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Abstract

In this thesis, we study interacting fermionic symmetry protected topological (SPT) phases
from field theoretical perspective. We discuss a recipe to produce a lattice construction of
fermionic phases of matter with or without the time-reversal symmetry, by extending the
fermionization and bosonization known in (1+1) dimensions to higher spacetime dimensions
in the presence of time-reversal symmetry. As an application, we provide a lattice path
integral for a large class of fermionic SPT phases called the Gu-Wen phases, and discuss
the symmetry-preserving gapped boundary states of Gu-Wen phases by utilizing the path
integral. In addition, we also provide a lattice path integral of (1+1)-dimensional topological
superconductors with the time-reversal symmetry generating the Z8 classification of the SPT
phase. Based on the field theoretical description of the (1+1)-dimensional topological su-
perconductor, we study how one can diagnose the SPT classification given by Z8 for a given
wave function of a (1+1)-dimensional system. Finally, we also discuss a lattice description
for (3+1)-dimensional topological superconductor with the time-reversal symmetry classified
by Z16.
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Chapter 1

Introduction

Many important properties of quantum many-body systems with gapped local Hamiltonians
are encoded in the entanglement property of its ground state, independent on the local details
of the Hamiltonian [1]. In particular, we can determine the gapped phase realized by such
systems from the ground state of the Hamiltonian, which is defined as an equivalence class
of Hamiltonians under local deformations preserving the energy gap.

The classification of gapped phases is an important problem in condensed matter physics.
Though the classification problem is difficult and unsolved in general, one can simplify the
problem by considering a simplified class of systems with a unique gapped ground state on
arbitrary closed spatial manifolds. Such phases are called invertible topological phases. A
classical and important example of an invertible topological phase is the Integer Quantum
Hall Effect (IQHE) discovered by von Klitzing in 1980, in silicon-based MOSFET (metal-
oxide-semiconductor field-effect transistor) samples [2]. The IQHE is observed for a (2+1)-
dimensional electron system subjected to strong magnetic fields at low temperature, and is
characterized by the Hall conductance exactly quantized as an integral value. The quanti-
zation of the Hall conductance is explained by Laughlin in 1981 based on an argument that
utilizes the invariance under U(1) large gauge transformations [3]. The Quantum Hall states
are later found to be effectively described by the Chern-Simons theory proportional to

∫
AdA

in terms of the U(1) gauge field. From the perspective of effective field theory, the quantiza-
tion of the Hall conductance is accounted by the quantized coefficient of the Chern-Simons
theory due to its large gauge invariance [4].

When the system possesses a global symmetry G, one can consider a gapped phase with
the specified global symmetry, based on the deformations respecting the symmetry. The
global symmetry typically enriches the phase diagram, since the global symmetry in general
constrains the possible deformations on the ground state. As a result, a single phase can be
refined into distinct phases by taking the global symmetry into account. Invertible topolog-
ical phases with the global symmetry are also called symmetry protected topological (SPT)
phases. 1 One of the most well-known examples of SPT phases is the topological insulator

1Precisely speaking, it is more common to define SPT phases as invertible phases which become trivial
when we forget the global symmetry, following [1]. For example, the (1+1)-dimensional topological super-
conductor (Kitaev wire) is not counted as an SPT phase based on such a definition, though it is an invertible
topological phase. In this thesis, we do not make a careful distinction between the two concepts, namely
invertible phases and SPT phases.
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with a gapless edge state on its boundary, initially observed in (2+1)-dimensional systems
of PbTe/SnTe and HgTe/CdTe heterostructures [5, 6]. Later, Kane and Mele proposed a set
of (2+1)-dimensional Hamiltonian models of free fermions for the topological insulator with
the time-reversal symmetry, and constructed a Z2-valued quantized invariant computed from
the ground state that diagnoses the topological insulator [7]. They discovered that the Z2

classification of the topological insulator arises due to the protection of the nontrivial phase
by the time-reversal symmetry.

In the case of free fermions including the model for topological insulator proposed by Kane
and Mele, a complete classification of SPT phases has been obtained using K-theory [8, 9].
Later, it was recognized that the classification of SPT phases drastically changes in the
presence of interactions compared with free phases [1, 10–17].

A famous example for the classification of interacting SPT phases that differ from free
phases is the (1+1)-dimensional topological superconductor with the time-reversal symmetry
that squares to unit, T 2 = 1, which is called the Kitaev wire [10, 18]. The (1+1)-dimensional
topological superconductor is realized by a ferromagnetic iron (Fe) atomic wires located on
the surface of superconducting lead (Pb), by introducing the Cooper interaction to the iron
wire through the perturbative effect (called the proximity effect) from the superconducting
bulk [19]. Though the electrons of superconducting wire is under the two-body Cooper
interaction, one can also regard the wire as a system of free Majorana fermions. The Kitaev
wire is then characterized by an unpaired Majorana zero mode on its boundary, which gives
a nontrivial edge state. In the presence of the time-reversal symmetry, any system given
by integral copies of the Kitaev wires gives a nontrivial SPT phase within the free fermion
framework, since the two-body hopping term of Majorana zero modes that kills the edge
state is prohibited due to the time-reversal symmetry. Hence, the free fermion classification
of the (1+1)-dimensional topological superconductor is given by Z. Meanwhile, Fidkowski
and Kitaev showed in [10] that the Majorana zero modes for eight copies of the Kitaev wires
can be completely eliminated by turning on the four-body interactions of Majorana fermions
on the boundary, while respecting the time-reversal symmetry. This in particular shows that
the classification of the (1+1)d topological superconductor with the time-reversal symmetry
breaks down into Z8 in the presence of interactions.

While the SPT phases were initially discovered and studied for fermionic systems, it
was later recognized that bosonic systems can also host nontrivial topological phases in the
presence of the interactions [1], and we have to use completely different method to perform the
classification. For example, a large class of interacting bosonic SPT phases with the global
symmetry can be classified by utilizing group cohomology [1]. For the case of interacting
fermionic systems, the SPT phases have a richer classification than the bosonic phases; for
example, Gu and Wen found that a subclass of fermionic SPT phases is classified by a pair
of cohomological data [11], generalizing the classification of bosonic phases. These fermionic
SPT phases are called Gu-Wen phases or super-cohomology phases.

Later, a comprehensive classification scheme of SPT phases utilizing cobordism group is
proposed in [12]. The cobordism group is thought to classify invertible field theories which
effectively describe SPT phases. The cobordism theory predicts novel interacting phases
beyond group cohomology and Gu-Wen phases. In particular, while the Gu-Wen phases
cover a large class of fermionic SPT phases, there are phases that are outside of the Gu-Wen
subclass, and such “beyond Gu-Wen phases” turn out to contain various important systems.
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For example, the Kitaev wire with time-reversal symmetry classified by Z8 reviewed above is
known to be an example of beyond Gu-Wen phases, where the only Z4 subclass corresponds
to the Gu-Wen phases. Moreover, a (3+1)-dimensional topological superconductor with time-
reversal symmetry such that T 2 = (−1)F is classified by Z16 [15, 20], and the only Z4 subclass
corresponds to the Gu-Wen phases.

One important feature of the SPT phase is the presence of nontrivial edge state that
appears on the boundary of the SPT phase, which includes a well-known gapless edge state
of a (2+1)-dimensional topological insulator reviewed above [7]. The nontrivial spectrum
of the edge state originates from an ’t Hooft anomaly of the boundary theory of the SPT
phase. An ’t Hooft anomaly is an obstruction to coupling the global symmetry of the theory
with the background gauge fields. As such, a boundary theory is not invariant under a gauge
transformation of background gauge fields, but the variation is canceled by coupling with the
bulk SPT phase. After all, the bulk-boundary system gives a fully gauge invariant theory.
This cancellation of the ’t Hooft anomaly by coupling with the SPT phase in the bulk is
called anomaly inflow. Importantly, an ’t Hooft anomaly has a dramatic consequence on
the low-energy spectrum of the boundary theory. In particular, an ’t Hooft anomaly implies
that, in a gapped phase, the symmetry must either be spontaneously broken, or the theory
is described by a symmetry-preserving topologically ordered states matching the anomaly.

The aim of this thesis is to develop field theoretical understanding of fermionic topological
phases and their boundaries, covering both Gu-Wen and beyond Gu-Wen phases. We provide
a path integral definition of Gu-Wen SPT phases and (1+1)-dimensional superconductor with
time-reversal symmetry. Since these phases are fermionic, the theory intrinsically depends
on the choice of spin or pin structure of a spacetime. We show how one can construct a
topologically invariant lattice path integral coupled with spin/pin structure. This is done by
generalizing the bosonization and fermionization in (1+1) dimensions to higher spacetime
dimensions in the presence of time-reversal symmetry, which allows us to construct a path
integral of fermionic phases starting with a given path integral for a bosonic theory.

This formulation has various physical applications. For instance, we provide a local lattice
definition of symmetry-preserving topologically ordered states on boundary of Gu-Wen SPT
phases protected by finite group symmetry which can contain time-reversal symmetry. This
means that an ’t Hooft anomaly that corresponds to the boundary of Gu-Wen phases can be
carried by subtle topological degrees of freedom, not by gapless particles and in particular
the system having the anomaly can have an energy gap.

In addition, based on the lattice path integral of (1+1)-dimensional topological supercon-
ductor with time-reversal symmetry, we study how one can diagnose the SPT classification
given by Z8, for a given wave function of the SPT phase. We show that a non-local opera-
tion on the ground state called a “partial time-reversal” can be utilized to diagnose the Z8

classification of the given wave function, based on our field theoretical formulation of the
topological superconductor.

Moreover, we also discuss the construction of beyond Gu-Wen phases in higher space-
time dimensions. For example, we consider a (3+1)-dimensional topological superconductor
with time-reversal symmetry T 2 = (−1)F classified by Z16. We show that a wave function
for the (3+1)-dimensional topological superconductor labeled by 2 ∈ Z16 is constructed by
decorating the Kitaev wire on the junction of T symmetry defects in codimension 2.
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Structure of this thesis
Here we explain the structure of this thesis. In Chapter 2, we review the SPT phases and its
classification scheme based on cobordism groups. We also review fermionic SPT phases and
its dependence on spin structure, and ’t Hooft anomalies that appears on the boundary of
SPT phases. In Chapter 3, we review bosonization and fermionization on oriented spacetime
manifolds in generic spacetime dimensions, which is utilized to construct fermionic SPT
phases starting with a path integral of bosonic phases.

In Chapter 4, we provide a way to construct a path integral of fermionic phases with time-
reversal symmetry, coupled with Pin+ or Pin− structure of the spacetime. This generalizes
a fermionization in oriented spin case proposed in [21] to the unoriented Pin+ or Pin− case.
this chapter is based on the author’s work [22].

In Chapter 5, we provide a lattice path integral for Gu-Wen fermionic SPT phases with
or without time-reversal symmetry. We also show that the boundary of a Gu-Wen phase
with finite global symmetry admit a symmetry-preserving gapped topological state, by an
explicit construction of path integral for the bulk-boundary system. this chapter is based on
the author’s work [22, 23].

In Chapter 6, we provide a lattice path integral for (1+1)-dimensional topological super-
conductor with time-reversal symmetry, which generates the Z8 classification. We show that
the “partial time-reversal” on the ground state wave function of the topological superconduc-
tor works as the diagnostic of Z8 classification, based on our field theoretical formulation.
this chapter is based on the author’s work [22, 24].

In Chapter 7, we review the construction of (2+1)-dimensional beyond Gu-Wen SPT
phase by decorating the Kitaev wire on the domain wall of the global symmetry. In Chap-
ter 8, we construct a ground state wave function that describes a (3+1)-dimensional topo-
logical superconductor with time-reversal symmetry such that T 2 = (−1)F . This is done by
generalizing the decorated domain wall reviewed in the previous chapter to higher spatial
dimensions, and the resulting SPT phase corresponds to 2 ∈ Z16 in the Z16 classification.
this chapter is based on the author’s work [25].
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Chapter 2

Review on SPT phases

2.1 Bosonic SPT phases and group cohomology
An important example for an interacting SPT phase is a bosonic phase based on the internal
global symmetry G. In that case, a large class of d spacetime dimensional bosonic SPT
phases is known to be classified by the group cohomology Hd(BG,U(1)) [1]. As reviewed in
Appendix D, the element [ω] ∈ Hd(BG,U(1)) is represented by a map ω : Gd → R/Z with
the property called the cocycle condition,

ω(g2, . . . , gd+1) + (−1)dω(g1, . . . gd) +
d−1∑
i=1

(−1)iω(g1, . . . , gigi+1, . . . , gd+1) = 0. (2.1)

Then, one can use this function ω to define a gauge invariant action for the SPT phase.
Suppose a d-dimensional closed spacetime manifold M is equipped with a triangulation, and
we have a flat G-gauge field A ∈ Z1(M,G) on M . Then, on each d-simplex 〈01 . . . d〉 of M ,
the Boltzmann weight for the action is given by

Ω(01 . . . d) = ω(A(01), A(12) . . . , A(d− 1, d)). (2.2)

Here, the flat gauge field A is known to be specified by a map g : M → BG, where BG
denotes the classifying space (see Appendix D for a review). One can also write Ω = g∗ω
using the pullback by g. Now the partition function is given by integrating the weight over
the spacetime,

Z(M, g) = exp

(
2πi

∫
M

g∗ω

)
. (2.3)

This partition function is U(1)-valued, and shown to be invariant under gauge transforma-
tions. Concretely, the G gauge transformation shifts Ω by a coboundary Ω → Ω + δχ for
some χ ∈ Cd−1(M,U(1)), which does not shift the partition function. The generic review
chains and cochains is found in Appendix A.

2.2 Bordism and cobordism groups
Though the group cohomology [1] captures a large class of bosonic SPT phases, it still leaves
out some topological phases which are called “beyond cohomology” phases [26]. A compre-
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hensive classification scheme of interacting SPT phases including the beyond cohomology
phases, utilizing bordism groups has been proposed by [12], supposing that the partition
function of a (d+1)-dimensional SPT phase is a bordism invariant of the (d+1)-dimensional
spacetime manifold. Then, the understanding of interacting SPT phases has been developed
based on effective quantum field theory (QFT), whose classification is directly understood in
terms of bordism groups. That is, an SPT phase is thought to be described by an invertible
field theory at low energy [27], which is a class of QFTs whose dimension of the Hilbert space
is one for an arbitrary spatial manifold. The action for the bosonic SPT phase (2.3) is also
an invertible field theory.

It has been argued that the elements of the cobordism group Ωd
S(BG), which is the suitable

dual of the bordism group ΩS
d (BG) is identified with partition functions of invertible QFTs for

spacetime d-dimensional manifolds [27]. Here, G is the global symmetry group and S stands
for the choice of the space-time symmetry such as fermion parity and/or time-reversal. We
review the bordism groups and their dual groups utilized to classify the invertible QFT.

The bordism group ΩS
d (BG) consists of equivalence classes [M, g, η], where M is a closed

d-dimensional manifold, η is an S-structure on TM , and g : M → BG is a flat G gauge field.
Here, (M, g, η) and (M ′, g′, η′) are said to be equivalent if there exists a (d+ 1)-dimensional
manifold (W, g̃, η̃) equipped with g̃ : W → BG and the S-structure η̃, where ∂W = M tM ′

and (g̃, η̃) restrict to (g, η) and (g′, η′) on the boundaryM andM ′, respectively (see Fig. 2.1).
These classes form an abelian group with its multiplication law given by the disjoint union,
and with inverses given by orientation reversal.

Figure 2.1: The bordism between manifolds equipped with a S-structure and a flat G-gauge
field, (M, g, η) and (M ′, g′, η′).

Then, the cobordism group Ωd
S(BG) is given by

Ωd
S(BG) = Tor(ΩS

d (BG))⊕ Free(ΩS
d+1(BG)). (2.4)

Mathematically, the cobordism group is defined as the so-called Anderson dual of the bordism
group, 1 characterized by the following split exact sequence

0→ Ext(ΩS
d (BG),Z)→ Ωd

S(BG)→ Hom(ΩS
d+1(BG),Z)→ 0, (2.5)

1Mathematically, the exact sequence (2.5) defines a cohomology of degree (d + 1), so we should have
expressed the middle of the sequence as Ωd+1

S (BG). However, since this object physically classifies phases in
d spacetime dimensions, we write the middle as ΩdS(BG) in this thesis instead. This notation of dimensions
matches with e.g., [12].
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which splits as (2.4), since Ext(ΩS
d (BG),Z) = Tor(ΩS

d (BG)) and Hom(ΩS
d+1(BG),Z) =

Free(ΩS
d+1(BG)).

Now let us see how the elements of the cobordism group are regarded as the partition
functions of invertible QFTs. Firstly, an element of torsion part Tor(ΩS

d (BG)) in (2.4) corre-
sponds to a partition function of a d-dimensional invertible topological quantum field theory
(TQFT). It is known that a partition function of an invertible TQFT evaluated on a closed
manifold (M, g, η) only depends on the bordism class of ΩS

d (BG) [28]. Hence, the partition
function of an invertible TQFT gives the representation of the bordism group

χ : ΩS
d (BG)→ U(1), (2.6)

which lives in Hom(ΩS
d (BG), U(1)). Further, it is shown in [28] that the invertible TQFT up

to isomorphism is in 1-1 correspondence to the element of Hom(ΩS
d (BG), U(1)). Here, when

ΩS
d (BG) has a free part, Hom(ΩS

d (BG), U(1)) contains the continuous U(1) groups. The
element of the U(1) corresponds to a topological theory labeled by a continuous parameter,
e.g., the two-dimensional theta angle

∫
θF/(2π) for the U(1) gauge field. Once we are

interested in the deformation class of the invertible theories, we drop off such continuous
U(1) factors, since the theta parameter can be continuously varied. In this sense, the discrete
part Hom(Tor(ΩS

d (BG)), U(1)) = Tor(ΩS
d (BG)) in (2.4) classifies the deformation class of the

invertible TQFT.
Secondly, the elements of the free part (2.4) classifies the deformation class of d-dimensional

invertible field theories which are not topological [29]. For example, the free part of the An-
derson dual Free(ΩS

3+1(BG)) for d = 3 accounts for the three-dimensional Chern-Simons term
k
∫
AdA/(4π), which is not topological in the sense that the partition function depends con-

tinuously on gauge transformations of the background gauge field. Since the Chern-Simons
term in d dimensions is defined via the continuous theta term in (d+ 1) dimensions, the free
part in ΩS

d+1(BG) gives the classification for such a non-topological invertible theories in d
dimension.

Summarizing, the cobordism group (2.4) classifies the invertible QFTs up to deformations,
and in turn conjectured to classify the SPT phases. We note, however, it still remains
unsolved if the classification of invertible QFTs matches with that of SPT phases, which is
formulated as the equivalence class of lattice Hamiltonians up to local deformations.

Before proceeding, let us observe how the classification of SPT phases works using several
examples. In Table 2.1 and 2.2, we show the bordism and cobordism groups in various
dimensions, based on the global symmetry relevant in physics. A similar table can be found
in [12]. Each element of the table 2.2 corresponds to the classification of SPT phases based
on some symmetry in d spacetime dimensions.

For example, as we will review in Sec. 2.3 the spin structure (the leftmost column of
the table) is a spacetime structure required for fermionic systems, where the only global
symmetry (except for the Lorentz symmetry) is the fermion parity (−1)F . In this case,
for one dimensional spacetime d = 1 we observe the cobordism group Ω1

spin = Z2. The
nontrivial phase is generated by a single complex fermion on a point. For two dimensional
spacetime d = 2, we have the cobordism group Ω2

spin = Z2. This implies a nontrivial invertible
topological phase based on the the fermion parity (−1)F . This corresponds to the well-known
(1+1)-dimensional topological superconductor, also known as the Kitaev wire [18]. If we
incorporate the time-reversal symmetry with T 2 = 1, the Kitaev wire instead generates the
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no symmetry T 2 = (−1)F T 2 = 1 unitary Z2

d Spin Pin+ Pin− Spin× Z2

1 Z2 0 Z2 Z2
2

2 Z2 Z2 Z8 Z2
2

3 0 Z2 0 Z8

4 Z Z16 0 Z
5 0 0 0 0
6 0 0 Z16 0

Table 2.1: Bordism groups ΩS
d .

no symmetry T 2 = (−1)F T 2 = 1 unitary Z2

d Spin Pin+ Pin− Spin× Z2

1 Z2 0 Z2 Z2
2

2 Z2 Z2 Z8 Z2
2

3 Z Z2 0 Z8 ⊕ Z
4 0 Z16 0 0
5 0 0 0 0
6 0 0 Z16 0

Table 2.2: Cobordism groups Ωd
S.

Z8 classification [10], represented by Ω2
pin−

= Z8. This Z8 classification will be studied in
detail in Chapter 6.

For the spacetime dimension d = 3, we have Ω3
spin = Z. This free group is generated by

the gravitational Chern-Simons theory∫
M=∂W

CSgrav = π

∫
W

Â(R) =
1

192π

∫
W

Tr(R ∧R), (2.7)

which effectively describes the p + ip superconductor. The spin cobordism group and the
corresponding SPT phases are summarized in Table 2.3.

For the cobordism group Ω3
spin(BZ2) = Z8 ⊕ Z, the free group is generated by the p+ ip

superconductor. The torsion group Z8 corresponds to the (2 + 1)-dimensional SPT phase
intrinsically based on the Z2 symmetry, whose structure will be explained in Sec. 2.4. The
cobordism group Ω4

pin+ = Z16 classifies the SPT phase based on time-reversal symmetry with
T 2 = (−1)F . The structure of Z16 is also outlined in Sec. 2.4.

2.3 Fermionic phases and spin/pin structure
In order to define a Lorentz invariant QFT that describes a fermionic system, we require a
choice of spin structure η. Mathematically, a spin structure η is a trivialization of the 2nd
Stiefel-Whitney class, δη = w2, and two distinct spin structures on the spacetime manifold
M are related to each other by H1(M,Z2). Namely, for a given χ ∈ H1(M,Z2), we can shift
η by χ to define another spin structure η + χ. The need for a spin structure arises for the
following reason.
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dimensions (0 + 1)d (1 + 1)d (2 + 1)d
SPT phases Z2 Z2 Z
generator complex fermion Kitaev wire p+ ip superconductor

Table 2.3: spin cobordism groups Ωd
spin and the corresponding fermionic SPT phases.

