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Abstract 

The tsunami data assimilation approach has been proposed for tsunami early 

warning. It estimates the tsunami waveform by assimilating observed offshore data into 

a numerical simulation without considering the source based on Optimal Interpolation 

method. However, previous data assimilation approach has a relatively high 

computational cost as it is necessary to run numerical simulations to obtain the entire 

tsunami wavefield during the assimilation process. The previous approach also requires 

a dense offshore observation network, making it difficult to conduct data assimilation in 

regions with sparse observations. 

In this thesis, I first proposed Green’s Function-based Tsunami Data 

Assimilation (GFTDA) to reduce the computation time for assimilation. It can forecast 

the waveform at Points of Interest (PoIs) by superposing Green’s functions between 

observational stations and PoIs. Unlike the previous assimilation approach, GFTDA does 

not require the calculation of the tsunami wavefield for the entire region during the 

assimilation process because Green’s functions are calculated in advance. A simple 

matrix manipulation can allow the calculation of the forecasted waveforms. I applied this 

method to data from the 2012 Haida Gwaii earthquake, the 2004 off the Kii Peninsula 

earthquake, and the 2015 Torishima volcanic tsunami earthquake. GFTDA achieved an 

equivalently high accuracy of tsunami forecasting as the previous approach, while saving 

sufficient time to achieve an early warning. It also enabled the application of a more 

complicated tsunami propagation model to data assimilation, such as the linear dispersive 

(DSP) model, which predicts the tsunami arrival time more accurately. 

Next, I proposed a modified tsunami data assimilation method for regions with 

a sparse observation network. The method uses interpolated waveforms at virtual stations 

to construct the complete wavefront for tsunami propagation. The artificial tsunami 

waveforms at the virtual stations between two existing observational stations could be 

estimated by shifting arrival times with linear interpolation of observed arrival times and 

by correcting the amplitudes using water depths. This was based on the assumption that 

tsunamis propagate as a plane wave, and that the wavefront is nearly a straight line. After 

computing the waveforms for virtual stations, the data assimilation algorithm was applied 

to real and virtual stations. Its application to the 2004 Sumatra–Andaman earthquake, the 
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2009 Dusky Sound, New Zealand earthquake, and the 2015 Illapel earthquake revealed 

that adopting virtual stations greatly improved the tsunami forecasting accuracy for 

regions without a dense observation network. 

Additionally, I proposed a real-time tsunami detection algorithm using 

Ensemble Empirical Mode Decomposition (EEMD). EEMD adaptively decomposes a 

time series into a set of Intrinsic Mode Functions (IMFs). The tsunami signals of the 

Offshore Bottom Pressure Gauge (OBPG) can be automatically separated from the tidal 

components, seismic waves, and background noise. Unlike traditional tsunami detection 

methods, the new algorithm does not require tidal predictions. The application to the 

actual data of cabled OBPGs off the Tohoku coast showed that it successfully detected 

the tsunami from the 2016 Fukushima earthquake (M 7.4). The method was also applied 

to the extremely large tsunami from the 2011 Tohoku earthquake (M 9.0) and extremely 

small tsunami from the 1998 off Sanriku earthquake (M 6.4). The algorithm detected the 

former, which caused devastating damage, whereas it did not detect the latter micro 

tsunami, which was not noticed on the coast. The algorithm was also tested for a month-

long OBPG data, and no false alarm occurred. Hence, the algorithm could detect tsunami 

arrival with a short detection delay and accurately characterize the tsunami amplitude.  

Furthermore, I combined the tsunami data assimilation approach with the real-

time tsunami detection algorithm. The tsunami of the 2016 Fukushima earthquake was 

recorded by the offshore pressure gauges of the Seafloor Observation Network for 

Earthquakes and Tsunamis (S-net). I used 28 S-net pressure gauge records for tsunami 

data assimilation and forecasted the tsunami waveforms at four tide gauges on the Sanriku 

coast. The S-net raw records were processed using two different methods. In the first 

method, I removed the tidal components by polynomial fitting and applied a low-pass 

filter. In the second, I used the real-time tsunami detection algorithm based on EEMD to 

extract tsunami signals, imitating real-time operations for tsunami early warning. The 

scores of forecasting accuracy of the two detection methods were 60% and 74%, 

respectively, for a time window of 35 min, which improved to 89% and 94%, respectively, 

if stations with imperfect modeling or insufficient offshore observations were omitted. 

Hence, the proposed tsunami data assimilation approach can be put into practice with the 

help of the real-time tsunami detection algorithm. Finally, I proposed a tsunami early 

warning system using data assimilation of offshore data for Japan. 
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Chapter 1   Introduction 

 

1.1 Tsunami Early Warning 

Tsunamis are devastating natural disasters that can cause substantial loss of life 

and severe property damage. The 2011 Tohoku Earthquake (M 9.0) generated a 

catastrophic tsunami that killed thousands of people and caused serious damage to the 

nearby Fukushima Daiichi Nuclear Power Station (Satake, 2015). Tsunami early warning 

for near-shore communities can help enable timely evacuation. Accurate and rapid 

forecasting of impending tsunamis is essential for successfully reducing the loss of life 

and property damage (Tsushima et al., 2009). 

Generally, there are three types of tsunami forecasting methods for early 

warning (Figure 1.1). For most seismogenic tsunamis, the traditional tsunami early 

warning approach relies on rapid estimates of the earthquake location, depth, and seismic 

moment (Lomax and Michelini, 2011). For example, the Japan Meteorological Agency 

(JMA) issues the first tsunami warning for near-field tsunamis about 3 minutes after an 

earthquake (Kamigaichi, 2015). The earthquake location, depth and magnitude are 

estimated from seismic data, and then used to search tsunami simulation database that 

stores tsunami calculation results for many earthquake-fault models. The tsunami arrival 

times and amplitude on 66 forecasting segments of Japanese coasts are used for tsunami 

warning. In addition, the Pacific Tsunami Warning Center (PTWC) issues tsunami early 

warnings based on the results of W-phase source inversion (Duputel et al., 2011). The W 

phase is a fast, long-period seismic wave used for rapid point source moment tensor 

inversions (Benavente et al., 2016; Kanamori and Rivera, 2008). W-phase inversion can 

be completed within 5–10 min when seismic data at regional distances are used. After an 

earthquake, the point source moment tensor is obtained using the regional seismic data, 

and forward simulation is then used to calculate the tsunami wavefield (Duputel et al., 

2011; Tang et al., 2016; Wang et al., 2012). For the 2015 Illapel earthquake, the PTWC 

issued a tsunami early warning to the Chilean coast after the earthquake and tsunami 

warnings or advisories for other regions, such as Easter Island, New Zealand, Fiji, Hawaii, 
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and the Solomon Islands. It later downgraded the warnings. This approach works quickly 

but is affected by uncertainties in the rapid seismic source inversion (Cienfuegos et al., 

2018). Additionally, some earthquake events have an abnormal focal mechanism (e.g., 

Compensated Linear Vector Dipole; CLVD), making it difficult to forecast tsunamis from 

seismic information (Wang et al., 2019b).  

Another tsunami forecasting method uses offshore tsunami data to invert the 

initial condition, such as the initial slip on fault or initial sea surface displacement. It then 

simulates the propagation process to forecast the tsunami height or inundation on coasts. 

For example, in Japan, Tsushima et al. (2009) proposed tsunami Forecasting based on 

Inversion for Sea-surface Height (tFISH). It inverts the tsunami waveform data to 

estimate the distribution of initial sea-surface height, then derives tsunami waveforms 

from the estimated source parameters. This method has been successfully applied to 

retroactive studies of the 1896 Sanriku and 2011 Tohoku earthquakes (Tsushima et al., 

2009; 2011). In the United States, the National Oceanic and Atmospheric Administration 

(NOAA) attempted to build practical tsunami forecasting tools based on offshore tsunami 

data from the Deep-ocean Assessment and Reporting of Tsunami (DART) system, known 

as the Short-term Inundation Forecast for Tsunamis (Titov, 2009; Titov et al., 2005). 

Similar methods include the Near-field Tsunami Inundation Forecasting (Gusman et al., 

2014), Time Reverse Imaging (TRI) (Hossen et al., 2015), and multi-index methods 

(Yamamoto et al., 2016a). However, these methods still must estimate the tsunami source 

so uncertainties in source estimation affect forecasting. Moreover, both types of methods 

require the origin time of an earthquake (Hossen et al., 2015; Tsushima et al., 2009), and 

they do not work for tsunami events caused by non-earthquake origins like landslides or 

volcanoes. For example, the collapse of the Anak Krakatau Volcano in December 2018 

generated a tsunami in the Sunda Strait, Indonesia, with a maximum run-up height of 13.5 

m (Muhari et al., 2019). Inversion methods have difficulties with such non-earthquake 

tsunamis. 

