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Abstract

ΛCDM model, which is the current standard cosmology model, provides
a simple but reasonably good explanation of cosmological observations.
In this model, the universe is dominated by dark energy (Λ) and cold
dark matter (CDM)—roughly 68% of the universe is dark energy; 27% is
dark matter; and less than 5% is normal matter. Both dark energy and
dark matter behave substantially differently from normal matter. Dark
energy has a negative pressure that can cause cosmological expansion.
Dark matter only feels the force of gravity, whereas it does not interact
electromagnetically.

Weak gravitational lensing, a phenomenon of light from distant galaxies
being bent by foreground density fluctuations due to gravity, results in
weak but coherent distortions on background galaxy images. Weak lensing
hence offers a probe into the foreground mass distributions by measuring
the coherent distortions from background galaxies. Since weak lensing is
purely caused by gravitational effect, it is sensitive to not only normal
matter but also dark matter. Using measurements of lensing distortions
from a large ensemble of galaxy images across large areas of the sky,
it is possible to reconstruct three dimensional (3D) mass maps that are
majorly composed of the dark matter.

However, there are several difficulties in the 3D weak lensing mass map re-
construction: (i) Weak lensing distortions are only about 10% of galaxy’s
intrinsic shape dispersion, shape estimation error due to the sky variance,
and the systematic errors. Controlling the systematics in the measure-
ments of such small signals is challenging. (ii) Weak lensing distortions are
proportional to the integral of masses along the line-of-sight. It is chal-
lenging to reconstruct a mass map with a good line-of-sight resolution
from the integrated mass maps obtained from weak lensing distortions on
a few source galaxy redshift planes.

In this thesis, I will first present the galaxy shear catalog measured from
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the i-band imaging data from the Wide layer of the Hyper Suprime-Cam
(HSC) Subaru Strategic Program (SSP) Survey observed between 2014–
2019. The galaxy shapes are calibrated with image simulations that re-
semble the observing conditions of the survey based on galaxy images from
the Hubble Space Telescope in the COSMOS region. The catalog covers
an area of 433.48 deg2 of the northern sky, split into six observational
fields. The mean i-band seeing is 0.59 arcsec. With conservative galaxy
selection criteria (e.g., i-band magnitude brighter than 24.5), the observed
raw galaxy number density is 22.9 arcmin−2. The shear calibration re-
moves the galaxy property-dependent multiplicative shear estimation bias
to a level: |δm| < 9 × 10−3. The bias residual δm shows no dependence
on redshift in the range 0 < z ≤ 3. The requirements for cosmological
weak-lensing science are defined for this shear catalog. In addition, po-
tential systematics in the catalog are quantified using a series of internal
null tests related to shear estimation.

Subsequently, I will reconstruct 3D weak lensing mass maps using the
weak lensing distortions measured from galaxy images observed by the
Hyper Suprime-Cam (HSC) survey—a large scale imaging survey target
on weak lensing science. To be more specific, I will tackle the aforemen-
tioned challenges by (i) Develop realistic galaxy image simulations that
can be used to validate and calibrate estimations of the weak lensing
distortion; (ii) Develop a weak lensing distortion estimator with mini-
mal dependence on calibration from image simulations; (iii) Develop a
sparsity-based mass map reconstruction algorithm for high-resolution 3D
mass map reconstructions.

Galaxy clusters, the most massive bounded objects in the universe, can be
identified from the reconstructed 3D weak lensing mass maps. In addition,
the mass maps provide both the redshift and the mass information of the
identified galaxy clusters. The galaxy clusters detected from weak lensing
3D mass maps are matched to galaxy cluster catalogs detected according
to galaxy distribution for cross comparison.
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This chapter introduces the cosmology model (Section 1.1) and the weak grav-
itational lensing (Section 1.2) that can be used to constrain the cosmology model
(Section 1.3). Finally, Section 1.4 clarifies the motivation and outlines the structure
of this thesis.

1.1 Cosmology
In this section, I briefly review the concordance cosmology, namely the ΛCDM cos-
mology model and the formation of the large scale structure in the Universe. Here
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“Λ” refers to the cosmological constant which explains the accelerating expansion,
and “CDM” refers to cold dark matter which plays an important role in the structure
formation.

1.1.1 Geometry

The standard cosmology model is built up upon the cosmological principle suggested
by observational evidence (e.g., Cosmic Microwave Background (CMB) Planck Col-
laboration et al., 2020)—When averaged over large scales, there are neither special
position (homogeneous) nor special direction (isotropic) in the Universe.

The space-time consistent with the cosmological principle can be described by the
Robertson-Walker metric:

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2(θ)dϕ2)

)
. (1.1)

K is the spatial curvature of the Universe which takes the values 0 (flat Euclidean
space), +1 (spherical geometry) or −1 (hyperbolic surface).

It has been discovered by Hubble that galaxies are receding from the Earth with
velocities approximately proportional to their distance from the Earth for galaxies up
to a few hundred million parsecs (Mpc) away, which indicates that the Universe is
expanding. Recent observations using tape Ia supernova suggest that that the expan-
sion of Universe is accelerating (Riess et al., 1998). As a result of the cosmological
expansion, light travels through the space is stretched to longer wavelengths and ap-
pear to be redder. Cosmological redshift is defined as a monotonic function of the
scale factor:

z(a) =
1

a
− 1 . (1.2)

The accelerating expansion of our Universe indicates that only ∼ 5% of the energy
density in the Universe is composed of baryonic matter and photon, and the rest
∼ 95%, e.g., dark energy (∼ 69%), cold dark matter (∼ 26%), has yet been directly
detected in the laboratory. The density of cold dark matter (baryonic matter) is
denoted as ρcdm (ρb), the matter density is defined as ρm = ρcdm + ρb , and the
relativistic matter (e.g. photon) density is defined as ργ . In addition, the density of
the cosmological constant and the curvature is defined as

ρΛ(z) =
Λc2

8πG
,

ρk(z) = −
3K

8πGa2(z)
,

(1.3)
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where Λ is the cosmological constant.
Following the Einstein equations, the relation between the geometry and the mat-

ter density is given by

H2(z) =
8πG

3
(ρm(z) + ργ(z) + ρΛ + ρk) . (1.4)

The density evolution of a specific type of matter “x” is given by

ρx = ρx;0a
−3(1+w), (1.5)

where w is the equation of state parameter relating the density (ρ) and the pressure
(P ) of the density fluid as P = wρc2 . For relativistic particles such as radiation,
w = 1

3
, whereas for non-relativistic particles, w = 0. Λ is the cosmological constant,

and if taking the cosmological constant as a perfect fluid, the equation of state of
dark energy should satisfy w = −1.

To simplify the notation, the critical density for the current Universe at z = 0 is
defined as

ρc;0 =
3H2

0

8πG
, (1.6)

where H0 is the current value of the Hubble parameter. The fractional density of
cosmological constant, CDM, baryonic matter, relativistic matter and curvature are
defined as

Ωx =
ρx

ρc
. (1.7)

The Hubble parameter at redshift z is related to its current value as

H(z) = H0E(z),

E(z) =
√

Ωm;0 (1 + z)3 + Ωγ;0 (1 + z)4 + ΩΛ;0 + Ωk;0 (1 + z)2,
(1.8)

where the current fractional density for each component is denoted as Ωx;0 .
From Equation (1.1), the distance between the source and the observer in the

comoving frame is given by

χ(z) =

∫ z

0

c

H(z′)
dz′ . (1.9)

The angular size of objects can be directly observed, which can then be converted to
physical size using the called angular diameter distance defined as

DA(z) =
χ(z)

1 + z
. (1.10)
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As the scales of BAO and CMB anisotropy peaks are known from physical models, the
observed angular size can be used to determine the corresponding angular diameter
distances DA as a function of redshift, which can be used to probe the geometry of
the Universe.

1.1.2 Power Spectrum of Density Fluctuations

I first explore the growth of perturbation in the linear regime, where the amplitude
of the density fluctuation is sufficiently small (|δ| ≪ 1). With the definition of sound
velocity for a matter component “x”: cx =

√
∂Px/∂ρx, the evolution equation of the

density fluctuation for a single component cosmology is

δ̈ + 2
ȧ

a
δ̇ −

(
c2x
a2
∇2δ + 4πGρxδ

)
= 0 . (1.11)

The density fluctuation is expressed as a superposition of sinusoidal functions to solve
the equation:

δ(t) =

∫
δk(t)e

ik⃗·x⃗d3k . (1.12)

The linear perturbation equation for each k-mode is obtained as follows

δ̈k + 2Hδ̇k + (
c2x
a2

k2δk − 4πGρxδk) = 0 . (1.13)

As indicated by Equation (1.13), different Fourier modes (δk) evolves independently.
According to the inflation theory, the primordial k-modes are independent; therefore,
the power spectrum is given by〈

δ†kδk′
〉
= (2π)3Plin(k⃗)δ

3
D(k⃗ − k⃗′), (1.14)

where Plin is the linear power spectrum, and δD is the Dirac delta function. This
Gaussianity is confirmed bt the measurements of the of the CMB anisotropies (Ko-
matsu et al., 2003). In addition, for the Universe when the scale factor equals a,
structures grow only at the scales with

λ(a) =
2πa

|k|
> cx

√
π

Gρx
= λJ , (1.15)

where λJ is known as Jeans length below which oscillations rather than gravitational
collapses occur.

For the Universe composed of only non-relativistic matter at the late stage of
Universe the pressure of which is negligible (cs = 0), each wave mode grows indepen-
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dently: δk(a) ∝ D+(a) . Note, for this case, the structure growth is scale independent
(independent of k⃗), hence the shape of the power spectrum does not change during
the evolution.

For the Universe with relativistic matter and non-relativistic matter at the early
stage of Universe, the k-modes with wavelength below the Jeans length grow slowly
due to the damped oscillations of the photon-baryon fluid and the streaming of colli-
sionless matter (e.g. hot dark matter, neutrino). The evolution of the power spectrum
of density perturbations is described in terms of transfer functions T (k) (Bardeen
et al., 1986). The linear power spectrum is given by

Plin(k, z) = Plin(k, z0)T
2(k)

D2
+(z)

D2
+(z0)

(1.16)

1.1.3 Halo Mass Function

In this section, I move on to the empirical model describing the structure in the
nonlinear regime. Numerical simulations are required to model the nonlinear growth
as the k-modes do not grow independently, and the mode-to-mode coupling modifies
both the shape and amplitude of the power spectrum over the k-modes that are in
nonlinear regime.

For a given smoothing scale R at redshift z, the variation of density contrast field
is defined as

σ2
R =

∫
WR(k⃗)

2Plin(k⃗, z)d
3k, (1.17)

where WR(k⃗) refers to a top-hat filter in Fourier space which has the following form
in configuration space:

WR(x⃗) =

 3
4πR3 |x| < R

0 else .
(1.18)

The smoothed density filed follows a Gaussian distribution with zero mean and stan-
dard deviation of σR.

Following the Press-Schechter (PS) theory (Press & Schechter, 1974), for a given
smoothing scale R at a epoch z, the smoothed density field will collapse into gravi-
tationally bounded structure with mass M ≥ 4π

3
R3ρm(z) if the smoothed overdensity

exceeds the critical density δc. δc ≂ 1.686 is the critical overdensity for spherical
collapse according to the linear structure growth (Bardeen et al., 1986). Therefore,
the probability of the formation of virialized objects as a function of redshift z and
scale R is

P (R, z) =
2√

2πσ(R, z)

∫ +∞

δc

dδ exp
(
− δ

2σ2(R, z)

)
. (1.19)
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The number density of virialized objects in the range [M , M + dM ] is given by

dn(M, z)

dM
=

ρm
M

∣∣∣∣dP (R, z)

dR

∣∣∣∣ dRdM
=

√
2

π

ρmδc
3M2σ

e−δ2c/2σ
2

∣∣∣∣ d lnσ

d lnR

∣∣∣∣ , (1.20)

which is known as halo mass function. The halo multiplicity function is defined as

f(σ, z) =
M

ρm

dn(M, z)

dlnσ−1
, (1.21)

which has the following form in the PS theory:

fPS =

√
2

π

δc
σ
e−δ2c/2σ

2

. (1.22)

The halo mass function is calibrated with N -body simulations by fitting the halo
multiplicity function in, for example, Tinker et al. (2008).

1.2 Weak Gravitational Lensing
Weak gravitational lensing, the phenomenon that light from distant galaxies is bent by
the density fluctuation along the line-of-sight, imprints the information of foreground
perturbation to the background galaxy images. Since the lensing distortion is purely
caused by gravity, it is sensitive to all the matter distribution, including both normal
matter and dark matter, along the line of sight. Therefore, it offers a probe into the
evolution of matter distribution in the Universe without relying on knowledge of the
connection between dark matter and normal matter.

I first review the light deflection caused by lensing effect, which distort the an-
gular positions on the transverse plane (Section 1.2.1). Since the angle distortion is
not homogeneous, the lensing effect distorts the shapes of background galaxies, and
the distortion is related to the projected mass of the foreground overdensity (Sec-
tion 1.2.2).

1.2.1 Light Deflection

According to the general relativity, the line element for the space perturbed by the
inhomogeneous density distribution can be written by

ds2 = c2(1 + 2
ϕ

c2
)dt2 − (1− 2

ϕ

c2
)dl2, (1.23)
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where ϕ is the Newtonian gravitational potential perturbation (Mukhanov et al.,
1992) with ϕ ≪ c2. The deflection angle of light path due to the perturbation is
given by

α⃗ = − 2

c2

∫
dl∇⊥ϕ, (1.24)

where the integral is conducted along the light path, and the gradient operator is
defined in the comoving coordinates. As a result of the light deflection, the angular
position is distorted by

βi =
∂

∂θi
Φ, (1.25)

where i = 1, 2 are the indices of the angular position vector, Φ is the lensing potential
defined as

Φ =
2

c2

∫ χs

0

dχlϕ(θ⃗, χl)
χls

χsχl

. (1.26)

The lensed position θ⃗l of the source is related to the unlensed position θ⃗s by

θ⃗l = θ⃗s − β⃗ . (1.27)

1.2.2 Image Distortion

The local distortion on galaxy images caused by gravitation lensing is a transform by
Jacobian operator with matrix elements given by

J = δij −
∂2Φ

∂θi∂θj
=

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
. (1.28)

The elements of the Jacobian matrix can be written as second order derivatives of
the lensing potential. The lensing convergence κ is defined as

κ =
1

2

(
∂2Φ

∂θ2x
+

∂2Φ

∂θ2y

)

=
3H0Ωm

2c

∫ zs

0

dzl
χlχsl(1 + zl)

χsE (zl)
δ(θ⃗, zl),

(1.29)

and the spin-2 components (γ1, γ2) are defined as

γ1 =
1

2

(
∂2Φ

∂θ2x
− ∂2Φ

∂θ2y

)
,

γ2 =
1

2

(
2 ∂2Φ

∂θx∂θy

)
.

(1.30)
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halo

~α

~β

~θs ~θl Source Plane

Lens Plane

Observer

χls

χl

χs

Figure 1.1: An illustration of gravitational lensing by a single lens, the effects
of which are highly exaggerated. As light rays travel from a point source at θ⃗s to
observer their paths are distorted, the position of the point source are distorted.

χl, χs, χls are the comoving distance between lens, source and the observer.

κ isotropically changes the size and flux of galaxies, γ1 anisotropically stretch galaxies
along x-axis, whereas γ2 anisotropically stretch galaxies along the y = x direction.
As a result, the lensing-shear distorts background galaxy images through a linear
transform and perserve the surface brightness, which is given by

x⃗I = J · x⃗,
f(x⃗) = fI(x⃗I) .

(1.31)

fI (f) is the surface brightness field of the intrinsic (lensed) galaxy; x⃗I (x⃗) refers to
the local coordinates for the source (image) plane. In the weak lensing regime when
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γ1,2 ≪ 1 and κ≪ 1, the Jacobian matrix can be written into a reduced form:

J =

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

=(1− κ)

(
1− g1 −g2
−g2 1 + g1

)
,

(1.32)

where g1,2 = γ1,2/(1− κ) is the reduced shear.
Even though the lensing shear distortion is too small to be precisely estimated on

single galaxy level, with the assumption that intrinsic galaxies are randomly oriented
(however, see Hirata & Seljak, 2004, for intrinsic alignment of galaxies), it is possible
to infer the reduced lensing shear distortion from a large number of galaxies. However,
controlling the systematics (e.g., from point-spread function, noise, and selection) in
the measurements of such a small signal of such small signals is challenging.

1.3 Weak-lensing measurements
This section introduces two important measurements based on weak lensing shear
distortion. The first one is cosmic shear measurement, which is the two point corre-
lation functions of lensing-shear distortions (Section 1.3.1). It offers a direct probe
into the matter power spectrum, which capture the linear information of the matter
distortion in the Universe. The other one is peaks identified from weak lensing mass
maps (Section 1.3.2). The peaks with high values offer a probe into the halo mass
function, which is sensitive to non-Gaussian information of the matter distortion.

1.3.1 Cosmic shear

The standard estimates of cosmic shear two-point correlation functions, which is
defined as

ξ±(θ) = ⟨ĝ+(r⃗)ĝ+(r⃗ + θ⃗)⟩ ± ⟨ĝ×(r⃗)ĝ×(r⃗ + θ⃗)⟩, (1.33)

where the per-object shear estimates ĝ for pairs of galaxies are decomposed into the
tangential (ĝ+) and cross component (ĝ× ). As the lensing-shear distortion is related
to the projected mass along the line of sight, the cosmic shear two-point correlation
functions are related to the correlations of matter distortion, and thus related to the
matter power spectrum introduced in 1.1.2. The relation between the shear-shear
correlation and the power spectrum of κ field is given by

ξ±(θ) =
1

2π

∫
dllJ0,4(lθ)Pκ(l), (1.34)
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where Pκ is the power specturm of κ field, and J0 (J4) is the zeroth-order (fourth-
order) Bessel function of the first kind. Adopting the flat-sky and the Limber ap-
proximations, the convergence power specturm can be computed from the nonlinear
matter power spectrum Pδ via

Pκ(l) =

∫
dχ

q2(χ)

χ2
Pδ

(
l

χ
, χ

)
. (1.35)

The lensing efficienct function q(χ) is defined as

q(χ) =
3

2
Ωm

(
H0

c

)2 ∫ +∞

χ

dχ′n(χ′)(1 + z)
χ(χ′ − χ)

χ′ , (1.36)

where n(χ) denotes the source number distribution over comoving distance ξ . Readers
can refer to Kilbinger (2015) for more details.

1.3.2 Peaks from weak lensing mass maps

The shear γ field can be converted to the convergence κ field via (Kaiser & Squires,
1993)

κ(θ⃗) =
1

π

∫
d2θ′

γt(θ⃗′|θ⃗)
|θ⃗ − θ⃗′|2

, (1.37)

where γ̂t(θ⃗′|θ⃗) is a tangential shear at position θ⃗′ computed with respect to the ref-
erence position θ⃗. Here we write the shear field and convergence field into complex
form, and this transfrom is a convolution in two dimensional angular plane, which
can be computed in Fourier space as

κ̃(⃗l) = π−1γ̃(⃗l)D̃∗(⃗l) for l⃗ ̸= 0⃗, (1.38)

where D̃(⃗l) is the Fourier transform of the convolution kernel in equation (1.37)

D̃(⃗l) = π
l21 − l22 + 2il1l2

|⃗l|2
. (1.39)

The convergence κ field in configuration space is then reconstructed by inverse Fourier
transforming κ̃(⃗l).

The 2D convergence map is a projected integral of matter density map along the
line of sight, which is given by Equation 1.29. Therefore, it is possible to identify the
galaxy clusters, which are the most massive bounded object in the universe, from the
peaks on the reconstructed convergence map with high values (Fan et al., 2010).
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1.4 Motivation and Outline

1.4.1 Motivation

Currently, most of the observational studies on weak gravitational lensing focus on
measuring two point correlation functions (Hamana et al., 2020; Hikage et al., 2019)
and peak statistics on 2D mass maps (Miyazaki et al., 2018a). It is reasonable to ask
whether it is possible to reconstruct 3D mass map from weak lensing shear distortions,
locate galaxy clusters—the heaviest gravitationally bounded objects in the Universe—
from 3D weak lensing mass maps and use the halo number density as a function
of mass and redshift to constrain the cosmology model. There are two technical
difficulties need to be overcome for the 3D mass map reconstruction and the 3D weak
lensing galaxy cluster identification, which is summarized as follows:

• Weak lensing shear distortion is only about 10% of galaxy’s intrinsic shape
dispersion and shape measurement error due to photon noise. Controlling the
systematics in the measurements (e.g., from point-spread function, noise, and
selection) of such small signals is challenging.

• The weak lensing shear distortion on a source galaxy is proportional to the
integral of structures along the line-of-sight from the observer to the source
galaxy. It is challenging to derive a high-resolution mass map from integrated
mass maps observed at a few source galaxy redshifts. That is, it is difficult to
avoid smearing of structures along the line-of-sight.

This thesis tackles these difficulties and accurately estimate the cluster abundance
as a function of galaxy cluster mass and redshift from weak gravitationally lensing
only. Since only weak lensing measurements are used in deriving the cluster abun-
dance, it is possible to fully quantify the systematics and errors using weak lensing
mock catalogs generated from N -body simulations (e.g., Shirasaki et al., 2019). The
measured cluster abundance can be used to constrain the standard ΛCDM cosmology
model. Moreover, it is also possible to use the cluster abundance to constrain the
neutrino mass sum (e.g., Li et al., 2019) and the dark energy model (e.g., Martinet
et al., 2021).

1.4.2 Outline

This thesis presents the three-year HSC shear catalog that will be used for HSC weak
lensing science and reconstructs 3D weak lensing mass maps using the three-year
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HSC shear catalog. The structure of the thesis is demonstrated in Figure 1.2 and
summarized as follows:

Figure 1.2: Outline of the dissertation.

Chapter 2 presents the galaxy shear catalog for the three-year cosmological weak
gravitational lensing analyses using data from the Wide layer of the HSC-SSP survey
following Li et al. (2021b). Realistic galaxy image simulations are constructed to test
and calibrate the estimations of weak lensing shear distortions. The image simulations
transform high-resolution, high-SNR galaxy images from the Hubble space telescope
(Leauthaud et al., 2007) in the COSMOS region to the HSC-like images (Mandelbaum
et al., 2018a) according to the observational condition of the HSC (e.g., noise and
point-spread function). With a 24.5th magnitude cut, the number histograms over
galaxy properties (including size, brightness, shape) of the simulated galaxies match
those of the real HSC galaxies; that is, the difference between the simulation and
observation is less than 1%. This galaxy image simulation is used to calibrate weak
lensing measurement and produce galaxy shape catalogs.

Chapter 3 develops the FPFS estimator for weak lensing shear distortions with
minimal dependence on calibrations from image simulations in the second part of
Chapter 2 following Li et al. (2018); Li et al. (2020). The estimator uses four po-
lar shapelet modes (Massey & Refregier, 2005) that are calculated from the power
function of the Fourier transforms of galaxies after deconvolving the point-spread
functions in Fourier space (Zhang & Komatsu, 2011) after deconvolving the PSF’s



1.4. MOTIVATION AND OUTLINE 13

power function. The FPFS estimator is able to recovery weak lensing shear distor-
tion with sub-percent level accuracy for isolated galaxies. However, unfortunately,
it requires calibrations for a ∼ 5% shear estimation bias under the conditions that
blending exist.

