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Abstract

This thesis is devoted to investigating the origin of the Big Bang in an
observationally favored two-field inflationary model, namely the mixed

Higgs-R? inflation model.

In inflationary cosmology, reheating is a period connecting the inflation-
ary phase and the radiation-dominated Universe, serving as the origin of
the Big Bang by particle production and thermalization. The temperature
and duration of reheating can impact various observables and phenomena
that can probe physics in the very early Universe. Reheating is a highly
model-dependent process during which the energy that drives inflation is
transferred to other matter fields through different mechanisms according
to concrete models. Generally, reheating is characterized by two sequen-
tial stages for models where inflation is followed by inflaton oscillation,
preheating that is dominated by non-perturbative particle production,

and reheating during which inflaton experiences perturbative decay.

The mixed Higgs-R? inflation model, as a theoretically well-motivated
and observationally favored inflationary model, possesses rich and inter-
esting phenomena at different stages of reheating. Especially, the multi-
field nature plays an essential role in the particle production mechanism
throughout the whole reheating process, which distinguishes the model
from its two single-field limits. Following a brief review of the mixed
Higgs- R? inflation, different stages of the reheating process in this model
are discussed in the thesis, including the first stage of preheating, the
occurrence of tachyonic preheating, and the perturbative reheating. The
first stage of preheating, which is involved in the unitarity issue discus-
sion, is not significant enough to reheat the Universe; the occurrence of
tachyonic preheating for specific parameter choices can reheat the Uni-
verse instantaneously; the perturbative decay of the scalaron field and
Higgs field at the late time that can determine the reheating temperature
and duration. The discussion is presented in both the Jordan frame and

the Einstein frame.
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Chapter 1

Introduction

The conventional Hot Big Bang theory! can successfully explain, in a comprehensive
manner, the expansion of the Universe, the Cosmic Microwave Background (CMB)
radiation, and the primordial abundance of light elements. It describes the Universe in
a hot and dense phase dominated by thermalized relativistic particles (usually termed
radiation) that expands to cool down to another phase dominated by non-relativistic
particles (usually termed matter). However, there are still challenges for the Hot Big
Bang theory. For example, the homogeneity, isotropy, and flatness of the observable
Universe cannot be naturally predicted within its framework. Also, the origins of
the anisotropy on CMB and seed fluctuations of large scale structure (LSS) are not
answered in this theory. To overcome these difficulties, the inflationary cosmology [3—
7]* provides an elegant picture for the very early Universe which naturally solves the
previously mentioned problems and sets the initial conditions for the Big Bang®. The
essence of this scenario is to extend the physical time beyond the Big Bang by a
quasi-de Sitter phase when the Universe experiences (almost) exponential growth in
space for a sufficiently long time. Inflation stretches the space and dilutes the spatial
curvature, which solves the flatness problem, while the large-scale homogeneity and
isotropy are naturally explained because the observed Universe is originally from a
single particle horizon at the early time. The quantum fluctuations generated during
inflation, on the other hand, seed the CMB anisotropy and the formation of large-scale
structure.

Instead of replacement, inflation serves as a powerful complement to the Hot Big

Bang at the earliest period to make the cosmology model more complete. However,

1See e.g. the classic textbooks [1,2] for details.

2See e.g. [8] for a review.

3Here the terminology follows from Ref. [9] that the Big Bang refers loosely to a gaseous era well
before the Big Bang nucleosynthesis where the Universe is not necessarily thermalized or dominated
by radiation.



inflation does not last forever because the standard evolution in the Hot Big Bang
theory should take place in time as it successfully describes the thermal history of
the Universe from the radiation-dominated epoch to the present. Furthermore, the
observed properties of the Universe, such as the baryon asymmetry, should also be
generated between inflation and the Big Bang nucleosynthesis (BBN). Nonetheless,
the realization of inflation is still unclear. The standard inflationary models usually
contain one or more scalar field(s) called inflaton(s) whose vacuum-like energy density
dominates the Universe and drives inflation until a graceful exit. After the end of in-
flation, the inflaton fields oscillate around the bottom of the potential, triggering the
particle production process. Depending on the concrete interaction between inflaton
and other matter fields, the inflaton energy is transferred into relativistic particles
through different mechanisms that can be either perturbative or non-perturbative.
This process is called reheating of the Universe [6], which is highly model-dependent
due to the unknown physics at inflation scale. At the end of reheating, all the infla-
ton energy goes into relativistic particles that interact with each other and eventually
reach thermal equilibrium. The Universe is then dominated by radiation, and its tem-
perature at this stage is dubbed reheating temperature. Subsequently, the evolution
of the Universe is along the storyline of the Hot Big Bang theory.

Reheating is an essential ingredient for a successful inflationary model as a transi-
tion from an “empty” space after inflation to a radiation-dominated Universe [6]. The
reheating temperature and duration are two of the most crucial quantities character-
izing this period which tightly connect with other important observables, for example,
the duration of inflation, possibly baryogenesis, high-frequency gravitational waves,
and the production of dark matter. Proper analysis of the cosmic history during re-
heating regime is required to express the pivot scale of curvature perturbation in terms
of the number of e-folds of inflation, in order to confront the prediction of inflation
with observational data [10, 11}, because the thermal history between inflation and
BBN directly affects how we map the curvature perturbation mode at the moments
when they exit and reenter the horizon. Therefore, investigation of the uncertain-
ties during reheating can improve the observational constraint on inflation models.
Unfortunately, reheating is challenging to probe* because the corresponding scale is
small such that the late-time non-linear dynamics will strongly wash out the informa-
tion left by reheating. The thermal equilibrium state during the radiation-dominated

era also diminishes the possible trace of reheating. Finding the potential observables

4One possibility is the future space gravitational wave detector DECIGO [12,13].



that can survive the non-linear dynamics and thermalization for current and future
experiments becomes crucial for a better understanding of the early Universe.

For standard inflationary models with inflaton oscillations after inflation, reheat-
ing can sequentially occur in two characteristic regimes in general. The first is
preheating, which usually involves short but rapid and non-perturbative processes
transferring a significant fraction of the energy from inflaton to other matter fields
through broad parametric resonance [14-17] or tachyonic instability [18-20]. The
second is perturbative reheating, where the inflaton field decays perturbatively into
other species of matter and losses all its energy [3,21,22]. The most significant com-
plication of reheating comes from the non-perturbative and non-linear preheating
regime. The particle production during preheating is non-adiabatic and often explo-
sive. As a result, the backreaction from such a violent process to the background
dynamics may soon become significant when the energy of the produced particles
becomes comparable with that of the background, which is a non-linear process. An
elaborate numerical method such as lattice simulation is often adopted to take into
account the backreaction. However, these simulations are classical, so quantum ef-
fects are neglected, while some of those effects could be potentially important for the
rescattering process of relativistic particles. Another essential ambiguity of reheating
is that the validity of the Standard Model (SM) of particle physics around the infla-
tion scale is unclear since the existing colliders on earth cannot probe such a high
energy scale. But conversely, reheating provides a free but powerful “collider” in the
sky because any discovery or observation from the reheating epoch can shed light on
the possible new physics at that scale. Therefore, a thorough investigation of the
reheating process is eagerly desired to comprehend the high energy physics and the
early Universe.

Particular interest should lie in the observationally favored models because extra
constraints are needed to decrease the number of models allowed by current obser-
vation. The simplest viable version of inflation models is the so-called single-field
slow-roll inflation where only one scalar field is responsible for the inflationary dy-
namics. Two of these models stand out as the best-fit candidates according to the
CMB observation [23], namely the Starobinsky model [3,24] (or R?-inflation) and
the original Higgs inflation with a non-minimal coupling between the SM Higgs and
gravity [25-27]°. The former is the simplest inflation model extending the General

Relativity (GR) by a new geometric term R? with only one parameter, equivalent

5See Ref. [28] for all the variants.



to a scalar-tensor theory with one scalar degree of freedom called scalaron [3] in ad-
dition to the two tensor modes in GR. The latter identifies the inflaton with the
only scalar field in SM, i.e. the Higgs field which has been discovered at the Large
Hadron Collider (LHC). Making use of a large non-minimal coupling between Higgs
and gravity, it fits the observation as well as the Starobinsky model. The reheating
processes in the Starobinsky model [3,29, 30] and the Higgs inflation [31-35] have
also been intensively studied in the literature. However, a sensible UV theory for
both models is still missing, which motivates us to consider the UV extension beyond
them. More detail about single-field slow-roll inflation and the inflation dynamics of
these two models are reviewed in Chapter 2. The theory of particle production in a
time-dependent background as well as the reheating processes in the R%-inflation and
the Higgs inflation is reviewed in Chapter 3.

This thesis focuses on a two-field inflationary model, namely the mixed Higgs-
R? inflation model [36-40]. Increasing the number of inflaton fields is one way to
go beyond the standard single-field slow-roll inflation but also significantly increases
the complication of the system. Nevertheless, this model is well-motivated in both
phenomenological and theoretical perspectives. Phenomenologically, it combines the
two observationally most favored inflationary models mentioned above, i.e. the R2-
inflation and the Higgs inflation. In the regime where isocurvature mode is heavy
and Higgs self-coupling is non-critical during inflation, this model always inherits
the predictions on the scalar spectral index n, and tensor-to-scalar ratio r at CMB
scale from its two single-field limits which well match the observation by WMAP and
Planck [23]. This is naturally explained by the attractor behavior during inflation
that enables us to describe this model as an effective R*-inflation or effective Higgs
inflation [38,41]. Theoretically, the mixed Higgs- R? inflation model can be a candidate
of UV-extension of the Higgs inflation [37,42] as the cutoff scale of the model is lifted
up to the Planck scale. Due to the presence of R? term, the strong coupling issue
during preheating in the Higgs inflation [34] is also resolved [41], which is discussed
exhaustively in Chapter 4. The origin of the R? term is discussed from the viewpoint
of the renormalization group running [43-47], and of scattering amplitude and the
non-linear sigma model [48,49]. The detailed motivation and inflation dynamics of
this model are reviewed in Chapter 2.

The interplay of the multi-field nature of the system and various couplings be-
tween inflaton fields and SM particles generates the rich phenomena during reheat-

ing in the mixed Higgs-R? inflation model. Depending on the model parameters,



different mechanisms dominate the reheating process [41,50-53], which leads to dif-
ferent reheating temperatures connecting its two single-field limits. As the Higgs-
and RZ%inflation can be distinguished by different reheating temperatures [54], it is
also applicable to break the degeneracy among different model parameters in the
mixed Higgs-R? inflation model. Conversely, future experiments that determine the
reheating temperature can settle down the mixing ratio between the Higgs- and R2-
inflation. Based on the original works [41,51] in collaboration with Ryusuke Jinno,
Kohei Kamada, Seong Chan Park, Alexei A. Starobinsky, and Jun’ichi Yokoyama,
and the independent one [53], the reheating process for different parameter choices
in the mixed Higgs-R? inflation model is discussed in Chapter 4, which constitutes
the main part of this thesis, including the generic first stage of preheating, tachyonic
preheating at an early stage, and the perturbative reheating at late time.

A brief summary of the structure of this thesis is as follows.

o Chapter 2 is devoted to the review of inflation. In Sec. 2.1, the basic idea of
inflationary cosmology is briefly reviewed. In Sec. 2.2, the simplest class of
models, single-field slow-roll inflation, is introduced, together with the inflation
dynamics of two typical examples, the Starobinsky model and the Higgs infla-
tion. A review of the general formalism for multi-field inflation is presented in

Sec. 2.3, followed by the analysis of the mixed Higgs-R? inflation.

o Chapter 3 mainly reviews the theory of reheating after inflation. A general
discussion of the particle production in a time-dependent background is pre-
sented in Sec. 3.1, including perturbative and non-perturbative processes. The

application to the Starobinsky model and the Higgs inflation is given in Sec. 3.2.

o Chapter 4 is the most important part of this thesis where the reheating process
is comprehensively discussed. The analysis of the first stage of preheating is
presented in Sec. 4.1. The occurrence of tachyonic instability and the neces-
sary degree of fine-tuning for realization is discussed in detail in Sec. 4.2. For
the cases where tachyonic preheating is insufficient, perturbative decay of the
inflaton fields dominates the late-time reheating process, which is investigated
in Sec. 4.3.

o The last Chapter serves as the summary and conclusion of this thesis.

This thesis adopts the Planck units, i.e. ¢ = kg = h = 1 and uses the reduced
Planck mass M, = (87G)~/? explicitly.






Chapter 2

Inflation

As an indispensable part of modern cosmology, inflation refers to a quasi-de Sitter
phase at the beginning of the Universe. The existence of such a period overcomes
various difficulties encountered in the conventional Hot Big Bang cosmology, such as
the horizon problem, flatness problem, and monopole problem [4]. In addition, the
initial conditions for the temperature fluctuations on CMB and the formation of LSS
can be naturally generated during inflation. Therefore, the inflation scenario pro-
vides an elegant description of the early Universe, although much ambiguity remains
about the concrete realization of inflation and the connection between inflation and
other observed facts such as baryon asymmetry and dark matter production. Testing
inflation by direct observational evidence and constructing a viable inflation model
become two of the main tasks in modern cosmology, which will fill the blank history
of the early Universe and lead to a deeper understanding of physics at a currently
unreachable high energy scale. One of the most important predictions of inflation is
the primordial gravitational waves generated in the early quasi-de Sitter phase [55]
which are only constrained by the null observation [23]. The primary target of many
ongoing and future experiments is to probe the primordial tensor mode fluctuations
whose discovery will be the smoking gun of inflation.

This chapter is a review of inflation, including the basic idea of inflationary sce-
nario (Sec. 2.1), the realization of inflation in single-field models for an illustrative pur-
pose (Sec. 2.2), and more realistic model construction, multi-field inflation (Sec. 2.3).
In the last section, after a review of the general formalism of multi-field inflation,
special attention is drawn to a specific two-field model, namely the mixed Higgs- R>
inflation model. The motivation and inflationary dynamics of this model are discussed

in detail.



2.1 Inflation Scenario

The observed Universe which is homogeneous and isotropic at large scale can be
well described by the four-dimensional flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, a solution of the Einstein field equations in GR. The FLRW metric
for general spatial curvature in a comoving coordinate system is given by

2

2 __ 2 2 7 | 2 2

+72dQ3 | (2.1)

where ~;; is the spatial metric; d23 is the metric of the 2-dimensional Euclidean
sphere; K is the spatial curvature parameter which takes —1, 0, +1 for hyperbolic,
flat, and spherical space with constant curvature respectively; and a(t) is the scale
factor whose absolute size is related to the radius of curvature of the spatial geometry
in curved space but has no physical meaning in flat space because one can always
absorb it into the redefined coordinate. A more meaningful quantity is the Hubble

parameter defined as

H=a/a, (2.2)

that measures the spatial expansion rate of the Universe. The over-dot () represents
the derivative with respect to t. The Hubble parameter characterizes the typical
length scale and time scale of the expanding Universe. Specifically, H~! roughly
estimates the size of observable Universe or “Hubble horizon” as well as the time
with which the scale factor a(t) becomes double in size. A comoving version is called
comoving Hubble horizon (aH)~! which represents the comoving distance light can
travel within one Hubble time beyond which current causal contact is forbidden.

Another convenient and important quantity is the conformal time

nz/aldt:/(aH)ldlna, (2.3)

with which Eq. (2.1) can be rewritten in a conformal form that is convenient for
calculation
dr?

2 2 2
ds* =a (77) [—dﬁ +m

+ r%mg} : (2.4)

The conformal time also measures the comoving distance that light could have trav-
eled since the beginning of time, roughly the accumulation of the comoving Hubble
horizon as seen in the second equality in Eq. (2.3). Therefore, this distance repre-
sents a “comoving particle horizon” beyond which, by definition, no causal connection

could have been made before the present moment.



Considering a perfect fluid with energy density p and isotropic pressure p in the

comoving frame, its energy-momentum tensor is written as

Ty = (p+ p)uytty + PGy (2.5)

where u* is the 4-velocity of the fluid. The equation of state of the perfect fluid is
parameterized by the equation of state parameter w = p/p which takes the value of 0
for (pressureless) matter, 1/3 for radiation, and —1 for cosmological constant. If the
Universe is dominated by this fluid and described by the geometry in Eq. (2.1), the

Einstein field equations turn out to be the famous Friedmann equations

1 K
H*= —p— =
3M§1p a?’
. 1
H4 1 = (o4 3p) (26)
pl

and a continuity equation follows from them as
p+3H(p+p) =0, (2.7)

which is independent of K. From Eq. (2.7), the relation between p and a can be

derived
p oc a3+ (2.8)

which shows the evolution of different components as the Universe expands, for exam-
ple, radiation pr.q o< a=* and matter p, o< a=3. An important quantity called critical
density p. is defined as the energy density that makes K =0, i.e. p. = 3M§1H 2. For
the case with multiple components with different p; where the subscription ¢ denotes
different species, p in Eqgs. (2.6) should be replaced by > . p;.

From the lower of Egs. (2.6), it can be found that & < 0 as long as w > —1/3,
which means that the cosmic expansion is decelerating. Therefore, during a radiation-
dominated or matter-dominated epoch, the Universe experiences decelerated expan-
sion. For w < —1/3, the accelerated expansion is realized, in particular, w = —1
corresponding to exact de Sitter spacetime.

The Hot Big Bang cosmology assumes that the Universe is initially dominated by
radiation. As the cosmic expansion dilutes radiation much faster than matter, the
Universe becomes matter-dominated later. In this framework, the cosmic expansion,
CMB, and BBN are comprehensively explained. However, this theory suffers from

some shortcomings which are summarized as follows.



e Horizon Problem The observable Universe is homogeneous and isotropic at
large scales as can be seen on CMB where the amplitude of curvature fluctuation
is tiny ~ 107° [23], which cannot be naturally explained by the standard Hot Big
Bang cosmology. This problem can be seen easily by considering the comoving
Hubble horizon and comoving particle horizon. According to the discussion

above, for w > 0 case’, it is easy to find that

d,
HaH) = = >0, (2.9)

t t
An:/ a”tdt = / (aH) 'dIna , (2.10)
0 0

which means that both horizons increase monotonically with time. This implies
that the causally connected region at early time is much smaller than that
observed today, so it is not natural that all the regions from outside the horizon

look so similar to the one inside without any previous causal contact.

o Flatness Problem The flatness of the observed Universe is also mysterious
in the standard Hot Big Bang cosmology. If the quantities evaluated at present
time are denoted with a subscript “0”, observation tells that the Universe is

extremely flat, py ~ p.o. However, from the upper of Eqs. (2.6),
I1—-Q@#)] = K(aH)™?, (2.11)

where Q = p/p. is the density parameter. As long as w > —1/3, |1 — Q(t)|
is increasing with time, which means that K(aH)™2 = 0 is not a stable point
during radiation- and matter-dominated Universe. Normalizing ag = 1, the ob-
servation gives |1 — Q(¢p)| < 0.01, which means that |1 — Q(tgpn)| < O(10719)
and even smaller at earlier time. There is no explanation in the conventional
Hot Big Bang theory why the density parameter of the Universe is extremely

close to unity at the early stage.

e Monopole Problem  If the Universe has a very high temperature at the
very early stage, the symmetry of Grand Unified Theory (GUT) may be re-
stored so topological defects, e.g. magnetic monopoles, may be produced when
the symmetry is spontaneously broken. These monopoles are stable and can
survive until the present, with abundance typically higher than that allowed
by observation. The absence of such topological defects casts another doubt on

the validity of the standard Hot Big Bang cosmology at the very early time.

6This is always true for radiation- and matter-dominated Universe.
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The observation of large-scale homogeneity, isotropy, and flatness may be achieved by
setting some unnatural initial conditions for the early Universe, which, however, are
not physically motivated and make the theory less predictive. In order to overcome
these difficulties, the concept of inflation is introduced [4]. Furthermore, as shown
in the next section, the initial perturbations for CMB anisotropy and LSS are also
naturally generated by inflation.

The basic idea of inflation is to insert a period of accelerated expansion (i > 0)
before the Big Bang. This scenario can be intuitively understood, on the one hand,
as the expansion dilutes all the unwanted features or initial conditions, including
the spatial curvature and the abundance of GUT relics, which solves the flatness
problem and monopole problem. On the other hand, the size of comoving Hubble
horizon shrinks during the accelerated expansion, which means that the comoving
particle horizon could cover a large region at the early time because of the significant
contribution from (aH)™!. If the duration of accelerated expansion is long enough,
the originally covered region can be as large as the Hubble horizon observed today,
which solves the horizon problem because all the observed regions today would be

causally connected in the past. A brief quantitative discussion is as follows.

« Solving Horizon Problem The natural consequence from inflation (& > 0)

is that the comoving Hubble horizon decreases with time

d ~ i
%(aH) l= —=5 <0, (2.12)

which means that a large comoving volume could be in causal contact before
inflation and some part of it exited the horizon during inflation. It is the causal
connection before inflation that establishes the large-scale homogeneity and

isotropy, which solves the horizon problem.

« Solving Flatness Problem If the comoving Hubble horizon decreases during
inflation, K (aH)™? in Eq. (2.11) also decreases with time. As a result, Q(¢) = 1
is no longer an unstable point but an attractor during inflation. In other words,
inflation inevitably generates an initial condition €2 ~ 1 for the Big Bang, which

solves the flatness problem.

o Solving Monopole Problem FEven if the unwanted relics could be generated
during a GUT phase transition at early Universe, the long period of accelerated
expansion could dilute the abundance of such relics exponentially to a level

allowed by present observation, which solves the monopole problem. Of course,
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it is necessary to keep the temperature of the Universe low enough during and

after reheating to prevent the production of these relics after inflation.

From Egs. (2.6) and d@ > 0, an immediate result is that p + 3p < 0 which means
a negative pressure w < —1/3 that pushes the Universe to expand with acceleration.
The way to realize negative pressure is discussed in the next section. In addition,
the primordial quantum fluctuations generated during inflation play an essential role
in providing the origin of density fluctuations which is absent in the Hot Big Bang
cosmology. Since the comoving Hubble horizon shrinks during inflation, the quantum
fluctuations with comoving wavelengths comparable to the horizon size immediately
exit the horizon and freeze at the superhorizon scale. These fluctuations re-enter the
Hubble horizon at late time (for example, the fluctuation with a comoving wavelength
equal to (agHp)™! enters the horizon today) and seed the CMB anisotropy and LSS
formation. Since the statistical properties of such perturbations can be observed by
current and future experiments (e.g. [23]), contrasting the theoretical predictions of
these fluctuations to observation can constrain inflation models.

Based on the brief discussion above, inflation solves the problems in the conven-
tional Hot Big Bang theory elegantly and explains the origin of the perturbations for

late-time structure formation.

2.2 Single-Field Inflation

To realize inflation, the generation of negative pressure is necessary, as mentioned in
the previous section. The simplest way to do that is by introducing a positive cosmo-
logical constant A > 0 which creates an exact de Sitter spacetime where the Universe
grows exponentially forever. However, such expansion does not have a graceful exit
to connect with a subsequent Big Bang, which cannot lead to the existence of the
observed Universe. Another choice is to introduce one or more scalar fields called infla-
tons which drive inflation for a finite duration and smoothly connect with the Hot Big
Bang after the end of inflation. The simplest class of inflation models constructed in
this way is called single-field slow-roll inflation”, on which this section focuses. These
models make use of one scalar field (inflaton) whose potential energy dominates over

the kinetic one during inflation so that the inflaton slowly rolls down its potential,

"There are other classes of models, for instance, k-inflation [56] which is also single-field but
not slow-roll. The most general framework of single-field inflation is called generalized G-inflation
[57, 58] which includes all single-field inflationary models with second-order equations of motion
in a covariant form. The Generalized Galileon theory is also found to be equivalent to Horndeski
theory [59].
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which plays a role similar to a cosmological constant to drive inflation. The specific
shape of the potential largely determines the properties (e.g. scale-dependence) of the
quantum fluctuations which are testable by observation®. Among all of them, there
are two models that are exceptionally favored by observation, namely the Starobinsky
model [3,24] and the Higgs inflation [25-27], which will be introduced later.

2.2.1 Conformal Transformation

Before considering the dynamics in concrete inflation models, it is necessary to discuss
the “frame issue” in scalar-tensor theories because the inflation models discussed in
this thesis belong to this class of gravitational theories. There are two types of frames
in scalar-tensor theories, the Jordan frame (JF) and the Einstein frame (EF). In the
former, the Ricci scalar appears not only in the Einstein-Hilbert (E-H) term but also
in some direct coupling terms with the scalar fields. On the contrary, if the Ricci
scalar only appears in the E-H term without being multiplied by any function of the
scalar fields, it is in EF. There are advantages to consider systems in EF because it
is more intuitive to see the dynamics of the scalar fields simply by their potentials in
such a frame, and the Einstein field equations take a simpler form than that in JF,
which simplifies the calculation. Therefore, it would be convenient to study general
scalar-tensor theories if there is equivalence or any relation between the two frames.

In Refs. [62,63], the equivalence between these two frames is beautifully presented.
Consider a general scalar-tensor theory with only one scalar field ¢ given as (this is

sufficient for the purpose of this thesis)

s1= [ dav=g [F (R5,0) ~ 5V30V50) (2.13)

where F'(Ry, ¢) is an arbitrary function of ¢ and the Ricci scalar Rj, and D is the
dimension of spacetime. Generally speaking, this action is in JF because the arbitrary
function F'(Rj,¢) can contain direct coupling between R; and ¢. Therefore, the
subscript “J” here is to denote the quantities in JF and Vj, is the covariant derivative

with respect to gj,,. Through a conformal transformation (see Appendix A and
Ref. [64] for details)

@ gy (2) | (2.14)

8In a-attractor models [60,61], the original inflaton potential can be arbitrary because its non-
trivial kinetic term plays a crucial role in generating the observationally favored slow-roll inflation.

gEuu<m) = 620.1
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where w(z) is set to be

OF
OR;

1 2
w= In , (2.15)

to make the terms of higher order derivatives cancel each other in the Einstein equa-
tions, it is possible to transform Eq. (2.13) to EF. As can be seen in Eq. (2.15), the
definition of w contains OF /OR; which may contain new degrees of freedom other
than the two tensor modes in GR and the scalar field ¢, depending on the form of
F(Ry, ).

In the case that F(Ry, ¢) = f(¢)R; — Us(¢) where f(¢) and Uy(¢) are arbitrary
functions of ¢, it is obvious that w is only a function of ¢ so it is not a new degree
of freedom, which is consistent with the observation in the original JF that there is

no higher order derivative to induce any new degrees of freedom. Redefining a new

scalar field ¢ as

O _ [y [(D=2)f +2(D - 1)(df/d¢>)2} "
e /d¢[ SR | (2.16)
the action (2.13) is rewritten as
M? .- ~

Sk = (sign) /de\/—gE [TPIRE - %VE;@V%(ﬁ — UE(¢)} : (2.17)

where
U () = (siam) [Mi !f(cb)!] ), (218)
pl

and (sign) = f/|f|. It is assumed that the integral in Eq. (2.16) is real and (sign) is
positive to ensure that the kinetic term has the right sign. As can be seen here, the-
ories with F'(Rj, ¢) = f(¢)R; — U;s(¢) still describes a system of GR plus a canonical
scalar field with the original potential rescaled.

In the case that OF /ORy is still a non-trivial function of Ry, the theory possesses
a new scalar degree of freedom which is simply given as w (or a function of w). This
is also consistent with the observation of JF because F(Ry, ¢) contains higher-order
derivatives which should lead to new degrees of freedom when rewriting the theory
back to one with second-order derivatives only. Defining a new scalar field to represent

the new degree of freedom in w

v/ My =+ (D-1)(D-2)w, (2.19)
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the action (2.13) is rewritten as an E-H term plus two scalar fields

Sg= (sign)/de«/—gE 5

MleE_*VEuQSV o (51gn) mwv Mpv »—Ug(¢, z/;)] (2.20)

where

Us(6.) = (sisn) (Mi aF) meoge -Few] . e

| |OR,

and (sign) = (0F/0R;)/|0F /OR;| which is assumed to be positive. Here, Ry should
be written in terms of ¢ and ¥ by Eq. (2.15). As a result, such a system describes
GR plus two scalar fields one of which is non-canonical. The non-canonical kinetic
term of ¢ means the field space spanned by ¢ and v is non-trivial and may play an
important role during (multi-field) inflation if its curvature is large (see e.g. Ref. [65]).

To summarize, the scalar-tensor theory given in Eq. (2.13) can always be written
in terms of the E-H system with one or two scalar fields by the conformal transforma-
tion (2.14), which is extremely useful when analyzing such a system, as will be seen
in the rest of this thesis.

2.2.2 Classical Background

Consider a general single-field slow-roll inflation model in four-dimensional spacetime

whose action is written as

/d%\/_[ le——é) 1,008 — V()] (2.22)

where R is Ricci scalar and ¢ is the scalar field that acts as inflaton with a potential
V(¢). Since conformal transformation can always transform the JF action into EF [62,
63] as shown previously, it is sufficient to study the system in EF from the beginning.
In this model, the energy density of the Universe is dominated by inflaton ¢ which
drives inflation. Focusing on a flat FLRW metric (corresponds to K = 0 in Eq. (2.1))
and a homogeneous ¢ = ¢(t), the Friedmann equation and equation of motion for ¢

are then
SMAH? =472+ V (¢) , (2.23)
$+3H¢+V =0, (2.24)

where the comma in subscript denotes partial derivatives, e.g. V. = 0V /0¢. The

inflaton field acts as a perfect fluid whose equation of state parameter is given by

we = L2 = G*[2-V(e) (2.25)

Po 9?2+ V(9)
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According to the “definition” of inflation a > 0, it is easy to derive that

a . 1 .
0<i—H4H= (V— 2), 2.26

a + 3M2 ¢ (2.26)
which leads to wy, < —1/3 from Eq. (2.25). Therefore, to realize inflation, the poten-
tial energy of ¢ must dominate over the kinetic one, which is the reason why the name
“slow-roll inflation” is given to this class of models. It is convenient to introduce the

so-called slow-roll parameter
e, =—H/H?, (2.27)

to quantify the inflation dynamics. Since H is basically the kinetic energy of ¢ while
H? is dominated by the potential, €; is describing the ratio between them. Therefore,
this model requires ¢; < 1 all the time during inflation and ¢; = 1 characterizes
the end of inflation. In this sense, Eq. (2.25) gives wy ~ —1 during inflation, which
corresponds to (almost) exponential expansion, i.e. a(t) o< t1' with H ~ constant.
Another important point is that inflation should last long enough to explain the
size of the homogeneous and isotropic Universe observed today, which leads to the
introduction of the second slow-roll parameter ¢, to describe the growth rate of €.
There are several ways to define €5 among which the following is adopted in this thesis
& H ¢
2He;,  2HH  Ho

€ =€ — (2.28)

where Eqgs. (2.23) and (2.24) are used in the last equality which holds for canonical
scalar fields. Long duration of inflation means small €5 < 1 so that €; can remain
small for a long time. In Eq. (2.24), small e, indicates that ¢ can be neglected and
the friction term dominates the evolution of ¢. In other words, the Hubble friction
always prevents ¢ from accelerating so that V' (¢) can always be larger than the kinetic

energy of ¢. According to this argument, Eqgs. (2.23) and (2.24) are approximated by

3M2H? ~V = const. , (2.29)
3Hp+Vy~0, (2.30)

during inflation, which results in expressing the slow-roll parameters in terms of V'(¢)

and its derivatives

M2 V 2
€1~ TPI (7‘1’) = ey, (2.31)
2 Vieo _
€~ —6 + My—— = —e1 +eya . (2.32)

V
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Therefore, for single-field slow-roll inflation with a canonical kinetic term, the infla-
tionary dynamics is completely determined by the potential shape of the inflaton.
With a given concrete scalar potential, it is possible to examine the conditions for
inflation to occur, such as €7 < 1 and €y < 1, and calculate the duration of in-
flation. Using subscripts “ini” and “end” to denote the quantities evaluated at the
beginning and the end of inflation, the condition €y (tenq) = 1 determines the inflaton
field value at the last moment of inflation Geng(tend). After fixing ¢enq, it is easy to

calculate the duration of inflation which is usually expressed in terms of the number
of e-folds

a'(tend)
atini)

Njnf =In (233)

where t.,q represents the initial moment of inflation as explained. As a result, the

e-fold number is calculated as a function of the initial field value of inflaton

tend t tend @end H Qini d
Nont(m) = — / din Wend) _ [ gy / oo [T (930
tini a(t) tini Gini (b Pend Mpl\/ 2€V1

Usually, the number of e-folds of inflation is required to be around 50 ~ 60, which

constrains the initial field values in inflation models.

So far, the quantitative discussion has focused on the classical homogeneous back-
ground evolution of the single-field slow-roll inflation models. Using a homogeneous
scalar field ¢ whose potential energy dominates the Universe during inflation playing
a role similar to a cosmological constant, it is possible to realize a long enough quasi
de Sitter phase that solves three critical issues problems in the standard Hot Big
Bang theory as desired. Next, a brief review of the cosmological perturbation theory
is given, showing how to calculate the power spectrum of the quantum fluctuations
generated during inflation which is directly related to the observed CMB anisotropy

and LSS formation.

2.2.3 Quantum Fluctuation

With homogeneous classical background fields, only an unperturbed Universe is gen-
erated after inflation, which is inconsistent with current observation. In order to seed
the observed CMB anisotropy and LSS formation, quantum fluctuations generated
during inflation must be taken into account to provide the initial conditions for the
subsequent evolution of the perturbed Universe. These quantum fluctuations are usu-

ally called primordial perturbations, which will be treated within the framework of
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cosmological perturbation theory in the following”. The primordial perturbations are
assumed to be small and superimposed upon a homogeneous and isotropic background
(or, more specifically, a flat FLRW metric), which allows order-by-order calculation in
the perturbative expansion. In this thesis, only linear perturbations are considered'’.

Quantum fluctuations inevitably exist in the metric and the inflaton field(s). Ac-
cording to the helicities of different components, they can be decomposed into three
types, scalar-, vector-, and tensor-perturbations. The scalar and tensor perturbations
have an important property that allows the comparison between theoretical predic-
tions from inflation and observables, i.e. such perturbations behaving classically
and remaining frozen at the superhorizon scale. During inflation, perturbations with
physical wavelengths around the horizon size initially are stretched outside the Hubble
radius soon after their generation, which leads to the fact that the quantum nature
(or non-commutativity) of these primordial perturbations becomes negligible [72, 73]
and their amplitudes become constant as soon as they are created. When these modes
gradually re-enter the horizon as the Hubble radius grows after inflation, they leave
imprints on CMB and LSS that can be observed by current and future observation,
which allows us to learn about the past. On the other hand, vector modes are always
diluted by Hubble expansion, so they are naturally considered subdominant and neg-
ligible. Therefore, in the following, the discussion focuses on the scalar and tensor
perturbations which are responsible for the observed density perturbations and future

experimental target, primordial gravitational waves, respectively.

2.2.3.1 Decomposition

As mentioned previously, the quantum fluctuations in the metric and matter can be
decomposed into scalar-, vector-, and tensor-type, according to their behavior under
coordinate transformations. At the linear order, they evolve independently. This
important result can be proved by rewriting the covariant linear differential equation
of second-order for the perturbations into decoupled equations, each of which contains
only one type of perturbations [66]''. A brief discussion of this proof is presented here.

Consider an (n+1)-dimensional FLRW spacetime generalized from Eq. (2.1), with
7i; as the n-dimensional spatial metric which raises and lowers the spatial indices in

this discussion. Denote the covariant derivative with respect to v;; as @i, and ; = V.

9See e.g. Ref. [66] for an excellent review.

0Higher order perturbations such as primordial non-Gaussianity are also intensively studied in
e.g. Refs. [67-T1].

See Ref. [74] for another approach by making use of the symmetry of the flat FLRW background.
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General scalar, vector, and tensor perturbations are denoted, respectively, as,

a |

=0+, 0 =0,

7 iJ 7

1 = 1 . . 4
_ IT Y S S =~ TTi . TTli Vi
where A = 4%V,;V; and ¢ = ¢ . From the definition of the Riemann tensor
(@z@j — 6]@z> Vi — Rijkmvm s (236)

it can be shown that all the scalar quantities (up to second-order differentiation)

appear in the following forms

n—1

oS b=A ¢, Az, (Cij _ _,Yijg) — (A+nK) A, (2.37)
n g
lij

n

where only the original scalar parts in a°, b;, and ¢;; show up. Similarly, the vector
quantities only appear in the following forms

al | b, Ab;=AbY + [Abs +(n— 1)Kbs} L&, ViAE,

K3

(cij - %Wa) - [A +(n— 1)K} bVi 4+ "T_lﬁ" (A + nK> S (2.38)

where, due to the transverse property of b, ¢;’, and ¢;', the scalar parts of these
quantities only consist of the scalar modes appear in Egs. (2.35), and the vector parts
only consist of vector modes. As for the tensor quantities, the only combinations are

as follows

- 1 . - - .
%jas ) (Vz’vj - —%’jA) a® ) ’YijAaS ) %jvkbk = ’Yz'ijS )

n
_ 1 -
2bty) = gy +2 (VNJ- - mwA) b + =y Ab
. o 1 )
Cij 5 VijC ’VzJAC, Clij = V,VJ — E’}/”A c+ Q/Z]Ac’
ok 2 5 (& 2n—1) [/«
ij

+ %%jA [(n—1)Kc®+¢] ,

2(n—2) « < 2 .
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where the transverse and traceless properties of C;l;-T as well as the transverse properties
of the vector modes ensure that the tensor, vector, and scalar parts are also well
separated as in the previously situations. As a result, the equations of motion for
different types of perturbations are decoupled with each other at linear level, which

greatly simplifies the study of first-order perturbation.

2.2.3.2 Gauge Invariance

In GR, there are different ways to foliate the spacetime allowed by the diffeomor-
phism invariance, which corresponds to slicing the spacetime by a family of spacelike
hypersurfaces (3;)],cp threaded by a smooth regular scale field ¢. This scalar field is
usually regarded as the time coordinate, and spatial coordinates can also be attached
to the spacelike hypersurfaces of constant time'2. A choice of foliation is usually called
a choice of gauge, and the diffeomorphism invariance is also correspondingly called
gauge invariance. The gauge choice is important for studying cosmological perturba-
tions because, generally speaking, the definition of perturbations is gauge-dependent.
However, the physical quantities or observables should not depend on the choice of
gauge. Therefore, before the calculation of power spectra of cosmological perturba-
tions, it is necessary to remove the confusion caused by gauge choices by finding out
the gauge-invariant physical quantities [80,81].

The metric perturbations (neglecting the vector modes) on a flat FLRW metric

are usually written in the following form
ds® =—(142®)dt*+2a(t) Bida'dt +a>(t) [(1—20)6;;+ 2E5, 4+ b, |da'da? | (2.40)

where 07 ES; = 0 h" = 07FR]} = 0, and the relevant perturbations in inflaton are

p(t, X) = ﬁ(t) + (Sp(t, X) 5 p(t, X) = ﬁ(t) + 5p(t, X) ) ¢<t7 X) = ¢(t) + 5¢(t> X) ) (2'41)

where the over-line () denotes the homogeneous background. For simplicity, the
notation ( ); = 0;( ) is adopted for the spatial partial derivatives. According to the
gauge transformation rules shown in Appendix B, it is straightforward to construct
as many gauge-invariant quantities as possible among which, however, only a few
unique combinations are physically meaningful. In the context of inflation, one of

the most essential quantities is the gauge-invariant curvature perturbation that seeds

12This picture can be seen more clearly in ADM formalism [75] where all the perturbations on the
metric are encoded in the lapse of time, shift on the spacelike hypersurfaces, and the spatial metric.
More details about ADM can be found in textbooks and reviews, e.g. [76-79].
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the CMB anisotropy and LSS formation. Specifically, the definition of the gauge-
invariant variable which coincides with the curvature perturbation on the comoving

slicing (6¢ = 0) is given as
R=w+ L5, (2.42)
¢

This variable will be used later to calculate the scalar power spectrum and the scalar
spectral index. A closely related quantity is the curvature perturbation defined on

uniform-density slicing (dp = 0) [81]
H
—(=V+ =dp. (2.43)
p

At superhorizon scale, these two curvature perturbations on different slicings coincide
R ~ —( [81]. One crucial property of R (or () is its conservation after horizon exit
under the circumstances where there are no external sources, for instance, during
single-field inflation, which ensures that the subhorizon physics does not affect the
modes outside the horizon until their re-entry. This is the reason why the observed
power spectrum of the curvature perturbation generated during inflation can be com-
puted simply at the horizon exit regardless of its superhorizon evolution. In the
case of multi-field inflation where this is not only curvature perturbation but isocur-
vature ones, possible mixing among them can spoil the conservation of curvature
perturbation at superhorizon scale, which will be discussed shortly. Another use-
ful gauge-invariant quantity is the so-called Mukhanov-Sasaki variable [82,83] which

represents the perturbation of inflaton field on a spatially flat slicing (¥ = ES = 0)

Q=00+ %\If : (2.44)
These gauge-invariant quantities are, by definition, unchanged under the gauge trans-
formation. In particular, R and ( represent the physical or observable curvature
perturbation in corresponding gauges that can be chosen for convenience accord-
ing to different situations'®. Choosing @, on the other hand, can greatly simplify
the equation of motion for first-order scalar perturbations, leading to the well-known
Mukhanov-Sasaki equation [82,83]. Transforming from one to another is just through
some simple gauge transformation (see Appendix B).
In a multi-component system, there is not only adiabatic (or curvature) pertur-

bation mentioned above but also entropy (or isocurvature) perturbations. Intuitively

IBThere are generally no preferred gauges, but some of them do have their own advantages on the
“g0ood” behavior of the perturbations. See e.g. Refs. [66,74,79,84] for details of different gauges.
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speaking, the former describes how each component fluctuates according to the total
energy density fluctuation with their relative ratios unchanged while the latter de-
scribe the relative fluctuations among all the components without changing the total
energy density. More specifically, assuming that there are two components in the
fluid with total energy density piot, the adiabatic perturbation is given by the part
where the pressure is a unique function of the (smoothed) total energy density at a

relevant scale such that (see e.g. Ref. [85])

_ ptot

OPad = =—0p , (2.45)

Ptot

while the isocurvature perturbation is defined as the deviation from the adiabatic one
OPen = 0P — OPaq (2.46)

or alternatively a dimensionless gauge-invariant entropy perturbation can be defined
as [806]

S=H (%p - %) . (2.47)

There are more than one scalar modes in multi-field inflation models, among which
only one linear combination is the curvature perturbation while others are of isocur-
vature type. In this case, the curvature perturbation corresponds to the perturbations
along the classical inflaton trajectory, while the isocurvature perturbations represent
the perturbations orthogonal to it. If the orthogonal direction possesses a mass much
heavier than the Hubble parameter, the heavy isocurvature mode is hardly excited
and can be integrated out. Generally speaking, the isocurvature modes can serve as
a source term to the adiabatic one through the turning rate of the inflaton, so if the
inflaton trajectory is curved, the curvature perturbation is no longer conserved at
superhorizon scale [86]. Usually, the isocurvature mode cannot survive until today
because the thermalization process after inflation washes out such type of perturba-
tions'“.In the cases considered in this thesis, isocurvature modes are always negligible,

so further discussion is omitted.