Different from these two types of methods, the tsunami data assimilation 

approach is a new method of tsunami forecasting that completely avoids the complexities 

and uncertainties in source estimation. Data assimilation was originally used for 

operational numerical weather forecasts in meteorology and oceanology (Kalnay, 2003; 

Lynch, 2008), and was first proposed for tsunami forecasting by Maeda et al. (2015). The 
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tsunami data assimilation approach forecasts the tsunami based on offshore observations 

without considering the earthquake source parameters or the initial sea surface 

distribution. The tsunami wavefield, including tsunami height and velocities in two 

directions, can be estimated based on real-time data from tsunameters (Gusman et al., 

2016b; Maeda et al., 2015). A major characteristic of the tsunami data assimilation 

approach is that it does not rely on source information, and is thus free from the 

complexities of source characterization (Cienfuegos et al., 2018; Yang et al., 2019). This 

method has already been successfully applied to retroactive studies of synthetic tsunamis 

in the Tohoku region of Japan, which were generated by an earthquake similar to the 2011 

Tohoku earthquake (Maeda et al., 2015), and real tsunamis recorded by pressure gauges 

in the Cascadia subduction zone (Gusman et al., 2016b). More details on the tsunami data 

assimilation approach are provided in Section 1.3. 

 

Figure 1.1. Three types of tsunami forecasting methods.  

The blue arrow indicates the traditional tsunami early warning method based on seismic 

observations. The green arrow indicates the method using offshore tsunami data to invert 

the initial condition. The red arrow indicates the tsunami data assimilation approach. 

 

1.2 Numerical Modeling of Tsunami Propagation 

For either type of early warning, it is important to simulate the tsunami 
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propagation by numerical modeling. In this section, I will introduce the basic governing 

equations of tsunami propagation. Tsunami is a series of oceanic gravity waves as the 

gravity is the restoring force. The motion of fluid can be described by the following three-

dimensional Navier-Stokes (3-D NS) equations, where we take the 𝑧 axis in the vertical 

upward and the 𝑥 and 𝑦 axes in horizontal space in Cartesian coordinates (Saito and 

Furumura, 2009). 

𝜕𝑉𝑥

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑥

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑥

𝜕𝑧
= −

𝜕

𝜕𝑥
(

𝑝

𝜌
) + 𝜐∇2𝑉𝑥  (1.1) 

𝜕𝑉𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑦

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑦

𝜕𝑧
= −

𝜕

𝜕𝑦
(

𝑝

𝜌
) + 𝜐∇2𝑉𝑦 (1.2) 

𝜕𝑉𝑧

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑧

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑧

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑧

𝜕𝑧
== −

𝜕

𝜕𝑧
(

𝑝

𝜌
) + 𝜐∇2𝑉𝑧 − 𝑔 (1.3) 

Here 𝑉𝑥, 𝑉𝑦, and 𝑉𝑧 are velocity components in 𝑥, 𝑦 and 𝑧 directions, respectively, 

𝑝 is the pressure, 𝜌 is the water density, 𝜐 is the kinematic viscosity coefficient for 

seawater, ∇2 is the total Laplace Operator, and 𝑔 is the gravitational acceleration. For 

large scale motion of water, the effects of viscosity are negligible. We also assume that 

the sea water is incompressible. Equations (1.1) – (1.3) can be simplified as: 
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Equations (1.4) – (1.6) are known as the Euler’s equations of motion. When the horizontal 

scale of motion, or the wavelength, is much larger than the water depth, the vertical 

acceleration of water is negligible compared to gravity. This means that the horizontal 

motion of water mass is almost uniform from the ocean bottom to the surface. Such a 

wave is called a shallow-water wave or a long wave (Satake, 2015). In such case, the 

hydrostatic relation is assumed that the pressure is proportional to tsunami height. The 3-
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D equations become a 2-D problem. The advection terms are neglected. For tsunamis, the 

typical ocean depth is about 4–5 km, and the source scale of large earthquakes is tens to 

hundreds kilometers. Therefore, tsunami propagation can be approximated by long-wave 

approximation. If the tsunami height is small compared to the water depth, Equations 

(1.4) – (1.6) become 
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Here ℎ  is the tsunami height at the sea surface. The equation of continuity, or 

conservation of mass, can be written as 
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Here 𝑑 is the water depth. Equations (1.7) – (1.9) form the linear long-wave (LLW) 

tsunami propagation model. 

However, the long-wave approximation breaks down when the wavelength of 

the water height distribution is not much greater than the water depth (Saito, 2019). In 

that case, the dispersive characteristics should be taken into consideration. When the 

dispersive effects are small ( 𝑘ℎ ≪ 1 ; k is the wavenumber), for the horizontal 

propagation of waves, the 3-D NS equations can be reduced to a 2-D one by integrating 

the equations over the water depth (Nwogu, 1993; Roeber et al., 2010). The governing 

equations of the linear dispersive (DSP) model are derived from the 3-D NS equations, 

the continuity equation and the kinematic boundary condition at the surface (Saito, 2019; 

Saito & Furumura, 2009). The continuity equation is the same as Equation (1.9). However, 

the difference between the linear DSP model and the LLW model lies in the dispersion 

terms of the equation of motion (Satake, 1989). In the LLW model, the dispersion terms 

are neglected, so the right-hand sides of Equations (1.7) and (1.8) are zero. In the linear 

DSP model, the equation of motion becomes: 
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These equations are also known as the linear Boussinesq equations (Satake, 2015). I 

acknowledge that the linear Boussinesq equations or the linear DSP model will deviate 

from the exact dispersive relation when the dispersion is large ( 𝑘ℎ ≳ 1 ), but it is 

applicable to seismogenic tsunamis that have not so large dispersion. The nonlinearity is 

assumed to be small and negligible in the linear DSP model. Saito & Fumurura (2009) 

found that the 2-D tsunami simulation can reproduce the results of the 3-D simulation if 

we take dispersion effect into account. Though we neglect the vertical motion or variation, 

the 2-D DSP model is almost same as the 3-D model.  

 There are two types of boundaries considered in the tsunami computation. The 

first is a land-ocean boundary. In my study, a total reflection of energy on the coast is 

assumed. However, for the computation of tsunami inundation, a moving land-ocean 

boundary is needed. Another kind of boundary is the open ocean boundary along the outer 

area of the computational region. For the radiation conditions, waves are assumed to leave 

the computational domain and maintain their slopes (Aida et al., 1969). 

As tsunami is a gravity wave, the conservation of energy flux can be 

described as 

𝑏0𝑑0
1/2

ℎ0
2 = 𝑏1𝑑1

1/2
ℎ1

2  (1.12) 

Here 𝑏 is the distance between the rays. This equation is known as the Green’s Law. It 

is a classic linear theory result and it describes the evolution of the wave height of periodic 

waves on plane beaches (Synolakis, 1990). In previous studies, Green’s Law has been 

used to estimate the tsunami height based on such assumptions (Baba et al., 2004; 

Sandanbata et al., 2018; Wang et al., 2012). The water depth and tsunami height are 

defined as average values over a horizontal scale of at least one wavelength of tsunami. 

For plane waves, the ratio 𝑏1/𝑏0 is 1. Hence, the tsunami height is inversely proportional 

to one-fourth of the power of water depth change.  

In my study, I correct the tsunami height at tide gauges affected by coastal 

amplification (shoaling effects), because the bathymetry data used in tsunami numerical 

simulation may slightly deviate from the realistic bathymetry around the tide gauge. 
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However, I must comment here that there is a problem with this application of Green’s 

Law. The Green’s Law does not include the effects of partial reflection on the continental 

shelf. Besides, the water depth or tsunami height should be an average value over more 

than one tsunami wavelength. This requirement may differ from reality. In my study, the 

tsunami wavelength varies from ~20 to ~100 km. If we want to obtain the tsunami height 

at coastal tide gauges more accurately, instead of using Green’s Law, it is necessary to 

obtain bathymetry data with higher resolution. In that case, we could use numerical model 

to calculate the tsunami height strictly, but such calculation requires finer bathymetry data 

and higher computational cost. 

In addition, in the method of virtual station, which will be explained in Section 

3.1, the tsunami heights at virtual stations are corrected taking into account the depth 

difference between the observational stations and interpolation point. The seafloor should 

be smooth enough to satisfy the assumption that the tsunami propagates as a plane wave 

and to reduce the effects of partial reflection. However, such correction should still be 

very cautious because Green’s Law requires the average values over a horizontal scale of 

at least one wavelength. 

 

1.3 Tsunami Data Assimilation Approach 

 Data assimilation was originally used in meteorology and oceanology. It 

produces the present state of a system by combining observational data along with an 

estimated state determined by a forecast model (Bellsky et al., 2014; Ito et al., 2016; 

Kalnay et al., 2007). Several algorithms are proposed for data assimilation, including 

Optimal Interpolation, Four-dimensional variational assimilation (4-D Var), Kalman 

Filter, etc. In this section, I briefly review the methods of 4-D Var and Kalman Filter. 