A relativistic quantum field theory in d spacetime dimensions possesses the Lorentz SO(d)
symmetry. However, since fermions are spinors, fermions transform according to the double
cover of SO(d), which is Spin(d). To define the field theory on a generic spacetime manifold,
one needs to consider a SO(d) bundle φ : M → BSO(d), which can be thought of as the
tangent bundle TM of an oriented manifold M . In order to have fermions, the transition
functions φij ∈ SO(d) between overlapping patches Ui and Uj must be lifted to φ̃ij ∈ Spin(d).
Since Spin(d) is the group extension

Z2 → Spin(d)→ SO(d) (2.8)

whose extension is given by w2 ∈ H2(BSO(d),Z2). Then, Spin(d) is identified as SO(d)×Z2

as a set, so we can express φ̃ij as a pair (φij, ηij) ∈ SO(d)×Z2. The nontrivial group extension
is reflected in the multiplication law of Z2 elements ηij twisted by w2. Namely, for transition
functions φ̃ij ∈ Spin(d), we have the multiplication law

φ̃ijφ̃jk = (φijφjk, ηij + ηjk + w2(φij, φjk)). (2.9)

Due to the cocycle condition φ̃ijφ̃jk = φ̃ik, we find

ηij + ηjk + ηik = w2(φij, φjk) (2.10)

In coordinate-free notation, this is precisely the equation δη = φ∗w2 = w2(TM).
When the field theory possesses a global symmetry that reverses the orientation of the

spacetime, e.g., time-reversal (T ) symmetry, we may put the theory on an unoriented space-
time manifold. In that case, the Lorentz symmetry is now expressed as O(d), where the time-
reversal symmetry corresponds to the Z2 subgroup ZT2 ⊂ O(d) generated by the orientation-
reversing element. Then, we have the tangent bundle φ : M → BO(d), and the transition
function φij ∈ O(d) will be lifted to its double cover via the group extension

Z2 → Pin±(d)→ O(d), (2.11)

whose extension is characterized by the element of H2(BO(d),Z2). Since H2(BO(d),Z2) =
Z2 × Z2 generated by w2

1 and w2, there are four possible choices of the symmetry extension
of O(d) by Z2. In addition, SO(d) ⊂ O(d) must be lifted to Spin(d) for fermionic theories,
so the extension class in (2.11) must be w2 or w2 + w2

1. This amounts to two choices of the
double cover Pin+(d) or Pin−(d);

• When the extension class is chosen as w2, we have the Pin+ group by the exten-
sion (2.11). In that case, analogously to (2.10) the Pin+ structure is specified by a
choice of η ∈ C1(M,Z2) with δη = w2.
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• When the extension class is chosen as w2 + w2
1, we have the Pin− group by the exten-

sion (2.11). In that case, the Pin− structure is specified by a choice of η ∈ C1(M,Z2)
with δη = w2 + w2

1.

Physically, Pin− structure differs from Pin+ by the action of the time-reversal symmetry on
a fermion. That is, the subgroup ZT2 ∈ O(d) is extended to the Z4 in the case of Pin−(d),

Z2 → ZT4 → ZT2 , (2.12)

while ZT2 is not extended for Pin+(d). This means in the Euclidean spacetime that the time-
reversal symmetry acts as T 2 = (−1)F for the Pin− structure, while T 2 = +1 for the Pin+

structure, where (−1)F represents the fermion parity.
When we are interested on the action of T in the Minkowski signature, the above T action

should be Wick-rotated, meaning T 2 = (−1)F for Pin+ structure, while T 2 = +1 for Pin−
structure. These T symmetry actions are represented in Table 2.1 and Table 2.2.

2.4 The layer structure of fermionic SPT phases
The cobordism group Ωd

spin(BG) can in principle be computed using a mathematical toolkit
called the Atiyah-Hirzebruch spectral sequence (AHSS) [30, 31]. The AHSS provides a way
to evaluate Ωd

spin(BG) using the cohomological data

Ep,q
2 := Hp(BG,Ωq

spin), p+ q = d. (2.13)

Each cohomological data Ep,q
2 is usually associated with a physical interpretation. Namely,

Ep,q
2 corresponds to decorating a q-dimensional fermionic SPT phase classified by Ωq

spin, on
a spacetime q-dimensional junction of G-symmetry defects [32]. For low dimensions p, the
decorations are described as follows:

• For p = 1, we decorate a codimension-1 symmetry defect labeled by a group element
g ∈ G with a (d− 1)-dimensional SPT phase. The rule for the decoration is controlled
by n1 ∈ H1(BG,Ωd−1

spin), i.e., for a given G-gauge field g : M → BG, g∗n1 ∈ H1(M,Ωd−1
spin)

indicates that we assign a (d− 1)-dimensional fermionic SPT phase g∗n1(ij) ∈ Ωd−1
spin on

the Poincaré dual of a 1-simplex 〈ij〉.

• For p = 2, we consider a codimension-2 junction of two G-symmetry defects labeled
by group elements g1, g2 ∈ G that fuses into a single defect g1g2 at the junction. We
decorate the junction according to n2 ∈ H2(BG,Ωd−2

spin) with a (d− 2)-dimensional SPT
phase, i.e., for a given G-gauge field g : M → BG, g∗n2 ∈ H2(M,Ωd−2

spin) indicates that
we assign a (d− 2)-dimensional fermionic SPT phase g∗n1(ijk) ∈ Ωd−2

spin on the Poincaré
dual of the junction of gij, gjk at a 2-simplex 〈ijk〉.

• For p = 3, we consider a codimension-3 junction of three G-symmetry defects labeled
by g1, g2, g3 ∈ G respectively. This junction can be understood as follows. We take a
spacetime around the junction as Id with I = [0, 1] locally, and regard one coordinate as
the time direction t ∈ [0, 1]. Then, for the snapshot at the initial time t = 0, we consider
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a F -like configuration of three symmetry defects g1, g2, g3 with two junctions as Fig. 2.2.
Then, we think of a movie that transforms the initial configuration at t = 0 to the final
one at t = 1, which changes the way to fuse the three defects. At the middle of the
movie t = 0.5, we observe a junction where three junctions fuses into a point, which is
regarded as the codimension-3 defect involving the three symmetry defects, see Fig. 2.2.
We decorate the junction according to n3 ∈ H3(BG,Ωd−3

spin) with a (d− 3)-dimensional
SPT phase, i.e., for a given G-gauge field g : M → BG, g∗n3 ∈ H3(M,Ωd−3

spin) indicates
that we assign a (d − 3)-dimensional fermionic SPT phase g∗n3(ijkl) ∈ Ωd−3

spin on the
Poincaré dual of the junction of gij, gjk, gkl at a 3-simplex 〈ijkl〉.

★

Figure 2.2: The movie for the network of symmetry defects. At the middle of the movie all
the defects for g1, g2, g3 ∈ G meets at a point, which gives a codimension-3 junction.

Let us observe how the above physical intuition works for the example Ω3
spin(BZ2) = Z8.

In that case, the cobordism group is constructed by three layers

n1 ∈ H1(BZ2,Z2) = Z2 Kitaev layer,
n2 ∈ H2(BZ2,Z2) = Z2 Complex fermion layer,
ν3 ∈ H3(BZ2, U(1)) = Z2 Bosonic layer,

(2.14)

where the third layer represents E4,−1
2 = H4(BZ2,Z) = H3(BZ2, U(1)). According to the

AHSS computation, the SPT classification ν ∈ Z8 is obtained by three layers as the binary
expansion

ν = 4ν3 + 2n2 + n1 mod 8, (2.15)
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which implies the following description of (2 + 1)-dimensional Z2 SPT phases. Firstly, the Z2

subgroup of the Z8 classification is solely labeled by ν3 ∈ H3(BZ2, U(1)) with n1 = n2 = 0.
This corresponds to a bosonic Z2 SPT phase classified by group cohomology, and the Z2

subgroup is independent of spin structure of the spacetime. Secondly, the Z4 subgroup corre-
sponds to turning on (n2, ν3). This Z4 subclass is called the Gu-Wen SPT phase, the simplest
intrinsically fermionic phase in the sense of intrinsic dependence on the spin structure. The
nontrivial n2 assigns a complex fermion on the codimension-2 junction of symmetry defects,
so the junction can carry nontrivial fermion parity for the generator of Z4 subclass. The
Gu-Wen SPT phase will be studied in Sec. 5. Finally, the full Z8 group can have nontrivial
n1, so the generator of Z8 has the Kitaev wire on the Z2 symmetry defect.

Using the AHSS, we can also compute the Pin+, Pin− cobordism group in d dimension
based on the data

Ep,q
2 := Hp

ρ(BZT2 ,Ω
q
spin), p+ q = d. (2.16)

Here, H∗ρ denotes the twisted cohomology, see Appendix D for the definition. For example,
the Pin+ cobordism group Ω4

pin+ = Z16 consists of four layers

n1 ∈ H1
ρ(BZT2 ,Z) = Z2 p+ ip layer,

n2 ∈ H2(BZT2 ,Z2) = Z2 Kitaev layer,
n3 ∈ H3(BZT2 ,Z2) = Z2 Complex fermion layer,
ν4 ∈ H4

ρ(BZT2 , U(1)) = Z2 Bosonic layer,

(2.17)

which again compiles into the SPT classification ν ∈ Z16 by the binary expansion

ν = 8ν4 + 4n3 + 2n2 + n1 mod 16. (2.18)

This implies the layer structure of the Z16 classification; the Z2 subgroup gives the bosonic
SPT phase classified byH4

ρ(BZT2 , U(1)) = Z2, the Z4 subgroup gives the Gu-Wen SPT phases,
the Z8 subgroup involves the Kitaev wire assigned on the junction of T symmetry defects,
and finally the full Z16 can have a p+ ip superconductor assigned on the T symmetry defect.

2.5 SPT phases and ’t Hooft anomalies: anomaly inflow
An important property of an SPT phase is the presence of an edge state which appears on the
boundary of SPT phase. In particular, a state on the boundary of an SPT phase must have a
nontrivial spectrum at low energy, e.g., a well-known gapless edge state on the boundary of a
(2+1)-dimensional topological insulator. Such a nontrivial spectral property on the boundary
of an SPT phase originates from a quantum anomaly of the edge state called an ’t Hooft
anomaly.

In general, a QFT with a global symmetry G is said to have an ’t Hooft anomaly, when the
QFT is coupled with a background G gauge field A, and its partition has a phase ambiguity
under the G gauge transformation, Z(A + δχ) = Z(A) · e2πiω(A,χ). Importantly, a theory
with an ’t Hooft anomaly becomes gauge invariant after coupling with an SPT phase in
one more dimension, and consider it as a bulk-boundary system. This is called an anomaly
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inflow mechanism. To see how the ’t Hooft anomaly is accounted for by coupling the theory
with the bulk SPT phase, let us consider a two-dimensional bosonic system with an internal
symmetry G. Then, the configuration of background gauge field is specified by a network of
symmetry defects on a spacetime manifold M . In this description, the gauge transformation
is understood as changing the presentation of defect networks locally, as shown in Fig. 2.3.

Figure 2.3: The partition function shifts under changing the configuration of the symmetry
defects locally.

When the theory has an ’t Hooft anomaly, the change of defect networks is associated
with a phase variation ω of the partition function. ω is a function G3 → U(1), so it is an
element of C3(BG,U(1)). Further, ω is subject to the consistency equation represented in
Fig. 2.4. The consistency condition compiles into a simple form δω = 0 using the coboundary
operation for the group cochain (see Appendix D). Hence, ω ∈ Z3(BG,U(1)).

Figure 2.4: The consistency equation for the phase ambiguity ω. Since the overall phase shift
should be independent of the path in this pentagon, it leads to the condition δω = 0.

Note that we can add a term χ(g1, g2) on each junction of g1, g2 ∈ G. This is regarded
as introducing a local counterterm described by χ ∈ C2(BG,U(1)). This redefinition of the
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partition function amounts to shifting ω by a coboundary, ω → ω + δχ. Thus, the ’t Hooft
anomaly up to the addition of local counterterms are said to be characterized by the group
cohomology [ω] ∈ H3(BG,U(1)).

The above theory with an ’t Hooft anomaly characterized by ω ∈ H3(BG,U(1)) is
made gauge invariant by coupling with the (2 + 1)-dimensional bosonic SPT phase ω ∈
H3(BG,U(1)) reviewed in Sec. 2.1. Actually, the change of the defect network represented in
Fig. 2.3 corresponds to attaching a single 3-simplex on the boundary, see Fig. 2.5. When the
bulk 3-simplex has the Boltzmann weight ω ∈ Z3(BG,U(1)), it cancels the gauge variation
from the boundary, and constitutes a gauge-invariant bulk-boundary system after all.

attach a 3-simplex

Figure 2.5: The phase ambiguity under the change of defect networks can be canceled by
attaching a 3-simplex with the Boltzmann weight ω.
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Chapter 3

Review on bosonization

So far, we have illustrated an abstract classification scheme of SPT phases based on the
bordism groups. In the rest of this thesis, we study explicit constructions of fermionic SPT
phases on lattice that embody the layer structure of cobordism groups, and explore their
physical properties. Here, we provide a general overview for constructing a path integral for
a fermionic SPT phase by starting with a path integral for a bosonic topological phase in d
spacetime dimensions and condensing fermionic particles of the bosonic theory by gauging
a specific higher-form global symmetry. Such a construction of fermionic theories from a
bosonic dual theory is regarded as a generalization of the celebrated Jordan-Wigner trans-
formation in (1 + 1) dimensions to higher spacetime dimensions.

3.1 (1 + 1)d bosonization
We start with recalling the Jordan-Wigner transformation and bosonization of (1 + 1)-
dimensional quantum systems from the field theoretical perspective. The Jordan-Wigner
transformation maps a bosonic system with a global Z2 symmetry to a fermionic system
with the fermion parity symmetry (−1)F . For example, the critical Ising model with the
spin-flip Z2 symmetry in (1 + 1) dimensions can be transformed to a free massless Majorana
fermion.

We can also define the bosonization as the inverse of the Jordan-Wigner transformation,
which maps a fermionic theory to a bosonic one. At the QFT level, bosonization generates
a bosonic theory independent of spin structure of the spacetime, from a given fermionic
theory intrinsically coupled with spin structure. If we write a fermionic partition function
Zf (M, η) on an oriented manifold M equipped with a specific spin structure η, the following
transformation gives the simplest form of the bosonization,

Zb(M) :=
1√

|H1(M,Z2)|

∑
η

Zf (M, η), (3.1)

where Zb is a bosonic theory given by summing over all possible choices of spin structure on
M . Since the distinct spin structures are related by shifting η → η+χ with [χ] ∈ H1(M,Z2),
the summation is thought of as running over [χ] ∈ H1(M,Z2). Physically, the shift η →
η + χ corresponds to turning on flat background gauge field for the (−1)F symmetry, and
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the summation in (3.1) amounts to promoting the background gauge field of (−1)F to the
dynamical gauge field. In (1 + 1) dimensions, gauging a Z2 (in our case (−1)F ) symmetry
gives rise to a dual Ẑ2 symmetry. We can couple the bosonic theory with the background
gauge field of the Ẑ2 symmetry as

Zb(M,α) :=
1√

|H1(M,Z2)|

∑
η

z(M,α, η)Zf (M, η). (3.2)

On an oriented manifold, z(M,α, η) is a phase that defines a way to couple Zb with the Ẑ2

background gauge field α. This phase can be regarded as a partition function of an invertible
topological quantum field theory (TQFT) based on the spin structure η and the Ẑ2 symmetry.
We will discuss in detail the properties of z(M,α, η) in the following sections. Here, we refer
to crucial properties of this theory. Firstly, the partition function is a Z2 = {±1} valued
quadratic function of α ∈ H1(M,Z2), with the quadratic property

z(M,α, η)z(M,α′, η) = z(M,α + α′, η)(−1)
∫
α∪α′ . (3.3)

Secondly, if we shift the spin structure as η → η+χ with χ ∈ Z1(M,Z2), z(M,α, η) transforms
as

z(M,α, η + χ) = z(M,α, η)(−1)
∫
χ∪α. (3.4)

(3.4) immediately leads to∑
[α]∈H1(M,Z2)

z(M,α, η′)z−1(M,α, η) = |H1(M,Z2)| · δ(η′ − η), (3.5)

where δ(η′ − η) = 1 if η′ − η is cohomologically trivial, otherwise zero. This relation allows
us to define the inverse transformation of the bosonization defined in (3.2),

Zf (M, η) =
1√

|H1(M,Z2)|

∑
[α]∈H1(M,Z2)

z(M,α, η)Zb(M,α). (3.6)

This is regarded as gauging the Z2 symmetry of the bosonic theory after coupling with the
spin theory z(M,α, η). This procedure is called fermionization, and especially turns out to
provide a field theoretical description of the Jordan-Wigner transformation. To see how it
works, we illustrate an example of (1+1)-dimensional fermionization in Sec. 3.2, focusing on
(1+1)d conformal field theory (CFT).

3.2 Example: (1 + 1)d CFT
In a rational conformal field theory (RCFT) with diagonal modular invariance, there is a
family of topological line operators known as the Verlinde lines, which are in one-to-one
correspondence with the chiral primaries of the diagonal RCFT.
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In the diagonal RCFT, some Verlinde lines are regarded as generators of global symmetries
of the theory. To see this, let us explain how the Verlinde lines acts on the Hilbert space of
the CFT. The torus partition function of the diagonal RCFT takes the form of

Z(τ, τ) =
∑
i

χi(τ)χi(τ), (3.7)

where the sum is over the labels of chiral primaries. In such a diagonal modular invariant
theory, the states of the Hilbert space are denoted by |φi〉, in correspondence with the chiral
primaries φi. Then, the action of the Verlinde line L̂k corresponding to the chiral primary
φk is given by

L̂k |φi〉 =
Ski
S0i

|φi〉 . (3.8)

Here, Sij is the elements of the modular S-matrix, which is unitary and symmetric. To
discuss the algebra of Verlinde line, we use the Verlinde formula

Nk
ij =

∑
l

SilSjlS
∗
kl

S0l

, (3.9)

where Nk
ij is the fusion coefficient of the chiral algebra,

φi × φj =
∑
k

Nk
ijφk. (3.10)

Then, we can immediately see that the Verlinde lines also obey the fusion rule of the chiral
primaries,

L̂i × L̂j =
∑
k

Nk
ijL̂k. (3.11)

Hence, the Verlinde line L̂i corresponding to φi with the property φi × φi = φ0 generates
the Z2 symmetry, where φ0 is the identity operator. If there is a global Z2 symmetry free
of an ’t Hooft anomaly, we can gauge it to generate a fermionic CFT coupled with the spin
structure, via the fermionization (3.6). The fermionization of (1+1)-dimensional CFT is also
discussed in [31, 33–35].

For later convenience, we describe the torus partition function in the presence of Verlinde
lines inserted in the torus. The torus partition function with the action of the L̂i line (i.e.,
the L̂k line inserted along the spatial direction) is expressed as

ZLk(τ, τ) =
∑
l

Skl
S0l

χl(τ)χl(τ). (3.12)

Then, we can obtain the twisted partition function ZLk with the L̂k line inserted along the
temporal direction, by the modular S transformation on ZLk(τ, τ),

ZLk(τ, τ) =
∑
i,j

N j
kiχi(τ)χj(τ). (3.13)

where we used the modular property of characters χi(−1/τ) =
∑

j Sijχj(τ).
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3.2.1 Ising CFT

The two dimensional Ising CFT has three chiral primaries {1, ε, σ} with h = 0, h = 1/2, h =

1/16, respectively. Due to the fusion rule ε × ε = 1, the Verlinde line L̂ε generates the Z2

symmetry of the diagonal theory

Z(τ, τ) = |χ1(τ)|2 + |χε(τ)|2 + |χσ(τ)|2. (3.14)

The modular S-matrix is given by

SIsing =
1

2

 1 1
√

2

1 1 −
√

2√
2 −

√
2 0

 , (3.15)

from which we can read off the action of L̂ε on the Hilbert space (3.8) as

L̂ε : |1〉 → |1〉 , |ε〉 → |ε〉 , |σ〉 → − |σ〉 . (3.16)

The partition functions with the Z2 defect inserted along the spatial and temporal direction
are given by

ZL(τ, τ) = |χ1(τ)|2 + |χε(τ)|2 − |χσ(τ)|2, (3.17)

ZL(τ, τ) = χε(τ)χ0(τ) + χ0(τ)χε(τ) + |χσ(τ)|2, (3.18)

respectively. We can also obtain the partition function ZLL with the Z2 defect inserted in
both spatial and temporal directions, by applying the modular T transformation on ZL,

ZLL(τ, τ) = −χε(τ)χ0(τ)− χ0(τ)χε(τ) + |χσ(τ)|2, (3.19)

where the modular T -matrix is given by

TIsing =
1

2

1 0 0
0 −1 0

0 0 e
2πi
16

 . (3.20)

3.2.2 Fermionization of the Ising CFT: Majorana fermion

Now, we can perform the fermionization on the Ising CFT. On the fermionic side, we want
to obtain partition functions of the fermionized theory coupled with the spin structure on
a torus. In general, the spin structure η on an oriented two dimensional surface M is in
one-to-one correspondence to the quadratic function z(M,α, η) of α ∈ H1(M,Z2) with the
quadratic property (3.3). We label the spin structure on M as

z(M,α, η) =

{
1 the spin structure is NS around Cα ,
−1 the spin structure is R around Cα

(3.21)
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where Cα is a single, non-self-intersecting closed curve Poincaré dual to α ∈ H1(M,Z2).
The spin structure on a torus is represented by a pair of the above labels e.g., (NS, NS),
which means the spin structure in the spatial and temporal cycle, respectively. By the
fermionization (3.6), the fermionic partition function on a torus with (NS, NS) spin structure
is given by [31, 33, 34]

Z(NS,NS) =
1

2

(
Z + ZL + ZL − ZLL

)
= |χ1(τ) + χε(τ)|2.

(3.22)

We can also obtain partition function for other spin structures as

Z(NS,R) =
1

2

(
Z + ZL − ZL + ZLL

)
= |χ1(τ)− χε(τ)|2,

(3.23)

Z(R,NS) =
1

2

(
Z − ZL + ZL + ZLL

)
= 2|χσ(τ)|2,

(3.24)

Z(R,R) =
1

2

(
Z − ZL − ZL − ZLL

)
= 0.

(3.25)

They are nothing but the partition function of a free Majorana fermion on a torus.

3.3 Bosonization in higher dimensions
We can also define the bosonization/fermionization in generic spacetime dimensions, analo-
gously to what we have done in (1+1) dimensions. In higher dimensions, we consider a phase
factor z(M,α, η) on an oriented d-dimensional manifold M with a spin structure η and the
Z2 (d − 2)-form symmetry, as proposed in [21]. α ∈ Zd−1(M,Z2) denotes the background
gauge field of the (d− 2)-form symmetry. Then, the bosonization (3.2) is generalized as

Zb(M,α) :=
1√

|Hd−1(M,Z2)|

∑
η

z(M,α, η)Zf (M, η). (3.26)

This produces the bosonic theory Zb with the Z2 (d− 2)-form symmetry.
Now, we illustrate the formal properties of z(M,α, η) in detail. LetM be a d-dimensional

oriented manifold M equipped with a triangulation. In generic spacetime dimensions higher
than (1+1) dimensions, z(M,α, η) depends on the choice of the triangulation onM , and also
depends on a specific cochain representative of α ∈ Zd−1(M,Z2).

To construct z(M,α, η), we also want to equip M with the spin structure η. To do this,
let wi ∈ H i(M,Z2) be the i-th Stiefel-Whitney class of M . Assume that we have a cochain
representative of w2 onM . As reviewed in Sec. 2.3, for a given representative of w2, we define
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the spin structure of M as a cochain η ∈ C1(M,Z2) with δη = w2. Later, we will see how to
give an explicit representative of w2 in Sec. 3.4.