2.2.3.3 Power Spectrum

One of the most important observable in cosmology is the power spectrum of the

curvature perturbation A% about which most data come from CMB anisotropy and

14Gee discussion in e.g. Refs. [87-90].
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LSS. Currently, the observation determines its amplitude to be ~ O(107%) [23]. In
order to confront the theory with observation, it is essential to calculate A% in given
inflation models, through which the model parameters are constrained.

To solve the dynamics for the first-order perturbation, it is necessary to expand the
action up to the second order. On the comoving slicing, it is known from Eq. (2.42)
that R = ¥ holds, and so the action in second order of curvature perturbation is
given as'®

1 2"
S = 5 /d%dn |:(U/)2 — (v)? + ;v2 : (2.48)
where v = zR, z = a¢/H, and (') denotes the derivative with respect to the

conformal time 7 [82,83]. Quantizing the scalar field v with proper normalization,

the equation of motion for its mode function is easily derived as
v+ (K* = 2" /2)v, =0, (2.49)

which is known as the Mukhanov-Sasaki equation [82,83]. As can be seen, the Hubble
expansion induces a time-dependent effective mass —z”/z for the scalar field which
encodes the interaction between background spacetime and perturbation.

In single-field slow-roll inflation models which are of interest here, the Universe is
in a quasi-de Sitter phase during inflation so the effective mass can be expressed in

terms of the slow-roll parameters (up to second order) [91] as
2"z =a’H*(2+ 21 — 36y + €5 — €163) + a*Héy — a’Héy | (2.50)
with which Eq. (2.49) can be solved to yield

T .
Vg = §6z<u+1/2>w/2\/_—nﬂy>(_km , (2.51)

Here, H, 51)@) is the Hankel function of the first kind, and

1+61—62 1
= —+ . 2.52
1—61 +2 ( )

14

In de Sitter limit where ¢; = €3 = 0 and H = const., Eq. (2.51) coincides with the

mode function for the Bunch-Davies vacuum [92]

- 253
Vi = 1——). 2.93
V2k kn

5Here, the sound speed of the perturbation is ¢2 = 1. Later in the discussion of multi-field

inflation, more discussion on the non-trivial sound speed is presented.
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Soon after generation, perturbations exit the horizon and freeze until they re-enter
the Hubble horizon after inflation. At superhorizon scale |kn| — 0, Eq. (2.51) behaves

as

lim vy, — sitv—1/2m/2 L) w32

|kn|—0 '(3/2) 2k

which is of interest in cosmology. The dimensionless power spectrum of curvature
perturbation A% (k) is defined as

(—kn)V/* . (2.54)

272

(RiRyp) = (27)7 0% (k + p) <5

A% (k) , (2.55)

which should be evaluated at the horizon crossing moment, a,H, = k. As a result,

k H? H? 1 v
AZ (k)= —— ] ~_ ~_- (2,56
(k) Am? M€, [Vl N 8m2 M1 R 24m2 M €y N (2.56)
from which the scalar spectral index can be obtained [93]
dln A%
ns— 1= T —4er + 26|, i (2.57)

which is slow-roll suppressed. In other words, single-field slow-roll inflation results in
a nearly scale-invariant scalar spectrum.

As for the primordial tensor mode, the procedure is similar [55,94-97]. Specifi-
cally, the equation of motion for the tensor mode function is simply, in Eq. (2.49),

substituting z with a, and v, with vy = ahj, which is given by

V2 [ &Pk,
hTT I ik-x r k hr
1] (77,X) Mpl (27’(’)36 T;X Ez]( ) k(n)7
hi(n) =h(n)ag, + hi.(n)a”l, | (2.58)

where €;; with r = 4+, X are the symmetric unit polarization vectors satistying €;; =

0" k€7, = 0 and normalized as 69 0%, (ejl)* = 20". Consequently, the dimensionless

tensor power spectrum is calculated as

d 5 8 K, H \?
Nk = (D] = I S(3mr) | 25)
dlnk ( J anHoeh, Mgl 272 R 2w My —
with which the tensor spectral tilt is obtained
dln A2
= ~ —2 2.
Ty dln k €1, ( 60)
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which is also slow-roll suppressed. Another useful quantity is the tensor-to-scalar
ratio r
A (k)

r(k) = A2 (k)

— 16¢, . (2.61)

As can be seen, the single-field slow-roll inflation predicts a suppressed r, which
indicates that the primordial tensor perturbation is much smaller than the scalar.

From Eqgs. (2.60) and (2.61), a consistency relation of single-field inflation is obtained

which can be one of the ways to falsify single-field slow-roll class of models if a
deviation from it is observed in the future.

The amplitude of scalar power spectrum, the scalar spectral index and the tensor-
to-scalar ratio are three very important observables to constrain inflation models [23].

The current observed value of scalar power spectrum amplitude at pivot scale k, =
0.05Mpc ™ is [23]

A% ~21x1077, (2.63)

the spectral tilt n, at pivot scale k, = 0.05Mpc ™ is [23]
ns = 0.9649 + 0.0042 at 68% CL , (2.64)
while only a upper bound is put on 7 as no tensor mode has ever been detected yet [23]

70.002 5 0.056 at 95% CL s (265)

where the subscript means that it is measured at the pivot scale k, = 0.002Mpc .

Focusing on a larger scale for r is because primordial gravitational waves basically
has no contribution to CMB anisotropy at £ > 100 where ¢ is the multipole moment.
An important point is that these values depend on the pivot scale considered which
is determined by the duration of inflation and the thermal history of the Universe
after inflation. The period after BBN has already been well probed while the physics
before that is still of large ambiguity. Therefore, knowing the inflation period and
the post-inflationary reheating process in given models is essential to improve the

constraints from observation.
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2.2.4 Typical Examples

Single-field slow-roll inflation is simple but powerful because different primordial per-
turbation spectra can be achieved simply by altering the shape of the inflaton po-
tential, as shown previously. Given that the desired values are shown in Egs. (2.63)-
(2.65), models satisfying these constraints can be constructed by manipulating the
potential shape almost arbitrarily, which, however, is too ambiguous and lacks moti-
vation. Instead, inflationary models with fewer parameters and natural origins from
particle physics or quantum gravity are much more attractive. Among all the single-
field inflation models, two stay inside the best-fit regime of the observationally allowed
region, the Starobinsky model with only one model parameter and the Higgs inflation
constructed from the only known scalar field in SM. The review of the inflationary
dynamics in these two models is presented in the following, which will help to under-

stand this thesis’s main topic, the mixed Higgs-R? inflation model.

2.2.4.1 Starobinsky Model

The Starobinsky model (or R?-inflation) was originally proposed in Ref. [3] when
considering the one-loop quantum correction to the E-H action. As will be shown
below, however, to fit the observational data, the coefficient in front of the “correction”
term R? has to be extremely large, which makes the original point of view break
down. So far, there is no satisfying explanation of the origin of the R? term, but the
Starobinsky model is still one of the most attractive inflation models because of its
simpleness and best-fit observational predictions'®.

The action of R2-inflation consists of only two geometric terms in JF without

introducing any additional scalar fields

2 2
Sy = / d*zv/=g; []\ZPIRJ + 1%‘;23? : (2.66)
where M is a new mass scale and the only one parameter in this model. As is known
from Sec. 2.2.1, the quadratic term in Eq. (2.66) induces a new scalar degree of
freedom in EF because of the higher derivatives. This scalar field plays the role of
inflaton and is dubbed “scalaron” in the literature. Consequently, M is usually called
the scalaron mass. The inflation dynamics in this model is clear and simple, which
will be shown here in both JF and EF for completeness.
e Jordan frame Here, all the quantities are defined in JF so the subscripts “J”

will be dropped for convenience. Assuming the background spacetime to be the flat

16See e.g. Ref. [98] for an excellent review for f(R) theory. See also Ref. [99].

26



FLRW metric, the Ricci scalar can be expressed in terms of Hubble parameter and

its derivatives
R=12H? + 6H , (2.67)
and the Einstein equations are given by

OHH — H?> + 6H?H + M?H* =0, (2.68)
R+3HR+ M*R=0, (2.69)

where R is treated as an independent scalar degree of freedom (scalaron) so that
the equations of motion for both R and H are kept to be of second order in time
derivatives. During inflation, the slow-roll approximations ¢; < 1 and €5 < 1 are
valid (which indicates R ~ 12H? > 0), so the first two terms in Eq. (2.68) and the
first term in Eq. (2.69) are negligible. The former leads to a simple result

H~-M?/6, (2.70)
which gives the solution of H as
M2
H ZHini — 7@ - tini) y (271)

where the Hubble parameter takes the initial value H;,; > M at t = t;,;, while the

latter can be solved with the help of the solution above and gives
R ~12H?* — M* . (2.72)

For duration of inflation Nj,y = 60, the initial Hubble parameter is H;,; ~ 2V/5M ,
while the end of inflation is set by ¢; = 1 which gives Hepng ~ M/ V6. The scalaron
mass can be fixed to be M = M, ~ 107" M, by using Eqgs. (2.56) and the observed
amplitude of scalar power spectrum. This value makes the R? term coefficient unusu-
ally large, which still remains unexplained. Hereafter, the specific value of M, will be
adopted for calculation [24,38,41, 100]

2472 A2 = ( 54
M. = NiifRMpl ~1.3x107° (Nmf> M, , (2.73)

where A% is given in Eq. (2.63).

e Einstein frame Here, all the quantities without subscript “J” are defined in EF.

Using the technique in Sec. 2.2.1, the scalaron field is defined as

2 (2 RJ
=4/-—"—= 1 2.74
ov=37m |14 ] (2.74)
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which enters the conformal transformation as follows

G = € - (2.75)
As a result, the action is rewritten in EF as

2

U(p) :EM;MZ (1) .

M2
S :/d4x\/ —9 [T"IR — lg“”augoayso —U(p)|
(2.76)

This potential is asymptotically flat for large ¢ regime where inflation occurs. During
inflation, ap > 1 so the inflaton potential is nearly constant Us,s ~ 3M§1M 2/4. With
slow-roll approximation, the Hubble parameter is determined as H;,; ~ M /2. Given
the potential in Eq. (2.76), the slow-roll parameters defined in Egs. (2.31) and (2.32)
can be easily calculated, which fixes the field value of scalaron at the end of inflation
©Yena = 0.94M,,) and the initial value @i ~ 5.45M, for Ny o~ 3e*¥m /4 = 60. The

scalar spectral index and tensor-to-scalar ratio are also calculated as

inf »

ng — 1o~ —6eyy + 269 ~ —2/Nige , 7~ 16ey1 ~ 12/ N2 (2.77)
which, for Nj,s = 60, are
ns ~ 0.967 , r ~ 0.003 . (2.78)

These predictions are automatically located in the best-fit region of the current ex-
perimental results [23] with only one model parameter M fixed by A%, which is one

of the most important reasons to consider the Starobinsky model.

2.2.4.2 Higgs Inflation

To construct an inflation model usually requires the introduction of a new scalar field
from some extension of SM, such as GUT and supersymmetry (SUSY), to serve as
the inflaton. However, there is an interesting possibility that the inflaton field comes
from SM, specifically, the Higgs field that has already been discovered at LHC. In
this case, no additional scalar fields from new physics are needed to realize inflation
in the very early Universe.

To achieve this, a large non-minimal coupling between Higgs and gravity is re-
quired to render the Higgs potential to be flat enough [25-27]. The action of the
Higgs inflation is written as

M2
Sy = / d*z/—g; [(7"1 +& I’HSM\2) Ry — g™ 9, Hi 0, Han — M Hsul*| 5 (2.79)
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where Hgy is the SM Higgs complex doublet, A is the Higgs self-coupling, £ > 0 is the
non-minimal coupling between Higgs and Ricci scalar!”. The mass and electroweak
(EW) vacuum expectation value (vev) of Higgs are neglected because the inflation
scale is much higher than EW scale. When studying inflation and reheating, it is
sufficient to work in the unitary gauge where Hgy = b/ V2 with the real scalar field
h as the physical degree of freedom. As a result, Eq. (2.79) is simplified as

y Mg €, 1w Aa
Sy = /d r/—g; [(T - ih ) Ry — §gj‘ d,ho,h — Zh . (2.80)
It will be shown in the following that the inflationary dynamics in this model with
&> 1 is the same as the Starobinsky model.

e Jordan frame Here, all the quantities are defined in JF so the subscripts “J”
will be dropped for convenience. Since the Ricci scalar R contains second-order time
derivatives of the metric g,,, the non-minimal coupling in Eq. (2.80) induces an extra
kinetic term for the Higgs field which is proportional to £ > 1. Therefore, the original
kinetic term for Higgs is negligible compared with £h2R/2, which yields a constraint

equation from the equation of motion for Higgs as [101]
M2 =ER . (2.81)

Inserting this constraint back to Eq. (2.80) without the canonical kinetic term for
Higgs, the resulting action is nothing but the Starobinsky model except for the
scalaron mass now replaced by the combination of £ and A in the following form
A

M? (2.82)
Knowing that M = M, for observationally favored inflation, the constraint on the

model parameters in the Higgs inflation is
E/VA~4x10* . (2.83)

If the self-coupling is A ~ 1072 (non-critical)'®, then & ~ O(10%). A specific value &,
will be adopted in this thesis [41]

N2, A N2 [ Ning
=)o~ 44 x10° | = 2.84
* =\ r2Ag <10 (0.01) (54) ’ (284)

17Conformal coupling corresponds to & = —1/6. See Appendix A for more detail.

18Here, criticality means that the Higgs potential becomes flat around Planck scale, i.e. A — 0,
which is used to construct the critical Higgs inflation [102-104]. In this thesis, only non-critical
Higgs inflation is considered.
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where A% is the dimensionless scalar power spectrum in Eq. (2.63).

e Einstein frame Here, omit the subscripts “E” for the quantities defined in EF.
Again, making use of the technique in Sec. 2.2.1, the non-minimal coupling can be
moved to the potential and non-canonical kinetic term by the conformal transfor-
mation, leaving the Ricci scalar only exists in the E-H term. The corresponding EF

action is written as

2o = [,
Guv = Q 9w = (1 + Mg]) 9iuw (285>
dp Q%+ 6&2h2 /MY
= \/ i , (2.86)
which results in an EF action as
= [ [ B L vie)] .
_ A 4

During inflation h > My //€, Eq. (2.86) gives the relation h ~ exp [¢/ (V6My)]
such that the potential in Eq. (2.87) becomes the same as that in Eq. (2.76) in large
¢ regime with M replaced by \/)\_/3Mp1 /€ which is consistent with Egs. (2.82).

In conclusion, the inflationary dynamics in the Higgs inflation is equivalent to that
in the Starobinsky model. One way to break the degeneracy of these two models is to
consider the reheating process which determines the pivot scale and, as a result, the
scalar spectral index and tensor-to-scalar ratio. As will be shown later, the reheating
processes after inflation are very different in these two models, which leads to different
reheating temperatures and Nyys.

Although the Higgs inflation is a very attractive model, several important issues
need to be taken care of, mostly caused by the large non-minimal coupling & ~ 10*v/\.
Such a large non-minimal coupling is shown to reduce the tree-level cutoff scale of the
theory in the vacuum to a scale much lower than the inflation scale Agiges ~ My /€ <
M,1//€ [105-108] which casts doubts on the inflationary prediction in this model.
This issue was later resolved by recognizing the background-dependent cutoff scale
that is higher than the dynamical scale throughout the whole inflationary period
in this model [109, 110]'". However, due to the nonrenormalizability of GR, there

is still considerable ambiguity when reconstructing the Higgs potential at inflation

19 Another point of view is discussed in Ref. [101].
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scale from the low-energy observables [111,112], which requires a sensible UV theory
for comprehensive understanding. A more severe issue appears during preheating
in the Higgs inflation. It has been shown that the effective mass of the Nambu-
Goldstone mode, which constitutes the longitudinal mode of gauge bosons, exhibits
spiky behavior [34,100, 113], which is absent in the traditional analysis of reheating
process [14, 15,21, 22] in the Higgs inflation model [31-33]. This large spike can
induce violent particle production [34,35] which can transfer all the inflaton energy
into gauge fields within one inflaton oscillation. However, the amplitude of the spike
is shown to be even larger than the cutoff scale of the theory during preheating,
meaning that the theory enters the strongly-coupled regime, so the usual treatment
is not reliable any more®’. To understand whether the production of gauge bosons
occurs and the subsequent evolution during reheating, an appropriate UV-extension
for the Higgs inflation is required, which is one of the main topics in this thesis and
will be discussed in more detail later.

Higgs instability is also intensively discussed by many authors. If the SM renor-
malization group running is valid up to the inflation scale (or Planck scale), the Higgs
self-coupling A might run into a negative value if the top quark mass m; is too large.
Once A\ becomes negative, the Higgs potential is unbounded from below so Higgs be-
comes unstable during inflation. As a result, the analysis of inflation dynamics shown
above is invalid. Nevertheless, there are still many attempts to save the Higgs infla-
tion. For example, it is shown in Ref. [112] that the radiative correction to the Higgs
effective potential can rescue the Higgs inflation with large non-minimal coupling.
The EW vacuum becomes metastable due to the presence of a new vacuum, but the
reheating temperature is believed to be high in this model so that the symmetry will
be restored temporarily and the Higgs field will end up in the EW vev. However,

ambiguity is still inevitable because of the coupling between SM and gravity.

2.3 Multi-Field Inflation

Despite the simpleness and power of the single-field slow-roll inflation, single-field
models seem not to be the final answer to the realistic Universe. For example, one of
the most promising single-field models considered in the previous section, the Higgs
inflation, suffers from the strong coupling preheating problem, which will be discussed
later. This problem is unlikely to be solved unless the UV completion (or extension)
of this model is found. On the other hand, the candidates of UV physics beyond

20Gee Ref. [114] for the study of this phenomenon with higher dimensional operators.
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SM generally contain a number of scalar degrees of freedom that could be relevant to
inflation dynamics, such as superpartners in SUSY and moduli fields in string theory
(see e.g. Refs. [115,116]). Therefore, the generalization to a multi-field approach
seems to be more realistic and might improve the UV properties of the single-field
models.

By definition, multi-field inflation models contain more than one degrees of free-
dom responsible for the inflation dynamics, such as Brans-Dicke inflation [117], quasi-
single field inflation [118], hybrid inflation [119], and multiple inflation [87,120], etc.
Usually, in multi-field cases, both curvature and isocurvature perturbations should
be taken into account, and multi-dimensional field dynamics generically leads to rich
phenomena that are absent in single-field case, as well as much more complicated
situation (see e.g. Ref. [121] for a review). Scalar fields can interact not only through
potential but non-canonical kinetic terms (or non-trivial phase space spanned by
these fields), which can alter the sound speed of perturbations and the inflaton tra-
jectory, or generate a non-trivial vacuum structure. By searching for the observables
such as features on the power spectrum of curvature perturbation, non-Gaussianity,
and isocurvature mode with more precise experiments, the information of multi-field
inflation could be extracted.

Although multi-field models are of significant complication in a general sense, the
situation might be simplified in some special cases, for instance, if an effective field
theory approach is applicable during inflation. In models with a large mass hierar-
chy between different scalar fields, heavy ones?! may not be dominant components
during inflation, and perturbations in these fields are hardly excited. As a result, a
possible separation of heavy and light degrees of freedom is available such that a low-
energy effective theory can be obtained by integrating out the heavy modes, which
significantly reduces the complexity of the system.

In the rest of this section, a general multi-field formalism [122] is reviewed briefly as
well as the effective field theory in models with mass hierarchy based on Refs. [123—
125], followed by the introduction of an observationally favored and theoretically
motivated two-field model, the mixed Higgs-R? inflation model [36-40].

21During inflation, “heavy” and “light” is defined by the comparison with Hubble parameter.
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2.3.1 Formalism

Consider a general action for an N-field inflation model in EF where all the scalar

fields responsible for inflation are minimally coupled with gravity

M2
5= [day=g [T“R OV )] (289

where U(¢) is a general potential for all the scalar fields, g, is the metric for spacetime
while 74(¢) is the field space metric with a,b=1,2,--- | N, denoting different scalar
fields ¢%. Assuming a flat FLRW background, the Friedmann equation and Klein-
Gordon equation are given by [122]

SMAH? =42/2+ U(9) (2.89)
D¢ fdt + 3H" + U, =0 | (2.90)
_ - LoaN1/2

where ¢%(t) are homogeneous background fields, ¢ = <'yab¢“gbb> , notation U, =
OU /0¢ is similar to the single-field case, and a “directional derivative” is defined
DX® = dX*+T¢ X d¢¢ with I'f, = %V‘Ld(%d,b +Yab.e — Yoe.a) the Christoffel symbol for
the curved field space. Correspondingly, a covariant derivative V, defined with respect

to Yap is related to the directional derivative in the following way D/dt = qg“Va.
In a multi-dimensional system, it is useful to define the normalized “gradient”

vector T as well as the orthogonal ones N® respectively to clarify the evolution [86,
123]

T = ¢/, (2.91)
O,N® = —DT°/dt , (2.92)

where normalization factor 6, can be understood as the angular velocity (or turn-
ing rate) of the inflation trajectory. Obviously, the direction 7 tangent to inflation
trajectory is usually some linear combination of all the scalar fields that gives the
lightest direction under the influence of both scalar potential and curved field space.
Quantum fluctuations along this direction generate the curvature perturbation ob-
served on CMB while those on N directions are of isocurvature type. As can be seen
later, the two kinds of perturbations are coupled through a bending trajectory, i.e. a

non-vanishing 6, which is one of the essential differences from the single-field case.
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As in the single-field case, the time-dependence of the Hubble parameter charac-

terizes the dynamics of inflation through the slow-roll parameters [123]

i @
—_ 2 __9 2.
CTTHE T AMEE? (2.93)
1 D¢t
€ =—— ¢ (2.94)
Heo dt

where, in particular, the second slow-roll parameter is no longer a scalar but a vector
that measures the acceleration of ¢® in different directions. For the purpose of long
enough slow-roll inflation, only small €} in direction 7 is necessary. To be specific,
the decomposition of €5 can be written as

€ = el + f N = —i;T“ + g—NN“ : (2.95)

Ho oH

where Uy = N°U, is used. Consequently, slow-roll inflation corresponds to the case
g < 1and eg < 1. Given the decomposition of €5, the turning rate of the trajectory
can be expressed in terms of the slow-roll parameter 0, = H €5 which can be large
while keep the slow-roll inflation uninterrupted. In analogy to the single-field case,
Egs. (2.93) and (2.94) can be approximately expressed in terms of the potential (and

its derivatives) and, in addition, the field space structure as

M2 U 2
€1 " €y = Tpl (ﬁ) s (296)
I 2 VoUs

€1 + €y N €y + €|‘|/2 =M (297)

pl 7
where V4 =TV, and Uy = T°U ,.

Upon the slow-roll background, perturbations in metric and scalar fields are gen-
erated. As in the single-field case, the scalar fields and the metric are decomposed
into background and perturbations in a similar manner. The equation of motion for
the Mukhanov-Sasaki variable Q* = §¢® + ¢/ H with §¢%(t,x) = ¢(t,x) — ¢*(t) is
given by [122]

DZQa DQa VQ
3H - —
dt? + dt a?

Q"+ Q" =0,
a — a 72 pa crd H a a 2a
' = VU — ¢°R%,T°T +261E (TU, + TyU™) + 261(3 — e)H*TT, ,  (2.98)

where R, =17, . — I g+ Ueel'hy — T'G.I. is the Riemann tensor for the field space

and the spatial Laplacian operator V2 = §70,0; is used to avoid confusion of indices.
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Actually, Eq. (2.98) is analogous to the geodesic deviation equation in GR. As can
been seen above, not only the potential but the curvature of the field space enters
C'% so the inflaton is rolling along neither the local minimum of the potential nor the
geodesics in field space. After quantizing the perturbations, the power spectrum is
calculated as [122]

H\?  ONis ONing
2 o ab in in

and consequently the scalar spectral index

8Ninf aA]Vinf lRade U;bU;c N U;ab mn 8]\'finf a-Zvinf -
9on 0ot \3 0z U dom oo )

ng—1=—2€;—2 {1—1—
(2.100)

where Njys is the e-fold number of expansion, and U, = V,U is adopted for the
covariant derivative in the field space.

A closed-form, analytical expression for the long-wavelength density perturbations
in general multi-field models has been found in Ref. [126] with slow-roll approxima-
tion, known as the Mukhanov-Steinhardt functional, which provides a powerful tool
to calculate the power spectrum of density perturbation. Moreover, the situation can
be further simplified if there is a mass hierarchy among the scalar fields because fields
with different masses play distinct roles during inflation, allowing clearer separation
of high- and low-frequency modes. Light fields usually drive the expansion of the Uni-
verse during the slow rolling along the inflation trajectory where the perturbations
correspond to adiabatic modes while the heavy ones oscillate around it and generate
isocurvature perturbations. Under the adiabaticity conditions, the high- and low-
frequency modes decouple with each other [125] so that integrating out the unexcited
heavy degrees of freedom is allowed. As a result, a low-energy effective field theory
can be obtained where the calculation becomes much simpler.

Consider a two-field case in the following, i.e. a, b = 1, 2 in Eq. (2.88), where
there are only two scalar modes which can be projected onto the directions tangent

and orthogonal to the inflation trajectory as [86, 123]

= s (2.101)
¢
F = Nyoo" | (2.102)

where spatially flat gauge is adopted. R corresponds to the curvature perturbation

in the light direction while F the heavy isocurvature perturbation. The second-order
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action is given as [125]
Lt | e PR o (F o s 0
52:§/d [HZR mT—FJl—" _T_Mefff 40,5 Rf 5
(2.103)

and the resulting equations of motion for the Fourier modes of these two dynamical

quantities are as follows [125]

. H | 6
R+ (3426 —2)HR + k2R =20, |F+ (3 —e1 —eh + —= | HF| , (2.104)
o Ho,
F+3HF +k.F + M4F = —29}%7'2 : (2.105)
where the subscript k for Fourier modes is omitted for simplicity, k, = k/a is the

physical momentum, and MZ% = Uny + M3er H? Ryyy™® — 02 is the effectlve mass for
F with Uyy = N°N bU;ab. It is obvious that 9t couples R and F on the right hand
side so they affect each other as source terms. Therefore in principle, if F # 0 and
0, # 0, the conservation of R at superhorizon scale is not valid any more??, which is
an essential different from the single-field case.

In order to write down the effective action in the presence of mass hierarchy

M > H and non-vanishing turning rate 6, # 0, the adiabaticity condition [125]

0,/6;

& Mg (2.106)

should be satisfied so that the high-frequency mode is not excited and can be inte-
grated out (even for |0t| > Meg). More specifically, R and F can be decomposed
into high- and low-frequency modes [125]

Re=Rye“+ f R_e™-t (2.107)
F = Fpett 4 F et (2.108)

where R, = qu/H while w; and w_ represent the high- and low-frequency, re-

spectively. In subhorizon limit and with slow-roll approximation, the solutions of

22This is recently utilized to generate large curvature perturbation for primordial black hole (PBH)
production, e.g. Refs. [127,128].
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Egs. (2.104) and (2.105) can be found as [125]

V2 V2 Ak2
2 2 eff eff 4
S T | S | N Y QR i 2.1
Wi =t 2c2 2 \/ i CS)CSMe2ff 7 (2:109)
—2i9tw+
R. — F 2.110
2i9tw_
F_= R_ 2.111
where the modified sound speed is defined as

2 =1+462/ M2, . (2.112)

As can be seen here, the exchange of energy between light and heavy modes reduces
the sound speed, which may lead to an enhancement of non-Gaussianities (see e.g.
Refs. [69, 71]). Large mass hierarchy MZ > k¢l is required to make significant
distinction between w, and w_

M? kic?
w? = 7“ > w? ~ k2 + (1 - 03)2]\22; : (2.113)

such that high-frequency modes effectively do not participate in the dynamics of
low-frequency ones and can be integrated out safely. Consequently, Eq. (2.105) gives
—26,

Fr——
M+ R

R, (2.114)

which means that the low-frequency mode of the heavy field is controlled by the light

field. In superhorizon limit, the treatment is still similar so Eq. (2.105) results in

¢ 26,

Fr——m— ' R,
H Mz + k2

(2.115)
Again, the heavy mode is still determined by R. In conclusion, as long as the adiabatic
condition (2.106) (or consequently |wy/w3| < 1) and mass hierarchy are satisfied, a
low-energy effective field theory can be obtained by integrating out the heavy degree
of freedom so that the system is significantly simplified. Inserting Eq. (2.115) into
action (2.103), the effective single-field action is obtained [125]

1 72 52
S = / d4xa3¢— [ R —k§R2] , (2.116)

2 H? | (k)
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where the sound speed is written as

462

k) =14t
k}% + Mlef

S

(2.117)

which is consistent with Eq. (2.112) in the limit MZ > k2. Therefore, such a
system is equivalent to a single-field model with a modified sound speed. One way
to distinguish a single-field slow-roll model with ¢, = 1 and an effective single-field
model with ¢, given in Eq. (2.117) is to look at the consistency relation of single-field
models in Eq. (2.62) which will be modified if ¢; # 1. Non-Gaussianity of primordial
curvature perturbation [67] and the shape of power spectrum [123] are also affected
by the non-trivial sound speed.

The low-energy effective field theory is a useful approach that makes the analytical
calculation of the power spectrum in a particular class of two-field inflation models
possible. This approach will be adopted below to investigate the inflation dynamics

in the mixed Higgs-R? inflation model [38].

2.3.2 Mixed Higgs-R? Inflation

As is shown previously, the Starobinsky model and the Higgs inflation are the most
promising single-field inflation models that give predictions on ng and r well match-
ing the WMAP and Planck observations [23]. However, there are still unanswered
questions within these models that are not likely to be explained within the original
frameworks. Therefore, a UV-extended model is desired to understand their behav-
iors and connections further. Among many proposals for UV-extension?®, considering
the combination of the Starobinsky model and the Higgs inflation is one natural and
straightforward way to construct a possible UV candidate, i.e. the mixed Higgs-RR?
inflation model [36-40]**. This two-field model always inherits the observationally
favored ny and r from its two single-field limits when the isocurvature mode is heavy
and the Higgs self-coupling is non-critical during inflation, as will be shown later.
Moreover, the multi-field nature inevitably leads to rich post-inflationary phenom-
ena, for instance, different preheating and reheating processes depending on model
parameters, which can provide a possible way to distinguish itself from the single-field

limits.

23See Refs. [129-131] for other proposals of the UV-extensions of the Higgs inflation.
248ee other relevant studies of this model, e.g. [132,133].
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The mixed Higgs-R? inflation model is not only phenomenologically well motivated
as explained previously, but supported by the consideration from theoretical side

which will be discussed in the following. As a starting point, the action is given by

Sy =/d456\/ —3g31L5

4 Mgl 2 Mgl 2 v 1 4
Z/d Ve TJFE\HSM\ RJ+12M2RJ_9J OuHsmOuHeyy —A[Hsml™ |, (2.118)

where there are three model parameters &, M, and A whose convention and physical
meaning just follow directly from Egs. (2.66) and (2.79)%°. Again, the mass term
for Higgs and the EW vev have been neglected?®. Also, the Higgs self-coupling A\ ~
O(1072) is considered to be non-critical up to inflation scale. For the investigation of
inflationary dynamics, it is sufficient to focus on the unitary gauge Hgy = h/v/2. As

can be easily seen from Eq. (2.118), the two single-field limits are achieved as
o R%limit: ¢ —0and M — M, ,
o Higgs-limit: £ — & and M — oo

where M, and &. are given in Eqs. (2.73) and (2.84), respectively. To see this model
is indeed a UV-extension of the Higgs inflation, it is shown in Refs. [37,42] that
the cutoff scale of this theory is up to Planck scale M} which is much higher than
that of the Higgs inflation whose cutoff around the vacuum is ~ M, /€. In order to
understand the cutoff scale of the system (2.118), it is convenient to introduce an

auxiliary field y such that

3 M?
4 M2

1

M? A
CJ — TPIRJ + §X2RJ —

(% —€h?)* - %g?”@uhﬁyh - oht (2.119)
where, unlike the Higgs field h with a canonical kinetic term, y is non-dynamical so it
can be integrated out to recover the original Lagrangian in Eq. (2.118). The E-H term
and the canonical kinetic term for Higgs have a cutoff at M, automatically. Since x
is just an auxiliary field absorbing all the large non-minimal couplings, the cutoff of
the second term is also Planck scale. The essential non-minimal coupling & now enters

the potential, especially giving a contribution to the effective Higgs self-coupling

Aett = A+ 3 M? /M (2.120)

25Similar model is studied in e.g. Ref. [134].

26The two-loop renormalization group equations in this model [135] show that the Higgs mass
My, can be as large as ~ Mp1/€ at inflation scale, but it does not spoil the predictions of CMB
observation calculated with my,, = 0 as well as the preheating process. It is easy to generalize the
analysis to the case my,, # 0.
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To ensure the system is under control quantum mechanically, it is required that
the effective coupling is sufficiently small A\ < 1, which, under the assumption of
A ~ O(107%), indicates that

3EM? /MY < A (2.121)

Perturbativity of the system is guaranteed and the cutoff is up to Planck scale as
long as Eq. (2.121) is satisfied, beyond which the system enters the strongly-coupled
regime. Therefore, the mixed Higgs-R? inflation model is healthy up to M, if the
inequality (2.121) holds, which means that it can serve as a UV-extension of the
Higgs inflation. Note, however, that the Higgs-limit with M — oo and & — &,
actually violates the perturbativity condition in Eq. (2.121), which can be understood
as the reason why the preheating process of the Higgs inflation mentioned in Sec. 2.2
suffers from the strong coupling issue [34]. Naively speaking, it can be expected that
this issue no longer exists if the unitary bound is satisfied. Examining whether the
preheating process in this two-field model with Eq. (2.121) fulfilled still encounters
the same problem or not is one of the main original works shown in this thesis and will
be discussed thoroughly later. The unitary bound shown above can also be derived
in EF. Performing a conformal transformation to eliminate the quadratic curvature

term and the non-minimal coupling between Higgs and gravity

gEuu(x) = 6a¢(m)gJuy(x) ) (2122)

) : (2.123)

the resulting new action is expressed in terms of two scalar fields as

where the new “scalaron” field ¢ is defined as

2 | 2
ap=\/-—=In| —
3 My Mgl

oLy
OR;

M 1 ., 1 y
Sg = /d4x\/—gE {TPIRE — —gi 0,0, — 56‘““’95 0,h0,h — Ug(p, h)|

2
A 3 ’
Ug(p,h) = Ze—wh‘* + ZM§1M2 [1 - <1 + %iﬂ) e—W] . (2.124)
pl

Note that the definition of this new scalaron ¢ contains not only the scalar mode
induced by R? but also the Higgs field due to the non-minimal coupling term. As
will be shown later, this combination constructed from the conformal coupling [62,63]

neatly cancels the heavy modes in Ry and h? during reheating so that the dynamics of
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¢ is greatly simplified. By expanding the action in Eq. (2.124) around the global min-
imum of the potential, (¢, h) = (0,0), the effective Higgs self-coupling in Eq. (2.120)
shows up, which leads to the same conclusion as in Eq. (2.121). The non-canonical
kinetic term for the Higgs field in this frame cannot jeopardize the situation because
the kinetic coupling always appears as Planck-suppressed terms ap < 1 around the
vacuum [37,42]. In addition to the better UV property, the emergence of the non-
minimal coupling and the R? term in the Higgs inflation model is thought to be
inevitable. On the one hand, the non-minimal coupling between Higgs and Ricci
scalar is needed to improve the renormalizability of the energy-momentum tensor of
the theory [136,137]. On the other hand, appearing as the one-loop counter term to
gravity [138], the quadratic curvature term acquires a large coefficient ~ ¢2 by the
renormalization group running [43-47,135] because the beta function of this coeffi-
cient receives a dominant contribution proportional to £2 at one-loop level for £ > 1.
Besides, the “scalaron” field can also be understood to appear as a pole in the 2-to-2
scattering amplitude of Higgs when resumming over the vacuum polarization dia-
grams of graviton [48], and as a o-meson that linearizes the non-linear sigma model
rewritten from the Lagrangian of the Higgs inflation [49], which will not be discussed
here in detail. Discussion about the improvement of the EW vacuum metastability
can also be found in Refs. [42,135]. As mentioned in Sec. 2.2, within the possible
range of top quark mass, the Higgs self-coupling can turn negative at around the
inflation scale, which leads to an unbounded potential, and therefore, instability for
the Higgs field. It is shown that the presence of scalaron can push A to be positive
again at a higher energy scale if £M /M, is large enough so that the Higgs stability
can be secured [42] or a local minimum may be developed on the scalar potential and
induce interesting cosmological consequences [135].

As a brief summary, all the ingredients shown in the action (2.118) of the mixed
Higgs-R? inflation model are theoretically inevitable, and this model can be regarded
as a promising UV-extension of the Higgs inflation with a cutoff scale ~ M, as long
as the perturbativity condition (2.121) is satisfied. In the following, a review of the
inflation dynamics in this model is presented, showing that it is an observationally
favored inflation model as its single-field limits.

The inflation dynamics in the mixed Higgs-R? inflation model can be analyzed
systematically by the multi-field formalism introduced previously within EF [38,139].
It is shown that there is an attractor during inflation in the § > 1 regime where the
low-energy effective field theory approach is applicable because of the large mass of

isocurvature mode generated by large non-minimal coupling. As a result, the system
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is regarded as an effective Starobinsky model or effective Higgs inflation. To be self-
consistent, the mixed Higgs-R? inflation will be reviewed in JF and EF sequentially.
e Jordan frame All the subscripts “J” are omitted for convenience. The time-time

component and the trace of the Einstein equation at background level are given as

M? .. ) ) ) 1. A
2 7172 pl _ 2 2 _ 132 24
3M@H’+jw20ﬂn1 3H-+MM{H>H%Hh<Hh+2ﬁ> Sh?+ Sht, (2.125)
R h? h? 1 .
O =5 +3¢-—5 | + [ 1+é~5 |R= —5 (M = 1), (2.126)
(MZ A@) ( m@) M&( )

where 00 = ¢V, V, is the d’Alembert operator with respect to g, in the correspond-
ing frame, and again the Ricci scalar is regarded as an independent degree of freedom
induced by higher order time derivatives of Hubble parameter H. These equations
return to Egs. (2.68) and (2.69) when h = 0. Even with slow-roll approximation, di-
rectly solving them is generally difficult, so more information from the Higgs sector is
needed to further simplify this set of equations. In the JF action (2.118), the effective
potential for Higgs is simply given by

A
mﬁz—gﬁR+ZM, (2.127)

from which a local maximum and two local minima can be found for R > 0

h=0, Vetthn <0,
R>0 , ‘/eff’h =0 = fh,hh (2.128)
hyy = E/ER/N, Vigenn >0,
while for R < 0 there is only one extremum
R<0 s Vvefﬁh =0 = th =0 , ‘/eff’hh > 0. (2.129)

Like the Starobinsky model, slow-roll approximation requires R > 0 during inflation,
so the discussion here will focus on the case where Ricci scalar takes a positive sign.

In the regime R > 0, the origin of Higgs h = 0 is an unstable point so that the
inflaton must fall into one of the minima characterized by the lower of Eq. (2.128).
Without loss of generality, it is convenient to just adopt the one with positive Higgs
field value and omit the “+” subscript hereafter (even for EF). Taking into account
this attractor solution to eliminate the Higgs field, Eqgs. (2.125) and (2.126) become

M? . . ) &R 362 . 3¢
2772 , —pl o 2 2 _S v 9s oS
3M2H +]w2<6HH' 3H +18HLH> W S~ HR+ R, (2130)
. ) - & M? R?
R+3HR+ M?’R=— > —>-— | (2.131)
ANM2 R
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where a new parameter understood as the effective mass of scalaron is defined in the

following way

(2.132)

3e20p? -1/2
)\M2

MEM<1+

These equations can be understood as the Einstein equations of the system with a
constraint given by the lower of Eq. (2.128) without any approximation. As can be
easily seen, the left hand side (LHS) of Eqgs. (2.130) and (2.131) are very similar to
that of Eqs. (2.68) and (2.69) respectively, except that the mass M in Eq. (2.69) is
replaced by M in Eq. (2.131). During inflation, the slow-roll parameters defined in
Egs. (2.27) and (2.28) are small, i.e.

H H
S D 2.133
AT o S (2.133)

As a result, the Einstein equations in the minimum with slow-roll approximation

become

M?
3MAH? + 18 Mpl H?*H ~0 | (2.134)
3HR + M*R ~0 , (2.135)

which coincide with those in the Starobinsky model with an effective scalaron mass
M. Consequently, to match the observed amplitude of scalar power spectrum, it is

required that

M = M, , (2.136)

which induces a constraint equation on the model parameters in the mixed Higgs- R>
inflation model so that the number of independent parameters reduces by one. It is

also useful to rewrite the constraint (2.136) in another equivalent form [41]

2

where the relation between &, and M, derived from Egs. (2.73) and (2.84) is used

A M
¢ = \/;ﬁpl . (2.138)

The analysis above is a significant insight because it indicates that the new two-

(2.137)

field inflation is essentially the same as its single-field limits, and therefore gives the
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same predictions on ng and r. Note that, in principle, this is not guaranteed for all
the parameter range. Especially, the statement is always true only when considering
large non-minimal coupling and non-critical Higgs self-coupling [36, 39, 40]?". This
thesis focuses on exactly the case £ > 1 and A ~ O(1072) so the effective Starobinsky
model prediction is always valid.