Then I explain the Optimal Interpolation method that is applied in this study. 

1.3.1 Four-Dimensional Variational Assimilation and Kalman Filter 

 4-D Var provides a least-squares fit of a model trajectory to the background and 

the observations in an assimilation window. The propagation of the background 𝒙𝑏 from 

the beginning of the window 𝑡0 to the end of the window 𝑡𝑛 using the forecast model 

is represented as: 
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𝒙𝑏 = 𝐹{𝒙𝑏(𝑡0)} (1.13) 

where 𝒙𝑏  is the four-dimensional representation over the assimilation window (the 

underscore representing a time-dependent vector). In tsunami science, the forecast model 

𝐹 corresponds to tsunami propagation model. The increment is defined as 

𝛿𝒙(𝑡0) = 𝒙(𝑡0) − 𝒙𝑏(𝑡0)   (1.14) 

which minimizes a cost function 𝐽 (Fairbairn et al., 2014; Tarantola, 1984). In order to 

improve the conditioning of the cost function, a control variable transform is applied 

(Lorenc, 2003) so that the increment is defined as a function of 𝒗: 

𝛿𝒙(𝑡0) = 𝑼𝒗   (1.15) 

where 𝑼 is designed such that 𝑼𝑼𝑇 = 𝑩 gives the climatological background-error 

covariance matrix. Here 𝑩 is homogeneous and 𝑼 consists of a scaling by the square 

root of the estimated power spectrum and a spectral transform. The increment is 

propagated using the propagation matrix 𝑴: 

𝛿𝒙 = 𝑴𝛿𝒙(𝑡0)   (1.16) 

The cost function obtained is 

𝐽(𝒗) =
1

2
𝒗𝑇𝒗 + (𝑯𝛿𝒙 − 𝒅)𝑻𝑹−1(𝑯𝛿𝒙 − 𝒅)   (1.17) 

where 𝑹 is the observation error covariance matrix, 𝑯 is the observation matrix that 

contains only 0 and 1 values. The innovation vector 𝒅 is defined as: 

𝒅 = 𝒚𝑛 − 𝑯(𝒙𝑏)   (1.18) 

 Kalman Filter is another data assimilation algorithm. It updates an analysis state 

from a weighted average of a model prediction and observations of the true state (Bellsky 

et al., 2014). Define the state variable at time step 𝑛 to be 𝒙𝑛. This corresponds to the 

true wavefield, which is unknown but can be estimated. At time 𝑛 − 1, the best estimate 

of 𝒙𝑛−1 is 𝒙𝑛−1. Let 𝑭𝑛 represent how the physical process evolves in one time step 

from 𝑛 − 1 to 𝑛. Let 𝑷𝑛−1 be the covariance matrix of 𝒙̂𝑛−1. The predicted mean of 

𝒙𝑛  and its covariance matrix are calculated via the following equations, with the 



 20 

superscript − representing the prior: 

𝒙𝑛
− = 𝑭𝑛𝒙̂𝑛−1   (1.19) 

𝑷𝑛
− = 𝑭𝑛𝑷𝑛−1𝑭𝑛

𝑇 + 𝑸𝑛   (1.20) 

where 𝑸𝑛 is a covariance matrix of the system noise that follows a normal distribution. 

The system noise enables the distribution of the state vector 𝒙𝑛 to follow observational 

data. Even though in some situations, the observational data contain phenomena that is 

difficult to predict, the system noise can still make the simulation follow observations. It 

can be included in the model of Kalman Filter. However, because it makes the derivation 

of the adjoint model of 4-D Var difficult, it is hardly included in 4-D Var. To incorporate 

data, let 𝑯 be the observation matrix. Then the distribution (assumed to be normal) of 

the predicted observations from the prior has mean 𝑯𝒙̂𝑛
− and covariance 𝑯𝑷𝑛

−𝑯𝑇. Let 

the actual observations be 𝒚𝑛  (assumed to be normal) and the covariance of 

observational error be 𝑹𝑛 . To optimally blend the prior estimate and the actual 

observation, the posterior distribution is calculated as follows: 

𝒙̂𝑛−1 = 𝒙𝑛
− + 𝑲𝑛(𝒚𝑛 − 𝑯𝒙̂𝑛

−)   (1.21) 

𝑷𝑛 = (𝑰 − 𝑲𝑛𝑯)𝑷𝑛
−   (1.22) 

where the Kalman gain is  

𝑲𝑛 = 𝑷𝑛
−𝑯𝑇(𝑯𝑷𝑛

−𝑯𝑇 + 𝑹𝑛)−1   (1.23) 

Equations (1.19) – (1.23) represent the prediction and update steps in Kalman Filter 

(Sasaki et al., 2018). 

Ensemble Kalman Filter (EnKF) is a stochastic approximation of Kalman Filter, 

which starts with an initial ensemble with 𝑁 members. There is an ensemble of predicted 

means 𝒙̂𝑛
− = [𝒙̂𝑛

−(1)
, … , 𝒙̂𝑛

−(N)
] instead of a single estimate at time 𝑛. 𝑷𝑛

− is directly 

calculated as Cov(𝒙𝑛
−) instead of applying Equation (1.20). There is also no need to 

calculate 𝑷𝑛. Instead of storing a full covariance matrix, EnKF presents the same error 

statistics using an ensemble of model states. 𝑁  perturbations 𝒗𝑛
(𝑖)

 are added to the 

observations, which are treated as random variables. For ensemble member 𝑖  ( 𝑖 =

1, … , 𝑁), 
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𝒙̂𝑛
(i)

= 𝒙̂𝑛
−(i)

+ 𝑲𝑛(𝒚𝑛 + 𝒗𝑛
(𝑖)

− 𝑯𝑛𝒙̂𝑛
−(i)

)   (1.24) 

As the ensemble size 𝑁 → ∞, EnKF converges to Kalman Filter. Hence, it leads to an 

interpretation of the EnKF as a purely statistical Monte Carlo method. The ensemble of 

model states evolves in state space with the mean as the best estimate and the spreading 

of the ensemble as the error variance (Evensen, 2003).  

 Though 4-D Var and EnKF methods are effective in estimating the present state, 

they are computationally expensive. For tsunami early warning purpose, it is quite 

important to adopt a method with low computational cost to save the calculating time.  

  

1.3.2 Optimal Interpolation 

The Optimal Interpolation method is usually adopted for tsunami data 

assimilation because it has a relatively low computational cost (Kalnay et al., 2007; Yang 

et al., 2019). It is simple and therefore has the advantage of high computational speed for 

tsunami prediction. It reconstructs the tsunami wavefield from data of offshore tsunami 

observations by minimizing the total error of all observations (Daley, 1991; Kalnay, 2003). 

In the numerical simulation, the tsunami wavefield at the n-th time step is represented as 

a column vector 𝒙𝑛 = (ℎ(𝑛Δ𝑡, 𝑥, 𝑦), 𝑉𝑥(𝑛Δ𝑡, 𝑥, 𝑦), 𝑉𝑦(𝑛Δ𝑡, 𝑥, 𝑦))𝑇, where ℎ is tsunami 

height, and 𝑉𝑥 and 𝑉𝑦 are velocities in the horizontal directions. The total number of 

grids is 𝐿. The state vector 𝒙𝑛 is a 3𝐿 ×  1 column vector, where 1 to 𝐿 components 

describe the tsunami height, 𝐿 + 1 to 2𝐿  components describe the velocity in one 

direction, and 2𝐿 + 1 to 3𝐿 components describe the velocity in another direction. The 

offshore pressure gauges directly provide data of tsunami height, but the velocity 

components of 𝒙𝑛 are reconstructed during the assimilation process. 

The data assimilation consists of two steps: a propagation step and an 

assimilation step. The propagation step is expressed as 

𝒙𝑛
𝑓

= 𝑭𝒙𝑛−1
𝑎  (1.25) 

where 𝑭 is the tsunami propagation matrix (3𝐿 ×  3𝐿) such that given the tsunami 

wavefield at time 𝑡 = (𝑛 − 1)Δ𝑡, the forecasted tsunami wavefield at the next time step 

𝑡 = 𝑛Δ𝑡  can be calculated. The propagation matrix 𝑭  corresponds to the tsunami 
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propagation model. Previously, the LLW tsunami model was adopted (Gusman et al., 

2016b; Maeda et al., 2015). In the assimilation step,  

𝒙𝑛
𝑎 = 𝒙𝑛

𝑓
+ 𝑾(𝒚𝑛 − 𝑯𝒙𝑛

𝑓
)  (1.26) 

where the observation matrix 𝑯 (𝑚 ×  3𝐿) is a sparse linear matrix, which contains only 

0 and 1 values. It extracts the tsunami height at 𝑚 stations from the forecasted wavefield, 

and the residual is calculated by comparing it with the real-time observed tsunami height 

𝒚𝑛, a column vector. Consequently, the residual is multiplied by the weight matrix 𝑾 

(3𝐿 ×  𝑚) to bring the assimilated tsunami wavefield closer to the observed wavefield. 