Then, z(M,α, η) has the form of

z(M,α, η) = (−1)
∫
η∪ασ(M,α), (3.27)

where σ(M,α) is independent of the spin structure η. On an oriented manifold, σ(M,α)
takes the value in Z2 = {±1}. Then, the main properties of σ(M,α) is listed as follows:

1. The quadratic property

σ(α)σ(α′) = σ(α + α′)(−1)
∫
α∪d−2α

′
. (3.28)

2. The change of σ(α) under the gauge transformation α → α + δλ or under the change
of the triangulation is controlled by the formula

σ(M̃, α̃) = (−1)
∫
K(Sq2(α)+w2∪α)σ(M,α), (3.29)

where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such
that [α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are
given by M and M̃ , and finally α is extended to K so that it restricts to α and α̃ on
the boundaries.

Due to the variation (−1)
∫
K(Sq2(α)+w2∪α) of σ(M,α) under a bordism, we can see that the

combination z(M,α, η) = (−1)
∫
η∪ασ(M,α) changes by (−1)

∫
K Sq2(α) under a bordism. In

particular, z(M,α, η) works as a bordism invariant in two dimensions, since the 1-cochain
α ∈ Z1(M,Z2) is killed by the Steenrod square, Sq2(α) = 0. Hence, z(M,α, η) in two
dimensions is regarded as the partition function of a (1+1)-dimensional spin invertible TQFT
with the Z2 symmetry, and reproduces the descriptions in Sec. 3.1. For higher dimensions
d > 2, z(M,α, η) is no longer a bordism invariant, and the variation Sq2(α) is regarded as
an ’t Hooft anomaly of the (d− 2)-form Z2 symmetry of the theory.

Finally, we illustrate the fermionization as the inverse of the bosonization (3.26). The
form (3.27) immediately leads to z(M,α, η + χ) = z(M,α, η)(−1)

∫
χ∪α under the shift η →

η + χ, and ∑
[α]∈Hd−1(M,Z2)

z(M,α, η′)z−1(M,α, η) = |Hd−1(M,Z2)| · δ(η′ − η). (3.30)

Here, we note that the combination z(M,α, η′)z−1(M,α, η) is gauge invariant under α →
α + δλ since the anomaly of the two theories are canceled out, and works as a function of
the cohomology [α] ∈ Hd−1(M,Z2). Then, the inverse of the bosonization (3.26) is given by

Zf (M, η) =
1√

|Hd−1(M,Z2)|

∑
[α]∈Hd−1(M,Z2)

z(M,α, η)Zb(M,α). (3.31)

Since z(M,α, η) has an ’t Hooft anomaly controlled by Sq2(α), Zb(M,α) in (3.26) must also
have the same anomaly to cancel it out. We remark that it is required that M admits a spin
structure when we perform fermionization starting with a bosonic theory Zb(M,α), though
Zb(M,α) itself is bosonic and can be defined on non-spin manifolds.
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3.4 Grassmann integral
So far, we have introduced a spin theory z(M,α, η) to fermionize a bosonic theory with the
anomalous (d − 2)-form Z2 symmetry Zb(M,α). In this section, we will see that z(M,α, η)
admits a local definition defined on a lattice (i.e., triangulation of M). This is particularly
useful for constructing a lattice model of fermionic topological phases from a bosonic dual
defined on a lattice.

To do this, we first endow M with a triangulation. In addition, we take the barycentric
subdivision for the triangulation of M . Namely, each d-simplex in the initial triangulation
of M is subdivided into (d + 1)! simplices, whose vertices are barycenters of the subsets of
vertices in the d-simplex. We further assign a local ordering to vertices of the barycentric
subdivision, such that a vertex on the barycenter of i vertices is labeled as i. Each simplex
can then be either a + simplex or a − simplex, depending on whether the ordering agrees
with the orientation or not.

There is an important property for the barycentric subdivision. That is, a set of all
(d− i)-simplices of the barycentric subdivision of a triangulation of M gives a representative
of Poincaré dual of the i-th Stiefel-Whitney class wi [36–38]. In particular, a set of all (d−2)-
simplices of the barycentric subdivision will be used to represent w2 required for the definition
of spin structure η with δη = w2.

We assign a pair of Grassmann variables θe, θe on each (d− 1)-simplex e of M such that
α(e) = 1, we associate θe on one side of e contained in one of d-simplices neighboring e (which
will be specified later), θe on the other side. Then, we define σ(M,α) introduced in (3.27) as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t), (3.32)

where t denotes a d-simplex, and u(t) is the product of Grassmann variables contained in
t. For instance, for d = 2, u(t) on t = (012) is the product of ϑα(12)

12 , ϑ
α(01)
01 , ϑ

α(02)
02 . Here, ϑ

denotes θ or θ depending on the choice of the assigning rule, which will be introduced later.
The order of Grassmann variables in u(t) will also be defined shortly. We note that u(t) is
ensured to be Grassmann-even when α is closed.

Due to the fermionic sign of Grassmann variables, σ(α) becomes a quadratic function,
whose quadratic property depends on the order of Grassmann variables in u(t). We will
adopt the order used in Gaiotto-Kapustin [21], which is defined as follows.

• For t = (01 . . . d), we label a (d− 1)-simplex (01 . . . î . . . d) (i.e., a (d− 1)-simplex given
by omitting a vertex i) simply as i.

• Then, the order of ϑi for + d-simplex t is defined by first assigning even (d−1)-simplices
in ascending order, then odd simplices in ascending order again:

0→ 2→ 4→ · · · → 1→ 3→ 5→ . . . (3.33)

• For − d-simplices, the order is defined in opposite way:

· · · → 5→ 3→ 1→ · · · → 4→ 2→ 0. (3.34)
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For example, for d = 2, u(012) = ϑ
α(12)
12 ϑ

α(01)
01 ϑ

α(02)
02 when (012) is a + triangle, and u(012) =

ϑ
α(02)
02 ϑ

α(01)
01 ϑ

α(12)
12 for a − triangle. Then, we choose the assignment of θ and θ on each e such

that, if t is a + (resp. −) simplex, u(t) includes θe when e is labeled by an odd (resp. even)
number, see Fig. 3.1. Based on the above definition of u(t), the quadratic property of u(t) is

Figure 3.1: Assignment of Grassmann variables on 1-simplices in the case of d = 2. θ (resp. θ)
is represented as a black (resp. white) dot.

given by (3.28),
σ(α)σ(α′) = σ(α + α′)(−1)

∫
α∪d−2α

′
, (3.35)

for closed α, α′. To see this, we just have to bring the product of two Grassmann integrals

σ(α)σ(α′) =

∫ ∏
e|α(e)=1

dθedθe
∏

e|α′(e)=1

dθedθe
∏
t

u(t)[α]
∏
t

u(t)[α′] (3.36)

into the form of σ(α + α′) by permuting Grassmann variables, and count the net fermionic
sign. First of all, each path integral measure on e picks up a sign (−1)α(e)α′(e) by permuting
dθ

α(e)

e and dθα
′(e)

e . For integrands, u(t) on different d-simplices commute with each other for
closed α, so nontrivial signs occur only by reordering u(t)[α]u(t)[α′] to u(t)[α+α′] on a single
d-simplex. The sign on t is explicitly written as

(−1)
∑e>e′
e,e′∈t α(e)α′(e′), (3.37)

where the order e > e′ is determined by u(t). Hence, the net fermionic sign is given by

σ(α)σ(α′) = σ(α + α′)
∏
t

(−1)ε[t,α,α
′], (3.38)

with
ε[t, α, α′] =

∑
e,e′∈t,e>e′

α(e)α′(e′) +
∑

e∈t,e>0

α(e)α′(e), (3.39)

where e > 0 if u[t] includes a θe variable. The sign ε[t, α, α′] turns out to have a neat
expression in terms of the higher cup product. For later convenience, we compute ε[t, α, α′]
including the case that α, α′ are not closed.

At a + simplex, after some efforts we can rewrite ε[t, α, α′] as

ε[t, α, α′] =
∑
i

α2i+1 · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= α ∪d−2 α
′ + α ∪d−1 δα

′.

(3.40)
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At a − simplex, similarly we have

ε[t, α, α′] =
∑
i

α2i · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= δα(t)δα′(t) + α ∪d−2 α
′ + α ∪d−1 δα

′.

(3.41)

We can see the quadratic property (3.35) when α, α′ are closed.
The change of σ(α) under the gauge transformation α → α + δγ or under the change of

the triangulation is controlled by the formula

σ(M̃, α̃) = (−1)
∫
K(Sq2(α)+w2∪α)σ(M,α), (3.42)

where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such that
[α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are given by M
and M̃ , and finally α is extended to K so that it restricts to α and α̃ on the boundaries. The
derivation was given in [21].

We note that due to the Wu relation [39], we have

(−1)
∫
K(Sq2(α)+w2∪α) = +1, (3.43)

whenK is an oriented closed manifold and α is a cocycle. This means that
∫
K

(Sq2(α)+w2∪α)
represents a trivial phase in (d + 1) dimensions, and therefore there should be a trivial
boundary in d dimensions. We can think of the Gu-Wen Grassmann integral σ(M,α) as
providing an explicit formula for such a trivial boundary.
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Chapter 4

Fermionic phases with time-reversal
symmetry

The content of this chapter is based on the author’s work [22].
In Chapter 3, we reviewed a way to construct lattice path integral for fermionic topological

phases on oriented spacetime manifolds. Meanwhile, it is sometimes useful to consider a
fermionic topological phase on an unoriented spacetime manifold [12, 40–43], when the system
has a symmetry that reverses the orientation of spacetime. In particular, an unoriented
manifold naturally encodes orientation reversing symmetry defects inserted in the spacetime
regarded as “background gauge field” of the orientation reversing symmetry. Thus it enables
us to see the response of the system to the gauge field of the symmetry, which will be crucial
for studying the SPT phases or anomalies based on time-reversal symmetry.

As we have reviewed in Sec. 2.3, the fermionic theory on an unoriented spacetime requires a
Pin± structure. For instance, let us think of a (1+1)-dimensional topological superconductor
with T 2 = 1, which follows a Z8 classification [10]. Cobordism theory reviewed in Sec. 2.2
predicts that the Z8 classification is diagnosed by computing the partition function of the
corresponding theory on a surface generating a Pin− bordism group Ωpin−

2 = Z8, which is RP2

equipped with a Pin− structure. As another example, the (3 + 1)-dimensional topological
superconductor with T 2 = (−1)F is known to be classified by the Pin+ cobordism group
Ω4

pin+ = Z16 [15, 20, 44, 45]. The Z16 classification is detected by the partition function on
RP4 equipped with a Pin+ structure, reflecting that the Pin+ bordism group is generated by
that manifold [46]. In this context, it is important to ask how to formulate the Pin± quantum
field theory on a manifold which is not necessarily oriented.

Here, we propose a strategy to produce a lattice definition of Pin± field theory in general
dimensions, by extending the recipe reviewed in Chapter 3. Concretely, we obtain the ex-
tended Grassmann integral σ(M,α) on an unoriented d-manifold M , with a (d− 2)-form Z2

symmetry whose background gauge field is α ∈ Zd−1(M,Z2). This is done by modifying the
definition of the Grassmann integral properly, in the vicinity of the orientation reversing wall
in M , which flips the orientation as we go across the wall. We will show that the Grassmann
integral possesses an ’t Hooft anomaly for the (d − 2)-form Z2 symmetry controlled by the
d-dimensional response action

(−1)
∫

(Sq2(α)+(w2+w2
1)∪α). (4.1)
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Then, we can define the Pin− QFT when M admits a Pin− structure, by coupling with a
bosonic theory Z̃−[α] which possesses an anomaly (−1)

∫
Sq2(α),

Zpin−(M, η) =
∑
α

Z̃−[α]σ(M,α)(−1)
∫
M η∪α, (4.2)

where η specifies a Pin− structure that satisfies δη = w2 + w2
1. We can also construct the

Pin+ QFT when M admits a Pin+ structure, by coupling with a bosonic theory Z̃+[α] with
an anomaly (−1)

∫
Sq2(α)+w2

1∪α,

Zpin+(M, η) =
∑
α

Z̃+[α]σ(M,α)(−1)
∫
M η∪α, (4.3)

where η specifies a Pin+ structure that satisfies δη = w2.

Unoriented Grassmann integral
Now let us construct the Grassmann integral σ(M,α) on a d-manifold M which might be
unoriented. We construct an unoriented manifold by picking locally oriented patches, and
then gluing them along codimension one loci by transition functions. The locus where the
transition functions are orientation reversing, constitutes a representative of the dual of first
Stiefel-Whitney class w1. We will sometimes call the locus an orientation reversing wall.
Again, we endow M with a barycentric subdivision for the triangulation of M . We then
assign a local ordering to vertices of the barycentric subdivision, such that a vertex on the
barycenter of i vertices is labeled as i.

For the oriented case, we have placed a pair of Grassmann variables θe, θe on each (d−1)-
simplex e, whose assignment is determined by the sign of d-simplices (+,−) sharing e. We
remark that the assigning rule fails, when e lies on the wall where we glue patches of M by
the orientation reversing map. In this case, we would have to assign Grassmann variables
of the same color on both sides of e (i.e., both are black (θ) or white (θ)), since the two
d-simplices sharing e have the identical sign when e is on the orientation reversing wall, see
Fig. 4.1 (a). Hence, we need to slightly modify the construction of the Grassmann integral
on the orientation reversing wall. To do this, instead of specifying a canonical rule to assign
Grassmann variables on the wall, we just place a pair θe, θe on the wall in an arbitrary
fashion. Then, we define the Grassmann integral as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t)
∏
e|wall

(±i)α(e), (4.4)

where the
∏

e|wall(±i)α(e) term assigns weight +iα(e) (resp. −iα(e)) on each (d− 1)-simplex e
on the orientation reversing wall, when e is shared with + (resp. −) d-simplices. There is
no ambiguity in such definition, since both d-simplices on the side of e have the same sign.
This factor makes the Grassmann integral a Z4 valued quadratic function. The quadratic
property is expressed as

σ(α)σ(α′) = σ(α + α′)(−1)
∫
α∪d−2α

′
. (4.5)
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Basically, the quadratic property is derived in the similar fashion to the oriented spin case.
In this case, the net sign consists of three parts;

• the fermionic sign that occurs when reordering u(t)[α]u(t)[α′] to u(t)[α+α′] on a single
d-simplex. The sign on t is expressed as

(−1)
∑e>e′
e,e′∈t α(e)α′(e′). (4.6)

• the fermionic sign by permuting the path integral measure, (−1)α(e)α′(e) on each (d−1)-
simplex.

• the sign that comes from iα(e) factor on the wall, which is given by comparing iα(e)iα
′(e)

with iα(e)+α′(e), with the sum of α taken mod 2. This part counts (−1)α(e)α′(e) on the
orientation reversing wall.

Analogously to what we did to the second term in (3.39) for the oriented case, we try to
re-distribute the fermionic sign from the measure

∏
e(−1)α(e)α′(e) to d-simplices, by assigning

(−1)α(e)α′(e) to a + simplex (resp. − simplex) t sharing e, when e is labeled by an odd
(resp. even) number. However, such a distribution fails when e is on the orientation reversing
wall, due to the mismatch of the sign of two d-simplices on the side of e. Such a distribution
counts no sign on the orientation reversing wall. But, this lack of the sign on the wall is
complemented by the factor (−1)α(e)α′(e) from the contribution of the iα(e) term, making the
re-distribution possible after all. Hence, we can express the net sign in exactly the same
fashion as the oriented case (3.38), which proves (4.5).

(a) (b)

Figure 4.1: (a): The signs of d-simplices near the orientation reversing wall, which is rep-
resented as a red line. (b): Assignment of Grassmann variables on the wall specifies a
deformation of the wall that intersects the wall transversally at (d− 2)-simplices.

’t Hooft anomaly

Next, we move on to discuss the ’t Hooft anomaly of the Grassmann integral under the
gauge transformation of (d − 2)-form Z2 symmetry. The effect of the gauge transformation
is determined by a couple of key formulae,

33



• The quadratic property that we proved in Sec. 4,

σ(α)σ(α′) = σ(α + α′)(−1)
∫
α∪d−2α

′
. (4.7)

• When α = δλ for some λ ∈ Cd−2(M,Z2), the Grassmann integral is explicitly computed
as

σ(δλ) = (−1)
∫
w2+w

2
1
λ
(−1)

∫
M λ∪d−3δλ+λ∪d−4λ, (4.8)

where the integral over w2 + w2
1 means that we sum λ over a (d − 2)-cycle SM ∈

Zd−2(M,Z2) Poincaré dual of the Stiefel-Whitney class w2 + w2
1.

Based on the above relations, the variation of σ(α) under the gauge transformation is obtained
as

σ(α + δλ) = σ(α)(−1)
∫
α∪d−2δλ(−1)

∫
M λ∪d−3δλ+λ∪d−4λ(−1)

∫
w2+w

2
1
λ

= σ(α)(−1)
∫
α∪d−3λ+λ∪d−3α+λ∪d−3δλ+λ∪d−4λ(−1)

∫
w2+w

2
1
λ
,

(4.9)

where we used the generalized Leibniz rule of the higher cup product, which is reviewed in
Appendix B. The part (−1)

∫
w2+w

2
1
λ gives an ’t Hooft anomaly with the bulk response action

expressed as (−1)
∫
w2+w

2
1
α. Importantly, if we are given a Pin− structure η of the spacetime,

this anomaly can be canceled by coupling σ(α) with the term in the form of (−1)
∫
M η∪α.

Concretely, this term is written as

(−1)
∑
E α (4.10)

using E ∈ Cd−1(M,Z2) with ∂E = SM , where E is regarded as the Poincaré dual of η with
δη = w2 + w2

1, and specifies a choice of a Pin− structure. Under the gauge transformation
α 7→ α + δλ, this term transforms as

(−1)
∑
E α+δλ = (−1)

∑
E α(−1)

∑
SM

λ (4.11)

and hence cancels the (−1)
∫
w2+w

2
1
α part of the anomaly. The rest of the anomaly in (4.9)

corresponds to the variation of a (d+ 1)-dimensional response action (−1)
∫

Sq2(α), since

Sq2(α + δλ)− Sq2(α) = α ∪d−3 δλ+ δλ ∪d−3 α + δλ ∪d−3 δλ

= δ(α ∪d−3 λ+ λ ∪d−3 α + λ ∪d−3 δλ+ λ ∪d−4 λ).
(4.12)

Thus, the action σ(α)(−1)
∑
E α coupled with the (d+1)-dimensional response action (−1)

∫
Sq2(α)

in the bulk gives a gauge-invariant theory.
Here let us demonstrate (4.8). First, we note that σ(δλ) is a quadratic function of λ, and

its quadratic part can be determined by solving the quadratic property

σ(δλ+ δλ′) = σ(δλ)σ(δλ′)(−1)
∫
M λ∪d−3δλ

′+λ′∪d−3δλ+λ∪d−4λ
′+λ′∪d−4λ. (4.13)

This is satisfied by an ansatz (−1)
∫
M λ∪d−3δλ+λ∪d−4λ, so we can fix the form of σ(δλ) up to

linear term as

σ(δλ) = (−1)
∑
S λ(−1)

∫
M λ∪d−3δλ+λ∪d−4λ, (4.14)
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with a (d − 2)-chain S to be determined. Next, the linear term is obtained by computing
σ(α) in the simplest case; α = δλ, and λ(v) = 1 on a single (d− 2)-simplex of M , otherwise
0. We can see that the quadratic part of σ(δλ) vanishes for such a choice of λ. Once we
take a barycentric subdivision, when λ is nonzero away from the orientation reversing wall,
one can see that σ(δλ) = −1, by imitating the logic of Sec. 4.1. of Gaiotto-Kapustin [21].
See also Fig. 4.2 (a). In the case that λ is nonzero on the orientation reversing wall, the
value of σ(δλ) depends on the way of assigning Grassmann variables to (d− 1)-simplices on
the wall such that δλ = 1. For simplicity, we examine the case that δλ is nonzero on two
(d − 1)-simplices on the wall. (In general, there are even number of such (d − 1)-simplices.
It is not hard to generalize for these situations.) Then, we have two Grassmann variables
attached on each side of the orientation reversing wall. When the two Grassmann variables
on one side of the wall share the same color (i.e., both are black (θ) or white (θ)), we can
show that σ(δλ) = −1 (see Fig. 4.2 (b’)).

On the other hand, if the Grassmann variables on one side have different colors (i.e., one
θ and one θ), we have σ(δλ) = +1 (see Fig. 4.2 (b)). (In these computations, the

∏
(±i)δλ(e)

term emits no sign, (+i) · (−i) = 1.)

(a) (b) (b’)

Figure 4.2: When λ(v) = 1 on a single (d − 2) simplex v, Grassmann variables on (d − 1)-
simplices surrounding v are counted in the integral. In the expression of the integral, we
encounter ±dϑ2idϑ2i+1 measure factors from (d − 1)-simplices, and ±ϑ2i+1ϑ2i+2 integrand
factors from d-simplices. The sign ± from the measure (resp. integrand) is expressed by the
orange (resp. green) arrow. For instance, the arrow is directed from ϑ2i to ϑ2i+1 if we have a
+ sign on the measure, otherwise directed in the opposite direction. (a): If v is away from the
orientation reversing wall, we can see that all the signs from the measure share the same sign.
We can also check that signs from the integrand have the same sign. In such a situation, we
have σ(δλ) = −1. (b): If v is placed on the orientation reversing wall (red thick line), we have
to flip the direction of all arrows on one side of the wall. The total number of flipped arrows
is odd; odd number of orange arrows and even number of green arrows. Thus, the value of
the integral in (b) has the opposite sign from that of (a). Hence, we have σ(δλ) = +1, when
the two Grassmann variables attached on one side of the wall have different colors. (b’): On
the other hand, we have σ(δλ) = −1, when the two Grassmann variables attached on one
side of the wall have the same color.

Now we can see that σ(δλ) becomes −1 exactly when λ is nonzero on SM dual of w2 +w2
1.
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First, let us recall that the set of all (d− 2)-simplices of the barycentric subdivision gives the
representative of the dual of w2. Thus, we can express the linear term of σ(δλ) as

(−1)
∫
w2

λ
(−1)

∑
e∈M χ(e)λ(e). (4.15)

Here, (−1)
∑
e∈M χ(e)λ(e) = 1 if λ is nonzero away from the orientation reversing wall. When

λ is nonzero on the wall, (−1)
∑
e∈M χ(e)λ(e) = 1 (resp. −1) if the two Grassmann variables on

one side of the wall have the same (resp. different) color. We can express such a linear term
as (−1)

∫
w2
1
λ. To see this, first we observe that the choice of the assignment of Grassmann

variables on the wall corresponds to choosing the slight deformation of the wall, such that
the deformation intersects transversally with the wall at (d − 2)-simplices. Concretely, we
deform the wall on each (d − 1)-simplices of the wall to the side where θ (black dot) is
contained, see Fig. 4.1 (b). Now we can see that (−1)

∑
e∈M χ(e)λ(e) = −1 when λ = 1 at the

intersection of these two walls, otherwise 1. Here, both walls before and after deformation give
a representative of the dual of w1, and thus the intersection of two walls gives a representative
of the dual of w2

1. Hence, we have (−1)
∑
e∈M χ(e)λ(e) = (−1)

∫
w2
1
λ, proving (4.8).

Summarizing, we have constructed a Pin− theory in the form of σ(M,α)(−1)
∑
E α, with

the quadratic property (5.16) and an ’t Hooft anomaly (−1)
∫

Sq2 α. We will simply express
the Pin− structure as η with δη = w2 + w2

1, and write the theory as σ(M,α)(−1)
∫
M η∪α. If

we instead have a Pin+ structure, we have ∂E = SM with SM a representative of w2, i.e., a
set of all (d− 2)-simplices of M . In that case, we instead have δη = w2 and the anomaly is
given by (−1)

∫
Sq2 α+w2

1∪α.