Chapter 4 develops a sparsity-based mass map reconstruction algorithm for high-
resolution 3D mass map reconstructions in Chapter 3 following Li et al. (2021a).
The primary difficulty in the 3-D mass map reconstruction is that the lensing kernels
for lens systems at different redshifts are highly correlated. As a result, the standard
lasso sparsity algorithm, which uses the l1 penalty for model selection and estimation,
can not tell in which lens redshift bin the mass is located. Therefore, the mass
maps reconstructed with the l1 lasso algorithm suffer from smears of the structure
along the line of sight. Therefore, the mass maps reconstructed with the l1 lasso
algorithm suffer from smears of the structure along the line of sight. The adaptive
lasso is a derivative version of the lasso algorithm which applies adaptive weights to
penalize different parameters. By using the adaptive lasso algorithm, the smears of
the structure along the line of sight are eliminated since the adaptive lasso algorithm
is an approximation of l0 penalty, which prefers a sparser solution, and it is able to
select the related models consistently regardless of the correlations between models
Zou (2006). I propose to represent the clumpy density distribution as a summation
of Navarro-Frenk-White halos (Navarro et al., 1997) with different scales in comoving
coordinates to improve the line-of-sight resolution. The algorithm is able to detect
halo with minimal mass limits of 1013.5M⊙/h, 1014.3M⊙/h, 1015.0M⊙/h for the low
(z < 0.3), median (0.3 ≤ z < 0.6) and high (0.6 ≤ z < 0.9) redshifts, respectively.
The redshifts estimated by the algorithm is slightly lower than the true redshift by
0.03 for halos with input redshifts ranging from 0.1 to 0.4. For halos at other redshifts,
no obvious bias in redshift estimation is found.

Chapter 5 reconstructs 3D weak lensing mass maps using the weak lensing shear
distortions measured from HSC galaxies (Li et al., 2021b) in Section 4. Galaxy
clusters (groups), the most massive bounded objects in the Universe, are identified
from the reconstructed 3D mass maps. In addition, the mass map provides redshift
and mass information of the identified galaxy clusters (groups). The galaxy clusters
(groups) detected from weak lensing 3D mass maps are matched to cluster catalogs
detected from the distributions of galaxies for cross-comparison.
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This chapter introduces the three-year shear catalog for the Hyper Suprime-Cam
(HSC) Survey weak-lensing science. First, the three-year HSC Survey is summarized
in Section 2.1. Second, the requirements on the control of systematics is determined
according to the expected SNR of the cosmic shear signal in Section 2.2. Then
Section 2.3 describes the basics of image processing for the HSC survey. Section 2.4
introduces the realistic galaxy image simulation that is used to calibrate the shear
estimation, and Section 2.5 calibrate the galaxy shape measured by the reGauss shear
estimator (Hirata & Seljak, 2003). Section 2.6 conducts “null tests” related to galaxy
and star shapes within the shear catalog.

2.1 Hyper Suprime-Cam (HSC) Survey
Galaxy imaging surveys have given us information about the contents of the Universe
for nearly a century. The ongoing Stage III wide-area multi-color surveys setting
weak lensing as their primary science goal are: the Kilo-Degree Survey1 (KiDS; de
Jong et al., 2013), the Dark Energy Survey2 (DES; Dark Energy Survey Collaboration
et al., 2016), and the Hyper Suprime-Cam survey3 (HSC; Aihara et al., 2018a). In the
coming decade, three Stage IV imaging surveys will become available and promise to
place further stringent constraints on cosmological parameters including the nature
of dark energy and dark matter, the neutrino mass. Those are the Euclid satellite
mission4 (Laureijs et al., 2011), Vera C. Rubin Observatory’s Legacy Survey of Space
and Time 5 (LSST; Ivezić et al., 2019), and the Nancy Grace Roman Space Telescope6

(Spergel et al., 2015).
1http://kids.strw.leidenuniv.nl
2https://www.darkenergysurvey.org
3https://hsc.mtk.nao.ac.jp/ssp/
4https://sci.esa.int/web/euclid
5https://www.lsst.org
6https://roman.gsfc.nasa.gov

http://kids.strw.leidenuniv.nl
https://www.darkenergysurvey.org
https://hsc.mtk.nao.ac.jp/ssp/
https://sci.esa.int/web/euclid
https://www.lsst.org
https://roman.gsfc.nasa.gov
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Figure 2.1: The colored lines show the filter responses of the grizy-bands of the
HSC imager. The grey region shows the filter response of the F814W band of HST.

Hyper Suprime-Cam (Aihara et al., 2018a, HSC) Survey is a multi-band (i.e.,
grizy broad-bands plus 4 narrow bands) imaging survey using the Hyper Suprime-
Cam mounted on the Subaru telescope (Miyazaki et al., 2018b). Subaru telescope
is an optical-infrared telescope with a diameter of 8.2 m located at the summit of
Maunakea, Hawaii, and operated by the National Astronomical Observatory of Japan
(NAOJ). The filter responses of the broad bands are demonstrated in Figure 2.1. As
shown, the response of the i-band filter has a large overlap with the F814W band of
the Hubble Space Telescope (HST; Koekemoer et al., 2007).

The HSC imager has 104 science CCDs with a field-of-view 1.8 deg2 and a 0.′′168

pixel scale. Thanks to the large field-of-view, the wide layer of the HSC survey covers
∼ 1400 deg2 with an optical depth of ∼ 26 in i-band. The average seeing size is ∼ 0.′′6

in the i-band.
The HSC survey is awarded 330 nights over six years and it started in March

2014. The target observational footprint of the HSC survey is shown in Figure 2.2,
which is from hscMap7. As shown, the HSC survey has overlaps with the Sloan Digital
Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) footprint, as the

7https://hscmap.mtk.nao.ac.jp/

https://hscmap.mtk.nao.ac.jp/
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Figure 2.2: The green boundary shows the region covered by the second public
data release of the HSC survey The figure is from hscMap.
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SDSS/BOSS sources are used as a baseline of photometric and astrometric calibration.
Further more, the HSC footprint covers the COSMOS region that is observed by
the HST with a depth of roughly 24.5th magnitude. The COSMOS HST image
recorded in the F814W band has a much smaller seeing size and lower noise variance.
Therefore, the COSMOS HST images serve as a baseline for the calibration of galaxy
shape measurements. The three-year HSC weak-lensing shear catalog is based on the
S19A internal data release, which was acquired from March 2014 to April 2019 and
released in September 2019. The S19A images are processed with hscPipe v7.

2.2 Requirement on the Control of Systematics
Accurate shear estimation is challenging due to a number of systematics Mandelbaum
(see 2018, for review on weak lensing realted systematics). Considering that shear
distortion is small in the weak lensing regime, the relation between the estimated
shear and the true shear is quantified as follows if O(g4) of the small shear distortion
is neglected:

ĝα = (1 +m)gα + a ePSF,α, (2.1)

where m is referred to as multiplicative bias; a is referred to as the fractional additive
bias that quantifies the fraction of the PSF anisotropy leaking into the shear mea-
surement. The two components of the additive bias are given by cα ≡ a ePSF,α, where
ePSF,α refers to the ellipticity of PSF that quantifies the PSF anisotropy.

One of the systematics in the weak lensing shear estimation is the smearing from
point spread functions (PSFs) caused by the light diffraction by telescopes and the
atmosphere, and the pixel response. PSFs change the shape of galaxies, the bias
of which to the shear measurement should be quantified and removed. In addition,
galaxy images are contaminated by photon noise due to the sky variance. Further-
more, in the deep, ground based imaging survey (e.g., HSC and LSST), blending of
galaxies become a severe problem in the shear estimation.

In order to set meaningful requirements on the control of systematic residuals, it is
improved to estimate the statistical error – the standard deviation of which is denoted
as σstat – that can be obtained from a cosmological analysis. This is beacuse only
the systematic residuals with significances that are comparable to or greater than
the statistical uncertainty should be modelled and removed from the weak lensing
measurement. For the three-year HSC weak lensing science, the systematics are
required to be less significant than 0.5 σstat to ensure that the systematic residuals
are subdominant. Note, such a requirement is on the systematic residuals after the
removal of known biases that are expected to be calibrated before the use of a catalog.
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Figure 2.3: The changes in the galaxy profile by the systematics. The intrin-
sic galaxy shape (leftmost), PSF smear added (middle-left), photon noise added

(middle-right), blending added (rightmost).

The requirements are assessed in terms of residuals on multiplicative and fractional
additive bias (i.e., δm and δa, respectively) in shear estimation. Multiplicative bias
and fractional additive bias are defined in Equation (2.1).

Cosmic shear (Hamana et al., 2020) and galaxy-galaxy lensing (Prat et al., 2018)
are two of the most important weak lensing cosmological analysis based on the shear
catalog. Since the requirements on control of systematic residuals for galaxy-galaxy
lensing are comparable with that for cosmic shear, the requirements on systematic
residuals are determined only using the expected covariance of the cosmic shear mea-
surements, i.e., the shear-shear correlation functions. The covariance is estimated by
rescaling the covariance matrix, denoted as C, of the first-year shear-shear correla-
tions, which is estimated with mock galaxy catalogs (e.g., Shirasaki et al., 2019), by
the inverse-square of the galaxy number ratio between the three-year catalog versus
the first-year catalog.

The shear-shear two-point correlation functions are defined as

ξ±(θ) = ⟨ĝ+(r⃗)ĝ+(r⃗ + θ⃗)⟩ ± ⟨ĝ×(r⃗)ĝ×(r⃗ + θ⃗)⟩ , (2.2)

where the per-object shear estimates ĝ for pairs of galaxies are decomposed into
the tangential (ĝ+) and cross component (ĝ×). TreeCorr8 (Jarvis et al., 2004), a
public package for fast measurements of correlation functions using a ball tree method
(similar to a k-d tree), is used to compute the correlation functions.

Mandelbaum et al. (2018b) used a covariance matrix measured from mock catalogs
(Shirasaki et al., 2017) to estimate the SNR for a cosmic shear measurement without
tomographic binning. The estimated SNR is 12.6 for angular scales 5′ < θ < 285′.
Cosmic shear analyses have been conducted using the first-year HSC shear catalog
in both configuration space (Hamana et al., 2020) and Fourier space (Hikage et al.,

8https://github.com/rmjarvis/TreeCorr/
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2019) with a tomographic binning into four redshift ranges. The SNRs of 15.6 and
18.4 were achieved with a fiducial multi-pole range 300 < l < 1900 and an angular
range 4′ < θ < 50′ using the first-year HSC mock galaxy catalogs (Shirasaki et al.,
2019), respectively. The differences in the SNR measurements are mostly accounted
for by the different angular (multi-pole) ranges, tomographic setups and cosmological
models adopted by these studies. An average of them are calculated and then rescaled
according to the increase in galaxy number thanks to to the increase of survey area
in the three-year shear catalog. The resulting SNR for the three-year HSC cosmic
shear measurements is SNRs−s = 27 . Although tomographic SNR measurements are
used when deriving SNRs−s, a non-tomographic formalism is adopted when deriving
the requirements in the following context for simplicity.

Figure 2.4: The dashed (solid) line demonstrates the maximum amplitude of the
systematic residuals on the shear-shear correlation function as a function of angular
scale required by the S16A (S19A) HSC weak-lensing science. The light-yellow area

refers to the angular scales used for the cosmic shear measurements.

This SNR is used to derive the upper-limit of the amplitude of systematic residuals
on the cosmic shear as

δξ±,max(θ) =
ξ±(θ)

2 SNRs−s

. (2.3)

This upper-limit of the systematics, which is demonstrated in Figure 2.4, has a sta-
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tistical significance of 0.5σ since

δ⃗ξ
T

±,max · C−1 · δ⃗ξ±,max = 0.25 . (2.4)

That is, the amplitude of the systematic residuals originated from any sources on the
cosmic shear measurement is required as

|δξ±| < δξ±,max . (2.5)

2.2.1 Multiplicative bias residuals

First, I place a requirement on the overall residual of multiplicative shear bias (δm)
by focusing on the condition that the additive bias is zero to focus on multiplicative
bias residuals. After neglecting the high-order terms of δm with the assumption:
δm≪ 1, the cosmic shear measurements are influenced by the multiplicative bias as
follows:

⟨ĝ†ĝ⟩ ≈ (1 + 2 δm)⟨g†g⟩, (2.6)

where g† refers to the complex conjugate of complex shear g = g1+ i g2. The resulting
systematic residual on the correlation function due to the multiplicative bias residual
is given by

δξ+,δm = 2 δm ξ+ . (2.7)

According to Equation (2.5), the requirement on the overall multiplicative bias is

|δm| ≲ 0.25

SNRs-s
= 9.3× 10−3 . (2.8)

Here the integrated SNR (SNRs-s = 27) for cosmic shear is adopted. Not that, this
requirement is a factor ∼

√
3 more stringent compared to the first-year requirement

on the overall multiplicative bias.

2.2.2 Additive bias residuals

Then I place a requirement on the correlation of the overall additive shear bias residual
(δc), which can originate from, e.g., an inadequate removal of systematics related to
PSF in the shear estimation and PSF model shape errors. Similar to Section 2.2.1, I
focus on the additive bias residual (δc) and assume that δm = 0. The additive bias
(c) propagates into an additive term in the cosmic shear measurements via

⟨ĝ†ĝ⟩ = ⟨g†g⟩+ ⟨δc†δc⟩ . (2.9)
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Figure 2.5: Basic outline of the weak lensing shear estimation process.

The systematic residuals on the cosmic shear estimations that originate from additive
bias residuals are hence given by

δξ+,δc = ⟨δc†δc⟩ . (2.10)

According to Equation (2.5) and the conservative integrated SNR (SNRs-s = 27),
the requirement on the correlation of fractional additive bias is given by

⟨δc†δc⟩ < ξ+(θ)

2SNRs-s

=
ξ+(θ)

54
.

(2.11)

From the relation δc = δaePSF, the requirement on ⟨δc†δc⟩ is transformed into the
requirement on ⟨δaδa⟩:

⟨δaδa⟩ < ξ+(θ)

54⟨e†PSFePSF⟩(θ)
. (2.12)

The cosmic shear measurements are influenced by the baryonic effects at small
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scales, and the measurements suffer from systematics related to PSF at large scale
(Hamana et al., 2020). Therefore, I only consider the ξ+ measurements on scales
from 4′ to 50′ following Hamana et al. (2020). The quantity ⟨δaδa⟩ declines as a
function of length scale, ranging from ∼ 2.0× 10−4 at the minimum scale of θ = 4′ to
∼ 4.3× 10−5 at θ = 50′ since the scale-dependence of the PSF-PSF shape correlation
is much flatter than that of the cosmic shear correlation function. The geometric
mean of these values is used to set the requirement on the fractional additive bias,
requiring |δa|2 < 9.4 × 10−5, or |δa| < 9.7 × 10−3. Since the conservative integrated
SNR is used in this equation, it is not necessary to use the lowest ⟨δaδa⟩ value as
well.

2.3 HSC pipeline
The HSC pipeline (Bosch et al., 2018) is built upon the prototype pipeline that will
be finally applied to processing the LSST images (Bosch et al., 2019). The pipeline
first detects sources from CCD images, and conducts source properties (e.g., centroid,
flux, size and shapes) measurements. Then it performs astrometry and photometry
calibration. After that, single exposure CCD images covering the same region on the
transverse plane are resampled onto a common grid, and the resulting image is called
coadded image. Finally, source detection and source property measurements are run
again on the coadded images.

Here I introduce the catalog production (i.e., source detection and source property
measurements) in Section 2.3.1. The coadding algorithm introduced in Section 2.3.2,
and the background subtraction algorithm is introduced in Section 2.3.3. Note, the
summary presented here is based on hscPipe v7, which is used to process the S19A
internal data release. Readers can check the HSC pipeline paper and the latest HSC
data release paper for the histories and latest updates of the pipeline (e.g., Bosch
et al., 2018; Aihara et al., 2019).

2.3.1 Source detection and property measurement

2.3.1.1 Detecting source from background

The HSC pipeline first performs a maximum likelihood detection with a 50σ threshold
from images. Each detected peak is regarded as a source object, and the connected
neighboring region above the threshold is identified as the footprint of the source.
Then the pipeline performs a background estimation using the undetected pixels,
and the estimated background is subtracted from CCD images with a Chebyshev
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fitting. After that, the pipeline run a deeper detection with a 5σ threshold. Finally,
background are estimated from the undetected pixels (with respected to the deep
source detection) and subtracted from CCD images. We note that the bad pixels
(e.g., saturated pixels, pixels with cosmic rays) are also identified and labelled at the
source detection stage.

2.3.1.2 Deblending

Under the condition that one footprint contains multiple number of peaks, we use the
deblender of the HSC pipeline to apportions the flux to different peaks. The HSC
pipeline adopts the SDSS deblender (Lupton et al., 2001) to isolate blended objects.
It takes each peak in the footprint as a “child” source. With the assumption that
each object is 180◦ rotational symmetric with respect to its peak, a template Ti(x⃗)

for each “child” source is given by

Ti(x⃗) = min(f(x⃗), f(2p⃗i − x⃗)), (2.13)

where p⃗i is the peak of the “child” source indexed by i, x⃗ and 2p⃗i − x⃗ are symmetric
with reference to the peak p⃗i. Then scaling parameters ci are determined by fitting
the templates to the whole footprint. The final deblended ‘child’ source is given by

fD
i (x⃗) =

ciTi(x⃗)∑
j cjTj(x⃗)

f(x⃗) .

When measuring the properties of each source, the HSC pipeline replaces the
footprints of other sources with uncorrelated white noise. Shape of every source
object is measured after the noise replacement.

The source properties measurement includes galaxy star classification, centroid,
flux estimation, size estimation and shape estimation, which will be introduced in the
following parts of this subsection.

2.3.1.3 Centroid

The HSC pipeline adopts an approximate maximum-likelihood algorithm first devel-
oped for the SDSS Photo Pipeline (Lupton et al., 2001). Under the circumstance
that the noise variance is dominated by the background photon noise, the maximum-
likelihood estimate of the position of a star is the peak of the image smoothed by
the PSF image. The pipeline uses parabolic interpolation in this smoothed image to
find the position of peak of the likelihood. If the object is significantly larger than
the smoothing filter, the HSC pipeline bins the original image and re-smooth, and
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the re-smoothing is repeated until the effective smoothing scale roughly matches the
object size.

2.3.1.4 Shape and size

The HSC pipeline uses the GalSim (an open source package for galaxy image simula-
tion and measurements) implementation of the Re-Gaussianization (reGauss; Hirata
& Seljak (2003)) algorithm, which is a moments based method including PSF cor-
rection (with assumptions on galaxy morphology). reGauss has been developed and
used extensively using data from the Sloan Digital Sky Survey (SDSS; Mandelbaum
et al., 2005, 2013). reGauss estimator provides galaxy shape estimation by measuring
the ellipticity that is given by

(e1, e2) =
1− (b/a)2

1 + (b/a)2
(cos 2ϕ, sin 2ϕ), (2.14)

where b/a is the axis ratio, and ϕ is the position angle of the major axis with respect
to sky coordinates – with north being +y and east being +x .

The reGauss algorithm also measures the resolution factor R2 that is defined with
the trace of the second moments of the PSF (TPSF) and those of the observed galaxy
image (Tgal) as

R2 = 1− TPSF

Tgal
, (2.15)

is another important output. It is used to quantify how well the galaxy is resolved
compared to the PSF.

2.3.1.5 Flux

The HSC pipeline provides a group of flux estimations with different algorithms. Here
I introduce a few most important flux estimations and refer readers to Bosch et al.
(2018) for more detailed descriptions on all the flux estimation algorithms.

• PSF flux: The HSC pipeline uses a matched-filter estimation of PSF flux
(see Equation (28) of Bosch et al. (2018)—it multiplies the source with a l2-
normalized PSF model centered at the source’s centroid to estimate the PSF
flux. Lanczos interpolation is applied to shift the image of PSF model to the
centroid of the source.

• Aperture flux: The HSC pipeline measures several aperture fluxes with dif-
ferent radii ranging from 1–23 arcsec in diameter in logarithmically-spaced se-
quence. For small radii, the aperture fluxes are integrals, not simple sums—the
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method of Bickerton & Lupton (2013) is applied to exactly integrate over sub-
pixel regions.

• cModel flux: The HSC pipeline measures the cModel flux (Lupton et al.,
2001) by fitting multiple PSF-convolved galaxy models in a sequence designed
to approximate a bulge-disk decomposition or Sersic model (Sérsic, 1963) fit.

2.3.2 From single exposure to coadded images

The CCD images are first resampled on a common pixel grid using 3rd-order Lanczos
interpolation, and the coadded images are generated as a weighted average of the
resampled CCD images. The inverse of the mean variance of each input CCD images
is used to set the weights to improve the SNR of the coadded images.

The PSF model are determined as a function of position on focal plane for each
exposure at the CCD image level by interpolating star images. The effective PSF on
coadded images are reconstructed as follows: For the coadded image data, we store
the combination weights, WCS transforms, PSF models, and boundaries of the input
CCD images contributing to the pixel. When an image of the effective PSF model
on coadds is requested at a position on the coadded image, the pipeline transforms
the point to the coordinate system of each input CCDs contributing to the coadd at
position of source on coadds, evaluates their PSF models at the point, resample the
PSF models to the common grid, and finally combine them with appropriate weights
to generate an image of the effective coadd PSF. The PSF model is cached at a single
point so that repeated revaluation does not need additional computation.

2.3.3 Background subtraction

The pipeline estimate and subtract background after the source detection procedure
at both the CCD image level and the coadded image level. First, the pipeline divide
image into several bins, average over pixels in bins ignoring any pixels belonging to
detected objects, and the variance is also computed in each bin. Then the pipeline
fits a 6th-order 2D Chebyshev polynomial to the average pixel values over the image,
using the average position of the non-masked pixels as the center of a bin. Each bin
is weighted by the inverse variance to ensure that the heavily-masked bins do not
heavily influence the fitting.

At the single exposure level, the pipeline performs a global joint estimation of
the background using all the CCDs across the focal plane with a 4k × 4k pixel-mesh
(namely, 11′ × 11′). The pipeline performs a 128 × 128 (local) pixel-mesh (namely,
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∼ 22 arcsec×22 arcsec) is applied on coadds. Readers can refer to Aihara et al. (2019)
for more details.

2.4 Galaxy Image Simulations
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Figure 2.6: Map of the i-band PSF FWHM across each field. The red dots are the
sampling positions for PSFs and noise properties that will be used in the HSC-like
image simulation in Section 2.4. The mean seeing over all of the fields is 0.′′59. The
circular region centered near (RA=130.43◦, DEC=−1.02◦) of the GAMA09H field

is masked out due to the tracking error on the exposure visit 104934 .

This section serves to introduce the galaxy image simulations that are used to
test shear measurements for the three-year HSC weak lensing science. Calibration on
the shear estimation is conducted is biases are discovered. The work flow of the shear
calibration is summarized in Figure 2.5.

The galaxy image simulations are divided into 2500 subfields; each subfield con-
tains 104 postage stamps; each postage stamp is composed of 64 × 64 pixels. The
pixel scale is set to 0.168 arcsec to match the HSC pixel scale.
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Figure 2.7: Number of input visits contributing to the coadded images in the
i-band across each field. The mean number of input visits is 6.95 over all of the
fields. The way the visits are tiled across each visit area results in the repeated
pattern of overlap regions with more than the typical input number (for the tiling

strategy, see Aihara et al., 2018a).

2.4.1 Input noise and PSF

The noise properties, including variance and spatial correlations, and PSF models are
sampled from a set of random positions on the HSC coadded images as demonstrated
as red points in Figure 2.6. Those quantities are the same in each subfield while they
vary between different subfields.

The fifth-order Lanczos kernel used to warp single exposures during the coadding
process (Bosch et al., 2018) results in correlated noise on coadded images. The noise
correlations are sampled from the blank pixels near the random sampling positions
(red dots in Figure 2.6). As the sampled noise correlations are noisy on the individual
level, I randomly divide them into eight groups, and stack the correlations in each
group to create eight different noise correlation functions with high signal-to-noise
ratio (SNR).