In order to make the discussion more concrete hereafter, it is helpful to define
different regions in the parameter space according to the properties of the system.

Therefore, the whole parameter space is separated into two regimes as follows:

o R%like regime:

& _ My
= 2.1
« Higgs-like regime:
& Mg
x> BM"2 : (2.140)

This separation condition can also be rewritten as ¢ = £,/+/2. Additionally, violation
of the perturbativity condition (2.121) defines a strongly-coupled regime that only
covers part of the Higgs-like regime as long as A < 1. Indeed, taking Eq. (2.136)
into account, the Higgs-like regime without the strong coupling issue is given by
£/V2 ~ 3.1 x 103\/m < € < & where & characterizes the boundary defined in
Eq. (2.121)

—-1/2

1 3 M?

fs = (g + EM%) 5 fc . (2.141)
c p

Therefore, there exists a parameter space within the Higgs-like region where the
system is quantum mechanically under control up to the Planck scale [37,42] as
explained above such that the mixed Higgs-R? inflation model can be regarded as
a UV-extension of the Higgs inflation. Figure 2.1 shows the parameter space in the
&-1/M plane with A = 0.01.

2"Note, for comparison, that in the minimally coupled case & = 0, the double inflationary h*-
R? model was first considered in [140] without identifying h with the Higgs field, and its scalar
perturbation spectrum was derived in [141]. To obtain the correct value for the slope of the scalar
power spectrum ng — 1 and to satisfy the upper limit on the tensor-to-scalar ratio r, viability of such
a model requires its last ~ 60 e-folds to be in the R2-like regime that occurs for M < \F)\Mpl with
extremely small A < O(10710), or if h? is always less than Mgl (then the field h does not contribute
to inflation at all). The same conclusion remains valid for 0 < £ < 1, £h?/ Z\lg1 < 1, too.
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Figure 2.1: Parameter space for different regimes in the mixed Higgs-R? inflation
model with A = 0.01. The red region is the strongly-coupled regime where perturba-
tive analysis is questionable (2.121). The blue and green regions are the Higgs-like and
R2-like regimes, respectively. The blue line satisfies the condition for the observed
curvature power spectrum (2.136) or (2.137).

e Einstein frame The subscripts “E” for the quantities defined in EF will be omitted
for convenience. In principle, the classical background dynamics in the system (2.124)
should be systematically analyzed with the multi-field formalism introduced previ-

ously [38]. Specifically, it corresponds to the case N = 2 in Eq. (2.88) with

¢ = ((p> Yab = : 02 o (2.142)
h) 0 e_\/grfp ’

and the potential given by Eq. (2.124), which leads to the unit vectors tangent and

orthogonal to the inflation trajectory as well as the turning rate

CoN—1/2 [
a -2 —ap12 SO
T <g0 +e h) (h) ,
. \"L/2 (59
a __ -2 —ap 2 e 2
N—(Sp‘i‘@ h) (63@90)’

. . -2 . 2
02 = e (@2 + e oeh?) (U — e 0hU, ) (2.143)

Consequently, the effective mass for the isocurvature mode Mg in Eq. (2.103) can be
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Figure 2.2: Left: An example for the shape of the potential with U(y, h) with model
parameters (£, A\) = (3000, 0.01) and constraint (2.136) satisfied. Right: A schematic
picture showing the local minima and maxima on the potential from top view. the
solid lines correspond to local minima while the dashed line corresponds to local
maxima.

calculated as
. -1 . . .
My = (0% +e7h?) (7R gy + P Ui — 20hU o1, — S%U, — aghUp)

e 2;;; P e (&% +emoei?) - (¢Un - e’a“’hUM)Q , (2.144)
where the equations of motion for ¢ and h (see Appendix C) have been used. The
second term is much smaller than Hubble during inflation oc €, H?> < H?. If the
slow-roll approximations ¢* < H¢* and H ~ U /M, are valid, the third term
(turning rate) is also much smaller than H2. The dominant contribution comes from
the second derivatives of U(p, h) in the first term. To determine the dynamics, it is
important to understand the shape of the potential. Figure 2.2 shows an example of
the EF potential U(y, h). Similar to the situation in JF, there is one local maximum
and two local minima on the potential U(p, h) in the Higgs direction in ¢ > 0 regime

which are given as

h =20 Un, <0
0>0,U,=0 = ’ . A (2.145)
hvi::I:\/?)f(eW—l)/)\M, U,hh>0,
while only one minimum in ¢ < 0 regime
<p<0 , U’hZO = hVOZO , U,hh>0 . (2.146)

It is easy to show that Eqgs. (2.145) and (2.146) are equivalent to Egs. (2.128)
and (2.129), respectively. Therefore, U(p, h) shows an attractor behavior. Slow-

roll inflation occurs in ¢ > 0 regime (because Ry > 0), so the inflaton will fall into
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one of the valleys to achieve the effective single-field dynamics. Note that, however,
because of the non-trivial field space metric shown in the action (2.124), the infla-
ton field actually traces neither h, nor the geodesics of the field space, as has been
explained in the discussion of multi-field formalism previously. Given the lower of

Eq. (2.145) and the results in Appendix C, it can be easily shown that
H? ~ UM% ~ M? | Uy~ M2, Ugpy ~ EM? | Upp ~ EM? (2.147)

which means that the dominant contribution U 5 makes Mg > H for £ > 1, especially
when & > 1. As a result, the low-energy effective field theory approach is applicable
to the regime of interest.

As a brief summary, the large isocurvature mass Mg and small trajectory turning
rate 6, in the attractor solution allows an effective single-field description of the mixed
Higgs-R? inflation in EF with sound speed hardly modified ¢, ~ 1, which is consistent
with the analysis in JF. Therefore, it is safe to integrate out the heavy degree of
freedom in Eq. (2.124) to simplify the system. A simple way is to insert the lower
of Eq. (2.145) into the action (2.124) which leads to an equivalent form as the Higgs
inflation action in EF before the field redefinition (2.86), only with couplings replaced
by [41]

5 AM? i AM2,
)\E)\<1—|—3£2M2> : 555(1+3£2M2) . (2.148)

Consequently, similar to the single field case, the constraint from Eq. (2.63) gives

VAsaaE =, (2.149)

which results in exactly Eq. (2.137), as expected.
In conclusion, the mixed Higgs-R? inflation is equivalent to an effective Starobin-
sky model or effective Higgs inflation, predicting the most observationally favored [23]

scalar spectral index ns and tensor-to-scalar ratio r in Eqgs. (2.64) and (2.65).

This chapter has reviewed the physical picture of a promising scenario for the
very early Universe, inflation, as well as the realization in both single-field and multi-
field models. Inflation, regarded as an accelerated expansion phase right after the
“initial singularity”, can wash out the inhomogeneous and anisotropic initial condi-
tions, the spatial curvature, and the unwanted relics produced from the early time,
leaving a homogeneous, isotropic, and flat Universe as observed today. Such acceler-

ated expansion can be realized in many ways, among which this thesis focuses on the
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slow-roll inflation driven by homogeneous scalar field(s) called the inflaton. During
inflation, the potential energy of inflaton dominates the Universe almost as a posi-
tive cosmological constant that provides the negative pressure to inflate the space.
Therefore, the inflaton slowly rolls down the potential with large Hubble friction and
negligible kinetic energy, which is why it is called slow-roll inflation. On the other
hand, quantum fluctuations upon the homogeneous background generated during in-
flation are essential for the observed CMB temperature anisotropy and LSS formation.
These fluctuations are classified into scalar-, vector-, and tensor-type, described by
the cosmological perturbation theory. The scalar-type perturbations are responsible
for seeding the density fluctuations in the Universe imprinted on CMB and LSS. The
vector-type is exponentially suppressed by cosmic expansion. The tensor-type per-
turbations, or primordial gravitational waves, can produce B-mode polarization that
is the primary target of future experiments. Detecting the primordial tensor pertur-
bations is not only the smoking gun of inflation but the evidence of quantization of
gravity, which would significantly enhance the physical understanding of the observed
Universe.

Single-field slow-roll inflation is the simplest class of inflation models that can
explain the observational results. There are two models that are observationally fa-
vored most, the Starobinsky model and the Higgs inflation. The inflation dynamics is
equivalent in both models, giving the best-fit values of n, and r, while the reheating
processes (which will be discussed later) are different. Nevertheless, the origin of the
large coefficient of R? term in the Starobinsky model or the UV issues in the Higgs
inflation are neither explained satisfyingly within their original frameworks. There-
fore, a sensible UV extension is strongly desired to solve these problems. One way
for generalization is to consider multi-field models since most proposed UV physics
beyond SM contains multiple scalar fields which can participate in inflation. A two-
field model, the mixed Higgs-R? inflation model, is introduced by directly combining
the two best-fit single-field models. The analysis above shows that it can serve as a
candidate of UV-extension of the Higgs inflation because the cutoff scale is pushed
up to My in the presence of R?. As will be shown later, the preheating process is
also free from strong coupling issue with the help of scalaron. Besides, a number
of studies show that all the ingredients in this model inevitably appear from several
theoretical points of view. Furthermore, the inflation dynamics in this model can be
described as an effective Starobinsky model or effective Higgs inflation in the regime

of large non-minimal coupling and non-critical Higgs self-coupling, giving favorable
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predictions on CMB observation. Therefore, the mixed Higgs-R? inflation model is
indeed a likely UV-extension of the Higgs inflation.

The remaining important question is how to connect the mixed Higgs-R? inflation
with the successful Hot Big Bang cosmology, i.e. the reheating process after inflation,
which is essential to finally determine the pivot scale of curvature perturbation to
confront the prediction of inflation with observation. This question will be discussed

in the rest of this thesis as the main topic.
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Chapter 3

Particle Production and Reheating

Reheating is an essential part for a successful inflationary universe model, through
which high-energy relativistic particles are produced and thermalized in the “empty”
space by transferring the inflaton energy to other matter fields, converting the cold
Universe into a radiation-dominated one after the quasi-exponential expansion®®.
Eventually, all the degrees of freedom in SM are populated, and the Universe evolves
in the way described by the conventional Hot Big Bang theory. As an integral part
of the cosmic thermal history that is highly affecting the estimation of the required
duration of inflation, the investigation of reheating is necessary to strengthen the ob-
servational constraints on inflation [10,11]* by accurately expressing the pivot scale
of curvature perturbation in terms of the e-fold number of inflation (see Fig. 3.1).
However, reheating suffers from the difficulty of detection due to the wash-out effects
on the trace of reheating physics from thermalization and late-time non-linear evo-
lution. Therefore, understanding reheating and seeking possible relevant observables
are of great significance’.

Reheating process is highly model-dependent. Usually, it is required to occur
above the scale of a few MeV [154,155] in order not to spoil the success of explaining
the abundance of light primordial elements by BBN. According to the current under-
standing, reheating is generically characterized by two sequential stages for models
where the end of inflation is followed by the coherent oscillation of inflaton®!. The

first stage is preheating, which is short but efficient to transfer energy from inflaton

28Instead, a particular class of inflation models called warm inflation [142,143] produces particles
during inflation, but it suffers from other problems [144].

29Gee e.g. Refs. [145-147] for follow-up studies.

30Some possible ways to probe reheating are proposed, such as by the equation of state of the early
Universe and reheating temperature through primordial gravitational wave background [12,13], and
probing the gravitational waves produced from preheating (e.g. Refs. [148-153]).

31See other possibilities without inflaton oscillation, e.g. instant preheating [156] and reheating
through gravitational particle production [157-160] in models discussed in, e.g. Refs. [56,57,161].
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Figure 3.1: A schematic picture showing the relation between reheating and the du-
ration of inflation. The black line is the Hubble scale H~!. The blue line corresponds
to the gradual reheating case while the red line is the instantaneous reheating case.
The orange line is the pivot scale that enters the horizon today. ay and ay denote
the moments when the pivot scale exits and enters the horizon, respectively. ag and
ay are the ending moments of inflation in the case of gradual and instantaneous re-
heating, respectively. Therefore, the duration of inflation for the two cases are given
by N¢ = In(ag/ag) and Ny = In(a;/ag), respectively, with Ng < N.

to relativistic particles through some dominant non-perturbative processes such as
broad parametric resonance [14-17] or tachyonic instability [18-20] where the num-
ber of produced particles grows exponentially. These mechanisms usually involve
non-linear processes from backreaction that complicate the whole calculation and re-
quire sophisticated numerical methods. The second stage is perturbative reheating
(elementary theory of reheating), during which the inflaton experiences perturbative
decay into other matter fields and loses all the energy [3,21,22]. Since the backre-
action can terminate the preheating before all the inflaton energy is taken away in
most cases, the system eventually enter the perturbative regime so that the pertur-
bative decay of inflaton dominates the rest of reheating and determine the reheating
temperature when the Hubble parameter drops below the decay rate of the inflaton.

Essentially, both non-perturbative and perturbative processes of particle produc-
tion discussed here can be attributed to a time-dependent effective mass (or fre-
quency) of the fields to be produced. Such a situation usually arises from couplings
among different fields or a time-dependent background spacetime. Since the effective

masses are directly related to the definition of vacuum state of the fields, a time-
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dependent mass results in a time-dependent vacuum state®” instead of a unique one,
sometimes called instantaneous vacuum. Consequently, such a field cannot always
stay in its “vacuum”, which indicates a particle production process in the case where
the mass changes non-adiabatically with time because particle number is just an adi-
abatic invariant. On the other hand, the notation of “particle” may not be physically
well-defined in a time-dependent background. A universal concept of “particle” does
not always exist (nor necessary) because it generally depends on the state of motion
of observers or detectors, even in Minkowski spacetime [162-164]. The issue of the
definition of vacuum, therefore, is crucial for the discussion of particle production.
This chapter reviews particle production in a time-dependent background and its
application to reheating after the end of inflation. The general theory of such particle
production is briefly presented in Sec. 3.1, followed by its application to perturbative
and non-perturbative particle production. In particular, in the non-perturbative case,
more attention is drawn to tachyonic instability because it plays an important role
during preheating in the mixed Higgs-R? inflation model, one of the main original
works presented in this thesis. In Sec. 3.2, the reheating processes in two special cases
are studied, namely in the Starobinsky model and the Higgs inflation. Notably, in the
Higgs inflation case, the strong coupling issue during preheating is discussed, which
questions the validity of the reheating process at the very beginning stage, so further

investigation of the subsequent evolution in this model will be omitted.

3.1 Particle Production

Particle production is inevitably involved many physical processes of great interest,
such as black hole evaporation [165,166], Schwinger effect [167], and reheating after
inflation. In the case of reheating, the inflaton field(s) or the corresponding degree(s)
of freedom serves as a background energy source of the particle production by varying
the effective masses of the produced fields, which results in the change of vacuum
state or production of particles. Through such a process, the inflaton field transfers
its energy to relativistic particles to reheat the Universe.

Before the application to concrete models, the basic idea and calculation of particle

production with time-dependent effective mass will be introduced, based on which the

32Tn Heisenberg picture which is used in this thesis, since the quantum state is time-independent,
a more appropriate description is that a state being the vacuum at one moment cannot remain as
the vacuum of the system for all time due to the change of the operators. Nevertheless, the phrase
“time-dependent vacuum” will be used sometimes and should be understood in the sense explained
above.
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production processes can be classified into perturbative and non-perturbative regimes.
In the non-perturbative regime, further classification can be made according to the
realization mechanisms, such as parametric resonance and tachyonic instability. In
the following, the main interest lies in the production of scalar particles in a time-

dependent background. The discussion is mainly based on Refs. [64, 168].

3.1.1 Scalar Fields in Time-Dependent Background

The idea and calculation here are based on the theory of quantum fields in a time-
dependent background. Specifically, after the end of inflation, the inflaton field exits
the slow-roll regime and, as a typical example, starts to oscillate coherently. Since
the inflaton energy still dominates the Universe, its non-trivial evolution predomi-
nantly affects the quantum fields in this background. This effect can be summarized
in a general form of the equation of motion for scalar fields. After quantizing the
scalar fields, the particle production can be interpreted as the mixing of positive and
negative modes induced by the time-dependent effective masses, as will be shown in

the following.

3.1.1.1 Classical Scalar Fields

Consider a scalar field x(t,x) without homogeneous background part as the target

for production whose equation of motion can generally be written as
_DX<t7 X) + mef<t)X<t7x) =0. (31>

To illustrate this point, three simplified but typical examples are considered in the
following.

e Example One In Minkowski spacetime, a massless field x(t, x) is directly coupled
to a homogeneous scalar field ¢(t) with an effective potential V' (¢) which is minimized
at 04. Then the corresponding action around oy after the shift ¢ — oy — ¢ is

1 .
S = 5 /d4x [¢2 - miqSQ — " 0ux0ux — g; (¢ + 04)° Xz] , (3.2)

where 1), is the Minkowski metric, V' (¢) is assumed to be quadratic around oy, and

gs is a small coupling constant. The equation of motion for x(¢,x) is then
X = V2 +mi(t)x =0, (3.3)

where mZ(t) = g5¢°(t) + 295040(t) + g505. This is exactly in the same form as

Eq. (3.1). The oscillation of ¢(t) around the minimum induces a time-dependent

o4



effective mass for y(t,x) which is responsible for the production of y-particles as will
be shown later. Therefore, if the inflaton field directly couples to other matter fields,
particle production will occur during the coherent oscillation phase after the end of
inflation. Actually, it is easy to show from Eq. (2.25) that the coherently oscillating
¢(t) with the quadratic potential —mi¢2 can be understood as a condensate of massive
particles with mass mg, and zero momentum. The particle production is then the
decay of such particles into the target field x(¢,x).

e Example Two In a curved spacetime, a scalar field x(¢,x) with mass m, is

non-minimally coupled with gravity. The relevant part of action is given by

1
53 [ dav=g[67R - 9" o0 - mix] (3.4

where £ is the non-minimal coupling which can take any real value. Assuming the

flat FLRW background, the equation of motion for x(¢,x) is as follows
X+ 3HY — Vix/a® + meg(t)x =0, (3.5)

where mZy(t) = m3 — £R(t) receives the contribution from non-minimal coupling.
This equation is of the same form as Eq. (3.1). Thus, the non-adiabatic variation
of R(t) can also be responsible for particle production as long as the modes with
wavelengths comparable or larger than the curvature scale kf, < |R| are considered.
In the short wavelength limit kﬁ > |€R)|, the non-minimal coupling is negligible.

e Example Three In Minkowski spacetime, a non-canonical scalar field x;(¢,x) is

coupled with a homogeneous scalar field ¢(t) through the kinetic term

1

5= [ Zomroon (3.6

By redefining a new field x = fu.(¢)x1, the kinetic term is canonicalized and an

effective mass term appears
1
5= =5 [ dte [P a0 -] | 37

where m2g(t) = foc(¢)/f2(6). The equation of motion for x(t,x) is then naturally
the same as Eq. (3.1). In other words, a non-canonical kinetic term that may arise
in a conformal transformation can also induce particle production effectively as a

time-dependent mass term.

The three examples above may imply that Eq. (3.1) is a general form of the

equation of motion for fields that are coupled to gravity or other homogeneous fields
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through the potential or the kinetic term. Even if the target field has a homogeneous
part and self-interaction, the perturbative expansion can still result in the same form
except that meg(t) consists of not only R(t) or ¢(f) but the homogeneous part of
the target field. It is obvious that the energy of x(¢,x) is not conserved. The time-
dependent effective mass then serves as an energy source, so x(t,x) becomes a driven
oscillator whose amplitude can be amplified if m.g(t) is appropriately chosen. Besides,
it is easy to generalize these examples to massive target field cases. For the purpose
of this thesis, it is sufficient to focus on such type of equations as Eq. (3.1) for the

study of particle production.

3.1.1.2 Quantization and Vacuum State

The action for x(¢,x) in a curved spacetime with corresponding equation of mo-

tion (3.1) can be written as

Sy = /d4$\/ ( “”auxayx—i—meff(t)xz) , (3.8)

where meg(t) can result from couplings with homogeneous fields or gravity, as ex-
plained previously. When considering a flat FLRW metric as background spacetime,
this action can be further simplified by using the conformal time 7 in Eq. (2.3) instead
of the physical time t. By redefining x = a(n)y, the action (3.8) becomes

1
Sy = 5 /d%dn [)Z'Q — (V)Z)Q — mszf] = /d%dn Ly, (3.9)

which is simply the action for a scalar field y(n,x) in Minkowski spacetime with a

time-dependent effective mass defined by

() = a?(n) [ 2(m) — R(n )/6} : (3.10)
The corresponding equation of motion for y(n,x) is then
— VX + g (n)x =0 . (3.11)

The benefit to work with Eq. (3.11) is that the effect from Hubble expansion is
formally absent so the system can be simply analyzed as if in Minkowski spacetime.
Thus, the canonical quantization can be done in the usual way. Given the Lagrangian

Ly, the conjugate momentum for x is defined as

(n,x) = 6Ly /0 =X (3.12)
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For a real scalar field (7, x), it can be expanded in Fourier modes as

W) = [ e k) (313)

where x(n, k) can be generally written as
X1, K) = ue(n)as + u(n)al, (3.14)

with k£ = |k|, and aL and ay are the creation and annihilation operators, respectively,

satisfying the commutation relations
[, al] = (27)%0®) (k — p) , |ax, ap] = [af,al] =0 . (3.15)
Since the scalar field x(n,x) and its conjugate momentum 7 (7, x) should satisfy the
canonical commutation relations
[X(n, %), 7(n,y)] = 0¥ (x —y) , [X(n, %), X(n,¥)] = [7(n, %), 7(n,y)] =0, (3.16)
the Wronskian to normalize the mode function ug(n) is then
W ug, uf] = wpul — wpuy =i . (3.17)

The commutator for the Fourier modes can also be found easily

[X(n, %), 7(n.p)] =6 (k +p) , [X(n.k),X(n.p)] = [7(n. k). 7(n,p)] =0, (3.18)

where it is a plus sign in the Dirac delta function on the right hand side opposite to a
minus sign as in Eq. (3.15). Inserting the Fourier transformation back to Eq. (3.11)

leads to the equation of motion for the mode function

up + O (n)ug =0,

We(n) = K +m(n) | (3.19)

where the effective frequency is also time-dependent due to (7). To understand the
vacuum structure and particle production process, it is necessary to solve Eq. (3.19),
an equation for parametric oscillator. However, analytical solutions for this type of
equations are only known for limited cases, one of which is the well-known Mathieu
equation (see Appendix D) that is useful for the study of reheating. Nevertheless,
a general discussion about the vacuum state in the presence of a time-dependent

frequency @y (n) is still possible and beneficial.
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Let |,,0) denote the normalized vacuum state at some moment 1 = 7, associated
with the mode function u and the pair of creation/annihilation operators aL and ay.
By definition, |,,,0) is an eigenstate of the annihilation operator with vanishing eigen-
value akl,,0) = 0 as well as the Hamiltonian operator for the system with the minimal
eigenvalue. As usual, the Hamiltonian can be obtained by a Legendre transformation

of the Lagrangian £y in Eq. (3.9) as

N 1 5 ~ -9 -
Hy =5 / Pz [7% + (VX)* + ]
1 [ &k .
=3 /W [Fk(n)aka,k +Fy (n)aLaT_k + <aLak + akaD Ek(n)] , (3.20)

where () is used for Hamiltonian to distinguish from the Hubble parameter H, and

Ey(n) = [u]* + &2 (n) Jwl®
Fi(n) = u + 0p(n)ui - (3.21)

On the one hand, the expectation value of H in vacuum state ln,0) at time n = nq is

simply calculated as
d3k
(27)

where the divergence is due to the infinite total volume of space, so that the comoving

(Ol (1)) = 5(2059(0) [ 555 Bl (3.22)

energy density is given by

p(mo) = %/%Ek%) 7 (3.23)

which should be minimized. It is easy to show that Fj (7o) is minimized if the mode

function satisfies the following conditions up to an unimportant arbitrary phase

ur(1o) = 1/4/20k(10) 5 wy(no) = —in/@k(n0)/2 - (3.24)

The resulting Hamiltonian at this moment becomes

A 1 3k ~
Hy(no) = 5 /— (aLak + akaL) r(no)

(27)?
N %/(;er]; <2aLak +(2m)* 6 (O)> @ (o) (3.25)

where, on the second line, the first term corresponds to the occupation number oper-
ator which vanishes when sandwiched by (,,0| and |,,,0) while the second is the zero-

point energy. However, this cannot always hold true for a time-dependent wy(n).
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In other words, the mode function wug(n) cannot minimize Ex(n) in the upper of
Eq. (3.21) while satisfying Eq. (3.19) for all the time. On the other hand, |[,,0) is an
cigenstate of Hy (1) only if Fi(no) = 0, i.e. requiring that

wi (no) + @i (mo)ui(mo) =0, (3.26)

whose solution is formally written as

u(n) o exp {ii /n dzk(m)dm} . (3.27)

Obviously, the conditions (3.24) satisfy Eq. (3.26) so |,,0) is indeed a vacuum state at
the moment 1 = ny. However, it is easy to show that the solution (3.27) is generally
not the solution for Eq. (3.19) unless @y(n) = const. In other words, |,,0) cannot
remain as the eigenstate of ﬁx while satisfying Eq. (3.19) for all the time.

In summary, the “vacuum” in a general time-dependent background is instanta-
neous and not unique. There is no preferred choice of physical vacuum state for all
time and, therefore, the concept of “particle” in such background. Intuitively speak-
ing, for example, in a general curved spacetime, this ambiguity comes from the finite
scale determined by the four-dimensional curvature. The modes with scales much
smaller than the curvature scale cannot “feel” the non-trivial geometry of the space-
time, so the situation is similar to Minkowski background. However, for modes with
scales comparable or larger than the curvature scale, the change of the background
geometry becomes significant, and the plane wave approximation used in Minkowski
spacetime is no longer valid so that the usual definition of a localized particle as a
wavepacket fails at large scales.

In some special cases, for example when the change of meg(n) is slow enough,
there may be a better®® choice of vacuum, called adiabatic vacuum. This prescription
relies on the WKB approximation. Assuming the ansatz of the solution of Eq. (3.19)

to be in the form

() = ———— exp [z / ' Wk(m)dm} | (3.28)

vV Wi(n)

it can be found that Wy (n) must satisfy the following condition

1 [W,;' 3W,;2]

W2:~2__ _ v
BT W, 2W?

: (3.29)

33See Refs. [64,168] for details.
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If the background @y (n) varies adiabatically, i.e. the typical time scale of background
evolution much larger than that of the mode function ug, Eq. (3.29) can be treated
as a recurrence. The zeroth order is (V1 = @, while the second order is
1 (DII 3 &‘)12
OWe=ap (1 -2 4228 3.30

which is valid under the condition of adiabaticity
L LS (3.31)

In principle, it is possible to reach arbitrary order of recurrence but not necessary.
This series is an asymptotic series where the terms of higher order increase strictly
more slowly than those of lower order as going to the interested limit but the sum-
mation diverges. For this kind of asymptotic series, there usually exists an optimal
truncation order where the error reaches minimum?®*. The adiabatic vacuum at n = nq
is then determined by putting the optimal order solution Y)W}, back into the ansatz
to find out the N-th order mode function Yy (n) and requiring the exact solution

uk(n) to satisfy the initial conditions

ug(no) = (N)Uk(ﬁo) , u(no) = (N)Ufrc(ﬁo) : (3.32)

Note that the adiabatic vacuum is an exact state in the sense that the approximated
mode function My (1) is just for the matching at 7 = 79, as shown above. The
quantized field is still the exact mode function ug(n). The matching also makes the
adiabatic vacuum not unique because the matching process can be taken at different

1 # no. Once @y is constant, all the vacuum prescriptions coincide.

3.1.1.3 Bogoliubov Transformation and Particle Production

Consider two periods around n = 19 and n = n; when the background evolves adiabat-
ically. As a result, there exist sensible concepts of (adiabatic) vacuum (and particle)
at these moments which are denoted by |,,,0) and |, 0). The mode function associated
with the former is uy(n) as previously mentioned, while wy(n) denotes the mode func-
tion for the latter together with a new pair of creation/annihilation operators blt and

bx. Consequently, there are two different expansions for the quantum field x(n, k) as

X(n.k) = w(nai +uip(ma’y = wie(mbi + wi(mb, . (3.33)

34Gee e.g. discussion on an alternative method based on Stokes phenomenon [169,170].
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Generically, the mode function wy(n) associated with |,,0) can be written as

wi(n) = cgur(n) + Brug(n) (3.34)

where ay, and [, are complex constants called the Bogoliubov coefficients which should

satisfy the normalization condition
ow* = B> = 1. (3.35)

And wy(n) also satisfies the same form of initial conditions (3.24) at n = n; as it
minimizes the Hamiltonian at that moment. Accordingly, it is easy to show that the

two pairs of creation and annihilation operators satisfy the following relation
be = aax — Bral . (3.36)

These relations (3.34) and (3.36) are known as Bogoliubov transformation [171].

The Bogoliubov transformation is useful to clarify the relation between different
vacuum states. For example, consider the state |,,0) and the Hamiltonian (3.20).
Since ug(n) satisfies the initial conditions (3.24), the expectation value of Hamiltonian
at n = no is given by Eq. (3.22) with Ej(no) replaced by @i(no). Therefore, there
is no particle present at this time but only zero-point energy. In the Heisenberg
picture, the state is fixed but the operators evolve. At a later moment n = 7, the
Hamiltonian can be expressed as the first line of Eq. (3.25) except for 7y, ax, and alT{
replaced by 7y, by, and bL respectively, because wy(n) also satisfies the same form of
initial conditions (3.24) at n = n;. If now the Hamiltonian is sandwiched by |,,0), it
only leads to the same result as before, i.e. only the existence of zero-point energy.
However, the state is still |,,0) so the expectation value of Hy(n;) is then calculated
as follows

R 1 A3k -
<7700|H>2<771)|?700> - 5 / W@oowﬁcbk + bkb;[q|7700>wk(771) )
3k

- @090 [ o (1P g a3

where the Bogoliubov transformation (3.36) has been applied and (27)36®)(0) comes
from the infinite spatial volume. As a result, particles are produced in the state |,,0)
as the system evolves in time and the comoving energy density® of the produced
particles at n = n; is given by

PE .
wz/@ymumm. (3:38)

35Here, the zero-point energy is simply subtracted. However, it can be seen that the zero-point
energy is time-dependent so simple subtraction may be not justified. See Ref. [168] for more detail.
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As can be seen clearly, the Bogoliubov coefficient Sy is directly related to the comoving

number density of the produced particles in the following way

ny — / %nk _ / %W , (3.39)

where nj, = |Bk]? is the occupation number of ¥ in momentum space. Note that
if |Bx|* decreases slower than k=2 for large k, the integration above diverges, which
indicates that the Bogoliubov transformation is not well-defined.

From above, the physical interpretation of the Bogoliubov transformation can be
understood as follows. If wy tends to be constant in the far past and far future, well-
defined vacuum states always exist and the positive- and negative-frequency modes
exp (Fiwgn) (or mode functions) are well separated from each other. However, if
wk(n) is time-dependent in some middle period, these two modes are mixed (as in

Eq. (3.34)) and vacuum fluctuations are excited, which results in particle production.

After reviewing the technique of Bogoliubov transformation to calculate the pro-
duction of scalar particles in a time-dependent background, this technique will be
applied to two types of particle production in the following, the perturbative and the
non-perturbative production that are important for the investigation of reheating at

post-inflationary epoch.

3.1.2 Perturbative Production

Perturbative particle production is relevant when the coupling between target fields
and the background field is weak enough. For example in Eq. (3.19), the perturbative
production occurs when the effective mass |meg(n)| is much smaller than the interested
scale k so that it could be treated as perturbation. The discussion here is mainly based
on the discussion in Refs. [16,64,159,172].

Rewrite Eq. (3.19) as

up + wiug = — [MZ(n) — m2] ux = Sg(n)ur ,

wy = K +m? (3.40)
where m2(n) can contain different types of contributions as explained at the be-
ginning of this section, including the mass of x, the non-minimal coupling, and the
coupling with other fields. Therefore, the perturbative particle production is valid

when x(n,x) is light and the couplings with background are weak. This equation can
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be solved by the Green’s function method together with iteration due to the smallness

of Sy. Assuming the boundary conditions

u(n) = e~k /2wy, n— —oo,
ug(n) = age™ R /\ 2wy + Bre™* /2wy,  n— +oo,

where oy and S are nothing but the Bogoliubov coefficients normalized as Eq. (3.35),

(3.41)

the solution of Eq. (3.40) is written as
"

ug(n) = \/?wke_w’“” + wik - sin [wy (7 — 7)] Sz (7)ux (7)d7] (3.42)

from which the Bogoliubov coefficients at n — +o00 can be derived as

+o0
o =1+ o= [ Sty
LT g, d 3.43
ﬁk——m/m &N, () ()l (3.43)

Because S () is perturbation, the integration (3.42) can be solved by iteration. Given
the zeroth order u,(fo)(n) = e~"w1 /\/2w;, which corresponds to o = 1 and 8, = 0, the
next order is obtained by just substituting u( )( ) for uk(n) in Eq. (3.43), so the
leading contribution to comoving number density of produced particles at n — +o0

are of second order in Sg(n) as

&k L[R2k [T it
= =g [ S [ dm s ) ) (.4)

" ) 872 Jo

In the massless case where m, = 0, this integration can be further simplified because

w? reduces to k% and cancels that on the numerator. As a result, the comoving number

density of the produced massless particles is given as

1 [
nxm=0 = 75 | Silmdn - (3.45)

The role of the mass is to suppress the particle production process, which can be more
clearly seen in concrete examples later. The corresponding comoving energy density
of the produced particles p; can also be calculated. Since Eq. (3.40) is linear in wuy,
this process corresponds to one particle from the source decaying into two y particles,

i.e. ng = —2n,,. The decay rate of the background field is then

Dhgogg = —Ting/Mng = Mg/ (2n1g) (3.46)
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where the subscript “bg” denotes the particle from the background source that decays.
For example, in Eq. (3.2), the interaction ALy, = —g504¢x” induces the decay of
one ¢-particle into two y-particles.

Observing that S (n) is given by the small general couplings between x and other
fields, it indicates that this perturbative approach can be applied in both JF and
EF. Especially in the latter, another way to obtain the decay rate is calculating the
S-matrix of the corresponding process with Feynman diagram as done in quantum

field theory in Minkowski spacetime. The known result for the tree-level decay rate

of ¢ into massless x via AL,y = —g504¢x” calculated in this way is
42
9696
T = 3.47
XX 8mmyg ) ( )

which is constant and independent of the number density of the produced particles.
This decay rate can be shown to coincide with the result obtained in the first method.

To incorporate the perturbative decay into reheating after inflation, the decay
rate is often treated as a friction term in the equation of motion for the inflaton field,

for instance, in Eq. (2.24) the single-field case
O+ BH +Tyo) 6+ V=0 (3.48)

Since the produced massless (or m, < m,) x-particles are relativistic, accordingly,
the Boltzmann equation for the radiation energy density pr.q and the Friedmann

equation are given as

prad + 4Hprad = Fd)%xxp(i) ) (349>
3M§1H2 = Py + Prad - (35())

As a result, perturbative reheating transfers the energy of inflaton into other rela-
tivistic particles until the completion of perturbative reheating which is characterized
by the moment when the Hubble expansion rate falls below the decay rate of infla-
ton, denoted as t,. After that, the Universe is dominated by radiation so the energy

density is related to the temperature of the Universe as
BMAH?(t,) = praa(ty) = 79,1 /30 , (3.51)

where T is one of the most important quantities in reheating defined as the reheating
temperature, and g, = 106.75 is the effective number of relativistic species. Since
H(t,) = Tyyy, it leads to

90 1/4
Tr = ( ) \/ Mplrﬁf’ﬁ‘XX >~ 0.54\/ Mpqugﬁxx . (352)

grm?
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As for the interaction, ALy = —g5¢0°x>/2, the scattering rate typically de-
creases faster than the Hubble rate does as the amplitude of ¢ becomes smaller so
this process soon becomes inefficient, which means that this channel cannot reheat
the Universe by itself. Therefore, in the model where o4 = 0, the channel ¢ — xx is
absent and it is likely that the reheating never completes solely with the scattering
o¢p — xx. If there are other ways for the inflaton to decay, e.g. to light fermions,
then reheating the Universe is still possible.

Reheating through perturbative particle production is usually referred to as the
elementary theory of reheating [21,22], which plays a vital role at the last stage of
reheating in most cases, determining the reheating temperature. Before entering the
perturbative regime as the inflaton oscillation becomes small, more efficient particle

production processes are of interest.

3.1.3 Non-Perturbative Production

The perturbative approach introduced above fails when the combination of the cou-
plings and the amplitude of background oscillation is large, for example, [{R| > 1.
In this regime, the non-perturbative effects such as parametric resonance and tachy-
onic instability dominate the particle production processes, leading to highly efficient
particle production. Reheating through such non-perturbative particle production is
usually referred to as preheating [14,16]. Although preheating is short and cannot af-
fect the reheating temperature much, violent preheating may leave imprints on other
observables, such as the equation of state of the early Universe and high-frequency
gravitational waves that may be detected in the future, as mentioned previously.
The calculation of particle production can be realized within the framework of the
Bogoliubov transformation introduced previously with more careful treatment. The
discussion in the following is mainly based on Refs. [14, 16,17, 168] for parametric
resonance and Refs. [173,174] for tachyonic instability, specifically focusing on the
case where the background field acts as a harmonic oscillator without considering

backreaction.

3.1.3.1 Parametric Resonance

Parametric resonance is based on the theory of the Mathieu equation, especially the
stability chart shown in Appendix D. Generally speaking, parametric resonance can
be classified into two types according to the width of the resonance bands, narrow
and broad resonance. As to be shown, the former can be understood as an “en-

hanced version” of perturbative decay by Bose condensation effect [175] which leads
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to a qualitatively different result from the perturbative particle production, while the
latter as the successive scatterings of the mode function on parabolic potentials [16].

Without loss of generality, consider Eq. (3.1) with m2(t) = g5¢°(t) +2g3046(t) +
9307 as shown in Example One in last section® with m, = 0. The time-dependence
comes from the first and second terms; the former dominates when |¢| > |o,| while
the latter dominates if |¢| < |oy|. The non-minimal coupling case is completely

analogous to the latter. Quantizing the x(¢,x) field

wex = [ gﬂ’j " DDt xi(Daly] (3.53)

the equation of motion for xx(t), according to Eq. (3.1), can be written in a flat
FLRW background as

{xk +3Hxi + [K2+ 202(t)] xix = 0 , b0 > |og| , (354

X+ 3H X+ [k2+ 9202 +202060() xe =0, ¢o < |og] -

For simplicity, the Hubble expansion is neglected in the following®” and brief discus-
sion on such effect will be presented subsequently. Then, the background field ¢(¢)

can be assumed to take the following simple form

6(t) = dosin(myt) | (3.55)

where ¢y > 0 is the constant amplitude and m, is the mass of ¢(¢). As a result,

Eq. (3.54) can be rewritten in the same form as Mathieu equation (D.1) in Appendix D
Xk.zz + [Ax — 2q cos(22)| xx, =0 , (3.56)
where the dimensionless variables z, Ay and q are given by

Ap=k*/mi +2q , q=g5¢5/(4m3) , z=myt, G0 > oy, (357)
A= (K + g20%) [m2 . a=4g3os00/m3 , z=mgt/2+7/4, G0 <lo|.

36 As mentioned earlier, the analysis here can be generalized to the case where the target field
has a homogeneous part and self-interaction. In that case, the particles are resonantly produced
by the oscillation of its own homogeneous part. See e.g. the discussion in Refs. [14,16] for case
with presence of A\¢/4, and in Ref. [17] where the conformally invariant theory A¢*/4 + gigbz x%/2 is
analyzed for the production of both ¢- and y-particles.

3TThe situation in Eq. (3.11) may indicate that it is possible to avoid the cosmic expansion but the
non-trivial time-dependence of a(t) and the usage of 1 can spoil the simple behavior of ¢(t) or R(t)
in the effective mass, as implied in Eq. (3.10). Another kind of field redefinition for simplification is
discussed in the broad resonance case.
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Therefore, the analysis in Appendix D is applicable to the particle production pro-
cesses through parametric resonance. According to different locations of the param-
eters of interest in the stability chart in Fig. D.2, the discussion is categorized into
two different regimes, narrow and broad resonance.

e Narrow Resonance Consider max{gso, 9|04} < mg, which means that ¢ < 1.
This case is within the narrow resonance regime. As discussed in Appendix D, the
instability bands shows up when A; ~ n? with n € Z, among which the most
important one is n = 1 because its width is the largest 1 —¢ < Ay <1+ ¢. For
the choice of k£ within this instability band, the solution grows exponentially y(t) o

(1) )

exp [uk Z}, where, according to Eq. (D.15), the instability index ,u,(: is given by

2 ([@/4— (fms — 12", b0 > |osl
u,il)ﬁ[QQ/‘l—(\/A_k—l)Q] N [4*/4 = (k/myg )}1/2 0> |og| (358)

(/4= (2k/me —1)°] 77, G0 <oy ,

from which it can be extracted that resonance only occurs in the modes with very

narrow range of momentum

(1=q/2)my Sk 5 (1+q/2)ms $o > |og| ,
(1/2=q/4)my Sk < (1/2+4q/4)mg , do < log| -

(3.59)

In both cases, the maximal instability index is u,(ir)nax = ¢/2 when the produced

particles are on-shell, i.e. kK = m, and k = m/2, respectively. As a result, the number
density n; of the maximally produced modes x, grows as o< exp [Qu,(c%l)jlaxz] = exp(qz)

because

2
Wheft [ |Xk 1
e =5 <| 2 | + |Xk’2) bR (3.60)

Wi eff

where wy o¢(f) is the effective frequency for yj. At the same time, other off-shell
particles with k& + Ak where Ak ~ ¢ are also produced. One example of narrow
resonance for the ¢y > o4 case is shown in Fig. 3.2.