WZW-like expressions of the Grassmann integral

We can also see ’t Hooft anomaly of σ(M,α) more directly. To do this, we introduce an
expression of σ(M,α) convenient for our purpose. Let us assume that the spacetime manifold
M equipped with the background gauge field α ∈ Zd−1(M,Z2) is null-bordant, i.e., M is a
boundary of some (d + 1)-dimensional manifold K and α is extended to K. Then, we can
consider the Wess-Zumino-Witten (WZW) like expression of the Grassmann integral

σ′(M,α) = (−1)
∫
K Sq2 α(−1)

∑
SK

α, (4.16)

where SK represents the dual of w2 + w2
1, that is, a set of all (d − 1)-simplices of K plus

extra (d − 1)-simplices that represent the dual of w2
1 in K. Due to the Wu relation [39],

Sq2(α) + (w2 + w2
1) ∪ α is exact for an arbitrary (d + 1)-dimensional manifold. Hence, the

above expression does not depend on the extending manifold K. We can explicitly check
that (4.16) satisfies the properties of the Grassmann integral (4.7), (4.8). First, let us check
the quadratic property,

σ′(α)σ′(α′) = (−1)
∫
K(α∪d−3α

′+α′∪d−3α)σ′(α + α′)

= (−1)
∫
M α∪d−2α

′
σ(α + α′).

(4.17)

Next, when α = δλ for some λ ∈ Cd−2(K,Z2), we have

σ′(δλ) = (−1)
∫
K Sq2 δλ(−1)

∑
SK

δλ

= (−1)
∫
M λ∪d−3δλ+λ∪d−4λ(−1)

∑
SM

λ,
(4.18)
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where we used ∂SK = SM , namely the boundary of SK again gives the dual of w2 +w2
1 onM .

This will be demonstrated in Sec. 5.1.2. Then, the above WZW definition σ′(M,α) is almost
identified as σ(M,α). Concretely, we can immediately see that the combination σ(α)σ′(α) is
a linear function of α with σ(δλ) = 1 for coboundaries. So, σ(α)σ′(α) is a linear function on
cohomology, and then

σ(α) = σ′(α)ε(α), (4.19)

where ε : Hd−1(M,Z2) → Z2 is some linear function that takes value in ±1. The addi-
tional term ε(α) is regarded as a gauge-invariant counterterm which does not affect on the
response to gauge transformation or re-triangulation, so we can identify σ(M,α) as the WZW
expression σ′(M,α) for a practical purpose.

Based on the WZW expression, we immediately know the effect of re-triangulation as fol-
lows. Suppose we have two configurations of α, orientation reversing walls and triangulations
on M × {0} and M × {1} interpolated by K = M × [0, 1]. Then, according to the WZW
expression for σ(M × {0})σ(M × {1}), up to gauge invariant counterterms σ(M × {0}) is
given by

σ(M × {0}) = (−1)
∫
K Sq2(α)(−1)

∑
SK

α · σ(M × {1}), (4.20)

where K = M× [0, 1], and α onM×{0},M×{1} is extended to K. This expression directly
shows that the effect of gauge transformation and re-triangulation of σ(M,α) is controlled
by the bulk response action

(−1)
∫
K Sq2 α(−1)

∑
SK

α. (4.21)
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Chapter 5

Gu-Wen SPT phases and their
boundaries

The content of this chapter is based on the author’s works [22, 23].
In this chapter, we construct lattice path integrals for fermionic SPT phases based on

the prescription given in Chapter 4, and study the property of their boundary states. In
particular, we focus on the simplest class of intrinsically fermionic phases called the Gu-Wen
SPT phases. As mentioned in Sec. 2.4, the d space-time dimensional Gu-Wen SPT phase with
the global symmetry G has a complex fermion assigned on the junction of G in codimension
d− 1. Here, we limit ourselves to the case that the bosonic symmetry group is decomposed
as G0×O(d). Then, the G0 connection g0 : M → BG0 together with w1 defines a connection
of G0 × ZT2 , g : M → B(G0 × ZT2 ), where ZT2 is the Z2 subgroup of O(d) generated by the
orientation reversing element. From now, we will simply write G := G0 × ZT2 .

Concretely, the Gu-Wen SPT phase is described by a pair of cohomological data

(md−1, xd) ∈ Zd−1(BG,Z2)× Cd
ρ (BG,U(1)), (5.1)

where the subscript ρ means the twisted cochain with the action of anti-unitary symmetry
on U(1) by complex conjugation, see Appendix D for detail. The data md−1 controls the
decoration of fermionic degrees of freedom on the junction of G-defects. The above data
md−1, xd are not independent, but related by the constraint called the Gu-Wen equation. The
Gu-Wen equation depends on what spacetime structure we want to consider. For example,
in the case of Pin− structure, we must have

δρxd =
1

2
Sq2(md−1) mod 1, (5.2)

where the periodicity of U(1) is taken mod 1, U(1) = R/Z. In the case of Pin+ structure, we
instead have

δρxd =
1

2
(Sq2(md−1) + w2

1 ∪md−1) mod 1. (5.3)

Here, we define w1 ∈ Z1(BG,Z2) such that w1 = g∗w1, as a map that sends ZT2 odd element
of G to 1, otherwise 0. Then, the lattice path integral for the Gu-Wen SPT phases can
be described in a similar fashion to the case of bosonic SPT phases reviewed in Sec. 2.1.
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A well-understood class of d-dimensional bosonic SPT phases is classified by the ρ-twisted
cohomology group Hd

ρ (BG,U(1)) [47], in the presence of the time-reversal symmetry. For
a given ω ∈ Zd

ρ (BG,U(1)), the action of the SPT phase on an unoriented d-manifold M is
given by a certain product of weights g∗ω on each d-simplex of M with the G-gauge field
g : M → BG, which is constructed as follows.

First, let us consider the case that the d-simplex t is away from the orientation reversing
wall. In this case, we simply define the weight as g∗ωs(t), where s(t) = +1 if t is a + simplex,
and s(t) = −1 if t is a − simplex, which is identical to the definition of the oriented case.
However, when the d-simplex t overlaps with the orientation reversing wall, the definition
of the weight described above should be modified, since the choice of the sign s(t) has an
ambiguity. To resolve such ambiguity, we first assign +1 to every vertex of t on one side of the
wall, and assign −1 on the other side. Then, we define s(t) as the sign given by comparing
the ordering on t and the orientation of M on the side of vertices labeled by +1. Let us
denote ε as the number ±1 assigned on the vertex of the smallest ordering in t. Then, we
define the weight on t as g∗ωε·s(t).

We note that this definition is independent of the choice of assigning ±1 to one side of the
wall, since flipping the sign of ±1 on vertices changes the sign of ε and s(t) simultaneously,
which leaves g∗ωε·s(t) invariant. Then, let us write the action as the product of weights for
all d-simplices in M . We simply denote the action as

∫
M
g∗ω. One can see that the action

defined in such a manner is invariant under G-gauge transformation [41]. If we take a general
cochain x ∈ Cd

ρ (BG,U(1)) which is not necessarily a cocycle, we can see that
∫
M
g∗x is no

longer invariant under the gauge transformation, whose variation is controlled by a response
action in one more dimension

∫
g∗(δρx).

Now, we are ready to consider the fermionic case. For a given g : M → BG where
M is a Pin− d-dimensional manifold, The Gu-Wen SPT phase based on Pin− structure is
constructed by using the Grassmann integral constructed in Chapter 4 as

σ(g∗md−1)(−1)
∫
M η∪g∗md−1 exp(2πi

∫
M

g∗xd), (5.4)

where δη = w2 + w2
1 specifies the chosen Pin− structure. We note that this expression is

free of ’t Hooft anomalies, since the σ(g∗md−1)(−1)
∫
M η∪g∗md−1 carries the ’t Hooft anomaly

characterized by (−1)
∫

Sq2(g∗md−1), which is canceled by the bosonic term exp(2πi
∫
M
g∗xd)

due to the Gu-Wen equation (5.2).
The same construction also works for the case of Pin+ Gu-Wen phases, where the structure

η is modified as δη = w2. Then, the bosonic term exp(2πi
∫
M
g∗xd) based on the Gu-Wen

equation (5.3) again cancels the anomaly of the Grassmann integral in the expression (5.2).

5.1 Gapped boundary of Gu-Wen SPT phase
In the rest of this chapter, we study the boundary states of Gu-Wen SPT phases. Since the
boundary of SPT phases have an ’t Hooft anomaly for the global symmetry, the spectrum
at long distances becomes nontrivial. If the anomaly is the perturbative one, the anomaly
must be saturated by gapless degrees of freedom. However, for a general non-perturbative
anomaly including the Gu-Wen anomaly, this is not always the case; the anomaly can be
matched by gapped topological ordered state without spontaneous symmetry breaking.
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We demonstrate that Gu-Wen Pin G-SPT phases admit a symmetry-preserving gapped
boundary, by writing down the explicit d-dimensional action on the boundary of (d + 1)-
dimensional Gu-Wen Pin G-SPT phase specified by the Gu-Wen data (nd, yd+1). To construct
the gapped boundary, we prepare a symmetry extension by a (0-form) symmetry K̃ [48],

0→ K̃ → H̃
p̃→ G→ 0, (5.5)

such that nd trivializes as an element of Hd(BH̃,Z2); [p̃∗nd] = 0 ∈ Hd(BH̃,Z2). When G is
finite, such an extension can be prepared by generalizing the argument of [49].

We now take m̃d−1 ∈ Cd−1(BH̃,Z2) such that p̃∗nd = δm̃d−1. In the Pin− case, we see
that zd+1 = p̃∗yd+1 − Sq2(m̃d−1) is a (ρ-twisted) cocycle, where the Steenrod square for a
cochain that is not closed is given by

Sq2(m̃d−1) = m̃d−1 ∪d−3 m̃d−1 + δm̃d−1 ∪d−2 m̃d−1, (5.6)

as reviewed in Appendix B. Therefore, for the Pin− case the bulk Gu-Wen data pull back to

(δm̃d−1, Sq2(m̃d−1) + zd+1). (5.7)

In the Pin+ case, we instead define the ρ-twisted cocycle zd+1 = p̃∗yd+1−Sq2(m̃d−1)−(p̃∗w1)2∪
m̃d+1. Then, one can see that the Gu-Wen data pull back to

(δm̃d−1, Sq2(m̃d−1) + (p̃∗w1)2 ∪ m̃d−1 + zd+1). (5.8)

Without loss of generality we can assume that zd+1 = δρxd for some xd ∈ Cd
ρ (BH,U(1)), by

a further extension of the symmetry

0→ K → H
p→ H̃ → 0. (5.9)

Again, such an extension for twisted cocycle can be prepared by generalizing the argument
of [49]. We set md−1 = p∗m̃d−1. We now expect that the action on the boundary is given by
the K-gauge theory,

Zboundary gauge ∝
∑
p(h)=g

σ(h∗md−1)(−1)
∫
M η∪h∗md−1 exp(2πi

∫
M

h∗xd), (5.10)

with h : M → BH. But to make sense of this expression we have to extend the definition
of the Gu-Wen Grassmann integral σ(αd−1) to the case when αd−1 ∈ Cd−1(M,Z2) is not
necessarily closed. By extending the Grassmann integral to the case of a bulk-boundary
system, we will see that the extended Gu-Wen integral nicely couples to the bulk in a gauge
invariant fashion.

5.1.1 Bulk-boundary Gu-Wen Grassmann integral for the pin case

When we naively use the above definition (3.32) when α is not closed: δα = β, the resulting
expression is problematic since u(t) can become Grassmann-odd. Following [23], we avoid
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this conundrum by coupling with the Gu-Wen integral σ(N, β) in (d + 1) dimensional bulk
N such that ∂N = M , making all components in the path integral Grassmann-even.

Now let us write down the boundary Gu-Wen integral coupled with bulk; we denote the
entire integral by σ(α; β). We assign Grassmann variables θe, θe on each (d− 1)-simplex e of
M , and θf , θf on each d-simplex f of N \M . We define the Gu-Wen integral as

σ(α; β) =

∫ ∏
f |β(f)=1

dθfdθf

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t)
∏
f |wall

(±i)β(f)
∏
e|wall

(±i)α(e), (5.11)

where we assume that the orientation reversing wall in N intersectsM transversally at (d−1)-
simplices, which are regarded as making up the wall in M . u(t) is a monomial of Grassmann
variables defined on a (d + 1)-simplex of N . u(t)[β] is defined in the same fashion as in the
case without boundary if t is away from the boundary, but modified when t shares a d-simplex
with the boundary. For simplicity, we assign an ordering on vertices of such t = (01 . . . d+1),
so that the d-simplex shared with M becomes f0 = (12 . . . d + 1); the vertex 0 is contained
in N \M . For instance, we can take a barycentric subdivision on N , and assign 0 to vertices
associated with (d+ 1)-simplices. We further define the sign of d-simplices on M , such that
f0 and t have the same sign.

Then, u(t) neighboring with M is defined by replacing the position of ϑf0 in u(t)[β] with
the boundary action on f0, u(f0)[α] =

∏
e∈f0 ϑ

α(e)
e . We then have: On a + simplex,

u(t) = u(f0)[α] ·
∏

f∈∂t,f 6=f0

ϑ
β(f)
f . (5.12)

On a − simplex,
u(t) =

∏
f∈∂t,f 6=f0

ϑ
β(f)
f · u(f0)[α]. (5.13)

One can check that u(t) defined above becomes Grassmann-even. Then, using the exactly
same logic as Sec. 4, one can obtain the quadratic property of σ(α; β) as

σ(α + α′; β + β′) = σ(α; β)σ(α′; β′)(−1)
∫
M (α∪d−2α

′+α∪d−1δα
′)+

∫
N β∪d−1β

′
. (5.14)

5.1.2 Effect of gauge transformations

In this section, we study the effect of gauge transformation of the (d − 1)-form symmetry
β 7→ β + δλ on N , which also transforms α on M via α → α + λ. When N is closed, we
have seen in Sec. 4 that the (d − 1)-form symmetry has an ’t Hooft anomaly, and becomes
gauge invariant after coupling with the (d+ 2)-dimensional response action (−1)

∫
Ñ

Sq2 β on a
(d+2)-dimensional manifold Ñ with ∂Ñ = N and considering it as a bulk-boundary system.
However, when N has a boundary M = ∂N , the effect of gauge transformations of our
theory becomes more subtle. In that case, the variation of the action is again controlled by a
response action in one more dimension, but the way to couple the theory with the response
action is modified as represented in Fig. 5.1, due to the presence of the boundary.

That is, a d-dimensional manifold M is bounded by M̃ with ∂M̃ = M where a (d + 1)-
dimensional response action canceling the gauge variation on M is supported. Further, we
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have a (d + 2)-dimensional manifold Ñ with ∂Ñ = N t M̃ where a (d + 2)-dimensional
response action canceling the variation on N is supported. After all, M looks like a “corner”
in the resulting geometry of the bulk-boundary system.

Figure 5.1: The geometry for the “anomaly inflow” of our bulk-boundary Grassmann integral.
The gauge variation of the bulk-boundary Grassmann integral supported on M and N is
accounted for by the response action on M̃ and Ñ , respectively.

Then, we will see that the gauge variation of σ(α; β) under the gauge transformation
α 7→ α+ λ, β 7→ β + δλ is precisely controlled by the response action on M̃ and Ñ expressed
as

(−1)
∫
M̃

Sq2 α+(w2+w2
1)∪α(−1)

∫
Ñ

Sq2 β+(w2+w2
1)∪β, (5.15)

where we assume that α and β with δα = β extends to M̃ and Ñ , respectively. Analogously
to what we did in Sec. 4, this can be again shown by using a couple of formulae

• The quadratic property obtained in (5.14),

σ(α + α′; β + β′) = σ(α; β)σ(α′; β′)(−1)
∫
M (α∪d−2α

′+α∪d−1δα
′)+

∫
N β∪d−1β

′
. (5.16)

• When β is a coboundary β = δλ, the bulk-boundary Grassmann integral is explicitly
computed as

σ(λ; δλ) = (−1)
∫
N Sq2 λ(−1)

∑
e∈S λ(e), (5.17)

where S denotes the set of (d−1)-simplices of N that represents w2 +w2
1 on N/M , and

further satisfies that ∂S gives the representative of w2 + w2
1 on the boundary M . The

definition of S will be explained in detail later.

Let us demonstrate (5.17). The quadratic part of σ(λ; δλ) is determined by noting that the
quadratic property

σ(λ+ λ′; δλ+ δλ′) = σ(λ; δλ)σ(λ′; δλ′)(−1)
∫
M λ∪d−2λ

′
(−1)

∫
N λ∪d−2δλ

′+δλ′∪d−2λ, (5.18)

is solved by (−1)Sq2 λ up to a linear term. So, σ(λ; δλ) can be expressed as

σ(λ; δλ) = (−1)
∫
N Sq2 λ(−1)

∑
e∈S λ(e), (5.19)
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with S some set of (d− 1)-simplices e of N . The linear term is fixed by computing σ(λ; δλ)
explicitly in the simplest case; λ(e) = 1 on a single (d − 1)-simplex, otherwise 0. If we take
a barycentric subdivision on N , we can see that σ(λ; δλ) = −1 when λ is nonzero on the
dual of w2 + w2

1 described in Sec. 4, at least if λ is nonzero away from the boundary of N .
When λ is nonzero on the boundary, it requires more careful treatment. In this situation, by
arranging the sign of f0 chosen to be identical to t, we can see that σ(λ; δλ) = −1 when λ is
nonzero in M away from the orientation reversing wall. In the case that λ(e) is nonzero for
a (d− 1)-simplex e on the orientation reversing wall of M , there is a d-simplex f of N on the
orientation reversing wall that bounds e. By arranging the color of the Grassmann variables
on e to be the same as those on f for each side of the orientation reversing wall, we can see
that σ(λ; δλ) = −1 also holds on the wall of M .

Summarizing, the (d − 1)-chain S in (5.19) consists of all (d − 1)-simplices of N that
represents the dual of w2, plus the extra (d − 1)-simplices that represent w2

1 of N as the
intersection of the orientation reversing wall with itself. Hence we express the linear term
as (5.17). An important property of S is that the (d − 2)-cycle ∂S gives a representative
for the dual of w2 + w2

1 on M . To see this, let us further set λ = δχ for σ(λ; δλ). Then,
σ(δχ; 0) reduces to the ordinary Grassmann integral σ(δχ) supported on M , which has the
form of (4.8)

σ(δχ) = (−1)
∫
M Sq2 χ(−1)

∫
w2+w

2
1
χ
. (5.20)

Meanwhile, using Sq2(δχ) = δ(Sq2 χ), we can see that

σ(δχ; 0) = (−1)
∫
M Sq2 χ(−1)

∑
v∈∂S χ(v). (5.21)

These expression should be identical, which shows that ∂S constitutes the dual of w2 + w2
1

on M .
Based on (5.16), (5.17), the gauge transformation of σ(α; β) is expressed as

σ(α + λ; β + δλ) = σ(α; β)σ(λ; δλ)(−1)
∫
M (α∪d−2λ+α∪d−1δλ)(−1)

∫
N β∪d−1δλ

= σ(α; β)(−1)
∫
M (α∪d−2λ+α∪d−1δλ)(−1)

∫
N (β∪d−1δλ+Sq2 λ)(−1)

∑
e∈S λ(e).

(5.22)

Firstly, let us observe that the quadratic part of the gauge variation (5.22) corresponds to
the gauge variation of the bulk response action

(−1)
∫
M̃

Sq2 α(−1)
∫
Ñ

Sq2 β, (5.23)

which transforms as

(−1)
∫
M̃

Sq2 α(−1)
∫
M̃
λ∪d−3α+α∪d−3λ+δλ∪d−2α+λ∪d−3λ+δα∪d−2λ+δλ∪d−2λ×

(−1)
∫
Ñ

Sq2 β(−1)
∫
Ñ
β∪d−2δλ+δλ∪d−2β+δλ∪d−2δλ

=(−1)
∫
M̃

Sq2 α(−1)
∫
M̃
δ(α∪d−2λ+α∪d−1δλ)+β∪d−1δλ+λ∪d−3λ+δλ∪d−2λ×

(−1)
∫
Ñ

Sq2 β(−1)
∫
Ñ
δ(β∪d−1δλ+λ∪d−3λ+δλ∪d−2λ)

=(−1)
∫
M̃

Sq2 α(−1)
∫
Ñ

Sq2 β(−1)
∫
M (α∪d−2λ+α∪d−1δλ)(−1)

∫
N (β∪d−1δλ+Sq2 λ).

(5.24)
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We can see that the effect of the gauge transformation is identical to the variation of σ(α; β)
up to the linear term.

Secondly, the linear term in (5.22) can be canceled by adding the term that encodes the
Pin− structure of the spacetime. To see this, we prepare a Pin− structure on M represented
by EM ∈ Cd−1(M,Z2) with ∂EM = ∂S, where ∂S represents w2 + w2

1 on M . Then, we can
see that S ′ = EM + S is closed S ′ ∈ Zd−1(N,Z2), and further matches the representative of
the obstruction class w2 + w2

1 as an element of Zd−1(N ; ∂N,Z2). Thus, the Pin− structure
on N is prepared as the trivialization of S ′ prepared by ∂EN = S ′. After all, we consider the
combination

σ(α; β)(−1)
∑
e∈EM

α(e)(−1)
∑
f∈EN

β(f), (5.25)

which precisely cancels the linear term in (5.22), and carries the ’t Hooft anomaly

(−1)
∫
M̃

Sq2 α(−1)
∫
Ñ

Sq2 β. (5.26)

For convenience, let us simply denote the Pin− structure on both bulk and boundary as η,
and write the action (5.25) as

σ(α; β)(−1)
∫
M η∪α(−1)

∫
N η∪β. (5.27)

If we instead have a Pin+ structure, EM and EN are the trivialization of w2 on the boundary
and bulk, i.e., S is taken as a set of all (d − 2)-simplices of N that represents w2 and then
define ∂EM = ∂S, ∂EN = S + EM . Then, the ’t Hooft anomaly of the theory (5.25) is given
by

(−1)
∫
M̃

Sq2 α+w2
1∪α(−1)

∫
Ñ

Sq2 β+w2
1∪β. (5.28)

5.1.3 WZW-like expressions of the bulk-boundary Grassmann inte-
gral

Analogously to what we did in Sec. 4, we also have a useful expression for the bulk-boundary
Grassmann integral σ(α; β), which allows us to observe the ’t Hooft anomaly directly. As-
suming the geometry shown in Fig. 5.1 with α and β extended to M̃ and Ñ respectively, we
can express σ(α; β) up to gauge invariant counterterm as

σ(α; β) = (−1)
∫
M̃

Sq2 α(−1)
∫
Ñ

Sq2 β(−1)
∑
S
M̃
α
(−1)

∑
S
Ñ
β
, (5.29)

where SM̃ represents the dual of w2 +w2
1 on M̃ , and further ∂SM̃ = SM represents the dual of

w2+w2
1 onM . Similarly, SÑ represents the dual of w2+w2

1 on Ñ , and further ∂SÑ = SN+SM̃
represents the dual of w2 + w2

1 on N t M̃ . 1

1To be precise, we have ∂SÑ = SN + S
M̃

+ s, where s ∈ Zd−1(M,Z2) is the set of all (d− 1)-simplices of
M , since N and M̃ shares the boundary M . The effect of s can be canceled by adding the gauge invariant
counterterm (−1)

∑
s α, and then this effect doesn’t affect on the analysis in this section.
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Firstly, one can check that the quadratic property (5.16) is satisfied for (5.29), since∫
M̃

Sq2(α + α′) +

∫
Ñ

Sq2(β + β′) =

∫
M̃

(Sq2 α + Sq2 α′) +

∫
M̃

(Sq2 β + Sq2 β′)

+

∫
M̃

δ(α ∪d−2 α
′ + α ∪d−1 δα

′) + δα ∪d−1 δα
′

+

∫
Ñ

δ(β ∪d−1 β
′)

=

∫
M̃

(Sq2 α + Sq2 α′) +

∫
M̃

(Sq2 β + Sq2 β′)

+

∫
M

α ∪d−2 α
′ + α ∪d−1 δα

′ +

∫
N

β ∪d−1 β
′.

