, July
2017. IEEE Computer Society.

[46] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Can gcns go
as deep as cnns? 2019.

[47] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convo-
lutional neural networks. InProc. 32nd AAAI Conference on Artificial Intelligence,
pages 3546–3553, Palo Alto, CA, 2018. AAAI Press.

[48] Tianxing Li, Rui Shi, and Takashi Kanai. DenseGATs: A graph-attention-based
network for nonlinear character deformation. In Proc. Symposium on Interactive
3D Graphics and Games. ACM Press, New York, NY, USA, 2020.

BIBLIOGRAPHY 108

[49] Tianxing Li, Rui Shi, and Takashi Kanai. MultiResGNet: Approximating Non-
linear Deformation via Multi-Resolution Graphs. Computer Graphics Forum,
2021.

[50] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks, 2017.

[51] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. Neu-
roskinning: Automatic skin binding for production characters with deep graph
networks. ACM Trans. Graph., 38(4):114:1–114:12, July 2019.

[52] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. Smpl: A skinned multi-person linear model. ACM Trans.
Graph., 34(6), October 2015.

[53] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

[54] Nadia Magnenat-Thalmann, Richard Laperrière, and Daniel Thalmann. Joint-
dependent local deformations for hand animation and object grasping. In Proceed-
ings on Graphics Interface ’88, pages 26–33. Canadian Information Processing
Society, Toronto, Ont., Canada, 1988.

[55] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf,
Joseph Teran, and Eftychios Sifakis. Efficient elasticity for character skinning with
contact and collisions. ACM Trans. Graph., 30(4):37:1–37:12, July 2011.

[56] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-
boda, andMichaelM.Bronstein. Geometric deep learning on graphs andmanifolds
using mixture model CNNs. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5115–5124,Washington, DC,USA, July 2017.
IEEE Computer Society.

BIBLIOGRAPHY 109

[57] Tomohiko Mukai. Building helper bone rigs from examples. In Proc. Symposium
on Interactive 3D Graphics and Games, pages 77–84. ACM Press, New York, NY,
USA, 2015.

[58] Tomohiko Mukai and Shigeru Kuriyama. Efficient dynamic skinning with low-
rank helper bone controllers. ACM Trans. Graph., 35(4), July 2016.

[59] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, andMiles Macklin. Strain
based dynamics. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’14, page 149–157, Goslar, DEU, 2015.
Eurographics Association.

[60] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position
based dynamics. J. Vis. Comun. Image Represent., 18(2):109–118, April 2007.

[61] Rahul Narain, Armin Samii, and James F. O’Brien. Adaptive anisotropic remesh-
ing for cloth simulation. ACM Trans. Graph., 31(6), November 2012.

[62] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark
Carlson. Physically based deformable models in computer graphics. In Computer
graphics forum, volume 25, pages 809–836. Wiley Online Library, 2006.

[63] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. Tailornet: Pre-
dicting clothing in 3d as a function of human pose, shape and garment style. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
jun 2020.

[64] Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. Semi-supervised user geolo-
cation via graph convolutional networks. CoRR, abs/1804.08049, 2018.

[65] T. Rhee, J. P. Lewis, andU. Neumann. Real-timeweighted pose-space deformation
on the gpu. Computer Graphics Forum, 25, 2006.

[66] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla
Sheffer. Animationwrinkling: Augmenting coarse cloth simulationswith realistic-
looking wrinkles. ACM Trans. Graph., 29(6), December 2010.

BIBLIOGRAPHY 110

[67] Igor Santesteban, Elena Garces, Miguel A. Otaduy, and Dan Casas. SoftSMPL:
Data-driven modeling of nonlinear soft-tissue dynamics for parametric humans.
Computer Graphics Forum (Eurographics 2020), 39(2):65–75, 2020.

[68] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Learning-Based Animation
of Clothing for Virtual Try-On. Computer Graphics Forum (Proc. Eurographics),
2019.

[69] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining
Guo. Example-based dynamic skinning in real time. In ACM SIGGRAPH 2008
Papers, SIGGRAPH ’08, New York, NY, USA, 2008. Association for Computing
Machinery.

[70] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved seman-
tic representations from tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1556–1566, Beijing, China, July 2015.
Association for Computational Linguistics.

[71] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically de-
formable models. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’87, page 205–214, New York,
NY, USA, 1987. Association for Computing Machinery.

[72] Garvita Tiwari, Bharat Lal Bhatnagar, Tony Tung, and Gerard Pons-Moll. Sizer: A
dataset and model for parsing 3d clothing and learning size sensitive 3d clothing.
In European Conference on Computer Vision (ECCV). Springer, August 2020.