In particular for the case ¢y < |oy4|, it can be compared with the perturbative
decay process ¢ — xx induced by the interaction ALy ,,, = — géo¢¢x2 to understand
their difference. In the perturbative regime, the decay rate is given by Eq. (3.47) for
m, = 0, which results in exponential decay of number density of ¢ but not exponential

growth of that of x. However, in the narrow resonance case, the exponential growth
(1)

k,max

Therefore, it can be firstly noticed that these two effects may coexist but dominate

rate of n, is given as p mey ~ 2gia¢¢0 /my, according to the analysis above.
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Figure 3.2: An example of narrow resonance for the ¢y > |o4| case in Eq. (3.57)
with Ay = 1 and ¢ = 0.05. Xp,ini is the initial value of ;. The left panel shows the
evolution of y; while the right shows the occupation number ny,.

different time regimes. When ¢o > gZo4/(167) is satisfied at early time, narrow

resonance is more important and the number density of x grows exponentially because
(1)

fmaxMe 18 larger than Ty, . As the energy of ¢ decreases due

the growth rate u
to particle production (and cosmic expansion), ¢y becomes small enough that the
perturbative decay rate exceeds the exponential growth rate of narrow resonance,
which means that the amplitude ¢y decays at a time scale shorter than that necessary
for narrow resonance to occur. Since this moment, the perturbative decay plays a
more important role. The second difference between the two effects is that only
on-shell particles are considered in the former but both on-shell and off-shell x are
produced in the latter as mentioned previously. The third is that the growth of
n, is proportional to n, itself in the narrow resonance case, i.e. enhanced by Bose
condensation effect, while the perturbative decay is not. This can be roughly seen in
the following way. If the effective decay rate is enhanced by the Bose effect, it can be

estimated as
Loxett ~ 2L (3.61)

where the factor 2 comes from the production of two y-particles, and n; > 1 is
assumed so that such effect is significant. According to Eq. (3.59), further assume
that only particles with k& ~ m,/2 are produced with Ak =~ gm,/2 as the width.
Then the occupation number in momentum space can be estimated as

e I ~ 200y
FEmel2 T Urk2Ak) [ (2m)8 9506 Ny

(3.62)

where ny, = myp2/2 > 1 can be effectively understood as the number density of ¢ in

the condensate induced by the coherent oscillation. As a result, only after some period
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when a certain amount of y-particles have been produced ny > gZosn4/(27%¢0), the
occupation number can be large enough to have significant effect. The equation for
the comoving number density of y-particles is then given as

87T2¢0 N 7T9¢2>U¢¢on

TLX =
9304 me

- (3.63)

My 22 20 gsoxett g == Dgosxy

(1)

from which it is easy to see that n, grows exponentially with a growth rate ~ g, ’

Me
as shown in the narrow resonance. Fermions, on the contrary, do not experience such
enhancement because of Pauli principle.

So far, the Hubble expansion is neglected in the analysis. However, in more
realistic cases, H # 0, e.g. during reheating, which may affect the resonance particle
production process. It can be seen from above that the narrow resonance should
be sensitive to such effect because the instability band is narrow as in Eq. (3.59).
The expansion of the Universe redshifts the momentum of the mode functions as k/a,
which will easily move the resonant modes out of the instability band to terminate the
process. On the other hand, the cosmic expansion and the perturbative or resonant
decay of ¢ reduce the amplitude ¢q as shown in Eq. (3.48). Therefore, the exponential
1)

k,max

growth rate u mg should at least exceed 3H for the narrow resonance to be
considered. From another point of view [176], a damping term in the Mathieu equation
diminishes the instability bands in narrow resonance regime.

It is also worth mentioning that the rescattering of produced particles can also
remove themselves from the instability bands due to self-interaction in some cases.
The backreaction from created particles can also change the parameters A; and ¢
to prevent narrow resonance from continuing. Once the narrow resonance becomes
insufficient due to some or all of these effects, the perturbative decay takes over and
completes reheating.

In conclusion, narrow resonance may dominate the reheating process before the
perturbative reheating takes over, but it is pretty “fragile” and sensitive to many

other factors, e.g. cosmic expansion.

e Broad Resonance Consider gs¢9 > mg, , which means that ¢ > 1 . This case
corresponds to the broad resonance regime, which is much more efficient than the
narrow resonance. In the models considered in Egs. (3.57), it is easy to see that
A > 2q , which corresponds to the region above the thick black line in Fig. D.2. The
broad resonance regime then refers to A > 2¢ > 1 where the widths of instability
bands are large, which enables modes with a broad range of k to experience explosive

production, especially when 2¢ is close to A, i.e. small k. In this sense, the lower of
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Eq. (3.57) is of less interest than the upper because A > 2q is always true for the
former due to ¢y < |os|. Therefore, the following discussion focuses on the latter
case.

In broad resonance, particle production occurs every time when the adiabatic
condition for wf () = k* + g*¢*(t) is violated,

|Dnett/Wheie| =1, (3.64)

which occurs around the zero-crossing points of ¢(t), i.e. t ~ nmw/mgy where n € Z. At
these moments, wy, o becomes very small because 2¢ is almost as large as Ay, and the
mode function yy is significantly enhanced, just like swung up by the low frequency.
Two examples of broad reasonance are shown in Fig. 3.3. During each half-oscillation
of ¢(t), the mode function xj oscillates many times. Only around the zero-crossing
points of ¢(t), the frequency of y, changes drastically to small value and particle
number increases rapidly. Given Eq. (3.64), the momentum range that experiences

exponential growth can be found as

2/3

K < [g2medod()]™” — g26%(1) (3.65)

where cos(myt) ~ 1 has been used. Therefore, this particle production channel is
opened when 0 < ¢(t) < y/mepo/gs , and the right hand side reaches maximum at
B(t) = ¢ = 3734 /m¢y/gs ~ ¢ *¢y/3 , which leads to the maximal momentum

range that experiences resonant process, 0 < k < Kprmax = \/gsMepo/2 . The
typical momentum of the produced particles during the main part of broad resonance

|| < 2¢. can be estimated as

ko ka/2 = \/9omsto/2 = meg " V2 ~ 946 (3.66)

As a result, the produced particles are of typical momenta much larger than the mass
of the background field m, but much smaller than g4¢o, which indicates that, within
the short production period, the typical energy scale of these particles is w, ~ k. .
And the typical time scale of such a period can also be estimated as At, ~ 2¢,/ ¢ ~
1/7/9smeo ~ k' ~ w; ' . As can be seen in Fig. 3.3, particle production only
occurs during such a short time and the occupation number remains unchanged when
wr.erf changes adiabatically. Another observation is that, the phase of x; during the
non-adiabatic period behaves differently for instability bands characterized by odd
and even v/A , which, roughly speaking, is determined by the ratio between periods
of xx(z) and cos(2z) .
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Figure 3.3: Two examples of broad resonance for the ¢y > |o,| case in Eq. (3.57).
Upper: Ay =192 and ¢ = 180. Lower: A;, = 18% and q = 162. Xy in; is the initial value
of xi. The left panels show the evolution of y; while the right show the occupation
number ng. The behaviors of the phase of y; during the short period of particle
production are different between odd and even /Ay.

When the cosmic expansion is taken into account, the momentum and the ampli-
tude ¢ will then be redshifted such that the system does not remain in one instability
band but jump over many different bands, which make the regular broad resonance be-
come stochastic resonance [16]. “Stochastic” means that the phase of xj around each
zero-crossing point of ¢(t) behaves stochastically, unlike the one shown in Fig. 3.3,
which leads to a peculiar feature of the number of y-particles, namely occasional
decrease during the production process. The stochastic resonance continues until ¢
(or the amplitude of ¢(¢)) and Hubble parameter H become small enough. Then the
system may stay in one instability band and realize standard broad resonance.

To calculate the rate of exponential growth of y; at each resonance, it is impor-
tant to find an analytical way to solve the equation of motion for xj. In Ref. [16],
the resonance is successfully interpreted as successive scattering of x; on parabolic
potentials. As analyzed previously, the adiabatic condition is violated only when

|6(t)| < 2¢., so the adiabatic solution is valid outside this regime. Rewrite the upper
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of Eq. (3.54) by redefining X (t) = a®?y(t) as

X+ 9%, X, =0,
3 34

0% = ki+gs0° (1) — 1H2 aEvE (3.67)

where the last two terms in (2x x(¢) are actually negligible after inflation in the cir-

cumstance considered here. Denoting the moments of zero-crossing of ¢(t) as t; with

Jj=1,2,3,---, the adiabatic solution before and after ¢; can be respectively written
as
X(j)(t) _ oz,(j) e~ i xpt)dty Lei ' Qx k(t1)dta (3.68)
K \/2QX7,I§ AV 2ng,/c ’ '
A (J+1) (G+1)
X}gj-i-l)(t) _ O, e—ift Qx,x(t1)dt1 4+ Lk et ' Qx (t)dts (3.69)

where ay’s and (;’s are nothing but the Bogoliubov coefficients which are constant
within the adiabatic regime. In the vicinity of ¢ = t;, the approximation ¢?(t) ~

ggmi(t—t;)? is valid, so Eq. (3.67) describes a wave scattered by a parabolic potential

d* X,

dr?

+ (K3 +7)X, =0, (3.70)

where 7 = k.(t —t;) and k; = k,(t;)/k.(t;) . The general solution for this equation

is given as
: K2 i K2
Xi(1) = d,(f)W (—é, \/57') + ﬂ,(j)W (_EJ’ —\/§T> , (3.71)

where W (a, z) is the parabolic cylinder function (see Appendix E) while d,(gj ) and Béj )
are arbitrary constants. The asymptotic form of X (7) for |r] > 1 can connect the

adiabatic solutions in ¢ < t; and ¢ > t; regimes, which gives

i 1 — K2 —Tr2 1 —i .
B = 2 <V L+ e — el - > _m2/2> e )
J

14+e ™ —e

1 52
(\/ 14e ™ —e™i/2 4 g . > e 20 (3.72)
\/ —7mj/2

14+e ™5 —e

N | .

where ¥y = arg'(1/2 — ilﬁ? /2) . As a result, the number density after ¢; is given by

A 2 ) .
nl(jﬂ) = ‘ﬁ](j“)‘ ~ (1 +2e7™5 4+ 2 ™5/24 /1 4 7™ cos @(])) n,(f) (3.73)
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where n,(gj) = |5,(€j)| > 1 is assumed and |0zl(€j)|2 - |Blg)|2 =1 is used, and

t; ) .
0w =2 / Qx o (t)dt — Oy, — argal) + arg 87 (3.74)
0

whose randomness causes the stochastic behavior of the broad resonance in the pres-
ence of cosmic expansion. For the growth of n; not to be suppressed, it is required
that

2 _
2 — Ak/a 2q < g1

J 2 \/a ~ ’
which coincides with the previous estimation. The instability index on the exponent
ngﬂ) = exp <27ru,(j)>nlgj) is defined as

W= L (Hze—mi+ze—m?/2\/1+e—m? cos@w) EENERE

1

(3.75)

2

where k5 o< g, so broad resonance is clearly a non-perturbative effect. The largest

instability index is given by cos ©Y) =1 as

1
fama > 5= In (1 Yo 2\/5) ~0.28 . (3.77)
m

The above process is simply a scattering of waves scattered by a parabolic potential, so
broad resonance can be understood as a successive scatterings of such kind. The final
growth rate should then be the accumulation of rates of a number of such processes,
which is not discussed in detail here.

In conclusion, stochastic resonance provides an efficient preheating channel at the
very beginning of reheating, even in the presence of cosmic expansion. As the energy
of ¢(t) decreases due to Hubble expansion and energy loss for particle production,
broad resonance eventually remains in one instability band instead of jumping over
many and ceases as ¢ becomes too small. Then, narrow resonance takes over at late
preheating. However, the backreaction from the product of broad resonance and the
expansion of the Universe complicate the situation of narrow resonance, as mentioned
previously. Numerical calculation is necessary to trace the evolution of the system

accurately.

3.1.3.2 Tachyonic Instability

The Mathieu equation allows another possibility to realize non-perturbative particle

production at preheating, i.e. tachyonic instability, which cannot be seen in the two
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cases considered earlier because A, > 2¢. In the situation where the interaction be-
tween background and target field is AL = —ggad,ngQ only that gives an effective
mass m2g(t) = Qgiad)qzﬁ(t), tachyonic instability may occur and lead to exponential
particle production if g(zba(ls(;ﬁo is large enough. It will be shown later that this instabil-
ity plays an important role during preheating in the mixed Higgs-R? inflation model.
Therefore, more calculation detail is presented here. Sometimes tachyonic instability
is expected to be even more efficient than parametric resonance because the latter
usually requires many oscillations to finally amplify the particles while the former
can achieve the same within one oscillation for modes with large gi%qﬁo (usually
compared with momentum but a more careful discussion is needed and given below).

With the interaction mentioned above, the equation of motion for Xy (t) = a®?y,(t)

then becomes

X+ 9%, X, =0,
3., 3

Q%(k = k]22 + me(t) — ZH T 5g (3.78)

where, again, the last terms in Qx ,(f) is negligible during reheating. As ¢(t) os-
cillates, Q% ,(t) can take negative value if 2g704¢9 > k7. During such a period the
amplitude of x, grows exponentially, while outside the adiabatic solution is valid.
The treatment here is similar to the case in broad resonance, namely connecting the
two adiabatic regimes with one tachyonic period in between.

The moments when (2x ;(¢) enters and exits the negative regime are denoted as
tenter (k) and text(k), respectively. In other words, Qx x(tenter(k)) = Qx i (texit(k)) =
0, and Qxx(t) < 0 during fepter(k) < t < texit(k) . The adiabatic condition (see
Eq. (3.29)) for Qx x(t) is given as

Oxr/Qxn — 30% /(205 1)
QQ%J€

<1, (3.79)

which is satisfied for most time except for the small vicinity of tepter(k) and eyt (k)
because (lx ; approaches and crosses zero around these moments, leading to strong
violation. Define the time when the adiabatic condition (3.79) is violated as t_,e,
t < tf

enter

<
and t_,, < t < t5, around t = toer(k) and ¢ = teq(k), respectively.

exit

Then adiabatic solutions are valid outside these time ranges so they can be written
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in different time regimes, t < t o ; tonper <t < oyt » t > to,

enter » “enter exit exit

t t
Qg . Bk . ’ /
Xi(t)=———exp (—z/ QX7k(t/)dt’> + exp (z/ Qx p(t")dt ) , (3.80)
to \/ 2QX,]€ to

QX7k(t’)|dt’> +

respectively as

t t
ag bk- / /
Xp(t) = —2 oxp - / L P / Qxa)dt |, (3.81)
V2[0x k] tenter (k) V2[Qx k] tenter (k)

~ t ol t
Qg . / / ﬂk . / /
Xi(t)= exp —z/ Qx p(t)dt” | + exp z/ Qx p(t)dt" | 3.82
(t) I ( . (t') CIr i X (t') (3.82)

where the Bogoliubov coefficients ay, Ok, ag, bi, @ and Bk are approximately con-
t38

stant”® and ty is an initial time when «; and [, are defined. The normalization
conditions are given by |a|*> — |8k|? = 1, axbi — aiby =i, and |ax|*> — |Gl = 1.

<t<tr, andt_

enter enter exi

. <t < tl. for which

These solutions break down during ¢ it

exact solution is needed to impose appropriate matching conditions at t = tepger (k)
and tey (k) between the adiabatic solutions such that the late-time occupation number
ng = | BkP produced by the non-adiabatic change of Qx x(t) can be obtained as in
the broad resonance case. For this purpose, the trick introduced in Ref. [173] (also
in the Landau-Lifshitz’s textbook [174]) is adopted to find the exact solution at the
moments of zero-crossing of Qx x(t). In the following, the mode equation (3.78) is
solved when the adiabatic condition is violated to determine the “transfer matrices”
between the Bogoliubov coefficients.
First, the matching condition at t ~ teer (k) is examined. For ¢ sufficiently close
to the zero-crossing point, t = tenter (k), Taylor expansion can be applied to ng s
2
Bl B = Al =t . 359

t=tenter (k')

0%~ 0+

with Aj, < 0, so that the equation of motion for X, becomes
X+ Ap [t — tenter (k)] X ~ 0 . (3.84)

This equation is the same as the stationary Schrodinger equation with a linear po-
tential. The exact solution to it is known to be Airy functions (see Appendix F),

i.e.

X,(t) = BeAi (21}/3 [fonter (k) — t]) + ByBi (;1,1/3 [tonter () — t]) , (3.85)

38In general, the notations oy and S, are typically used for Bogoliubov coefficients so they also
appear more than one times in the previous sections, but they should not cause confusion, which
should be understood. Strictly speaking, Bogoliubov coefficients can be time-dependent but, in the
adiabatic case, they are approximately constant as used throughout this thesis.
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where By, and By, are complex constants. For ¢ < tenter(K), the argument in Eq. (3.85)
is negative, then the leading term of the asymptotic expansion of the Airy function
at ‘fl,lc/g [tenter (k) — t]‘ > 1 reads

1—i -~ 1+i -~ t
< zBlk + HBQk) exp —i/ QXk(tl)dt/
2 2 tcntcr(k)

1+i -~ 1—3 -~ t
+ < * ZBlk + ZBQR> exp Z/ QXJC(tI)dt/ . (386)
2 2 tenter(k)

On the other hand, for ¢ > teyer(k), the argument in Eq. (3.85) is positive, so, with the

| Ay |16

\/QWQX,k

Xk(t) —

leading term of the asymptotic expansion of the Airy function at fl,lc/ 3 [tenter (k) — t] >
1, Eq. (3.85) is approximated as

Blk /t / / o K
— exp(— |Qx x(t)|dt +v/2Bsexp
\/5 ( tenter(k) t

enter

|/~1k|1/6
\/ 27T|QX7]€|
With these results, the adiabatic solutions on both sides of t = tenter(k), i.6. Egs. (3.80)
and (3.81), can be connected through Blk and B%. It should be noted that, to do

so, it is required that there is a regime where both adiabatic condition and Taylor

Xk(t)—)

|QX,k(t/)|dt’>] . (3.87)
(k)

expansion of Qy ; () are valid, which implies that the following conditions should be
satisfied

1 dQ(Qgc,k;)

~1/3 ~
Ak [tenter<k) - t]’ > 17 ‘Ak‘ > 5 dtQ

‘t - tenter(k)’ ) (388>

t=tenter (k)

as well as Eq. (3.79), which will be concretely examined in the discussion on tachyonic
preheating in the mixed Higgs-R? inflation model [51]. According to Egs. (3.80),
(3.81), (3.86), and (3.87), the matching conditions for ¢t < teper(k) and ¢ > tepger (k)

are given respectively as

arp\ _ JARYS (1 —0)e  (144)e \ (B :/te““’r(k)
<Bk> - 2ﬁ (1—|—i)eii9k (1 —i)eii@k B% ;O = o QX,k(t)dta (3'89)
ap\ A8 (V2 0 By,
<bk;> =5 o 2va) L) (3.90)
Here 6y, is the phase accumulation from ¢y to the entry of the tachyonic regime. As a
result of Eqs. (3.89) and (3.90), the transfer matrix between (ak,ﬁk)T and (ay, bk)T

is then
()-sa (e S0y (@) em
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In a similar way, the matching condition at ¢ ~ t(k) can be obtained. For
t sufficiently close to the zero-crossing point at the end of the tachyonic regime,
t = texit(k), again Taylor expansion of Q?Xk is valid, approximately giving
d(Q% ;) -

7 [t — texit(K)] = Crlt — texis (k)] , (3.92)

t:texit (k)

Q% ~0+

with C), > 0, so that the equation of motion for X becomes
Xy 4 Crlt — tesae (k)] X ~ 0 . (3.93)

In the same way as done above, the exact solution is expressed in terms of the Airy

functions,
_F . ~1/3 ~ . ~1/3
X,u(t) = DipAi (ck [texit(k)—t]>+D2kB1 (ck [texit(k)—t]> , (3.94)

where Dy, and Doy are complex constants. Once more, before the exit of tachyonic
C 3t e (k) — t]( > 1

1414 ~ 1—14 =~ t
( + Zle + ZD2k> exXp —Z/ QXJ{;(t,)dt/
2 2 tesc (k)

1—i -~ 1+~ [t
+< Dy + DQk) exp (Z/
2 2 ]

exit

regime, the asymptotic expressions of the mode functions for

can be written as
oy

\/27TQXJ€

Xk(t) —

ka(t’)dt’)] . (3.95)
(k)

On the other hand, after the exit, Eq. (3.94) can be approximated, for C’,i/g [texit (k) —
t]>1,as

éli/ﬁ le ! / ’ - ‘ / /
Xi(t)»————= | —=exp |Qx 1 (t)|dt’ |+v/2Day, exp | — |Qx k()|dt" || - (3.96)
V27 Qx k] | V2 torcie (K) —

By matching the exponents, the adiabatic solutions on both sides of the exit, i.e.

Eqs. (3.81) and (3.82), can be connected with the constants D;j, and Dy, respectively

i, :é;/ﬁ 1+i 1-4) (D, (3.97)
Bk 2y \1—1 141 Doy )’ '

~1/6 Q 2 texit(k)
ag Ck 0 2\/§€ k D /
= _F - Q. = Q t)|dt . .

enter

as

Here €, is the “phase” accumulation during the tachyonic regime from teier(k) to
texit (K), which is responsible for the exponential growth of the particle number. Con-
sequently, with Eqs. (3.97) and (3.98), the transfer matrix between (ay,b)  and
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(G, B) T is easily found to be

ap _ 1 ((1—=di)e™ 2(14i)e™\ (ax (3.99)
Gr) 22 \(L+i)e™ ™ 2(1—i)e™ ) \by, ) :
Eventually, combining Eqgs. (3.91) and (3.99) leads to the desired transfer matrix

between the two pairs of Bogoliubov coefficients before and after the tachyonic regime

Q e—iek eﬂk e—Qk Z'ein 6Qk . €_Qk o
(5:) N (—iews“(eﬂj - 69{521) et ((eﬂk e //j))) (B:) : (3.100)

As a result, the occupation number of the produced particles with a given k can be

as

computed as

2

ng =B =|—ie” oy (e — em /1) + " By (e + e*Q’C/él)‘2 : (3.101)

As usual, the initial condition within the adiabatic regime is set to be vacuum, i.e.
ar = 1 and B, = 0, which simplifies the expression above as follows

ng = ‘Bkr = [e%* — 48_9’“/4{2 ~ e (3.102)
where, in the last line, it is assumed that the tachyonic instability strength is strong
Q. > 1 for the given k, so the exponential suppressed term is omitted, which is con-
sistent with the expectation from the simple adiabatic approximation, nj ~ exp(2€Q),
because the adiabatic approximation cannot accurately trace the small term.

From the discussion above, to have strong enough tachyonic effect 2, > 1, it is
required that k, < |meg| in order to provide large amplitude |{2x | in the tachyonic
regime and long duration of this period, which ensures significant contribution to €.
In such a case, the occupation number n; for these modes grows rapidly. However,
although the occupation number is larger for modes with smaller k,, the contribu-
tion from these modes to the energy density, which is of more physical importance,
will be suppressed by the small k itself because the volume element of phase space
is proportional to k2dk. Therefore, it is expected that the typical momentum of
the produced particles that constitute the most of energy density will be of order
kyp/|mege] ~ O(1071) — O(1) . In other words, strong tachyonic instability should
not be characterized solely by €2, but the energy density of the produced particles,
although the former may be used for rough estimation conveniently. In the strong
instability case, the background energy will be transferred away extremely rapidly,

causing a sharp decrease of ¢g , which, in turn, reduces or terminates the tachyonic
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instability process. The cosmic expansion effect in more realistic models is therefore
not important. For the mode X; with large k2 > mZ , it is obvious that the tachy-
onic effect will be negligible or disappear completely. Especially when £, is slightly
smaller than the amplitude of the effective mass, the tachyonic regime is so small and
the transition time is so short that the adiabatic solution during the tachyonic period

may not even exist.

The non-perturbative particle production processes are efficient in most cases such
that the energy density of the products grows rapidly in this regime, which is described
by the results shown previously. These analytical estimations can clearly show the
behavior of the number density and energy density of the produced particles, and the
tendency of the future evolution of the system. If the non-perturbative process lasts
long enough, the energy density of the produced particles can become comparable
with that of the background fields. Since then, the backreaction gradually gets more
and more important as large amount of produced particles take part in the non-linear
interactions with background fields, such as rescattering which can redistribute the
momenta of the particles. When these effects are no longer negligible, a sophisticated
numerical technique is needed, such as lattice simulation, to fully incorporate the

particle production process.

3.2 Reheating: Case Study

Typical types of perturbative and non-perturbative particle production processes have
been introduced in detail in the last section, which provides a powerful tool to investi-
gate the reheating process in the early Universe after the end of inflation. Reheating,
as the crucial transition period between inflation and Hot Big Bang, is very important
for accurately fixing the pivot scale of curvature perturbation observed on CMB, and
also has a lot of connection with other physics in the early Universe such as gravi-
tational waves and baryogenesis. Therefore, given an inflation model, it is necessary
to clarify the ambiguity during this period as much as possible in order to confront
existing experimental data and seek possible observables in the future.

Here, the reheating processes in the Starobinsky model and the Higgs inflation
are discussed by applying the methods introduced previously. The final reheating
temperature of the Starobinsky model will be given. As for the Higgs inflation,
due to the strong coupling issue, the validity of the theory at the very beginning of

reheating is questioned, so the traditional treatment with parametric resonance and
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perturbative particle production will not be discussed in detail. Instead, the cause of
such issue will be presented, which is beneficial for the investigation of the first stage

of preheating in the mixed Higgs-R? inflation model in the next chapter.

3.2.1 Reheating in Starobinsky Model

The inflation dynamics in the Starobinsky model [3] has been discussed in Chapter 2,
which shows that the inflationary predictions in this model fit the results of current
observation [23] very well if the only one model parameter takes the value M = M, .
After the end of inflation, the reheating process begins [3,29,30,172]. Consider the
action (2.66) with an additional massive scalar field x with non-minimal coupling (as
given in Eq. (3.4) in Example Two)

1 M2
Sy == / d*z/—g; {M;RJ + —BLR2 L 6PRy — g"8,x0,x — m2x*| ,  (3.103)

2 6M2

where the target field x (¢, x) is treated as perturbation and produced during reheating.
As long as ¢ is not very close to —1/6, the main reheating channel is the decay of
scalaron into y-particles [177]*?. In the following, the reheating process is discussed
in both JF and EF. In the former, the particle production can be understood as the
result of time-dependent background spacetime, while in the latter, it results from
the effective mass given by a background scalar field.

e Jordan frame All the subscripts “J” are omitted for convenience. Following the
same procedure from Eq. (3.8), the mode function uy, for Y = ax here obeys the same

equation as Eq. (3.40) with S5 given by

Sg(n) = (€ +1/6) a*(n)R(n) + [1 —a*(n)] m3 (3.104)

where the time variable has been transformed to conformal time 1 and a(n) is the
scale factor in flat FLRW metric. It can be seen that, after the JF dynamics of R(n)
and a(n) are determined in the Starobinsky model during reheating, the production of
x-particles can be calculated with methods introduced earlier. Different production
channels can be realized depending on the value of non-minimal coupling £. For quite
large [£| > 3 with m, = 0 or |£] > 10 with m, ~ O(M), broad resonance can occur to
amplify the target field exponentially [98], for which the detailed discussion is omitted

here. The reason, as has been explained at the end of the discussion of parametric

39Ref. [178] considers the case where the scalaron decays into two gauge boson via trace anomaly
of energy-momentum tensor at one-loop level. This is the dominant channel when scalar fields are
only conformally coupled with gravity, i.e. £ = —1/6.
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resonance, is that the amplitude of R(n) will decrease rapidly due to energy loss,
so the resonance becomes narrow and finally perturbative reheating takes over and
determines the reheating temperature at late time. For very large |¢|, tachyonic
preheating may also be possible, but the consideration of such unnaturally large |¢]
here lacks good motivation. Therefore, the discussion below focuses on small || < 1.
For the same reason, main interest lies in late time and the perturbative decay rate
of the background.

In JF, the scalar degree of freedom responsible for inflaton is hidden in the Ricci
scalar whose non-trivial dynamics is determined by the Einstein equations (2.68)
and (2.69). Different from inflation, M? > |H|, H? is satisfied during reheating, so
Eq. (2.68) can be rewritten as

2HH — H? + M*H? = —6H*H ~ 0 , (3.105)

where the friction term —6H2H is treated as perturbation, which leads to the solution

4 4 sin(Mt)]™" (M
H~—]1 —t 1
3t * 3Henat T ] S\ 72 ’ (3-106)

where Hepg ~ M/ v/6 is the Hubble parameter at the end of inflation, i.e. the begin-
ning of reheating, as discussed in Chapter 2. Besides, the second term in the square
brackets can actually be neglected due to the late time approximation Mt > 1, but
the third term should be kept because its contribution to the time derivative of H
is important. The time average of H gives (H ). = 2/(3t) which means that the
Universe is effectively matter-dominated in a time-averaged sense. Then the scale

factor can be solved easily as

2sin(Mt) N 8
3Mt 9Henat |

a(t) ~t*3 |1+ (3.107)
where the proportional factor has been removed for convenient since the absolute size
of a(t) has no physical meaning in the flat FLRW metric. Again the third term in
the square brackets can be neglected. As for Eq. (2.69), by redefining R — a*?R to
simplify the situation, it is easy to find that

R~ —4Mt *sin(Mt) , (3.108)

up to leading order. Therefore, similar to many single-field inflation models, the
inflaton degree of freedom oscillates after inflation and such oscillation induces particle

production to reheat the Universe. This oscillating scalar degree of freedom is nothing
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but the scalaron. The expression (3.108) can also be derived with H(¢) and a(t) found
above.

Consider some moment at late time t, > M~! after many scalaron oscillations
and some duration At = (¢ — tg) such that ty > At > M~'. Then, the Ricci scalar

and the scale factor can be further approximated as
AM
R(t) ~ - sin(Mt) ,
0

t)~1
alt) e

sin(Mt) | (3.109)

with proper normalization, and so the conformal time dn =~ dt. Since ¢ is small,
the time derivative of particle number density 7y which is important to obtain the
scalaron decay rate can be calculated in a perturbative way through Eq. (3.44). From
the approximation above, the product of source term in the time integration can be
written as

4t

iM (t1+t iM(t1—t —iM (t1—t —iM (t1+t
_9M—2t% [6 (t1+t2) —e (t1—t2) —e (t1—t2) +e (ta 2)] y (3110)

Sim)Si () =
where the complex form is used instead of trigonometric functions for calculation
convenience and m* = m2 + 3(§ + 1/6)M?. Combining with exp[—2iw(t; — t2)] in
Eq. (3.44), the time integration of terms with (2w, + M) in the exponent leads to Dirac
delta function 6(2wy, + M) that vanishes because wy > 0 and M > 0. Therefore, only
the terms with exp[—i(2wy — M)(t; — t5)] survive. As a result, the time derivative of

number density is calculated as

) 1 mi +o0 k2 —
n;((t) >~ %9M—2t%/0 dk————=6 (2wk - M)G (2w —M)t s

k? +m?2
- 1/2
_ Lot ) A (3.111)
2w 9M2¢2 M?2 ' '

Naturally, the time derivative of the energy density of scalaron is pn, >~ —Mng/2 ,
while the time-averaged background energy density can be approximated as (ppg)ave ~
4M? /(3t3), which gives the background decay rate as

pbg B 1 m4 ( _4mi)l/2 mX<<M\ 3 M3( 1

2
r co = = — — . (3.112
P T e STBMEZM N\ M 1603 \* 6) (3112)

As can be seen, the mass m, suppresses the decay rate and the decay channel is

forbidden for M < 2m,, . The reheating temperature for the case m, ~ 0, according
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to Eq. (3.52), is then

3 1 M\ 2
T. ~ 0.54, ] — (=) My, 3.113
Var (645) (o) 11

which coincides with the result calculated in Ref. [177,179]. For minimally coupled
case £ =0, T. ~ 10° GeV.

e Einstein frame All the subscripts “E” are omitted for convenience. Given the JF
action (3.103), it is easy to conformally transform to EF. The resulting action is just
the same as the EF action in the mixed Higgs-R? inflation model, i.e. Eq. (2.124),
except that h(t) is replaced by x(t,x) and the Higgs potential —\h*/4 by the mass
term —m?x*/2 . Moreover, during reheating, ap| < 1 is satisfied so small field
approximation for ¢ is valid, which directly results in ¢(t) o sin(Mt). In addition,
the coupling between  and x comes from the conformal factor in kinetic term and
mass term of x as well as the potential. Since m, < M, the leading contribution
from the potential is AL = EM?px?/(aM}) that, by repeating the procedure above,
yields

3 M3

= —— 3.114
16m M3 ( )

which is almost the same as Eq. (3.112) except for the 1/6. Actually, the coupling
through kinetic term gives the contribution of 1/6, which can be seen e.g. in Ref. [180].
This term will give dominant effect if |{| < 1. On the other hand, the decay rate
calculated here coincides with that in Eq. (3.47) as expected. Therefore, the pertur-
bative particle production in a time-dependent background can indeed be understood
as the quantum mechanical decay of the massive particles with zero momentum from
the coherent oscillation of background field.

Given the reheating temperature, the duration of inflation can be calculated.

Rewrite the e-fold number of inflation as

en M en T H
Niys = In (a d> —In (M) +ln (“ d) +ln (a—) +ln <—k) ,
ag k Ay o Mpl
aog My Ty (g0\"* M
—1 “ AN, +1In |22 (2 1 c ) | (3.115
n( k ) +nTr(9r) +n(2Mp1) (3.115)

where aeng = a(tend), o, and a, denote the scale factor at the end of inflation, present,

and the end of reheating, respectively, and k is the pivot scale while a; and Hy, ~ M,./2

are the corresponding scale factor and Hubble parameter such that k = a,Hy . The
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second term AN, represents the duration of reheating process in terms of e-fold
number. Here, it has been implicitly assumed that the thermalization after reheating
is realized within one Hubble time and the total entropy is conserved between the
end of thermalization and today. At present and the end of reheating, the effective
number of relativistic species are given by gy = 43/11 and g, = 106.75 , respectively,
with corresponding temperatures Ty ~ 2.7K as observed and T, (~ 10° GeV in the
Starobinsky model with minimally coupled scalar field). Furthermore, the pivot scale
is chosen to be k/ag = 0.002 Mpc™' as in Ref. [23]°. With the end of reheating
characterized by H =~ I'hs_ 4y, the duration of reheating can be found as AN, ~ 18 .

As a result, the e-fold number of inflation in the Starobinsky model is given by [54]
Ning >~ 54 . (3.116)

Since the reheating process is basically perturbative in the Starobinsky model
because the interaction is essentially gravitational, the reheating temperature is rel-
atively low and the duration is thus long, resulting in “short” inflation. This feature
provides one way to distinguish the Starobinsky model from other inflationary models

whose inflationary prediction is the same as the former, e.g. the Higgs inflation.

3.2.2 Reheating in Higgs Inflation

The reheating process in the Higgs inflation is rather non-trivial. One important
reason is that the SM Higgs field couples with all other SM fields, especially the
strong couplings with quarks and gauge bosons, which enables the Higgs field to
decay much more efficiently than the scalaron does in the Starobinsky model. The
traditional methods to study reheating in the Higgs inflation are carried out in earlier
works [31-33], where it is found that the resonant production of the transverse mode of
the weak gauge bosons is the dominant channel of reheating. However, it is recognized
later that the effective mass of the longitudinal mode of the gauge bosons shows
large spiky features contributed by the Higgs field velocity and acceleration due to
the presence of large non-minimal coupling £ ~ O(10%), which induces even more
efficient particle production that can complete reheating quickly [34,35]*". However,
the energy scale of these spikes actually exceeds the cutoff scale of the theory during
reheating, as mentioned earlier, which casts doubt on the validity or reliability of its

predictions.

40The AZ and ns — 1 were presented in Ref. [23] for k& = 0.05 Mpc™', so Ny o5 = Nint — 3.2 where
Nint is given in Eq. (3.116) for k = 0.002 Mpc ™.
41This phenomenon is also noticed in Refs. [113,181]. See comments in Ref. [34].
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In the following, the origin of such spikes is discussed in both JF and EF. Due to
the UV issue in this situation, it is ambiguous to investigate the subsequent reheating
process further, so such analysis is not presented in this thesis.

To study the behavior of the effective mass of the longitudinal mode of weak gauge
bosons and its production, it is straightforward to directly introduce the realistic
SU(2), x U(1)y gauge fields. However, for the present purpose and simplicity, it is
sufficient to study the case of a local U(1) gauge field because the most important
effect here holds true in the realistic case. Actually, it can be even simpler to just
investigate the phase direction of the Higgs field that serves as the Nambu-Goldstone
(NG) mode to constitute the longitudinal mode of the gauge field, but here the full
version of local U(1) case is shown for completeness. Therefore, consider the JF action
in Eq. (2.79) plus a local U(1) gauge field A, as follows

/d T/ —3q3 {(— + & |HSM| ) Ry — gSWD“”HgMD,,’HSM - A |HSM|4

1
09 FuF, } 7 (3.117)

where F, = 90,A, — 0,A, and D, = 0, —igaA, . This action is invariant under
the transformation A, — A, — 9,0 and Hegy — e~949% o\, where the field 0(t,x)
in phase direction of SM Higgs plays a role as NG mode. In the following discussion,
the unitary gauge Hsy = h/v/2 will be used as before.

e Jordan frame It is convenient to omit all the subscripts “J” in the present

discussion. In the Fourier space,

Au(x,t) = / (;:; e *A,(k, 1), (3.118)

the action for A, with the time-component A, eliminated by the constraint from its

equation of motion, then can be rewritten in two parts as follows

&k Ta a
Sap = /dt( 7 [SIAL = 2 (k2 +m3) |Arf] |

Bk [a m? a
SAL:/dzf,(%)3 [2k2 A | L|2—§m§1|ALP] , (3.119)

where m? = ¢g3h* and the spatial part of A, is decomposed into transverse and
longitudinal modes as A = Ar+kAyp/k . As can be seen above, the transverse mode

behaves just similarly as y in the previous section, but the longitudinal mode receives

contribution from the Higgs to the kinetic term. Defining fuc(t) = may/a/(k2 +m?) ,
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according to Example Three at the beginning of this chapter, the effective mass of

Ay, is modified when canonicalizing the kinetic term as

m%,eff = m124 - fnc/fnc 3 (3120)

where fnC / fae introduces time derivatives of m 4 in the effective mass, which is different
from the transverse mode case and plays an essential role to generate the large spikes.
It is not necessary to show the complete expression for mj . because the dominant
contribution can be found by analyzing the motion of h(t) during reheating. To see
that, it is better to take the small field limit &k, > my4, leading to

Jae 9 3 h

This expression can be further simplified by the equation of motion for h at back-

ground level derived from Eq. (3.117) as
h+3Hh—E&Rh+ AR® =0, (3.122)

from which it can be seen that £ > 1 induces a large effective mass £|R| > H? for the
Higgs field such that it oscillates rapidly after inflation. Replacing A in Eq. (3.121)
with Eq. (3.122), it becomes

fre 9

3.
— —“H?-"H-— \h? 12
. — 1 i ¢ER+ , (3.123)

where, focusing on the regime of zero-crossing of h(t), the dominant contribution
comes from the third term with £ > 1. Therefore, a significant enhancement appears
due to the presence of large non-minimal coupling, which can also be understood
as an enhancement to the velocity and acceleration of Higgs around zero-crossing
in Eq. (3.122). Consequently, the effective mass of the longitudinal mode of gauge
field becomes spiky, inducing extremely efficient particle production. One example is

shown in Fig. 3.4.

e Einstein frame The same phenomenon can be found in EF. The only difference is
that m? is divided by a conformal factor, which does not alter the main conclusion.
Since the calculation is (almost) the same as above [34], it will be omitted here to
avoid redundancy. It can be estimated that the amplitude of the spike in the effective

mass of the longitudinal mode of the gauge field at the beginning of preheating is

my, = Aty ~ VM, (3.124)

86



1.50 ‘ ‘ ‘ ‘ ‘ ‘ 1.2}

1.0¢
1.0 N
§_ < 0.8
= 05 /\ EOG*
= x 0.
o~ un
S 00 S 04

-05 U \ 0.2¢
0.0}

20 30 40 50 60 70 80 20 30 40 5 60 70 80
Mytx107* Mytx107

Figure 3.4: One example of the JF dynamics during reheating in the Higgs inflation
with (§,\) = (4000,0.01). Left: h oscillates rapidly, especially around the zero-
crossing. Right: ¢|R| shows large spikes at the moments that coincide with the
zero-crossing points of h .

which is much larger than the cutoff scale of the theory [34]. This phenomenon is true
in either frame. The origin is £ > 1 which, in JF, is the large non-minimal coupling
of Higgs to gravity while, in EF, modifies the structure of the kinetic term of Higgs.
Fortunately, the physics are identical, connected by the conformal transformation [62,
63] introduced in Sec. 2.2.

If a spike of such a large scale does not spoil the validity of the theory, it certainly
induces extremely violent particle production, exciting particles with momentum ~
msp that contribute most of the energy density of produced particles. As a result, the
energy density of produced Ay, can be roughly estimated as pa, ~ mg, ~ \2M;; which
is much larger than the inflation scale ~ MZM?2 if X is non-critical. Consequently,
it is argued that the particle production process caused by the spikes can deplete
the inflaton energy within just one Higgs oscillation and complete preheating [34].
Of course, the thermalization and the backreaction are not taken into account in
the consideration. A numerical study should be involved to have a comprehensive
understanding. However, such a large scale is indeed likely to ruin the reliability
of the theory, which strongly implies that a UV-extended theory is desired to give
unambiguous observational predictions on inflation and reheating. In this sense, it
is well-motivated to consider the UV-extended model, the mixed Higgs-R? inflation
model, because, as explained in the previous chapter, its cutoff scale is pushed up
to Planck scale by R? and, as will be shown in next chapter, the spike scale will be
largely lowered also by R?, which ensures the validity of the theoretical predictions

in this model.