(5.30)

Secondly, when the gauge fields are expressed as α = δχ, β = 0, it reduces to the Grassmann
integral supported on M , since we have

σ(δχ; 0) = (−1)
∫
M Sq2 χ(−1)

∑
SM

χ, (5.31)

which reproduces (4.8).
Finally, for the case that α = λ, β = δλ, we have

σ(λ; δλ) = (−1)
∫
N Sq2 λ(−1)

∑
SN

λ. (5.32)

which reproduces (5.17). Thus, the WZW-like expression (5.29) corresponds to the bulk-
boundary Grassmann integral up to a gauge invariant counterterm (which is a linear function
of Hd(N ; ∂N,Z2)×Hd−1(M,Z2)). This expression of σ(α; β) directly shows that

σ(α; β)(−1)
∑
e∈EM

α(e)(−1)
∑
f∈EN

β(f) (5.33)

has the ’t Hooft anomaly characterized by the response action

(−1)
∫
M̃

Sq2 α(−1)
∫
Ñ

Sq2 β. (5.34)

5.1.4 Gapped boundary for the Gu-Wen pin phase

After all these preparations, it is a simple matter to show that the boundary gauge theory
(5.10) correctly couples to the bulk Gu-Wen Pin SPT phase. Indeed, the partition function
of the coupled system has the action

σ(h∗md−1; g∗nd)(−1)
∫
M η∪h∗md−1(−1)

∫
N η∪g∗nd exp

(
−2πi

∫
M

h∗xd + 2πi

∫
N

g∗yd+1

)
(5.35)

for both Pin− and Pin+ case, where we take α = h∗md−1 and β = g∗nd. For the Pin− case,
the last bosonic term in (5.35) has the variation under the gauge transformation controlled
by

(−1)
∫
M̃

Sq2(h∗md−1)(−1)
∫
Ñ

Sq2(g∗nd), (5.36)
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due to the Gu-Wen equation. The anomaly is precisely canceled by the fermionic terms in
the form of (5.27). For the Pin+ case, the bosonic term instead carries the anomaly

(−1)
∫
M̃

Sq2(h∗md−1)+w2
1∪h∗md−1(−1)

∫
Ñ

Sq2(g∗nd)+w2
1∪h∗nd , (5.37)

which is again canceled by the fermionic term. 2

2Technically, the orientation reversing wall used to define the Grassmann integral is defined on chains of
the triangulation, while w1 that appears in the bosonic side is a cochain. In fact, there exists a map f∞ which
turns a cochain into a chain, f∞ : Zk(M,Z2) → Zd−k(M,Z2). The map satisfies for a given β ∈ Zk(M,Z2)
that

∫
α ∪ β =

∫
f∞β

α for any α ∈ Cd−k(M,Z2). Then, the orientation reversing wall can be taken to be
f∞w1 using w1 ∈ Z1(M,Z2), and we conjecture that this choice of the orientation reversing wall makes the
’t Hooft anomaly of the combined action (5.4) precisely canceled with each other in the Pin+ case. See
Appendix D of [50] for the detailed description of the f∞ map.
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Chapter 6

(1+1)d topological superconductor

The content of this chapter is based on the author’s works [22, 24].
In this chapter, we construct a lattice path integral for a field theory that describes a

(1+1)-dimensional topological superconductor called a Kitaev wire. As reviewed in Sec. 2.2,
in the presence of a time-reversal symmetry with T 2 = 1, the Kitaev wire generates the SPT
phase classified by Z8 [10]. The SPT classification corresponds to Pin− cobordism group
Ω2

pin−
= Z8, and its generator is known as an invertible topological field theory whose partition

function on a closed manifold becomes the Arf-Brown-Kervaire (ABK) invariant [46]. We
also construct a Hilbert space of the above theory for the ABK invariant, built on the Fock
space of complex fermions.

Then, we consider the following problem; if we are given a wave function of a (1+1)-
dimensional fermionic gapped invertible phase, find a way to diagnose the SPT classification
of the wave function. While we cannot characterize topological phases via local order param-
eters, the quantities constructed from the ground states by acting with a non-local operation,
can sometimes detect topological classifications. We loosely call these quantities defined via
non-local operations as non-local order parameters.

In the presence of time-reversal symmetry, it was proposed [51, 52] that one can obtain a
quantized non-local parameter for SPT phases defined via the operation called “partial time-
reversal” on the reduced density matrix of the ground state. In particular, the non-local order
parameter for the Kitaev wire with time-reversal symmetry was computed in [52], and it was
found in [52] that its phase distinguishes the Z8 classification of topological superconductors.
In this chapter, we study the connection between the proposed non-local order parameters
and the underlying field theory constructed in Sec. 6.1. We clarify the nature of the non-
local order parameters as the quantized ABK invariant, by computing the non-local order
parameter on the state prepared by the path integral for the ABK invariant.

this chapter is organized as follows. In Sec. 6.1, we obtain a path integral whose partition
function gives the ABK invariant. In Sec. 6.2, we construct the Hilbert space for the theory
and then evaluate the non-local order parameter that diagnoses the Z8 classification.
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6.1 Path integral: Arf and ABK invariant
Here, we construct the Z8-valued ABK invariant on a two-dimensional Pin− manifold, by
fermionizing a bosonic theory by coupling with the Grassmann integral on lattice, generalizing
the fermionization procedure reviewed in Chapter 3 to the Pin− case.

The weight for the bosonic theory on a two dimensional triangulated manifold M is
assigned in the same manner as the case of the Arf invariant for oriented spin manifolds [21],
described as follows. For a given configuration α ∈ C1(M,Z2), we assign weight 1/2 to each
1-simplex e, and also assign weight 2 to each 2-simplex f when δα = 0 at f , otherwise 0.
Let us denote the product of the whole weight as Z̃(α). Then, we consider a Pin− theory
obtained by gauging the Z2 symmetry,

Z[M, η] =
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪αZ̃(α)

= 2|F |−|E| ·
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

= 2χ(M)−1 ·
∑

[α]∈H1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

=
√

2
χ(M)

ABK[M, η],

(6.1)

where |F |, |E| denotes the number of 2-simplices, 1-simplices in M , respectively. χ(M)
denotes the Euler number of M , and ABK[M, η] is the ABK invariant,

ABK[M, η] =
1√

|H1(M,Z2)|

∑
[α]∈H1(M,Z2)

iQη [α]. (6.2)

Here, iQη [α] = σ(M,α)(−1)
∫
M η∪α is a Z4-valued quadratic function that satisfies

Qη[α] +Qη[α
′] = Qη[α + α′] + 2

∫
M

α ∪ α′. (6.3)

The ABK invariant determines the Pin− bordism class of two dimensional manifolds
Ωpin−

2 (pt) = Z8, which is generated by RP2 [46]. To compute the partition function on RP2,
let α be a nontrivial 1-cocyle that generates H1(RP2,Z2) = Z2. Then, using the quadratic
property for α = α′ in (6.3), one can see that Qη[α] takes value in ±1, since Qη[0] = 0 and∫
M
α ∪ α′ = 1. Qη[α] = ±1 corresponds to two possible choices of Pin− structure on RP2.

Then, the ABK invariant is computed as an 8th root of unity,

ABK[RP2, η] =
1± i√

2
= e±2πi/8. (6.4)

6.2 Diagnostic for Z8 classification
In the rest of this chapter, we formulate the non-local operations in the Hilbert space of our
field theory that is utilized to diagnose the Z8 classification of the SPT phase, and then study
the connection of the non-local order parameter for the Z8 classification proposed in [51] with
the ABK invariant. This section is based on the author’s work [24].
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6.2.1 The Hilbert space of the ABK theory

First, we illustrate the Hilbert space for the theory given in (6.1). When the spacetime
manifold M has a boundary, the Hilbert space on ∂M is constructed on the Fock space of
n complex fermions, where n is the number of boundary 1-simplices. For simplicity, let us
assume that M is an oriented disk D2. Then, the wave function for the prepared Hilbert
space is given by evaluating the path integral (6.1), which is expressed as

|ψ〉 =
∑

α∈Z1(M,Z2)

Z̃(α)σ(M,α; ord(1, · · · , n))(−1)
∫
M η∪α(c†1)α(e1) · · · (c†n)α(en) |0〉 , (6.5)

where cj/c
†
j denotes a complex fermion annihilation/creation operator at a boundary 1-

simplex ej. This is regarded as an analogue of matrix product state (MPS) representation
of the wave function [53, 54] applied for fermionic systems. A similar representation of the
wave function of a fermionic wave function is found in [55, 56], which developed MPS-like
representation of fermionic states in one spatial dimension. σ(M,α; ord(1, · · · , n)) evaluates
the Grassmann integral on an open surface M , which is defined via the following relation∫

M

∏
e|α(e)=1

dθedθe
∏
t

u(t) = σ(M,α; ord(1, · · · , n))ϑ
α(e1)
1 · · ·ϑα(en)

n . (6.6)

Here, ϑj represents θj or θj depending on an assignment of Grassmann variables on bound-
aries. η in (6.5) is the spin structure of M , given in a similar fashion to the description
in Sec. 5.1.2 about the spin structure of a manifold with a boundary. That is, the term
(−1)

∫
M η∪α is expressed in the form of

(−1)
∫
M η∪α = (−1)

∫
EM

α
. (6.7)

Here, ∂EM gives a set of all 0-simplices of the barycentric subdivision S of M as an element
of C0(M,∂M,Z2) := C0(M,Z2)/C0(∂M,Z2), i.e., ∂EM is identical to S in the interior of M .

Finally, Z̃(α) in (6.5) denotes the bosonic weight. While it was defined for closed manifolds
in (6.1) as Z̃(α) = 2|F |−|E| using the number of faces |F | and edges |E| of the manifold, we
will modify the definition of the bosonic weight on the boundary, in order for the wave
function (6.5) to have unit norm. In (6.5), we define

Z̃(α) = 2|F |−|E|+|Eb|/2−1/2, (6.8)

where |Eb| denotes the number of boundary 1-simplices. Based on the definition of Z̃(α),
the state |ψ〉 is shown to be correctly normalized to have the unit norm, as demonstrated in
Appendix E.2.

6.2.2 Partial time-reversal

Now we describe the quantized non-local order parameter for SPT phases proposed in [51]
in the case of the SPT state (6.5). Firstly, we prepare the reduced density matrix ρI of the
state defined on an interval I in the ring S1 = ∂M . Then, let us take a bipartition of I as
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I = I1 t I2. Roughly speaking, the order parameter is defined via the process of taking the
“time-reversal” of the density matrix, restricted to the interval I1. With a proper definition
of the time-reversing operation in the partial region I1 in I, the order parameter is given by

trI(ρIρ
T1
I ), (6.9)

where ρT1I denotes the density matrix acted by “partial time-reversal”. The definition of partial
time-reversal is transparently expressed in the coherent state basis. That is, we introduce
n Grassmann variables ξ1, . . . , ξn and denote a state like |{ξi}〉 =

∏
j exp(−ξjc†j) |0〉. The

density matrix is rewritten in the coherent state basis as

ρI =

∫
d[ξ, ξ]d[χ, χ] |{ξj}〉 ρI({ξj}; {χj}) 〈{χj}| , (6.10)

where d[ξ, ξ] =
∏

j dξjdξje
−

∑
j ξjξj , and ρI({ξj}; {χj}) = 〈{ξj}| ρI |{χj}〉. Then, the operation

ρT1I is defined as

ρT1I :=

∫
d[ξ, ξ]d[χ, χ] |{iχj}j∈I1 , {ξj}j∈I2〉 ρI({ξj}; {χj}) 〈{iξj}j∈I1 , {χj}j∈I2| . (6.11)

This operation on I1 is called partial time-reversal in [51], since it acts on Grassmann variables
in I1 in the same fashion as the time-reversal symmetry with T 2 = 1.

Here, let us comment on an intuition of how the quantity (6.9) diagnoses the Z8 classifi-
cation of the topological superconductor. Roughly speaking, the reduced density matrix ρI
is regarded as a path integral on a spacetime D2 with a boundary S1 = I t I. Then, we
take two copies of ρI ’s and glue the two disks on the boundaries by taking the trace. During
that process, the partial time-reversal reverses the orientation of the partial interval I1 t I1

for the boundary of one of the disks, by exchanging the bra and ket in that region. This
works as introducing a cross-cap when we glue two disks, see Fig. 6.1. After all, the resulting
spacetime yields an unoriented spacetime with a single cross-cap, which turns out RP2. Since
the RP2 generates the Pin− bordism group Ωpin−

2 = Z8, we expect that (6.9) gives a partition
function of Pin− invertible theory whose phase is quantized as the 8th root of unity, fully
diagnosing the classification.

Figure 6.1: The geometry for trI(ρIρ
T1
I ). The disks in the left figure represent the reduced

density matrix ρI . Since the partial time-reversal exchanges the bra and ket partially, it
amounts to introducing the cross-cap when gluing two disks. The resulting spacetime is a
sphere with a single cross-cap, which turns out to be RP2.
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The above intuition actually turns out to be the case. In Appendix E.1, we explicitly
compute the quantity (6.9) for the SPT state (6.5) given via the path integral, and show that

trI(ρIρ
T1
I ) =

1

2
√

2
ABK[RP2, η], (6.12)

where the ABK invariant is defined as (6.1), and η is a specific Pin− structure on the resulting
spacetime RP2. This gives an understanding of the Z8 quantization of the non-local order
parameter (6.9) in terms of the ABK invariant.
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Chapter 7

Beyond Gu-Wen: Review on (2 + 1)d Z2
SPT phase

In Chapter 5, we studied a subclass of fermionic SPT phases called the Gu-Wen phases. While
the Gu-Wen phases cover a large class of SPT phases, the classification leaves out “beyond
Gu-Wen” phases, whose classification was developed in [57, 58]. The simplest beyond Gu-
Wen phase is the (1+1)-dimensional topological superconductor (Kitaev wire) [18]. In the
absence of global symmetries except for fermion parity, the Kitaev wire generates the Z2

classification of SPT phases. If we take a time-reversal symmetry with T 2 = 1 into account,
it instead generates the Z8 classification, as we have seen in Chapter 6.

In (2+1) dimensions, a seminal example for the beyond Gu-Wen phase is a fermionic SPT
phase with unitary Z2 symmetry, classified by the cobordism group Ω3

spin(BZ2) = Z8×Z. In
that case, the Gu-Wen phase generates the Z4 subgroup of the Z8 torsion part, as reviewed
in Sec. 2.4. The generator of Z8 is outside of the Gu-Wen phases, and particularly important
because this SPT phase also describes the inflow of the ’t Hooft anomaly for a single Majorana
fermion in (1+1) dimensions [59, 60].

This Z8 generator is understood by decorating a Kitaev wire on the codimension-1 Z2

symmetry defects, represented by the n1 ∈ H1(BZ2,Z2) layer shown in (2.14). In particular,
there is a known construction of an exactly solvable Hamiltonian model on a lattice for the
Z8 generator, based on the description of the Kitaev wire located on the Z2 defects [61]. Such
a construction of a SPT phase via decorating the symmetry defect with lower-dimensional
phases is loosely called the “decorated domain wall” construction. Concretely, the wave
function for the model is given by first decorating the Kitaev wire on the domain wall of
the Z2 symmetry, and then fluctuating the domains to respect the Z2 symmetry. In order to
conserve fermion parity under fluctuation of the Kitaev wire, one requires a specific choice
of directions on edges on the lattice called “Kasteleyn direction”, which is understood as
encoding a spin structure on the spatial manifold, regarded as the trivialization of the 2nd
Stiefel-Whitney class w2 [62]. In this chapter, we review the construction of the wave function
for the (2+1)-dimensional SPT phase with the Z2 symmetry on a lattice, following [61].
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Brief review on the Kitaev wire
Firstly, we briefly recall the wave function of the Kitaev wire which will be decorated on the
Z2 domain wall. Let us consider an open chain of complex fermions with the length L. The
Hilbert space is given by a Fock space of L complex fermions c1, c2, . . . cL. To describe the
state realized by the Kitaev wire, it is convenient to introduce a pair of Majorana fermions
ai, bi on each site i.

ai = c†i + ci,

bi = i(c†i − ci).
(7.1)

Then the wave function of the Kitaev wire is characterized by the following condition,

ibiai+1 = 1 for 1 ≤ i ≤ L− 1. (7.2)

These conditions specify the two-dimensional Hilbert space, and these two states are char-
acterized by the eigenvalue ia1bL = ±1. That is, the Hilbert space of the Kitaev wire is
effectively described by the two-dimensional Fock space constructed via the pair of Majorana
fermions a1, bL on the boundary. We emphasize that the Kitaev wire is an invertible phase,
and the two-fold degeneracy of the Hilbert space originates from the presence of s a single
unpaired Majorana fermion on each end of the boundary. This unpaired Majorana mode (a1

or bL) is sometimes called “Majorana zero mode”, which is identified as the nontrivial edge
state of the Kitaev wire. Meanwhile, the trivial invertible phase is realized by the condition

iaibi = 1 for 1 ≤ i ≤ L. (7.3)

This is regarded as a trivial atomic insulator with c†ici = 1 on each site. The Kitaev wire (7.2)
is regarded as shifting each pair of Majorana fermions by a “half translation” from the trivial
phase. In the presence of the time-reversal symmetry T : ai → ai, bi → −bi, the Kitaev wire
generates the Z8 classification of the (1+1)-dimensional topological superconductor discussed
in Chapter 6 [10]. Actually, the non-local order parameter (6.9) is computed in [51] and shown
to be quantized as the 8th of unity, which implies that the topological action is given by the
Arf-Brown-Kervaire invariant of the spacetime.

Wave function the (2+1)d Z2 SPT phase
Now let us review the description of the (2+1)-dimensional Z2 SPT phase proposed by
Tarantino and Fidkowski [61]. While their lattice model was originally built on a honeycomb
lattice in [61], we obtain the wave function for a graph on any two-dimensional oriented
manifold equipped with a triangulation. The wave function is based on an assignment of
direction on edges of a graph called Kasteleyn direction. Here Kasteleyn direction means
that, the number of clockwise-directed edges bounding a face of the graph must be odd for
any face of a graph.

We consider a trivalent directed graph Γ on a two-dimensional oriented spin manifold M
given as follows. We consider a triangulated M with a branching structure. The simplical
complex for this triangulation is denoted as T . We have local ordering on each 2-simplex
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of T according to the branching structure (see Appendix B for the definition of branching
structure). Each 2-simplex can then be either a + simplex or a − simplex, depending on
whether the ordering agrees with the orientation or not. Then, the trivalent graph Γ is
obtained by filling each 2-simplex of T with a pattern described in Fig. 7.1. The edges of Γ
are Kasteleyn directed, and they are assigned in the following steps [57];

1. We start with directing edges of the graph Γ, as described in Fig. 7.1, for + and −
simplices of T . At this stage, some faces of Γ are not necessarily Kasteleyn.

2. Each non-triangular face of Γ is in 1-1 correspondence to a 0-simplex of T . We denote
as S the set of 0-simplices that correspond to non-Kasteleyn faces of Γ. S ∈ Z0(M,Z2)
is known to represent the dual of the second Stiefel-Whitney class w2 [63, 64]. Then,
we specify the spin structure of M by a choice of a set of 1-simplices E ∈ C1(M,Z2) of
T , with ∂E = S.

3. We reverse the directions on the edge of Γ which cross 1-simplices of E, which makes
all faces of Γ Kasteleyn.

Figure 7.1: Directions on edges of Γ.

After these steps, we introduced the Kasteleyn direction on edges of Γ based on the spin
structure of M . We refer to triangular faces in Γ as triangles. Let t(v), t(w) be triangles in Γ
that contain vertices v, w respectively. If an edge 〈vw〉 satisfies t(v) = t(w), we refer to 〈vw〉
as a long edge. If we have t(v) 6= t(w), we refer to 〈vw〉 as a short edge. Then, the degrees
of freedom in the model are given as follows:

• A qubit located on each face of Γ except for triangles, operated by Pauli operators
τx, τ y, τ z. Dually, we can also think of τ qubits as living on 0-simplices of T .

• A complex fermion on each short edge e of Γ, created and annihilated by c†e, ce re-
spectively. Dually, we can also think of complex fermions as living on 1-simplices of
T .
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The qubits are charged under the unitary Z2 symmetry, UZ2 : |1〉 7→ |0〉 , |0〉 7→ |1〉, while
the fermions are invariant under the symmetry. The wave function for this model is given
by decorating the Kitaev wire on the codimension-1 domain wall of qubits. To introduce the
Kitaev wire decoration, it is convenient to decompose each complex fermion into a pair of
Majorana fermions. Let e = 〈

−→
vv′〉 be a short edge oriented from v to v′. Then, each complex

fermion on e is represented by a pair of Majorana fermions

av = c†e + ce,

bv′ = i(c†e − ce),
(7.4)

located on v and v′, respectively. The wave function is then given by pairing Majorana
fermions on vertices of Γ, according to the dimer covering of the edges of Γ. That is, the
Majorana fermions are paired along the non-overlapping dimers that each occupy two neigh-
bouring vertices, and completely cover the vertices of the graph.

As a technical detail, we locate a fictitious qubit on each triangle of Γ, whose τ z is fixed
according to the majority rule: if the triangle is contained in a 2-simplex 〈v0v1v2〉, it is |1〉
or |0〉 depending on whether the majority of three qubits on v1, v2, v3 have |1〉 or |0〉. Then,
away from the domain wall of qubits, we pair up Majorana fermions along short edges 〈−→vw〉
by a pairing term iγvγw (γ is a or b). On the domain wall, we pair up Majorana fermions
along long edges 〈−→vw〉 by a pairing term iγvγw. These pairing rules amount to decorating
the Kitaev wire on the codimension-1 domain wall of qubits; see Fig. 7.2. The wave function
of the model is given by the equal superposition of all possible configurations of qubits,
associated with the Majorana pairings discussed above.

Since the way of pairing up Majorana fermions along the Z2 domain wall differs from the
case without the domain wall by a half translation, the given wave function is regarded as
locating the Kitaev wire on the Z2 domain wall. The wave function constructed in such a way
generates the Z8 classification of the (2+1)-dimensional Z2 SPT phase. The field theoretical
description for the decorated domain wall construction of this phase is given in Sec. 8.2.2.