The measured noise variance from blank pixels are in general greater than the
input noise variance due to the neighboring and undetected sources. In order to miti-
gate the difference between the input noise variance and the measured noise variance,
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I adopt a two-step process in the simulation: First, I use the sampled noise variance
of each subfield as the input noise variance for the preliminary simulations. After
populating galaxy images into each subfield, I measure the noise variance from blank
(undetected) pixels on the preliminary simulations and record the ratio between the
measured noise variance and the input noise variance for each subfield; Second, I
divide the sampled noise variance by this ratio for each subfield and use the rescaled
variances as the inputs of the fiducial simulations. By this rescaling, the noise vari-
ances measured from the simulations are matched to those measured from the HSC
coadded images consistently. In contrast, this rescaling was not performed in the
first-year HSC-like image simulations Mandelbaum et al. (2018a) that matched the
input noise variances in the simulation to the measured noise variances in the S16A
HSC data.

To mitigate the differences between the observational conditions for the simula-
tions and the HSC data due to the finite noise and PSF sampling, I reweight each
subfield in the simulations to make sure the seeing and noise variance histograms
match the real data well. Note that the simulations are not reweighted according
to any properties of the input galaxies. In addition, the three-year HSC shear cata-
log is divided into six fields (i.e., XMM, GAMA09H, WIDE12H, GAMA15H, VVDS,
HECTOMAP), and the reweighting is conducted separately for each field. The seeing
(PSF FWHM) histograms and noise variance histograms for the observations and the
simulations are demonstrated in Figs. 2.8 and 2.9, respectively.

2.4.2 Input galaxy

I use the galaxy training sample created by Mandelbaum et al. (2018a) as input
galaxies. Mandelbaum et al. (2018a) select galaxies with cModel magnitudes less
than 25.2 in the COSMOS region from the HSC Wide-depth catalogs detected from
three stacks (i.e., with typical seeings of 0.′′5, 0.′′7, and 1.′′0) of the HSC Deep/Ultra-
deep images (Aihara et al., 2018b). After that, the centroids of these galaxies are
determined on the images of the COSMOS HST Advanced Camera for Surveys (ACS)
field (Koekemoer et al., 2007) in the F814W band. Postage stamps centered at the
galaxy centroids are subsequently cut-out from the HST images. I use the training
sample selected from the stack with the best seeing (0.′′5) as it should be the most
complete sample among the three thanks to the best seeing.

GalSim (Rowe et al., 2015), an open-source package for galaxy image simulations,
is used to simulate HSC-like images with the COSMOS HST training images. The
original HST PSF is deconvolved from each input HST postage stamp and then the
image is rotated with a random angle, sheared by a known input shear distortion,
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Figure 2.8: The first 6 panels show the normalized number histograms of PSF
FWHM for the galaxies in 6 HSC fields. The last panel is the histogram for galaxies
in all fields. The blue solid (red dashed) lines are for the HSC data (simulation).
The blue (red) text and vertical lines indicate the mean averages of the HSC data

(simulation).

convolved with an HSC PSF, sampled at the HSC pixel scale, and downgraded to
an HSC noise level. The noises and PSFs used in the simulations are those sampled
from the positions of the red dots in Figure 2.6. For illustration purposes, one input
HST postage stamp and the corresponding simulated HSC postage stamp is shown
in Figure 2.10.

In the simulations, each subfield includes 90◦ rotated (galaxies are intrinsically
orthogonal to each other) galaxy pairs that will be used to nearly cancel out shape
noise (Massey et al., 2007). By keeping track of the object ids of each orthogonal
pairs, the analysis framework provides options to apply this cancellation or not. In the
following analyses, the orthogonal pairs will also be used to estimate shape estimation
error due to photon noise, weight bias, and selection bias in the shear estimation.
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Figure 2.9: Same as Figure 2.8, but for noise variance.

2.4.3 Weak lensing galaxy sample

2.4.3.1 Galaxy selection

hscPipe v7, the pipeline used to process the HSC S19A data with the same con-
figurations, is run on the simulations for source detection, deblending, and basic
measurements (e.g, size, flux, and shape measurements).

For the analyses that will be conducted in the following context based on the
image simulations, a basic set of flag cuts shown in the “Basic flag cuts” section of
Table 2.1 are first imposed. Note that only the following flags actually influence the
source selection in the simulations – i_detect_isprimary, i_sdsscentroid_flag,
and i_extendedness_value. This is because the simulations do not include image
artifacts (e.g., cosmic rays, bad pixels). Following Mandelbaum et al. (2018a), only
the detected source nearest to the postage stamp center for each postage stamp is
kept in the weak lensing catalog. Additionally, It is required that the nearest source
should have a centroid that is at most 5 pixels away from the postage stamp center
in order to eliminate stamps where the detection nearest to the center was not the
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Figure 2.10: The input galaxy postage stamp from HST F814W band (left panel)
is transformed to the HSC-SSP postage stamp (right panel). The yellow texts show

the normalized noise variance, pixel scale and PSF FWHM for HST and HST.

intended central object.
Since the input HST training sample is limited by an i-band magnitude of ∼ 25.2,

the image simulations built upon the training sample are not complete, especially
at the faint end. In addition, the simulations do not include realistic large-scale
background light, while background light residuals are likely to influence the galaxy
measurements of galaxy properties, especially on faint galaxies. The background
residuals can also lead to fake detections that cannot be reproduced in the simula-
tions. To mitigate the influences of the incompleteness of the training sample and
the absence of realistic sky background residuals in the simulations, a set of cuts on
galaxy properties measured with the pipeline are applied in both the simulations and
the HSC S19A data to select a well-resolved, high-SNR galaxy sample for the weak
lensing science. Furthermore, this weak lensing cuts are useful to remove fake detec-
tions that dilute the measurement. The i-band cuts, applied to both the observations
and the simulations, are summarized in Table 2.1.

The i_extendedness_value cut is used to eliminate stellar contamination in the
weak lensing galaxy catalog. The stellar contamination fraction, the number fraction
of misclassified stars in the weak lensing galaxy sample even after this cut, is estimated
using as a reference the galaxy-star classification performed on HST COSMOS data
by Leauthaud et al. (2007). Since the HST images have a lower noise level and higher
resolution than the HSC images, the HST galaxy-star separation is regarded as the
ground truth.
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Figure 2.11: The stellar contamination fraction due to the incorrect classifica-
tion by hscPipe v7, estimated after application of the weak lensing cuts in Ta-
ble 2.1. Solid lines show the stellar contamination fraction as a function of i-band
cModel magnitude for three different seeing conditions (i.e., BEST, MEDIAN, and
WORST) estimated with reference to COSMOS HST star-galaxy classifications
used as an estimate of ground truth. Errorbars show the Poisson uncertainties.
Dashed lines show the stellar contamination fractions for all magnitude bins in the

corresponding seeing samples.

Figure 2.11 demonstrates the stellar contamination fractions as a function of mag-
nitude for the catalogs selected using the weak lensing cuts in the COSMOS region
on the Deep/Ultradeep data consisting of multiple exposures in the COSMOS region.
Three different Wide-depth stacks of the HSC S19A images have been constructed,
which correspond to the exposures with the best (0.′′5), median (0.′′7), and worst (1.′′0)
seeing size (Aihara et al., 2018b). As shown, even in the worst seeing conditions,
the stellar contamination fraction is below 0.2% for galaxies with i-band magnitudes
brighter than 22, increasing to 0.5% at the faintest end of the shear catalog with
i-band magnitudes close to 24.5. In conclusion, as the fraction of misclassified stars
is less than 0.5%, the shear estimation biases from the misclassification of stars as
galaxies is negligible.

In order to ensure that there are enough color information to compute photo-z,
a multi-band detection cut is also imposed. The multi-band cut requires at least two
other bands (out of grzy-bands) to have at least a 5σ cModel detection significance,
which is laid out in Table 2.2. The multi-band detection cut is applied only on the



2.4. GALAXY IMAGE SIMULATIONS 35

HSC S19A data but not on the simulations due to the lack of multi-band image
simulations. This multi-band detection cut removes a very small fraction (< 1%) of
galaxies passing other selection thresholds. Therefore, the influence of the multi-band
detection cut on the shear measurement is expected to be negligible.

Note, when simply imposing the HSC first-year i-band cuts shown in Table 4 of
Mandelbaum et al. (2018b) a mismatch in the SNR-R2 2D histograms between the
S19A HSC data and the simulations at the faint end is found. Specifically, there
are more extended faint detections that are very likely to be fake detections in the
HSC S19A data than in the simulations. Compared to the S16A data, the S19A
data is processed with a “global-local” background subtraction scheme, which results
in an under-subtraction of sky background. It is found that this background under-
subtraction increases the cModel flux estimation near bright objects, which makes
cuts on cModel flux inefficient at removing the galaxies beyond the HST magnitude
limit and the fake detections from background light residuals in the observations.
In order to remove the aforementioned detections that cannot be reproduced in the
simulations, an additional cut on the i-band 1 arcsec-diameter-aperture magnitudes
(magA) at 25.5 is imposed to define the weak lensing sample. This aperture magnitude
cut removes 3.9% galaxies that pass the other selection cuts. Section 2.5.8 quantifies
the selection bias due to the cuts.
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Table 2.2: Weak lensing cuts: The multi-band detection cut applied to the HSC
data.

Require that at least two of the following four cuts be passed (not all)
Cut Meaning
g_cmodel_flux/g_cmodel_fluxerr ≥ 5 Galaxy has high enough SNR in g band
r_cmodel_flux/r_cmodel_fluxerr ≥ 5 Galaxy has high enough SNR in r band
z_cmodel_flux/z_cmodel_fluxerr ≥ 5 Galaxy has high enough SNR in z band
y_cmodel_flux/y_cmodel_fluxerr ≥ 5 Galaxy has high enough SNR in y band
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Figure 2.12: The normalized number histograms of i-band properties, which
include cModel SNR (upper-left), reGauss resolution (upper-right), cModel mag-
nitude (lower-left), and reGauss distortion magnitude (lower-right), for galaxies in
all fields combined. The blue solid (red dashed) lines are for the HSC data (sim-
ulation). The blue (red) text and vertical lines indicate the mean averages of the

HSC data (simulation).

In order to study the influence of the selection property of source detector of
hscPipe v7 on the galaxy sample, one detection – with its peak at the center of the
stamp – is artificially inserted if no object is detected within 5 pixels from the center
of a simulated postage stamp. Flux, size and shape measurements are subsequently
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Figure 2.13: The 2D histograms for the HSC data and the simulations. The
panels from left to right show the (SNR, R2), (SNR, |e|) and (SNR, cModel mag-
nitude) histograms, respectively. The solid (dashed) lines show the contours for
the HSC data (simulation) and the color maps are the 2D histograms for the HSC

data. The color maps are the 2D histograms for the HSC data.

conducted on the inserted detections. It is found that the number of these forced
detections that enter the weak lensing sample after the weak lensing cuts are applied
is far less than 0.1% of the total galaxy number in the weak lensing sample. Therefore,
the selection function of the source detector has a negligible influence on the weak
lensing sample, and the selection bias from the source detector is negligible. This
is aligned with the expectations: Since the 5σ detection limit for point sources is
26.2 mag in i-band, and the weak lensing galaxy sample is selected with an i-band
magnitude cut at 24.5, far brighter than the detection limit. However, it is important
to note that that several defects from real data (e.g., sky background residuals, optical
ghosts, very bright stars, etc.) that can affect the object detection are not included
in the simulations.

2.4.3.2 Galaxy properties

The 1D normalized number histograms for i-band galaxy properties (i.e., cModel
SNR, reGauss resolution, cModel magnitude, reGauss distortion magnitude defined
as |e| =

√
e21 + e22), of the HSC S19A data and the simulations are shown in Fig-

ure 2.12. When plotting the histograms, the same upper-limit on the i-band cModel
SNR (SNR< 80) as Mandelbaum et al. (2018a) is applied in order to compare this
results with those of the HSC first-year image simulation paper. As shown, there are
no significant discrepancies in the shapes of the number histograms between the HSC
data and the simulations. The relative difference of the mean values averaged across
all of the fields for these properties between the data and the simulations are 0.5%
(cModel SNR), 0.2% (reGauss resolution) 0.1% (cModel mag) and 0.8% (|e|). The
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matching is impressive that all of relative difference are less than 1%. Finally, the
2D joint histograms of these galaxy properties are demonstrated in Figure 2.13.

Compared to the first-year HSC-like image simulations (see Figure 8 of Mandel-
baum et al., 2018a), the three-year HSC-like simulations presented here have a better
match to the HSC galaxy properties in the SNR histogram. The average SNR over
all fields was relatively less than the observed SNR by ∼ 5% in Mandelbaum et al.
(2018a), while the discrepancy decreases to ∼ 0.5% for the for the current image sim-
ulations. The match in SNR distribution improves since the sampled noise variance
is rescaled for a consistent match between the measured noise variances from the sim-
ulations and those from the real data (as was discussed in Section 2.4.1). Moreover,
the matches between the 2D histograms are visually better than those of the first-year
HSC simulations demonstrated in Figure 9 of (Mandelbaum et al., 2018a), which is
primarily due to the improved match of the SNR histograms.

Additionally, compared to the state-of-art image simulations in other weak lensing
surveys, e.g., Figure 9 in Kannawadi et al. (2019) from the KiDS survey and Figure 3
in MacCrann et al. (2020) from the DES survey, the simulations generally have better
matches to the histograms of the observed galaxy properties (i.e., galaxy brightness,
size and shape)

2.5 Calibration
I first introduce a classic shear estimator and calibrate the intrinsic shape measure-
ment. Then I use the image simulations introduced in Section 2.4 to estimate, model,
and then remove the shear calibration bias. The selection bias in the shear estimation
is left to be discussed in Section 2.5.8.

2.5.1 reGauss Shear Estimator

Re-Gaussianization (reGauss), a moments based method including PSF correction
(with assumptions on galaxy morphology), has been developed and used extensively
using data from the Sloan Digital Sky Survey (SDSS; Mandelbaum et al., 2005, 2013).
The outputs of the reGauss estimator are the galaxy ellipticity

(e1, e2) =
1− (b/a)2

1 + (b/a)2
(cos 2ϕ, sin 2ϕ), (2.16)

where b/a is the axis ratio, and ϕ is the position angle of the major axis with respect
to sky coordinates – with north being +y and east being +x .
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For a group of galaxies that are distorted by a constant lensing shear, the lensing
shear can be estimated with a weighted average of the ellipticity of all galaxies as

ĝα =
1

2R
⟨eα⟩ , (2.17)

where the shear response, denoted as R, is the response of the weighted mean el-
lipticity to a small shear distortion (Kaiser et al., 1995; Bernstein & Jarvis, 2002);
α = 1, 2 are the indices for the two components of the ellipticity; w is the galaxy
shape (inverse variance) weights to be used to calculate the derive average, which is
defined as

w =
1

σ2
e + e2RMS

, (2.18)

where σe and eRMS are the per-component root-mean-squares (RMSs) of the shape esti-
mation error (due to the sky variance) and of the galaxy intrinsic shape, respectively.
σe and eRMS are modeled and estimated for each galaxy using image simulations, as
will be shown in Section 2.5.2. The response for the source galaxy population is given
by

R = 1−
∑

i wie
2
RMS;i∑

i wi

, (2.19)

where i is the index of galaxies.
The response for PSFs is approximately one since the PSFs are nearly round.

Based on this approximation, shear distortion for a PSF image is defined as gPSF,α =

ePSF,α/2, where ePSF,α are the two components (α = 1, 2) of PSF ellipticity defined
with the second moments of the PSF measured by reGauss.

It is known that the reGauss algorithm is subject to certain forms of shear esti-
mation bias (e.g., model bias, noise bias, selection bias etc.), and the calibrated form
of the reGauss shear estimator for a galaxy ensemble is given by

ĝα =

∑
i wieα;i

2R(1 + m̂)
∑

i wi

− ĉα
1 + m̂

, (2.20)

where the multiplicative bias and fractional additive bias (defined in Equation (2.1))
for galaxy with index i are denoted as mi and ai, respectively, the multiplicative bias
and the additive bias for the galaxy ensemble are

m̂ =

∑
i wimi∑
i wi

,

ĉα =

∑
i wiaiePSF,α;i∑

i wi

,

(2.21)

respectively.
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The estimation, modelling and calibration of the shear estimation biases as a
function of galaxy properties (i.e., SNR, R2, and galaxy photometric redshift) are
shown in Sections 2.5.3–2.5.8.

2.5.2 Shape measurement errors and intrinsic shape disper-
sion

This section estimates and model the statistical uncertainties from the sky variance
(namely, shape measurement error) and intrinsic shape noise (namely, intrinsic shape
dispersion) as functions of galaxy properties, respectively. Based on the estimated
uncertainties, the optimal (inverse variance) weight for the shear estimation is sub-
sequently determined.

First, the galaxy image simulations are used to estimate the 1σ per-component
shape uncertainty due to photon noise (σe) and model it as a function of galaxy
properties (i.e., SNR and R2) following the formalism given in Appendix A of Man-
delbaum et al. (2018a). The estimation uses the orthogonal (90◦-rotated) galaxy
pairs to nearly eliminate shape noise and measure the statistical error due to the sky
variance. A sliding window in the 2D SNR-R2 plane is defined with an equal-number
binning scheme and σe is estimated in window, the result of which is demonstrated in
the left panel of Figure 2.14. A power-law of σe(SNR, R2) is fitted to the estimated
σe on individual galaxy level, which is given by

σe = 0.268

(
SNR
20

)−0.942(
R2

0.5

)−0.954

. (2.22)

The difference between the power-law and the estimation is mitigated by linearly
interpolate the ratio of the estimated values to the fitted power-law as a function of
log10(SNR) and R2 .

Using galaxies in the real HSC shear catalog, the per-component intrinsic shape
dispersion (eRMS) is estimated by subtracting off (in quadrature) the shape measure-
ment error from the shape dispersion:

eRMS =

√√√√∑i

(
e21;i + e22;i − 2σ2

e(SNRi, R2;i)
)

2Ngal
, (2.23)

where i refers to the galaxy index; Ngal is the total galaxy number in the galaxy
ensemble. This estimation is computed in each sliding window, and the estimated
intrinsic shape dispersion as a function of SNR and R2 is demonstrated in the right
panel of Figure 2.14. As shown, the shape dispersion is relatively flat with a value
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Figure 2.14: The left panel (right panel) shows the estimated per-component
shape measurement uncertainty σe (intrinsic shape dispersion eRMS) estimated with

the simulations in different SNR-R2 bins.

close to 0.4. Therefore, a linear interpolation is performed in the 2D SNR-R2 plane
to model eRMS on the individual galaxy level.

After that, the optimal shape weight (according to the inverse-variance weighting
scheme) is determined with σe and eRMS following Equation (2.18), and the shear
response is determined following Equation (2.19).

2.5.3 Baseline calibration

In order to determine the baseline shear calibration bias in the absence of selection
bias, both galaxies in each 90◦-rotated pair is kept in the galaxy ensemble by imposing
the weak lensing cuts on only one randomly chosen galaxy in the pair. Additionally,
both galaxies in each pair are forced to use the same shape weight of the randomly
chosen galaxy to avoid weight bias due to the correlation of shape weight with shear.
By doing so, it is ensured that both the weighting and selection processes do not
correlate with the input shear, and the bias of these correlations is calibrated in
Section 2.5.4 and Section 2.5.8, respectively.

The upper-left panel of Figure 2.15 shows the baseline multiplicative bias as a
function of SNR and R2 with an equal-number binning scheme estimated from the
overall simulation. An unspecified constant value is added to the multiplicative bias
to blind the shear analysis. The lower-left panel shows the standard deviation of
the multiplicative bias estimation in the upper-left panel as a reference. Similarly
to Section 2.5.2, I fit m(SNR, R2) to a power-law in both parameters (including a
constant offset), and interpolate a correction to the power-law based on the ratio
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Figure 2.15: The left panels show the multiplicative bias (upper-left) and its
standard deviation (lower-left) estimated in the SNR-R2 plane using the image
simulations. The right panels are for the fractional additive bias. Note that the

multiplicative bias is blinded by adding a shift dmblind.

between the multiplicative bias estimation and the power-law. The best-fit power-
law is

m(SNR, R2) + const. ∝
(
R2

0.5

)1.66(SNR
20

)−1.24

. (2.24)

The upper-right panel of Figure 2.15 shows the baseline fractional additive bias
as a function SNR and R2 with an equal-number binning scheme estimated from the
overall simulation. The lower-right panel shows the standard deviation of the additive
bias estimation in the upper-left panel as a reference. Similarly to the modelling of
the baseline multiplicative bias, the estimated baseline fractional additive bias is fit
to the model proposed in Mandelbaum et al. (2018a). The best-fit model is

a(SNR, R2) ∝ (R2 − 0.61)

(
SNR
20

)−0.94

. (2.25)

Similarly, I interpolate a correction to the model based on the difference between the
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fractional additive bias estimation and the model.

2.5.4 Weight bias
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Figure 2.16: The left panels show the multiplicative weight bias (upper-left) and
the standard deviation (lower-left) of the multiplicative bias estimated in the SNR-
R2 plane using the simulation. The right panels show the fractional additive weight

bias.

Weight bias refers to the shear estimation bias caused by a correlation between
the adopted shape weight and the true lensing shear, and it can also be regarded
as the bias from a shear-dependent smooth selection since weighting is effectively a
smooth selection (Mandelbaum et al., 2018a).

This section estimates the weight bias for the optimal weight using image sim-
ulations containing 90◦ rotated pairs (Mandelbaum et al., 2018a) by comparing the
shear bias estimate with and without enforcing the same shape weight for each galaxy
in an 90-degree rotated galaxy pair. Figure 2.16 shows the multiplicative weight bias
(left panel) and the fractional additive weight bias (right panel) with a equal-number
binning scheme in the 2D SNR-R2 plane. As shown, this bias is positive and reaches
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a maximum amplitude of 0.03 at low SNR and R2, whereas it is negative and reaches
a maximum amplitude of −0.045 at high SNR and R2. A small additive weight bias
with ≲ 5σ significance is also found, which reaches its maximum of 0.025 at low
SNR and R2, and it decreases as SNR and R2 increase. Considering that the weight
biases are dependent on the location in the 2D SNR-R2 plane, the same process as
Section 2.5.3 is used to model and interpolate the weight biases as functions SNR and
R2 .

2.5.5 Redshift dependence

Figure 2.17: The left (right) panel shows the redshift-dependent multiplicative
(fractional additive) bias. The red lines are for dNNz photo-z, the blue lines are
for DEmP photo-z, and the green lines are for mizuki photo-z. The dashed lines
are the results before removing the redshift-dependent bias, whereas the solid lines
are the results after modelling and calibrating the redshift-dependent bias with
dNNz photo-z. The gray regions indicate the requirements on calibration residuals

defined in Section 2.2.

Since the weak lensing analyses often use photometric weights that is dependent
on photo-z (see, e.g., Murata et al., 2019; Miyatake et al., 2019), or divide the galaxy
sample into different photometric redshift (photo-z) bins (see, e.g., Hikage et al.,
2019; Hamana et al., 2020), it is of crucial importance to quantify and calibrate
the redshift-dependent shear calibration biases. Although some redshift-dependent
biases are already partially accounted for in the calibrations in Sections 2.5.3 and
2.5.4, which model the calibration biases as functions of R2 and SNR, this section
looks into the remaining redshift dependence of the shear estimation biases after
accounting for those effects.

Currently, there are only realistic simulations for i-band images since the input
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galaxy sample are from the single-band F814W HST exposures; therefore, photo-z
cannot be directly derived from the simulated images. Li et al. (2020) proposed to
use the photo-z estimates of the input galaxies as a proxy of the measured redshift in
the simulations to study the shear estimation biases that depend on redshift. Specif-
ically, the input COSMOS galaxies are matched to the HSC S19A photo-z catalog
(Nishizawa et al., 2020) in the Wide layer according to the angular position of the
input galaxies, and each galaxy in the simulations is assigned with the estimated
redshift of the matched galaxy in the HSC photo-z catalog. For cross validation,
three different HSC photo-z estimates – the Deep Neural Net Photometric Redshift
(dNNz; Nishizawa et al., in prep.), Direct Empirical Photometric code (DEmP; Hsieh
& Yee, 2014), and Mizuki photometric redshift (mizuki; Tanaka, 2015), which are
based on neural network, empirical polynomial fitting, and Bayesian template fitting,
respectively. Here, calibration biases are estimated and removed as a function of dNNz
photo-z. Finally, DEmP photo-z and mizuki photo-z are used for cross-validation tests.