This chapter has reviewed the theory of particle production in a time-dependent
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background and its application to reheating in two promising single-field models in
order for the preparation of discussion about the reheating process in the mixed Higgs-
R? inflation model as the main topic in this thesis. Generally speaking, the effects of
non-trivial background dynamics can be understood in a unified manner as a time-
varying effective mass of the target fields as in Eq. (3.1), including a general curved
spacetime, a homogeneous field, and a non-canonical kinetic term, which can be
encountered in various inflationary models. A time-dependent effective mass indicates
that the vacuum state of the target field is not unique, and the positive- and negative-
frequency modes are mixed, especially when the time-dependence is non-adiabatic,
to which the particle production is attributed. According to the type and size of
couplings, the particle production processes can be categorized into perturbative and
non-perturbative ones. The former is treated with perturbation theory and is able
to recover the result calculated in quantum field theory. The latter is governed by
the Mathieu equation and can further be classified into narrow resonance, broad
resonance, and tachyonic instability.

In the two inflationary models considered here, the Starobinsky model and the
Higgs inflation, the inflaton degree of freedom coherently oscillates after the end of
inflation, inducing particle production to reheat the Universe. In the former, the
reheating process is mainly perturbative, and the reheating temperature is relatively
low. In the latter case, the large non-minimal coupling leads to the peculiar behavior
of Higgs during reheating, i.e. sharp transitions at each zero-crossing. As a result,
the effective mass of the longitudinal mode of gauge fields is greatly enhanced and
shows large spikes, inducing extremely violent particle production that can complete
preheating rapidly. However, such reheating process and its predictions are ambiguous
and questionable due to the UV issue resulted from the low cutoff scale and large spiky
mass of the longitudinal mode of gauge fields. Since the spike scale exceeds the cutoff
of the theory, it is difficult to ensure its validity. Therefore, a UV-extended Higgs
inflation is desired from this point of view.

The mixed Higgs-R? inflation model can be an excellent candidate as the UV-
extension of Higgs inflation. One of the most important reasons is that the cutoff
scale is lifted to M, thanks to the presence of the R? term. And the inflation dynamics
in this model can be understood as an effective Starobinsky model or effective Higgs
inflation, so it is favored by the current observation. However, this is not enough
for a successful inflation model. The reheating process should also be investigated

carefully in order to ultimately settle down the UV issue and improve the observa-
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tional constraints, which is the main subject of this thesis and will be discussed in

the following chapter based on the original works [41,51,53].
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Chapter 4

Reheating in Mixed Higgs-R?
Inflation Model

The mixed Higgs-R? inflation model, as a UV-extended candidate of the Higgs infla-
tion, shows improved UV properties while keeping the observationally favored infla-
tion predictions [36—40,42], which strongly motivates the investigation of the reheating
process after the mixed Higgs-R? inflation which provides the initial conditions for
the Hot Big Bang in this model. The main purpose is to carefully examine the pos-
sible existence of unwanted UV issues during reheating as in the Higgs inflation [34],
and to clarify the ambiguity in the inflation predictions due to the uncertainty in
reheating so that the observational constraints on the broad parameter space in this
model can be improved, through which the degeneracy between the two-field model
and its single-field limits can be broken. The discussion here focuses on parameters
outside the strongly-coupled regime in Fig. 2.1, i.e. with condition (2.121) satisfied.
As will be shown shortly, the effective single-field description of the model is no
longer valid during reheating. The multi-field dynamics of the two scalar degrees of
freedom becomes crucial to determine the evolution of the system, which leads to
rich reheating phenomena but great complication, especially at the bifurcation point
around the global minimum (¢, h) = (0,0) in the potential (see Fig. 2.2). Based
on the original works [41,51, 53], different stages of reheating with different model
parameters will be discussed in detail*?>. The first stage of preheating involves the
spiky features in the effective mass of the longitudinal mode of gauge bosons. It can
be analytically shown that the energy scale of those spikes is largely weakened by the
multi-field dynamics in the presence of R? so that the particle production associated
with this phenomenon becomes inefficient to have significant effects during preheat-

ing [41]. There are two possibilities for the subsequent evolution, the occurrence of

42Preheating process in similar models is studied in, e.g. Ref. [182].
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tachyonic preheating that can complete preheating almost instantaneously [50-52],
and perturbative reheating that plays an essential role if the tachyonic instability is
inefficient enough or simply absent [53]. The conditions for efficient tachyonic pre-
heating are derived, and the reheating temperature for different model parameters in
both cases is found, which is done by combining analytical and numerical methods.
In these studies, the backreaction from the produced particles to the background
dynamics is not considered because the analysis is mainly analytical while sophisti-
cated numerical computation is needed to consider the non-linear effects consistently.
Nevertheless, the study is limited to the regime where the backreaction is not im-
portant and the analytical results have clear physical meaning for understanding the
situation. Therefore, the phrase “complete preheating” used hereafter means that the
energy density of the produced particles during preheating becomes comparable with
that of background, instead of completely depleting the energy of inflaton. More
detail will be discussed in the corresponding section. Another concern may be re-
lated to the renormalization group running of the model parameters, such as A\ and
the neglected Higgs mass. Especially, as shown in Ref. [135], the Higgs mass may
become as large as ~ M, /¢ at inflation scale, which may have non-trivial effects on
the current results. However, it is not the case, as can be seen in the clear analysis
in the same Ref. [135].

The chapter is constructed as follows. At the beginning of each discussion, the
background dynamics for the corresponding stage are analyzed, which constitutes the
basis of subsequent investigation on reheating. The behavior of spiky features in the
effective mass of NG mode is clarified in Sec. 4.1, proving that the single-field UV
issue disappears in the mixed Higgs-R? inflation model. In Sec. 4.2, a comprehensive
analytical investigation together with numerical calculation of the tachyonic preheat-
ing in this model is presented, including the conditions for occurrence, efficiency, and
the necessary degree of fine-tuning. Finally, in Sec. 4.3, perturbative reheating is dis-
cussed in the case where the tachyonic instability is unable to complete preheating,

determining the final reheating temperature and duration.

4.1 First Stage of Preheating

Similar to the Higgs inflation case [34], at the first stage of preheating in the mixed
Higgs- R? inflation model, the particle production is induced by the spikes exhibited in
the effective mass of the phase direction of Higgs (or the NG mode) that constitutes

92



the longitudinal mode of gauge bosons. In the single-field case, due to the large non-
minimal coupling £ > 1, the mass scale of the spikes ~ \/XMPI is much higher than
the cutoff scale of the theory ~ M, /¢ , which is considered out of quantum mechanical
control and the perturbation theory is expected to fail. However, with the inclusion
of R? term, the situation is shown analytically and numerically to change significantly
by the multi-field nature, i.e. considerable reduction of the spike scale [41]. On the
one hand, this result confirms that the UV issue in the single-field case no longer
exists in this UV-extended model, while on the other hand, it proves that the spike
preheating is far from sufficient to complete preheating. Other reheating mechanisms,
therefore, are needed to reheat the Universe after mixed Higgs-R? inflation.

The analysis below focuses on the global U(1) Higgs which is sufficient for the
present purpose, but it is expected that the conclusion remains unchanged for the

fully gauged SU(2), x U(1)y case. Therefore, the “Higgs” field is written in the form
Hem(t,x) = h(t)e X /\/2 | (4.1)

in the action (2.118) where the NG mode 6,(,x) is treated as perturbation. In order
to study quantum creation of this NG mode due to the spikes, the main goal is then
to find out the behavior of its effective mass.

e Jordan frame Here, all the subscripts “J” for JF are omitted for simplicity. With
Eq. (4.1), the relevant part of the Lagrangian in JF reads

1 1 fue

— _1 — 12 v _ 1 12 2 2
V—9L D 2\/ gh”g""0,0,0,0), = 296 52 (VO.)* + 2fncec , (4.2)
where the canonical field 6. and f,.(t) are defined as
0.(t,x) = a®*(t)h(t)0h(t,X) = fac(t)On(t,%) (4.3)

in the flat FLRW background, which is a special case of Example Three at the be-
ginning in Chapter 3. As a result, the effective mass of the canonicalized NG mode
is given by

2 _ & _ 9. 3

-~ Ven
= =——H —H ’
e T T T SR

where the equation of motion for Higgs has been used for simplification and the
effective potential Vi is given in Eq. (2.127). In the last estimation, the dominant
contribution is easily found to be in the same form as the single-field case with £ > 1.
Therefore, it is important to understand the background evolution of R(t) in the two-
field case which is determined by Egs. (2.125) and (2.126).
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Figure 4.1: One example of the first oscillation of (R (left) and h (right) after the
end of the mixed Higgs-R? inflation in JF with (£, \) = (4000, 0.01). Compared with
the single-field case, the shape zero-crossing of Higgs is replaced by a series of small
oscillations around the origin.

Analogous to the single-field case, the spikes are expected to appear whenever h
approaches a zero-crossing point. One example of the evolution of ¢ R and h in their
first oscillation after the end of the mixed Higgs-R? inflation is shown in Fig. 4.1,
which shows that the accelerated transition of Higgs around A ~ 0 in the single-field
case becomes several small oscillations at the origin due to the presence of R?. This
observation allows analytical calculation of the behavior of Ricci scalar and Higgs
with simple approximation. More importantly, the left panel of Fig. 4.1 shows much
regular behavior of R(t) with much smaller amplitude than that in Fig. 3.4, which
implies that the spiky features in mgc must be weakened significantly. To be specific,

Eq. (2.126) can be written in the following form when h ~ hyy =0
~OR+ M?R~0, (4.5)

where the energy of Higgs is appropriately assumed to be negligible during the small
oscillations around the origin, which indicates that R(t) is actually a harmonic oscil-
lator with frequency M in this period instead of M, i.e. R(t) o sin(Mt) regardless of
the cosmic expansion within the first oscillation. The amplitude of this oscillator is
then essential for the determination of the spike scale of mgc. The simplest way to do
that is to trace the energy of the system. Since the energy of Higgs at this moment is
negligible, the total energy is naturally dominated by the scalaron oscillation because
there has not been any particle production at this stage. The energy loss compared
with the beginning of inflation is simply due to the Hubble friction, which can be

assumed to be an undetermined constant coefficient
pr = O pint (4.6)
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where (' can be fixed by fitting the numerical calculation. This task is left to the

discussion in EF in the following.

e Einstein frame All subscripts “E” will be omitted for convenience. Since the
Higgs field remains unchanged in the conformal transformation (2.122), the relevant
part of the Lagrangian in EF can be obtained simply by inserting h — he®* into the
action (2.124), which leads to

1&92

1 1. 1
— o mapp2 uv —_p2 _ 2 L.
vV—9L D 2\/ ge”“¥h7g""0,0,0,0 296 52 (VO.)" + I -+ , o (4.7)
where the canonical field 6.(t,x) and f,.(t) are defined as
0.(t,x) = a®*(t)e PO2h ()0, (t,X) = fac(t)On(t,%) . (4.8)

As can be seen, the only difference from the case in JF is that the conformal factor
in Eq. (2.122) enters the definition of f,.(¢). Similarly, the effective mass of the NG
mode is easily read off as

s fuel?) o eo? 3U 5 1

() B R A S Ve A TR V7

where the background equations (C.6), (C.7), and (C.8) in Appendix C have been

used to simplify the situation. While the last two terms are always of the order of the

(¢2+e—wh2> . (49)

Hubble parameter, the first two terms can be much larger ~ £ M? when the scalar field
trajectory deviates from the valley (2.145). Again, the detailed evolution of scalaron
and Higgs is essential to determine the properties of mgc so the background analysis
in EF is necessary for the study to proceed.

In EF, the two scalar degrees of freedom for inflaton become more explicit as in the
action (2.124). The effective single field description breaks down during reheating;
therefore, the full equations of motion for ¢ and h shown in Appendix C should
be taken into account. Given Egs. (C.6), (C.7), and (C.8), it can be seen that the
system is highly complicated due to the couplings between scalaron and Higgs, so
numerical results may be needed to gain an intuition of the dynamics for analytical
understanding. Figures 4.3 exhibit typical examples of evolution of A (top panels) and
¢ (bottom panels) for three benchmark points shown in Fig. 4.2 which are specifically

chosen as:
(A) £/€ ~0.9996, M./M ~0.0282 <« £ =§& ~4439, M, /M ~2.17 x 103,
(B) &/&.~0.9975, M./M ~0.0709 <« £ = 4430, Mpl/M ~ 5.45 x 103,
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Figure 4.2: Parameter space for the mixed Higgs-R? inflation model with A = 0.01.
The black points (A), (B), and (C) along the blue line represent three benchmark
points chosen for examples of the evolution of ¢ and h in Figs. 4.3 and 4.4, while
all five parameter points (three black and two gray) are for the numerical fitting in
Fig. 4.5.

(C) £/& ~0.9208, M,/M ~ 039 < &~ 4089, My /M =3 x 104,

which satisfy the observational constraint (2.137). Note that parameter point (A) lies
on the boundary to the strongly-coupled regime. The initial condition for Figs. 4.3
is just before the end of inflation as ¢ = 1.2M,,, ¢ = 0, while h satisfies OU /Oh = 0
and h = 0 at ¢t = 0, but it has been confirmed that the results remain unchanged if
larger number of e-folds before the end of inflation is taken. As shown in Figs. 4.3, the
scalar fields are once trapped in the only narrow valley for ¢ < 0 with the time scale
~ M~ and the h field oscillates rapidly with the effective mass squared ~ ap|EM?
around the streamline h,y = 0 at the bottom of the valley. The frequency of the
Higgs field can be very large if afp| ~ 1. Figures 4.4 show the time evolution of mj,
for our benchmark parameters (A), (B), and (C). It is straightforward to see that
the effective mass gets larger when ¢ gets negative and, at the same time, h ~ 0.
Also, more or less, the spiky shape still appears even in the case where the R? term
is present. However, the amplitude and width are obviously different from the single-
field case. It can be observed that the height of the spikes gets lower and their width
gets wider as M (or ) decreases, i.e. more R*-like case. This is natural because
no spikes should be expected in the R2limit. More specifically, the heights and the

widths of the spikes for all five parameter points in Fig. 4.2 are shown as a function
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Figure 4.3: Time evolution of the Higgs field i (top) and scalaron ¢ (bottom) for the
parameter points (A) (left), (B) (middle), and (C) (right) with A = 0.01. See Fig. 4.2
for the three parameter points.
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Figure 4.4: Time evolution of the effective mass squared for the phase direction mgc
for the parameter points (A) (left), (B) (middle), and (C) (right) with A = 0.01. The
top panels show the evolution over the full time range shown in Figs. 4.3, while the
bottom panels are magnifications of the top panels around the first peak.
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Figure 4.5: Peak amplitude and timescale of the spike in the effective mass squared
mg, at the first oscillation after the end of mixed Higgs-R? inflation. The green
triangles and the red disks are the numerically obtained peak amplitude and timescale
of the mass spike, respectively, while the brown dashed line and the blue solid line
are analytic estimates (4.17) and (4.18) with C} ~ 0.25 and Cy ~ 2 .

of M in Fig. 4.5, under the observational constraint (2.137). The width of the spikes
is defined as the full width at half maximum. Therefore, the numerical results show
that the spikes become more “spiky” as the system becomes more Higgs-like, but even
at the boundary & = &, of the strongly-coupled regime, the amplitude of the spike is
largely weakened compared with the one in the Higgs inflation.

With the observation above, the analytical understanding of the behavior of the
spikes can be easily found with appropriate approximation as follows. During infla-
tion, the energy density of the Universe is dominated by the potential in Eq. (2.124).
With the effective single-field condition, i.e. the valley for ¢ > 0 given in the lower
of Eq. (2.145), the asymptotic potential height for ap > 1 is then

Uit = 3MAM? /4 . (4.10)

On the other hand, small field approximation is valid during reheating, i.e. a|¢| < 1,
which greatly simplifies the potential U(p, h) by expanding it around the origin

2
A, 1 £h?
pl

Focusing on the regime ¢ < 0 where the spikes appear, there is only one minimum

along hyo = 0 as shown in Eq. (2.146) and Fig. 2.2, where the potential is

U, h=0)=U(p) = M*p*/2 (4.12)
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which leads to the mass of the scalaron around the valley

m2 = M? . (4.13)

®

Therefore, the scalaron field, as is also shown previously in the analysis in JF, behaves
simply as a harmonic oscillator with mass M in this regime, which helps to estimate
the duration of ¢ < 0 regime, or equivalently, the width of the spikes. Since the po-
tential energy also dominates the kinetic one when ¢ field climbs up the valley during
¢ < 0 and reaches its maximal amplitude ¢ = ¢; < 0, the potential energy (4.12) at

the first oscillation can be related to Uy, in the following way
Uo((pl) = C%Uinf s (4.14)

which yields

CM C AV 4.15
aler| = 197 — 3ENC + MM, (4.15)

Here C; < 1 represents the dissipation of the potential energy from the plateau region
during inflation to ¢ reaching the largest negative value ¢, after a half oscillation.
With the relation shown above, the maximal amplitude of the effective mass mgc,

which corresponds to the height of spikes, can be estimated at the point (p,h) =
(p1,0) as

o2 o | Crge )M CF (M
(mg’)” ~ M 2(6€+1)M 6\ 27 : (4.16)

where, as can be checked, the dominant contribution comes from the second term
in Bq. (4.9) for € > 1. For larger M(> VAM,/€), this result gives (mZ"c’)2 o~
CiV3AM M. Note that in this expression for sufficiently large M ~ \/XMPI and
£ > & for which the single-field Higgs inflation approximation gets better, the
formula in the Higgs inflation case is recovered (mzlzf ~ \/§C'1/\]\/[§1 [34], which is
consistent with the explanation in Chapter 2 that the Higgs inflation actually enters
the strongly-coupled regime in Fig. 2.1. Taking the observational constraint (2.137)

into account, Eq. (4.16) becomes
(miP)?* = C1\/3A(M? — M2) My, (4.17)

for £ > 1. In the Higgs-like regime, M > M, so the spikes may be large, while in
the R2-like regime, M ~ M, which suppresses the height of the spikes. As mentioned

43These parameters obviously do not respect the perturbativity condition Eq. (2.121).
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above, the duration of the first spike is determined by the period when the scalaron
stays in the ¢ < 0 regime, i.e. ~ M~ . Therefore, the width of the spikes can be

simply estimated as
Aty, = C;M™. (4.18)

Again, the formula for the Higgs inflation Atg, ~ (\/XMPI)*1 can be recovered at
M ~ \/XMpl when the single-field Higgs inflation approximation gets better. Note
that Eqgs. (4.16) and (4.18) are not valid any more when M significantly exceeds the
spike timescale inverse in the Higgs inflation case M > \/XMpl. Also in Fig. 4.5, the
analytical estimates (4.17) and (4.18) are shown with C; ~ 0.25 and C; ~ 2 fitted
with the measured peak amplitude and timescale of the spikes. The green triangles
and the red disks are the values of the amplitude and the timescale estimated from
the numerical time evolution, respectively, while the brown dashed line and the blue
solid line are the predictions of the analytic estimates (4.17) and (4.18), respectively.
It can be seen that the numerical results coincide with the analytic estimates well. A
rough estimate of C; could help to understand the fitted value. For the single-field
Higgs- or R*-inflation, the potential shape becomes o (1 —e~%)2. Thus, the slow-roll
condition max{|e;|, |ez|} < 1 breaks down at the moment e~*% = 2v/3 — 3 when the
inflaton potential energy is ~ 0.287 times its value at the plateau. This value is just
close to ~ 0.25 found previously, so it is expected that similar physical picture applies
in the two field case.

As a result, the height of the spike shown in Eq. (4.17) can no longer exceed the
cutoff scale of the theory ~ M, in the mixed Higgs-R? inflation model, which further
confirms that this two-field model is free from the UV issues encountered in the Higgs
inflation and serves as a promising UV-extension candidate of the latter.

Having the analytical behavior of the first spike in mj_after the end of the mixed
Higgs-R? inflation, the estimation of particle production induced by such a spike
becomes possible, which is essential to examine the efficiency of this preheating chan-
nel. Particle production from subsequent oscillations is neglected because the main
interest lies in the effect of the strongest spike that appears in the single-field Higgs
inflation.

For the estimate of particle production from non-adiabatic change of effective
mass, the technique introduced in Chapter 3 can be used. Specifically in the case
of a strong spike which is like Dirac delta function, a special point is that there is a
jump in the junction conditions for the first-order derivative of mode functions, just

as solving the Schrodinger equation with a delta potential. The main goal is still to
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find the Bogoliubov coefficient [, that is directly related to the occupation number
of produced particles with momentum k. The general results for such a case can be
found in the Appendix C of Ref. [183]. If the strong spike is described by the following
cosh-type spike function

m2 (1) = m 1
G 2At cosh®(t/At)

(4.19)

and the produced field is in the vacuum for ¢ — —oo, its number density after the

spike is then given by

3
ng, = / % fo., fo, = cos® (g\/l + 2mAt> /sinh2(7rkAt) : (4.20)

Since the full width at half maximum is used to estimate Atg,, it may be identified
as Atg, = At x 2In(v/2+1). With (m?z)z ~ m/(2At), the energy density of the
produced phase direction can be approximately calculated as

A3k

ga (O
o, ™ /W kfo, ~ 4.5 x 107°At ) ~ 2.8 x 107" (é) M* (4.21)

where the cosine-squared in the numerator of Eq. (4.20) to be 0.5.%* The estimate
(4.21) is in agreement with the general result for particle creation in cosmology ob-
tained in Ref. [159] and with more detailed expression for the rate of particle creation
in Ref. [172]. In particular, the particle production efficiency should reach maximum
at the boundary to the strongly-coupled condition M ~ \/MJ\;[ , giving the energy
density

AN\ 2/t - AN/t -
po, ~ 4.5 x 102 <001) (;) M*~76x1078 (001> <2t> MM3, (4.22)

which is much smaller than the energy density carried by the inflaton just after the
end of inflation pyy ~ Upnr = 3M§1M 2/4. For smaller M, the energy density of the
phase direction becomes even smaller. Note that this discussion does not rely on
the observational condition (2.137). Therefore it can be concluded that, even when
R? term is added so that the cutoff scale of the theory becomes M, the spike still
appears and is a real physical phenomenon, but the preheating of the Universe does

not complete with the production of the NG bosons from a single spike.

Investigation of the effective mass of the NG mode for the mixed Higgs-R? in-

flation model based on Ref. [41] is presented above, finding that the effective mass

441y fact, for M > M, the parameter dependence mAt ~ (mZ‘Z)z (Atsp)2 o< Mpi/M makes the
argument of the cosine function much larger than unity.
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exhibits spikes over the preheating process as in the Higgs inflation [34]. The re-
markable difference is that the cutoff scale of this UV-extended model is lifted to
M, thanks to the scalaron originated from the R? term, while the energy scale of
the spike (my)? is substantially suppressed and well below the cutoff as found pre-
viously, contrary to the case of the Higgs inflation, which ensures the reliability of
the theoretical predictions in this model. The properties of the spikes are well de-
scribed by the analytic formula (4.17) and (4.18) which shows that the amplitude
of the spikes becomes lower and the width becomes larger when the model is more
R2-like. Conversely, the spike is higher and sharper when the system approaches the
Higgs-limit. The model is healthy even at the boundary & = £, and the properties of
the spikes in the Higgs inflation are recovered once the parameter is deep inside the
strongly-coupled regime. Therefore, the spiky behavior of the NG mode is concluded
as a genuine physical phenomenon associated with the production of the longitudinal
mode of gauge bosons.

According to the estimation in Eq. (4.20), even in the extreme case with the pa-
rameters being on the boundary to the strongly-coupled regime, the produced energy
density of NG boson is much smaller than the total energy density of the Universe.
Thus, the reheating cannot be completed within only one spike (see Eq. (4.22)). This
conclusion is sharply distinct from the one in the Higgs inflation. Although the anal-
ysis is given for the global U(1) scalar Hgy, it is expected that the conclusion remains
unchanged for the realistic SU(2), x U(1)y case. As a result, as will be shown later,
the subsequent evolution of the Universe with other reheating mechanisms such as
tachyonic instability [50-52] and perturbative decay of the scalaron and Higgs [53]
should be the main channel of the depletion of the inflaton quanta. Similar analysis

can be done in other UV-extension models of the Higgs inflation.

4.2 Occurrence of Tachyonic Preheating

Despite the close relation with the Higgs inflation, the preheating mechanisms are
surprisingly different in the mixed Higgs-R? inflation model. In the Higgs inflation,
reheating is driven by the post-inflationary oscillation of the SM Higgs field. More
specifically, the oscillation with large non-minimal coupling £ > 1 induces high spikes
in the effective mass of the longitudinal modes of weak gauge bosons [34] as shown in
the previous chapter, which may complete reheating exceptionally quickly regardless
of the possible UV issues. This phenomenon occurs before the resonant production of

the transverse mode of weak gauge bosons studied in earlier works [31-33]. However,
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as shown previously, the multi-field dynamics in the mixed Higgs-R? inflation model
essentially changes such a situation, largely weakening the violent particle production
induced by spikes. Thus, the conclusion for spike preheating no longer holds [41],
which can be seen in the analytical results of the energy density of produced particles
in Eq. (4.22). At the same time, the UV issue in the Higgs inflation is completely
avoided because of the hierarchy between the cutoff ~ M, and the spike scale in
Eq. (4.17).

The inefficiency of such spike preheating in the mixed Higgs-R? inflation model
naturally suggests the necessity to identify the dominant process for the completion
of reheating in subsequent evolution. Soon after the work [41], Bezrukov et al. [50]
numerically showed that, with some special choices of model parameters in the Higgs-
like regime, the preheating in this model could be completed by tachyonic instability
of the (physical) Higgs field and the longitudinal modes of weak gauge bosons right
after the first stage mentioned above. The shape of the two-dimensional potential of
the (physical) Higgs field h and the scalaron ¢ consists of the two potential valleys in
¢ > 0 regime where inflation takes place and the potential hill between them at h = 0,
as seen in Fig. 2.2, forming a bifurcation point. If appropriate model parameters are
chosen, the system can climb up the potential hill around h = 0 during the oscillations
of ¢ around the origin. As a result, the dynamics of the background fields at reheating
as a whole becomes chaotic in the sense introduced in Ref. [184] (see also Ref. [185]).
Also, the Higgs field, as well as the longitudinal modes of gauge bosons, are tachyonic
in this regime*. Thus, tachyonic preheating can take place®®, and it is indeed found
to be strong enough to complete preheating at some parameter points in Ref. [50].
This possibility is intriguing, but it is not quantitatively clear which choices of model
parameters allow this tachyonic preheating and how much fine-tuning is needed among
them until a deeper understanding of this physical picture is obtained in Ref. [51].

On the other hand, such a two-dimensional potential shape (e.g. in Fig. 2.2)
may raise some subtleties in the following study, which should be clarified before
proceeding to the detailed discussion of tachyonic preheating. In order to focus on
the dynamics of the physical Higgs field, a simplified model is adopted, taking it as a
real singlet field h. As mentioned above, this toy model apparently shows two distinct

trajectories along the valleys of the scalar potential in the regime ¢ > 0. It is then

45 Actually, the tachyonic effect exists even if the inflaton cannot climb up the hill exactly, as
already see in Fig. 4.4 where mzc oscillates between positive and negative values in ¢ > 0 regime.

46Tachyonic preheating was first studied in theories with spontaneous symmetry breaking [18-20].
Tachyonic instability for the spectator field can also be induced by large field space curvature, see,
e.g. Ref. [186].
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natural to see that this model gives rise to domain walls in the Higgs direction during
or after inflation. However, these domain walls are just temporary instead of being
static as in a singlet scalar field theory with a double-well potential and will disappear
in the flat spacetime limit when ¢ — 0. They vanish even during reheating when
scalaron enters the negative regime ¢ < 0. Note also that the realistic SM Higgs field
does not yield any domain walls either.

Another important point that needs clarifying is that the backreaction from pro-
duced particles to the background fields is not taken into account in the following
semi-analytical investigation, which is the main limitation of the present study. Nev-
ertheless, the study here focuses on the first scalaron oscillation, right after the first
stage of preheating in the previous section, when the tachyonic instability is expected
to be the strongest and extremely efficient channel of particle production, so that the
backreaction can be neglected temporarily. As pointed out in Ref. [50] and shown

47 even if the model parameters do not

later in the lattice simulation in Ref. [52]
allow tachyonic preheating at the first scalaron oscillation, tachyonic instability can
still be effective at subsequent oscillations. In such cases, the backreaction of pro-
duced particles on the background scalar field dynamics can be important, and the
simplified treatment in the present discussion is not directly applicable. Furthermore,
in this section, the preheating is completed if the energy density of produced particles
becomes comparable to the background energy density because the thermalization of
the produced particles and the transition of the Universe to the radiation-dominated
stage without late-time scalar field (re)domination is not investigated.

In the following, the instability of the physical Higgs field is analyzed with both
analytical and numerical methods. Firstly, the conditions on model parameters with
which the tachyonic effect is prominent are found and serve as the critical ingredient
for the subsequent discussion. Secondly, based on these parameter choices, the effi-
ciency of the tachyonic instability is analyzed, and calculation of the energy density
of produced particles is presented, which is necessary for the estimate of the degree of
fine-tuning needed to complete preheating solely by the tachyonic instability in the
last part of the discussion.

This discussion can be carried out in either JF or EF, but as will be briefly shown
shortly, the analysis in two frames is somewhat the same in a trivial way because
most attention is drawn to the regime h ~ 0.

e Jordan frame Here, the subscripts “J” are omitted for convenience. As in Sec. 4.1,

the equation of motion for R(t) is given as Eq. (4.5). Therefore, the behavior of the

4TRef. [52] showed up on arXiv on the same day as Ref. [51]. The results are not in conflict.
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Ricci scalar is straightforward R(t) o sin(Mt) where the cosmic expansion can be
safely neglected within one oscillation. This simple form not only holds for R(t) < 0
as previously but for the case of interest here because h ~ 0 on the hill where the
strongest tachyonic instability occurs. As a result, the equation of motion for the

physical Higgs field is the same as Eq. (3.122) or approximately
h+3Hh—E(Rh~0 (4.23)

where higher-order terms in h are neglected. The effective mass —£R(t) is ordinary
during R(t) < 0 but obviously becomes tachyonic when R(t) > 0, which is the very
origin of the tachyonic instability in the Higgs field. Recalling Eq. (4.4), the dominant
contribution to the effective mass of the NG mode takes exactly the same form,
indicating that comparable strength of tachyonic instability should also be found in
the longitudinal mode of weak gauge bosons. This will be discussed in more detail
later.

As mentioned above, the situation described here is trivially the same as that
in EF, which can be easily seen in the definition of ¢ in the conformal transforma-
tion (2.123). Explicitly, it can be rewritten as

R £h?

ap 14 S
e +3M2+M§1’

(4.24)
where the last term on the right hand side can be dropped if h ~ 0. Meanwhile, small
field || < 1 is good approximation during reheating, so e*? ~ 1 4+ ap. As a result,
a simple relation can be found R(t) ~ 3M2ap(t) in the situation considered here. In
other words, R(t) is basically equivalent to ¢(t) in EF, which is the reason why it is
said to be trivial.

Thus, it is sufficient to focus on the analysis in EF as follows.

e Einstein frame Subscripts “E” are all omitted for simplicity. In the post-
inflationary epoch, the effective single-field description is no longer viable and the sys-
tem obeys the Friedmann equation (C.6), the equations of motion for scalaron (C.7),
and the Higgs field (C.8). As mentioned previously, small field approximation is valid
so it is convenient to work on the simplified potential in Eq. (4.11). For ¢ > 0, the
potential is described by the valleys that are continued from the inflationary trajec-
tory and the hill at h = 0 between them. The valleys provide a relation between the
Higgs field and the scalaron through the lower of Eq. (2.145) as

h? = h2, ~ 3eM2ap/)\ | (4.25)
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where ap < 1 is used. The potential along the valley is then given by
Up, hye) = Uy () = MQSO/Q ) (4.26)

with the effective mass for the valley and the “isocurvature” mass (or the Higgs mass)
being
2 2 2 _ _ 2
my,, = Uspp = M, my =Upp, =6aéM7p . (4.27)

@V

On the contrary, if the scalar fields climb up the hill at A~ = 0 in the regime ¢ > 0,

the potential then becomes
U(p,h =0) = Unn(yp) = M*o* /2, (4.28)
which is the same as Up(p) in Eq. (4.12), and the masses are also given similarly
m2 = M?, m; = —3alM?p, (4.29)

where the latter is exactly the same as that in JF as expected, providing the source
of tachyonic instability since m? < 0. On the other hand, the behaviors of ¢ and h
in the regime ¢ < 0 are simply oscillating in the only one valley h,o = 0 with masses

given respectively as
m2 = M?, m; = 3aEM?|p| , (4.30)

which is partly shown in previous section.
These expressions are useful for the analytic estimate of the dynamics in the
preheating stage, which will be studied subsequently. Note that in both cases m3 >

m? holds for early reheating unless < 1.

4.2.1 Conditions for Tachyonic Instability

During inflation, the scalaron and the Higgs field slowly roll down the potential along
the valley described by the lower of Eq. (2.145) in ¢ > 0 regime driving the quasi-
exponential expansion of the Universe. After the end of inflation, the two fields
oscillate around the global minimum (¢, h) = (0,0) and start to reheat the Uni-
verse. At the first stage of preheating, scalaron ¢ climbs up the valley described by
Eq. (2.146) in ¢ < 0 regime while the Higgs h rapidly oscillates around its origin
with small amplitude. The spike preheating during this half-period of ¢ has already
been studied in Sec. 4.1, finding that the efficiency is negligible. After that, the scalar

fields come back to the global minimum and encounter the bifurcation point in the
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Higgs direction that gives the distinctive feature in the evolution of the system, as
seen in Fig. 2.2.

Without fine-tuning in the model parameters (which is referred to as “usual” cases
below), the two scalar fields again enter one of the valleys in ¢ > 0 regime with small
and rapid oscillations in the Higgs direction as pointed out in Ref. [41,139]"%. Tt is
easy to see from Eqs. (4.27) and (4.30) that ¢(t) is slowly oscillating around the origin
with two discrete frequencies M and M in the regimes ¢ < 0 and ¢ > 0, respectively.
This shows the hierarchy between the frequencies of scalaron and Higgs during the
oscillation period, as mentioned earlier.

Remarkably, as pointed out in Ref. [50], if the model parameter is chosen carefully,
the Higgs field can keep h ~ 0 when the scalaron evolves from negative to positive
field value, i.e. the inflaton climbs up the hill in ¢ > 0 regime. Consequently, the
Higgs field feels tachyonic instability during this period, which is the main topic
in this section. Note also that the Toda-Brumer necessary criterion [188,189] for
the appearance of classical global dynamical chaos in the background field evolution
det ||Unl|| < 0 is fulfilled in this regime.

Figures 4.6 show four examples of the field evolution obtained numerically. These
figures are obtained by solving the full homogeneous equations of motion and Fried-
mann equation without any small field approximation. The upper panels show a
realization of the “usual” cases. They clearly show that even when the inflation takes
place with h > 0, the Higgs field can develop both positive and negative field values
at the first oscillation of the scalaron during reheating. The lower panels show the
hill-climbing case with fine-tuning. In the most fine-tuned case, it is possible to climb
down to the origin A = 0 without falling into the potential valleys during the period
when ¢ > 0. In a less fine-tuned case, due to the tachyonic instability of the Higgs
field, the system falls into one of the potential valleys, and the Higgs field oscillates
with a relatively large amplitude. Figures 4.7 show the evolution of the mass squared
of the Higgs field in the cases of the lower panels in Figs. 4.6. They explicitly show
that the Higgs field is tachyonic during the hill-climbing epoch.

The derivation of the condition for hill-climbing is based on the observation of
Figs. 4.6. During the first scalaron oscillation in the regime ¢ < 0, the Higgs field
evolution can be characterized by the number of its oscillations around the origin
h = 0 and by its final phase when the scalaron comes back to the origin, which is
denoted as t = tenter,0- As the parameter £ or M changes continuously, the phase also

changes continuously. Exact hill-climbing occurs when the phase is close to a multiple

48Similar behaviors are also found in other models [187].
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Figure 4.6: Evolution of the scalaron (red) and the Higgs (black) in the post-
inflationary epoch. The parameters are chosen as A\ = 0.01 with observational con-
straint (2.137) satisfied. Upper left: £ = 4000. The Higgs enters the valley with pos-
itive Higgs field value. Upper right: £ = 4100. The Higgs enters the valley with neg-
ative Higgs field value. Lower left: £ ~ {y_g where &y is defined in Eq. (4.36). Higgs
stays on the “hill” during the whole period of ¢ > 0. Lower right: £ = {y—9(1 — ¢)
where € ~ O(107!2?). Higgs exits the tachyonic regime halfway. Note that in order
to obtain such fine-tuned evolution numerically, a 16-digit or more precision of & is
needed, but the values themselves do not have any meanings since other parameters
that are determined by observations do not have such a high precision.

of w. Therefore, the parameter is related to the number of oscillations of the Higgs
field during the period when ¢ < 0. The frequency (or mass) of the Higgs oscillation
and the time duration of the scalaron being in the regime ¢ < 0 can be estimated
with Eq. (4.30) as

~ 2 T = BagMp(t)] (4.31)
which is closely related to the width of spikes in the mass of the longitudinal mode

AtOSC

of the gauge bosons. Strictly speaking, the mass of the Higgs field during this period
is time-dependent, but here it is useful to introduce a numerical constant of order
of unity, Cp,,, to estimate the averaged Higgs mass during the part of its oscillation

when ¢ < 0 as

M, = M(360) (|0 (t)]*)ave = Cim, M(36aln])'? (4.32)
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Figure 4.7: Time evolution of the mass squared of the Higgs field mj; = Uy, (blue)
along with the Higgs field evolution (black). The parameters are the same as the
lower panels of Fig. 4.6. Left: Higgs field stays on the “hill” during the whole period
of ¢ > 0. Right: Higgs field exits the tachyonic regime halfway.

where the highest point at (< 0) after the first zero-crossing is given in Eq. (4.15).
As a result, the evaluation of the accumulated phase of the Higgs field oscillation
during this period is simply 7y Atese = 7Chy, (3C1EM /M)'/?. Then, it can be conjec-
tured that the exact hill-climbing of the scalaron after first oscillation happens when

the following condition is satisfied

Nr— A¢ = 1Chy \/3C1EM /M | (4.33)

where N € Z, represents of the number of half-oscillations of the Higgs field, and
A¢ < 7 is a small phase shift needed for the exact hill-climbing. Using Eq. (2.132)

and M = M,, the equation above can be rewritten as

) 1/4
N=22 ¢, a0 (1= 3 M) (4.34)
T A M3

A [ M, M2\

in terms of & and M, respectively. Then, £ can be solved in terms of N as

A M, 4 M2 Ap\*
=4/2 1ty 1 e (y 29
N \/g A \/ 3ACH, 22 (N -

where “+7 corresponds to the Higgs-like regime while “—

1/2

, (4.36)

7 the R2-like regime. Here-
after, parameters £y and the corresponding My (€y) (obtained through Eq. (2.137))
that can realize exact hill-climbing in the first scalaron oscillation are referred to as

the “critical parameters”. Introducing a new parameter  as

cos=¢/E., sinf=M/M, (0<60<m/2), (4.37)
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so that it satisfies Eq. (2.137), Eq. (4.34) can be rewritten as

sin(260) . (4.38)

Here 0 < 6 < 7w/4 covers the Higgs-like regime (including the non-perturbative
regime) whereas m/4 < 6 < 7/2 covers the R?-like regime. With this parameteriza-
tion, two regimes can be treated on the same footing. From Eq. (4.38), the maximal

number of the Higgs half-oscillations in the ¢ < 0 period is estimated as

Nmax = Umy, vV 30150/2 = 4Oth ) (439>

in either the Higgs-like and R%-like regime, that also corresponds to the number of
the exact hill-climbing cases in each regime.

With the help of these relations, all the parameters that realize the exact hill-
climbing can be found numerically. Figure 4.8 shows the parameter # and the cor-
responding number of Higgs half-oscillations during the ¢ < 0 period for the exact
hill-climbing. It is easy to see that Eq. (4.38) gives a qualitatively good explanation
on the appearance of the hill-climbing behavior. The maximal N is numerically found
to be Npax = 26, which is explained by taking C,,, ~ 0.64. Actually, for deep Higgs-
like regime M > M., Eq. (4.35) provides a surprisingly simple relation between the

consecutive parameters as
My/Myyi =~ (N +1)*/N? | (4.40)
while similarly, Eq. (4.34) leads to

En/Enpam N?/(N +1)%, (4.41)

for the parameters in deep R%like regime ¢ < &,. Therefore, once a critical parameter
is found, the next parameter value for exact hill-climbing can be identified easily
through these relations.

Note that would the cosmic expansion and coupling between the scalaron and
the Higgs field be neglected, so that scalaron oscillations become harmonic and
those of the Higgs field quasi-harmonic with the adiabatically changing frequency
mpu(t) o< |o(t)|*/2, an estimate of the numerical constant C,,, would be obtained as
Chy, =71 [ Vsina dz = 47~ /2T(3/4)/T(1/4) ~ 0.7628 - not a bad approximation.
However, the 6 parameters for the exact hill-climbing in Fig. 4.8 are calculated with

much greater precision.
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Figure 4.8: The value, N, of the number of the Higgs field half-oscillations during the
¢ < 0 period for each exact hill-climbing case. The black dots are critical parameters
in Higgs-like regime (Branch 1) and the red for R?-like (Branch 2). All the parameters
0 that realize the exact hill-climbing have their corresponding N. The blue line
represents the relation Eq. (4.38) with C,,,, = 0.64 and A¢ = 2.4.