Figure 7.2: Majorana pairings on the two-dimensional graph Γ.
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Kasteleyn direction and conservation of fermion parity

Here let us comment on why we need the Kasteleyn direction for the construction. In short,
the Kasteleyn property of Γ is required in order to have the symmetric state under the fermion
parity (−1)F .

To see this, let us consider a wave function with a specific pairing of Majorana fermions,
which corresponds to a dimer covering Di on Γ. By flipping some qubits for this wave
function, we finally obtain a different dimer covering Df . These two dimer coverings are
related by sliding a sequence of dimers along a closed path C of Γ. Concretely, suppose edges
〈v1v2〉, 〈v3v4〉, . . . 〈v2n−1v2n〉 form dimers in Di. Then, the dimers are rearranged to 〈v2v3〉,
〈v4v5〉, . . . 〈v2nv1〉 in Df . We can easily show that the two wave functions for Di and Di have
the same fermion parity, iff the path C is Kasteleyn directed. If we work on the reduced
Fock space of these 2n Majorana fermions on C, the fermion parity for Di is

inγ1γ2 . . . γ2n−1γ2n = s1,2s3,4 . . . s2n−1,2n, (7.5)

where si,j = 1 if the direction for 〈vivj〉 is 〈−−→vivj〉, and si,j = −1 for the opposite direction.
The fermion parity for Df is

inγ1γ2 . . . γ2n−1γ2n = −inγ2 . . . γ2n−1γ2nγ1 = −s2,3s4,5 . . . s2n,1. (7.6)

These two expressions are identical iff C is Kasteleyn directed.
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Chapter 8

Beyond Gu-Wen: (3+1)d topological
superconductor with T 2 = (−1)F

The content of this chapter is based on the author’s works [25].
In Chapter 7, we reviewed the construction of (2+1)-dimensional Z2 SPT phase generating

the Z8 classification, which lies outside of the Gu-Wen phases. An even more interesting
example of beyond Gu-Wen phases is found in (3+1) dimensions. For instance, (3+1)-
dimensional SPT phases based on the time-reversal symmetry with T 2 = (−1)F is classified
by the Pin+ cobordism group Ω4

Pin+ = Z16. According to the description in Sec. 2.4, only
the Z4 subgroup of the Z16 corresponds to the Gu-Wen phase. The 2 ∈ Z16 phase is the
simplest phase beyond Gu-Wen in the Z16 classification, and this 2 ∈ Z16 phase is again
understood via the decoration of the Kitaev wire on the codimension-2 junction of the T
symmetry defects. The Z16 generator 1 ∈ Z16 phase is more intricate, which has to do with
the decoration of a p+ ip superconductor on the T defect. This 1 ∈ Z16 phase is beyond the
scope of this thesis.

In this chapter, as a generalization of the Z2 SPT phase in (2+1) dimensions reviewed
in Chapter 7, we will describe (3+1)-dimensional T SPT phases generating the Z8 subgroup
of the Z16 classification, in terms of the Kitaev wire decorations. We will provide a wave
function for that phase, and our model is obtained by a version of decorated domain wall
construction [65–67], where the T symmetry defect carries a two dimensional wave function
of the fluctuating Kitaev wires, see Fig. 8.1. This is regarded as the decorated domain wall
construction repeated twice, which after all describes the decoration of the Kitaev wire on
the codimension-2 junction of T symmetry defects.

The wave function is constructed on a graph in the three-dimensional spatial manifold. By
deliberately assigning the directions on edges of the three dimensional graph, we always have
a two dimensional graph on the T symmetry defect whose edges are completely Kasteleyn
directed, allowing us to fluctuate Kitaev wires on the wall in a fashion respecting fermion
parity. We will see such a specific assignment of directions on edges is again made possible
by a spin structure on the spatial manifold, i.e., a trivialization of the 2nd Stiefel-Whitney
class w2.

The iterated decoration of the topological phases on the symmetry defect described in
Fig. 8.1 deserves understanding more in detail. In particular, the wave function supported
on the two-dimensional T symmetry defect of the (3+1)-dimensional T SPT phase itself
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Figure 8.1: A schematic illustration for our wave function in three spatial dimension. On a
two dimensional T symmetry defect, we have a two-dimensional wave function of fluctuating
Kitaev wires located on the symmetry defects induced on the two-dimensional surface. The
symmetry defects are realized as a domain wall separating two distinct vacua of the symmetry
broken phase, and the domains are characterized by the polarized qubits (red and blue arrows)
charged by the time-reversal symmetry.

looks like a wave function of the (2+1)-dimensional SPT phase, where the Kitaev wire is
located on the symmetry defect induced on the (2+1)-dimensional locus of the symmetry
defect. So, the naturally arising question for the situation is what global symmetry the
(2+1)-dimensional theory on the T symmetry defect possesses. Then, we are interested in
what kind of (2+1)-dimensional SPT phase the T symmetry defects support, and how the
classification of the SPT phases on the symmetry defects are related to that of the (3+1)-
dimensional T SPT phases. We expect that the (2+1)-dimensional phase on the domain
wall inherits the classification of (3+1)-dimensional SPT phases, and then the study on the
domain wall allows us to find the classification of our (3+1)-dimensional SPT phase.

To understand these questions, we make contact with the recent field theoretical argu-
ment on global symmetry of theories supported on the symmetry defect [68, 69]. These
works study the global symmetry of the localized theory on the symmetry domain wall in
the spontaneously symmetry broken phase, assuming the Lorentz symmetry of the theory.
In particular it was argued in [68] that there is the unitary Z2 symmetry induced on the
(2+1)-dimensional domain wall of the T symmetry, for a (3+1)-dimensional system with T
symmetry such that T 2 = (−1)F . More formally, for a (3+1)-dimensional spacetime manifold
with Pin+ structure that corresponds to the time-reversal symmetry, we can find a space-
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time structure induced on the (2+1)-dimensional defect of the T symmetry, which is dual
to the first Stiefel-Whitney class w1. The induced structure turns out to become the spin
structure with the Z2 gauge field, which corresponds to the fermionic system with a unitary
Z2 symmetry. Hence, we expect that one observes a (2+1)-dimensional SPT phase based on
unitary Z2 symmetry, on the T symmetry domain wall in the spontaneously broken phase of
our model for the (3+1)-dimensional T SPT phase.

Moreover, the classification of the (3+1)-dimensional T SPT phase turns out to be closely
related to that of the (2+1)-dimensional Z2 SPT phase on the T domain wall. In fact,
there is a linear relation between the classification of the (2+1)-dimensional SPT phase
on the T symmetry defect and that of (3+1)-dimensional T SPT phases [68, 69]. This
relationship allows us to determine the classification of the (3+1)-dimensional SPT phase,
from a given theory on the symmetry defect. This linear map between SPT classifications
is nicely formulated in terms of the classification scheme of SPT phases based on cobordism
group, mathematically known as the Smith map of cobordism groups [12].

In our wave function for the (3+1)-dimensional T SPT phase, we find that the T domain
wall supports a nontrivial SPT phase based on the Z2 symmetry, after fixing the configuration
of the wall by breaking the T symmetry. The classification of the (2+1)-dimensional fermionic
Z2 SPT phase is given by cobordism group Ω3

spin(BZ2) = Z8 × Z. The domain wall is
effectively described by the wave function given in Chapter 7 for an SPT phase generating
the Z8 classification. Then, the classification of the (3+1)-dimensional T SPT phase is
totally encoded in the SPT phase on the domain wall, which allows us to find that our model
spans the Z8 subgroup of the Z16 classification, based on the field theoretical argument made
in [68, 69].

this chapter is organized as follows. In Sec. 8.1, we provide the wave function for (3+1)-
dimensional T SPT phase given by decorating the Kitaev wire. In Sec. 8.2, we review the field
theoretical perspective that is helpful to understand our construction of the wave function.
In Sec. 8.3, we claim that the wave function realizes the 2 ∈ Z16 phase in classification of the
T SPT phase, by making a contact with the field theoretical argument.

8.1 Construction of the wave function
Let us provide our wave function for a (3+1)-dimensional time-reversal SPT phase with
T 2 = (−1)F , which is provided by a sort of decorated domain wall construction of the Kitaev
wire. We consider a trivalent graph Γ on a three-dimensional oriented spin manifoldM given
as follows.

We first endow M with a triangulation. In addition, we take the barycentric subdivision
for the triangulation of M . Namely, each 3-simplex in the initial triangulation of M is
subdivided into 4! = 24 simplices, whose vertices are barycenters of the subsets of vertices in
the 3-simplex. We further assign a local ordering to vertices of the barycentric subdivision,
such that a vertex on the barycenter of each i-simplex is labeled as “i.” The obtained
simplical complex after taking barycentric subdivision is denoted as T . Each 3-simplex can
then be either a + simplex or a − simplex, depending on whether the ordering agrees with
the orientation or not.

The trivalent graph Γ is given by connecting patterns illustrated in Fig. 8.2 on each 3-
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simplex of T . For later convenience, we illustrate the following way to obtain Γ step by
step:

1. First, we consider a simplical complex T ′ obtained by further subdividing each 3-
simplex of T into 12 simplices as described in Fig. 8.3. The set of 2-simplices of T ′ is
denoted as Λ̃. Then, we take the dual lattice Λ of Λ̃ described in Fig. 8.4.

2. All vertices of Λ have degree 4. For each vertex of Λ, we first resolve the vertex into a
pair of trivalent vertices, and then change one of the trivalent vertices (which is not a
vertex of a triangle) into three trivalent vertices, see Fig. 8.5. The obtained trivalent
graph is Γ in Fig. 8.2.

Figure 8.2: Γ on a 3-simplex of T .

Following the notations in Sec. 7, we refer to triangular faces in Γ as triangles. Let
t(v), t(w) be triangles in Γ which contain vertices v, w respectively. If an edge 〈vw〉 satisfies
t(v) = t(w), we refer to 〈vw〉 as a long edge. If we have t(v) 6= t(w), we refer to 〈vw〉 as a
short edge. Then, the degrees of freedom in our model are given as follows:

• A qubit located on each vertex of T ′, which is operated by Pauli operators σx, σy, σz.
We sometimes call these qubits “σ qubits”. Dually, we can also think of σ qubits as
living on three-dimensional cells of Γ.

• A qubit located on each 1-simplex of T ′, except for 1-simplices connecting a barycenter
of a 2-simplex and a 3-simplex of T . This qubit is operated by Pauli operators τx, τ y, τ z,
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Figure 8.3: Subdividing each 3-simplex of T into 12 simplices yields T ′.

and we sometimes call these qubits “τ qubits”. Dually, we can also think of τ qubits as
living on faces of Γ except for triangles.

• A pair of complex fermions located on each short edge e, created and annihilated by
cs†e , c

s
e (s =↑, ↓) respectively.

Figure 8.4: Λ is obtained by connecting truncated tetrahedra on 3-simplices of T , by trian-
gular prisms.

Both σ and τ qubits are charged under time-reversal as the Pauli x,

T : |1〉 7→ |0〉 , |0〉 7→ |1〉 . (8.1)

Since T 2 = (−1)F , fermions are also acted upon by time-reversal in a nontrivial fashion.
Before discussing the symmetry property of fermions, let us outline how we perform the
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(a)

(b)

planar non-planar

(c)

Figure 8.5: The figure shows the process of obtaining Γ from Λ. (a), (b): The left figure
represents a triangular face of Λ. Γ is given by resolving each degree 4 vertex into trivalent
vertices and then replacing one vertex with a triangle. A planar (resp. non-planar) triangle
is represented as a red (resp. blue) triangle. (c): When we direct edges of Γ, the process of
(a) is associated with directing newly added short edges.

domain wall decoration. Since σ qubits are located on three-dimensional cells of Γ, their
configuration specifies a two-dimensional domain wall on Γ, which forms a graph supported
on a two-dimensional surface, as we will define later in Sec. 8.1.2. Then, the configuration
of τ qubits on the two-dimensional domain wall further gives us a one-dimensional domain
wall, where we put the Kitaev wire; see Fig. 8.6.

8.1.1 Directions of edges and discrete spin structure

Analogously to the Tarantino-Fidkowski type wave function in Sec. 7, we need Kasteleyn
directions on edges of Γ restricted to the two-dimensional domain wall of σ qubits, in order
to ensure the conservation of the fermion parity under domain wall fluctuations. Let us
assume that we have obtained a graph K on the two-dimensional manifold K that represents
the T domain wall, whose edges will be directed in a Kasteleyn fashion. A caveat is that the
assignment of Kasteleyn direction on K depends on how we choose the section of the normal
bundle NK of the two-dimensional domain wall K; for instance, we can choose the section
of NK directed from the side of |1〉 domain of σ qubits to that of |0〉 domain. Then, the

62



Figure 8.6: (a): We decorate the domain wall of τ qubits with the Kitaev wire placed on
the two-dimensional domain wall of σ qubits. (b): The section NK of the normal bundle of
the two-dimensional domain wall is directed from the side of the |1〉 domain of σ qubits to
that of the |0〉 domain (gray arrows). Then, on each planar triangle on K (pink triangle),
we assign directions on edges bounding the triangle clockwise around the axis parallel to the
section.

Kasteleyn property is defined by the number of clockwise directed edges on a closed path of
K, around the axis parallel to the section of NK (see Fig. 8.9 (b)). We note that such defined
Kasteleyn direction on K is not necessarily invariant under time-reversal, since the section
of NK is reversed by time-reversal, thereby transforming the definition of the Kasteleyn
property on K; clockwise edges now become anticlockwise.

The above observation implies that the time-reversal symmetry also acts on the directions
of edges. In this subsection, we will first introduce directions that are invariant under time-
reversal, and then discuss non-invariant directions. For later convenience, we classify triangles
(i.e., triangular faces) in Γ into two types: a “non-planar” triangle which originates from a
triangular face of Λ, and a “planar” triangle obtained by replacing a trivalent vertex in Fig. 8.5
(a).

Invariant directions on edges

Here, we introduce directions on edges of Γ that are invariant under time-reversal, determined
independently of the configuration of qubits. These invariant directions are assigned on edges
of Γ except for edges bounding a planar triangle. Now we provide invariant directions step
by step;

1. We start by assigning directions on edges of the graph Λ (Fig. 8.4), as described in
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Fig. 8.7 (resp. Fig. 8.8) for + simplices (resp. − simplices) of T .

2. Next, we modify the directions on edges of Λ, according to the combinatorial spin
structure on M . To define the spin structure of M , we first prepare the representative
of the dual of the second Stiefel-Whitney class w2 on the simplical complex T ′ (see
Fig. 8.3). It is represented by a 1-cycle S ∈ Z1(M,Z2),

S =
∑
e∈T ′

e−
∑
∆+

(〈v013v0123〉+ 〈v123v0123〉)−
∑
∆−

(〈v012v0123〉+ 〈v023v0123〉), (8.2)

where the first sum runs over all 1-simplices of T ′. The second sum is over 1-simplices
of T ′ contained in a + simplex ∆+ = 〈0123〉 of T . Here, the vertices of T ′ which is
a barycenter of a simplex ∆ ∈ T are written as v∆. Similarly, the third sum is over
− simplices of T . The validity of the expression (8.2) is proven in Appendix C. The
spin structure is specified by a trivialization ∂E = S of S. Here, E ∈ C2(M,Z2) is a
subcomplex of Λ̃.

Then, we reverse the directions of edges of Λ that cross 2-simplices of E.

3. Finally, we complete the assignment of directions on Γ, by generating Γ from Λ associ-
ated with directions to newly added short edges, as described in Fig. 8.5 (c).

Non-invariant directions on edges

Here, we introduce directions on yet undirected edges of Γ that are acted upon by time-
reversal in a nontrivial fashion. As we will see in Sec. 8.1.2, there will be a two-dimensional
graph K supported on the two-dimensional domain wall of σ qubits. We assign directions on
edges bounding planar triangles, iff the planar triangle is contained in the two-dimensional
domain wall K (see Fig. 8.6 (b)). We do not assign directions if the planar triangles are away
from K.

On the two-dimensional domain wall K, we choose the section of the normal bundle NK,
such that the section of NK is directed from the side of |1〉 domain of σ qubits to that of
|0〉 domain. Then, on each planar triangle on K, we assign directions on edges bounding the
triangle clockwise around the axis parallel to the section; see Fig. 8.6 (b). These directions
are reversed by the time-reversal action, since the chosen section of NK is flipped by time-
reversal.

8.1.2 Kasteleyn direction on the 2d domain wall

Here, we define the two-dimensional graph K on the two-dimensional domain wall of σ qubits,
on which the Kasteleyn direction will be induced.

As a technical detail, we fix each σ qubit on the barycenter of a 2-simplex of T according
to the majority rule: if the σ qubit is located on the barycenter of a 2-simplex 〈v0v1v2〉, it is
|1〉 or |0〉 depending on whether the majority of three σ qubits on vertices v0, v1, v2 have |1〉 or
|0〉. Each σ qubit on the barycenter of a 3-simplex 〈v0v1v2v3〉 of T is also determined by the
majority rule: it is |1〉 or |0〉 depending on whether the majority of four σ qubits on vertices
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Figure 8.7: Initial assignment of directions on edges of Λ in a + simplex.

v0, v1, v2, v3 have |1〉 or |0〉, if the numbers of |1〉 differs from that of |0〉. If the number of |1〉
and |0〉 on v0, v1, v2, v3 are both 2, we leave the σ qubit on 〈v0v1v2v3〉 undetermined.

Then, a two-dimensional graph K′ is defined according to the configuration of σ qubits,
as described in Fig. 8.9. After some efforts, we can see that the two-dimensional graph K′ is
“almost Kasteleyn directed” when seen from the side of the |1〉 domain of σ qubits, except
for non-planar triangles contained in K′ in Fig. 8.9 (b).

To prepare a graph whose edges are completely Kasteleyn directed, we gather four faces
of K′ in Fig. 8.9 (b) into a single face, as described in Fig. 8.10. We denote the obtained
graph as K, which is completely Kasteleyn directed.

8.1.3 Wave function: decorated 1d domain wall on the 2d domain
wall

Here, we precisely describe the Kitaev wire decoration on the domain wall of τ qubits on K,
which was schematically illustrated in Fig. 8.6 (a). The decoration is based on the Kasteleyn
direction on K introduced in the previous subsection.

In our model, we have two complex fermions on each short edge of Γ. Analogously to
the (2+1)-dimensional case in Sec. 7, we will represent each complex fermion on a short
edge 〈vv′〉 in terms of a pair of Majorana fermions placed on vertices v, v′, whose assignment
depends on the direction of 〈vv′〉. Let e = 〈

−→
vv′〉 be a short edge oriented from v to v′. Then,
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Figure 8.8: Initial assignment of directions on edges of Λ in a − simplex.

each complex fermion on e is represented by a pair of Majorana fermions

asv = cs†e + cse,

bsv′ = i(cs†e − cse),
(8.3)

located on v and v′, respectively. Then, we introduce the symmetry property of fermions.
Since T 2 = (−1)F , the fermion on 〈

−→
vv′〉 is a Kramers doublet under T ,

T :

{
a↑v → a↓v
a↓v → −a↑v,

{
b↑v′ → −b

↓
v′

b↓v′ → b↑v′ .
(8.4)

The wave function of our model is given by pairing up Majorana fermions on vertices,
according to a dimer configuration on Γ. Similar to the (2+1)-dimensional case in Sec. 7,
away from the two-dimensional domain wall K, we pair up Majorana fermions that share a
short edge 〈

−→
vv′〉, by a pairing term ia↑vb

↑
v′ + ia↓vb

↓
v′ . Furthermore, the τ qubits on the face of Γ

are fixed away from K, depending on the domain of σ qubits: the τ qubits are |1〉 (resp. |0〉)
if contained in the domain of |1〉 (resp. |0〉).

Next, we consider the domain wall of τ qubits on K. As a technical detail, we recall
that the two-dimensional graph K was obtained by gathering four faces in K′ into a single
face, which was described in Fig. 8.10. Since we have one τ qubit on each face of K′ except
for triangles, the newly obtained single face of K in Fig. 8.10 (a) contains two τ qubits. To
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Figure 8.9: Two possible patterns of the two-dimensional graph K′ in a single 3-simplex of
T , where σ qubits are drawn as red arrows and K′ is represented as a red graph. For (a), it is
also possible to have the situation in which all σ qubits are flipped. For (b), two non-planar
triangles are contained in K′, which are not necessarily Kasteleyn directed.

consider the Kitaev wire decoration on K instead of K′, we have to make sure that two τ
qubits share the same state, i.e., |00〉 or |11〉, as described in Fig. 8.10 (b).

Then, away from the domain wall of τ qubits on K, we also pair up Majorana fermions
that share a short edge 〈

−→
vv′〉, by ia↑vb

↑
v′ + ia↓vb

↓
v′ . These pairings away from the Kitaev wire

decoration are invariant under T , which is consistent with the fact that the directions of short
edges are unchanged by time-reversal, according to Sec. 8.1.1.

Kitaev wire on the 1d domain wall

Now we explain the way to put the Kitaev wire on the one-dimensional domain wall of τ
qubits on K. Analogously to the (2+1)-dimensional case in Sec. 7, this is done by pairing
Majorana fermions along the long edges on the one-dimensional domain wall. To do this, it
is convenient to label the planar triangle on K in a “bipartite” fashion. For a 1-simplex e of
T crossing the two-dimensional domain wall, we find a pair of planar triangles contained in a
single 3-simplex of T , which is located in the nearest position of e, as described in Fig. 8.11.
Then, we label the pair of planar triangles by “A” and “B”, such that the “A” triangle is
located in the clockwise direction of the “B” triangle, when seen from the side of |1〉 domain
of σ qubits.

Then, on the one-dimensional domain wall τ qubits on K, we pick out Majorana modes
γsvv (γ is a or b) from each vertex v, and we pair them along the long edges bounding a planar
triangle 〈−→vw〉 as iγsvv γsww , so that they form the Kitaev wire. sv and sw are determined on
each vertex according to the following rule,

• If the planar triangle is labeled by “A”, s = ↑ when γ is a, and s = ↓ when γ is b.

• If the planar triangle is labeled by “B”, s = ↓ when γ is a, and s = ↑ when γ is b.
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(a)

(b)

Figure 8.10: (a): The process of obtaining K from K′. This is done by gathering the four
pink faces of K′ including two non-planar triangles into a single face. (b): Two τ qubits on
the identified faces of K′ should share the same state.

After pairing up these Majorana fermions, we are left with one unpaired Majorana on
each vertex of planar triangles, and two on each vertex of non-planar triangles, on the one-
dimensional domain wall. Then, we pair up yet unpaired Majorana fermions on short edges
〈−→vw〉, as iγsvv γsww . Here, we will choose the pairing such that sv = sw.

Finally, we have one unpaired Majorana fermion on each vertex of non-planar triangles.
We pair them up along long edges bounding a non-planar triangle 〈−→vw〉 as iγsvv γsww . Here, we
can see that sv is flipped from sw, sv = −sw (here, −s denotes the opposite spin to s).

Wave function

The wave function of our model is given by the equal superposition of all possible configura-
tions of σ qubits and τ qubits, associated with the Kitaev wire decoration discussed above.