The weight matrix 𝑾 contains the assimilation responses from all stations. Each column 

represents the assimilation response of one individual station. The weight matrix 𝑾 is a 

key controlling factor for the quality of assimilation. It is assumed that the observation 

matrix 𝑯 is linear and that the weight matrix 𝑾 is independent of time. The calculation 

of weight matrix is based on the correlation distance of the simulation and observation 

error distributions and the relative magnitude of the observation to simulation errors. We 

can calculate the weight matrix by minimizing the covariance matrix of < 𝜀𝑎𝜀𝑎𝑇 >=<

(𝒙𝑛
𝑎 − 𝒙𝑛

𝑇𝑟𝑢𝑒)(𝒙𝑛
𝑎 − 𝒙𝑛

𝑇𝑟𝑢𝑒)𝑇 > as a solution of the linear system: 

𝑾(𝑹 + 𝑯𝑷𝑓𝑯𝑇) = 𝑷𝑓𝑯𝑇 (1.27) 

where 𝑷𝑓 =< 𝜀𝑓𝜀𝑓𝑇 >  and 𝑹 =< 𝜀𝑂𝜀𝑂𝑇 >  are the covariance matrices of the 

forward numerical simulation and observations, respectively. Here 𝜀𝑓and 𝜀𝑂  are the 

error distributions associated with forward numerical simulations and observations, 

respectively, which are assumed to be described by Gaussian functions, and 𝜀𝑓𝑇and 𝜀𝑂𝑇 

are their corresponding transposes (Kalnay, 2003). It is assumed that the computational 

errors are spatially homogeneous on numerical grids, and that the observation errors are 

not correlated with stations as observations are made independently. These assumptions 

simplify the matrix 𝑹  into a diagonal matrix whose components are the standard 

deviations of the observation errors at each station (Maeda et al., 2015). A simplified form 

of Equation (1.27) can be obtained: 

∑ 𝑤𝑔𝑗(𝜇𝑖𝑗
𝑏 + 𝛿𝑖𝑗) = 𝜇𝑔𝑖

𝑏𝑚
𝑗=1  (1.28) 

where 𝑤𝑔𝑗 is components of the weight matrix 𝑾, 𝜇𝑖𝑗
𝑏  is the correlation function of 

errors in numerical forecasts between two observational points (or computational grids). 
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A Gaussian-distributed covariance is assumed for the correlation function of errors, with 

a characteristic distance of 20 km (Maeda et al., 2015; Wang et al., 2019a).  

By iterating between the propagation and assimilation steps, the tsunami 

wavefield is gradually assimilated, and the forecasted waveforms at any location inside 

the modeling domain can be obtained. The point where the tsunami forecast is made is 

defined as the Point of Interest (PoI). During or after the assimilation process, the 

forecasted tsunami waveform at a PoI can be obtained based on the forward tsunami 

simulation from Equation (1.25) using the present assimilated tsunami wavefield as the 

initial condition. 

 

1.4 Network of Offshore Bottom Pressure Gauges 

Offshore Bottom Pressure Gauges (OBPGs) are installed at water depths 

ranging from hundreds to thousands of meters to detect tsunamis generated by 

earthquakes or other causes (Beltrami, 2008; Bernard and Meinig, 2011; Sheehan et al., 

2015). They measure the ocean bottom pressure and convert water pressure records into 

sea surface height (Shinohara et al., 2016). Some data are sent to land in real time, either 

by satellite or cable. In the United States, the DART system provides an accurate 

measurement of the tsunami height in the Pacific Ocean through satellite transmission. 

Offshore of Japan and Canada, there are local dense real-time tsunami observation 

networks composed of OBPGs, and their data are sent through submarine cables (Barnes 

et al., 2008; Kaneda, 2010). 

Off the Pacific coast of Japan, there are two main dense offshore observation 

networks. In northern Japan, the Seafloor Observation Network for Earthquakes and 

Tsunamis (S-net) is installed around the Japan Trench (Kanazawa, 2013; Yamamoto et al., 

2016b). It consists of six groups, with up to 150 stations linked by fiber optic cables (Aoi 

et al., 2019). The observatory spacing is approximately 30 km in the east–west direction, 

which is almost perpendicular to the Japan Trench and approximately 50–60 km in the 

north–south direction parallel to the trench. The S-net stations are equipped with OBPGs 

and Ocean Bottom Seismometers (OBSs). There are a pair of identical pressure gauge 

sensors (HP1WP, HP2WP) at each station to ensure redundancy for tsunami detection 
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(Kanazawa, 2013; Kubota et al., 2020a). The S-net pressure gauges can detect tsunamis 

with amplitudes of less than 1 cm (Kubota et al., 2020b). 

In the Nankai region, the Dense Oceanfloor Network System for Earthquakes 

and Tsunamis (DONET) is a system for real-time continuous observations and monitoring 

of earthquakes and tsunamis using an observation equipment network installed on the 

ocean floor (Kawaguchi et al., 2008). It was established by the Japan Agency for Marine-

Earth Science and Technology (JAMSTEC) and is now operated by the National Research 

Institute for Earth Science and Disaster Resilience (NIED). There are two phases of the 

DONET project. DONET1 is located in the Tonankai earthquake hypocenter area, 

including the offshore of Kii Peninsula and Kumano-Nada. DONET2 is responsible for 

the Nankai earthquake hypocenter area, including offshore of Shiono Cape and Muroto 

Cape. The entire system consists of 12 nodes and up to 51 observation points. High-

precision observation equipment, including OBPGs and OBSs, are deployed at each 

observation point at intervals of 15–20 km (Kaneda, 2010). The OBPGs of DONET can 

also detect micro tsunamis with amplitudes less than 1 cm (Wang et al., 2019b). 
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Figure 1.2. Offshore observation network composed of OBPGs: (a) DART; (b) DONET; 

(c) S-net. 

The figures are cited from (Rabinovich and Eblé, 2019). 

 

Besides these two dense observation networks, there are also other distributed 

OBPGs offshore of Japan. There are two stations of the Deep Sea Floor Observatory 

(DSFO) off Muroto Cape: PG1 and PG2. JAMSTEC installed them for long-term 

continuous observations of the phenomena of seafloor changes and seafloor 

environmental changes. They recorded the tsunamis of the 2015 Torishima earthquake 

(Wang et al., 2019b). Moreover, Earthquake Research Institute, the University of Tokyo, 

installed seismic and tsunami observation systems using seafloor optical fibers off the 

Sanriku region in 1996 (Shinohara et al., 2016). These OBPGs recorded the tsunami 

events of the 2011 Tohoku earthquake and the 2016 Fukushima earthquake (Gusman et 

al., 2017; Tsushima et al., 2011). The installment of OBPGs enables us to detect tsunamis 

in real-time operation and perform tsunami data assimilation. Hence, the OBPGs are very 

important hardware for tsunami early warning. 

 

1.5 Real-time Tsunami Detection 

Real-time tsunami detection plays an important role in tsunami early warning. 

For the tsunami data assimilation approach, forecasts can be updated continuously as 

more offshore tsunami data are recorded in real time during the assimilation process. 

Therefore, real-time tsunami detection is a prerequisite of the tsunami data assimilation 

approach. Additionally, even for the traditional early warning methods based on seismic 

observations, the detection of offshore tsunamis is still essential as it helps confirm the 

actual generation and propagation of a tsunami (Chierici et al., 2017). 

The hardware aspect for real-time tsunami detection has advanced significantly 

in recent years because of the wide installment of OBPGs. As for the software, several 

algorithms have been proposed for real-time tsunami detection. Although the records of 

OBPGs are less affected by the complex geometries of bays and harbors, they are usually 
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influenced by tide and ocean currents (Rabinovich, 1997; Saito, 2019; Sato et al., 2017). 

Seismic waves and background noise also influence tsunami records. In retroactive 

studies, the tidal components can be easily removed by subtracting a theoretical tide 

model, and the tsunami signals can be easily extracted by digital filtering (Heidarzadeh 

and Satake, 2013; Tsushima et al., 2009). However, traditional digital filters used in such 

studies are not applicable to real-time operation. The acausal filter that is usually used in 

retroactive studies requires future data to filter past data, and the causal filter may change 

the time of the tsunami peak by the group delay of the filter (Boore and Akkar, 2003). 

Therefore, it is necessary to use a real-time data processing algorithm for automatic 

tsunami detection. A reliable algorithm for OBPGs should accurately identify the tsunami 

signals and characterize the tsunami amplitude at a low computational cost and short 

detection delay.  