To quantify the redshift-dependent residual of the shear estimation not captured
in the calibrations of Sections 2.5.3 and 2.5.4, the simulations are divided into dif-
ferent dNNz photo-z bins following an equal-number binning scheme (with selection
bias cancellation), and the multiplicative and additive bias for each bin is estimated.
The estimated biases are subsequently estimated with the predicted biases using the
calibration model derived in Sections 2.5.3 and 2.5.4. Here, the shape noise cancel-
lation is adopted by using orthogonal galaxy pairs to cancel out selection bias due
to galaxy cuts, whereas the shape weights are not forced to be equal in each galaxy
pairs to cancel out weight bias as it has been calibrated in Section 2.5.4.

The dashed red lines in Figure 2.17 show the residuals of multiplicative bias (left
panel) and additive bias (right panel) as a function of dNNz redshift, and the redshift-
dependent biases are modelled by linearly interpolating the bias residuals across the
redshift bins. The redshift-dependent multiplicative bias (left panel) has negative
value of ∼ −1% and positive value of ∼ 3% for galaxies in the photo-z range [0, 1]

and [1, 1.5], respectively. The redshift-dependent fractional additive bias (right panel)
is within the three-year systematic error requirements even before the correction.

2.5.6 Combined estimates of calibration bias

The final multiplicative bias and additive bias estimates the galaxies in the catalog
are the sum of the baseline bias modeled in Section 2.5.3, weight bias modeled in
Section 2.5.4, and residual redshift-dependent bias modeled in Section 2.5.5. The
outputs of the calibration are summarized in Table 2.3.
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Table 2.3: The outputs from the analyses based on the image simulations. The
first three outputs are derived to optimize the shear estimation (for precision) as
shown in Section 2.5.2. The last three outputs are derived to calibrate the shear
estimation (for accuracy) as shown in Section 2.5.3, Section 2.5.4, and Section 2.5.5.

Output properties Meaning
Optimization

i_hsmshaperegauss_derived_sigma_e Measurement error from photon noise
i_hsmshaperegauss_derived_rms_e Shape noise dispersion
i_hsmshaperegauss_derived_weight Weak lensing shape weight

Calibration
i_hsmshaperegauss_derived_shear_bias_m Multiplicative bias
i_hsmshaperegauss_derived_shear_bias_c1 The first component of additive bias
i_hsmshaperegauss_derived_shear_bias_c2 The second component of additive bias

2.5.7 Ensemble calibration uncertainties

Figure 2.18: The calibration residuals for subsamples binned by two modeled
galaxy properties (i.e., R2 and SNR). The left (right) panel shows the multiplicative
(fractional additive) bias. The red (blue) lines show the results for R2 (SNR)
binning. The gray regions indicate the requirements on calibration residuals defined

in Section 2.2.

This section demonstrates the validity and robustness of the calibration of the
multiplicative bias and additive bias derived in Sections 2.5.3–2.5.5, and assign a
systematic uncertainty to the calibration at the ensemble level. The calibration bias
residuals include multiplicative bias residuals (denoted as δm) and fractional additive
bias residual (denoted as δa), which are the remaining bias after the shear calibrations.
Note that the selection bias is not taken into account here, and the shape noise
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cancellation is adopted by using orthogonal galaxy pairs to cancel out selection bias
due to the galaxy binning.

First, the simulations are divided into several subsamples following an equal-
number binning scheme by the galaxy properties, which include those used for mod-
eling shear biases (i.e., cModel SNR, reGauss resolution, and dNNz photo-z) and those
that are marginalized (not explicitly taken into account) in the shear calibration bi-
ases estimation (i.e., cModel magnitude, seeing, DEmP and mizuki photo-z). Shear is
subsequently estimated for each subsample in each subfield (of 800 subfields) using
the calibrated shear estimator. Finally, the bias residuals for each property-binned
subsample are determined using Equation (2.1).

Figure 2.19: The dependence of calibration residuals on two marginalized galaxy
properties. The left (right) panel shows the multiplicative (fractional additive) bias.
The blue (red) lines show the results for cModel magnitude (seeing size). The gray

regions are for the requirements on calibration residuals defined in Section 2.2.

The dependence of the bias residuals on the modelled properties are subsequently
tested. The red solid lines in Figure 2.17 show the bias residuals with dNNz photo-z
binning; Figure 2.18 shows the calibration bias residuals when binning the simulations
with SNR or R2. As shown, the amplitude of multiplicative bias residual (δm) is less
than 0.5%, the fractional additive bias residual (δa) is less than defined in Section 2.2.
These bias residuals are expected to be consistent with zero as expected since these
galaxies properties were used to model the calibration bias calibration.

The dependence of the bias residuals on the marginalized properties are subse-
quently tested. Figure 2.17 demonstrates the bias residuals when binning galaxies
by DEmP and mizuki photo-z; Figure 2.19 shows the bias residuals when binning the
simulations with cModel magnitude and seeing size. As shown, when binning by see-
ing size, the amplitudes of the multiplicative bias residuals exceed the requirements



2.5. CALIBRATION 49

for the best and worst seeing bins, and the amplitudes of the fractional additive bias
residuals exceed the requirement for the worst seeing bin. This binning corresponds to
an extreme case of splitting up the survey based on regions with specific PSF FWHM.
The finding, which is consistent with Mandelbaum et al. (2018a), implies that weak
lensing analyses with strict region cuts should evaluate the seeing size distribution
after the cuts, and then evaluate whether additional shear calibrations are required
for such region cuts. Calibration bias residuals are within the requirement limits for
the other aforementioned binning schemes.

2.5.8 Selection bias

Selection bias refers to the multiplicative bias or the additive bias induced by a
selection that correlating with the lensing shear and/or the PSF ellipticity. The
result of the anisotropic selection is that the selected galaxies, which are close enough
to the edge of the cut, coherently align in a direction that is correlated with the
lensing shear and/or the PSF ellipticity. Given that the amplitudes of the lensing
shear and the PSF anisotropy are small, the anisotropic selection has little influence
on the galaxies that are far away from the selection edge.

The selection bias is estimated by comparing the shear estimation of the overall
sample with/without forcing the inclusion of 90◦ rotated pairs. It is found that
the selection biases for other cuts on i-band galaxy properties (e.g., cModel SNR,
cModel Magnitude) are consistent with zero, and the selection bias for the multi-
band detection cut is negligible since the cut removes less than one percent of the
galaxies from the parent sample; therefore, this section focuses on the selection bias
due to the resolution and aperture magnitude cuts. The upper panels of Figure 2.20
show the estimated selection biases for the resolution cut (R2 > 0.3) and the aperture
magnitude cut (magA < 25.5) in Table 2.1, respectively, while changing the upper
(lower) limit of resolution (aperture magnitude) to change the galaxy ensemble.

As shown, the multiplicative bias for the resolution (magnitude) cut is constantly
positive (negative), whereas the fractional additive bias for the resolution cut is con-
stantly positive. The fractional additive bias for the aperture magnitude cut is con-
sistent with zero within 2σ and is within the three-year HSC science requirement.
The magnitude of the biases decrease when the sizes of the corresponding galaxy
ensembles increase since the fractions (the number of which do not change) of the
galaxies that are close enough to the selection edges and influenced by the anisotropic
selections decrease.

The method proposed by Mandelbaum et al. (2018a) is adopted to empirically
estimate and remove the selection bias for any galaxy sample due to the two afore-
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Figure 2.20: The upper-left (upper-right) panel shows the multiplicative (frac-
tional additive) bias due to cuts on resolution (R2) and aperture magnitude (magA).
The gray regions indicate the requirements on calibration residuals defined in Sec-
tion 2.2, and the horizontal dashed lines are y = 0. The lower-left (lower-right)
panel shows the multiplicative (fractional additive) bias ratio of the cuts on reso-
lution (R2) and aperture magnitude (magA). For resolution (aperture magnitude),
the lower (upper) limit is fixed while changing the upper (lower) limit. For each
selection cut, errorbars are correlated between the points since at least a fraction

of the same simulated galaxies are used for the calculations.

mentioned cuts. The premise is that, for a galaxy sample, the ratio between the
selection biases, from a cut on galaxy observable (X), versus the marginal galaxy
number density at the edge of the cut (P (X) |edge) is approximately constant. The
ratios are referred to as selection bias ratios and defined as

Am(X) =
msel (X)

P (X) |edge
,

Aa(X) =
asel (X)

P (X) |edge
.

(2.26)
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The lower panels of Figure 2.20 demonstrate the selection bias ratios for R2 and magA.
Here, the lower limit of resolution is fixed at R2 = 0.3 and the upper limit of aperture
magnitude is fixed at magA = 25.5, respectively, and the upper limit of R2 and the
lower limit of magA are adjusted to change the galaxy sample.

As demonstrated by the lower panels of Figure 2.20, the selection bias ratios for
these two cuts vary slowly when changing of the galaxy sample. The bias ratios are
hence taken as constants and used to estimate selection biases for any galaxy sample
by multiplying the marginal galaxy number density at the edge of the corresponding
selection cuts, the resulting multiplicative and fractional additive selection biases of
which are given by

msel = −0.05854P (magA = 25.5) + 0.01919P (R2 = 0.3) ,

asel = 0.00635P (magA = 25.5) + 0.00627P (R2 = 0.3) ,

respectively.

2.6 Internal Null Tests

2.6.1 Mock galaxy catalogs

To asses the errors of measurements including both uncertainties on shear estimation
and cosmic variance, N -body simulations are used to generate mock shear catalogs.
Errors are dominated by shape noise (from galaxy intrinsic shape) and shape mea-
surement uncertainties (from the sky variance) on small scales because of the limited
galaxy number whereas errors are dominated by cosmic variance on large scales. To
be specific, 200 realizations of mock catalogs are generated following the method de-
scribed in Oguri et al. (2018) (see also Shirasaki et al., 2019), which adopts ray-tracing
results of Takahashi et al. (2017).

2.6.2 Property-dependent bias

The weighted mean shear ⟨g1⟩ and ⟨g2⟩ within each of the six observational fields is
firstly calculated. These mean shear values are derived in the sky coordinates, which
are quite close to the coordinates of coadded images in most cases. With the errors,
the p values for a fit to zero signal for the weighted mean values are calculated. It
is found that only one of the 12 p values is below a nominal threshold of 0.05, with
the smallest p value of 0.024 being slightly smaller than threshold. In summary, the
mean shear values indicate no sign of systematic errors.
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Figure 2.21: Weighted mean shear values ⟨g1⟩ as a function of i-band cModel SNR
(upper-left), i-band cModel magnitude (upper-right), the reGaussresolution factor
corresponding to galaxy size (lower-left), and PSF FWHM (lower-right). Errors

are from mock shear catalogs and thus include cosmic shear.

The weighted mean shear values ⟨g1⟩ as a function of four i-band galaxy properties
(i.e. cModel SNR, cModel magnitude, the reGauss resolution, and PSF FWHM) are
subsequently calcualted. Results for the all fields shown in Figure 2.21 indicate that
most of mean shear values are consistent with zero within 2σ. In addition, the average
shear values do not show strong dependence on these galaxy properties. The average
shear values for some single fields are persistently positive or negative in almost all
galaxy property bins, which are very likely due to the cosmic variance.
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Figure 2.22: Stacked tangential (upper) and cross (lower) shear profiles, aver-
aged over the entire survey, around the CMASS galaxy sample (inverted triangles),
random points (triangles), bright GAIA stars with G < 10 (squares), interme-
diate GAIA stars with 13 < G < 14 (pentagons), and faint GAIA stars with
18 < G < 18.2 (circles). Only cross shear profiles are shown for stacking around
CMASS galaxies. Errors are estimated from mock shear catalogs including cosmic

shear. The χ2 and p values are summarized in Tables 2.4 and 2.5.

2.6.3 Bias related to galaxy-galaxy lensing

This section conducts null tests diagnosing biases related to galaxy-galaxy lensing
using stack shear signals, including both the tangential and the cross component,
around different reference catalogs. The stacked cross shear signals are supposed to
disappear and therefore can be used for additional null tests because of symmetry,
and the stacked tangential shear signals around objects that do not induce any weak
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Table 2.4: The χ2 and p values for null hypothesis of stacked tangential shear
profiles.

Field Random GAIA bright GAIA intermediate GAIA faint
χ2 (p value) χ2 (p value) χ2 (p value) χ2 (p value)

XMM 24.76 (0.74) 17.26 (0.75) 27.01 (0.46) 48.97 (0.02)
GAMA09H 40.85 (0.09) 21.67 (0.48) 24.91 (0.58) 25.01 (0.72)
WIDE12H 27.79 (0.58) 27.78 (0.18) 26.60 (0.48) 27.50 (0.60)
GAMA15H 25.60 (0.70) 22.42 (0.43) 28.70 (0.38) 25.41 (0.70)

VVDS 29.38 (0.50) 11.92 (0.96) 25.57 (0.49) 24.56 (0.75)
HECTOMAP 22.72 (0.83) 28.51 (0.16) 30.54 (0.29) 26.49 (0.65)

ALL 28.86 (0.53) 18.28 (0.69) 25.81 (0.53) 21.96 (0.86)

Table 2.5: The χ2 and p values for null hypothesis of stacked cross shear profiles.

Field CMASS Random GAIA bright GAIA intermediate GAIA faint
χ2 (p value) χ2 (p value) χ2 (p value) χ2 (p value) χ2 (p value)

XMM 26.85 (0.63) 26.29 (0.66) 23.85 (0.35) 33.63 (0.18) 29.85 (0.47)
GAMA09H 32.07 (0.36) 27.32 (0.61) 17.65 (0.73) 44.73 (0.02) 17.96 (0.96)
WIDE12H 28.25 (0.56) 24.68 (0.74) 19.98 (0.58) 17.25 (0.93) 32.28 (0.35)
GAMA15H 25.64 (0.69) 29.51 (0.49) 18.46 (0.68) 23.69 (0.65) 39.82 (0.11)

VVDS 27.22 (0.61) 29.93 (0.47) 22.66 (0.42) 47.86 (0.01) 19.91 (0.92)
HECTOMAP 17.60 (0.96) 29.60 (0.49) 19.96 (0.58) 14.85 (0.97) 15.34 (0.99)

ALL 31.88 (0.37) 48.70 (0.02) 25.35 (0.28) 32.02 (0.23) 22.67 (0.83)

lensing signals (e.g., random positions, stars) can also be used for null tests. Here the
stacked shear signals around the following catalogs are explored.

(i) Stacked shear signals are computed around the CMASS galaxy sample of the
SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12
(DR12) (Reid et al., 2016) with an additional redshift cut of 0.4 < z < 0.7 .
The galaxy density is ∼ 90 deg−2. Since the tangential shear profiles around
the CMASS galaxies have clear positive signals, only the cross shear profiles are
used for the null tests.

(ii) Stacked shear signals are conducted around random points in the HSC-SSP
footprint with a target density of 100 deg−2. Both tangential and cross shear
profiles are used for the null tests.

(iii) Stack shear signals are computed around star catalogs from the GAIA Data
Release 2 (DR2) data (Gaia Collaboration et al., 2018). The GAIA stars
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are divided into three categories (i.e., the bright, intermediate, and faint star
catalogs), which consist of GAIA stars with the G-band magnitude G < 10,
13 < G < 14, and 18 < G < 18.2, respectively.

Figure 2.22 summarizes results of the null tests from stacked shear signals averaged
over the entire survey field. As shown, shear profiles are mostly consistent with
zero, which suggest no evidence of any significant detection of systematic effects. In
Tables 2.4 and 2.5, χ2 and p values are shown for the null hypothesis of the stacked
shear signals for six individual fields and the all field combined, which quantify the
significance. The correlations between different radial bins, which are caused by the
cosmic variance, are taking into account by deriving the full covariance matrix of
the error using the 200 realizations of the mock shear catalog mentioned above. The
correction factor of Hartlap et al. (2007) for an unbiased estimate of the inverse
covariance matrix is incorporated. Only 4 out of 63 p values fall below a nominal
threshold of 0.05, which is consistent with statistical fluctuations. In conclusion, these
stacked shear signal tests show no significant evidence for significant systematics in
the shear catalogs.
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Figure 2.23: Observed B-mode kappa map probability distribution functions
(PDFs) for different smoothing length θs, which are shown by solid lines, are com-
pared to those from mock shear catalogs with errors shown by bars. For illustrative
purpose, results for θs = 2′, 4′, and 8′ are shifted upward by 1.5 dex, 1 dex, and

0.5 dex, respectively.
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Figure 2.24: Pearson cross-correlation coefficients of E- (left panels) and B-mode
(right panels) kappa maps and star kappa maps constructed using star ellipticities.
Two cases are consider – (lower panels) and without upper panels) the PSF cor-
rection for star kappa maps. Pearson cross-correlation coefficients are shown as a
function of the smoothing length of kappa maps. Different symbols show results
for different observational fields. Errors are estimated from mock shear catalogs

including cosmic shear.

2.6.4 Bias related to kappa maps

The observed shear field can be converted to the kappa field (projected density
field)(Kaiser & Squires, 1993). “B-mode” kappa fields can be used as an additional
null tests since weak lensing produces mostly “E-mode” convergence fields (Critten-
den et al., 2002; Schneider et al., 2002).
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For the purpose of “B-mode” null tests, the Gaussian-smoothed convergence maps
are constructed by adopting four different Gaussian smoothing lengths, following the
methodology detailed in Oguri et al. (2018). Figure 2.23 shows the probability dis-
tribution functions (PDFs) of the B-mode kappa maps for four different smoothing
lengths and compare them to the average PDFs from mock shear catalogs that cor-
rectly capture effects of the survey boundary and bright star mask that mix E- and
B-modes. It is found that the PDFs of the B-mode kappa maps roughly follow a
Gaussian distribution, and they are roughly consistent with those from mock shear
catalogs. The small deviations from mock results, which were also seen in the first-
year HSC-SSP shear catalog (Mandelbaum et al., 2018b), are likely to originate from
PSF leakage or PSF modelling errors.

As discussed in Mandelbaum et al. (2018b), kappa maps can be used for a comple-
mentary check of the PSF leakage and PSF modelling errors. Specifically, the Peason
correlation coefficient ρκ1κ2 between the E(B)-mode kappa map and the E(B)-mode
star kappa map is used to quantify the systematics. The star kappa maps refers to
the smoothed (with Gaussian kernel) kappa map created using star ellipticities. Here
two types of star ellipticities are considered, one is star ellipticities, which is used to
check the PSF leakage, and the other is star ellipticities after the PSF correction,
which is used to check PSF modelling errors.

In this analysis, the reserved stars that are not used for modelling the PSF are
used. Figure 2.24 finds that correlations between the galaxy kappa maps and star
kappa maps without the PSF correction are consistent with zero within ∼ 2σ, which
indicates no sign of the PSF leakage. On the other hand, small deviations from zero
are found for the case of star kappa maps with the PSF correction, which suggests
that PSF modelling errors may be a source of small deviations of the B-mode kappa
map PDFs from mock results as shown in Figure 2.23. As done in Hikage et al. (2019)
and Hamana et al. (2020), those PSF effects should be taken into account for careful
cosmological analyses.

2.6.5 Bias related to cosmic shear

This section presents results of an empirical test for the possible impact of either
PSF modelling errors or residual PSF anisotropy in galaxy shapes on cosmic shear
two-point correlation functions. The star-galaxy cross correlation and the star auto-
correlation are computed as

ξsys =
⟨g†∗ĝgal⟩2

⟨g†∗ĝ∗⟩
. (2.27)



58 CHAPTER 2. HSC THREE-YEAR SHEAR CATALOG

Figure 2.25: The shape-shape correlation function ξ+(θ) for PSF stars is shown as
points; the predicted cosmic shear correlation function (including photo-z errors)
is shown as dashed lines; and the systematic correlation function ξsys defined in

Equation (2.27) is shown as crosses.

Adopting the prescription given in section 2.2.2, these correlations give an estimate
of a residual correlation caused by PSF anisotropy leakage to the galaxy-galaxy cor-
relation function: ∆⟨g†g⟩ ∼ a2⟨g†∗g∗⟩. In addition, ξsys can also detect additive PSF
modelling errors that contribute to ⟨g†g⟩. Figure 2.25 shows ξsys for each observa-
tional field along with the standard ΛCDM prediction of the cosmic shear correlation
function ξ+. In summary, the amplitudes and shapes of ξsys are similar to those of
the first-year shear catalog (see Figure 18 of Mandelbaum et al. (2018b)). The am-
plitude of ξsys varies among fields and can be comparable to ⟨g†g⟩ on degree scales.
The results indicate that a careful choice of angular (multi-pole) scales used in cosmic
shear analyses and a correction for the PSF systematics are required as was done in
Hikage et al. (2019); Hamana et al. (2020).

2.7 Summary
In this chapter, I present the galaxy shear catalog measured from the i-band image
of the three-year HSC data. The galaxy shapes are calibrated with HSC-like image
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simulations transferring the high-resolution galaxy images from COSMOS HST to
the HSC observing conditions. It is confirmed that the simulated galaxy sample has
the same distributions of galaxy properties as the real HSC data. The simulation is
subsequently used to calibrate the galaxy property-dependent shear estimation bias,
including redshift-dependent bias. The shear calibration residuals is estimated by
applying the calibrated shear estimator to sub-samples of the simulation divided by
several different galaxy properties. The selection bias was removed empirically from
ensemble shear estimates using the simulation.

The resulting galaxy shear catalog covers an area of 433.48 deg2 of the northern
sky, split into six observational fields, with a mean i-band seeing of 0.59 arcsec. With
conservative galaxy selection criteria, the raw galaxy number density is 22.9 arcmin−2

and the effective galaxy number density is 19.9 arcmin−2. The galaxy catalog has
a depth of 24.5th magnitude. In addition, the requirements for cosmological weak-
lensing science for this shear catalog are defined, and quantified potential systematics
in the catalog using a series of internal null tests for problems related to shear esti-
mation.

In conclusion, for the systematics that can be characterized with the image sim-
ulations and null tests, the shear catalogs presented here meet the requirements for
the HSC three-year weak lensing science.

The three-year HSC weak-lensing shear catalog is the first step to the HSC three-
year weak-lensing science. There are many applications of the shear catalog, including
non-cosmology analyses, e.g., mass mapping (e.g., Oguri et al., 2018) and cluster
galaxy lensing, and cosmology analyses, e.g., cosmic shear (e.g., Hikage et al., 2019;
Hamana et al., 2020) and galaxy-galaxy lensing (e.g., Prat et al., 2018).
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3

Towards calibration-free shear
estimators

As discussed in the image simulation section of Chapter 2, the calibration of shear
estimation bias based on galaxy image simulations is limited by the depth of the input
training galaxy sample. It is reasonable to ask: Is it possible to analytically derive a
shear estimator that is able to control the systematic bias to subpercent level for any
galaxy sample without relying on any calibration with image simulations.

This section proposes the Fourier power function shapelets method (FPFS; see
Section 3.1), the multiplicative bias of which is below 1% for isolated galaxies. How-
ever the novel method still requires calibrations from external simulations for blended
galaxies. The method is tests with image simulations in Section 3.2, and compared
to the reGauss shape catalog on galaxy-galaxy lensing in Section 3.3.

3.1 FPFS shear estimator

3.1.1 Fourier power function

For a galaxy image, the Fourier power function is the power of its Fourier transform,
which is defined as

f̃(k⃗) =

∫
f(x⃗)e−ik⃗x⃗d2x,

F̃ (k⃗) = |f̃(k⃗)|2,

where f̃(k⃗) is the Fourier transform and F̃ (k⃗) is the Fourier power function of the
galaxy image.