Let us demonstrate the time-reversal invariance of this wave function. To see this, we first
note that the pairing of Majorana fermions away from the Kitaev wire decoration ia↑vb

↑
v′+ia

↓
vb
↓
v′

is invariant under time-reversal. On the Kitaev wire decoration, according to the pairing
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Figure 8.11: Labeling all planar triangles on K with either “A” or “B”. For a 1-simplex e of T
crossing the 2d domain wall, we find a pair of planar triangles contained in a single 3-simplex
of T , which is located in the nearest position of e. Then, we label the pair of planar triangles
by “A” and “B”, such that the “A” triangle is located in the clockwise direction of the “B”
triangle, when seen from the side of |1〉 domain of σ qubits.

rule, the spins of paired Majorana fermions sv, sw flip their signs under time-reversal, which
is consistent with the transformation law of fermions. This is because the labels of planar
triangles (“A” or “B”) are changed under time-reversal, thereby the spins of paired Majorana
fermions are also flipped. We can also check that the pairings of Majorana fermions are
consistent with the induced Kasteleyn direction on K under time-reversal. On one hand, on
short edges and long edges bounding a non-planar triangle on K, the sign of the pairing iγsvv γsww
is invariant under time-reversal, which is consistent with the invariance of the direction on
〈vw〉. On the other hand, on long edges of planar triangles of K, the pairing iγsvv γsww flips its
sign under time-reversal. It is also consistent with the Kasteleyn direction on K, which flips
the directions on long edges of planar triangles.

Thanks to the Kasteleyn directions induced on the two-dimensional domain walls, the
obtained wave function also preserves the fermion parity (−1)F , analogously to the (2+1)-
dimensional case in Sec. 7.

8.2 Phases on the domain wall: the Smith map
To see what T SPT phase the above wave function realizes, we consider the T symmetry
domain wall of the phase and study the relation between the (2+1)-dimensional phases on
the domain wall and our (3+1)-dimensional SPT phase. For that purpose, here we review
the field theoretical argument by [68] about the phases on the domain wall.

Let us consider a (3+1)-dimensional Lorentz invariant QFT with time-reversal symmetry
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such that T 2 = (−1)F . Firstly, we are interested in a global symmetry of the theory supported
on the T symmetry defect. It turns out that the global symmetry on the defect can be
understood geometrically in terms of the induced spacetime structure on the defect, which will
be discussed later in this section. Meanwhile, there is a useful perspective on the symmetry
of the T defect when the T symmetry is spontaneously broken.

8.2.1 The symmetry broken phase

Let us start with the phase with the broken T symmetry. In that case, the T defect is
realized as a T domain wall separating two distinct vacua of the symmetry broken phase.
We consider an infinite system of our (3+1)-dimensional QFT, and make up a T domain
wall of the theory by breaking the T symmetry, dividing the system into the left and right
domain. We are interested in a global symmetry supported on the T domain wall in this
setup. Since we assume the Lorentz invariance of our theory, we can find a global symmetry
induced on the domain wall with help of the CPT symmetry [68, 69]. 1 Concretely, when
the T domain wall is located in a reflection symmetric fashion, the combined transformation
of T and CP⊥T fixes the domains, thus acts solely on the domain wall. Here, P⊥ denotes a
spatial reflection fixing the configuration of the domain wall, see Fig. 8.12. Since the CPT
is anti-unitary, the combined transformation T · (CP⊥T ) turns out to behave as a unitary Z2

symmetry on the domain wall. The theory on the T domain wall is based on this induced
Z2 symmetry.

CPTT

Figure 8.12: The illustration for the T domain wall. The T domain wall separates the two
distinct vacua in the T broken phase. The T symmetry acts on the figure by changing two
vacua (i.e., yellow ↔ purple). Since the CPT commutes with T (up to fermion parity), the
CPT leaves the vacua of the T -broken phase invariant, and acts as the parity that reflects
the figure across the domain wall. T alone cannot be a symmetry on the domain wall since
it flips the domain, but T · (CP⊥T ) works as the symmetry on the wall, since CP⊥T reflects
back the configuration of domains.

More generally, if one has a Z2 symmetry which may be unitary or anti-unitary, we can
find an induced symmetry operation that acts solely on the domain wall by combining with
the CPT symmetry. We can find the algebra of the combined symmetry operation by the
following properties of the CPT symmetry [68];

1In this thesis, the operation P actually means a spatial reflection that reverses one of spatial directions
rather than the parity that reverses all directions. For example, [40] writes this operation as R as an
abbreviation of the reflection.
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1. Any unitary internal global symmetry U commutes with the CPT symmetry,

U · (CPT ) = CPT · U. (8.5)

2. Any time-reversal symmetry T commutes with the CPT symmetry up to fermion parity,

T · (CPT ) = CPT · T · (−1)F . (8.6)

3. The CPT symmetry squares to 1,

(CPT )2 = 1. (8.7)

For example, on the domain wall of the T symmetry with T 2 = (−1)F , we have a unitary Z2

symmetry T · (CP⊥T ) since

T · (CP⊥T ) · T · (CP⊥T ) = T 2 · (CP⊥T )2 · (−1)F = 1. (8.8)

If we start with a unitary Z2 symmetry U , its domain wall has a time-reversal symmetry
with T 2 = 1, since

U · (CP⊥T ) · U · (CP⊥T ) = U2 · (CP⊥T )2 = 1. (8.9)

If we start with a T symmetry with T 2 = 1, its domain wall has a unitary ZF4 symmetry U
with U2 = (−1)F , since

T · (CP⊥T ) · T · (CP⊥T ) = T 2 · (CP⊥T )2 · (−1)F = (−1)F . (8.10)

Finally, if we start with a unitary ZF4 symmetry with U2 = (−1)F , its domain wall has a
time-reversal symmetry T with T 2 = (−1)F , since

U · (CP⊥T ) · U · (CP⊥T ) = U2 · (CP⊥T )2 = (−1)F . (8.11)

After all, we find a hierarchy of the global symmetry on the domain wall with the mod 4
periodicity,

· · · ⇒
{
T 2 = (−1)F

}
⇒
{
U2 = 1

}
⇒
{
T 2 = 1

}
⇒
{
U2 = (−1)F

}
⇒ · · · , (8.12)

where the induced symmetry on the domain wall is written on the right.

8.2.2 Induced spacetime structure and the Smith map

The global symmetry on the domain wall can also be understood geometrically. For example,
let us consider a (d+ 1)-dimensional QFT for fermions with a Z2 symmetry. In that case, we
have a Z2 symmetry defect in a (d+ 1)-dimensional spacetime manifold with equipped with
a spin structure. The global symmetry for theories localized on the defect can be read by the
spacetime structure of a d-dimensional Z2 defect. Actually, we can see that the d-dimensional
Z2 defect has a Pin− structure. To see this, let us denote M as a (d + 1)-dimensional spin
manifold and K as a d-dimensional submanifold ofM that represents the Z2 defect. We have
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w1(TM) = w2(TM) = 0 according to the spin structure on M . On the symmetry defect K,
tangent bundle TM is expressed as

TM |K ∼= TK ⊕NK, (8.13)

where NK represents the normal bundle of K. Due to w1(TM) = w1(TK) + w1(NK) = 0,
we have w1(TK) = w1(NK). Then, we can see that w2(TK) + w2

1(TK) = 0, since

w2(TM) = w2(TK) + w1(TK)w1(NK) = w2(TK) + w2
1(TK) = 0, (8.14)

due to the Whitney sum formula wn(E⊕F ) =
∑

iwi(E)wn−i(F ) for real vector bundles E,F
with finite rank. This implies that K has a Pin− structure. In general, let L be a real line
bundle on M associated to the principal Z2 bundle. Then, in the presence of the Z2 gauge
field and the associated line bundle L, the spacetime structures on M that correspond to the
mod 4 periodicity are known to be expressed in terms of spin structure on TM ⊕L⊕m (called
twisted spin structure),

{U2 = 1} ⇒ spin structure on TM ⊕ L⊕4k,

{T 2 = 1} ⇒ spin structure on TM ⊕ L⊕4k+1,

{U2 = (−1)F} ⇒ spin structure on TM ⊕ L⊕4k+2,

{T 2 = (−1)F} ⇒ spin structure on TM ⊕ L⊕4k+3,

(8.15)

with k ∈ Z. In particular, Pin−, SpinZ4 , Pin+ structures are all given in terms of the twisted
spin structure. Since the spin structure on TM ⊕ L⊕m depends on m only mod 4, the
expression of symmetries by twisted spin structure explains the mod 4 periodicity of the
symmetry on the Z2 defect (8.12). That is, when M has a spin structure on TM ⊕L⊕m, the
Z2 defect K has the induced spin structure on TM ⊕L⊕m+1, since TM = TK⊕NK and we
have [70]

L|K ∼= NK (8.16)

on the symmetry defect. Thus, we have a mod 4 periodicity for the induced spacetime
structure on the Z2 defect,

· · · ⇒ {Pin+} ⇒ {Spin× Z2} ⇒ {Pin−} ⇒ {SpinZ4} ⇒ · · · , (8.17)

which corresponds to (8.12).
Then, picking up the Z2 defect turns out to define a map between bordism group of

manifolds. Namely, we have a sequence of linear maps of bordism groups

· · ·Ωspin
d (BZ2)→ Ωpin−

d−1 → ΩspinZ4
d−2 → Ωpin+

d−3 → · · · , (8.18)

which are called the Smith maps of bordism groups. Dually, we also have a sequence of the
Smith maps for the cobordism groups running in the opposite way

· · ·Ωd−3
pin+ → Ωd−2

spinZ4 → Ωd−1
pin−
→ Ωd

spin(BZ2)→ · · · . (8.19)
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In general, the Smith map for the cobordism groups describes the gapped phase carried by
the T symmetry defect. That is, when the theory is trivially gapped away from the symmetry
defect, the classification of the (d+ 1)-dimensional SPT phase νd+1 is totally encoded in that
of the d-dimensional symmetry defect νd, as νd+1 = f(νd). In that case, one can construct an
action for the (d+1)-dimensional SPT phase in terms of the d-dimensional action localized on
the symmetry defect. For example, let us consider the Smith map for the (2+1)-dimensional
Z2 SPT phase,

f2 : Ω2
pin− → Ω3

spin(BZ2), (8.20)

which defines a map Z8 → Z8 ⊕ Z expressed as

f2 : ν → (ν, 0). (8.21)

In this case, the Z8 generator of the (2+1)-dimensional Z2 SPT phase ν = 1 ∈ Z8 can be
described as the (1+1)-dimensional action on a Z2 defect that constitutes a Pin− surface.
Namely, the action can be given by evaluating the ABK invariant illustrated in Sec. 6.1 on
the Z2 defect, which is schematically expressed as “a∪ABK” with a a background Z2 gauge
field. Here, the symbol for cup product just means that we evaluate the ABK invariant on
the Poincaré dual of the Z2 gauge field. A theory constructed in such a manner has the
partition function quantized as 8th root of unity, when evaluated on RP3 equipped with a
nontrivial Z2 gauge field a. Actually, the Poincaré dual of a ∈ H1(RP3,Z2) becomes RP2

equipped with a Pin− structure, with the ABK invariant 8th root of unity. This shows that
the (2+1)-dimensional action “a∪ABK” works as the generator for the Z8 part of Ω3

spin(BZ2).
In addition, the T symmetry defect of a (3+1)-dimensional SPT phase with T 2 = (−1)F

is described by the Smith map

f3 : Ω3
spin(BZ2)→ Ω4

pin+ , (8.22)

which gives a homomorphism Z8 ⊕ Z→ Z16. The form of this map is given by

f3 : (ν, k)→ 2ν − k mod 16. (8.23)

In this case, the action for the Z8 subgroup of the Z16 classification in (3+1) dimensions can be
prepared by a (2+1)-dimensional action on the T defect. On the T defect, the restriction of w1

on the T defect further defines an induced Z2 gauge field on the (2+1)-dimensional spacetime.
Using the induced Z2 gauge field, one can define the action in the form of “a∪ABK” on the
T defect, which defines the action for the ν = 2 of the Z16 classification. Schematically, the
(3+1)-dimensional action can be expressed as “w1 ∪ (w1 ∪ ABK)”, where the symbol for the
cup product means the evaluation on the Poincaré dual of w1.

A theory constructed in such a manner has the partition function quantized as 8th root of
unity, when evaluated on RP4 equipped with a Pin+ structure. Actually, the Poincaré dual
of w1 ∈ H1(RP4,Z2) becomes RP3 equipped with a nontrivial Z2 gauge field, with the action
“a∪ABK” 8th root of unity. This shows that the (3+1)-dimensional action “w1∪(w1∪ABK)”
works as the generator for the Z8 part of Ω4

pin+ , since RP4 generates the Pin+ bordism group

Ωpin+

4 = Z16.
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In contrast, the generator of the Ω4
pin+ = Z16 classification cannot be expressed by an

action isolated on the T defect. In this case, according to the Smith map (8.23) we have odd
k copies of p+ ip superconductors represented by the gravitational Chern-Simons theory on
the T defect,

k ·
∫
K=∂W

CSgrav =
k

192π

∫
W

Tr(R ∧R). (8.24)

which means that c− = k/2 on the T defect. In particular, when the T defect is realized
as the T domain wall in the symmetry broken phase, it implies that the left and right
domain separated by the T domain wall must carry different gravitational response actions,
c−,L− c−,R = k/2, where c−,L, c−,R denote the framing anomaly in the left and right domain,
respectively. In addition, we have c−,L = −c−,R, since the vacua for the left domain is
obtained by acting the time-reversal on the right domain, which reverses the gravitational
response c−. Combining these facts, we can see that both the left and right domain have
c− = 1/4 mod 1/2 when k is odd. This nontrivial quantization of c− is one consequence
for the (3+1)-dimensional T SPT phase with the odd index in Z16. See also the author’s
work [71] and [72].

8.3 (3+1)d T SPT phase via decorated domain wall
Here, we claim that an invertible gapped phase realized by the wave function with the T
symmetry constructed in Sec. 8.1 generates the Z8 subgroup in the Z16 classification, by
comparing with the field theoretical argument in Sec. 8.2. This can be seen by studying the
(2+1)-dimensional phase localized on the Z2 defect, which is realized as a domain wall of σ
qubits on the 3-dimensional cells. For a given configuration of σ qubits, we get a wave function
for the fluctuating Kitaev wires on the two-dimensional T domain wall K, as described
in Fig. 8.6. This two-dimensional wave function has the same form as a wave function
constructed by Tarantino-Fidkowski in Chapter 7 for the Z2 SPT phase. In particular, we
find a unitary Z2 symmetry of the wave function on the T domain wall, generated by flipping
τ qubits on the domain wall, UZ2 =

∏
K τ

x.
Since τ qubits are charged under the T symmetry, the configuration of τ z on the Z2

domain wall is thought to work as the placeholder for the section of orientation line bundle L
restricted to the T domain wall. Hence, we identify the τ qubits on the Z2 domain wall as the
section of the induced Z2 gauge field on the domain wall, i.e., UZ2 is regarded as generating
the induced Z2 symmetry on the wall, and the one-dimensional domain wall of τ qubits is
identified as the domain wall of the induced Z2 symmetry. Since the T domain wall carries
the (2+1)-dimensional Z2 SPT phase generating the Z8 classification, we regard our wave
function as the image of (1, 0) ∈ Ω3

spin(BZ2) via the Smith map f3 in (8.22).
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Chapter 9

Conclusion

In conclusion, we studied local definitions of fermionic SPT phases and their boundaries.
We proposed a way to construct a path integral for fermionic topological phases with time-
reversal symmetry, by generalizing the fermionization proposed in [21] to the unoriented Pin+

or Pin− case. By utilizing the fermionization, we provided a path integral for Gu-Wen phases
in generic spacetime dimensions and (1+1)-dimensional topological superconductor.

We also studied an operation called partial time-reversal on a ground state wave function
of (1+1)-dimensional topological superconductor with T symmetry such that T 2 = 1. We
have shown that the partial time-reversal allows us to diagnose the Z8 classification of a
given ground state. We further obtained a symmetry-preserving gapped boundary of Gu-
Wen phases with finite group symmetry based on the path integral of the bulk-boundary
system. Finally, we discussed a wave function of the (3+1)-dimensional beyond Gu-Wen
phase with T 2 = (−1)F based on the decorated domain wall construction. In the T symmetry
broken phase, we have seen how the degrees of freedom on the T domain wall inherits the
classification of the original (3+1)-dimensional SPT phase by utilizing the Smith map of
cobordism groups.

We close this thesis with some possible future prospects. The bosonization and fermion-
ization for lattice systems discussed in Chapter 3 and Chapter 4 would be practically useful
for the development of fermionic simulation algorithms, since one can apply bosonic numerical
methods to the dual Hamiltonian instead of directly dealing with the fermionic Hamiltonian.
For instance, the path integral description of fermionic phases enables us to represent the
wave function of a fermionic system in terms of tensor network representation for the bosonic
dual system. In addition, a Hamiltonian version of the bosonization that corresponds to
the Gaiotto-Kapustin’s path integral description is proposed in [73]. For instance, these
bosonization techniques should be helpful for finding the ground state of two-dimensional
fermionic system by utilizing the bosonic dual system by e.g., density matrix renormalization
group (DMRG) [74] on a cylinder. Recently, the bosonization is also utilized to simulate a
fermionic system on qubit system on a digital superconducting quantum processor [75]. It
would be interesting to realize the bosonic dual of a fermionic topological phase studied in
this thesis on a qubit system.

For the partial transpose introduced in Chapter 6 to diagnose the Z8 classification of the
(1+1)-dimensional topological superconductor, there are experimental proposals [76, 77] to
measure moments of the partially transposed density matrix with ion traps and cold atoms.
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It is interesting to establish experimental protocols to measure the non-local order parameter
discussed in Chapter 6. We have shown in Chapter 8 that a wave function for a (3+1)-
dimensional topological superconductor with T 2 = (−1)F can be described on a system of
qubits and complex fermions. In [25], we constructed a commuting projector Hamiltonian
realizing the wave function, by summing over local Hamiltonians that fluctuates the decorated
domain wall. The existence of a commuting projector Hamiltonian for an SPT phase is
important, since the many-body localized phases exhibiting SPT phases in generic finite
energy density eigenstates can exist only when the SPT phase in question has a representation
in terms of a commuting projector Hamiltonian [78]. In addition, it is promising to give an
efficient tensor network representation useful for numerical implementations, based on out
wave function of a (3+1)-dimensional topological superconductor.

In this thesis, we did not mention the generator of Z16 for the (3+1)-dimensional topo-
logical superconductor with T 2 = (−1)F . In [50], the author and his collaborators obtained
a path integral for 3 ∈ Z16 phase that generates the Z16 classification. This is also done by
fermionizing a specific (3+1)-dimensional bosonic path integral following the prescription of
Chapter 4 in this thesis. The construction of the bosonic path integral is given by a gener-
alized Crane-Yetter state sum starting with a super-modular tensor category that describes
SO(3)3 Chern-Simons theory. It should be interesting to study the symmetry-preserving
gapped boundary of this theory by utilizing the bulk-boundary Grassmann integral, which
is expected to be the SO(3)3 Chern-Simons theory with T symmetry.

Though we have constructed the symmetry-preserving gapped boundary for the SPT
phases with finite discrete symmetry, it is intriguing whether a generic SPT phases with
continuous symmetry admits a symmetry-preserving gapped boundary. Hopefully, a large
class of symmetry-preserving gapped boundary is obtained by fermionizing a generalized
Crane-Yetter model equipped with the continuous symmetry.

It is also very interesting to study the SPT phases and their boundary with crystalline
symmetries. In that case, there is a simple way to reduce the (3+1)-dimensional SPT phase
to the lower dimensional system with internal symmetries [79]. For example, consider a
unitary reflection symmetry across the (2+1)-dimensional plane which protects the the (3+1)-
dimensional SPT phase. Then, we can operate the unitary circuit respecting the reflection
symmetry away from the reflection plane, which can disentangle the SPT phase away from the
reflection plane. After all, we obtain the reduced (2+1)-dimensional SPT phase supported
on the reflection plane, where the reflection symmetry acts internally. Based on this logic,
hopefully one can obtain a lattice model for a (3+1)-dimensional SPT phase with the spatial
reflection symmetry such that R2 = 1 which is classified by Z16.
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Appendix A

Homology and cohomology

In this appendix, we review the concepts of simplical homology and cohomology used in this
thesis.

A.1 chains and cochains
Let M be a triangulated d-dimensional manifold. For 0 ≤ k ≤ d, there is a set of “k-chains”
denoted as Ck(M,X) with an abelian group X. Ck(M,X) is a vector space with coefficient
X, with one basis element on each k-simplex of M . Hence, c ∈ Ck(M,X) is regarded as a
subset of the k-simplices of the triangulation, and written as

c =
∑

〈0...k〉∈M

c〈0...k〉 |0 . . . k〉 , c〈0...k〉 ∈ X, (A.1)

where 〈0 . . . k〉 denotes a k-simplex. Then, there is a linear operator ∂ : Ck(M,X) →
Ck−1(M,X) called a boundary operator, defined as

∂ |0 . . . k〉 =
k∑
i=0

(−1)i |0 . . . î . . . k〉 , (A.2)

where î means that we exclude i from the collection of vertices. Since each (k − 1)-simplex
〈0 . . . î . . . k〉 lives on a boundary of a k-simplex 〈0 . . . k〉, ∂c actually represents the boundary
of a k-simplex c. We say c is a closed chain if ∂c = 0. The set of closed k-chains is written
as Zk(M,X). In addition, the set of k-chains written as c = ∂b with some b ∈ Ck+1(M,X) is
written as Bk(M,X). Since we have ∂∂c = 0 for any c, Bk(M,X) is a subset of Zk(M,X),
Bk(M,X) ⊂ Zk(M,X), meaning that a boundary of some chain is always closed.

Now let us illustrate k-cochains of M denoted as Ck(M,X). This is the dual space of
Ck(M,X) spanned by linear maps Ck(M,X)→ X, that is, Ck(M,X) = Hom(Ck(M,X), X).
A k-cochain γ ∈ Ck(M,X) can be represented as

γ =
∑

〈0...k〉∈M

γ〈0...k〉 〈0 . . . k| , γ〈0...k〉 ∈ X. (A.3)
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Then, the coboundary map δ : Ck(M,X) → Ck+1(M,X) is defined as a dual map of ∂ :
Ck+1(M,X) → Ck(M,X). That is, for a given γ ∈ Hom(Ck(M,X), X), δ(γ) := γ∂ ∈
Hom(Ck+1(M,X), X). Specifically, the coboundary acts on a k-cochain as

δγ =
∑

〈0...k+1〉∈M

γ(∂ |0 . . . k + 1〉) 〈0 . . . k + 1| . (A.4)

Then, we again say that γ is closed if δγ = 0, and the set of closed k-cochains is denoted as
Zk(M,X). In addition, the set of k-cochains written as γ = δβ with some β ∈ Ck−1(M,X)
is denoted as Bk(M,X). By the definition of δ, we have δδγ = 0 for any γ, and then
Bk(M,X) ⊂ Zk(M,X).

Now, the homology group of M is defined as Hk(M,X) := Zk(M,X)/Bk(M,X), and the
cohomology group is Hk(M,X) := Zk(M,X)/Bk(M,X).