In Fig. 4.8, the critical parameters for the exact hill-climbing present to be clas-
sified into two branches corresponding to the Higgs-like and R*-like regimes. They
will be referred to as Branch 1 and Branch 2, respectively. Accordingly, these critical
parameters will be labeled as 0% (or MY, &%) with i = 1,2 being the label for each
branch from now on. Based on the distribution of these parameters, it is also conve-
nient to describe the system with M3 (or (M3)~1) for Branch 1 and &% for Branch 2.
In Branch 1, as (M})™" increases, N goes from 1 to 26, and in Branch 2, as &%
increases, N goes from 1 to 26. In the former case, the small number of Higgs oscil-
lations for a smaller (My)~! is due to the small Aty.. In the latter case, the small
number of Higgs oscillations for a smaller €% results from the small m; even with
large Atqs.. Note that parameters with N < 8 in Branch 1 lie within the strongly-
coupled regime with Eq. (2.121) and will not be considered any further. So far, all the
parameter values that realize the exact hill-climbing have been found. By definition,
they lead to full tachyonic instability of the Higgs after the second zero-crossing of
. In the following, the efficiency of such instability is estimated and examined to
see whether preheating can be completed within the first scalaron oscillation solely
by this effect.

4.2.2 FEfficiency of Tachyonic Preheating

The calculation of the efficiency of the tachyonic instability in the exact hill-climbing
case is presented here to study the possibility of completing preheating by this phe-

nomenon. Parameters are then chosen to be the critical parameters that realize such
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cases. The caveat here is that backreaction is not taken into account, as mentioned
previously, and hence the results given here do not reflect the exact evolution of the
system but give an estimate on whether or not the energy density of the produced
particles can be comparable to that of the background. In particular, it is not ex-
amined whether the energy density of the homogeneous field oscillation completely
disappears or whether the produced particles are thermalized. It is assumed that
once the energy density of the produced particles becomes comparable to that of the
whole system, backreaction is significant enough to drain the remaining oscillation

energy into particles, and the system approaches the thermal state.

4.2.2.1 Equation of Motion for Higgs Perturbation

As the first step, the evolution of fluctuations around the homogeneous background
of the scalaron and the Higgs field is investigated. The linearized equations of motion
for the fluctuation of scalaron dp, and Higgs dhs in the Fourier space are given by
Eqgs.(C.12) and (C.13) in Appendix C. At this moment, the discussion focuses on the
physical Higgs field (and scalaron), and neglects the phase direction of the Higgs field
or the gauge fields which will be briefly discussed later. Redefining two new fields
oy, = a’28¢y, and 0hy, = a’/26hy, to remove the Hubble friction terms, the equations

of motion become

= 9 o’ a2 9 o 3.\ ~
(Sgpk‘i_ kp + U#;@ — 76 h — ZH — iH (5(,0k
—api 2 3a —api ~
= —ae” *Phohy + 7H€ h —Ugn ) 6hg, (4.42)
= 3a 9 3\ &
Shp+ | k2 + e “—Hy—--H*>—"H)oh
rt < », T € Unn + 2 %) 1 5 ) k
L& .2 3o - ap ap ~
= ((péhk + h&pk) — 7Hh +ae™Up + e*U o | O, (4.43)

where the remaining friction terms and the coupling between the two fluctuations are
placed on the right hand side. These terms come from the non-canonical kinetic term
and off-diagonal elements in the mass matrix.

Although, in principle, the full mode equations (4.42) and (4.43) can be solved
numerically, it costs too much to investigate the whole parameter space. Instead,
analytical evaluation of the parameter dependence of the efficiency of the tachyonic

~ M? > H?,|H|, h*/ M2, the scalaron

preheating is conducted. Note that, since U, ~

field does not experience tachyonic instability. Moreover, since h = Up=Ug, =0
holds in the exact hill-climbing case, the mixing between the scalaron and Higgs

fluctuations vanishes. Therefore, the scalaron fluctuations are never amplified during
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this period. For this reason, discussion focuses only on the Higgs fluctuation Shi
hereafter.

The mode equation for the Higgs fluctuations (4.43) can be further simplified.
Since the mixing between Higgs and scalaron fluctuations vanishes as mentioned
above, it is safe to omit the terms involving the scalaron fluctuations. Also, after in-
flation, the background value of ap (and h/My,) are at most O(1071). Consequently,
the non-canonical part of the Higgs kinetic term in Eq. (2.124) does not play any
important role as exp(ap) ~ 1. In addition, the tachyonic mass directly coming from
the potential dominates over the other “mass” terms so the latter are neglected in
the following arguments. Taking the inequalities |U | > M? > M? > H? |H| into
account, the Hubble induced terms are negligibly small compared to the tachyonic
mass of the Higgs field. Moreover, from the Friedmann equation (C.6), it can be seen
that Hp < M H?. In particular, since the energy density of the system is mostly
stored in the potential in late hill-climbing period (when particle production is the
most efficient), the following hierarchy should be satisfied ¢* < U(yp, h) ~ 3H*M}.
Thus, the mass term is well approximated as kf) +Upn = w,%,k. It can also be seen
that the friction term is smaller than the scalaron mass, |ap| < H < M. Since the
time scale of interest is ~ M ™!, the friction terms can never be important. In sum-
mary, the mode equation for the Higgs fluctuations are simplified into the one with

a time-dependent tachyonic mass as
Shy, + wiykfhk ~0, wip=ki+mp=k+Upm, m;=-3acMp(t), (4.44)

which is exactly in the same form as the general case shown in Eq. (3.1). Therefore,
the technique introduced in Chapter 3 can be used for the analytic investigation of
particle production in the following, in particular the one for tachyonic instability in
Sec. 3.1.3.2.

4.2.2.2 Tachyonic Higgs Mass for Exact Hill-Climbing

As shown in Chapter 3, given the equation of motion with a time-dependent effective
mass, its behavior is crucial for the calculation of particle production. In the exact
hill-climbing case, the background field evolution in ¢ > 0 can be characterized as
follows. First, the scalaron crosses zero from the regime ¢ < 0 at ¢ = tepter0, aS
mentioned previously. Then the scalaron climbs up the potential hill when ¢ > 0
with the Higgs field h ~ 0. Once the scalaron reaches the highest point ¢ = o, it
reverses its direction and starts to go down the potential hill, still keeping h =~ 0.

Finally, the scalaron crosses zero again at ¢ = text 0. The duration of this period is
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then given by At = texit 0 — tenter,0 and the mass of Higgs m% becomes tachyonic during
Tenter,0 < t < texit,0. These are the two most important quantities for the estimation of
particle production from tachyonic instability, so they will be evaluated analytically
in the subsequent discussion.

The scalaron field value at the highest point can be evaluated in the same way as
©1(< 0) in Sec. 4.1. Since the kinetic energy vanishes at the highest point ¢5(> 0),

the following relation is satisfied
Us(p2) = C3Us(1) = C3C Unnt (4.45)

where a new numerical parameter Cs is introduced to take into account the energy

loss during hill-climbing. Then, it is easy to find that
AP = CQC]_MC/MJZV 5 (446)

where M = M, is taken into account. The evolution of the scalaron is governed by
the potential U () =~ (My)*p?/2. Thus, the duration of the hill-climbing can be
evaluated by half period of the scalaron oscillation around the origin, At ~ w/M4,,
which is the same as At in the previous subsection. The time evolution of the

scalaron during the exact hill-climbing is approximated as

(t) >~ sin 7Tt _ tenter,() — 0201 MC sin ﬂ_t — tenter,o
Ppt) = Y2 At - M}V A '

(4.47)
Combining this with Eq. (4.29), the tachyonic Higgs mass squared is obtained as

t—1t
2 2 . enter,0
m; >~ —m sm|mT———— , 4.48
h h,max ( At ) ( )

where mj, max is the absolute value of the Higgs mass at ¢ given as

M e = Uiy o = 3C2C1EG My M, = 3C5C16. M cot Oy (4.49)
vV 3)\0201MP1M}\, , for Branch 1, (4.50)
B 3C,CLM2E3, for Branch 2. '

It is easy to find mj, .../ My = (3/2)C2C1&. sin(26%), which, according to Eq. (4.38),
implies that the absolute value of the Higgs mass at 9 is larger than (or at least
comparable to) the scalaron mass for the exact hill-climbing case. This is the source
of efficient particle production through tachyonic instability.

By solving the full background equations of motion numerically, the scalaron field

value at the highest point ¢, is estimated for each exact hill-climbing case as far as
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Figure 4.9: Absolute value of the Higgs mass squared at the highest point ¢ = 9
in the exact hill-climbing case for M = M3, (black) and M = M% (red). The solid
line shows Eq. (4.49) with C; = 0.25 and Cy = 0.72. The dashed and dotted lines
show the asymptotic formula for Branch 1 and 2 in Eq. (4.50), respectively. The left
dot-dashed boundary is the unitary bound while the right is £ = 0.

the numerical precision allows. The results confirm that the analytical estimation
of the highest point of the scalaron (4.46) and its time evolution (4.47) works well.
Figure 4.9 shows that the absolute value of the Higgs mass squared at ¢- obtained
from numerical calculation is well fit by taking Cy ~ 0.72 in Eq. (4.49). Note that
this value is even closer to the rough estimate C,,, ~ 0.7628 obtained in the previous
subsection neglecting the cosmic expansion and coupling between the scalaron and
itself.

It is easy to see that the tachyonic mass is much stronger in the Higgs-like regime

the Higgs field than to the numerical value of C,,,
than in the R%-like regime, which is considered natural for the following reason. Ac-
cording to Eq. (4.23) or Eq. (4.29), the amplitude of m} is proportional to ¢ that
decreases and vanishes as the system approaches the R?-limit where there is no tachy-
onic effect as well-known. On the other hand, the duration At is proportional to M 1
which, instead, increases when getting closer to the R2-limit. As a result, the Higgs
field can stay in the tachyonic regime for a longer time in R2-like regime than Higgs-
like. So, up to this point, it still seems difficult to determine the dependence of the
strength of instability on the model parameter M within each branch, which will be
clarified with more careful calculation in the following. However, as a naive expec-
tation, the system with critical parameters should experience a stronger tachyonic

effect in the Higgs-like regime than R2-like as a whole.

4.2.2.3 Particle Production Through Tachyonic Instability

Based on the previous analysis on the equation of motion and effective mass for the

Higgs field, the particle production through tachyonic instability during exact hill-
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climbing can be investigated analytically. Since the tachyonic mass squared changes
from 0 to —mj, ... = —3C2C1. M7 cot fy, modes with the wavenumber k, < 7 max
feels the instability, and the number of particles for such modes is exponentially
amplified. Assuming that particle production is not efficient when wj, ; is positive®,
the comoving occupation number of Higgs particles n; with moving momentum k can
be estimated at the time when the scalaron comes back to the origin as in Egs. (3.98)
and (3.102).

Before taking these results for granted, it should be verified that there exists
a regime around tepier (k) and teg(k) where the adiabatic condition (3.79) and the
validity of Taylor expansion (3.88) are satisfied simultaneously, based on which the
expression for occupation number n; in the case of tachyonic particle production is
derived. In the specific situation considered here, tenter (k) and fexis (k) are the moments
when wy, ;,(t) crosses zero and the mode k enters and exits the tachyonic regime,
respectively, and naturally fenter(0) = tenter,0 a0d texit(0) = fexit,0. The examination is
performed for the regime around ¢ = teyer (k) in the following, which can be easily
extended to the t = ey (k) case. With Eq. (4.48) and At ~ w/M, the frequency of

Oh is written as
w,%yk =k 4+mi~ k- mimax sin [M(t — tenter0)] - (4.51)

Note that my max > M is satisfied for sin20 > ¢!, which is the case of interest, (close
to) the exact hill-climbing cases. The dominant contribution to the energy density
of the produced particles is expected to come from the modes with k> < mj .. and
My max — Ko ~ M o The modes with mj, . — k2 < mj . do not have a long time
for the tachyonic period so € does not become so large. For modes with k7 < mj. ..,
the energy carried by each mode is not so large to give dominant contributions to the
total energy density. On the one hand, the left hand side of Eq. (3.79) is expanded
with respect to (t — tenter(k)) as

bt

16 M /m;imax — ki

49 Of course, particle production from parametric resonance can happen even when w,QL’ & 18 positive
with the Higgs oscillation. However, since it takes > O(10?) oscillations for parametric resonance
to amplify the particles as suggested from the Higgs inflation case [31,32] (note that these studies
do not include the spike contribution as mentioned in Sec. 3.2, though), it is expected that the
tachyonic instability is stronger if it takes place. Note that the present purpose is to identify if the
tachyonic instability alone can complete preheating, so other particle production channels are not
considered.

On e/ Whp — 30 1./ (207 1)

2
2wh7k

It — tenter(B)| 2, (4.52)
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where @ is omitted since the cosmic expansion is negligible within the time scale of

this dynamics. For the modes with &, ~ my, max, the adiabatic condition reads
‘t - tenter(k)‘ > (mi,maxM)71/3 : (4'53)

On the other hand, from the first inequality of Eq. (3.88), the asymptotic expansion

of the Airy function is valid for

~1/3

4

[t = tenter (k)| > ( b 4—pmi,maXM> ~ (mi,maxM)_l/s ) (4.54)
h,max

while from the second inequality of Eq. (3.88) the linear approximation of the potential

is found to be valid for

—1 m;lz max —1
|t — tenter (k)| < 2M ’/T —1~M". (4.55)
p

Therefore, from Egs. (4.53), (4.54), and (4.55), it can be easily seen that there indeed
exists such a regime where it is permissible to use the matching condition before
and after the non-adiabatic period around t = teyer(k) for the case of interest, i.e.
Mpmax > M and k, ~ My max, as performed in Sec. 3.1.3.2. In other words, it is safe
to use the conclusion given in Eqgs. (3.98) and (3.102). The occupation number for

modes with momentum k at ¢ = eyt o is then calculated as
2 texit(k)

Mg (Texit,0) |eQ’v - e’ﬂ’“/4| ~ e Q= / |ewnx(2)|dt (4.56)
tenter(k)

The comoving energy density of the produced particles at ¢ = teyit0 is then as follows

[
/] (2n)3a(t)

As a rough estimate, focus on the typical mode k;/a(texit0) = Mpmax/2. Conse-

—Qp 2
e e -

4

3
pon(texit,0) = /éi:;;;wh,k(t)nk(t) (4.57)

t:texit,o t:texit,O

quently, the exponent can be approximated as €y, ~ My maxAt (by omitting the time
dependence of m? and offset k% in w%}k) and the resulting energy density can be esti-
mated as ps, ~ M oy €XP(2Q, ) /3212 ~ my, L exXp(2my, maxAt) /327, Substituting
for 0% using My maxAt >~ 27N and Eqs. (4.38) and (4.49), it is easy to find that

92 M* cot? 0 )
Pon(texit,n) ~ % exp (71'\/650 sin(26§\,)>

exp (27 N) y {9)\2(Mp1/N)4 , for Branch 1 ,

- 4.58
32m? (NM)* | for Branch 2 , (4.58)
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where in the second approximation A¢ is omitted and C,,, = C; = Cy =1 is taken
for simplicity. It is interesting to see that the exponential amplification is larger for
larger N in both branches while the resultant particle production is more effective for
Branch 1 as a whole due to larger mj, max. This is consistent with our naive expectation
that the tachyonic preheating is more effective in the Higgs-like regime. It is also a
bit surprising to see that the tachyonic amplification of Higgs fluctuation can happen
even in relatively deep R*-like regime. This is because the scalaron mass is smaller
for the R2?-like regime, which leads to a longer duration of exact hill-climbing and
thus efficient particle production against the smaller tachyonic Higgs mass.

In order to see if the tachyonic preheating is strong enough to complete preheating,
comparison between the energy density of the produced particles and the background
energy density is needed, with the latter given as

prot 2 C53CTUng = %ZC%MQM; . (4.59)
If the former, calculated without taking backreaction into account, is larger than
Prot/2, the tachyonic preheating is efficient enough and the backreaction cannot
be neglected any further. This condition is regarded as the completion of pre-
heating in the discussion of tachyonic preheating in this thesis. Figure 4.10 shows
Q = In(32n%ps/ mivmax) /2, which corresponds to our analytical estimation on the
effective amplification factor €, , together with In (1672 pye/m} 1.y ) /2 for each exact
hill-climbing case as functions of N for both branches. The latter represents the small-
est exponential growth factor needed for preheating to be completed. Here, the value
of g is numerically obtained (see Fig. 4.9) to determine the coefficient in m3(t) =
=3l N M@y sin(M(t — tentero)) and pg, is evaluated by integrating Eqs. (4.56) and
(4.57).

It can be seen in Fig. 4.10 that the values of €2 in Branch 1 are very close to those
in Branch 2 with corresponding N, as predicted in Eq. (4.58), and they are fit well
with Q ~ 7N —2. By comparing {2 and 1n(167r2 Prot/ mﬁ}max) /2, whether preheating is
completed can be determined. In the Higgs-like regime (Branch 1), the tachyonic in-
stability always completes preheating for the exact hill-climbing case, which is because
the characteristic energy density mj, .. /327 without the exponential amplification
itself is already as large as the background energy density. On the other hand, due
to small mj, .. /327% in the R*like regime (Branch 2), preheating is not completed
by the tachyonic instability even in the exact hill-climbing case for N < 4. However,
thanks to the long enough At at sufficiently large N, preheating is completed by the
tachyonic instability for the exact hill-climbing case. Note that N = 4 looks on the
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Figure 4.10: Rough estimate of the exponential amplification factor Q2 for each exact
hill-climbing case. Numerical results for Branch 1 (black dots) and Branch 2 (red dots)
are fitted well with Q ~ 7N — 2 (blue line), which is consistent with Eq. (4.58). The
black and red dashed lines represent In (1672 pyor /mj .y ) for Branch 1 and Branch 2,
respectively. Tachyonic instability is efficient enough to complete preheating for any
N in Branch 1, but not for N < 4 in Branch 2.

edge of the completion of preheating, but the analysis in Fig. 4.10 is relatively quali-
tative and should not be taken at face value. Indeed, as long as the current numerical
precision allows, no parameter space is found in which tachyonic instability completes
preheating around 62. As will be seen later, at least a fine-tuning much more severe
than O(107°) is needed around this value of N.

More accurate analytical calculation also leads to conclusion that agrees with
the discussion above. Safely neglecting the cosmic expansion, ) is calculated for a

general k and £ by assuming that the inflaton can always climb up the hill exactly as

texit(k) texit(k) 9 9
Q) = / | (t)|dt = / |k = 3 oy SIN[M (t — tenger0)] | dt
tenter(k) tentel'(k)

N\, M2\ A k2
— 4 2 e L (R
oo (3) Vo () o s

( 2
4\/30201\/ng< Zk ) ; K& or M~ M.,

h,max

Q

(4.60)

N\, k2
4 30201 (g) ]\}) fE mi’max 3 g 5 gc or M > Mc )

where k < My max and fg(x) = (1 — 2)Y2Elarccos(r)/2,2/(1 — x)] is defined on the
domain 0 < z < 1 with E[¢,z] = f0¢(1 — xsin?¢)Y/2dt is the elliptic integral of the
second kind. It can be shown that the function fg(z) can be well approximated

simply by fz(z) = 0.6(1 — z) in the domain of interest, so fg(z) will be used to
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simplify the calculation below. As a result, the number density of produced particles

is given by

ng ~ e = exp

1/4
8/3C5Cy (;) ]\Aipf % 0.6 (1 — 52 >] . (4.61)

h,max

Taking the numerical values C; = 0.25 and Cy = 0.72 and the typical value A = 0.01

in the equation above leads to

M ¢ %
nE — exp [085 M—pé_c (1 - m}%,max>] . (462)

With the help of this result, the comoving energy density of produced particles ps,

can be easily found out as a function of M for Branch 1 and of ¢ for Branch 2 as

follows
—/—dgk WhEg = M s /1 K exp |0.85 | ol (1— k%) | dk
Psh = (2n)? hkTe = 5 5 ; p Y. ME,
_ M€ M€
~ 34 % 105 M MPS 854/ =22 | —0.854 ) == —1 4.63
3.4 x 107° My, c [exp(085 M&) 0.85 e, ] (4.63)
5.9 x 101 Me (—1 4 e3VE 3.5\/5) , £ <&,

~

i (4.64)
3.4 x 107 My M3 <—1 + OV MM _ () 854 ﬁ) , M> M.,

where pg, is evaluated by approximating m,% = 0 at later times ¢ > teyi 0. This result
is shown in Fig. 4.11.

With this more accurate analytic investigation, it can be seen that ps; gets larger
than the half of the background energy density C?pint/2 for £ > 50, meaning the
completion of preheating. Conversely, the smallest &y sufficient to complete preheat-
ing solely by tachyonic instability is around &y ~ 50 which corresponds to N = 4
in Branch 2, which is consistent with the previous conclusion from rough estimation.
Therefore, for N < 4 in Branch 2, preheating cannot be completed solely by tachyonic
instability within the first scalaron oscillation.

Thus far, the analysis has been for the physical Higgs only, but the effect on the
longitudinal modes of the weak gauge bosons or the NG modes can be evaluated in
a similar way as mentioned earlier. Their contribution to the preheating process is
estimated to be comparable with that of the Higgs field. Here, a brief discussion is
presented on the tachyonic instability in the phase direction for the global U(1) case.
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Figure 4.11: The energy density of produced Higgs fluctuations as a function of &
for 5 < £ < &. Light green: pg, calculated with the precise function fg(x) in
in Eq. (4.60). Blue dotted: psj, in Eq. (4.63) with approximated fgz(z). Red dashed
and black dashed lines are asymptotic behavior in £ < & and M > M, limits in
Eq. (4.64), respectively. Gray dotted-dashed: C?pint/2.

The implication to the SM SU(2),x U(1)y case can be read off as done in Sec. 4.1.
Note that the tachyonic instability for the longitudinal mode of the weak gauge boson
is observed in Ref. [50].

As calculated in Eq. (4.9) the effective mass for the canonicalized NG mode, during
the hill-climbing epoch (when ¢ < M, h >~ 0, and the kinetic terms are negligible),
mg, can be further simplified as

1 M?
2
m; ~——(14+6 . 4.65
9.; \/6 Mpl( g)SO ( )
Therefore, comparing with the physical Higgs mass (Eq. (4.29)), it is easy to find that
5 1
e 14— 4.66
m? 6& ( )

which is of order unity unless £ < 1. Since the smallest £4 is no less than the order
of unity as seen in Eq. (4.34), the efficiency of tachyonic instability for the NG mode
is concluded to be comparable to that for the physical Higgs fluctuations. The same
is expected to apply to the longitudinal mode of gauge bosons, whose mass receives
a dominant contribution from the mass of the NG mode [34].

While the mass for physical Higgs fluctuations around the potential valley is pos-

itive, the mass for the phase direction is given by

9 o~y 5 1 (_2 -2>
~ ——opM _ h 4.
M6 9% +24M1§1 o (4.67)

for ¢ < My, which can be tachyonic, especially when the kinetic energy is small.

Therefore, the NG mode and the longitudinal mode of gauge bosons are more likely
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to receive a tachyonic contribution from field oscillations around the potential valley
than from physical Higgs fluctuations, which is also seen in Ref. [50]. However, the
amplitude of the tachyonic mass is comparable to the time scale of the oscillations
around the valley. Hence, it is expected that such tachyonic instability for the NG
mode and the longitudinal mode of gauge bosons do not give a significant contribution
compared to the particle production during the hill-climbing. Tachyonic mass of the
physical Higgs could also be realized during oscillations around the valleys with a
large amplitude, but for the same reason, such effect is expected to be relatively
small. A detailed investigation will not be presented in this thesis.

As a brief summary, the NG mode and the longitudinal mode of gauge bosons also
experience tachyonic instability during hill-climbing with almost the same efficiency
as the physical Higgs fluctuations. Therefore, taking into account their contributions,
the total particle production will be enhanced accordingly. However, since the tachy-
onic particle production is an exponential effect, the basic results shown previously
remain quantitatively unchanged even if the enhancement is taken into account.

To conclude this part, a rough estimate of the duration of preheating in the
exact hill-climbing case can be given, except for N < 4 in Branch 2 and N < 7 in
Branch 1. Here, it is assumed that the radiation-dominated epoch starts right after
the completion of preheating, and the scalar field oscillation will not dominate the
Universe again. As mentioned above, the tachyonic effect occurs within one scalaron
oscillation after the end of inflation. Then from Eq. (4.27) and (4.30), there is an

upper bound of duration for each critical case®

2 1
A ~ — . 4.
lpre =T (M + 2Mc) ( 68)

In such a short period, the Hubble parameter is approximately constant and given as
H ~ C1C3M,/2. As a result, the number of e-folds for tachyonic effect to complete

preheating is estimated as

1 M,
ANpre ~ HAtpre ~ 01027T (4_1 + M) s (469)

where 0.03 < M./M <1 for 0 < § <&,. Therefore, the e-fold number of preheating
is very small 0.2 < ANy < 0.7 which can be regarded as almost instantaneous

in cosmological sense but varies around 0.5 with respect to the change of model

50 As will be shown shortly, preheating can be completed by tachyonic instability even for a duration
shorter than one scalaron oscillation.
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parameters. On the other hand, similar to Eq. (3.115), through the following relation

QA Aepnd @
k:aka: end Upre

aoH,, (4.70)

Qend Apre Qo

where ape denotes the scale factor at the end of preheating (here the onset of
radiation-dominated epoch is assumed to be the end of preheating), the number

of e-folds of inflation is calculated as

CLO Mpl aend apre Hk
Nigg(k) =In | ——— | In|{ — In{ —
(k) n( k >+n<apre)+n(a0>+n(Mpl
1/3
ao M, To 90 M,
=1 — AN, | | 4.71
" ( k ) pre<9) o Tpre (gpre) M (2Mp1 ( ! )

where, again, it is assumed that thermalization after preheating is realized almost

instantaneously and the total entropy is conserved between the end of thermalization
and today. The inflation scale Hy ~ M./2 because it is effective R*-inflation. The
effective number of relativistic species at the end of preheating simply takes the value
gpre = 106.75 while T}, is the temperature at the end of preheating which can be
estimated by

2
re 3
%T;fre ~ [ CIC3MAM? (4.72)

which gives T, &~ 1.7 x 10%® K. Using the pivot scale as before k/ag = 0.002 Mpc™,
it is not difficult to find that

Nint ~ 59 — ANpye(6) (4.73)

which is shown in Fig. 4.12. Compared with the prediction of the Starobinsky model
Nint ~ 54 given in last chapter®, the resulting Ny, for the exact hill climbing is larger,
which can be used to distinguish them once the experimental accuracy is high enough
to distinguish 0N ~ 5. On the other hand, if further distinction among parameters
for the exact hill climbing is desired, an accuracy at least up to AN ~ O(0.1) is
necessary. Note that this argument is based on the assumption that the Universe
becomes radiation-dominated right after the completion of preheating, which does
not apply if the rescattering and backreaction prevent the system from entering the

radiation domination instantaneously.

51The difference in Nips between JF and EF exists, but it is of the order of the next order correction
to the slow-roll approximation which is taken into account here. Therefore, the difference between
the two frames will be neglected.
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Figure 4.12: The number of e-folds of inflation with pivot scale & = 0.002 Mpc™*
for the exact hill-climbing parameters that are out of strongly-coupled regime and
can complete preheating solely by tachyonic instability. The triangle represents the
prediction of the Starobinsky model.

4.2.3 Necessary Degree of Fine-Tuning

In the previous subsection, the exact hill-climbing cases are studied, which requires
model parameters extremely close to the critical ones 0%, (or £, M}, to realize fully
efficient tachyonic instability. However, once they deviate from these values, the
Higgs field does not exactly go along the hill but falls to the valley in the middle
of going uphill (or downhill), resulting in the termination of the tachyonic particle
production. Then, the maximal deviation from the exact hill-climbing allowed for
the tachyonic instability to be still sufficiently effective to complete preheating char-
acterizes how much fine-tuning among the model parameters is necessary to produce
the Higgs fluctuations whose energy density is comparable to the background. From
Fig. 4.10 (or 4.11), comparing the amplification factor for the exact hill-climbing and
the necessary amplification factor to complete preheating, it is natural to expect that
weaker fine-tuning is required for smaller N in Branch 1 while the necessary fine-
tuning is more severe for smaller NV in Branch 2. This expectation is natural in the
sense that the tachyonic effect is weaker for R%-like limit because it is well-known
that there is no such effect in the Starobinsky model. In the following, a quantitative
study of the required amount of fine-tuning to complete preheating is presented.
First of all, note that the actual dynamics of the scalaron and Higgs in the non-
exact hill-climbing case are too complicated to be described analytically. Just as
the exact hill-climbing cases where the actual trajectory is not always along h = 0

in the ¢ > 0 regime, especially around feptero and fexito, Eq. (4.47) is used as an
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approximation by assuming that A = 0 is satisfied as long as ¢ > 0. Fortunately, it is
shown that it serves as an appropriate simplification so that analytical analysis can
be carried out. In the present case, i.e. deviating from critical parameters 6%, the
Higgs field leaves the origin at some “unknown” moment between two zero-crossing
points of the scalaron, which becomes even more difficult for analytical description.
Certainly, the “unknown” moment should be determined by the parameter choice, but
the specific dependence requires too much effort that may not be necessary at this
moment. Therefore, combining analytical and numerical methods can be a reasonable
choice for the investigation.

The following simplifications on the scalar field dynamics are adopted. Since the
falling down from the hilltop to the valley is driven by the tachyonic mass squared
of O(mj, ..), the time scale of this dynamics is much smaller than the whole dy-
namics of the hill-climbing At ~ M~1. Therefore, the time evolution for (¢) can be

approximated as
O(t) =~ pasin(M(t — tenterp)) » h(t) 20, for tentero <t < tarop - (4.74)

where t40p is the time when the Higgs field falls down to the potential valley. The
scalar fields oscillate around the potential valley after ¢ = tq4,0p [50]. However, since
the tachyonic instability is typically stronger than the parametric resonance (see foot-
note 49) and lasts sufficiently long, particle production during this epoch is simply
neglected here. It is expected that the true amount of the particle production is not
much different from our following estimate.

Practically, the following procedure is adopted in the study. The evolution of
the scalaron ¢(t) and the Higgs field h(t) is obtained by solving the full background
equations of motion (C.6), (C.7), and (C.8) numerically. Then the mass for the Higgs

fluctuation is evaluated as

mi(t) = e PO (0(t), h(t)) - (4.75)
Here, the conformal factor e®?) is recovered just for slight improvement. With this
treatment, it is found that the tachyonic mass for the Higgs fluctuation almost follows
the case of exact hill-climbing until ¢4, and then gets shut off almost instantly.
Figure 4.13 shows a schematic sketch of the time evolution. Omitting the other
contributions in the mode equation (4.43) as well as particle production after falling
down to the valley, the occupation number of the Higgs fluctuation at late times is
evaluated as

tdrOP(k)
ng = |eXp(Qk) — exp(—Qk)/4]2, Qk = / ,/m%(t) — k}% (476)

tenter (k)

125



A

.
\J
¢ Lenter.0 tdrov:

texit 0 t

2
~Mh max

Figure 4.13: Schematic picture of the time evolution of the mass squared of the Higgs
fluctuation. Blue: evolution of m} for non-exact hill-climbing. Black: evolution of mj
for exact hill-climbing as comparison. The tachyonic mass for the Higgs fluctuation
almost follows the exact hill-climbing case until £ = ¢4, and then gets shut off almost
instantly:.

Here in the numerical calculation, a k-dependent drop-off time, t4,0p(k), is defined as
the time when w?(t) crosses zero. With these simplifications, the comoving energy
density of the produced Higgs fluctuation is numerically calculated when its mass

becomes sufficiently small as follows"?

M 3},
= —=k 4.77

where cosmic expansion is neglected and the scale factor is normalized to be unity
a = 1. Analytical estimation of ps, and discussion about ¢4, is given in Appendix
C in Ref. [51] by assuming t4,0p to be free parameter, which will not be shown here.

By imposing a conservative criterion,
pon 2 Uo(¢1)/2 = CiUunt/2 (4.78)

together with Eq. (4.77), the parameter range around each exact hill-climbing case
0% that gives sufficient amount of particle production can be identified. Define the
upper and lower bound of the parameter § around 6% for successful preheating as
O, and Oy _, respectively, as well as Ay v = 0y, — 0. In order to express the

degree of fine-tuning quantitatively, a new quantity Af% that describes the typical

52For a practical purpose, k = My, max/100 is taken as the lower limit of the integration in numerical
calculation.
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Figure 4.14: Definition of the effective width of each 0y, Afy. Gray bands: the
parameter region where the preheating successfully finishes in one stroke.

distance between two neighboring values of % is needed, which is defined as

O, — O
Aegz% for N =2,3, Npax — 1,

61 + 05
2 ?

2 2
ap =" OB gy o, O] @79)

AG} =
with Nyax = 26. See Fig. 4.14 for a schematic picture of these definition. As a result,
the degree of fine-tuning for the N-th exact hill-climbing case in Branch i is defined
as Al /Al

Based on these analytic formulation, the following numerical analysis is carried
out. Scan the parameter § around each critical parameter 6%, and solve the back-
ground equations of motion (C.6), (C.7), and (C.8) for each value of §. With these
results, the occupation number ny in Eq. (4.76) and the energy density of the Higgs
fluctuation produced through the tachyonic instability in Eq. (4.77) is calculated. The
criterion (4.78) helps to determine the boundary values of 6 for successful preheating
0y and 0% _, and the required degree of fine-tuning A# \ /A% The result is shown
in Fig. 4.15, which is the main result of the investigation of tachyonic preheating in
the mixed Higgs-R? inflation model in this thesis. It can be seen that only O(1071)
fine-tuning is required for smaller /N in Branch 1, which is because the typical Higgs
mass squared is large for these cases and a relatively small amplification factor €2
is enough for the successful preheating as seen in Fig. 4.10. As 6 gets closer to /2
(for larger N in Branch 1 and for smaller N in Branch 2), the necessary fine-tuning
becomes more severe. For the most severe case, N = 5 in Branch 2, a fine-tuning of
O(107°) is needed. This result can be understood intuitively that a larger 6 (smaller &)
corresponds to smaller tachyonic Higgs mass |m?| during hill-climbing (see Fig. 4.9),
and hence the Higgs field needs to stay at the hilltop for a longer period in order
to have a stronger tachyonic effect, which naturally requires more fine-tuning and is

consistent with the expectation from Fig. 4.10. Although the analysis here is based on
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Figure 4.15: Necessary degree of fine-tuning Aeéff, ~/AGY for the successful tachyonic
preheating for Branch 1 (black) and 2 (red). The five black empty triangles are
for the cases beyond the unitarity bound. In Branch 2, the data points for N <
4 do not exist because the tachyonic preheating is not efficient even for the exact
hill-climbing trajectories. The sudden lift for N = 26 comes from the definition of
AW in Eq. (4.79): the interval AfYy increases as N increases, and hence Afy =
|0 — 6. 1| underestimates the width around 6%, which results in the sudden
lift.

a relatively simplified formulation, it is expected that the actual degree of fine-tuning
obtained by full numerical calculations with the full mode equations (4.42) and (4.43)
is not significantly different from this results, because the exponential amplification
of the Higgs particles takes place when the background Higgs field is climbing up the
hill along A ~ 0.

Before concluding this section, some issues in the above analysis should be men-
tioned. The numerical calculation above starts from ~ 1 e-fold before the end of
inflation while using the inflationary attractor as the lower of Eqgs. (2.145) corre-
sponding to the large number of e-folds during inflation as the initial condition. If an
earlier moment during inflation is chosen to start the computation using the same ini-
tial condition, the face values of &4 might appear slightly different from those shown
above because numerical errors accumulate with calculation time. Correspondingly,
the numerical initial condition corresponding to the attractor should be formulated
with much better accuracy. At the same time, it is more and more challenging to find
the exact value of £§; when beginning the computation from a larger number of e-folds
before the end of inflation. From this point of view, it is argued here that a slight
change of the face values of £ for numerical calculations scanning different numbers
of inflationary e-folds does not mean that the presented results depend on the choice
of initial conditions. Moreover, estimating the degree of fine-tuning is independent of

the precision of &4, so the main results are robust in this respect.
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In this section, a study of the tachyonic preheating in the mixed Higgs-R? in-
flation model is presented based on Ref. [51]. Although some degree of fine-tuning
is necessary for this preheating mechanism to work, the resulting dynamics in the
Universe can be interesting.

The analytic conditions for the tachyonic instability of physical Higgs fluctuations
to occur are derived by investigating the Higgs field oscillations around the potential
valley in the negative scalaron regime ¢ < 0. All the critical parameters 6% which can
realize exact hill-climbing of scalaron are found numerically, providing the condition
for the most efficient particle production. Beyond the results in Ref. [50], it is pointed
out here [51] that tachyonic preheating can take place in both Higgs-like regime
¢ <& (Branch 1) and R*like regime M > M, (Branch 2). Analytic calculation
of particle production from the tachyonic instability shows that, for all these fine-
tuned parameter points, tachyonic particle production is strong enough to complete
preheating except for N < 4 in Branch 2. However, successful tachyonic preheating
in this model requires some degree of fine-tuning among the model parameters. Even
a slight deviation from 6 = %, can significantly reduce the strength of the tachyonic
effect. In order to estimate the necessary degree of fine-tuning, detailed scan over
model parameters is performed around each % to find the interval A v such that
the preheating can be completed within 6 ~ 6% 4 A /2. The main result is given
in Fig. 4.15, which shows that the necessary fine-tuning becomes more severe as &
gets smaller (closer to the R%limit). This result is natural because no tachyonic effect
is expected in the Starobinsky model.

While the main focus is on the amplification of physical Higgs fluctuations in-
stead of those in the phase direction or longitudinal gauge bosons, it is found that
the amplification of the latter is comparable to that of physical Higgs fluctuations
by investigating their effective mass, which suggests that the efficiency of the total
particle production is enhanced by a factor of the order of unity, but the results above
should remain basically unchanged, and the required fine-tuning can be read off from
Fig. 4.15.

Throughout the analysis in this section, the backreaction from produced parti-
cles on the homogeneous background is not taken into account. The main interest
here lies in the growth of inhomogeneities until their energy becomes comparable to
that of background inflaton oscillations. As for the standard criterion for the end
of reheating, it is defined as the onset of the radiation-dominated epoch where the
contributions from the homogeneous background fields, i.e. the correlated quantum

particles with zero spatial momentum in quantum language, become negligible. To
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determine whether the particles produced by the tachyonic instability are relativistic
and all the energy in the homogeneous fields is transferred to inhomogeneities requires
considering the backreaction, which is beyond the investigation here. There are two
possibilities expected. One is that, after a complete tachyonic period, the amplitude
of the coherent oscillation of the background fields becomes very small (so do the
masses of the produced particles), and the produced particles are relativistic with
typical momentum k ~ |my, max|- In this case, the preheating is almost instantaneous
and thermalization comes afterward. The other possibility is that the backreaction
terminates the tachyonic instability midway and rescattering between perturbations
and background fields (turbulence) begins to take effect. In this case, however, the
preheating takes a longer time. Specifically, elastic (re)scattering that conserves the
number of particles is insufficient for reheating and thermalization. Deeply inelastic
scatterings with specially engineered initial conditions that increase the energy of
particles at the cost of a decrease of particle number are needed for this purpose.
Without such special conditions, a natural hypothesis is that the final reheating tem-
perature T}, cannot be larger than the initial momenta of particles coming from the
background before rescattering, i.e. k/a. > 1. As a conservative estimation, if the

momentum of the produced particles is estimated as

k2 M,
— = |mhlo=p. = ‘3£M20102 | (4.80)
and the reheating temperature
90C2C3 1/4
Tpre - <49—17T22M§IM02) ) (481)
pre

the following condition is obtained

01
iz 1o (S (1452)

which corresponds to & > &2, for A = 0.01. Based on this hypothesis, the result

means that for R2-like regime, the instantaneous preheating by rescattering is not
possible. Finally, in the case where preheating is not sufficient, late-time domina-
tion of scalar field oscillation is possible and perturbative decay is needed to finish
reheating, which will be shown in next section based on Ref. [53].

In addition, the current discussion focuses on the period right after the second zero-
crossing of scalaron ¢ after the end of inflation, during hill-climbing of the scalaron

along the potential hill at h ~ 0. The possibility of having the tachyonic effect after
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a number of scalaron oscillations (in the presence/absence of the one studied here)
is not addressed [50]. Indeed, to consider subsequent oscillations, other channels of
particle production during field oscillations around the potential valley and possible
backreaction from produced particles (by early tachyonic instability or other chan-
nels) should be involved because they can be too important to neglect. Besides, as
the amplitude of scalaron oscillation decays with time as the Universe expands, the
tachyonic effect from later oscillations is expected to be weaker than the one studied
in this section, so it is more difficult for them to complete preheating compared with
the latter.

A lattice simulation of preheating in this model for R?-regime is performed in
Ref. [52], which can take into account the rescattering between produced particles
and background. Those results are not in conflict with the results shown in this
section and the expectations mentioned above, although the tachyonic instability
occurs in later scalaron oscillations instead of the first. However, lattice calculation
still cannot capture all the possible effects, for example, the perturbative decay of
the background field and produced particles that may affect the rescattering process.

This issue will also be discussed later based on Ref. [53].

4.3 Perturbative Reheating

The preheating process in the mixed Higgs- R? inflation model has been investigated in
detail in preceding sections. At the first stage of preheating, the non-adiabatic change
of effective mass of NG modes is inefficient to significantly affect the whole reheating
process due to the presence of the R? term. Right after that, a possible preheating
channel appears, i.e. tachyonic instability experienced by the physical Higgs and the
longitudinal mode of gauge bosons, which can be extremely efficient depending on
the choice of model parameters. In EF, this is due to a bifurcation point around the
global minimum of the two-dimensional scalar potentials. The quantitative under-
standing of the conditions for the occurrence of tachyonic instability as well as its
efficiency and the necessary degree of fine-tuning is obtained by the analytical and
numerical calculation in the last section, showing that the critical parameters that
realize efficient tachyonic preheating appear in both Higgs- and R2-like regimes. To
complete preheating solely by the tachyonic instability appearing in the first scalaron
oscillation, ~ O(107!) — O(107?) fine-tuning is needed for the Higgs-like regime while
a much severe one ~ O(107%) — O(107°) is required, which suggests that efficient

tachyonic preheating is not easy to realize, especially in R*like regime. Moreover,
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the backreaction from the produced particles is not considered in previous sections,
which is possible to terminate the tachyonic instability midway. Therefore, subse-
quent non-tachyonic mechanisms should be involved to continue the reheating process
of the Universe in the case of insufficient preheating.