In real observations, a boundary is defined for each galaxy, and the pixels outside

61
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Figure 3.1: The shapelet basis vectors: χnmc and χnms .
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the boundary are masked with zero to ensure the stability of Fourier transform. Li
& Zhang (2016) proposed to use a top-hat aperture around the centroid of galaxies
to define the cut off boundaries. The top-hat aperture is defined as

T (x⃗) =

1, |x⃗− x⃗c| < rcut

0, |x⃗− x⃗c| ≥ rcut
, (3.1)

where x⃗c is the galaxy centroid and rcut is the aperture radius.
The ratio between the aperture radius rcut and trace radius of galaxy rg (defined

with the second-order reGauss moments matrix) is referred to as the aperture ratio,
which is defined as

α =
rcut

rg
.

By denoting the second-order moments matrix as Q, the trace radius is given by

rg =

√
tr(Q)

2
. (3.2)

The aperture ratio should neither be too small to steeply cut on the galaxy’s light
profile, nor too big so that the measurement is heavily influenced by noise and neigh-
boring objects’ light. The accuracy of the FPFS shear estimator as a function of α
will be discussed in Section 3.2.1 for isolated galaxies.

The reason for transforming to Fourier space is that the systematics from PSF
effect can be removed by dividing the PSF Fourier power function G̃ from the observed
galaxy Fourier power function F̃o as follows:

F̃ (k⃗) =
F̃o(k⃗)

G̃(k⃗)
, (3.3)

where F̃o refers to the Fourier power function of the observed galaxy.
The reason for using the power function of Fourier transform is that the centroid

of the Fourier power function is well defined even for a noisy faint galaxy. To be
more specific, the Fourier power function of galaxies are always symmetric around
its k⃗ = 0⃗ (Zhang & Komatsu, 2011), since galaxy images are real and their Fourier
transforms enjoy Hermitian symmetry. Therefore, shear estimation based on Fourier
power functions will not be influenced by the anisotropy from off-centering when
calculating spin-2 properties (e.g., M22c, M22s).



64 CHAPTER 3. TOWARDS CALIBRATION-FREE SHEAR ESTIMATORS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
M00(103)

0.0

0.1

0.2

0.3

0.4

nu
m
(1
06
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
M40(103)

0.0

0.1

0.2

0.3

0.4

0.5

nu
m
(1
06
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
M22c(103)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

nu
m
(1
06
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
M22s(103)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

nu
m
(1
06
)

Figure 3.2: The number histograms of the shapelet modes Mnm measured from
the HSC-like parametric galaxy image simulation. The dashed line in the upper-left
panel shows the value of ∆ used to normalize weighting parameter C as shown in
Equation (3.9). The aperture ratio and shapelets scale ratio are kept to α = 4, and

β = 0.85, respectively.
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Figure 3.3: The number histograms of the FPFS ellipticity (top panels) and re-
sponse (lower panels) with different ν (indicated by colors). The hyper parameters
are set to α = 4 and β = 0.85 . These observables are measured from the parametric

the HSC-like galaxy image simulation.
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3.1.2 Unnormalized estimator

The weak lensing shear signal can be estimated from the Fourier power function of
galaxies after PSF deconvolution by projecting the deconvolved galaxy Fourier power
function onto four polar shapelet basis vectors. The polar shapelet basis vectors
(Massey & Refregier, 2005) are defined as

χnm(r, θ) =
(−1)(n−|m|)/2

σ|m|+1

{
[(n− |m|)/2]!
π[(n+ |m|)/2]!

} 1
2

× r|m|L
|m|
n−|m|

2

(
r2

σ2

)
e−r2/2σ2

e−imθ,

where Lp
q are the Laguerre Polynomials, n is termed the radial number m is termed

the spin number, and σ is the scale radius parameter of shapelet functions. The ratio
between σ and the scale radius of PSF Fourier power function rpp is denoted as

β =
σ

rpp
, (3.4)

and referred to as shapelets scale ratio here. rpp is measured from the noiseless PSF
model in the same way as Li & Zhang (2016). Here rpp is measured as

rpp =

√
A

π
,

where A is the area of pixels with greater values than e−0.5 of the maximum of the
PSF power function. β should be less than one to ensure that the PSF deconvolution
in Fourier space does not amplify the noise at small scale (large wave numbers).
The hyper parameters α and β determine the scales in real space and Fourier space,
respectively. Section 3.2.1 demonstrates the accuracy of the FPFS shear estimator
with different choices of α and β using the modelled galaxy sample of the HSC-like
simulations.

The resulting projection factors Mnm, which is referred to as shapelet modes in
this thesis, are given by

Mnm =

∫
χ∗
nmF̃ (r, θ)rdrdθ . (3.5)

When m > 0, shapelet modes are complex, and Mnmc (Mnms) is used to denote their
real (imaginary) part. Due to the Hermitian symmetry of power function, all of the
shapelet modes with an odd spin number vanish. The corresponding shapelet basis
vectors χnmc and χnms are demonstrated in Figure 3.1.
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Four shapelet modes are used to construct the FPFS ellipticity, the histograms
of which are measured from the parametric galaxies with HSC-like observational
condition are shown in Figure 3.2. As shown by the vertical dashed line in the figure
of M00, the value of M00 at which its histogram drops below 1/8 of its maximum is
denoted as ∆ to quantify the spread of M00,

The transform formulas of the shapelet modes influenced by a shear distortion
have been given by Massey & Refregier (2005), which are laid out as follows:

M22c = M̄22c −
√
2

2
g1(M̄00 − M̄40)

+
√
3g1M̄44c +

√
3g2M̄44s,

M22s = M̄22s −
√
2

2
g2(M̄00 − M̄40)

−
√
3g2M̄44c +

√
3g1M̄44s,

M00 = M̄00 +
√
2(g1M̄22c + g2M̄22s),

M40 = M̄40 −
√
2(g1M̄22c + g2M̄22s)

+ 2
√
3(g1M̄62c + g2M̄62s),

(3.6)

where M̄nm denotes the shapelet modes of intrinsic galaxies, i.e., before shear distor-
tions, whereas Mnm denotes the distorted shapelet modes. What we can learn from
these formulas is that it is possible to measure shear signal by taking the expectation
values on the both sides of Equation (3.6).

With the assumption that the galaxy ensemble is randomly selected without
preference on any specific direction, the expectations of intrinsic spin-2 and spin-
4 shapelet modes on the right hand side of Equation (3.6) reduce to zero, and the
population variances of the intrinsic quantities lead to the shape noise. The shear
estimator is given by

g1 = −

〈√
2M22c

〉
⟨M00 −M40⟩

, g2 = −

〈√
2M22s

〉
⟨M00 −M40⟩

. (3.7)

However, such shear estimator is heavily influenced by the shape noise on bright
galaxies since bright galaxies are significantly overweighted in the shear estimation
compared to faint galaxies. As a result, this estimator is suboptimal. A weighting
scheme is in demand to reduce the shape noise in the shear estimation.
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3.1.3 Normalized estimator

A novel normalization scheme with these four shapelet modes is introduced here.
First, the dimensionless FPFS ellipticity is defined as

e1 =
M22c

M00 + C
, e2 =

M22s

M00 + C
. (3.8)

Here the constant parameter C is used to adjust the relative weight between galaxies
with different luminosities, which is referred to as weighting parameter. The weighting
parameter is normalized by ∆, and the resulting normalized weighting parameter is
denoted as ν, which is given by

ν =
C

∆
. (3.9)

With the definition of the shear response as

Ri =

√
2

2

M00 −M40

M00 + C
+
√
2e2i , (3.10)

the transform of the FPFS ellipticity after a shear distortion is subsequently given by

e1 = ē1 − g1R̄1 +
√
3g1

M̄44c

M̄00 + C
+
√
3g2

M̄44s

M̄00 + C
, (3.11)

e2 = ē2 − g2R̄2 −
√
3g2

M̄44c

M̄00 + C
+
√
3g1

M̄44s

M̄00 + C
.

Figure 3.3 shows the histograms of e1,2 and R1,2 for different setups of parameter ν .
For galaxies distorted by a constant shear, the lensing shear can be measured as

the ratio between the expectation of the ellipticities versus that of the shear response.
Assuming that the galaxies are randomly oriented, the expectation value of the spin-2
and spin-4 quantities in Equation (3.11) reduces to zero and the population variance
of these quantities on the right-hand-side of Equation (3.11) lead to the shape noise.
In addition, the expectation of the intrinsic response (⟨R̄1,2⟩) is the same as that of
the observed response (⟨R1,2⟩). The shear estimator is hence constructed as

gi = −⟨ei⟩ / ⟨Ri⟩ . (3.12)

For the shear estimator, the intrinsic response (R̄1,2) acts as a weight on each
galaxy. As shown in the left panel of Figure 3.8, more weight is added to brighter
galaxies as ν increases. Taking the limit that ν →∞, the shear estimator reduces to
Equation (3.7). In summary, the precision of the shear estimation is dependent on
the value of ν, which will be detailed in Section 3.2.1. ν can be set to any positive
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Figure 3.4: Left panel: The number histograms of the FPFS flux ratios defined
in Equation (3.14). Lines with different colors refer to different values of ν. Right
panel: The histograms of detected galaxies, undetected galaxies, and all galaxies.

value in the absence of photon noises. However, in the presence of noise, the accuracy
of the shear estimation is dependent on the value of ν, which will be detailed in
Section 3.1.4 and Section 3.2.1.

3.1.4 Noise bias

Photon noise due to the sky variance include the contributions from the source galaxy
(galaxy Poisson noise) and those from the sky background (background noise). Pho-
ton noise does not correlate with the surface brightness distributions of galaxies, even
after the coaddition process, since its realization is independent on galaxy surface
bright field. Based on this premise, the averaged contamination of photon noise on
the power function can be removed by subtracting the Fourier power function of noise
from the Fourier power function of galaxy (for details, see Zhang et al., 2015).

At the single exposure level, photon noise is found to be not correlated across
CCD pixels (see Zhang et al., 2015); therefore, the power spectrum of noise is flat.
The expectation of power function of photon noise for each galaxy can be estimated
using its value at large wave number in Fourier space. The estimated noise power
function is subsequently subtracted from the galaxy Fourier power function (Zhang
et al., 2015) to remove the bias from it.

At the coadded image level, the coaddition process correlates photon noise across
pixels and leads to a decaying profile in the noise power spectrum. It is necessary
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Figure 3.6: The galaxy im-
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and masks (second, fourth, sixth
columns) from parametric galaxy
image simulations where the aper-
ture ratio α is set to 4. In the mask
images, the white pixels show the
detected footprints, and the gray
pixels show the area within the

aperture radius.

to estimate the profile of the expectation of noise power spectrum from blank pix-
els to remove the influence of noise on average from each galaxies. The profile of
Fourier power function of noise can be estimated from the noise correlation function
of blank pixels (Li et al., 2018), assuming that the correlation function of noise re-
mains the same between blank pixels and the pixels containing detected sources, and
the influence from undetected sources is negligible.

After subtracting the expectation of noise power function, noise residual, the
expectation of which is zero, is left on the Fourier power function of the galaxy. The
shapelet modes of the noise residual are denoted as Nnm. The expectation value of
these shapelet modes is zero. Taking an example of the case that ν = 0, the noise
residual leads to noise bias due to the nonlinear form of the FPFS ellipticity and the
response. For ⟨e1⟩, the expectation value of e1 changes to

⟨e1⟩ =
〈
M22c +N22c

M00 +N00

〉
̸=
〈
M22c

M00

〉
,

which is biased from the noiseless ellipticity. In order to reduce the noise bias
originating from the nonlinearity of the ellipticity, ν is increased to ensure that
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M00 + C ≫ N00, and the resulting expectation value of e1 changes to

⟨e1⟩ =
〈

M22c

M00 + C
(1 +O(ϵ2))

〉
, (3.13)

where

ϵ =
N00

M00 + C
≪ 1 .

In summary, the noise bias is proportional to ϵ2. The expectation values of e2 and
R1,2 have similar form as Equation (3.13). Noise bias reduces as ν increases; how-
ever, we note that the value of ν cannot be too large otherwise the bright galaxies
are significantly overweighted and the shear estimation is dominated by the shape
noise of bright galaxies. The accuracy and precision as a function of ν are shown in
Section 3.2.1 using the parametric galaxy simulation with the HSC-like observational
condition.

3.1.5 Selection bias

This section discusses the selection bias caused by an anisotropic selection of galaxies.
To complete a selection of a galaxy ensemble, one need to define a selection property
and its corresponding selection threshold. After that, a galaxy is counted as a member
of the galaxy ensemble if the selection property fall within the selection threshold.
In order to avoid the systematic bias due to an anisotropic selection, the selection
property should be an isotropic (spin-0) quantity on the intrinsic plane so that the
expectation of the intrinsic shape noise due reduces to zero.

To be more specific, let’s define the FPFS flux ratio:

s =
M00

M00 + C
, (3.14)

and select a galaxy ensemble with the FPFS flux ratio. The left panel of Figure 3.4
shows the histograms of s with different setups of ν. The FPFS flux ratio is influenced
by the shear and the relationship between the sheared FPFS flux ratio (s) and the
intrinsic FPFS flux ratio (s̄) is given by

s = s̄+
√
2g1ē1(1− s̄) +

√
2g2ē2(1− s̄) . (3.15)

As shown by Equation (3.14) and (3.15), although s̄ is an isotropic property on the
intrinsic plane, s is not since shear entangle s̄ with the galaxy shapes. Therefore,
the selection process with a direct cut on s does not perform an isotropic selection
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Figure 3.7: Multiplicative bias as a function of the hyper parameter ν. The other
hyper parameters are set to the default values, namely α = 4, β = 0.85 .

on the intrinsic plane. Such selection hence does not align with the premise that the
intrinsic galaxies have isotropic orientations statistically and result in a selection bias.
An iterative method is proposed in (Li et al., 2018) to reduce the selection bias:

(i) Estimate shear with selection L < s < U , the result of which is denoted as ĝA1,2 .

(ii) Transform the observed selection property s into sR with ĝA1,2 according to Equa-
tion (3.15).

(iii) Redo shear estimation of (i), but with selection: L < sR < U and update the
estimated shear.

In addition, the galaxy detection process also act as a selection which could de-
pend on shear and thus cause selection bias. The histogram of s (ν = 4) for the
undetected galaxies is shown on the right panel of Figure 3.4, which suggests that
most of the undetected galaxies populate in the range: s < 0.1. The result indicates
that as long as the cut on s is set to be greater than 0.1, the bias from the detection
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limit on M00. The default setup is α = 4,β = 0.85.

process is negligible since the detection does not influence the selected galaxy sample
significantly.

3.2 Test on image simulations
This section serves to test the FPFS shear estimator using the HSC-like galaxy image
simulations presented in Mandelbaum et al. (2018a). Mandelbaum et al. (2018a)
provide four samples of postage stamp-based galaxy image simulations. Sample 1
and sample 2 are composed of isolated galaxies, where sample 1 uses HST galaxies
from Leauthaud et al. (2007); and sample 2 uses parametric galaxy models fitted to
the HST galaxies. On the other hand, sample 3 and sample 4 include also blended
galaxies, which are more realistic. Sample 3 cuts out the HST images near the HST
galaxy detections, the cut out widths are in general smaller than the width of postage
stamps. Sample 4 matches the HSC galaxy detections to the HST image coordinates,
and cut out the images near the matched positions with a cut off width equals width
of postage stamp. These four samples of image simulations are summarized in Table 1
of Mandelbaum et al. (2018a).
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3.2.1 Hyper parameters

The FPFS shear estimator includes three free hyper parameters, i.e., α,β,ν. α (β)
determines the measurement scale in real (Fourier) space, whereas, ν determines the
relative weight between galaxies with different brightness and reduces noise bias.
This section serves to determine the accuracy and precision of the shear estimator as
a function of these hyper parameters.

Li & Zhang (2016) looked into the influence of α on the accuracy of the shear
estimator of Zhang & Komatsu (2011), which corresponds to the case of ν = +∞
for this FPFS estimator. They kept β = 0.5 as a constant and did not consider the
dependence of the accuracy on β. Here the accuracy of the FPFS estimator as a joint
function of α and β is studied. After that, Li et al. (2018) studied the accuracy as a
function of α and β. The result of multiplicative bias is shown in Figure 3.5; whereas,
the additive bias is not shown here since it is at the level of 10−4.

This test is conducted on HSC-like parametric galaxy image simulations, and
the hyper parameter ν is fixed to 4 to focus on the accuracy dependence on α and
β. Galaxies are selected with intrinsic SNR (measured before the shear distortion)
greater than 5. As shown, for β = 0.5, the multiplicative bias reaches 1% when the
aperture ratio drops to 8. This is consistent with Li & Zhang (2016). It is worth
noting that, when β is set to 0.85, the multiplicative bias is consistent with zero even
though α drops to 4 . In summary, the region extended to four times of each galaxy’s
half light radius is required for an accurate shear measurement given that α is kept to
0.85. For illustrative purposes, the galaxy images and the corresponding mask image
in the HSC-like parametric galaxy image simulations is shown in Figure 3.6. The
connected white pixels on the mask planes show the footprints of galaxies and the
circular regions with gray pixels on the mask planes are the top-hat aperture with
α = 4. According to the results, these two hyper parameters are fixed to β = 0.85

and α = 4 as the fiducial setup in the following content.
Li et al. (2018) also studied the accuracy of the FPFS shear estimation as a function

of ν. In the corresponding tests, shear measurements are conducted with different ν

on the HSC-like parametric galaxy simulation. The multiplicative bias is shown in
Figure 3.7 as a function of ν; whereas, the additive bias is not shown here since it
is only a few parts in 104. As shown, in order to ensure the multiplicative bias is
reduced below one percent, ν should be at least greater than 1 .

Li et al. (2018) also studied the dependence of the precision on the value of ν.
ν influence the precision of the shear estimation by changing the relative weights
between galaxies with different SNR. In order to demonstrate how ν changes the
relative weights, galaxies are separated into different intrinsic SNR bins. The averages
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sample & setup m1(10
−2) c1(10

−4) m2(10
−2) c2(10

−4)
S3-ND −0.25± 0.22 0.75± 0.56 0.03± 0.23 −0.71± 0.59
S3-D −5.71± 0.24 3.33± 0.60 −5.59± 0.24 −1.06± 0.60
S4-ND −1.68± 0.27 0.24± 0.71 −1.11± 0.23 0.19± 0.57
S4-D −5.83± 0.41 1.27± 1.06 −5.59± 0.30 −0.71± 0.75

Table 3.1: Accuracy of the FPFS algorithm tested on sample 3 and sample 4 with
two different setups. The column ‘sample & setup’ indicates the sample and the

setup. The hyper parameters are set to α = 4, β = 0.85, and ν = 4) .

of R1 as functions of the intrinsic SNR for different setups of ν are shown in the left
panel of Figure 3.8. The case where weight ratio is proportional to intrinsic SNR is
also shown in the left panel of Figure 3.8 as a reference.

Shear measurement error refers to the uncertainty in the shear estimation, which
includes shape estimation uncertainties (i.e., the uncertainties in galaxy shape esti-
mation) and shape noise (i.e., the uncertainties due to the random orientations of
galaxies). The shear measurement error as a function of ν is studied by randomly ro-
tating 8×104 parametric galaxies selected from the 25.2 magnitude limited COSMOS
HST catalog.

The estimated shear measurement errors per galaxy per shear component for
different ν and different selection thresholds on M00 are shown in the middle panel
of Figure 3.8. The right panel of Figure 3.8 shows the corresponding galaxy number
for different M00 cuts at the lower end. As shown in the middle panel of Figure 3.8,
an optimal setup of ν is between the range of ν = 1−−2, which slightly overweight
bright galaxies since the shape estimation uncertainties on faint galaxies are larger
compared to bright galaxies since bright galaxies are less influenced by noise.

As shown in Li et al. (2018), in the presence of blending, the FPFS shear estimator
need to be calibrated for blending bias due to the imperfections in the HSC deblending
algorithms used to isolate blended sources from each other. The bias due to blending
for faint galaxies is much larger compared to bright galaxies. Therefore, ν is set to 4.0

as the fiducial setup, with the intent to put more weight to bright galaxies. Moreover,
such setup also ensures that noise bias is adequately reduced below 1%.

3.2.2 Isolated galaxies

This section show the results of the FPFS shear estimator tested with the HSC-like
parametric galaxy (sample 2) and realistic galaxy images (sample 1) of Mandelbaum
et al. (2018a) in the absence of blending. Shear distortions are measured from these
galaxy images with different selection selections, namely different selection properties
and selection cuts. The selection properties that are tested include intrinsic SNR,
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Figure 3.9: Left panel: Multiplicative bias as a function of the lower limits in-
trinsic SNR (red line) and cModel SNR (yellow line). Middle panel: Multiplicative
bias as a function the lower limits of intrinsic reGauss resolution (red line) and
resolution measured by the HSM algorithm (yellow line). Right panel: Multiplica-
tive bias as a function of the lower limits the observed FPFS flux ratio (yellow lines)
and the revised FPFS flux ratio (blue lines). The solid lines represent tests done on

realistic galaxies and the dashed lines represent tests on parametric galaxies.

observed cModel SNR, intrinsic reGauss resolution, observed reGauss resolution,
observed FPFS flux ratio, and revised FPFS flux ratio. The fiducial setup (i.e., α = 4,
β = 0.85, and ν = 4) for the hyper parameters are adopted in these tests.

Figure 3.9 shows the multiplicative biases as functions of selection cut for different
selection properties. As shown by the left panel (middle panel), the multiplicative
biases are blow 0.5% when the intrinsic SNR (intrinsic reGauss resolution) are used
to select galaxies. Note that the selections using these intrinsic properties do not
lead to any multiplicative selection bias by construction. However, if the observed
galaxy properties (e.g., cModel SNR or reGauss resolution) are used to select galaxies,
selection bias is included into the resulting multiplicative bias. The right panel of
Figure 3.9 shows the results for observed FPFS flux ratio and the revised FPFS flux
ratio with the iterative correction method introduced in Section 3.1.5. As shown, the
iterative method reduces selection bias below 1% .

In addition, as shown in the right panel of Figure 3.9, the results for realistic
galaxies (sample 1) and parametric galaxies (sample 2) are consistent with each other
even though the galaxy morphology in these two samples are different, which indicate
that the FPFS shear estimation for isolated galaxies is not influenced by model bias.

The correlation between additive bias and PSF ellipticity ePSF
1,2 is tested on the

HSC-like parametric galaxy simulations (sample 2). The ellipticity of PSF is obtained
from the reGauss second-order moment matrix. Setting the fiducial multiplicative
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bias to zero, the PSF ellipticity is fitted to the shear residual by

δg1,2 = ĝ1,2 − g1,2 = a1,2e
PSF
1,2 , (3.16)

where a1,2 is the fractional additive bias which describes the fraction of the PSF
ellipticity leaking into the shear measurement (Mandelbaum et al., 2018a). The
resulting fractional additive bias is 0.004 , which is far below the first-year HSC science
requirements. In summary, the additive bias is almost not correlated with the PSF
ellipticity for the FPFS shear estimator.

3.2.3 Blended galaxies

This section serves to test the accuracy of the FPFS shear estimator on galaxy samples
that contain both isolated and blended galaxies. The detected footprints in these sam-
ples are processed with two different setups, namely ‘Deblended’ and ‘Nondeblended’.
For the ‘Deblended’ setup, the HSC deblender (Bosch et al., 2018) is run to isolate
sources on a detected footprint if it contains multiple number of peaks before esti-
mating the shapes of the sources. On the other hand, for the ‘Nondeblended’ setup,
the deblender is not run on any footprint even though multiple peaks are detected in
one footprint.

‘S3-D’ (‘S3-ND’) is used to denote the case that ‘Deblended’ (‘Nondeblended’)
setup is applied to sample 3. Similarly, ‘S4-ND’ (‘S4-ND’) refers to the ‘Deblended’
(‘Nondeblended’) setup applied to sample 4. The fiducial setup (i.e., α = 4, β = 0.85,
and ν = 4) of the hyper parameters is adopted, and the galaxy ensemble is selected
with the cut: sR > 1.5%.