A.2 Poincaré duality
We can also consider the dual cellulation M∨ of M . In general, the dual cellulation M∨

of the triangulation is not a triangulation. Each k-simplex 〈v0 . . . vk〉 of M is the dual of a
(d − k)-cell P〈v0...vk〉 of M

∨, as shown in Fig. A.1 for two dimensions. Though we do not
introduce the construction of the dual cellulation in detail, M∨ can be obtained by firstly
taking barycentric subdivision of M and then gathering some subdivided d-simplices into a
single d-cell.

Figure A.1: The dual cellulation M∨ for the original triangulation M .

Then, the k-chains for the dual cellulation is again defined as a formal linear combination
of the k-cells of M∨ in the form of

c =
∑

P0...d−k∈M∨
cP0...d−k |P0...d−k〉 , cP0...d−k ∈ X. (A.5)

The set of (d− k)-chains of M∨ is written as Cd−k(M∨, X). Then, the boundary operator ∂
can be defined via the coboundary δ of the original triangulation M ,

∂ |P0...d−k〉 =
∑

〈r̃0...r̃d−k+1〉

((δ 〈0 . . . d− k|) |r̃0 . . . r̃d−k+1〉) |P〈r̃0...r̃d−k+1〉〉 . (A.6)
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That is, the boundary is given by the set of the dual of a (d− k + 1)-cells whose boundaries
contain the (d− k)-simplex 〈0 . . . d− k〉. Based on this boundary operator, we can naturally
define Zd−k(M∨, X), Bd−k(M

∨, X). By definition, we again have ∂∂c = 0 for any k-chain c.
Then, k-cochains are defined as the linear map Ck(M∨, X)→ X, and we write Ck(M∨, X) :=

Hom(M∨, X). The coboundary operator is defined via the boundary of M ,

δ 〈P0...d−k| =
∑

〈r̃0...r̃d−k+1〉

(〈0 . . . d− k| ∂(|r̃0 . . . r̃d−k+1〉)) 〈P〈r̃0...r̃d−k+1〉| . (A.7)

Then we can define Zk(M∨, X), Bk(M∨, X) using the coboundary. Note that Cd−k(M∨, X)
is identical to Ck(M,X), and the boundary (resp. coboundary) of Cd−k(M∨, X) has the
same action as the coboundary (resp. boundary) of Ck(M,X). This means that we have
Zk(M∨, X) ∼= Zd−k(M,X), Zk(M∨, X) ∼= Zd−k(M,X), and the same statement holds for
Bk(M∨, X) and Bk(M

∨, X). This is called the Poincaré duality between M and M∨.
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Appendix B

Cup product and higher cup product

A branching structure on a triangulation is a local ordering of vertices, which can be specified
by an arrow on each 1-simplex 〈ij〉, such there are no closed loops on any 2-simplices. This
defines a total ordering of vertices on every single d-simplex 〈0 . . . d〉. In this appendix,
we review cochain-level product operation called higher cup product, whose definitions are
based on branching structure of the triangulation. Here we limit ourselves to the Z2-valued
cochains, setting X = Z2 in Appendix A. See also [80] for a nice reference on higher cup
product.

Let M be a triangulated d-dimensional manifold. Firstly, the cup product gives the
product of cochains

− ∪− : Ck(M,Z2)× C l(M,Z2)→ Ck+l(M,Z2), (B.1)

whose explicit form is written as

(α ∪ β)(0, . . . , k + l) = α(0, . . . , k)β(k, . . . , k + l). (B.2)

Note that this definition of cup product depends on the branching structure on the triangula-
tion, where the ordering of vertices on each (k+l)-simplex is specified as 0→ 1→ · · · → k+l.
The cup product satisfies the Leibniz rule at the cochain level,

δ(α ∪ β) = δα ∪ β + α ∪ δβ. (B.3)

According to the Leibniz rule, one can show that the cup product defines the product of
cohomologies Hk(M,Z2) × H l(M,Z2) → Hk+l(M,Z2). Actually, for given α ∈ Zk(M,Z2),
β ∈ Z l(M,Z2), the shift of these cocycles by coboundaries is evaluated as

(α + δA) ∪ (β + δB) = α ∪ β + δ(α ∪B + A ∪ β + A ∪ δB), (B.4)

so this also shifts α ∪ β by a coboundary, thus defines a map between cohomologies. Such a
product operation defined on cohomologies is called a cohomology operation.

It is known that the cup product has the geometrical interpretation in the picture of
the Poincaré dual. That is, for given cochains α ∈ Ck(M,Z2) and β ∈ C l(M,Z2), the
cup product α ∪ β is the Poincaré dual to the intersection of Poincaré duals α∨ ∩ β∨, for
α∨ ∈ Cd−k(M∨,Z2), β∨ ∈ Cd−l(M∨,Z2). This can be understood as follows. Let us consider
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Figure B.1: The cup product (α∪β)(012) = α(01)β(12) can be understood as the intersection
of the dual chains in the Poincaré dual picture.

a shifted version of the Poincaré dual β∨shift, where the shifting vector is determined by the
branching structure. See Fig. B.1 for two dimensions. Then, the intersection of α∨ and β∨shifted
corresponds to the dual of α ∪ β.

As a generalization of the cup product, the higher cup product ∪i gives

− ∪i − : Ck(M,Z2)× C l(M,Z2)→ Ck+l−i(M,Z2), (B.5)

whose explicit form is written as

(α ∪i β)(0, . . . , k + l − i) =
∑

0≤j0<···<ji≤k+l−i

α(0→ j0, j1 → j2, . . . )β(j0 → j1, j1 → j3, . . . ).

(B.6)

Here, the notation i → j denotes all vertices from i to j, {i, i + 1, . . . , i + j}. In particular,
∪0 is identified as the cup product ∪ defined in (B.2). The higher cup product is subject to
the generalized Leibniz rule,

δ(α ∪i β) = (δα) ∪i β + α ∪i (δβ) + α ∪i−1 β + β ∪i−1 α, (B.7)

which is regarded as that the non-commutative property of ∪i−1 is controlled by the ∪i
product. According to the above Leibniz rule, for closed α and β, one can see that α ∪i β
is not necessarily closed, δ(α ∪i β) = α ∪i−1 β + β ∪i−1 α for α ∈ Zk(M,Z2), β ∈ Z l(M,Z2).
Hence, the product ∪i doesn’t give a cohomology operation for i > 0.

However, it turns out that the map

Sqd−i(α) : Zk(M,Z2)→ Zk+d−i(M,Z2)

Sqd−i(α) := α ∪i+k−d α
(B.8)

does give a cohomology operation. Actually, one can check that Sqd−i(α+ δA) = Sqd−i(α) +
δ(α ∪i+k−d A + A ∪i+k−d α + A ∪i+k−d−1 A + A ∪i+k−d δA) by using the generalized Leibniz
rule. This shows that Sqd−i defines a map Hk(M,Z2)→ Hk+d−i(M,Z2).
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For convenience, we extend the definition of the Sqd−i operation to non-closed cochains.
For a given λ ∈ Ck(M,Z2), we define

Sqd−i(λ) : Ck(M,Z2)→ Ck+d−i(M,Z2) (B.9)

Sqd−i(λ) := λ ∪i+k−d λ+ δλ ∪i+k−d+1 λ. (B.10)

One can immediately check that Sqd−i commutes with the coboundary,

δ Sqd−i(λ) = Sqd−i(δλ). (B.11)
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Appendix C

A useful formula for Stiefel-Whitney
homology classes

In this appendix, we prove the expression for the dual of the representative of w2 used in (8.2).
First we recall the theorem in [73],

Theorem. In a three-dimensional manifold M with triangulation and branching structure,
the homology class of the dual of w2 is represented by a 1-chain S ′ ∈ C1(M,Z2),

S ′ =
∑
e

e−
∑

∆+=〈0123〉

〈02〉 −
∑

∆−=〈0123〉

〈13〉, (C.1)

where the first sum is over all 1-simplices of the triangulation, and ∆+ (resp. ∆−)
denotes a + (resp. −) 3-simplex.

We show that the above 1-chain S ′ is homologically equivalent to S in (8.2). To do this, we
consider a branching structure of T ′ defined as follows. First, we assign a local ordering to
vertices of T , such that the vertex on the barycenter of a i-simplex is labeled as i. Then,
while respecting the ordering on vertices of T , we further assign a local ordering on vertices of
T ′, such that a barycenter of a j-simplex of T has a larger ordering than that of an i-simplex
if j > i. Then, we have an induced branching structure on T ′. Based on this branching
structure, after some efforts we can write S ′ in (C.1) as

S ′ =
∑
e∈T ′

e−
∑
∆+

(〈v1v0123〉+ 〈v3v0123〉+ 〈v0v013〉+ 〈v2v123〉)

−
∑
∆−

(〈v1v0123〉+ 〈v3v0123〉+ 〈v0v012〉+ 〈v2v023〉),
(C.2)

where the convention is the same as the expression in (8.2). Up to a boundary of a 2-chain,
the above S ′ is written as

S ′ =
∑
e∈T ′

e−
∑
∆+

(〈v013v0123〉+ 〈v123v0123〉+ 〈v1v3〉+ 〈v0v2〉)

−
∑
∆−

(〈v012v0123〉+ 〈v023v0123〉+ 〈v1v3〉+ 〈v0v2〉).
(C.3)

Since the contributions of 〈v1v3〉, 〈v0v2〉 cancel out on + and − simplices, we finally get (8.2).
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Appendix D

Group cohomology

In this appendix, we review group cohomology utilized to define topological terms for SPT
phases.

D.1 Classifying space and group cohomology
There exists a space BG called a classifying space, which has the property that a flat G-
gauge field on a d-dimensional manifold M is specified by a map g : M → BG. The
classifying space BG is constructed as follows. Firstly, let EG be a simplical complex whose
k-simplices are given by a collection of (k + 1) group elements {|g0, . . . , gk〉 |gi ∈ G} glued
along (k− 1)-simplices [g0, . . . , ĝi, . . . , gk] in an obvious way, where ĝi means skipping over gi
in the collection of group elements. We define a group action on EG as

g : EG→ EG, |g0, . . . gk〉 → |gg0, . . . ggk〉 . (D.1)

Now we define BG as the quotient space by the group action BG := EG/G. A k-simplex of
BG can be expressed in the form of

|g1|g2| . . . |gk〉 := G |e, g1, g1g2, . . . , g1 . . . gk〉 , (D.2)

where e ∈ G is the unit element of G. The boundary of a k-simplex of BG is given by

∂ |g1|g2| . . . |gk〉 = |g2| . . . |gk〉+ (−1)k |g1| . . . gk−1〉+
k−1∑
i=1

(−1)i |g1| . . . |gigi+1| . . . |gk〉 . (D.3)

This defines Zk(BG,X), Bk(BG,X) and Hk(BG,X). Then, the cochain ω ∈ Ck(BG,X) is
a linear map Ck(BG,X)→ X,

ω =
∑

g1,g2,...,gk

ω(g1, g2, . . . , gk) 〈g1|g2| . . . |gk| . (D.4)

The coboundary is expressed as

δω =
∑

g1,...,gk+1

ω(∂ |g1| . . . |gk+1〉) 〈g1| . . . |gk+1| . (D.5)
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Concretely, each coefficient of δω is written as

(δω)(g1, . . . , gk+1) = ω(g2, . . . , gk+1) + (−1)kω(g1, . . . gk) +
k−1∑
i=1

(−1)iω(g1, . . . , gigi+1, . . . , gk+1).

(D.6)

This defines Zk(BG,X), Bk(BG,X) and the group cohomology Hk(BG,X). In particular,
we can simply regard the element of Zk(BG,X) as a function ω : Gk → X with the property
δω = 0 given by (D.6).

D.2 Twisted group cohomology
When there is a group action ρ of G on X, we can define the twisted version of group
cohomology. ω ∈ Zk

ρ (BG,X) is a function ω : Gk → X with the property δρω = 0, where
the twisted coboundary δρ is defined as

(δρω)(g1, . . . , gk+1) = ρg1ω(g2, . . . , gk+1) + (−1)kω(g1, . . . gk) +
k−1∑
i=1

(−1)iω(g1, . . . , gigi+1, . . . , gk+1).

(D.7)

In particular, whenG contains the anti-unitary symmetry, it acts onX = U(1) as the complex
conjugation ρ : eiθ → e−iθ. One can see that δρδρω = 0 for any ω ∈ Ck

ρ (BG,U(1)), and it
defines Zk

ρ (BG,U(1)), Bk
ρ (BG,U(1)) and the twisted group cohomology Hk

ρ (BG,U(1)).
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Appendix E

Evaluation of partial time-reversal

E.1 Computation of trI(ρIρ
T1
I )

Here, we perform the explicit computation of the quantity (6.9)

trI(ρIρ
T1
I ), (E.1)

for a wave function prepared by the theory for the ABK invariant (6.5). We start with
constructing the reduced density matrix. We first prepare the state on the boundary circle
of a disk M = D2 and its conjugation in the form of (6.5)

|ψ〉 =
∑

α∈Z1(M,Z2)

Z̃(M,α)σ(M,α; ord(−n, · · · , n))(−1)
∫
M η∪α(c†−n)α(e−n) · · · (c†n)α(en) |0〉 ,

(E.2)

〈ψ| =
∑

α∈Z1(M,Z2)

Z̃(M,α)σ(M,α; ord(n, · · · ,−n))(−1)
∫
M η∪α 〈0| cα(en)

n · · · cα(e−n)
−n , (E.3)

where we let the number of boundary 1-simplices 2n here, and label 1-simplices in ∂M as
e−n, . . . , e−1, e1, . . . , en, for later convenience. M is given by reversing the orientation of M ,
and we denote 1-simplices in ∂M as e−n, . . . , e−1, e1, . . . en. Starting from the density matrix
ρ = |ψ〉 〈ψ|, we take the reduced density matrix ρI for the interval I =

∑
1≤|j|≤l ej, see

Fig. E.1. For simplicity, we set l, n as even. Then, ρI is expressed as

ρI =
1√
2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(M,α|M ; ord(−n, · · · , n))σ(M,α|M ; ord(n, · · · ,−n))

× (−1)
∑
EM+E

M
α × (c†−l)

α(e−l) · · · (c†l )
α(el) |0〉 〈0| cα(el)

l · · · cα(e−l)

−l ,

(E.4)

where N is given by gluing M and M along the complement of I on ∂M . EM , EM denotes
a dual of η introduced in (6.7).

(E.4) reduces to the form of the path integral on N . To see this, first we associate the
product of Grassmann integrals on M , M with that of N , by the following relation

σ(M,α|M ; ord(−n, · · · , n))σ(M,α|M ; ord(n, · · · ,−n))

=
odd∏

l+1≤j≤n

(−1)α(ej)

even∏
l+1≤j≤n

(−1)α(e−j)σ(N,α; ord(−l, · · · , l, l, · · · ,−l)),
(E.5)
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which can be shown by an explicit computation of the Grassmann integral. Then, (E.4) is
rewritten in the form of the path integral on N (see Fig. E.1),

ρI =
1√
2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∑
EN

α

× (c†−l)
α(e−l) · · · (c†l )

α(el) |0〉 〈0| cα(el)

l · · · cα(e−l)

−l ,

(E.6)

where we define EN as

EN := EM + EM +
odd∑

l+1≤j≤n

ej +
even∑

l+1≤j≤n

e−j. (E.7)

One can check that ∂EN correctly gives the dual of w2 on N , when restricted to the interior
of N . Thus, EN actually works as a dual of η on N .

(a) (b)

Figure E.1: (a): |ψ〉 and 〈ψ| are prepared by the path integral onM andM respectively. (b):
Taking the partial trace amounts to gluing M and M , and the resulting surface is denoted
as N .

To compute the partial time-reversal of ρI , we express ρI using the coherent state basis,

ρI =
1√
2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∑
EN

α

×
∫ ←−

d ξ
α(e−l)
−l · · ·

∫ ←−
d ξ

α(el)
l |ξα(e−l)

−l 〉−l ⊗ · · · ⊗ |ξ
α(el)
l 〉l

×
∫ −→

d ξ
α(el)

l
· · ·
∫ −→

d ξ
α(e−l)

−l l〈ξ
α(el)

l
| ⊗ · · · ⊗ −l〈ξ

α(e−l)

−l |,

(E.8)

where
∫ ←−
d ξ (resp.

∫ −→
d ξ) denotes the integral which satisfies ξ

∫ ←−
d ξ = 1 (resp.

∫ −→
d ξ ξ = 1).

Now we take the partial time-reversal (6.11) acting on the region I1 =
∑

1≤j≤l ej and I1 =∑
1≤j≤l ej,

ρT1I =
1√
2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α; ord(−l, · · · , l, l, · · · ,−l))(−1)
∑

EN
α

×
∫ ←−

d ξ
α(e−l)
−l · · ·

∫ ←−
d ξ

α(el)
l |ξα(e−l)

−l 〉−l ⊗ · · · ⊗ |ξ
α(e−1)
−1 〉−1 ⊗ |iξ

α(e1)

1 〉
1
⊗ · · · ⊗ |iξα(el)

l
〉
l

×
∫ −→

d ξ
α(el)

l
· · ·
∫ −→

d ξ
α(e−l)

−l l〈iξα(el)l | ⊗ · · · ⊗ 1〈iξα(e1)1 | ⊗ −1〈ξ
α(e−1)

−1 | ⊗ · · · ⊗ −l〈ξ
α(e−l)

−l |.

(E.9)
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which is rewritten in the fermion number basis as

ρT1I =
1√
2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∑
EN

α
∏

e∈I1∪I1

(−i)α(e) × (c†−l)
α(e−l) · · · (c†−1)α(e−1)(c†1)α(e1) · · · (c†l )

α(el) |0〉

× 〈0| cα(el)
l · · · cα(e1)

1 c
α(e−1)

−1 · · · cα(e−l)

−l .

(E.10)

Now we can explicitly write down the order parameter (6.9) as

trI(ρIρ
T1
I ) =

1

2

∑
α∈Z1(N,Z2)

∑
α′∈Z1(N ′,Z2)

Z̃(N,α)Z̃(N ′, α′)σ(N,α; ord(−l, · · · , l, l, · · · ,−l))

× σ(N ′, α′; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∑
EN

α(−1)
∑
EN′

α′
∏

e∈I1∪I1

(−i)α(e)

×
∏

1≤j≤l

δα(e−j)α′(e−j)
δα(ej)α′(ej)δα(e−j)α

′(e−j)δα(ej)α
′(ej)

,

(E.11)
where the expression involves two copies of N evaluating ρT1I and ρI written as N and N ′

respectively. By taking the trace after partial time-reversal, the expression (E.11) looks
like the form of path integral on a space X, which is obtained by gluing N,N ′ along their
boundaries as illustrated in Fig. E.2. Namely, we identify I1 + I1 =

∑
1≤j≤l(ej + ej) on

∂N and ∂N ′, by the orientation reversing map, and I2 + I2 =
∑

1≤j≤l(e−j + e−j) by the
orientation preserving map. Here, the induced map N t N ′ → X is restricted to each N
as N → Ñ , where Ñ is given by identifying two boundary 0-simplices of N contained in
∂(I1 + I1). Then, (E.11) is rewritten in the form of path integral on X as

trI(ρIρ
T1
I ) =

1

4

∑
α∈Z1(X,Z2)

Z̃(X,α)σ(Ñ , α|Ñ ; ord(−l, · · · , l, l, · · · ,−l))

× σ(Ñ ′, α|Ñ ′ ; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∑
E
Ñ
α
(−1)

∑
E
Ñ′

α ×
∏

e∈I1∪I1

(−i)α(e).

(E.12)

The expression (E.12) looks like the partition function of a Pin− theory constructed from
the Grassmann integral (4.4), since both assigns ±i factor to 1-simplices where we reverse
the orientation. We can actually show that these are identical up to the normalization factor
1/4. To see this, we compare (E.12) with the Pin− theory on X in the form of (6.1). By
integrating out the Grassmann variables living on boundaries of Ñ and Ñ ′, the partition
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Figure E.2: Taking trI(ρIρ
T1
I ) amounts to gluing N and N ′ along boundaries, such that the

boundary 1-simplices with the same color in the figure are identified. We are gluing I1 + I1

(red and yellow curves) by the orientation reversing map, and I2 +I2 (blue and green curves)
by the orientation preserving map. The resulting surface X has a crosscap introduced along
I1 + I1.

function for the Pin− theory (6.1) is obtained as

Z(X, η) =
∑

α∈Z1(X,Z2)

Z̃(X,α)σ(Ñ , α|Ñ ; ord(−l, · · · , l, l, · · · ,−l))

× σ(Ñ ′, α|Ñ ′ ; ord(−l, · · · ,−1, 1, · · · , l, l, · · · , 1,−1, · · · ,−l))

× (−1)
∑
EX

α
even∏
e∈I2

(−1)α(e)

odd∏
e∈I2

(−1)α(e) ×
∏

e∈I1∪I1

(−i)α(e),

(E.13)

where EX is the dual of η trivializing w2+w2
1 onX, whose choice of representative is described

in Sec. 4. By comparing (E.12) with (E.13), one can see these expression are completely the
same, by checking that

EÑ + EÑ ′ +
even∑
ej∈I2

ej +
odd∑
ej∈I2

ej = EX . (E.14)

Thus, we have shown that (6.9) is identical to the partition function of the Pin− theory
defined in (6.1),

trI(ρIρ
T1
I ) =

1

4
Z(X, η) =

√
2
χ(X)

4
ABK[X, η]. (E.15)

Then, the phase of the quantity trI(ρIρ
T1
I ) is identified as the ABK invariant on the resulting

manifold X. In particular, in our case we have X = RP2, thus

trI(ρIρ
T1
I ) =

1

2
√

2
e±2πi/8. (E.16)
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E.2 The evaluation of the norm
Here, let us check that the state |ψ〉 in (6.5) is correctly normalized to have the unit norm,

|ψ〉 =
∑

α∈Z1(M,Z2)

Z̃(M,α)σ(M,α; ord(−n, · · · , n))(−1)
∫
M η∪α(c†−n)α(e−n) · · · (c†n)α(en) |0〉 ,

(E.17)

〈ψ| =
∑

α∈Z1(M,Z2)

Z̃(M,α)σ(M,α; ord(n, · · · ,−n))(−1)
∫
M η∪α 〈0| cα(en)

n · · · cα(e−n)
−n , (E.18)

based on the bosonic weight for a non-closed manifold defined in (6.8),

Z̃(M,α) = 2|F |−|E|+|Eb|/2−1/2. (E.19)

Using the equation for gluing the Grassmann integral (E.5), we can see that

〈ψ|ψ〉 =
1

2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α)
odd∏

1≤j≤n

(−1)α(ej)

even∏
1≤j≤n

(−1)α(e−j)(−1)
∑
EM

α(−1)
∑
E
M
α
,

(E.20)

where N = S2 is a sphere obtained by gluing two disks M and M along the boundaries.
Then, it is not hard to see that

EM + EM +
odd∑

1≤j≤n

ej +
even∑

1≤j≤n

e−j = EN , (E.21)

where ∂EN = SN , and SN represents the dual of w2 on N . After all, we have

〈ψ|ψ〉 =
1

2

∑
α∈Z1(N,Z2)

Z̃(N,α)σ(N,α)(−1)
∑
EN

α

=

√
2
χ(S2)

2
ABK[S2, η] = 1,

(E.22)

where we used the definition of the ABK invariant in (6.1). This shows that |ψ〉 is correctly
normalized.
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