NOAA developed the tsunami detection algorithm for DART (Mofjeld, 1997). 

It first estimates the amplitudes of the pressure fluctuations within the tsunami frequency 

band and then tests these amplitudes against a 3 cm equivalent sea-level fluctuation 

threshold value. In NOAA’s algorithm, the amplitudes are computed by subtracting 

predicted pressures from the observations, where the predictions are made using a cubic 

polynomial fitted to bottom pressure observations over the past 3 h (Mofjeld, 1997). 

Additionally, Beltrami (2008) used an Artificial Neural Network (ANN) to design a 

tsunami detection algorithm. The ANN algorithm is based on a two adaptive-weight layer 

network characterized by logistic sigmoid and linear activation functions. The adaptive 

weights are obtained from the network’s supervised learning. It has a better performance 

than NOAA’s algorithm when the tidal range at the location of interest is higher and the 

background sea noise is lower (Beltrami, 2008; Beltrami, 2011). Both algorithms are 

effective in predicting and filtering out tidal components. However, as the prediction of 

tides depends on the observation average, an actual propagating tsunami will inevitably 

influence the predictions. This can affect their performance in characterizing the tsunami 

amplitude (Beltrami, 2011). Moreover, pure predictive algorithms usually fail in reducing 

the high-frequency components of environmental noise (Chierici et al., 2017). 

 

1.6 Objectives 
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 In this thesis, I mainly focus on four aspects. First, I propose Green’s Function-

based Tsunami Data Assimilation (GFTDA) to improve the assimilation speed. Then, I 

adopt virtual stations to perform data assimilation for regions without a dense observation 

network. Moreover, I propose a new real-time tsunami detection algorithm based on 

Ensemble Empirical Mode Decomposition (EEMD). Finally, I combine the tsunami data 

assimilation approach with the real-time tsunami detection algorithm and apply this to S-

net pressure gauge records.  

The previous tsunami data assimilation approach has a relatively high 

computational cost because it is necessary to run numerical simulations to obtain the 

tsunami wavefield. However, the tsunami wavefield of the entire modeling domain needs 

to be repeatedly calculated during the assimilation process (Gusman et al., 2016b), which 

requires substantial calculation time. Moreover, because of the high computational cost, 

the adoption of other more complex but realistic models such as the DSP tsunami model 

is not practical. It may limit the accuracy of tsunami forecasting in some cases where the 

tsunami dispersive characteristics are evident (Saito et al., 2010). In such cases, the long-

wave approximation breaks down, and the previous data assimilation approach using the 

LLW model may not be able to forecast tsunamis with high accuracy. For early warning, 

the waveforms at the PoIs should be predicted quickly and accurately. In Chapter 2, I 

propose GFTDA for solving this problem. 

Additionally, the previous tsunami data assimilation approach requires enough 

offshore observed tsunami data to reconstruct the tsunami wavefield (Gusman et al., 

2016b; Mulia et al., 2017b). The neighboring stations of an observation network should 

not be far from each other. Past studies proposed an empirical distance criterion of 50 km 

to perform tsunami data assimilation (Wang et al., 2019a; Yang et al., 2019). However, 

an offshore network usually requires a large investment, and many regions with 

significant tsunami hazards may only afford a few OBPGs rather than a dense network. 

For example, the Indian Ocean suffered from the 2004 Sumatra–Andaman earthquake 

and tsunami (Fujii and Satake, 2007; Nalbant et al., 2005). However, unlike the Pacific 

Ocean, there are only sparse tsunami observations in the Indian Ocean. Only six OBPGs 

are currently available for tsunami detection in the Bay of Bengal (north Indian Ocean). 

In Chapter 3, I introduce virtual stations between two real observational stations to 

complement sparse observations. 
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To put tsunami data assimilation into practice, offshore tsunami data should be 

provided as the input in real time. In Chapter 4, I describe a novel method of real-time 

tsunami detection. Unlike the previous predictive algorithms, the method detects the 

tsunami arrival based on the EEMD without tidal prediction. The tsunami signals are 

automatically extracted from the original time series of OBPG records. I apply the method 

to the records of the cabled OBPGs off the Tohoku coast and examine its performance for 

three earthquakes with different sizes to confirm the validity of the algorithm: the 2016 

Fukushima earthquake (M 7.4), the 2011 Tohoku earthquake (M 9.0), and the 1998 off 

Sanriku earthquake (M 6.4). 

In Chapter 5, I combine the tsunami data assimilation approach with the real-

time tsunami detection algorithm. Using the 2016 Fukushima earthquake as an example, 

I forecast the tsunami waveforms at tide gauges in the Sanriku region by assimilating the 

S-net pressure gauge records. Then, I compare the forecasted waveforms with the real 

observations at tide gauges to validate the method. Although this study is conducted 

retroactively, I use the real-time tsunami detection algorithm based on EEMD to process 

the raw records as if it is operating in real time. In Chapter 6, I discuss the practical 

implementation and future improvements of the tsunami early warning system. 
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Chapter 2 Green’s Function-based Tsunami Data 

Assimilation (GFTDA) 

 

2.1 Principles of GFTDA 

GFTDA is proposed to improve the assimilation speed. Green’s functions have 

been applied to tsunami waveform inversion for fault estimation (Satake, 1989) and TRI 

for far-field tsunami forecasting (Hossen et al., 2015; Hossen et al., 2017; Korolev, 2011). 

Here I adopt Green’s functions in data assimilation for tsunami forecasting. In the Optimal 

Interpolation algorithm (Maeda et al., 2015), if the residual between the observed and 

forecasted tsunami height is non-zero, the station will have an assimilation response, 

which can be near Gaussian shape if the distance between stations is larger than the 

characteristic distance of matrix 𝑷𝑓 and 𝑹. I then define the residual vector as 𝒙𝑛
𝑟 ≡

𝑾(𝒚𝑛 − 𝑯𝒙𝑛
𝑓

), which represents the residual of each station at time 𝑡 = 𝑛Δ𝑡. This can 

be rewritten as a linear combination of the unit column vector 𝒆𝑖
𝑇  multiplied by the 

corresponding residual of tsunami height at the i-th station 𝑟𝑖: 

𝒙𝑛
𝑟 = 𝑾 ∑ 𝑟𝑛

𝑖𝒆𝑖
𝑇

𝑖  (2.1) 

Mathematically, the assimilation response of the i-th station can be represented 

as 𝑟𝑛
𝑖𝑾𝒆𝑖

𝑇 . The assimilation response will propagate across the region under 

consideration, following the tsunami propagation model. This will result in changes in 

the tsunami height and velocity at other grid points. When the tsunami wave propagation 

model is linear, the assimilation response of different steps and different stations can be 

superposed. I define the waveform at the j-th grid point resulting from the propagation of 

the i-th station’s assimilation response as the Green’s function 𝐺𝑖,𝑗. In Figure 2.1, plots 

of Green’s functions 𝐺1,𝑠, 𝐺2,𝑠, and 𝐺3,𝑠 represent the waveforms at PoIs resulting from 

the propagation of the assimilation responses of the first, second, and third stations, 

respectively. 

Therefore, by using GFTDA, it is not necessary to simulate the tsunami 

propagation of the whole region during the assimilation process. Instead, the waveforms 
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at PoIs are synthesized by Green’s functions directly. The propagation of the assimilation 

response can be calculated with any linear tsunami propagation model, not only the LLW 

model. The preparation of Green’s functions is time-consuming but can be done in 

advance of the assimilation process. 

Storing the output of Green’s functions requires computer memory, but the 

amount of memory required can be reduced by limiting the number of PoIs. For a given 

region with a tsunami observation network and PoIs, the number of Green’s functions to 

be calculated is 𝑚 ∗ (𝑁𝑠 + 𝑚), where 𝑚 is the number of observational stations, and 

𝑁𝑠  is the total number of PoIs. The PoIs should include near-shore points because 

forecasting the tsunami height and velocity at these points is of the greatest importance 

to residents living nearby. Conversely, forecasting the tsunami at points that are far away 

from the coast is not useful for coastal communities. Therefore, the computation of 

Green’s functions at points far away from the coast can be omitted to obtain a manageable 

number of Green’s functions. The Green’s functions between observational stations 

themselves are also important because their waveforms should be updated continuously 

during the assimilation process. 

 

Figure 2.1. Illustration of the previous data assimilation approach and GFTDA.  

For simplification, I only use three offshore stations to forecast the waveform at the PoI 

(red star). In the previous approach, the observed tsunami height of stations is assimilated, 
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and the wavefield of the entire modeling domain is computed. Then, the forecasted 

waveform at the PoI can be recorded in the wavefield. In GFTDA, the Green’s functions 

are computed in advance, representing the waveform at the PoI resulting from the 

propagation of each station’s assimilation response. The forecasted waveform is directly 

synthesized with Green’s functions by matrix manipulation. Both approaches give the 

same result for the forecasted waveform. 