In the lattice simulation carried out in Ref. [52], the tachyonic preheating is stud-
ied by taking into account the backreaction from the produced particles as a classi-
cal rescattering effect between the homogeneous background and the inhomogeneous
modes in the R%-like regime. The strength of the rescattering also depends on the
model parameter, getting stronger for more Higgs-like parameters and weaker for
more R2-like choices. After a few hundreds of scalaron oscillations, it was found that
some fraction of the homogeneous background can remain apart from the relativistic
particles. Since radiation is redshifted much faster than the homogeneous background
field by cosmic expansion, it is expected that the homogeneous part can once again
dominate the Universe and finally decay away perturbatively. The observation in-
dicates a possibility that the reheating temperature 7, may only be determined by
the final perturbative process regardless of the details of preheating, which further
motivates the investigation of perturbative reheating at the late time. As will be
shown later, the perturbative decay not only plays a role at the late time but may
reduce the strength of the rescattering process in the middle of preheating.

The following discussion is based on Ref. [53]. First, the perturbative decay rates
of the homogeneous scalaron field and Higgs field are calculated and those for the
inhomogeneous Higgs. Then, the role of perturbative decay is studied during and
after tachyonic preheating in the mixed Higgs-R? inflation model. In the latter case,
the perturbative reheating finally determines the reheating temperature and duration,
which is discussed when tachyonic preheating is inefficient or simply absent. The
investigation focuses on the case & > O(10) where the adiabatic approximation is
valid to calculate the Higgs decay rate, as will be explained later. For £ < O(10), it is
expected to approach the R2?-limit that is well studied in the literature and reviewed

in the last chapter.

4.3.1 Decay Rate

The decay rates of scalaron and Higgs are the essential quantities in this section, which
will be analyzed in both JF and EF together with the background dynamics, especially
the decay rate of scalaron. The last section focuses on the hill-climbing dynamics,
i.e. h = 0 in both positive and negative scalaron regimes in the EF language. In

the following, on the contrary, only the dynamics around the attractor solution are
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considered, i.e. h = hyg = 0 in ¢ < 0 regime while h = h, 4 in ¢ > 0 regime which
is given in Eq. (2.145). This case is realized with "non-critical” parameters that,
opposite to the critical ones, cannot realize tachyonic instability at the first scalaron

oscillation right after the end of inflation.

4.3.1.1 Background Dynamics in Valleys

e Jordan frame All the subscripts “J” for JF will be omitted for convenience. Since
the effective single-field description fails during reheating, there are two scalar degrees
of freedom should be taken care of and the field dynamics deviate from the valleys.
Therefore, in the Higgs field, apart from the non-dynamical valley part h,.(t) and
hyo, there is another independent component which, denoted as hogs.(t), is defined in

the decomposition of h(t) as follows
h(t) 2 hy(t) + hosc(t) (4.83)

where h, generally denotes the valleys in either positive and negative R regime. Since
the direction orthogonal to the valley is much heavier than the valley direction, it is
expected that hes is a small®® but fast oscillating part (see e.g. Fig. 4.1) satisfying
|hy| > |hose| in R > 0 (or ¢ > 0 in EF) regime. This decomposition and hierarchy
break down around the transition moments® when R (or ¢ in EF) crosses zero but
that regime is not of main interest here. As a result, the equation of motion for A

is then given by

OVesi b

- |:|hosc a1
* ahosc

0osC ~ O bl (4.84)

where Vg is given in Eq. (2.127).
On the other hand, rewrite Eq. (2.126) as follows

S h? h? 3¢ M2
~OR+ M’R = i + (le + TMQI) (AR* —€R) (4.85)
P p p

where R(t) is defined as a combination of R(t) and h2(t)

R=R/M*+3¢h* /M . (4.86)

53When the amplitude of Higgs oscillation is large, the effective mass of Higgs can become tachy-
onic as explained previously. Since perturbative decay is the main topic here which plays an impor-
tant role especially at late time when the amplitude of Higgs oscillation is small, only small Higgs
oscillation is considered here.

54Similar situation is considered in Ref. [187].
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Focusing on small oscillations of Higgs around the valleys, the Planck-suppressed
kinetic term on the right hand side of Eq. (4.85) can be neglected. During R < 0,
the only attractor is h = hyo = 0, so Eq. (4.5) is recovered from Eq. (4.85), giving
the same solution for R(t) as Eq. (3.108) in the Starobinsky model, i.e. R behaving
as a harmonic oscillator with frequency M, as expected, except that the value of M
here can be different from M.. In R > 0 regime, the attractor solution is given as the
lower of Eq. (2.128), which results in

~OR+MR=~0, (4.87)

where the combination (Ah? — £R) vanishes due to the valley constraint in the lower
of Eq. (2.128) apart from the small deviation due to small Higgs oscillations. It can
be seen that R is oscillating with frequency M instead of M. Therefore, the evolution
of R is similar to ¢ in EF (see discussion on ¢ dynamics in Sec. 4.2), oscillating with
two discrete masses depending on the sign of R. This is not coincident, as mentioned
once previously in Eq. (4.24), in small field regime a|p| > 1 which is always valid
during reheating,

R £h?

— 4+ 2> =3R. (4.88)
3M2 M3

ap =~

Actually, this result provides an important observation. Since Higgs field has high-
frequency part and R contains a term o h2, there, in principle, are high-frequency
modes within R but they are not seen in the analysis above (neither in ¢ as will be
shown in the analysis in EF later), which means that these high-frequency oscillations
are canceled by that from R (see e.g. Fig. 4.1). More specifically, if R(t) is decomposed
into R = R, + Ry, the following relation should be satisfied

2

M
Rose ~ —6§—5hyhose - 4.89

Applying the relations (2.128), (2.129), and (4.89) to the lower of Eq. (4.84), the

equation of motion for A, then becomes

_DhOSC_SRhOSC%() ) R <0 )

—Ohose + 26=—Rhose 0, R>0,
M2

where higher order terms are neglected. According to these equations, the perturba-
tive production of dh(t,x) particles due to the oscillating mass o R(t) can be calcu-
lated easily by the technique introduction in Sec. 3.1. This serves as the dominant

channel for scalaron decay.
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Again, the resulting decay rate of scalaron into Higgs particles here coincides with
that calculated in EF. Actually, for the case with kinetic coupling as in action (2.124),
it is more convenient to obtain the decay rate in JF as seen in the calculation in the
Starobinsky model in Sec. 3.2, in the sense that the kinetic coupling and the potential
coupling in EF should be dealt with separately.

When calculating the decay rate of Higgs, more caution should be taken because
the effective mass of the Higgs field is time-dependent, which also leads to the time-
dependence of the decay rate. Strictly speaking, a time-dependent decay rate is not
always well-defined. Therefore, this study focuses on the adiabatic regime, i.e. the
frequency of hee being much larger than that of scalaron, so that the Higgs mass is
approximately constant during each its oscillation. This condition can be achieved
with & > 1 which is exactly of main interest here, as mentioned earlier. Large non-
minimal coupling also allows a clear separation of h, and hggc.

The calculation of the Higgs decay involves more effort than above because Higgs
couples with all other fundamental particles in SM. Therefore, more than one decay
channels are important and should be taken into account. Not surprisingly, the
analysis of Higgs decay is almost the same in JF and EF because the only difference
is that some of the interaction terms between Higgs and other matter fields receive
a conformal factor exp(—2ayp) from the conformation transformation to EF. This
conformal factor is approximately unity in small field limit «|p| < 1, so it does not
affect the results.

In the following, the analysis turns to EF based on Ref. [53].

e Einstein frame For simplicity, the subscripts “E” are omitted here. The back-
ground analysis here is similar to that in JF. In small field limit, the analysis at
the beginning of Sec. 4.2 applies. Especially, the equation of motion for ¢ can be

approximately written as
$+3Hp+mip~0, (4.91)

where Planck-suppressed terms are neglected and m,, is given by

- (4.92)

, M2 p<o0,
m,, = ~
M2 >0

This is exactly the same as R as expected. Note that when & < 1800, the difference
between two mass scale is small (M — M)/M < 10% so ¢ is basically oscillating with

an unchanged frequency. Only when entering the Higgs-like regime, the difference
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between M and M is significant. Since the Universe is matter-dominated before
the completion of reheating due to the fact that the oscillating scalar field acts as
non-relativistic matter, the Hubble parameter is simply H ~ 2/(3t). As a result,
Eq. (4.91) can be solved analytically as

_ sin(Mt
P1 ( ) , P < O 9
(1) = Mt (4.93)
v _ sin(Mt) -0
P2 Mt , P )

where ¢ is required to be regular at ¢ = 0. The amplitudes p; < 0 and @5 > 0
are amplitudes determined by initial conditions. The valley part of Higgs h, is then
determined by ¢ through Eq. (4.25). On the other hand, the equation of motion for

the Higgs field, neglecting Planck-suppressed terms, is given as
hose + 3Hhosem. hose 20 (4.94)

where the mass term is given as

m? = {_%Mzw # <0, (4.95)
o 6EM2ap >0,

which can be easily shown to coincide with Eq. (4.90). Obviously, the effective
mass of hose depends on o(t). For £ > O(10), mj__ > m?, so that Higgs oscillates
many times within one scalaron period, while for £ < O(10), they are comparable.
Figures 4.16 show two examples where it can be easily seen that the hierarchy of
oscillation frequencies between Higgs and scalaron is large for £ > O(10) while small
for £ < O(10). In the former case, adiabatic approximation is valid because scalaron
is approximately constant within one Higgs oscillation so analytical solution is easy
to find. The adiabatic solution for heg, in the case & > O(10), can be solved as

Ah ™ Mt
B — _2 a - _7 2 574 M )
T cos ( 3|l [4 5 } + ) 0<0
7Y 4 M Nt (4.96)
h T
M cos [ -2 Paly o EURLY BV 1) B :
ST coS < 6Eap [, 1 5 + ) >0

where A, and the phase §; are determined by the initial conditions, ¢, is the amplitude
of ¢, and E[¢, x] is, again, the elliptic integral of the second kind. On the contrary,
this approximation breaks down for the latter so analytical description is difficult to
find. Therefore, analysis will be given only for £ > O(10). For { < O(10), it is

expected that the situation quickly approaches to that of R?-inflation as ¢ decreases.
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Figure 4.16: Background dynamics of the scalaron (red) and Higgs (black). Left:
(€,X) = (1000, 0.01). Right: (£, A) = (10,0.01). When ¢ < O(10), the frequency of
the small oscillation of Higgs is comparable with the scalaron frequency so the small
oscillations “disappear” on the right panel.

In addition, ¢ indeed shows no small and fast oscillations upon the oscillation of
frequency m,,, which confirms the results in JF.

Another important issue is the energy distribution between homogeneous scalaron
and Higgs. Although the discussion focuses on non-critical parameters that realize
small |hose|, it is still possible to have non-negligible effects with different parameter
choices. In ¢ < 0 regime, most energy is stored in the scalaron. Whenever scalaron
changes from negative to positive value during oscillations, some fraction of energy
is transferred into the physical Higgs due to the bifurcation point. For parameters
close to the critical choices, a larger amplitude of Higgs oscillation around the valley
is expected, which implies that a larger amount of energy is transferred from scalaron
to Higgs. On the contrary, if the parameter choice is far from the critical case, the
amplitude of coherent Higgs oscillation is small, so there is little energy stored in the
Higgs background. See Appendix G for more discussion. Later, this observation will
play an important role when determining the reheating temperature by perturbative

decay.

4.3.1.2 Decay Rate of Higgs and Scalaron

Hereafter, Higgs self-coupling is fixed to A = 0.01 for definiteness. In order to estimate
the perturbative decay rate of scalaron and Higgs, it is necessary to write down the
relevant interaction terms among them and SM particles. See Appendix H for detail.
In JF, it is assumed that all SM fields except for Higgs are minimally coupled with
gravity. After the conformal transformation to EF, the scalaron couples with these

matter fields through the conformal factor that is Planck-suppressed. In the small
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@ limit, it can be neglected at the leading order. Therefore, the dominant channel
for scalaron is the decay into Higgs particles through the non-minimal coupling term.
Of course, it is well-known that such decay exists even when ¢ = 0, although it is
much less efficient than the large £ case. On the other hand, the Higgs field directly
couples with scalaron through the non-minimal coupling and other SM particles such
as quarks and weak bosons with large coupling constants, which allows Higgs to decay
much more efficiently. In this thesis, the interactions between the gauge sector and
the fermion sector are not taken into account because the main goal is to deplete the
energy of the homogeneous background.

The calculation will be done in the unitary gauge, as mentioned previously. When
the homogeneous Higgs field oscillates around the origin, however, especially at h = 0,
it is known that the unitary gauge is not well defined. Thus, it may be necessary to
work in other well-defined gauges when studying reheating process. Nevertheless, as
shown in Ref. [34], crossing h = 0 does not spoil the calculation in the unitary gauge.
Therefore, the unitary gauge will still be adopted in the following calculation. The
derivation of the decay rates for Higgs is presented in Appendix H. The results will
be directly used here.

Before proceeding, the notations are clarified as follows. As in Appendix H, the
field redefinition W;t = a?’/QWui, Z, = a**Z,, t = a®?t, and b = a*?b are used to
absorb /—g¢ in the decay rate calculation. The decay of Higgs considered here is
mainly through two channels, to weak gauge bosons and to top and bottom quarks
due to the large coupling constants. The gauge boson channels are only opened in
the ¢ > 0 regime when the conditions (with g ~ 0.55 and ¢’ ~ 0.42 evaluated at
~ 102GeV)

2\
£2 >¢2 <1 — ?) = &y ~ 4291 | (4.97)
2
& > (1 — W) = £y ~ 4347 (4.98)

are satisfied for W+ and Z respectively, which means that it is allowed only in the

deep Higgs-like regime. The decay rates are given by
A M3 1/2 g° M2 3g% M4 g2 M2
T, o =— -2 = = y1-L = 4.
nowi = g e (6509) oA M2 T 16N2 M2 oA M2 (4.99)
~ 2 ~ ~
)\ M3 1/2 g2 + g/2 M2 3 (92 + 9/2) M4 92 + g/2 M2
T, ,,=—"—(6 -2 T2 = 42 T2 1 (4,100
h22 = g7 ypz (060%) ox M2 162 A ox a2 (H100)

in the adiabatic regime when motion of ¢ is sufficiently slow in the time scale of

the Higgs oscillation. As for the quark channels, they are open for both ¢ > 0 and
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¢ < 0 regimes. Specifically, the top and bottom quarks are massless during ¢ < 0 so
the channels are always opened, while during ¢ > 0 bottom quark channel is never

forbidden due to the small Yukawa coupling ¥, but top quark channel should satisfy
2 2 AN o 2
> | 1—— ) =& ~4351° (4.101)
Yi

where 1, ~ 0.05 and ¥, ~ 0.01 are evaluated at ~ 10'2GeV. The decay rates in the

adiabatic regime are given as follows

( 3%2 1/2
— (3 M 0
L= -\ 3/2 4.102
3y; 12 yi M?
— (6 M|1l—-=— >0
\ 167T ( 505%0) A M2 ) <ID )
(3 2
% (3ealpl)* M p <0,
167
Fh—)Bl:) - 3yg 1/2 yg M2 3/2 (4103)
—= (6 M|1l—=2— > 0.

These expressions are not only applicable for the decay of homogeneous Higgs field
but the Higgs particles produced during reheating, which will be discussed later.

As for the scalaron decay [3,29,30,172], the dominant channel is decaying into
Higgs particles. According to Egs. (3.112) and (4.90), the decay rate for scalaron to
Higgs particles can be easily found for both ¢ > 0 and ¢ < 0 regimes. The decay
is kinematically allowed only when ¢ < 1 or ¢ becoming small when it gets close to

origin or at very late time, as is shown by

3 M3 /1 2 12
e (e 1-12 0
o (5+€) (1 126ale) <0,
Lo shon = s WP /1 N2 2 12 (4.104)
2P (2 oe ) (11— 246 0
e (5 %0m) (1-265E0e) - e>0.

where 6h = a3/26h is the redefined Higgs perturbation as in Sec. 4.2. Therefore, the
scalaron is expected to play an important role at late time in the determination of
the final reheating temperature. The decay during ¢ < 0 vanishes when £ = —1/6
as expected, which corresponds to the usual conformally coupled case. However, for
¢ > 0 this result does not admit negative non-minimal coupling because the existence
of the valleys with finite |h,| is assumed, which is inconsistent with £ < 0. Instead,
the decay rate for ¢ > 0 vanishes when ¢ ~ 1/12. The minimally coupled case £ = 0

does not mean the decay channel is closed. In this case, the results here coincide with
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e.g. Refs. [177,179]. In the case considered here, the 1/6 can actually be omitted
because £ > O(10). Additionally, only when m, > 2ms, = 2my,., the decay is
kinematically allowed, as can be easily seen. In the case where & > 1, the decay
process can only occur when |p| becomes sufficiently small, which can be realized
in two possible situations. The first one is when ¢ gets close to the origin during
oscillation. The second is at late time when |p| becomes small due to the Hubble
expansion and decay of energy through Higgs.

One more concern should be addressed. Decay rates should not exceed the oscil-
lation frequency of the corresponding field, as required by the validity of perturbative
calculation. From the expressions above, this requirement for h — 2W and h — 22
simply lead to conservation of the perturbativity condition (2.121). For y, < 1 and
yp < 1, the perturbative condition is automatically satisfied as well as this require-
ment. The same conclusion can be drawn for the scalaron decay rate in ¢ < 0 regime.
Therefore, from this point of view, the strongly-coupled regime does not mean some-
thing terrible but simply perturbative expansion is not valid anymore. However, this
is not true for the scalaron decay rate in ¢ > 0. Therefore, it is still not clear whether
the lower of Eq. (4.104) can really be applied to calculation here. Fortunately, this
channel is kinematically forbidden until a very late time which is almost irrelevant
for the calculation that will be presented, especially for larger £. Therefore, it does

not change the conclusion of this section.

4.3.2 Presence of Tachyonic Preheating

The discussion here focuses on the case where strong tachyonic instability occurs at
the early stage of preheating and results in an early radiation-dominated era. In this
case, the perturbative decay of the background fields will affect the tachyonic pre-
heating in two ways, as shown below. Firstly, the decay of Higgs particles produced
by the tachyonic effect can reduce their backreaction strength on the homogeneous
background, for example, the rescattering effect considered in Ref. [52]. Secondly,
even if the tachyonic preheating and the backreaction can transfer most of the en-
ergy from the homogeneous background into relativistic particles, as long as there is
some fraction of homogeneous field (mainly scalaron) remains, it will finally domi-
nate the Universe again as it is redshifted by the cosmic expansion in a slower manner
than relativistic particles. As a result, perturbative decay eventually determines the

reheating temperature regardless of the detail of preheating.
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4.3.2.1 During tachyonic preheating

First, how perturbative decay affects the efficiency of the rescattering process between
homogeneous and inhomogeneous modes after moderate tachyonic particle production
will be discussed. This is a quantum effect that is not considered in the classical lattice
simulation in Ref. [52].

As discussed previously, the Higgs particles can efficiently decay into top (and
bottom) quarks as the homogeneous Higgs does, especially when ¢ < 0, which is seen

in Egs. (4.102) and (4.103). For example, during the first scalaron oscillation,

3 3y2 M
Lo = e (3ol 21 2328 (36CF) -
M2 1/4
~(.86 X (W — 1) M.> H ~0.12M. , (4.105)

for £ > 100 on which the following discussion will focus (see Figs. 4.17 for two exam-

ples)®. Focus on the regime ¢ < 0 only in the following. The typical time scale of

1
M.

the decay 0h — tt in the unit of M, can be calculated as
_ M
~ M Tspoii _16 (35 (3¢alp])'?

3y M2 1/4
H/3Clcmh ) ,/ (W—l) : (4.106)

where Eq. (4.15) is used as well as C,, = 0.64 in Eq. (4.32) for time-averaged /||
The result of Eq. (4.106) is shown in Fig. 4.18. Since C; = 0.25 is only valid for

the first scalaron oscillation, C; = 0.005 is also considered to capture the decay of

scalaron amplitude at late time. As can be seen, for most part of the parameter space,
the time scale M, F(Sh e

than the preheating time scale shown in the examples in Ref. [52]. Therefore, the

is less than ~ 50 scalaron oscillations which is much shorter

number of Higgs particles that participate in the rescattering process will decrease
considerably.

Although the Higgs particles can decay into relativistic particles of other species,
these decay products cannot efficiently interact with the homogeneous scalaron be-
cause they are coupled only through the conformal factor that is Planck-suppressed.

Consequently, it is expected that the efficiency of the preheating process consisting of

55Possible reduction of the decay rate I'sj,_,7 is the Lorentz factor if the Higgs particles produced
by tachyonic instability are relativistic. However, this depends on the momentum distribution of §h
which is determined by the detail of the tachyonic preheating. This is beyond the scope here. If
most of the Higgs particles are indeed relativistic, then this decay channel may be neglected.
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Figure 4.17: Comparison of Hubble scale H (black, solid) and the decay rate T's;_ss7
(blue, dashed). The evolution of the scalaron (red) is only for reference. Left: (§,\) =
(4000, 0.01). Right: (£, A) = (200,0.01). The decay rate vanishes when ¢ > 0 for the
large mass of top quarks from Higgs non-zero vev. Only for £ ~ & (see Eq. (4.101)),
this channel is allowed during ¢ > 0.

10l | 100}

: 50/
c c
s s

| | 10}

0.5} ] S5

0 1000 2000 3000 4000 0 1000 2000 3000 4000
¢ 4

Figure 4.18: Decay time scale of the produced Higgs particles dh into top quarks
according to Eq. (4.106). Left: C; = 0.25. Right: C; = 0.005.

moderate tachyonic instability and rescattering can receive a non-negligible reduction
due to the decay of the produced Higgs particles, which may also allow the perturba-
tive decay process to dominate the last stage of reheating and eventually determine

the reheating temperature 7.

4.3.2.2 After tachyonic preheating

Next, consider the case where a significant amount of energy has already been trans-
ferred from the homogeneous background fields to relativistic particles. It is interest-
ing to study whether the homogeneous part can dominate over the radiation at a late
time when the preheating processes can no longer significantly increase the energy
fraction of the relativistic particles. If the answer is positive, it is also important to

investigate how much the initial radiation energy affects the final reheating temper-
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ature that is determined by late-time perturbative decay of the homogeneous part.
These questions are addressed with numerical methods in the following discussion.

To determine of the reheating temperature, it is necessary to find out the Hubble
scale at the moment when reheating is completed. Here, completion of reheating
is referred to as the onset of the radiation-domination with no homogeneous fields
that can dominate the Universe again, which is actually ambiguous to define in a
numerical calculation for the following reasons. Due to the accumulation of error, it
is challenging to obtain reliable long-time numerical calculation to check whether the
Universe becomes matter-dominated again at a late time. For example, it is usually
too long for the numerical calculation to run for a scalaron decay time scale F;l.
Fortunately, in the perturbative decay process considered here, the decay rate for
scalaron is approximately constant at the late time while the Hubble parameter H
decays with time, so the homogeneous background fields will certainly be completely
depleted eventually. Another reason is that the termination time chosen for the
numerical calculation as the completion of reheating affects the Hubble scale (so
the reheating temperature) due to the cosmic expansion. Therefore, too early (late)
time will result in overestimation (underestimation) of the reheating temperature to
some extent. In the following, a simple criterion is adopted to make sure that the
equation of state parameter w converges to 1/3 properly, i.e. the ratio between the
energy densities of radiation and homogeneous background fields pyad/pbe > 20, which
avoids the long-time numerical calculation and too much overestimation of T,.

In the numerical calculation, the equations of motion for the background fields
with the decay rates taken into account as friction terms are solved, together with the
Boltzmann equation for the radiation energy density, and the Friedmann equation,
which are given by

ou + ge_’whz =0,

¢+ (BH +T,_55) ¢+ o 2

) .U
h+ <3H + Uit + Uoip + Droomvw + Fh0—>ZZ> hte™or —aph=0,

dprad ; ‘
o + 4H praq = ng—w?z&?ﬁOQ + <Fho—>f; + Fho—ﬁa + Do + Fh@éZZ) h

3MAH? = pog + praa » (4.107)

where praq is the energy density of radiation while ppg is the energy density of the

background fields given as

pog = P2/2 4+ e *h% )2+ U(p, h) . (4.108)
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Also, step functions are used to impose the kinematic constraint for each decay chan-
nel. The equation of state parameter w and the reheating temperature 7, are esti-

mated numerically through

2 H
90 \V/
T, = (g 7r2> H. M, (4.110)

where g, = 106.75 and H, are the effective number of relativistic species and Hubble
parameter at the end of reheating. In addition, define a temperature T;, as a reference
by assuming that Higgs becomes light enough so that the decay channel ¢ — Shoh

is always open

T, =0.2y/ M, T,
(3 M 2o 31\ 7 \]7
N02 s 7—2 = -
v My (M M> <167rMp21 <6+£> M+167TM§1 <6 25M2> M)]

. 1/2
M3M

OQFJWTFJ\JZ(]\/[—%J\J) <1+§>2+%z< 51\42)2] (4.111)

which returns to the standard result (see e.g. [177,179]) when £ < 1.

Since the situation considered here is that a preexisting preheating process has

transferred a large amount of energy from pye to praq, the initial conditions are set to
be Pradini = Ibgini = 90% x BMHHZ, 4 where Heyq is the Hubble parameter at the end
of inflation. Before going to the reheating temperature, two examples of the evolution
Of prad; Pvg, 3MZH?, and w are shown in Fig. 4.19. It can be seen that for larger &,
the homogeneous part does not really dominate over but at most becomes comparable
to the radiation. In contrast, for smaller &, the energy density of the homogeneous
part indeed becomes larger than that of the radiation, so two intersections between
them are clearly seen in the upper right panel of Fig. 4.19. This result is reasonable
because for larger £, more decay channels are allowed, and decay rates themselves also
become larger. However, if perturbative decays are not taken into account, the energy
density of the radiation will simply be redshifted away quickly and the Universe will
be dominated by the homogeneous background field again. Also, it can be seen that
w effectively converges to 1/3 when praq/pne = 20, which shows that this criterion is
reasonable.

Finally, the reheating temperature for parameters £ > O(10) is discussed in this
setup. Specifically, scan the parameter space 35 < ¢ < & with adaptive step length
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Figure 4.19: Upper: praq (red dashed), pyg (black solid), and 3M3H? (blue solid).
Lower: w up to prad/pog = 20. Left: £ = 3000. Right: & = 1000. Initial conditions

are Prad,ini = IPbg,ini = 90% X 3M§1H e2nd. In order to make the intersections clearer in

the upper right panel, the evolution is shown only up to Myt =7 x 10".

and calculate the reheating temperature 7, defined at the moment when praa/png
exceeds 20 as well as the duration of this perturbative reheating ¢.. No further
investigation for the cases £ < 35 is presented because it takes too long for numerical
calculation. From the results presented below, it can be expected that the reheating
temperature quickly approaches the R2-inflation case as £ decreases. The result is
shown in Fig. 4.20 where 6 defined in Eq. (4.37) is used as the model parameter
because it treats the Higgs-like and R%-like regions “equally”, which is one of the
main results in this section.

It can be seen that once 6 approaches the unitary bound 6 =~ 0, the reheating
temperature rapidly increases to reach the Higgs-limit. Conversely, as § — 7/2, the
system approaches to the R?-limit. A similar argument also applies to the pertur-
bative reheating duration. As for the comparison with T, (red line), T, > T, for
most part of the parameter space because the Higgs decay plays an important role
in lifting the reheating temperature. However, when 6 approaches the unitary bound
in Higgs-limit, T}, becomes larger than 7)., which is understandable because it is as-

sumed that the scalaron decay channel is always open, which is obviously NOT the
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Figure 4.20: Left: reheating temperature 7, (blue) and the temperature calculated
with only averaged scalaron decay rate T, (red) given in Eq. (4.111). Right: duration
of perturbative reheating ¢, (blue) and the scalaron decay time I'J' (red). Both T,
and ¢, are determined at the moment when py, becomes smaller than 5% of praq.

realistic case since the large Higgs mass forbids the decay to occur until late time. A
similar argument applies to the reheating time. Apart from these unrealistic parts, it
is expected that if the calculation lasts for a long enough time, the numerical results
in blue will get closer to but not coincide with the red lines in Fig. 4.20. Again, the
reason is that the decay of Higgs is lifting the reheating temperature and shorten the
reheating time. More importantly, the small dips and peaks on the numerical results
are physical instead of pure artificial due to the error of numerical calculation. As
discussed in Appendix G, the cause of these small features is the -dependent energy
distribution between scalaron and Higgs. Suppose the model parameter is close to
some critical point that realizes maximal tachyonic instability in the first scalaron
oscillation. In that case, more energy is stored in the Higgs field so that the effec-
tive decay rate of the whole system becomes larger because the decay rate of Higgs
is larger than that of scalaron for most parameters. Figures 4.21 show illustrative
examples to make the argument more convincing. Two cases are considered: (1)
nearly-critical &, with larger oscillation amplitude of Higgs, and (2) far-from-critical
§fe >~ 1.001&,,, with smaller oscillation amplitude of Higgs. There is no initial radi-
ation imposed for simplicity. Since the two parameters are so close, the decay rates
of Higgs and scalaron are almost the same for both cases. However, as can be easily
seen in the comparison in Fig. 4.21, the nearly-critical parameter case induces a much
more efficient reheating process than the latter, even with slightly smaller decay rates
superficially, which can be recognized from the growth rate of p,,q and the converg-
ing rate of w to 1/3. On the other hand, if the parameter is far from critical values,

the energy in Higgs can be minimal so that the system is effectively decaying only
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Figure 4.21: Upper: nearly-critical parameter denoted as &,,.. Lower: far-from-critical
parameter denoted as £, =~ 1.001¢,,.. Left: evolution of homogeneous scalaron (red)
and Higgs (blue). Middle: praq (red dashed), png (black solid), and 3MZ3H? (blue
solid). Right: w. There is no initial radiation energy imposed for simplicity.

through scalaron decay until the inflaton encounters a chance to transfer the energy
from scalaron to Higgs. However, the chance is expected to be quite rare if the nec-
essary degree of fine-tuning for subsequent scalaron oscillations to be critical can be
analyzed similarly as the first scalaron oscillation in Sec. 4.2, and the corresponding
effect would be smaller. Therefore, if the time resolution in the numerical calcula-
tion is high enough and the parameter scanning is done more finely, it is expected
that the dips on the blue line in the left panel of Fig. 4.20 would be deeper while
the peaks would be higher corresponding to the 6’s that can realize strong tachyonic
instability in the first (or at least early) scalaron oscillation after the end of inflation,
with smaller wiggles corresponding to late-time critical cases. A similar argument

also applies to the right panel.

4.3.3 Absence of Tachyonic Preheating

As the last part of this section, the investigation focuses on the case where tachyonic
instability is weak or does not take place during preheating. As a result, there is
practically no p,aq initially. In this case, initial conditions for p,aq and pyg are simply
changed in the previous numerical calculation.

First, two examples of the evolution of energy densities and equation of state
parameter are shown in Fig. 4.22. As can be seen there, even if there is no initial
radiation before the onset of the perturbative reheating, the perturbative decay of

scalaron and Higgs can still reheat the Universe in a similar manner as the case
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Figure 4.22: Upper: praq (red dashed), pyg (black solid), and 3M3H? (blue solid).
Lower: w up to prad/pog = 20. Left: £ = 3000. Right: £ = 1000.

considered previously. Still, the end of reheating is defined as the moment when the
condition prad/pue = 20 becomes satisfied.

Next, the reheating temperature 7, and duration ¢, are discussed in the current
setup. Again the parameter space is scanned within 35 < £ < & for the same rea-
son mentioned previously. The results are shown in Fig. 4.23 together with those
in Fig. 4.20 for convenient comparison. This figure is also one of the main results
in this section. As can be seen in Fig. 4.23, the results from cases with and with-
out initial radiation energy almost coincide with each other, which indicates the fact
that, if preheating processes cannot completely deplete the energy of the homoge-
neous background fields, once the homogeneous fields dominate the Universe again
and perturbative decay takes over the reheating process, the resulting reheating tem-
perature (as well as the duration of reheating) is almost independent of the detail of
preheating. Therefore, the perturbative decay indeed plays an essential role in the
whole reheating process in the mixed Higgs-R? model.

Finally, the number of e-folds of reheating AN, is calculated, which is important
to confront theoretical inflation predictions with observational data. Figure 4.24
compares AN, resulting from the cases with and without initial radiation. It can be

seen that the difference is stable on a value slightly less than unity, which means that
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Figure 4.23: Left: T, with (blue) and without (black) initial radiation, and T, =
0.2/, My (red). Right: t, with (blue) and without (black) initial radiation, and
I',! (red). Both T, and t, are determined at the moment when p,, becomes smaller
than 5% of praq. The blue lines come from the results in Fig. 4.20 for convenient
comparison between the cases with and without initial radiation energy.

Figure 4.24: Comparison of e-fold numbers of cosmic expansion between the end of
inflation and the end of reheating. Blue: number of e-fold in the case with initial
radiation. Black: number of e-fold in the case without initial radiation.

if there is a large fraction of energy in relativistic particles before the domination of
perturbative reheating, the number of e-folds AN, needed to complete reheating can
be reduced by around unity. Together with the duration of the early preheating stage
itself, the information of e-fold number can identify whether the early preheating stage
occurs or not. And the typical value of AN, shown in Fig. 4.24 is 3 < AN, < 5.

In this section, perturbative reheating in the mixed Higgs-R? inflation model
is investigated, and the role of perturbative decay throughout the whole reheating
process is discussed.

During perturbative reheating, the background dynamics of the scalaron and the
Higgs are tightly connected with the attractor solutions, i.e. the valleys. Considering

¢ > O(10), the adiabatic solution for Higgs can be analytically found because scalaron
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mass is much smaller than that of Higgs. As a result, the Higgs mass is almost
constant within every Higgs oscillation, which validates the calculated Higgs decay
rate. The relation between the energy distribution of the background fields and the
parameter choice is discussed, which creates the fine structure of the main results
in Figs. 4.20, 4.23, and 4.24. Then the perturbative decay rates for scalaron and
Higgs are calculated in the adiabatic regime where Higgs oscillates much faster than
scalaron, based on which the possible effects of the decay on the period during and
after the occurrence of tachyonic preheating are estimated. It is found that the decay
of Higgs particles produced by tachyonic preheating may weaken the rescattering
process between homogeneous and inhomogeneous modes in a non-negligible way,
which could slow down the preheating process and allow the re-domination of the
oscillating background field. More importantly, perturbative reheating determines
the final reheating temperature 7, in this model. It is shown that larger ¢ leads
to larger T, due to larger decay rates and more allowed decay channels. Also, the
reheating temperature is typically larger than T, because the decay of homogeneous
Higgs field increases the effective decay rate of the whole system. The early preheating
stage is taken into account by imposing non-vanishing radiation energy density to the
initial conditions of the system. It is found that the early preheating stage can hardly
affect the final reheating temperature but still can change the number of e-folds of
the perturbative reheating.

Here, the assumptions and caveats in this study should be clarified. Only param-
eters within & > £ > O(10) are considered for the following reasons. For & < O(10),
the hierarchy between scalaron and Higgs oscillation becomes small, so the adiabatic
approximation breaks down, which makes it difficult to study the system analytically.
In addition, the perturbative reheating process takes a long time to complete, which is
challenging for numerical calculation. From the results presented above, it is expected
that the system will quickly approach the R?-inflation limit as & decreases. Therefore,
¢ < O(10) is not discussed in detail here but given some simple argument. Besides,
tachyonic particle production during preheating is not directly incorporated in the
numerical calculation but taken into account phenomenologically as the initial radi-
ation energy. When defining the completion of reheating, the criterion paqa/ppg > 20
is adopted instead of waiting for a long time, more precisely ~ O(F;io) where I'y, <
is the scalaron decay rate during ¢ < 0 instead of I',, in Eq. (4.104). This is because
the channel in ¢ > 0 regime is almost closed for all the time, as explained previously.
Then, a simple estimation of F;io ~ 167 M./(AM?) shows that even for the most

efficient case £ = & the time scale is M t, ~ 10° which is roughly the same as the
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numerical results with corresponding parameter and the criterion praq/ppe > 20. As €
decreases, the time scale grows to Myt ~ 10'? for £ ~ 100 and even larger for smaller
&, which is much longer than that evaluated with the adopted criterion. The results
obtained here are expected to be robust because the numerical results show that the
equation of state parameter converges well to 1/3. As for the produced particles, it is
assumed that they are relativistic and reach thermal equilibrium right at the end of
reheating defined in this investigation. Actually, when Higgs background decays in
¢ < 0 regime, the produced fermions (top and bottom quarks in our consideration)
are massless therefore relativistic. However, they gain masses as scalaron enters ¢ > 0
regime and Higgs enters one of the valleys. Therefore, they are switching between
being massless and massive during the oscillation of the homogeneous fields. When
they become heavier during ¢ > 0, they can further decay into other lighter particles.
This phenomenon is not studied in detail in this thesis.

This work only focuses on the case £ > O(10). For small £ < O(10), it is argued
that the situation would quickly approach to R2-limit, but a more detailed investi-
gation should be done in the future work in this parameter range. Also, this work
only incorporated the effects of tachyonic preheating phenomenologically in the sense
that the effects of the early preheating stage have been taken into account only as

the preexisting radiation in the numerical calculation.

This chapter constitutes the central part of this thesis, discussing the reheating
process in the mixed Higgs- R? inflation model based on the original works [41,51,53],
which is characterized by three parts, the first stage of preheating, tachyonic pre-
heating, and the perturbative reheating. The first stage of preheating corresponds
to the violent spike preheating in the Higgs inflation, but, in the two-field case, it
is analytically shown that the spikes are much milder and insufficient to complete
preheating. The weakened spiky phenomenon also ensures that the mixed Higgs- R?
inflation model can serve as a UV-extension of the Higgs inflation up to the Planck
scale. After that, the non-minimal coupling creates a possibility that, with fine-tuned
parameters, the Higgs field and the longitudinal mode of gauge bosons experience
strong tachyonic instability, which can complete preheating almost instantaneously.
However, the occurrence of sufficiently strong tachyonic preheating requires severe
fine-tuning, especially in the R2-like regime. Both analytical and numerical methods
are used in the investigation. In the fine-tuned case, the corresponding e-fold number
of inflation is also estimated. If the tachyonic effect is not strong enough to complete

preheating or totally absent, perturbative decay of the scalaron and the Higgs plays
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an essential role during the reheating process. In the former, the tachyonic preheat-
ing transfers a large amount of energy from inflaton fields to radiation at the early
stage, but they are redshifted much faster than the remaining coherent oscillation
of background fields, so eventually, the coherent oscillation dominates the Universe
again and perturbative reheating takes place. In addition, although the products of
tachyonic preheating may help to destroy the homogeneous background by rescat-
tering, the large decay rate of the Higgs field into quarks may weaken such effects.
The perturbative reheating determines the final reheating temperature and duration
if tachyonic preheating is inefficient. In such a case, the final reheating temperature
and duration is almost independent of the detail of preheating. The Higgs-like regime
generally result in higher reheating temperature and shorter duration than those in
R2-like regime, as shown previously. Although the parameter range considered here
does not reach the vicinity of the R2-limit, it is expected that the system approaches
the well-known Starobinsky model as & — 0. With all these investigations and re-
sults, a comprehensive understanding of the reheating process in the mixed Higgs- R?
inflation model is gained, and the observational constraint on the model parameters
can be improved by fixing the pivot scale of the curvature perturbations for different

parameters by corresponding reheating phenomena.
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Chapter 5

Conclusion

In this thesis, the origin of the Big Bang in the mixed Higgs-R? inflation model is
investigated, namely the reheating process that provides initial conditions for the Hot
Big Bang, mainly based on my original works [41,51,53].

In Chapter 2, a brief review of the inflation scenario is given, including the moti-
vation and basic physical picture of inflation, the simplest class of inflation model, i.e.
single-field slow-roll inflation, and the general formalism for the multi-field inflation.
In the single-field case, two simple but observationally favored models are of great in-
terest, namely the Starobinsky model with only one model parameter, and the Higgs
inflation that makes use of the only observed scalar field in SM. These two models are
equivalent during inflation, giving the same predictions on the scalar spectral index
and the tensor-to-scalar ratio. However, the Higgs inflation suffers from UV problems
that make the prediction from this model questionable. In particular, the cutoff scale
of the Higgs inflation is suppressed by the large non-minimal coupling between Higgs
and gravity. To solve these issues, a UV-extension is eagerly desired. As a promising
candidate, the mixed Higgs-R? inflation model is reviewed in the last section based
on Ref. [38]. In this two-field model, the scalaron and the Higgs both play the role
in driving inflation. In the presence of the R? term, the cutoff scale is lifted to the
Planck scale and still gives the same inflation prediction as its two single-field limits
with large non-minimal coupling. The parameter space is broad and can be divided
into Higgs-like and R2-like regimes, while there is a strongly-coupled regime inside the
former to which the Higgs-limit belongs. As long as the parameter is chosen outside
this regime, the perturbativity is ensured in this model. It is shown that the effective
single-field description is valid during inflation, so the mixed Higgs-R? inflation can be
understood as an effective Starobinsky model or effective Higgs inflation. However,
the UV issue in the Higgs inflation is even severer during preheating [34], which is

discussed in Chapter 3.
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In Chapter 3, the basics of particle production and its application to reheating
are reviewed. Reheating is an indispensable part of a successful inflation model as
a graceful exit of the quasi-de Sitter phase to connect with the subsequent Hot Big
Bang. Also, a comprehensive understanding of reheating can clarify the ambiguity
of the pivot scale of curvature perturbation to improve the observational constraint
of model parameters. A typical type of particle production can be classified as the
non-adiabatic time-dependence of the effective mass of the target field. Based on a
general equation of motion of this type, the perturbative and non-perturbative particle
production are discussed in detail according to the parameter choices, including para-
metric resonance and tachyonic instability in the latter case. The non-perturbative
processes are usually very efficient, which plays a vital role during preheating in an
inflation model, especially the broad resonance and the tachyonic instability. The per-
turbative process is weak and slow instead, but it can be essential at the last stage of
reheating because the conditions for non-perturbative particle production are usually
not satisfied anymore at the late time. As typical examples, the reheating processes
in the Starobinsky model and the Higgs inflation are reviewed. In the former case,
the reheating channel is dominated by perturbative reheating through the decay of
the scalaron, which results in a relatively low reheating temperature. For the latter
case, a violent preheating process is induced by the sizeable non-minimal coupling
that leads to significant spikes in the effective mass of the longitudinal mode of weak
gauge bosons. However, these spikes are too large that the energy scale exceeds the
cutoff of the theory during reheating, which causes serious UV problems in the Higgs
inflation model. As a result, because the theory enters the strongly-coupled regime,
its predictions may not be reliable. Therefore, as a UV extension candidate, it is vital
to examine the preheating process in the mixed Higgs-R? inflation model to ensure
the absence of these issues.