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, pages 5998–6008, USA, 2017. Curran Associates Inc.

BIBLIOGRAPHY 111

[74] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph attention networks, 2017.

[75] Raquel Vidaurre, Igor Santesteban, Elena Garces, and Dan Casas. Fully Convolu-
tional Graph Neural Networks for Parametric Virtual Try-On. Computer Graphics
Forum (Proc. SCA), 2020.

[76] XiaohuanCorinaWang andCary Phillips. Multi-weight enveloping: Least-squares
approximation techniques for skin animation. SCA ’02, page 129–138, New York,
NY, USA, 2002. Association for Computing Machinery.

[77] RichWareham and Joan Lasenby. Bone glow: An improvedmethod for the assign-
ment of weights for mesh deformation. In Proceedings of the 5th International
Conference on Articulated Motion and Deformable Objects, AMDO ’08, page
63–71, Berlin, Heidelberg, 2008. Springer-Verlag.

[78] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh.
RigNet: Neural rigging for articulated characters. ACM Trans. Graph., 39(4),
2020.

[79] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling, 2018.

[80] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications, 2018.

[81] J. S. Zurdo, J. P. Brito, and M. A. Otaduy. Animating wrinkles by example on
non-skinned cloth. IEEE Transactions on Visualization and Computer Graphics,
19(1):149–158, 2013.

	1 Introduction
	1.1 Motivation and Purpose
	1.2 Statement of Deformation Cases
	1.2.1 1st Case: Body and Cloth as a Whole Object
	1.2.2 2nd Case: Body and Cloth as Separate Objects

	1.3 Contributions
	1.4 Thesis Organization

	2 Related Work
	2.1 Related Works of the 1st Case Deformation
	2.1.1 Traditional methods
	2.1.1.1 Geometry-based skinning methods
	2.1.1.2 Example-based skinning methods
	2.1.1.3 Physics-based skinning methods

	2.1.2 Learning-Based Deformation
	2.1.2.1 Linear-based or MLP-based methods
	2.1.2.2 Graph-learning based methods

	2.2 Related Works of the 2nd Case Deformation
	2.2.1 Physics-based simulation
	2.2.2 Learning-based methods
	2.2.2.1 MLP-based methods
	2.2.2.2 Graph-learning based methods

	2.3 Graph Neural Networks
	2.4 Summary

	3 Deformation Approximation - 1st Case
	3.1 Context
	3.1.1 Background of the 1st case deformation
	3.1.2 Unsolved problems in state-of-art studies
	3.1.3 Our proposal outline

	3.2 Deformation with DenseGATs
	3.2.1 Mesh encoding
	3.2.2 Deformation refinement through DenseGATs
	3.2.2.1 Issues of existing graph neural networks
	3.2.2.2 GAT block
	3.2.2.3 Dense module

	3.2.3 Evaluation of DenseGATs
	3.2.3.1 Dataset
	3.2.3.2 Implementation details
	3.2.3.3 Results of DenseGATs
	3.2.3.4 Conclusion and discussion

	3.3 Deformation with MultiResGNet
	3.3.1 Mesh encoding with improved graph features
	3.3.2 Deformation refinement through MultiResGNet
	3.3.2.1 Local branch
	3.3.2.2 Global branch

	3.3.3 Evaluation of MultiResGNet
	3.3.3.1 Dataset
	3.3.3.2 Implementation details
	3.3.3.3 Results of MultiResGNet
	3.3.3.4 Comparison
	3.3.3.5 Conclusion and discussion

	3.4 Summary of the 1st Case Deformation Methods

	4 Deformation Approximation - 2nd Case
	4.1 Context and Observations
	4.1.1 Background of the 2nd case deformation
	4.1.2 Unsolved problems in state-of-art studies
	4.1.3 Our observations and proposal outline

	4.2 Coarse Deformation
	4.2.1 Fit parameter
	4.2.2 Coarse garment deformation

	4.3 Refinement through GarFitNet
	4.3.1 Garment mesh encoding
	4.3.2 Output reconstruction
	4.3.3 GarFitNet architecture

	4.4 Evaluation
	4.4.1 Dataset
	4.4.2 Implementation details
	4.4.3 Accuracy results
	4.4.4 Comparison

	4.5 Summary of the of the 2nd Case Deformation Methods

	5 Conclusion and Future work
	5.1 Conclusion
	5.2 Limitations
	5.3 Future Work