 

2.2 Assimilation Process and Mathematical Equivalence 

The assimilation process of GFTDA is demonstrated in Figure 2.2. The Green’s 

functions are calculated by computers or supercomputers in advance. When a tsunami 

arrives at a region of interest, similar to the previous data assimilation approach, the 

residual between the real-time observed tsunami height and the forecasted tsunami height 

is calculated (initial condition is zero) after necessary data processing such as filtering. 

Then, the residual of each station is multiplied with the corresponding Green’s functions 

to forecast the tsunami heights at the observational stations and PoIs for this time step. In 

the next time step, the observation data at each station are updated, and the residuals are 

calculated and multiplied with the Green’s functions corresponding to that time step. 

These steps are repeated continuously during the assimilation process. The forecast is 

made using the tsunami data of observational stations and pre-calculated Green’s 

functions. As the tsunami propagates, more observational stations from the network 

detect the tsunami height, and more Green’s functions are involved in the data 

assimilation. Consequently, the accuracy of the forecasted waveforms gradually increases 

with time. 

The forecasted waveforms at PoIs are directly obtained after the assimilation 

process. The tsunami warning level can be decided according to the forecasted waveforms 

before the tsunami reaches the shore. 

If linearity is assumed, GFTDA is mathematically equivalent to the previous 

data assimilation approach. This can be proved as follows. 

𝑥𝑛
𝑎 = 𝑥𝑛

𝑓
+ 𝑾(𝑦𝑛 − 𝑯𝑥𝑛

𝑓
) = 𝑥𝑛

𝑓
+ 𝑥𝑛

𝑟  (2.2) 
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𝑥𝑛
𝑓

+ 𝑥𝑛
𝑟 = 𝑭𝑥𝑛−1

𝑎 + 𝑥𝑛
𝑟 = 𝑭(𝑥𝑛−1

𝑓
+ 𝑥𝑛−1

𝑟 ) + 𝑥𝑛
𝑟 = 𝑭(𝑭(𝑥𝑛−2

𝑓
+ 𝑥𝑛−2

𝑟 ) + 𝑥𝑛−1
𝑟 ) +

𝑥𝑛
𝑟 = ⋯ = ∑ 𝑭𝑛−𝑡𝑥𝑡

𝑟𝑛
𝑡=1  (2.3) 

∑ 𝑭𝑛−𝑡𝑥𝑡
𝑟𝑛

𝑡=1 = ∑ 𝑭𝑛−𝑡(∑ 𝑟𝑡
𝑖𝑾𝑒𝑖

𝑇𝑚
𝑖=1 ) = ∑ (𝑚

𝑖=1 ∑ 𝑟𝑡
𝑖𝑭𝑛−𝑡𝑾𝑒𝑖

𝑇）𝑛
𝑡=1

𝑛
𝑡=1 (2.4) 

As defined earlier, Equation (2.2) describes the assimilation step of the previous 

approach. In a linear system, the propagation of the tsunami wavefield can be written as 

Equation (2.3). The final assimilated tsunami waveforms are related to the residuals of 

each station at each time step. The residual vector is then rewritten as Equation (2.4), 

where 𝑾𝑒𝑖
𝑇  is the unit assimilation response of the i-th station. Here, 𝑭𝑛−𝑡𝑾𝑒𝑖

𝑇 

represents the propagation of the assimilation response, i.e., the Green’s functions 

between the i-th station and all other grid points. Therefore, I only need to consider the 

grid points of the stations and PoIs during the assimilation process. 

 

Figure 2.2. Assimilation process of GFTDA.  

Step 1: The Green’s functions are calculated by a computer and stored in advance. Step 

2: Offshore stations observe the tsunami height. The residual between the observed and 

forecasted height of each station is calculated. The assimilated waveforms at stations and 
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PoIs are repeatedly synthesized with Green’s functions. Step 3: The forecasted 

waveforms at PoIs are obtained after the assimilation process. 

 

2.3 Validation Test—2012 Haida Gwaii Earthquake 

The 2012 Haida Gwaii earthquake (M 7.8) occurred at 52.622°N, 132.103°W, 

off the coast of Haida Gwaii, British Columbia, Canada, on October 28, 2012. The 

seafloor uplift generated a tsunami with a run-up height greater than 3 m. Fortunately, no 

casualties or major injuries were recorded from the earthquake and tsunami, likely 

because of the sparse population of the region. The tsunami generated by the earthquake 

was recorded in the near field at tide gauges and an OBS array with bottom pressure 

gauges in the Cascadia subduction zone during the Cascadia Initiative Community 

Experiment (Gusman et al., 2016a; 2016b; Sheehan et al., 2015). Although this network 

did not send data in real time, the recorded tsunami data can be used to perform tsunami 

data assimilation retroactively. 

 

2.3.1 Observed Tsunami Data 

I use the tsunami observation data for the 2012 Haida Gwaii earthquake 

recorded at 26 stations of the Cascadia OBS array (Sheehan et al., 2015). Gusman et al. 

(2016b) applied the previous data assimilation approach to the same case study, while I 

apply GFTDA to forecast the tsunami retroactively. A band-pass filter with cut-off 

frequencies of 0.0002 and 0.005 Hz (5000 and 200 s) was applied to the raw data to 

remove the influence of seismic waves and ocean tides. The pressure data were converted 

to water height, and the instrument response was removed from the data. Details on the 

processing of seafloor pressure gauge data of the Cascadia OBS array were provided in 

previous studies (Gusman et al., 2016a; 2016b; Sheehan et al., 2015). I divide the tsunami 

observational stations into two groups: a group for data assimilation of the 15 offshore 

stations and a group for validation of 11 near-shore stations (PoIs). The locations of these 

stations are shown in Figure 2.3a. 
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Figure 2.3. Bathymetry and tsunami waveforms of the observational stations in the 

Cascadia Initiative Community Experiment.  

(a) The 15 offshore stations that provide tsunami observation for data assimilation are 

marked by red circles. Other 11 near-shore stations (PoIs) are indicated with green 

triangles, and I compare their data with the forecasted waveforms calculated by GFTDA. 

(b) The observed waveforms at the 15 offshore stations are plotted on the right. The data 

assimilation starts when the tsunami arrives at the first station.  

 

2.3.2 Assimilation Setting 

I synthesize the tsunami waveforms at the stations and PoIs by GFTDA and 

compare the forecasted waveforms with the observed ones. To compute Green’s functions, 

I use the JAGURS LLW model (Baba et al., 2015).  
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The initial condition for computing Green’s function 𝐺𝑖,𝑗 is the assimilation 

response of the i-th station calculated from 𝑾; the velocities in two directions are zero. 

The grid size is 0.5 arcmin, and the bathymetry grid data is derived from the General 

Bathymetric Chart of the Ocean released in 2014 (GEBCO_2014) (Weatherall et al., 

2015). 

The target area is 35°N–56°N, 122°W–136°W. The time step of Green’s 

functions is 1 s, the same as that of the processed observation data. There are 15 offshore 

stations for data assimilation and 11 PoIs for waveform comparison. Therefore, the 

number of Green’s functions computed is 15 × (11 + 15) = 390, which does not require 

a large amount of computer memory. 

I set the earthquake origin time as 𝑡 = 0 . The tsunami generated by the 

earthquake propagates across the Cascadia subduction zone, arriving at the first 

observational station (J19B) at 𝑡 = 6066 s (Figure 2.3b). Then, the assimilation process 

begins. The assimilation time window is defined as the period during which the observed 

data are used for assimilation. The waveforms at PoIs are synthesized with the 

observation data and the Green’s functions during the assimilation time window. For 

example, if the assimilation time window is set to 30 min (1800 s), the assimilation 

process will end at 𝑡 = 7866 s. The tsunami height at stations is forecasted after 𝑡 =

7866 s. 

 

2.3.3 Results 

I apply GFTDA with different time windows from 2 to 50 min, at intervals of 

2 min. The assimilation process takes less than 10 s on the computer system of the 

Earthquake Information Center (EIC) at the University of Tokyo. This computation speed 

is much faster than that of the previous data assimilation approach that takes 

approximately 1,000 s. Hence, GFTDA reduces 99% of the calculation time during the 

assimilation process. 

Figure 2.4 presents the comparison between the observed and assimilated 

waveforms at 11 PoIs for an assimilation time window of 24 min. The assimilated 

waveforms generally match the observations. As shown in Figure 2.3, the first tsunami 
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peak has already passed most stations at the end of the assimilation time window. That is, 

the data from most of the stations have been assimilated. For most PoIs, the tsunami 

height is forecasted accurately, but for stations FS06B and FS09B, the maximum heights 

of the forecasted waveforms are smaller than the observations, and for station FS19B, the 

maximum height of the forecasted waveform is slightly higher. Nevertheless, the 

overestimation or underestimation is quite small, so it is fair to say that GFTDA provides 

accurate tsunami forecasting at the near-shore PoIs. 