In the central part of this thesis, Chapter 4, the reheating process in the mixed
Higgs-R? inflation model is studied. The effective single-field description is no longer
valid during reheating, which makes the situation much more complicated but results
in rich phenomena that are not expected in its two single-field limits. Thanks to the
multi-field nature of the reheating dynamics, even though the non-minimal coupling
can be large, the large spikes that cause problems in the Higgs inflation are still present
at the first stage of preheating but significantly reduced by the presence of scalaron.
Since the Higgs-limit lies within the strongly-coupling regime in the parameter space,
it is understandable that the strong coupling issue appears in the Higgs inflation but

disappears in the UV-extended model as long as the model parameter is outside the
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strongly-coupled regime. As a result, the spike in the effective mass of longitudinal
mode of gauge bosons is physical but cannot exceed the even higher cutoff in this
theory, which confirms that the mixed Higgs-R? inflation model is indeed suitable as
the UV-extension of the Higgs inflation. For the same reason, the particle production
by the spikes is far less efficient than that in the single-field case, giving very limited
impact on the preheating process in the two-field model. Therefore, other mechanisms
in the subsequent evolution should be involved to deplete the inflaton energy to
reheat the Universe. In fact, the preheating process can be dominated by tachyonic
instability if the model parameters are critical ones that can realize a significant
tachyonic effect right after the spike preheating. The tachyonic effects in the Higgs
field and the longitudinal mode of gauge bosons can complete preheating within one
e-fold of expansion for most of the critical parameters, except for those close to the
R2-limit because naturally no tachyonic instability is expected in this limit. The
resulting e-fold number of inflation is then 58 < Nj,r < 59 which corresponds to a
scalar spectral index ns; >~ 0.9658. Observing this value of n, gives strong constraint
on the model parameter and breaks the degeneracy with the Starobinsky model,
indicating the parameters should be one of those shown in Fig. 4.8. Of course, fine-
tuning is needed for the realization of such strong tachyonic preheating. The necessary
degree of fine-tuning for the R*regime (Afegy/Afy < 1072) is much more severe
than the Higgs-like regime (107% < Afen/Afy < 1071) because the amplitude of
tachyonic mass is generally smaller in the former. Consequently, more fine-tuning is
needed to stay in the tachyonic regime for a longer time to have sufficient particle
production in the R%like regime. Since fine-tuning is needed, it seems more likely
that the tachyonic preheating at the first scalaron oscillation after the end of inflation
is not strong enough to complete preheating. In this case, the produced radiation by
tachyonic instability is probably redshifted away, so the remaining coherent oscillation
of inflaton fields dominates the Universe again. To deplete the rest of the inflaton
energy, perturbative decay serves as the primary channel at the late time, determining
the reheating temperature and duration. The decay rate of Higgs is typically larger
than that of scalaron, so the reheating temperature in the mixed Higgs-R? inflation
model is generically larger than that in the Starobinsky model. For most parameters
between the two limits, the reheating temperature is ~ O(10*)GeV and the e-fold
number of reheating is typically AN, ~ 3—5, which can be translated to ny ~ 0.9643—
0.9630 and would be constrained by future CMB observation if the precision reaches
Ang ~ 0.001, although there is a partial degeneracy between the cases with and

without (insufficient) tachyonic preheating. Which regime the parameter is located
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in can be determined by such observation. In either case, if the measurement of ng can
be precise to An, ~ O(107*) level, the corresponding reheating temperature can be
finally pinned down so that the mixing ratio between R? and Higgs can be fixed even
more precisely. When getting close to the R2-limit or Higgs-limit, the standard results
are smoothly recovered. For larger non-minimal coupling, the reheating temperature
becomes higher because the scalaron decay into Higgs gets significant. The energy
distribution between the Higgs and the scalaron further generates some fine structures
on the parameter-dependence of the reheating temperature and duration, which may
increase the difficulty breaking the degeneracy among model parameters within a
small neighborhood. Besides, the perturbative decay of produced particles can also
slow down the rescattering process between homogeneous and inhomogeneous fields.

The results summarized in this thesis provide an analytical and comprehensive
understanding of the reheating process in the strongly-motivated mixed Higgs-RR?
inflation model that can serve as the UV-extension of the Higgs inflation and give ob-
servationally favored inflation predictions. The reheating process provides the initial
conditions for the subsequent evolution of the Universe. Depending on the choice of
model parameters, the reheating process can be very different from its two single-field
limits, leading to different reheating temperatures and duration, which can be used
to break the degeneracy among different parameters and improve the observational
constraint on model parameters. Since this model is within GR and SM, ruling out
or verifying this model is crucial for determining whether the construction of inflation
model requires new physics beyond GR and SM or not. It can be expected that more
precise CMB observation in the future can narrow down the favored range of ng to
constrain the viable parameter space in the mixed Higgs-R? inflation model. More-
over, since the tensor-to-scalar ratio also depends on N, future experiments, such as
Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic
background Radiation Detection (LiteBIRD), CMB-S4, and Cosmic Origins Explorer
(CORE), may be able to further constrain the model. In principle, the alternating
radiation- and matter-dominance shown in Sec. 4.3 is also helpful to distinguish the
mixed Higgs-R? inflation model with other inflation models because the change of
equation of state parameter can be imprinted in the spectrum of the primordial grav-
itational wave background [12], which might be detected by future experiment such
as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO).
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Appendix A

Conformal Transformation

In this appendix, the rules of conformal transformation are summarized (see e.g.
Ref. [64] ). The convention (—, +,+,+) and R*,, = 9,1}, -0, +T I'0, —T% T's,

are used.

Consider a conformal transformation for D-dimensional spacetime

(%) = Gu(2) = QU2)* g () (A1)

where (x) is a continuous, non-vanishing, finite, and real function. Under such a

transformation, the Christoffel symbol, Ricci tensor, and Ricci scalar are transformed

as follows.
I, =10, =T0, + Q7 (85V,Q 4 60V,.Q — 6,9V, Q) (A.2)
B Q27D
R, =R, =R, — mgWD(QD—z) +(D - 2)QV,V,(Q71), (A.3)
. R (D-1)(D-4) 2(D —1)
O¢ —»0¢ = Q20 + ——g"Q 'V, () V.6, (A.5)

where [0 = ¢V, V,. Consider a scalar field, the combination

transforms in a simple way under the conformal transformation (A.1)

[D—%R}¢—> {E—éﬁ)—__i)é}&zww [D—%R}du (A7)
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if the scalar field transforms as
6 =070, (A8)

Therefore, given a Lagrangian for a scalar field as

1

£ = 1/ [~0,00" — (m? — £R)?] | (A9)
if m=0and {=—[(D—2)/(D —1)]/4, the equation of motion for ¢
D -2

is invariant under the transformation (A.1) and (A.8) because the following is also
satisfied

3 D—92 .-

- ———- =0. A1l

O st A
Usually, ¢ = —[(D — 2)/(D — 1)]/4 is called conformal coupling with which the

scalar field is actually “minimally” affected by gravity. To be more specific, consider
a simple example with Eq. (A.9) for a homogeneous ¢ and a four-dimensional flat
FLRW background (K = 0 in Eq. (2.1)). In this case, the equation of motion for ¢

is given by
¢+3Ho+ (m*—ER) ¢ =0. (A.12)

By using conformal time dn = dt/a(t) and redefining x = a¢, the equation of motion

above becomes
1
X'+ m?a*x — (6 - £> a’Ry =0 . (A.13)

When ¢ = —1/6 which is the conformal coupling in four-dimension, gravity only

rescales the mass of ¢ while the direction coupling between R and ¢ vanishes.
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Appendix B

Gauge Transformation

In this appendix, the rules of gauge transformation for four-scalar, -vector, -tensor
fields are summarized. With these transformation rules, gauge-invariant quantities
can be easily constructed.

The four-tensor, -vector, and -scalar fields can be decomposed into background

and perturbations in the following way

gHV (t7 X) - g#l’(t) + 59#1’ (ta X) )
v,(t,x) = v,(t) + dv,(t,x) ,

o(t,x) = o(t) + 0(,%) , (B.1)

where the over-line ( ) denotes the homogeneous background and the spatially de-

pendent parts correspond to perturbations which are small compared with the back-
ground quantities [8g,.,| < |G|, |60, < |9,],and |0¢| < |¢|. Under an infinitesimal

coordinate transformation
ot = =t g, = (0,6 +67EY) (B.2)
where [¢| < |z| is assumed, and SYZ = 0 with the notation for spatial partial deriva-
tives (), = 0;( ), the tensor-, vector-, and scalar-type perturbations are transformed
as follows
5g,uu :(59#1/ - §ua§3, - gpugfu - gpg,m/,p )
00, =0v, — v,8", — &0,
5 =0 — G, (B.3)
To be more specific, the metric perturbations on a flat FLRW metric are generally

given by

ds® = — (14 2®)dt* + 2a(t)Bidx'dt + a*(t) [(1 — 2W)d,; + Eyj] da'dx? (B.4)
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where ® is Newtonian potential, ¥ is the curvature perturbation, B; = BE- + B} is the
shift, and E;; = 2E5, +2 E(\i”j) + hj" is the spatial shear. These perturbations should
satisfy the following conditions 5”ij = 5ijEXj = 5ijE§j = 5ijhiTjT = 5jkh;l;-’Tk = 0.
Here, the compact notation E(\Z’ N = (EIVJ + EJVZ) /2 is used. On the other hand, the

perturbations in matter sector are given as

p(t,x) = p(t) +0p(t,x) , p(t,x) = p+op(t, %),
u, = (-1—®,av;) , v (1—2,6Y(v; — Bj)/a) , (B.5)

where v; = v§ + v with v); = 0. From Egs. (B.3), it is straightforward to derive the

following relations between two different gauges

d=0-¢", V=04 HE,
ES:ES—é,BS:BS+%€—a§,
0p=0p—pt", 6p=op—pe,
P=t e 06 = 00— ¢
BY = BY +a6,;6V7 | EY = EY —6,;6"7 (B.6)
while v and hiTjT are gauge-invariant automatically. From these transformation rules,
it is easy to construct various gauge-invariant quantities, but not all of them are

physically meaningful or useful. In other words, all physical quantities are gauge-

invariant but gauge-invariant quantities are not necessarily physical.
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Appendix C

Equations of Motion in Einstein
Frame

In this appendix, the explicit expressions of the EF equations of motion for scalaron
and Higgs in the mixed Higgs-R? inflation model are summarized.
Firstly, a list of first and second derivatives of the potential (2.124) is given because

they are useful for the analysis and calculation.

U7<P A M? —20p 14 3€ 2 -« —ap 2 3 2 2 —o -«
o = 3t M (1—2e7%%) e™*h +5 MM (1—e ™) e ¢, (C.1)
M2 —2a71.3 2 —Qap) ,—ap
Up = )\ﬁe h? —3¢M? (1 — e %) e *%h (C.2)
U#%O M2 —2a0p 14 35 2 -« —app2 3 2 2 -« —a
—5 = /\ﬁe -5 M (1 —4e ) e *h —5 MM (1—-2e7%) e, (C.3)
Uy = AL cmaop2 3EM? (1 —e ™) e ™ (C.4)
7hh - M2 9 .
U M?
Zeh gz e20wp3 4 3¢M> (1 — Qe_o“p) e ““h . (C.5)
o M?

Next, assuming the background spacetime to be the flat (K = 0) Friedmann
metric (2.1), the Friedmann equation and background equations of motion for ¢ and

h are given as follows

1 1 :
3MAH? = §¢2 + Ee—wzﬂ + U, (C.6)
G+3Hp+ U, + %e*a%"h? —0, (C.7)
h+3Hh+e*U,;, —aph =0, (C.8)

where the kinetic coupling is easily seen due to the non-canonical kinetic term of
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Higgs in the action (2.124). Another useful form of the Friedmann equation is
—2MAH = ¢* + e *%h? . (C.9)

As can be seen, the kinetic term of the Higgs is suppressed by the factor e~*% that is
significant during inflation ayp > 1.

As for perturbations of scalaron and Higgs, it is usually convenient to fix a gauge
before derivation. Transforming to other gauges can be done through the gauge trans-
formation shown in Appendix B. One simple gauge choice would be the spatially flat
gauge where the gauge invariant Sasaki-Mukhanov variable is simply the fluctuation

of scalar field. Given the Fourier modes of dp and dh as

do(t, x) :/%eik'x [égok(t)ak + (5902(75)@14 , (C.10)
Shi(t,x) = / %eik-x [5hk(t)ak+5h;;(t)ai k] , (C.11)

their equations of motion can be derived from Eq. (2.98)

. . 2 . . .
5g0k + 3H(5(,0k + (kﬁi + U#PSD — O;emph2> dpp = —ae  “Yhohy, — U’@héhk, (C.12)
Shi + (3H — ap) Shy + (k2 + €U py) Ohy, = ahdpy, — € (U, + U pp) 6, (C.13)

where k, = k/a(t) is the physical wavelength.
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Appendix D

Mathieu Equation

In this appendix, the basics of the Mathieu equation are summarized, mainly based
on Refs. [176,190], including the perturbative treatment and the Floquet solution.
Mathieu equation is a linear second-order ordinary differential equation describing

a periodically driven oscillator which is usually written in the following form
Y.2(2) +[A—2gcos(22)]y(z) =0, (D.1)

where A and ¢ are constant parameters of the system, and the comma in subscript
denotes partial derivatives. When A > 0 and ¢ = 0, the harmonic oscillator is
recovered. In this appendix, A can be either positive or negative, while only ¢ > 0 is
considered because a negative sign can be realized simply by a phase shift in the cosine
function. Besides reheating, this equation can be encountered in the analysis of, for
example, a pendulum with a periodically moving support in the vertical direction,
and the Helmholtz equation in elliptic cylindrical coordinates. Mathieu function is
the solution of Eq. (D.1) while sometimes it refers to the solution with period 7 or
2w specifically.

In the following, perturbative treatment is used to discuss the case where the
excitation is small ¢ < 1 as a first step, and then the Floquet theory is applied to a

more general case to find out the stability chart of the Mathieu equation.

D.1 Perturbative Treatment

In the case ¢ < 1 < Ain Eq. (D.1), the method of multiple scales can be used to solve
the equation perturbatively. Defining ¢ = 2¢ for convenience, the small parameter

1

indicates the existence of a long typical scale ~ ~". Therefore, a possible solution

can be written in the following form

y(z) = 9(z,2) (D.2)
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which is a function of the original argument z and the “slow” variable Z = 2. As a

result, the total derivative with respect to z becomes
d/dz=1-0/0z+¢-0/0% . (D.3)

Using the Poincaré-Lindstedt method to expand the solution §(z, Z) and the param-

eter A in terms of ¢ as follows

7(2,2) = Go(2,2) + el (2, 2) + €24a(2, 2) + O(%) |
A= AO + 8141 + €2A2 + 0(83) s (D4)

and combining Eq. (D.3), it is easy to write down the perturbative Mathieu equation
order by order in terms of ¢.
The zeroth order is simply a harmonic oscillator equation with natural frequency

given by Aé/ 2
Yo,z + Ao =0, (D.5)
whose solution is well-known
Go(z,2) = Bi(2)e4 % 1 By(5)e 4> | (D.6)

where B;(2) and By(Z) are arbitrary complex functions of Z.

The first-order equation is non-trivial and written as
U122 + Aol = Fo cos(22) — 270 .z — Ao (D.7)

where the left hand side is simple, while the right hand side consists of several modes
with different frequencies among which the term with cos(2z) is especially important
for the analysis here. Specifically, by inserting the zeroth-order solution (D.6), the
right hand side is given by

Go cos(22) — 29o .z — A1Go = % [ei<Af1)/2+2)Z n @i<A(1)/22)z:|

n % [6—1<A})/Q+2>z n e—i(A(l)/2—2)z:|

- <AlBl +2iAY 23172) ¢

- (AlB2 - 22'145/232,2) A "x (D.8)
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The third and fourth lines in Eq. (D.8) contain explicit secular terms for general Ay
which can be removed by choosing Bi(Z) and Bs(2) properly to avoid unbounded

solution as

A

Bis—i—L-B =0,
24
A
Bg’g + ZWBQ =0. (D9)

0

In these terms, the perturbative source has no effect to the solution. As for the first
and second lines in Eq. (D.8), where cos(2z) plays an important role, contains secular

terms only if one of the following conditions are satisfied

Ap = (Aé/Q + 2)2 ;

Ay = (Aé/z - 2)2 . (D.10)
Real solution for A, only exists in the lower of Eq. (D.10) which gives Ay = 1. As a

result, all four lines should be taken into account simultaneously to pick up all the

secular terms whose coefficients are given by

By:+iBy/4—iAB/2 =0,
Boz—iBy/44iABy/2 =0, (D.11)

which should be satisfied to remove all the secular terms for the first-order equa-
tion (D.7). This set of equations can be easily transformed into two identical decou-

pled second-order ordinary differential equations as

Bng—i- (A%/Zl - 1/16) B1 == 0 ;
However, even so, if Bj(Z) and Bs(Z) themselves are growing unboundedly, the re-
maining source terms proportional to them still induce instability. Obviously, the
solutions are stable when A? > 1/4 and unbounded when A? < 1/4 with A? = 1/4

being the transition line. Therefore, the first-order equation induces an instability

band around A = 1. More specifically, the two transition lines are
A=1+¢/2=1+¢q, (D.13)

between which is one of the instability bands for the solution. This is shown in

Fig. D.1. Within this instability band, the solution of Mathieu equation grows expo-
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Figure D.1: The first instability band of Mathieu equation (D.1) with 0 < ¢ < 1 up
to first order. The shaded region corresponds to the unstable regime given by Ay = 12
and 1 — g < A < 1+ q according to Eq. (D.13).

nentially o exp [u(l)z} where the superscript “(1)” denotes the first instability band,
which can calculated from Egs. (D.12). When A% < 1/4, the solutions for B;(Z) and
Bsy(2) are dominated by the term

LA ) Do (L - g (D.14)
X exp T 41402 = exp 1 1%z, .

where Ay = 1 has been used for the first band. This exponent finally enters the

solution y(z) for Eq. (D.1). Since A = 14 2A;q ~ 1 in this case, approximately it
gives +A;q ~ v/A — 1 such that

1/2

1 {q2/4 - (x/Z - 1)1 . (D.15)

As will be shown in next section, there are infinite instability bands for Mathieu
equation with A > 0 which are characterized by A = n? with n € Z,. The bands
other than n = 1 emerge at higher order in the perturbative treatment. For example,
if the analysis above is continued to the second order, the equation for g»(z, Z) is given

by
Uo,2> + Aoa = U1 €08(22) — Yo,z — 201,25 — Aslo — A - (D.16)

As usual, the first-order equation (D.7) must be solved before dealing with the second-

order. Using the method of variation of constants, the solution ¢; can be written in
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the form as
1/ 1/
1(2,2) = Ba(z,2)e™ 4 By(z, 5)e 40" (D.17)
Without explicitly solving the equations for Bj(z, 2) and By(z, Z), it is easy to see
that they contain the following modes

By(z,3) o e*2 672i<A3/2i1>z 7

) [ 1)2
By(z, %) D e*%* | e+2Z<A° +1)z : (D.18)

such that the term with driving source g cos(2z) in Eq. (D.16) gives the most non-

L 1)2
ﬂ(’% i4)z. Consequently, this mode turns out to resonantly enhance

trivial mode e
the solution if Ay = 4, indicating a new instability band characterized by A = 22.
Other instability bands with n > 2 can be found in a similar way. Also note that the
width of instability bands for ¢ < 1 decreases as ¢, so practically the first band is
the most important one as it is the widest. Yet, the perturbative treatment presented
above only covers the regime 0 < ¢ < 1. A more systematic way to analyze Mathieu

equation is to use Floquet theory as shown in next section.

D.2 Floquet Solution and Stability Chart

For a general equation
Y=2(2) + A= P(2)]y(2) =0, (D.19)
where P(z) is a periodic function with period Tp, the solution that
Yz +Tp) = oy(2) | (D.20)

is called the Floquet solution. Clearly, if |o]| > 1, the solution y(z) is unbounded for
large z. In the following, the Floquet solution for Mathieu equation (D.1) is analyzed
as one special case of Eq. (D.19) with P(z) = 2qcos(2z) and Tp = 7.

Given a fundamental set of solutions yr1(2) and ys(z) that satisty the following

initial conditions

0)=1, .(0)=0,
{ y51(0) yr1.2(0) (D.21)
yf2(0> =0 ) ny,Z(O) =1 ;
the resulting Wronskian is constant
Wlys, yrel (2) = ypyre: — Yy =1, (D.22)
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and the general solution for Eq. (D.19) can be constructed as

y(2) = Driyn(2) + Daypa(2) (D.23)

where D; and Dy are arbitrary constants. Using Eq. (D.20), it is easy to find that

(e s o) (D) =0 (D.21)

which possesses non-trivial solution when the determinant of the coefficient matrix

vanishes, equivalently,
0® — lyp1(Tp) + yp2a(Tp)l o + 1 =0, (D.25)

where the Wronskian (D.22) has been used. The discriminant of this quadratic equa-

tion is simply
Ao = [yn(Tp) + ypo(Tp)* — 4. (D.26)

If A, > 0, there exits two different real roots o1 (assuming o, > o_) which satisfy
o,0_ = 1. Therefore, the Floquet solution (D.20) is exponentially growing in the
case o, > 1. If A, < 0, only imaginary roots with modulus of unity exist so the
Floquet solution is stable. The condition A, = 0 gives the transition curves between
stable and unstable regimes. In such a case, the roots are either o, = 0. =1 or
0, = o0_ = —1 that correspond to solutions with period Tp and 27p, respectively.
Numerical calculation of |y (Tp) + ys2.(Tp)| with the initial conditions (D.21) then
gives the stability chart of Mathieu equation that is shown in Fig. (D.2).

Obviously, the Mathieu equation covers the tachyonic instability regime, i.e. for
A — 2gcos(2z) < 0. Actually, in most case with a negative A, the system presents
such kind of instability. As in the simplest example, the solution for Eq. (D.19) with
A <0 and P(z) =0 is given by

y(z) = DselA"*s 4 Dy A= (D.27)

where D3 and D, are arbitrary constants. Apparently, the amplitude of the first term
grows exponentially as z increases if D3 # 0. Note, however, that there exits stable
regime even for A < 0 in Fig. D.2 for which a well-known example is the Kapitza’s

pendulum (a vertically forced inverted pendulum)?.

56This stability was first noticed by Stephenson [191,192] and later analyzed by Kapitza [193,194].
See also Ref. [195].
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Figure D.2: The stability chart of Mathieu equation (D.1) with ¢ > 0 generated by
Wolfram Mathematica. The shaded region corresponds to the unstable regimes. It
can be seen that the instability bands in A > 0 regime are characterized by A = n?
with n € Z,. As n increases, the bandwidth in ¢ < 1 regime decreases. Fig. D.1
corresponds to the band with smallest positive A in ¢ < 1 regime and of the same
color in this figure. The black thick line represents A = 2¢g which is useful when
considering realistic models of reheating, e.g. in Sec.3.1.

When talking about the instability in this context, the solution y(z) can really
diverge. The physical reason is that the source term contains infinite energy, or
the backreaction from the growth of y(z) to the source is not taken into account,
i.e. ¢ being constant in the case of Eq. (D.1). Here, this situation is referred to as
“global instability” by the author. However, in a more realistic case, e.g. particle
production in cosmology, the source contains finite energy, and the backreaction from
the production becomes vital as its energy grows. For instance, ¢ decreases in time
as the energy of the source is taken away such that y(z) cannot grow unboundedly.
Therefore, the backreaction should be taken into consideration carefully. In this sense,
even if the chosen parameter set locates in the stable regime in Fig. D.2, the physical
system may still experience (referred to by the author as) “local instability” during
which the energy of the production rapidly becomes comparable with the background
or the source. In such a case, the stability chart D.2 is not enough to determine the
final fate of the system.

Here, only the undamped case is discussed. In a more realistic case, the damping
effect shows up. For example, in cosmology, a scalar field feels some friction due
to cosmic expansion. In the presence of damping, the stability chart in Fig. D.2 is

modified, especially the parts of the tongues close to the vertical axis being smoothed
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and separated from the axis, which makes the instability regions in the perturbative

regime disappear. More detail can be found in Ref. [176].
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Appendix E

Parabolic Cylinder Function

In this appendix, some useful properties of parabolic cylinder functions are summa-
rized, mainly about the asymptotic behavior for large argument, based on Ref. [196].
Parabolic cylinder function W (a, £x) are two linearly independent solutions for

the following second order differential equation
Waw+ (22/4—a) W =0, (E.1)

where x is a real variable and a € R for the present purpose. More specifically,

W (a, £x) can be written as

(cosh a)"/*

2\/m
where y;(a, z) and ys(a, x) can be expressed in terms of the confluent hypergeometric
function of the first kind, 1 F}(a; b; 2), as

Wi(a,+x) = <G1(a)y1(a, x) F \/§G3(a)y2(a,x)> : (E.2)

yi(a,z) = e (1/4—ia/2; 1/2; ia®/2) |
yo(a, z) = ze™ A Ry (3/4—1ia/2; 3/2; ix®/2) | (E.3)

while G1(a) and Gs(a) are given in terms of Gamma function as

Gi(a)=|I'(1/4 +ia/2)| ,
Gs(a) =|'(3/4 +ia/2)| . (E4)
It is not difficult to show that, at = = 0,
W(a,0) =27%*\/G1(a)/Gs(a) |

W'(a,0) = =274, /G5(a) /G4 (a) , (E.5)
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so the Wronskian of these two solutions are time-independent and non-vanishing
W [W(a7 ZE), W((I, —l’)] =1 ) (EG)

which is consistent with the statement of the linear independence of W (a, £z) at the
beginning.
The asymptotic behavior when x > |a| is usually useful in practice. Specifically,

the asymptotic form is given by

W(a,z) = % lsl(a,x)cos (%Q—alnx +%+%)
—so(a, z) sin (?—alnx +£+%)] ’
W(a,—x) = % {Sl(a,x)sin (%2 —alnz +%+%)
+$5(a, x) cos (%Q—alnx +%+%)} ’ (E.7)

where k = /1 + €2 — ¢™@ and ¥, = arg'(1/2 +ia), while the two functions s;(a, r)

and ss(a, ), for large z, are asymptotically given as

V2 o 2 - —6
sl(a,a:)wl—l—mx ~ 5z +O(x7°)
Uz o L — -6
SQ(G,SC) ~ —El’ - ﬁx + O(LC ) R (ES)

with u, +iv, ='(r +1/2+1ia)/T'(1/2 +ia) . Up to leading order in the power of z,
W (a, ) can be approximated as (z > 0)

_ ) -
W(a, ) — |2k oS (37_+%): ﬁ(eix2/4+i19k/2+e—z’x2/4—wk/2> ’
x
2

4 2 2z
S 1 [ o s
Wi(a,—z) — - sin (% + ?k) =—1 Y (e’x2/4+“9’“/2 — e”x2/4”19’“/2> . (E.9)
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Appendix F

Airy Function

In this appendix, some useful properties of the Airy functions are summarized, mainly
about the asymptotic behavior for large argument, based on Ref. [196].
Airy function Ai(z) and Bi(x) are two linearly independent solutions to the Airy

equation
Wap — 2w =0, (F.1)

where x is kept to be real for the purpose of this thesis. The behavior of the two Airy
functions is shown in Fig. F.1. The Airy functions can be expressed in terms of the
modified Bessel function of the first kind, I,(z), as

Ai(z) = g lf_l /3 <§x3/2> — Ly <§x3/2)] ,

Bi(z) = \/% [[1/3 (§m3/2) + I3 (§x3/2)} : (F.2)

It can be easily shown that the Wronskian of Ai(x) and Bi(x) is time-independent

and non-vanishing
W [Ai(z),Bi(z)] =71, (F.3)

where the following values have been used

. Bi(0) 373
MO =05 = T
i) = O _ 377 (F.4)

V3 T(1/3)°
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0.4
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0.5

0.0

-0.5
0

Figure F.1: Airy functions Ai(z) (left) and Bi(z) (right) with real variable. Solid:
positive argument z > 0. Dashed: negative argument —z < 0. It can be seen that,
for —x < 0 both functions oscillate with some phase difference, but for z > 0, there

is exponential suppression in Ai(x) while exponential growth in Bi(x) .

Practically, the asymptotic behavior of the Airy functions are very useful for

approximation. Specifically, for x > 1, Ai(x) and Ai(—x) can be expanded asymp-

totically as

, 1 e 2?3 r(3+1/2) 3 s
Al(x) ~ 5= [ T 5 (3)2) 2 O (= )] ’
. 1 1 [, (2 ™ _
Al(—l') ~ ﬁm |:SlIl (§$3/2 + Z) + O (CU 3/2):| s (F5)

where the exponential suppression is obvious in the positive argument case. On the

other hand, the asymptotic expansion of Bi(x) and Bi(—z) are given by

_ 1 ex/?/3 r3+1/2) 3 L
Bl(x)NﬁW[ 2ar(3/2) 207 O )} !

(F.6)

Bi(—x) ~ 1 1 2333/2 + Z) +0 (x3/2)} 7

—— |cos

Nax s { (3 4

where it is easy to see the exponential enhancement in the positive argument case.
The property of Ai(x) and Bi(z) that the behavior changes from oscillation to

exponential suppression/enhancement when the argument changes sign is exactly

desired when investigating a tachyonic regime between two adiabatic ones. Therefore,

the Airy functions are essential for the study of tachyonic preheating, as shown in the

main text.
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Appendix G

Energy Distribution between Higgs
and Scalaron

In this appendix, the energy distribution between Higgs and scalaron in EF during
(p)reheating is discussed. This point is significant on at least two aspects considered
here. Firstly, in Sec. 4.1 and 4.2, a simple trick is used to calculate the amplitude of
the first oscillation of the homogeneous background so that analytical calculation of
the particle production of spiky preheating and tachyonic preheating is easily carried
out. This trick relies on the fact that the kinetic energy of Higgs is negligible when
¢ reaches its maximal amplitude during the oscillation, i.e. ¢ = 0. It can be true
because h ~ 0 in both cases. Secondly, as discussed in the main text in Sec. 4.3, the
energy distribution is important to determine the efficiency of the perturbative decay
for different parameter choices. The reason is as follows. The decay rate of Higgs
is much larger than that of scalaron. If a large fraction of energy is stored in the
Higgs field, it is expected that the decay would be more efficient than the case where
most energy is stored in the scalaron. As will be shown below, the closer to (but not
coinciding with®") the critical parameters that can realize strong tachyonic preheating
in the first scalaron oscillation after the end of inflation, the more energy is stored
in the Higgs field, which results in a more efficient perturbative reheating and higher
reheating temperature as discussed in the main text. Therefore, when scanning the
parameter space to obtain the reheating temperature from perturbative decay, dips
and peaks can be seen due to the changing “distance” from the critical parameters.
Of course, if subsequent oscillations are also taken into account, a large amount of

energy transferred from the scalaron to the Higgs is possible for more parameters. In

57If backreaction is taken into account, tachyonic instability in the critical case might be terminated
midway, which could cause large amplitude of Higgs oscillation and so large energy stored in Higgs
field, but this case is not considered in this thesis.
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this case, the effect is expected to be relatively weak because the energy of the system
is decreasing in time generically.

The discussion is separated into two parts for (1) ¢ < 0 regime during the first
scalaron oscillation, and (2) subsequent oscillations, respectively, and is restricted to
¢ > O(10) because it could be done analytically for the reason mentioned in Sec. 4.3.
Since Higgs is approximately a harmonic oscillator in this case, its kinetic energy can

be used to characterize the total energy stored in Higgs.

G.1 Negative Scalaron Regime during First Oscil-
lation

In the regime ¢ < 0 during the first scalaron oscillation, the kinetic energy of Higgs
is subdominant compared with the potential energy for most of the time, which can
be shown as follows. The effective mass of Higgs is given in the upper of Eq. (4.95)
while the typical amplitude is hose ~ Mp1/&.. Therefore, the averaged kinetic energy

can be estimated as
My ¢
Eh,kin ~ mioscg_;) ~ €_2M2Mp21a|<90>ave‘ . (Gl)
where (p)ave denotes the time averaged value of ¢ during this period. On the other

hand, the potential energy density is given by
UO(SO) ~ MSIM2 (Oé<90>avc)2 . (GQ)

The ratio between the kinetic and potential energy is then

B in 1
Mk 1« (G.3)

Uo(p <0) € al{@)avel

which is consistent with our expectation. Therefore, the conclusion in Sec. 4.1 and
4.2 can be safely used that the amplitude of ¢ when ¢ < 0 for the first time is given
by Eq. (4.15).

G.2 Subsequent Oscillations

The energy of the homogeneous Higgs field in the subsequent oscillations is largely
affected by the period ¢ > 0 in the first scalaron oscillation. The argument is based
on the particular shape of the potential shown in Fig. 2.2. If the system starts with
a nearly-critical parameter, by climbing up the potential hill around h =0 in ¢ > 0
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regime and falling to one of the valleys during oscillation, scalaron can easily generate
a large amplitude of Higgs oscillation |hes.| ~ |hy| around the valley, which means that
more energy is transferred to the Higgs. On the contrary, it is difficult for the Higgs to
“return” energy to the scalaron as long as the Higgs stays in the valleys when ¢ > 0 in
later evolution, which is the general case because fine-tuning is needed to climb up the
hill (again) [51]. Consequently, if a large fraction of energy is transferred to the Higgs
field in the first scalaron oscillation, this amount of energy will decay through Higgs,
which is efficient. On the other hand, starting with a far-from-critical parameter, the
oscillation amplitude of Higgs stays small long enough until an opportunity for the
inflaton to climb up the hill in some subsequent oscillations. After that moment, the
perturbative decay process can become more efficient, but the whole reheating period
must be more extended than the former case because the possible maximal efficiency
of the tachyonic instability decreases as the amplitude of scalaron oscillation gets
smaller. Thus, the following discussion focuses on the regime ¢ > 0 in the latter part
of the first scalaron oscillation.

Firstly, consider the case where |hosc| ~ |hy| when the model parameter is nearly-

critical. Specifically, the kinetic energy of Higgs is estimated as

2
Bigan ~ Moo o 12~ O(10) x SCOPM2 (0, (G)
while the potential energy is given by
Uy > 0) ~ MEIMZ (ap)® . (G.5)
As a result, the ratio between them is given by
Ep xin & M? 1 /M
———— ~0(10) X =—=0(10) x = | =——1]) . G.6
Uy(¢ > 0) ( )XAM§1 ( )X3 M2 (G-6)

For the case of interest £ > O(10), this could be much larger than order of unity,
which means that a large fraction of energy is stored in the homogeneous Higgs field.
Of course, the calculation above is just order estimate because generally speaking
|hosc| cannot really exceed or equal |hy|. Even if it does in some specific case, it is
beyond the scope of the discussion here. Next, consider the case where |hosc| < |hy]
when the model parameter is far from being critical. Repeating the calculation above

while setting |hosc| ~ Mp1 /€. results in the following estimate

Bnin Mo MRS €M1 €M 1| 03 o0
Uv(p > 0) MIflMQ(acp)Q E2M2ap ~ 2 M?2ap =, ap ' '

In conclusion, there is a larger fraction of energy stored in Higgs for model pa-
rameters closer to critical cases while a smaller fraction for parameters far from the

critical points.
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Appendix H

Derivation of Decay Rate of Higgs

In this appendix, the derivation of the decay rates for the Higgs field into SM particles
is presented in the adiabatic regime when the scalaron motion is sufficiently slow in
the time scale of the Higgs oscillation. Only the decay of Higgs into W=, Z bosons
and top, bottom quarks is considered here. Also, A = 0.01 is fixed for definiteness.

In the JF, the Lagrangian for relevant sector is written as

Ly D —g" (Dy,Hsm)' Dy Hsu — MHsu* + K gange — \/_htt - Thbb (H.1)

where Dy, = Vj, + %g’ B, +igW;r" is the covariant derivative with o = 27% the

Pauli matrices, and K gauge is the gauge invariant kinetic terms of the gauge fields

given as
Ky gange = — igj‘pg?’Bwa — igJ L L
B, =0,B,—-0,B,
Wi, = 0.W; —0,W; — geabCW3W5 , (H.2)

and the last two terms for the mass terms for top and bottom quarks. By the one-
loop renormalization group running (see for example Ref. [197]), the gauge couplings
take the values g ~ 0.55, ¢’ ~ 0.42, and the Yukawa couplings y; ~ 0.5, y, ~ 0.01
at energy scale ~ 102 GeV which corresponds to the energy scale at the end of
inflation in the mixed Higgs-R? inflation model. Transform Eq. (H.1) to EF through
conformal transformation (2.122) and write down the relevant terms for gauge fields

up to quadratic order in unitary gauge as
2

ZuZy
G (1.3

8 I8 cos? 0,
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and for top and bottom quarks as

620“'0;6]5)7\/ D) —&ht_t — &

V2 V2

where, 7, let, and the photon A, are defined by rotating the gauge fields as

hbb (H.4)

Z

L Ecos@wVV/i3 —sinb, B, ,
A, =sin Qlef +cos0,B, ,
1

Wt =
V2

(W, FiW}7) | (HL.5)
with tanf, = ¢'/g .
Consider the decomposition (4.83). When ¢ > 0, the approximation |hy| > |hosc|

is valid, so up to first order in Ay the relevant terms are given by

2 2
p 9" _ Ly 9° 7,7,
€L gD~ b <2WJWV +—5 9w> = 0 hhose <2WH+WV +=5 ) o)
26“'0,6 L hoil — Yb 7 U R /) -
e D=L ot — L hybb — 25 hoget — = hosebb | H.7
BY=" V2 V2 NG) (H.7)

where gauge fields and quarks gain masses due to the non-vanishing vev of Higgs, and
there are decay channels for Higgs to decay into these particles. When ¢ < 0, h, =0
which leads to

2

2.7,
w%mg—%ww @mﬁw+ 2 ), (H.8)

o8¢ cos? 0,

2 Loy D =P hog fit — 22

V2 V2

where gauge fields and quarks become massless because the vev of Higgs becomes

Roscbb (H.9)

zero. In Eq. (H.8), there is no three-leg interaction terms for the homogeneous Higgs
to decay into W* and Z bosons so this channel is only relevant for ¢ > 0 regime.
On the other hand, the Yukawa interaction terms always exist for quarks. Based on
these results, the decay rates of the homogeneous Higgs field into W*, Z, ¢t and b
can be calculated. Note that the non-Abelian nature of the gauge fields is not taken
into account because it is not important to the lowest order of gauge coupling. In
addition, as mentioned in the main text, the conformal factor exp(ay) and exp(2ap)
are irrelevant in small fields approximation which is of interest during reheating.
Therefore, the difference between JF and EF disappear.

As seen from above, the first two terms in Eq. (H.6) gives the effective masses for
the gauge bosons. In the flat FLRW background, /—gg = a®. To eliminate these
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factors, it is convenient to redefine the fields as Wf = a*?W and Z, = a**Z,, such

that the effective masses are

2 92 2
2 2. »
2 9 o g+ 3g7
=" h = he . H.11
"2 = Tcos? 0, ¥ 4 v ( )

As a result, the decay rates for Higgs to gauge bosons in ¢ > 0 regime can be

calculated as

2 M3 1/2 g2 M? 394 M4 g2 M2
r =22 ( g 29 Mg A H.12
neww = g2 (6609) ox 2 T 16x2 ard oA M2’ (H.12)

R WE 12 g% + g2 M? 3(92 +g'2)2M4 g2 + g2 M2
tno22 = 167 g (0409) (1 Tt aee e )V a1
These decay channels are open only when the conditions
2 2 2\\ _ o 2
&> (15 ) =6 = (H.14)
2 2 2\ _ 2 2

are satisfied respectively, which means that the decay of homogeneous Higgs into W+
and Z is possible only in the deep Higgs-like regime.
As for the fermion section, redefining = a®2¢ and b = a3/2b to absorb the factor

v/—gg, the masses of the new fermion fields are given as
h (H.16)

he . (H.17)

Unlike the gauge sector, the Higgs background can decay into top and bottom quarks

in both positive and negative ¢ regimes. The decay width can be calculated as

(3 2
o (3galp)? M p <0,
0
Ly = 2 9 172\ /2 (H.18)
3y; 1/2 yi M
— (6 M[1-"F— >0
\ 167T( gago) A M2 Y SO ?
(3 2
Tos (3alg]) a1 <0,
0
r - = -\ 3/2 (H.19)
hbb 31/13 1/2 y? M?
— (6 M|Il-=2— > 0.
\167T( fap) Amvz| 0¥



Because the quarks are massless during ¢ < 0, the channels are always open during
that period. On the contrary, the decay to top quarks is allowed during ¢ > 0 only

when

2> €2 (1 — %) = ¢2 ~ 43512 (H.20)

t

while the bottom quark channel is always open due to the small coupling .
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