The results of these tests are laid out in Table 3.1. The additive bias is at the
level of ∼ 4 × 10−4; therefore, discussions will be focused on the multiplicative bias.
For the ‘Deblended’ setup, a multiplicative bias at the level of ∼ 5.7% arises if the
HSC deblender is used to isolate blended sources. Compared to the multiplicative
bias in isolated galaxy image simulations shown in Section 3.2.2, it is likely that
the conclusion that the HSC deblender fails to recover the true galaxy light profiles
precisely. The discrepancy between the deblended galaxies and the true galaxies
causes the multiplicative bias. I list the possible origins of the discrepancy as follows:

(i) The current version of the HSC deblender assumes a 180◦ rotational symmetry
around the detected peak.

(ii) The current version of the HSC deblender changes the correlations of photon
noise across pixels in the source footprint.
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The multiplicative bias for ‘S3-ND’ is below 1%; whereas, a multiplicative bias of∼
1.5% is found in ‘S4-ND’. Taking into account the difference between the observational
conditions between sample 3 and sample 4, this additional bias for ‘S4-ND’ should be
caused by the contamination of light from the neighbouring objects in the footprint
of the obect to measure. ‘S3-ND’ and ‘S4-ND’ indicate that it is possible to directly
measure a ‘parent’ source in one piece without any deblending, if all of its ‘child’
sources are distorted by the same shear (e.g., they ‘child’ sources are located at the
same redshift). The FPFS shear estimator works well on the ‘parent’ sources since
it does not make any assumption on galaxy morphology and is not sensitive to the
galaxy off-centerings. Note that, however, it is not straightforward to apply this
strategy to real data since the ‘child’ sources of a ‘parent’ source could be located at
different redshifts, resulting in different shears on these ‘child’ sources. As pointed
out by MacCrann et al. (2020), this redshift-dependent shears changes the galaxy
number distribution over redshift.

To further understand the multiplicative bias related to blending, galaxies are
divided into different sR bins, and the multiplicative bias is determined separately
using the galaxies in each bin, the results of which are shown in Figure 3.10. As
shown, for the setups of ‘S3-ND’ and ‘S4-ND’, the multiplicative biases converge to
∼ −1.8% at the bright end. This ∼ −1.8% multiplicative bias indicates that the
default aperture ratio α determined in 3.2 would be too small for an accurate shear
estimation from a ‘parent’ source containing multiple number of galaxies.

Since the estimator suffers from systematics related to blending, the blending bias
need to be calibrated with the HSC-like simulations. Sample 4 is the fiducial simu-
lation since it best matches the real observational conditions among the simulations
provided in Mandelbaum et al. (2018a). The result for ‘S4-D’, which is demonstrated
by the green line in Figure 3.10, is consistent with our expectation: the deblending
algorithms should perform better on bright galaxies than on faint galaxies. A third-
order polynomial fitting is conducted to fit the multiplicative bias for ‘S4-D’ as a
function of the revised FPFS flux ratio.

After estimating and modeling the multiplicative bias as a function of the revised
FPFS flux ratio, the calibration factor – 1 + m(sR) – is multiplied to the response
R1,2 to calibrate the bias in the shear estimation. Substituting the revised FPFS flux
ratio sR with the observed FPFS flux ratio s does not change the expectation value of
calibrated response significantly. This is given out after substituting Equation 3.15
into the calibrated shear response:

〈
m(s)R1,2

〉
=
〈
m(sR)R1,2

〉
.
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Figure 3.10: The multiplicative bias as a function of revised FPFS flux ratio.
The solid lines are the third order polynomial fittings of the estimations that are
denoted with points with errorbars. The hyper parameters are kept to the default

values.
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Figure 3.12: The redshift distribution of lens catalogs used for galaxy-galaxy
lensing.

Note that here the noise bias is neglected since ν is set to a large number to make
sure the noise bias is subdominant.

After the calibration, the final shear estimator is given by

ĝ1,2 =

〈
e1,2
〉〈

(1 +m(s))R1,2

〉 . (3.17)

3.3 Comparison with reGauss

This section serves to apply the calibrated FPFS shear estimator to the first-year HSC
data, and compare with the first-year HSC shear catalog (reGauss) on the galaxy-
galaxy measurements with different lens catalogs.

3.3.1 Lens Catalog

Observationally, a few different approaches have been adopted to select a sample
of tracers of dark matter halos. The halo tracers include galaxy cluster catalogs
detected with the red sequence cluster finder on photometric surveys (e.g. Oguri,
2014; Rykoff et al., 2014), galaxy group catalogs detected with halo-based group
finder on spectroscopic/photometric data sets (e.g. Yang et al., 2007, 2021), and the
isolated galaxies which are the locally brightest galaxies (ICG, e.g. Wang & White,
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Figure 3.13: The left panel shows the ESDs measured by the reGauss shape
catalog (dashed lines) and FPSF shape catalog (dotted lines) on different lens
catalogs summarized in Section 3.3.1. The right panel shows the ratio between the

ESDs measured by two shape catalogs.

2012; Wang et al., 2019).
In order to compare the FPFS shear catalog with the reGauss shear catalog

(namely the fiducial HSC first-year shear catalog), galaxy-galaxy lensing measure-
ments are conducted on different lens catalogs using both of the source galaxy shape
catalogs. The lens catalogs include the SDSS ICG catalog (Wang & White, 2012),
the GAMA (Driver et al., 2011) ICG catalog, the SDSS galaxy group catalog (Yang
et al., 2007), and the HSC CAMIRA galaxy cluster catalog (Oguri et al., 2018). The
selections of these four lens catalog are summarized follows:

• SDSS ICGs: Isolated central galaxies (ICGs) are defined as the brightest galaxy
within an angular distance of 1 Mpc in transverse plane and 1000 km/s along
the line-of-sight direction. The galaxies are selected from the NYU Value Added
Galaxy Catalog (NYU-VAGC; Blanton et al., 2005), which is based on the 7the
data release of the main spectroscopic galaxy sample of Sloan Digital Sky Sur-
vey (SDSS/DR7; Abazajian et al., 2009). In order to avoid mistakenly selecting
galaxies with brighter physical companions, but the companions do not have
proper spectroscopic redshift estimates due to the fiber collision, the photo-z
catalog provided by Cunha et al. (2009) is used to compensate the selection. To
be more specific, galaxy candidates are rejected if they have apparent compan-
ions within the aforementioned selection radius and with compatible photo-z
compared to the candidate’s spectroscopic redshift (for details, see Wang &
White, 2012).
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• GAMA ICGs: This galaxy sample is selected with the same selection criteria
as SDSS ICGs, but the selection is applied to the public Galaxy And Mass
Assembly (GAMA) DR3 spectroscopy catalog (Baldry et al., 2018), except that
the further selection with photo-z is not applied since the effect of fiber collision
in GAMA is less severe. Compared to the SDSS ICGs, the GAMA ICGs are
about two magnitudes deeper.

• SDSS Group: The SDSS galaxy groups (Yang et al., 2007) are constructed
with a halo-based group finder of Yang et al. (2005) on the spectroscopic galax-
ies in NYU-VAGC. This algorithm first identify potential group centers along
with their group members with Friend-Of-Friend (FOF) algorithm (Davis et al.,
1985). A characteristic luminosity for each tentative group is measured. By as-
suming a mass-to-light ratio, a tentative mass is subsequently assigned to each
group. This assigned mass is used to estimate the size and velocity dispersion
of the underlying halo hosting the galaxy group and update the group mem-
berships. The group centers are iteratively updated as the group members are
updated. The iteration continues until the galaxy group memberships do not
change.

• HSC CAMIRA: The HSC CAMIRA galaxy clusters (Oguri et al., 2018) are
identified with the CAMIRA algorithm of Oguri (2014) on the HSC first-year
photometric galaxies (Aihara et al., 2018b). This algorithm is based on the Stel-
lar Population Synthesis (SPS) model of Bruzual & Charlot (2003) to predict
red-sequence galaxies’ colors as a function of redshift for a set of bandpass filters.
In order to improve the accuracy of the SPS model prediction, the prediction is
calibrated using spectroscopic galaxies. The algorithm subsequently computes
the likelihood for each galaxy of being in the red sequence as a function of red-
shift and construct a map of richness based on the computed likelihood. The
CAMIRA clusters are identified as the peaks on the richness map. In addition,
the center of the galaxy cluster is determined as the brightest cluster galaxy’s
center.

For SDSS group catalog and SDSS ICG catalog, lenses are selected in the redshift
ranging from 0.05 to 0.2 . GAMA ICGs and CAMIRA clusters are selected with
0.1 < z < 0.5. The redshift distributions of these lens catalogs, after applying the
redshift cuts, are shown in Figure 3.12.
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Table 3.2: Selection of source galaxies according to photo-z .

photo-z cut descriptions
mlz_std_best<3 The uncertainty of the best-fit photo-z estimate

mlz_conf_best>0.13 The confidence of the best-fit photo-z estimate
mlz_best<2.5 The best-fit photo-z estimate∫ +∞

zl+0.2
P (z) > 0.95 P(z) cut (e.g., Medezinski et al., 2018)

3.3.2 Excess Surface Density

A lens system with an excess surface density ∆Σ induces tangential shear distortions
on background galaxy images, the signal of which at radius R to the lens center and
redshift zs is given by

γT (R, zl, zs) = ∆Σ(R)Σ−1
cr (zl, zs), (3.18)

where the critical surface density Σcr is defined as

Σ−1
cr (zl, zs) =

4πG
c2

(1 + zl)
χlsχl

χs
(zl ≤ zs)

0 (zl > zs)
. (3.19)

Here χ denotes the comoving distance; G is the gravitational constant; and c is the
speed of light. For simplicity, Σ−1

cr (zl, zs) is denoted as Σ−1
cr,ls in the following context.

The probability density function (PDF) of the photometric redshifts P (zs), estimated
with the MLZ algorithm (Tanaka et al., 2018), is used to calculate the expectation of
Σ−1

cr,ls, which is given by

〈
Σ−1

cr,ls

〉
=

∫ +∞

zl

dzsΣ
−1
cr (zl, zs)P (zs) . (3.20)

The relation between the expectation of tangential shear and the expectation of
excess surface density (ESD) of lens is given by

〈
γT (R, zl, zs)

〉
=
〈
∆Σ(R)

〉 〈
Σ−1

cr (zl, zs)
〉
. (3.21)

In the galaxy-galaxy lensing measurement, source galaxies are further selected ac-
cording to their photometric redshift estimates following (Medezinski et al., 2018).
The selection cuts on redshift estimates are summarized in Table 3.2.

The tangential ellipticity is defined as

eT = −e1 cos(2ϕ)− e2 sin(2ϕ), (3.22)
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where ϕ is the angular position of the source galaxy respecting to the lens system’
center in polar coordinates. After stacking a large number of lens systems in the lens
catalog, the stacked ESD is can be estimated as

〈
∆Σ(R)

〉
=

∑
l

∑
s wls

〈
Σ−1

cr,ls

〉−1

eT,s∑
l

∑
s(1 +ms)wlsRs

, (3.23)

where wls is the weight for each lens-source pair. The optimal (inverse variance)
weight is given by

wls =
〈
Σ−1

cr (zl, zs)
〉2

. (3.24)

(Shirasaki & Takada, 2018)
Substituting equation (3.24) into equation (3.23), the estimator of ESDs is:

〈
∆Σ(R)

〉
=

∑
l

∑
s

〈
Σ−1

cr,ls

〉
eT,s∑

l

∑
s(1 +ms)

〈
Σ−1

cr,ls

〉2
Rs

. (3.25)

The ESD estimates for the reGauss shear catalog and the FPFS shear catalog on
these lens catalogs summarized in Section 3.3.1 are shown in Figure 3.13. The ESDs
as functions of the comoving distance to the lens systems’ centroids for two shear
catalogs are shown in the left panel of Figure 3.13. The lower limit of the comoving
radius is set to 0.1 Mpc/h since the measurement is very noisy because of the limited
source galaxy number at the small scales. The error bars are estimated using 100

realizations of mock galaxy shear catalogs.
The right panel of Figure 3.13 shows the ratio between the measurements from

the two shear catalogs. The ratio is defined as

ratio =
⟨∆ΣFP ⟩
⟨∆ΣRG⟩

, (3.26)

where ⟨∆ΣFP ⟩ and ⟨∆ΣRG⟩ are the ESDs measured with the FPFS shear catalog and
the reGauss shear catalog, respectively. The correlation between the ESDs measured
with two shear catalogs is taken into account when assigning the statistical errors on
the ratio estimations. This correlation is also estimated from the 100 realizations of
mock galaxy shear catalogs for each lens catalog. In summary, the difference between
two shear catalog on the galaxy-galaxy lensing is within the statistical uncertainty.
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3.4 Summary
This section develops the Fourier Power Function Shapelet (FPFS) shear estimator,
which reaches a sub-percent level accuracy when images of different galaxies do not
overlap, namely in the absence of blending. The FPFS algorithm measures the polar
shapelet modes (Massey & Refregier, 2005) on each galaxy image’s Fourier power
function after deconvolving the power function of point spread function (PSF). The
scale of the Gaussian weighting kernel of the shapelet functions is set to be smaller
than that of the PSF’s Fourier power function to ensure that the noise on the large
Fourier wave number is not boosted after projecting the deconvolved Fourier power
function onto the shapelet function.

For deep ground-based cosmological surveys like Hyper Suprime-Cam (HSC),
more than 50% of galaxies are blended. The FPFS shear estimator relies on ex-
ternal image simulations to calibrate a −5.8% multiplicative bias from blending. The
FPFS shear estimator was applied to the first-year HSC coadds to create an inde-
pendent shear catalog after calibrating the bias from blending on the FPFS shear
estimator using the HSC-like image simulations Li et al. (2020). I found consistent
results on galaxy-galaxy lensing with the reGauss shape catalog.

Several recently proposed algorithms have been proposed to reduce the multi-
plicative bias to a few parts in a thousand for isolated galaxies. Zhang et al. (2017);
Li & Zhang (2021) show the latest development of Fourier_Quad. This method
determines two components of shear by re-symmetrizing the PDF of two spin-2 mo-
ments which are measured from the power function of galaxy’s Fourier transform.
This re-symmetry method only uses linear observable measured from Fourier power
function to construct shear estimator so it is not influenced by noise bias. However,
Fourier_Quad has not provided solution to selection bias.

Bayesian Fourier Domain (BFD; Bernstein & Armstrong, 2014; Bernstein et al.,
2016) uses Bayesian formalism to measure shear from the full Bayesian posterior so
the formalism is not influenced by noise bias. BFD is the first method which provides
solution to selection bias. BFD requires noiseless distribution of galaxy population
over parameter space as a prior which should be constructed from deep exposures.

METACALIBRATION (Huff & Mandelbaum, 2017; Sheldon & Huff, 2017) proposes to find
the shear response for ellipticity defined by any algorithm through adding artificial
shear to each observed galaxy. Shear can be inferred by averaging over ellipticity and
response of a large ensemble of galaxies. METACALIBRATION adds inversely sheared noise
image to galaxy images to remove noise bias and it also provides solution to selection
bias. Several galaxy image simulations using realistic galaxy images (Sheldon & Huff,
2017) have proved that the multiplicative bias, including both noise bias and selection
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bias, for METACALIBRATION is below 1×10−3. Moreover, METACALIBRATION has been successfully
applied to DES survey (Zuntz et al., 2017). Therefore, METACALIBRATION is believed to be
the most promising shear estimator in the weak lensing community.

Compared to these methods, the FPFS estimator does not involve complicated
statistical procedure and it does not need prior information from deep exposures.
Furthermore, FPFS shear estimator does not rely on heavy image manipulations. Since
only four shapelet modes are required to construct the FPFS shear estimator, our
algorithm is computationally much faster.
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This chapter reconstructs three-dimensional (3D) mass map from weak lensing
shear estimations observed from distant galaxy images that was discussed in Chap-
ter 2.

First, the mass map inversion problem is summarized in Section 4.1. Second, a
new method is proposed to reconstruct the mass maps in Section 4.2. The mass map
is modelled as a summation of basis function in the model dictionary introduced in
Section 4.2.1). In addition, sparsity prior is adopted in the mass map reconstruction
(Section 4.2.2). Then, the new method is tested on halo simulations described in
Section 4.3, and the results are shown in Section 4.4. We compare the newly proposed
method with existing methods in Section 4.5

89
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4.1 The 3D mass inversion problem
The lensing shear field γ observed from background galaxy images is related to the
foreground density contrast field, defined as δ = ρm/ρ̄m − 1 via a linear transform
shown as follows:

γ = T · δ + ϵ, (4.1)

where ϵ is the shear measurement error caused by the random orientation of galaxy
shapes (shape noise) and the sky variance (photon noise). The matrix operator T =

P·Q includes both the physical lensing effect, which is denoted by a matrix operator Q,
and also the observational systematic effects, which is denoted by a matrix operator
P. The weak lensing operator Q will be given out in Section 4.1.1, and the systematics
operator P will be given out in Section 4.1.2.

4.1.1 Weak gravitational lensing

The lensing transform operator, mapping the foreground density contrast field at zl

to the background lensing shear field at zs, can be expressed as

Q =

∫ zs

0

dzl K(zl, zs)

∫
d2θ′D(θ⃗ − θ⃗′), (4.2)

K(zl, zs) is termed the lensing kernel (Bartelmann & Schneider, 2001), which is given
by

K(zl, zs) =

3H0Ωm
2c

χlχsl(1+zl)
χsE(zl)

(zs > zl),

0 (zs ≤ zl),
(4.3)

where E(z) is the Hubble parameter as a function of redshift, in units of H0;

D(θ⃗) = − 1

π
(θ1 − iθ2)

−2 (4.4)

is the Kaiser-Squares kernel (Kaiser & Squires, 1993), which decays proportional to
the inverse-square of the distance. Here θ1,2 are the two components of the angular
position vector θ⃗.

The top panel of Figure 4.1 shows the lensing kernels as a function of source
redshift lens redshifts fixed as different values. The bottom panel of Figure 4.1 shows
the correlation matrix between the lensing kernels. As shown, the lensing kernels at
each lens redshift is highly non-local. Furthermore, the lensing kernels of different
lens redshifts are highly correlated. As a result, the column vectors that constitute
the matrix T are strongly correlated, which makes it challenging to reconstruct mass
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Figure 4.1: Top panel shows the normalized lensing kernels as a function of
source redshift with lens redshifts fixed. The solid lines are the kernels for the
source galaxies with precise spectroscopic redshifts, whereas the dashed lines are
for source redshifts with HSC-like photometric redshift errors. Bottom panel shows
the correlation matrix between the lensing kernels of different lens redshifts. The
diagonal terms are normalized to 1 . The color map is the correlation matrix for
spectroscopic redshift. The solid (dashed) contours show the result for the lensing

kernel of spectroscopic (photometric) redshift at levels 0.7, 0.85, and 0.98 .
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Figure 4.2: The blue histogram shows the normalized number distribution of the
best-fit photo-z (MLZ) estimates from tract 9347 of the first-year HSC data. An
equal-number binning scheme is adopted to divide the source galaxies into a total

of 10 redshift bins that are indicated by the vertical dashed lines.

maps with high resolution in the line-of-sight direction.

4.1.2 Systematics

The observed shear is different from the true, physical shear owing to a variety of
systematic effects in real observations. This section serves to discuss the influence
of several major systematics on the lensing shear measurement, and describe the
corresponding transform operator by decomposing into three parts of R (photometric
redshift uncertainties), W (smoothing), and M (masking).

4.1.2.1 Photometric redshift Uncertainty

Since photometric redshifts (photo-z) are estimated with a limited number of broad
optical and near-infrared bands in the current generation of weak lensing surveys
(e.g., 9 bands are used for KIDS+VIKING survey (Hildebrandt et al., 2020), 5 bands
for DES survey and HSC survey) the photo-z estimation suffers from considerable
statistical uncertainties, compared to the high-precision spectroscopic redshift (spect-
z) estimation.
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Figure 4.3: The average posterior PDF of MLZ in 10 source redshift bins with
boundaries defined by the vertical dashed lines in Figure 4.2.

Figure 4.2 shows the histogram of the best-fit estimates of the Machine Learning
for photo-Z (MLZ; Carrasco Kind & Brunner, 2013) algorithm1 for galaxies in tract
9347 from the photo-z catalog (Tanaka et al., 2018) of the first-year HSC data release
(Aihara et al., 2018b). Note that the HSC data is divided into rectangular regions
called tracts covering approximately 1.7× 1.7 deg2, and each tract is broken into 9x9
patches. The galaxies are divided into ten redshift bins according to the best-fit
estimates. Figure 4.3 shows the stacked mean posterior PDF for galaxies in each
redshift bin.

In the presence of photo-z uncertainties, a source galaxy with a best-fit photo-z
estimate zs has a posterior probability P (z|zs) of being actually located at redshift z.
This means that there is a possibility P (z|zs) that the concerning galaxy is actually
distorted by the lensing shear at redshift z. The photo-z uncertainty hence statistically
smears the lensing kernels, which is modelled by a smearing operator:

R =

∫
dzsP (z|zs) . (4.5)

Figure 4.1 shows the lensing kernels and their correlations in the case with photo-z
1https://github.com/mgckind/MLZ



94 CHAPTER 4. THREE-DIMENSIONAL (3D) WEAK LENSING MASS MAP

−1.0 −0.5 0.0 0.5 1.0

δg1

-4

-3

-2

-1

0

1

ln
P

D
F

galaxy

pixel

Figure 4.4: The solid blue (orange) line shows the histogram of the HSC-like shear
measurement error on the first component of shear g1 on individual galaxy (pixel)
level. The dashed lines are the best-fit Gaussian distributions to the corresponding

histograms.

uncertainties that are demonstrated in Figure 4.3. As shown, the photo-z uncertainty
only slightly increases the correlations between lensing kernels at different lens plane.

4.1.2.2 Smoothing

Since the source galaxies are not uniformly distributed in the sky due to substantial
fluctuations in the number density, in order to pixelate shear measurements onto
a regular grid, the shear measurements are first smoothed by a smoothing kernel.
After pixelation, the fast Fourier transform (FFT) can be directly conducted on the
transverse plane in each redshift bin to compute the convolution operations shown in
Equation (4.1). Additionally, smoothing reduces bias arising from the aliasing effect
in the pixelation process since the smoothing kernel reduces the amplitude of the shear
signal at high frequency. The details of the pixlation is described in Section 4.2.2.1.

The lensing shear measured from galaxy images is convolved with a 3D smoothing
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kernel denoted by W (θ⃗, z). The shear measurements after smoothing is given by

γsm(θ⃗, z) =

∑
i W (θ⃗ − θ⃗i, z − zi)γL(θ⃗i, zi)∑

i W (θ⃗ − θ⃗i, z − zi)
, (4.6)

where zi refers to the photometric redshift; θi refers to the transverse position;
γL(θi, zi) refers to the shear measurement before the smoothing from the i-th galaxy
in the galaxy ensemble.