 

Figure 2.4. Comparison of the observed and forecasted waveforms at 11 PoIs with an 

assimilation time window of 24 min. 

 

To quantitatively evaluate the performance of GFTDA, I calculate the forecast 

accuracy (Gusman et al., 2016a) and score (Tsushima et al., 2011). The forecast accuracy 

is calculated by the geometric mean ratio (𝐾) of the observed (𝐻𝑜
arr) and forecasted (𝐻𝑓

arr)  

first-peak amplitude (Aida, 1978):  

log(𝐾) =
1

𝑁𝑠
∑ log (

𝐻𝑜
arr

𝐻𝑓
arr) (2.5) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
1

𝐾
× 100% (𝐾 ≥ 1) 𝑜𝑟 𝐾 × 100% (𝐾 < 1) (2.6) 

where 𝑁𝑠 is the number of PoIs, and the score is calculated as 

𝑆𝑐𝑜𝑟𝑒(%) = [1 −
∑(𝐻𝑓

arr−𝐻𝑜
arr)2

∑(𝐻𝑜
arr)2 ] × 100% (2.7) 

 

Figure 2.5. Forecast accuracy and score versus different assimilation time windows.  

The accuracy (Aida’s method) and score (Tsushima’s method) show a sharp increase 

initially, and tend to saturate after an assimilation time window of 30 min. 

 

Figure 2.5 shows the forecast accuracy and score versus different assimilation 

time windows. Initially, the forecast accuracy and score are both very low. This is because 

the data length used for the assimilation is too short to provide accurate forecasting, and 

the first tsunami peak has not passed many stations. Then, as the time window becomes 

longer, there is a sharp increase in the forecast accuracy and score. For the forecast made 

with a time window of 24 min, a high accuracy of over 90% and a high score of over 80% 

are achieved. After 24 min, the increase in forecast accuracy and score becomes smaller, 
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and after 30 min there is almost no improvement. As the first tsunami peak has already 

passed all 15 offshore observational stations at this point, the forecast accuracy and score 

are saturated. 

The accuracy of tsunami forecasting depends on the length of the assimilation 

time window. If the assimilation time window is too short, the tsunami can be forecasted 

quickly, but the accuracy is low, and the confidence of early warning remains doubtful. If 

the time window is too long, although the tsunami forecasting will be more accurate, 

people living along the coast may not have enough time to evacuate. Therefore, to 

produce reliable and useful tsunami forecasting, we need to select a suitable assimilation 

time window to strike a balance between forecast accuracy and computation time. In this 

case study, a time window of 24 min is a practical choice. After a reliable tsunami warning, 

the residents along the coast would have approximately 25 min to evacuate. Moreover, it 

is important to repeat the forecast over time to improve accuracy. Because GFTDA is able 

to forecast the tsunami instantaneously, it is very effective for repetitive forecast. 

For the 2012 Haida Gwaii tsunami, the score proposed by Tsushima et al. (2011) 

tends to evaluate the performance better than the forecast accuracy (Aida’s criterion). I 

use the sum of the logarithm as in Equation (2.5) to calculate the forecast accuracy. When 

some observations are higher than the forecasts, and some other observations are lower, 

the positive and negative logarithm terms cancel out. Hence, log(𝐾) can still be very 

small, and the accuracy can be high even though the residuals between the forecasts and 

observations at PoIs are large. In Figure 2.5, I remove a point (28 min) where the 

calculated forecast accuracy is abnormally high. Conversely, the score calculation 

includes the squared error (Equation 2.7), which means that the errors of different PoIs 

cannot be canceled out. Here we compare two criteria to evaluate the performance 

thoroughly. As a general practice of accuracy analysis, it is important to select an 

appropriate criterion to evaluate the performance fairly. 

 

2.4 Adoption of Linear Dispersive Model—2004 off the Kii Peninsula Earthquake 

This section applies GFTDA to synthetic tsunami data of the 2004 off the Kii 

Peninsula Earthquake. I calculate Green’s functions with both the LLW and linear DSP 
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models and assimilate the tsunami data with both models. 

2.4.1 2004 off the Kii Peninsula Earthquake 

Great earthquakes have occurred along the fault between the Philippine Sea 

Plate and Eurasian Plate along the Nankai Trough (Furumura et al., 2011; Saito et al., 

2010). Such great earthquakes in recent years include the 1944 Tonankai (M 8.0) and the 

1946 Nankai (M 7.9) earthquakes. Additionally, a large (M 7.4) earthquake occurred off 

the Kii Peninsula within the subducting Philippine Sea Plate in 2004. 

The 2004 off the Kii Peninsula earthquake occurred on September 5, 2004. It 

was an intraplate event occurring in the outer rise of the Philippine Sea Plate. The main 

shock at 14:57 UTC followed the foreshock at 10:07 UTC. The tsunami generated by the 

mainshock showed evident dispersive characteristics (Saito et al., 2010). One of the 

important features of tsunami generation is that dispersive waves have a strong directional 

dependence with respect to the fault strike (Saito et al., 2010). The tsunami dispersion is 

strong in the short-axis direction of the source fault where the tsunami wavelength is short, 

and it is also strong in the direction along the deep sea where the tsunami travels fast. 

GFTDA enables us to use a more complicated tsunami propagation model for 

data assimilation, as long as the model is linear. I adopt the linear DSP model for data 

assimilation and compare it with the LLW model.  

I compute Green’s functions between observational stations and PoIs with both 

models. The propagation matrix 𝑭 is more complicated when using the linear DSP 

model. Although the computation of Green’s functions is quite time-consuming, this step 

is done in advance. This does not affect the efficiency of the data assimilation process. 

Then, during the assimilation process, the forecasted tsunami waveforms can be directly 

synthesized by multiplying the residual with corresponding Green’s functions. 

 

2.4.2 Synthetic Tsunami Data 

 As DONET1 was completed in 2011 and DONET2 started operation in 2015, 

real tsunami records for the 2004 off the Kii Peninsula earthquake were not available. To 

assess the ability of the data assimilation approach, I use synthetic tsunami waveforms 
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from the 2004 earthquake source model. 

 First, I use a source model similar to the mainshock of the 2004 off the Kii 

Peninsula earthquake for simulation. The fault parameters are set according to the 

unpublished results of Yamanaka (data available at http://wwweic.eri.u-

tokyo.ac.jp/sanchu/Seismo_Note/2004/EIC153.html) by analysis of the teleseismic body 

waves. The epicenter is 137.142°E, 33.143°N, and the depth is 10.0 km. The fault 

direction is perpendicular to the trough axis with a strike of 135°. The dip angle is 40° 

and the rake angle is 123°. The length and width of the rectangular fault are 50.0 and 30.0 

km, respectively. The fault slip is 6.5 m, which is consistent with the magnitude of the 

mainshock (M 7.4). 

 I use Okada’s model to calculate the initial sea surface elevation in an elastic 

half-space (Okada, 1985), as the initial condition for numerical simulation. Then, I use 

the JAGURS model to calculate the tsunami propagation. A total reflection is assumed at 

the coastline. Sea-bottom friction is not considered in my simulation. To make the 

tsunami propagation closer to the real situation, I apply the linear DSP model. The 

synthetic waveforms at observational stations and PoIs are recorded during the numerical 

simulation. 

 For observation points, DONET has 12 nodes, and each node is linked with 

several observation points. To build an evenly-distributed observation network for data 

assimilation, I take one point for each node except for Node C, for which I take two points. 

Additionally, I use the submarine stations PG1 and PG2 belonging to the DSFO off 

Muroto Cape. In total, 15 observational stations are used for data assimilation (Figure 

2.6). 

 Additionally, nine PoIs are selected near population centers on Shikoku and 

Kyushu Islands (Figure 2.6), under the potential threat of tsunami disasters. They are used 

to compare simulated waveforms and waveforms predicted by data assimilation.  
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Figure 2.6. Illustration of the observation network and near-shore PoIs.  

The observation network contains 13 DONET stations, PG1, and PG2, which are marked 

with red circles. Nine PoIs near Shikoku Island and Kyushu Island are marked with blue 

triangles. The focal mechanism and source model are plotted according to the 

unpublished results of Yamanaka (2004). Red and blue curves are contours of uplift and 

subsidence, respectively. The contour interval is 0.05 m. The long axis (length) is in the 

NW-SE direction, whereas the short axis (width) is in the NE-SW direction. 

 

2.4.3 Assimilation Setting 

The bathymetry and topography dataset for computing Green’s functions are 

derived from GEBCO_2014. The finite difference method with an implicit scheme is 

employed for numerical simulations. I use a grid spacing of 30 arcsec and a time step of 

1 s. The target area 30°N–35°N,130°E–140°E and the total grid number is 600 ×

 1200 = 720000. 