I will focus on the situation that the smoothing kernel W (θ⃗, z) can be decomposed
into a transverse component Wt(θ⃗) and a line-of-sight component Wl(z):

W (θ⃗, z) = Wt(θ⃗)Wl(z) . (4.7)

An isotropic 2D Gaussian kernel and a 1D top-hat kernel are used to smooth the
shear field in the transverse plane and in the line-of-sight direction, respectively.
These components are given by

Wt(θ⃗) =
1

2πβ2
exp
(
− |θ⃗|
2β2

)
,

Wl(z) =

1/∆z (|z| < ∆z/2),

0 othewise,

(4.8)

The RMS of the Gaussian kernel is set to β = 1.5′ in this section. The smoothing
kernel is, by definition, normalized as∫

d3rW (r⃗) = 1 . (4.9)

With the assumption that the galaxy number distribution varies slowly at the smooth-
ing scale, the smoothed shear can be written into

γsm = W · γL, (4.10)

where W is the smoothing operator defined as

W =

∫
d3r′ W (r⃗ − r⃗′) . (4.11)

The smoothed shear field is pixelated onto a regular grid. In this chapter, the pixel
width is set to 1′ . Another widely used scheme is to average the shear measurements
in each pixel, which is equivalent to resampling the shear field smoothed with a 3D
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top-hat kernel with the same scale as the pixels.
In order to see the effect of smoothing clearly, the histograms of the statistical

shear measurement errors due to shape noise and sky variance for the galaxies in tract
9347 of the first-year HSC shear catalog (Mandelbaum et al., 2018b) are demonstrated
as follows. Figure 4.4 compares the error on an individual galaxy basis and that of
individual pixels after the smoothing and pixelation procedures described in this
section. As shown, the RMS on the individual pixel errors is much smaller than that
on the individual galaxy level thanks to the smoothing. Moreover, even though the
shear measurement error on the individual galaxy level does not follow a Gaussian
distribution, the error after smoothing and pixelation is well described by a Gaussian
distribution, which is simply explained by the central limit theorem.

4.1.2.3 Masking

In real observations, shear measurements can be performed in a finite sky region,
and the boundaries often have complicated geometries. In addition, many isolated
sub-regions near the bright stars are masked out to mitigate the bias due to the light
from bright stars on shear estimations.

The masking window function is defined as

M(r⃗) =

1 nsm ≥ 1,

0 otherwise,
(4.12)

where nsm is the smoothed galaxy number density, and the masking operator as

M =

∫
d3r′ M(r⃗′)δD(r⃗ − r⃗′), (4.13)

where δD(r⃗) is 3D Dirac delta function.
In summary, after taking into account the systematics discussed in previous Sec-

tions 4.1.2.1–4.1.2.3, the transform operator of systematics is given by

P = M ·W ·R . (4.14)

4.2 Method

4.2.1 Model Dictionary

Assumptions on the density contrast field are incorporated into the mass map recon-
struction to improve SNR and resolution of the reconstructed mass maps. Here the
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Figure 4.5: The normalized 2D profiles of the smoothed basis “atoms”. The
pixel size is 1′ .The leftmost column is the point mass atom, and the other columns
show the NFW atoms with different scale radii (in unit of pixel) as indicated. The
upper (lower) panels shows the basis atoms in Fourier (configuration) space. The
two-dimensional profiles are smoothed using a Gaussian kernel with a 1.5 pixel

width.

density contrast field is modelled as a sum of basis atoms in a “dictionary”:

δ = Φ · x, (4.15)

where Φ is the matrix operator transforming from the projection coefficient vector x

to the density contrast field δ. The column vectors of Φ are the basis “atoms” of the
model dictionary, and the atoms are denoted as ϕs.

According to cosmological N -body simulations, dark matter is concentrated in
roughly spherical “halos” with the NFW density profile in the standard cosmological
model(Navarro et al., 1997). Motivated by this fact, a model dictionary constructed
by NFW atoms with N typical scale radii rs (s = 1, ..., N) in comoving coordinates
can be used to model the density contrast field. The basis atom in the dictionary has
the NFW surface density profile on the transverse plane (Takada & Jain, 2003) and
the Dirac δ function in the line-of-sight direction. Note that, following Leonard et al.
(2014), the size of halos along the line-of-sight is neglected as the resolution scale of
the reconstruction is much larger than the halos.

The multi-scale NFW atom is defined as

ϕs(r⃗θ, z) =
f

2πr2s
F (|r⃗θ|/rs) δD(z), (4.16)
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where r⃗θ is the projection of the comoving position on the transverse plane,

F (x) =



−
√
c2−x2

(1−x2)(1+c)
+

arccosh
(

x2+c
x(1+c)

)
(1−x2)3/2

(x < 1),
√
c2−1

3(1+c)
(1 + 1

c+1
) (x = 1),

−
√
c2−x2

(1−x2)(1+c)
+

arccos
(

x2+c
x(1+c)

)
(x2−1)3/2

(1 < x ≤ c),

0 (x > c) .

(4.17)

f = 1/[ln(1 + c) − c/(1 + c)], and c is the halo concentration. For simplicity, the
concentration parameter is fixed to c = 4 for the NFW atoms in the NFW dictionary.
A hard truncation on the NFW profile is adopted at a radius equals c rs. Studying
the influence of different truncation forms (Oguri & Hamana, 2011) on the mass map
reconstruction is left to the future work.

Compared to other model dictionaries, the NFW dictionary is motivated by a
physical consideration on the clumpy mass distribution in the Universe. Moreover,
the multi-scale NFW atoms are built up in comoving coordinates. This setup takes
into account of the scale difference in the angular separation coordinates due to the
difference in the distances between the halos (at different redshifts) and the observer.
The corresponding NFW atom in the angular separation coordinates is

ϕs(θ⃗, z) =
fχ2(z)

2πr2s
F (|θ⃗|χ(z)/rs) δD(z), (4.18)

where χ(z) is the comoving distance to redshift z.
The transform from the projection coefficient vector to the density contrast field

of Equation (4.15), for the NFW dictionary, is written as

δ(r⃗) =
N∑
s=1

∫
d3r′ϕs(r⃗ − r⃗′)xs(r⃗′) . (4.19)

In order to simplify the notation, the projection coefficient vectors of multiple scales
are compressed into a single column vector:

x =


x0

x1

...

xN

 , (4.20)
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Figure 4.7: The density map reconstruction with LASSO (left) and with the
adaptive LASSO (right) algorithm. The z-axes are for redshift. The color bars
indicate the values of reconstructed density contrast fields. The mass of halo is
M200 = 1015 h−1M⊙, and its redshift is z = 0.35. Shear measurement errors and

photo-z uncertainties are not considered in the simulation.

and the dictionary transform operator is written into a single row vector:

Φ =
(∫

d3r ϕ0(r⃗)
∫

d3r ϕ1(r⃗) ...
∫

d3r ϕN(r⃗)
)
. (4.21)

A dictionary with the point mass atoms is introduced for an additional compari-
son. The point mass atoms are represented by the 3D Dirac function as

ϕPM(θ⃗, z) = δD(θ1) δD(θ2) δD(z) . (4.22)

The 2D profiles of the NFW atoms and the point mass atom on the transverse plane
are shown in Figure 4.5; The corresponding 1D sliced profiles are plotted in Figure 4.6.
In these figures, the profiles are smoothed with a Gaussian kernel (see Section 4.1.2.2)
and pixelated on the regular grids (see Section 4.2.2.1).

The forward transform operator A = P · Q · Φ is introduced to simplify the
notation, where P is systematic operator and Q is the physical lensing operator.
Using Equations (4.1) and (4.15), the transform from the coefficient vector x to the
observed lensing shear field is given by

γ = A · x+ ϵ . (4.23)

4.2.2 Sparsity Prior

The projection coefficients can be estimated by optimizing a penalized loss function.
An estimator is generally defined as

x̂ = arg min
x

{
1

2
Σ

∥∥(γ −Ax)
∥∥2
2
+ λC(x)

}
, (4.24)
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where Σ

∥∥(γ −Ax)
∥∥2
2

refers to the l2 norm of residuals weighted by the inverse of the
covariance matrix Σ of the shear measurement error, which measures the difference
between the prediction and the data, and C(x) is the “penalty term” incorporating
prior knowledge of the distribution of parameter x. That is, the estimation with
the “penalty” term prefers parameters that are able to describe the observation with
a specified prior information. The penalty parameter λ adjusts the relative weight
between the data and the prior assumption in the optimization process. There are
two popular choices of penalties—one is the l2 ridge penalty (C = ∥x∥22) and the
other is the l1 LASSO penalty (C =∥x∥11)–ensuring that the loss function is convex;
therefore the maximum likelihood can be achieved with a gradient descent algorithm.

A derivative version of the l2 penalty (also known as LASSO penalty)—the adap-
tive LASSO penalty —is adopted in the new method. The pixelation of the shear
measurements and the projection parameter field is shown in Section 4.2.2.1. The
column vectors of the forward transform matrix is then normalized in Section 4.2.2.2.
The loss function is subsequently introduced in Section 4.2.2.3 with the adaptive
LASSO penalty. Finally, Section 4.2.2.4 optimizes of the loss function in with the
FISTA algorithm (Beck & Teboulle, 2009).

4.2.2.1 Pixelation

The shear field is pixelated on Nx×Ny ×Nz grids, where Nx and Ny are the number
of pixels of the two orthogonal axes of the transverse plane, and Nz is the number of
pixels in the line-of-sight direction. The smoothed shear measurements recorded on
the pixel are denoted by γα, where the index α is in the range: 1 ≤ α ≤ Nx×Ny×Nz.
In the transverse plane, the grids are equally spaced with a pixel size of 1′; whereas,
in the line-of-sight direction, an equal galaxy number binning scheme is adopted as
demonstrated in Figure 4.2.

Similarly, the projection coefficient vector x is pixelated onto an Nx × Ny × Nl

grid. Compared to the pixelation of the shear field, in the line-of-sight direction,
the projection coefficient vector is pixelated in equal spacing in the redshift range:
0.01 ≤ zl < 0.85 . Here, Nl is used to denote the number of the lens planes and xβ

to denote the projection field element with index 1 ≤ β ≤ Nx ×Ny ×Nl ×N , where
the last N is the number of NFW dictionary frames representing different physical
scale radii. The corresponding pixelated elements of the forward transform matrix A
is denoted as Aαβ.
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4.2.2.2 Normalization

The l2 norm of the i-th column vector of A weighted by the inverse of the noise
covariance matrix is defined as

Ni = (Σ−1)αβAiαAiβ . (4.25)

The column vectors have different weighted l2 norms mainly due to the difference
in lensing efficiency for halos at different redshifts. As the FISTA algorithm based
on gradient descent algorithm, which will be used to optimize the loss function in
Section 4.2.2.4, takes each column vector equally, the column vectors are normalized
before performing the density map reconstruction to improve the convergence speed
of the gradient descent iteration. The normalized forward transform matrix and
projection parameters are given by

A′
αβ = Aαβ/N

1
2
α ,

x′
β = xβN

1
2
β .

(4.26)

4.2.2.3 Adaptive LASSO

As known, the LASSO algorithm uses l1 norm of the projection coefficient vector as
the penalty term. The LASSO estimator is defined as

x̂′LASSO
= arg min

x

{
1

2
Σ

∥∥(γ −A′ · x′)
∥∥2
2
+ λ
∥∥x′∥∥1

1

}
, (4.27)

where ∥•∥11 and ∥•∥22 are the l1 norm and l2 norm, respectively. λ is the penalty
parameter for the LASSO estimation.

The LASSO algorithm searches and selects the parameters that are relevant to the
measurements, and simultaneously estimates the values of the selected parameters.
In the absence of noise, with the increase of the penalty parameter, the LASSO
algorithm selects the relevant modes more consistently but with a increased shrinkage
of selected modes. A question arises here: Can LASSO perform a consistent selection
and a accurate estimation simultaneously, by simply tunning the penalty parameter?
Unfortunately, it has been shown by Zou (2006) that if the column vectors of the
forward transform matrix A′ are highly correlated, the LASSO algorithm cannot
perform a consistent selection and an accurate estimation owing to the shrinkage in
the LASSO regression. Note that, for the weak lensing density map reconstruction
problem, the column vectors are highly correlated even in the absence of photo-
z uncertainties since the lensing kernels for lenses at different redshifts are highly
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correlated as shown in Figure 4.1.
Figure 4.7 shows an example reconstruction results for a single halo with mass

M200 = 1015 h−1M⊙ at redshift 0.352. The shear measurement and photo-z uncertain-
ties are not included in this simulation. Significant smearing of the mass distribution
with the LASSO algorithm is found and demonstrated in the left panel of Figure 4.7.
As shown, the LASSO algorithm cannot accurately determine the consistent mass
distribution in redshift, and the reconstructed map suffers from smearing in the line-
of-sight direction even in the absence of noises.

In order to overcome the problem, Zou (2006) proposed the adaptive LASSO
algorithm, which uses adaptive weights to penalize different projection coefficients in
the l1 penalty. To be specific, the adaptive LASSO algorithm performs a two-steps
process. In the first step, the standard (non-adaptive) LASSO is used to estimate
the parameters. Let us denote the preliminary estimation as x̂′LASSO. In the second
step, the preliminary estimate is used to calculate the non-negative weight vector for
penalization as

ŵ =
1∣∣∣x̂′LASSO

∣∣∣τ , (4.28)

where the hyper-parameter τ is set to 2 . The adaptive LASSO estimator is then
given by

x̂′ = arg min
x′

{
1

2
Σ

∥∥(γ −A′ · x′)
∥∥2
2
+ λada

∥∥ŵ ◦ x′∥∥1
1

}
, (4.29)

where “◦” is the element-wise product, and λada is the penalty parameter for the
adaptive LASSO, which does not necessarily need to be the same as the penalty
parameter for the preliminary LASSO estimation: λ. To simplify the equations in
the following, the loss function is rewritten with the Einstein notation as follows:

L(x′) =
1

2
(Σ−1)αβ(γ

∗
α − A′∗

αix
′
i)(γβ − A′

βjx
′
j)

+ λadaŵβ

∣∣∣x′
β

∣∣∣ , (4.30)

and the quadruple term in the loss function as

G(x′) =
1

2
Σ−1

αβ(γ
∗
α − A′∗

αix
′
i)(γβ − A′

βjx
′
j) . (4.31)

4.2.2.4 FISTA

Beck & Teboulle (2009) propose the Fast Iterative Soft Thresholding Algorithm
(FISTA) to optimize the LASSO loss function. Since the loss functions of the pre-

2The critical over-density is set to 200, and use M200 to denote the halo mass.
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liminary LASSO and the adaptive LASSO differ only in their penalty terms, both
of which are convex functions, it is straightforward to apply FISTA to solve the
adaptive LASSO problem. Here FISTA algorithm is hence applied to solve both the
preliminary LASSO estimation and the adaptive LASSO estimation.

The FISTA algorithm is reviewed as follows. The coefficients are first initialized
as x

(1)
i = 0. Then the projection coefficient vector x is iteratively updated. In the

n-th iteration, a temporary update is calculated as

x
′(n+1)
i = STλ

(
x
′(n)
i − µ∂iG(x′(n))

)
, (4.32)

where ST is the soft thresholding function defined as

STλ

(
x′) = sign(x′)max

{∣∣x′∣∣− λ, 0
}
. (4.33)

Note that the soft thresholding is a part of the LASSO algorithm, which selects the
modes with amplitude greater than λ, and shrinks the estimated amplitudes of the
selected modes by λ in each iteration. Here the coefficient µ is the step size of the
gradient descent iteration, and ∂iG(x′(n)) is the i-th element of the gradient vector of
G at point x′(n):

∂iG(x′(n)) = Σ−1
αβ Re

{
A′∗

αi(γβ − A′
βjx

′
j)
}
, (4.34)

where Re {•} denotes the real part of the input complex vector. Compared to gradient
descent algorithm, FISTA algorithm requires an additional update using a weighted
average between x′(n+1) and x′(n) to improve the convergence speed:

t(n+1) =
1 +

√
1 + 4(t(n))2

2
,

x′(n+1) ← x′(x+1) +
t(n) − 1

t(n+1)
(x′(n+1) − x′(n)),

(4.35)

where the relative weight is initialized as t(1) = 1.
Note that FISTA algorithm converges as long as the gradient descent step size µ

satisfies
0 < µ <

1∥∥∥A† ·Σ−1 ·A
∥∥∥ , (4.36)

where the operation ∥•∥ returns the spectrum norm of the input matrix, which is
estimated numerically by simulating a large number of random vectors with l2 norms
normalized to one taking different realizations. The matrix operator A† · Σ−1 · A
is subsequently applied to each random vector to yield a corresponding transformed
vector. Finally, the spectral norm of the operation is determined as the maximum l2
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norm of these transformed vectors.
As summarized in the following Algorithm, the projection coefficients are first

initialized as zero, and FISTA algorithm is used to find the global minimum of the
LASSO loss function. This global minimum is the preliminary LASSO estimation,
which is subsequently used to weight the penalty coefficients in the adaptive LASSO
loss function. Finally, the preliminary LASSO estimation is set as the “warm” start
of the adaptive LASSO estimation, and FISTA algorithm again is used to find the
global minimum of the adaptive LASSO loss function. This minimum is the final
solution.

Algorithm mass map reconstruction algorithm
Input: γ: Pixelized complex 3D shear field
Output: δ: 3D array of density contrast

1: Normalize column vectors of A
2: Estimate step size µ and �
3: Initialization:
4: x′(1) = 0

5: ŵ = 1

6: t(1) = 1,i = 1, j = 1

7: while j ≤ 2 do
8: while i ≤ Niter do
9: # soft thresholding

10: x
′(n+1)
i = STŵλ

(
x
′(n)
i − µ∂iG(x′(n))

)
11: # FISTA algorithm
12: t(n+1) =

1+
√

1+4(t(n))2

2

13: x′(n+1) ← x′(x+1) + t(n)−1
t(n+1) (x

′(n+1) − x′(n))

14: i = i+ 1

15: end while
16: Re-initialization:
17: ŵ =

∣∣∣x̂′LASSO

∣∣∣−2

, λ← λada

18: x̂′(1) = x′(Niter)

19: t(1) = 1, i = 1

20: j = j + 1

21: end while
22: δ = ΦN− 1

2x′(Niter)
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Figure 4.8: The standard deviation pixel map of the HSC-like shear measurement
error for the fifth source galaxy bin (0.69 ≤ z < 0.80).

4.3 Halo Simulations
This section presents the halo simulations that are used to test the algorithm, which
use halos with a variety of masses in the range 1014h−1M⊙ < M < 1015h−1M⊙, and
redshifts in the range 0.05 < z < 0.85, respectively. The parameter space is divided
into eight redshift bins and eight mass bins with equal separation. The input halo
redshift and halo mass are randomly shifted from the bin center by a small amount
in order to avoid repeatedly sampling at the exact same halo mass and redshift.

The concentration parameter ch of a NFW halo is determined as a function of the
halo mass (M200) and redshift (zh) according to Ragagnin et al. (2019):

ch = 6.02×
(

M200

1013M⊙

)−0.12(
1.47

1.+ zh

)0.16

. (4.37)

The weak lensing shear fields of the NFW halos are calculated according to Takada &
Jain (2003). The shear distortions are applied to one hundred realizations of galaxy
catalogs with the HSC-like shear measurement error and photo-z uncertainty.

The mock galaxy catalogs are generated using the HSC S16A shear catalog (Man-
delbaum et al., 2018b). The simulations use the galaxies in a 1 square degree field at
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Figure 4.9: The upper panels show the density maps reconstructed from a mock
galaxy shear catalog, which includes shear measurement and photo-z uncertainties,
using the mass map reconstruction algorithm with penalty parameters λ = 3.5
(left) and λ = 5.0 (right). The axes and color maps have the same meanings as
Figure 4.7. The lower panels show the corresponding number histograms of pixel
values. The input halo mass is M200 = 1015.02 h−1M⊙, and its redshift is z = 0.164 .

the center of tract 9347 (Aihara et al., 2018b). The average galaxy number density
in this region is 22.94 arcmin−2. The positions of galaxies are randomized to dis-
tribute homogeneously in the one-square degree stamp. The redshift for each galaxy
is assigned following the MLZ photo-z probability distribution function (Tanaka et al.,
2018).

I simulate the HSC-like shear measurement error due to shape noise and sky
variance with different realizations by randomly rotating the galaxies in the HSC
first-year shear catalog. The shear measurement error on individual galaxy level and
individual pixel level are demonstrated in Figure 4.4. The standard deviation map of
the noise is demonstrated in Figure 4.8.

4.4 Results
This section serves to test the performance of the mass map reconstruction algorithm
by adopting models where the matter density field is represented by multi-scale NFW
atoms. The dictionary is constructed with three frames of different NFW scale radii
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in comoving coordinate: 0.12 h−1 Mpc, 0.24 h−1 Mpc, and 0.36 h−1 Mpc. The
truncation radii are set to four times the scale radii for the atoms in the dictionary,
i.e., assuming that ch = 4. Note that each frame of the NFW dictionary fixes the
scale radius in comoving coordinates and thus the NFW atoms have different angular
sizes when placed at different redshift.

The algorithm is tested by varying the penalty parameter for the LASSO esti-
mation with λ = 3.5, 4.0, and 5.0. The corresponding penalty parameters for the
final adaptive LASSO estimations are set to λad = λτ+1. Here, both the LASSO
estimation and the adaptive LASSO estimation select the modes with SNR greater
than λ in each gradient descent iteration, and the local density is estimated for the
selected pixels with a shrinkage of the estimation amplitude. The difference is that
the LASSO algorithm shrinks the density amplitudes by λ for every selected pixels; in
contrast, the adaptive LASSO algorithm suppresses the shrinkage by down-weighting
their penalties if the preliminary estimation for this mode is greater than λ, and
otherwise the adaptive LASSO algorithm enhances the shrinkage.

The smoothed shear measurements after pixelation have the resolution limit set
by the Gaussian smoothing kernel with a standard deviation of 1.′5 and the 1′ pixel
scale as detailed in Sections 4.1.2.2. The reconstructed density fields are smoothed
with the same Gaussian kernel in each lens redshift plane and they have the same
resolution limit.

Figure 4.9 shows the 3D density maps reconstructed with two different penalty
parameters (i.e. λ = 3.5 and λ = 5.0) for a halo with M200 = 1015.02 h−1M⊙, located
at redshift 0.164. The corresponding number histograms for pixelated density contrast
field are shown in Figure 4.9. As shown, the adaptive LASSO algorithm assigns zero
value to a fraction of the reconstructed modes, while retaining strong signals. In
addition, the right panels demonstrate a case where almost all of the modes with
pure noise are set to zero with a large penalty parameter. It is important to note
that the reconstructed density contrast maps are not compromised by the smearing
in the line-of-sight direction. That is, the reconstructed lens is localized in redshift.

Following Leonard et al. (2014), the detected peaks in the l-th (l = 1...20) lens
redshift plane are normalized as follows to account for the peak amplitude difference
arising from the difference in the norm of the lensing kernels in different redshift bins:

δn
peak(θ⃗, zl) = δpeak(θ⃗, zl)/R

1
2
l , (4.38)

where the normalization matrix is defined as

Rl =
∑
s

K2(zl, zs) , (4.39)
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Figure 4.10: The peak counts, namely the number density per square-degree,
as a function of peak overdensity for maps reconstructed with different setups.
The solid red histograms show the results of the reconstructions from the mock
shear catalogs with penalty parameters: λ = 3.5, 4.0, 5.0, from left to right. The
dashed blue histograms are the corresponding results of the reconstruction from
1000 realizations of pure noise catalogs. The gray lines are the best-fit Gaussian

distributions to the noise peak histograms.

where K(zl, zs) is the lensing kernel. Figure 4.10 demonstrates the histograms of the
normalized peaks with different penalty parameters . In the figure, the histograms
from 100 realizations of all the halos sampled in the redshift-mass plane are stacked
together. Additionally, 1000 realizations of pure noise catalogs are generated and the
reconstruction are performed using the noise catalogs with the intent to examine the
noise properties. The histograms of the normalized peaks detected from the pure
noise catalogs are shown in Figure 4.10 along with the best-fit Gaussian functions of
the noise peak histograms.

It is found that the number counts including both true and false peaks decrease
as the penalty parameter λ increases. In addition, the standard deviation of noise
peaks decreases as λ increases. As a result, with λ = 5.0, a clearer excess is found in
the positive peak counts compared with the noise peak histograms, especially at the
high density contrast. This is expected because a higher penalty parameter prefers a
sparser solution; more peaks originating from the noise are removed than those from
real clusters at the high density contrast.

The position offsets of the detected halos compared to the input positions are
demonstrated in Figure 4.11. The left panel shows the 2D number histograms stacked
over all the simulations as a function of the angular distance and the redshift offsets.
A clear clustering of the peaks close to the position of the input halo is found on
the stacked number histogram. For each simulation, the positive peaks closest to the
input position (in the pixel unit) is identified. If a closest peak is located inside the
region denoted with the dashed box in the left panel of Figure 4.11, it is regarded
as a “true” peak detection. Other identified peaks, which include both positive and
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Figure 4.11: The left panel shows the stacked 2D distribution of the deviations
of detected peak positions from the centers of the corresponding input halos. The
x-axis is for the deviated distance in the transverse plane, and the y-axis is for the
deviation in redshift. In each simulation, the positive peak inside the dashed black
box with the minimal offset (in the pixel unit) from the position of the input halo is
taken as “true” detection. The right panel shows the redshift deviation of detected
peaks. The x-axis is the input halo redshifts, and the y-axis is the redshift of the
detected peak. The cross-points denote the average of the detected peaks for each
halo over different noise realizations, and the error-bars indicate the uncertainties
of the averages. The deep gray area indicates relative redshift bias less than 0.05,
and the light gray area for relative redshift bias less than 0.5. These results are

based on the reconstruction with the NFW dictionary with λ = 3.5 .

negative peaks, are judged to be false detection.
The right panel of Figure 4.11 shows the estimated redshift of the “true” detections

averaged over the simulations (with different noise realizations) for each halo as a
function of the input redshift. As shown, the estimated redshifts are slightly lower
than the ground truth by ∆z ∼ 0.03 for halos in the low-redshift range (z ≤ 0.4).
For halos at 0.4 < z ≤ 0.85, the relative redshift bias is below 0.5%. The standard
deviation of the redshift estimation is 0.092.

In order to reduce the number of false detections, peaks are selected as galaxy
clusters if the peak values are greater than an empirically determined threshold.
The threshold is set in units of the standard deviation of the noise peaks. Different
detection thresholds (1.5σ and 3.0σ) are used to detect galaxy clusters from the mass
maps reconstructed with different penalty parameters. Figures 4.12 and 4.13 show the
detection rates for halos in the redshift-mass plane for different penalty parameters
(λ = 3.5 and λ = 5.0). The corresponding number of false detections per square
degree as a function of detection threshold are also demonstrated in the figures.

As shown, the false peak density is successfully reduced for relatively large detec-
tion threshold, but the detection rate of halo also decreases. After a few experiments,
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Figure 4.12: The detection rates and false peak densities for different detection
thresholds. The left (middle) panel shows the halo detection rates for detection
threshold that equals 1.5σ (3.0σ). The black lines refer to the contours for detection
rates that equal 0.1 . The right panel shows the density of false peaks as a function

of detection threshold. The penalty parameter is set to λ = 3.5 .
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Figure 4.13: The same as Figure 4.12, but for the penalty parameter λ = 5.0 .

the detection threshold is fixed to 1.5σ and set the penalty parameter λ to 5.0 since
the combination suppresses the false detection to 0.022 while keeping a high halo de-
tection rate. In summary, the mass map reconstruction method is able to detect halos
with minimal mass of 1014.0h−1M⊙, 1014.7h−1M⊙, 1015.0h−1M⊙ for the low (z < 0.3),
median (0.3 ≤ z < 0.6) and high (0.6 ≤ z < 0.85) redshift ranges, respectively.

Using the detection rate measured from the simulations, it is possible to predict
the number density of clusters that can be detected with the assumption on the halo
mass function of Tinker et al. (2008). Here, HMF (Murray et al., 2013), which is
an open-source package3, is used to calculate the halo mass function. The predicted
halo detection number density for the setup λ = 5 and 1.5σ detection threshold is
shown in Figure 4.14. The resulting cluster number density is 0.49 deg−2, which

3https://github.com/halomod/hmf

https://github.com/halomod/hmf
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Figure 4.14: The expected number density of detected clusters per square degree
as a function of halo redshift (x-axis) and halo mass (y-axis). The number density

in total is 0.49 deg−2 .

is much higher than the estimated false detection rate: 0.022 deg−2. This cluster
number density corresponds to 78.4 clusters for the first-year HSC shear catalog
(Mandelbaum et al., 2018b), which has a survey area of ∼ 160 deg2. In summary,
the expected number of detection is slightly higher than that of 2D cluster detections
(63 detected clusters) for the first year HSC shear catalog (Miyazaki et al., 2018a).
Furthermore, the 3D detection method provides an accurate redshift estimation for
individual clusters; whereas, the redshift information is not provided from the 2D
mass map reconstruction.

4.5 Summary
This section develops a novel method to generate high-resolution 3D density maps
from weak-lensing shear measurement with photometric redshift information. The
3D density field is modelled by a collection of NFW atoms with different physical
sizes. With a prior assumption that the clumpy mass distribution is sparse in 3D,
we reconstruct the density map using the adaptive LASSO algorithm (Zou, 2006). It
has been found that the standard LASSO algorithm results in significant smearing
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of structure in the line of sight direction even in the absence of galaxy shape noise
and photometric redshift uncertainties. Our adaptive LASSO algorithm efficiently
reduces the smearing of structure. The performance of cluster detection with the
reconstructed 3D mass maps has been examined using mock catalogs that apply
shear distortions from isolated halos to galaxies with HSC-like shapes and photo-z
uncertainties. Under the realistic conditions, our method is able to detect halo with
minimal mass limits of 1014.0h−1M⊙, 1014.7h−1M⊙, 1015.0h−1M⊙ at low (z < 0.3),
median (0.3 ≤ z < 0.6) and high (0.6 ≤ z < 0.85) redshifts, respectively, with an
average false detection of 0.022 deg−2. The estimated redshifts of the clusters detected
in the reconstructed mass maps are slightly lower than the true redshift by ∆z ∼ 0.03

for halos at low redshifts (z ≤ 0.4). The relative redshift bias is below 0.5% for halos
at 0.4 < z ≤ 0.85, and the standard deviation of the redshift estimation is 0.092.

There are two other 3D mass map inversion methods adopting different dictio-
naries and regularizations:

• Simon et al. (2009) proposed to perform a reconstruction in Fourier space, which
is equivalent to representing the density contrast field with sinusoidal functions.
However, sinusoidal functions are not localized in configuration space, and the
density contrast field is not sparse in Fourier space; therefore, sparsity priors can
not be directly applied to this model dictionary for high-resolution mass map
reconstructions. This method used the Wiener filter, which is also known as l2

ridge penalty, to find a penalized solution in Fourier space. Oguri et al. (2018)
applied this method to the first-year shear catalog of the Hyper Suprime-Cam
Survey (Aihara et al., 2018b), and found that the density maps reconstructed by
the method suffer from significant line-of-sight smearing with standard deviation
of σz = 0.2− 0.3.

• Leonard et al. (2014) proposed to model the density contrast field with starlets
(Starck et al., 2015). This method is known as GLIMPSE algorithm. However,
the Starlet dictionary does not account for the angular scale difference at differ-
ent lens redshifts, and it is not specifically designed to model the clumpy mass
distribution in the Universe. This method adopted a derivative version of the l1

LASSO penalty to find a sparse solution in the Starlet dictionary (Starck et al.,
2015). It reduced the smearing by adopting a “greedy” coordinate descent al-
gorithm on a non-convex penalized loss function. Even though the non-convex
loss function does not have global minimum, the “greedy” coordinate descent
algorithm forced the structure to grow only on the most related lens redshift
plane. However, this method cannot be directly applied to large dataset.

Compared to those methods, our method uses a more model dictionary that is
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more representative to the mass distribution of clumpy dark matter in the universe.
Moreover, our loss function is strictly convex; therefore, it can be directly applied
to large data set in real observation. The performance of our algorithm will be
demonstrated in Chapter 5.
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This chapter serves to apply the 3D mass map reconstruction algorithm intro-
duced in Chapter 4 to the weak lensing shear catalog introduced in Chapter 2, and
reconstruct a 3D weak lensing mass map using a 4◦×4◦ region of the HSC three-year
data.

5.1 Algorithm and setup
The updates and setups of the algorithm are first introduced in this section.
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5.1.1 non-negative Elastic net

The algorithm is updated to the adaptive elastic net version according to Zou &
Zhang (2009). The elastic net (Zou & Hastie, 2005) estimation is defined as

x̂′
(0) = (1 + η) arg min

x

{∥∥∥Σ− 1
2 (γ −A′x′)

∥∥∥2
2
+ C(0)(x

′)

}
, (5.1)

where C(0) is the regularization term given by

C(0)(x
′) = 2

∥∥λ(0) ◦ x′∥∥1
1
+
∥∥η(0) ◦ x′∥∥2

2
, (5.2)

where “◦” refers to the element-wise product and the index (0) refer to the preliminary
estimation. As shown, the elastic net algorithm is a hybrid of l1 and l2 regulariza-
tions, where λ is the LASSO (l1) regularization parameter and η is the Ridge (l2)
regularization parameter. The l1 term is in charge of selecting modes that are related
to data while setting the others to zeros; the l2 term stabilizes the selection process
and avoid mistakenly setting modes related to data to zero. Note that the (1 + η)

term is multiplied to the estimation is to avoid the double shrinkage from LASSO
and Ridge regularization (Zou & Hastie, 2005).

In addition to the elastic net regularization, a non-negative penalty requiring
x′ ≥ 0 (see e.g., Wu et al., 2014) is used to regularize the loss functions, and thus the
estimations focus on reconstructing mass distribution within massive halo and the
negative density contrast field in voids are not take into account here.

Adaptive weights derived from the former estimation are used to to penalize dif-
ferent projection coefficients in the l1 penalty following Zou (2006). The weighting
vector for the ‘(t)’-th estimation is given by

ŵ(t) =
1∣∣∣x̂′

(t−1)

∣∣∣τ , (5.3)

where x̂′
(t−1) is the ‘(t − 1)’-th estimation. The adaptive elastic net (Zou & Zhang,

2009) is a generalization of adaptive LASSO, the estimator of which is given by

x̂′
(t) = arg min

x′

{
1

2

∥∥∥Σ− 1
2 (γ −A′x′)

∥∥∥2
2
+ C(t)

}
(5.4)

The regularization of the ‘(t)’-th estimation is

C(t)(x
′) = 2

∥∥λ(t) ◦ x′∥∥1
1
+
∥∥λ(t) ◦ ŵ(t) ◦ x′∥∥1

1
. (5.5)
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Figure 5.1: The stacked photo-z posteriors in each source redshift bin. The
colored regions denote the source redshift bins.
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5.1.2 Setup

The source galaxies are separated into 10 redshift bins, which is shown in Figure 5.1.
The pixel size in the transverse plane for both shear field and reconstructed kappa
map are set to 2′. Gaussian smoothing is not applied on the transverse plane. The
pixel scale in the line-of-sight direction is set to 0.06, and the redshift range is from
0.06 to 0.78. That is, the lens redshift is divided into 12 bins.

The elastic net estimator is used for the preliminary estimation since it is rea-
sonable to start from a stable estimation. For the adaptive estimation after the
preliminary estimation, η is set to zero, and it reduces to LASSO estimator, which
focus on selecting related modes. The setup for the preliminary estimation t = 0 is
λ(0) = 0, η(0) = 1 , which is a Ridge estimation rescaled by (1 + η(0)). The setup for
the subsequent estimation is λ(t) = 5 (σnoi)

τ , η(t) = 1. The hyper-parameter τ is set
to 2. The parameter σnoi is the STD of pure noise which is obtained by applying the
Ridge estimator to 200 realizations of a pure noise field.

5.2 3D mass map
The algorithm is run on a 16 deg2 (4◦× 4◦) region in the XMM filed of the three-year
HSC shear catalog. The stacked posteriors for 10 source galaxy redshift bins are
demonstrated in Figure 5.1.

Figure 5.2 demonstrates a number of lensing kernels with (dashed lines) and with-
out (solid lines) the influence of photo-z uncertainties. As shown, the photo-z un-
certainties do not change the shape of lensing kernel significantly, hence no further
calibration is conducted on the photo-z posteriors in the 3D mass map reconstruction.

Figure 5.3 shows the normalized number histograms of the first shear compo-
nent g1 on individual galaxy level (blue lines) and on individual pixel level (orange
lines) after pixelation As shown, the noise on shear estimation is reduced after pixela-
tion Furthermore, the number histogram on individual pixel level is not significantly
different from a Gaussian distribution, which indicates that the noise on the shear
measurements can be approximate by a Gaussian random variable.

The reconstructed 3D mass map in the 16deg2 region from field XMM is demon-
strated in Figure 5.4. After reconstruction, local peaks are detected from the mass
map. As demonstrated by Figure 5.4, the sparse penalty sets most of the pixels to
zero; therefore, the peak identification from the mass map is straightforward. Peaks
are merged if the distance between two peaks are less than two pixels, namely 4′,
and the redshift difference is less than 0.12 . The center of the detection is set to the
highest peak among the merged detection.
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Figure 5.4: The reconstructed 3D weak lensing mass map using shear measure-
ments from a 4◦ × 4◦ region in the XMM field. The color bar indicate the value of

the reconstructed density contrast field.

Moreover, it is possible to estimate halo masses of galaxy clusters from the 3D
mass map by summing up the M200 for all the NFW basis atoms that are identified
as part of the galaxy cluster. To be more specific, the M200 value of each basis atom
can be calculated from the projection coefficient on this basis atom.

5.3 Matching to Optical clusters
Clusters can also be identified using the galaxy clustering information observed from
SDSS (Section 5.3.2) and HSC (Section 5.3.1).

5.3.1 CAMIRA Clusters

The “Cluster finding algorithm based on Multiband Identification of Red-sequence
gAlaxies”(CAMIRA) clusters (Oguri et al., 2018) are detected by the CAMIRA al-
gorithm (Oguri, 2014) from the multi-bands images of the HSC Wide layer (Aihara
et al., 2018b). The CAMIRA algorithm is based on the Stellar Population Synthesis
(SPS) model of Bruzual & Charlot (2003) to predict colors of red-sequence galaxies
at a given redshift for an arbitrary set of bandpass filters. This SPS prediction is then
calibrated with spectroscopic galaxies to improve the accuracy of the model predic-
tion. Using the calibrated SPS model, CAMIRA algorithm computes the likelihood
of each galaxy being in the red sequence as a function of redshift and create a 3D
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Figure 5.5: The scatter points show the relation between the redshifts of galaxy
clusters estimated from the weak lensing mass map and the redshifts of their best-
match optical clusters from CAMIRA and WHL15 catalogs. The blue “×” show
the average of weak-lensing redshift versus the average of optical redshift in the
optical redshift range z < 0.25, 0.25 < z < 0.50, and 0.50 < z < 0.75, respectively.

The error bars are the error of the average.

richness map based on the likelihood. The CAMIRA clusters are detected as the
peaks of the richness map with a richness threshold Nmem = 15. The center of the
cluster is defined as the center of the Brightest Cluster Galaxy (BCG).

5.3.2 WHL15 Clusters

Wen & Han (2015, WHL15) identify a cluster if more than eight member galaxies
with r-band magnitude brighter than 21 are found within a radius of 0.5 Mpc and a
photo-z gap of z ± 0.04(1 + z) in the in photometric images of SDSS DR12 (Alam
et al., 2015). The richness of the identified cluster are subsequently calibrated using
cluster masses estimated by X-ray or Sunyaev–Zeldovich measurements.

5.3.3 Results

The detected clusters from the weak lensing mass map are matched to the aforemen-
tioned optical galaxy clusters. The match distance is set to 2.5 pixels, namely 5′. If
one weak lensing cluster candidate has more than one matches in the optical cluster
catalogs (i.e., CAMIRA and WHL15), the optical cluster with the minimum redshift
difference is selected as the best-match to the weak lensing detection. On the other
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Figure 5.6: The stacked tangential shear as a function of angular distance to the
detected peak for weak lensing detected clusters have matches and do not matched

to the optical clusters.

hand, if one weak lensing cluster candidate has only one match, the match is regarded
as the best-match. The weak lensing redshift versus the redshift of the best-match
optical cluster is shown in Figure 5.5. The color indicates the M200 estimated from the
weak lensing mass map. I bin the matched cluster into three redshift bins–z < 0.25,
0.25 < z < 0.50, and 0.50 < z < 0.75—and compare the average weak lensing redshift
versus optical cluster redshift. A good correlation between the optical redshift and
weak lensing redshift is detected even though the weak lensing redshift is relatively
low compared to the optical redshift at the high redshift end.

In summary, 49 cluster candidates are detected from the 3D weak lensing mass
map and 40 of them have matches to optical clusters. The stacked tangential shear
signal of background galaxies with redshifts z > zwl + 0.1 is shown in Figure 5.6,
where zwl refers to the redshift estimated from the 3D mass map. Both the results
for matched detections and unmatched detections are plotted. The results show that
even the matched and unmatched detections causes comparable weak lensing shear
distortion on the corresponding background galaxies. Those unmatched detection can
be non-viralized dark matter projections, systematics or dark clusters with very high
mass-to-light ratio. It is necessary to study the contamination from projected large
scale structure in the detected peaks using weak lensing mock catalogs (Shirasaki
et al., 2019).
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Summary and Outlook
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6.1 Weak lensing shear catalog
This thesis presented the HSC three-year galaxy shear catalog covering an area of
433.48 deg2 of the northern sky, with a mean i-band seeing of 0.59 arcsec. With
conservative galaxy selection criteria, the raw galaxy number density is 22.9 arcmin−2

and the effective galaxy number density is 19.9 arcmin−2. The galaxy catalog has a
depth of 24.5th magnitude.

The current three-year galaxy shear catalog were calibrated with HSC-like im-
age simulations that transfer the galaxy images from COSMOS HST to the HSC
observing conditions. The simulated galaxy sample has the same distributions of
galaxy properties as the real HSC data. The following subsections outlook the future
developments on realistic galaxy image simulations.
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6.1.1 Redshift-dependent shear in simulations

MacCrann et al. (2020) used parametric galaxy models that are fitted to the COSMOS
HST galaxies as their input training sample, and they randomly populated these
parametric galaxies in a homogeneous manner with a density matched to the DESY3
observation to simulate multi-band DES images that were used to test and calibrate
METACALIBRATION (Sheldon & Huff, 2017).

They tested the performance of their pipeline with redshift-dependent-shear sim-
ulations, in which galaxies at different redshifts were distorted by different lensing
shears, and compared the results with those from the conventional constant-shear
simulations. According to Fig. 8 of MacCrann et al. (2020), the amplitude of the
additional multiplicative bias due to the redshift-dependent shear is below 1% for
redshift z < 1, whereas the multiplicative bias reaches ∼ 3% for redshifts 1 < z < 3 .

However, the discrepancies of the 1D and 2D histograms (see Fig. 3 of MacCrann
et al., 2020) of galaxy properties between the simulations and the corresponding data
are visually larger when compared to the results in Figs. 2.12 and 2.13 for the DES
three-year galaxy image simulations. This difference may be explained by using the
postage stamps from the COSMOS HST images where the galaxy morphologies and
the clustering (distance) between neighboring galaxies are fully realistic.

It is impossible to directly apply redshift-dependent shear distortions to blended
galaxies in the current stamp-based image simulations since the current image simu-
lations are constructed in units of postage stamps from the COSMOS HST images,
and all the galaxies in one postage stamp can only be distorted in one piece by a con-
stant shear. In contrast, MacCrann et al. (2020) are constructed in with parametric
galaxy models. For that model-based simulations, redshift-dependent shears can be
applied on blended galaxies on individual galaxy level.

The influence of redshift-dependent shear distortions in detail in the future image
simulations.

6.1.2 Multi-band image simulations

Utilizing the galaxy shapes measured from filter bands other than i-bands in the
HSC Wide layer can help reducing the shape estimation uncertainties in weak lensing
analyses. However, shapes that are measured from other bands cannot be applied
to weak lensing science since only i-band image simulations are produced to validate
and calibrate shear estimations. This is because the input galaxy training images are
from the COSMOS HST F814W filter band, the transmission curve of which has a
much larger overlap with that of the HSC i-band filter than other bands. Therefore,
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it would be necessary to carefully check whether the input training samples are still
representative of the galaxy images in other filter bands in the future works.

6.1.3 unrecognized blendings

Unrecognized blending refers to the situation where multiple blended sources are iden-
tified as one single source by the pipeline. It has been shown by many existing works
that unrecognized blends have two impacts on the accuracy of shear measurements:

(i) Sheldon et al. (2020) found that the possibility of unrecognized blends depends
on the underlying shear distortion. Such a shear-dependent blending identifi-
cation leads to an anisotropic selection in the galaxy sample; therefore, it can
result in a few percent multiplicative bias.

(ii) MacCrann et al. (2020) found that shear estimated from a detected source with
unrecognized blends is a weighted average of the true shears at different redshifts
of each of the blends. Simulations that fail to reproduce the redshift dependent
shear leads to a bias in the effective galaxy number density on redshift: n(z).

Since the current image simulations directly used real images from the HST survey
in our simulations, both recognized and unrecognized blended galaxies that can be
resolved by the HST survey were fully included in the current simulations. Based
on the fact that the matches in the histograms of different galaxy properties to the
HSC data are reasonably good after applying a conservative galaxy selection, the
incompleteness of the input HST sample (limited at F814W= 25.2) is not likely to
cause significant biases that are not accounted for in the current simulations.

However, the current image simulations are in the regime that blended galaxies are
distorted by the same shear. More efforts will be taken to understand and control the
systematic biases related to unrecognized blending, especially under the circumstance
of redshift-dependent shear distortion.

6.2 FPFS shear estimator
Fourier Power Function Shapelets (FPFS, Li et al., 2018) shear estimator is one of the
shear estimators that can reach sub-percent (∼ 0.6%) accuracy on isolated galaxies,
but it relies on a calibration of a few percent (∼ −5.7%) multiplicative shear bias
in the presence of blending. I will improve the FPFS shear estimator, especially for
the cases with blending. Here I summarize the difficulties need to be overcome to
improve the FPFS shear estimator and reduce the shear estimation bias to subpercent
level for blended galaxies.
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6.2.1 Blending identification

Sheldon et al. (2020) found that the blending identification—the possibility that a
blending is identified by the source detector—is dependent on the lensing-shear signal.
The shear dependent blending identification induces an shear dependent anisotropy
in the galaxy sample and thus leads to multiplicative bias in the shear estimation
up to 4% under the situation of LSST-like galaxy number density. It is necessary to
study the process of blending identification and correct for the bias from the shear
dependent blending identification in the FPFS shear estimation.

6.2.2 Deblending

According to the results from recent researches (e.g., Li et al., 2018; MacCrann et al.,
2020), it is necessary to improve the algorithm for deblending to control the shear
estimation bias at subpercent level in the situation with blending. Recent researches
explore the probability of using multi-bands information to isolate blended galaxies
(Melchior et al., 2018). I will work on new algorithms to improve the performance of
deblending on recovering the true shape of blended galaxies.

6.3 Cosmology analysis with 3D mass map
The analysis on the abundance of galaxy clusters is playing a crucial role in con-
straining cosmology. Since the number density of galaxy clusters as a function of
mass and redshift, which is known as the halo mass function, is sensitive to, e.g., the
density parameter of matter in the Universe ΩM , and the dispersion of linear density
fluctuations on a comoving scale of 8 h−1Mpc, namely σ8 .

As shown in Chapter 5, galaxy clusters can be identified from the 3D weak lensing
mass maps. Both the redshift and the mass can be derived from 3D mass maps
without any assumption on the relation between baryonic matter and dark matter.
However, the bias and the covariance of the cluster abundance measurement need to
be carefully studied using cosmological simulations. The mass estimation suffers from
Eddington bias (Chen et al., 2020) originating from low-mass halos that scattered
beyond the lower mass limit due to the influence of noise. In addition, the bias of
the cluster redshift estimation need to be carefully quantified. I am going to run
the weak lensing 3D cluster detector on HSC-like mock galaxy catalogs with different
realizations (Shirasaki et al., 2019).
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