The JAGURS tsunami code (Baba et al., 2015) is used to compute Green’s 
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functions between the observation points and PoIs. The same parameters of JAGURS used 

for the forward tsunami simulation are adopted. Meanwhile, Green’s functions between 

different observation points are also computed for data assimilation as the residuals 

should be calculated during the iterative process. So, the total number of Green’s 

functions is 15 × (9 + 15) = 360, which does not take up much computer memory. 

The Optimal Interpolation algorithm parameters are the same as those in the work of 

Maeda et al. (2015). JAGURS enable the use of both the linear DSP and LLW models. 

I set the earthquake origin time as 𝑡 = 0. The observational stations of the 

assimilation network are not far from the epicenter of the 2004 off the Kii Peninsula 

earthquake. Hence, the tsunami arrives at the nearby stations of KMC09, KMC21, and 

KMD13 soon after the earthquake (Figure 2.7). The data assimilation process begins at 

𝑡 = 0, i.e., at the origin time of the earthquake. During the assimilation time window, the 

waveforms at PoIs are synthesized with Green’s functions.  

I apply GFTDA with both the LLW and the linear DSP models. The length of 

assimilation time windows is set from 2 to 24 min, at intervals of 2 min. The calculation 

time for the data assimilation process is less than 10 s, almost negligible on the EIC 

computer system at Earthquake Research Institute, the University of Tokyo. 
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Figure 2.7. Distribution of 15 observational stations and waveforms of synthetic tsunamis. 

The tsunami arrives at the KMC09, KMC21, and KMD13 stations soon after the 

earthquake. The data assimilation process begins at the origin time of the earthquake. 

 

2.4.4 Results 

Figure 2.8 demonstrates a comparison between simulated waveforms and 

waveforms predicted with an assimilation time window of 20 min. The waveforms 

predicted using both the LLW model and the linear DSP model agree well with the 

simulated waveforms. This proves the validity of data assimilation based on the 

observation network of DONET, PG1, and PG2. The LLW and linear DSP models have 

similar performances for the forecast of the first tsunami peak amplitude. 

At coastal PoIs, the discrepancies of amplitude forecasted by the LLW and the 

linear DSP models are quite small. The main difference between two models lies in the 
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arrival time. At almost every PoI, the predicted waveform using the linear DSP model has 

a more accurate arrival time of the first tsunami peak. The performance of two models 

are also related to station locations. For example, the Osumi station, located in the 

direction of short axis (NE-SW direction), shows highly dispersive tsunami, and the linear 

DSP model has an evidently better performance than the LLW model. To the contrary, at 

Awaji or Abuyuki, which are in the long-axis direction (NW-SE direction), the predicted 

waveforms of two models are almost same. 

 

Figure 2.8. Simulated waveforms and waveforms forecasted by data assimilation at nine 

near-shore PoIs. 

The simulated waveforms (black curves) are used as “observations” for comparison. The 

forecasted waveforms are calculated by GFTDA with the LLW model (blue curves) and 

the linear DSP model (red curves). The time window of data assimilation is 20 min. 

 

To quantitatively evaluate the performance of two models in data assimilation, 

I calculate the tsunami forecast accuracy (Aida, 1978; Gusman et al., 2016b) for different 

assimilation time windows using Equations (2.5) and (2.6).  

The accuracy for various assimilation time windows is plotted in Figure 2.9a. 
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The shapes of the forecast accuracy curves for both the LLW and linear DSP models are 

quite similar. In the beginning, when the time window is only 2 min, the accuracies of 

both models are very low. As the first tsunami peak has not passed any observational 

station of the network, the data length used for assimilation is too short to provide accurate 

forecasting. Then, at 4 min, there is a sharp increase in the accuracy curves for both 

models, with the forecast accuracies exceeding 85%. After that, the forecast accuracies 

vary slightly but exhibit a rising trend in general. There is not a large difference in forecast 

accuracy between the LLW model and the linear DSP model. After a time window of 20 

min, the first tsunami peak has already passed all observational stations. The forecast 

accuracies become saturated and stop increasing. Here, the forecast accuracy of both 

models is similar, with of the linear DSP model being slightly higher. 

The difference in arrival time of the first tsunami peak between the two models 

is more evident. To quantitatively analyze the accuracy of the forecasted arrival time, I 

calculate the time lag as proposed by Tsushima et al. (2012). The time lag of the i-th 

coastal station (PoI) is defined as: 

∆𝑇𝑖 = 𝑡𝑖
𝑆 − 𝑡𝑖

𝑂 (2.8) 

where 𝑡𝑖
𝑂 is the arrival time of the maximum amplitude of the first tsunami peak at the 

i-th station, and 𝑡𝑖
𝑆 is the arrival time forecasted by data assimilation. A negative lag time 

indicates that the forecasted arrival time is earlier than the observation. A small absolute 

value of time lag indicates accurate forecasting of the arrival time. I calculate the time lag 

of all PoIs and calculate the average value. 

In Figure 2.9b, it is clear that the time lags calculated by the two models are 

negative, which means that both the LLW and linear DSP models forecast the tsunami 

arrival time earlier. Moreover, as the assimilation time window increases, the time lag 

becomes closer to zero. The shape of the time lag curve is similar to that of the accuracy 

curve (Figure 2.9a). As more observed data are used in data assimilation, the absolute 

value of time lag decreases quickly from the 2 min time window to the 4 min time window. 

Then, it decreases slowly. After the time window of 20 min, the discrepancy becomes 

very small. It is important to note that the difference between the LLW model and the 

linear DSP model is noticeable in the figure. The linear DSP model leads to a much 

smaller time lag than the LLW model, indicating that the linear DSP model performs 
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better in forecasting the tsunami arrival time. 

The results suggest that the tsunami propagation model could affect the 

accuracy of tsunami forecasting by data assimilation. For the maximum amplitude of the 

first tsunami peak, the two models perform similarly. However, with respect to the arrival 

time, the linear DSP model has a much better accuracy than the LLW model. The average 

time lag calculated by the linear DSP model is smaller. For individual stations, if the 

station is near Shikoku Island, close to the observation network, the lag time difference 

is not large. However, if it is located near Kyushu Island, which is approximately 200 km 

away from the observation network, the difference in lag time becomes noticeable. The 

limitation of long-wave approximation causes this. For the Kii Peninsula earthquake 

considered in my research, the large dip results in short-wavelength components of a 

tsunami, and the long-wave approximation overestimates the velocity of tsunami 

propagation (Saito et al., 2010). Thus, the arrival time forecasted by the LLW model is 

quite earlier than that of the DSP model, especially for PoIs far from the observation 

network, as a longer propagation distance exaggerates such errors. 

 

Figure 2.9. Forecast accuracy (a) and time lag (b) of two models for various assimilation 

time windows. 

The forecast accuracy is used to evaluate the forecasted maximum amplitude of the first 

tsunami peak (Aida, 1978). The time lag is used to examine the accuracy of forecasted 

arrival time (Tsushima et al., 2012). 
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2.5 Application to Real-time Data—2015 Torishima Volcanic Tsunami Earthquake 

Near Torishima, a volcanic island along the Izu–Bonin arc, unusual 

earthquakes repeatedly occurred in 1984, 1996, 2006, and 2015 (Fukao et al., 2018; 

Satake and Kanamori, 1991; Sugioka et al., 2000). They had a seismic magnitude of M ~ 

6 but generated anomalously large tsunamis, and hence were characterized as “tsunami 

earthquakes” (Fukao et al., 2018; Sandanbata et al., 2018). The focal mechanism of these 

earthquakes deviated from a double-couple source and showed a CLVD type. Abnormal 

source mechanisms with volcanic origins have been proposed, such as hydrofracturing 

driven by supercritical water heated by injected magma (Kanamori et al., 1993), ring-

fault rupture (Ekström, 1994; Shuler et al., 2013), or horizontal tensile crack opening 

(Fukao et al., 2018). Through teleseismic body-wave analysis and examination of the 

frequency content, it was found that these events had longer source durations than tectonic 

earthquakes of similar magnitude (Shuler et al., 2013). Fukao et al. (2018) estimated large 

seafloor uplift around a submarine volcanic caldera and successfully reproduced tsunami 

waves observed at temporal OBPGs and a tide gauge. However, the complex source 

mechanisms are still controversial, making it difficult to relate tsunami amplitudes to 

seismic parameters quantitatively. 

The 2015 Torishima earthquake occurred on May 2, 2015 (UTC), and a tsunami 

was recorded on the southern coasts of Japan (Figure 2.10). According to a JMA report, 

the tsunami reached Hachijo Island with an amplitude of 0.5 m and Kozu Island with an 

amplitude of 0.3 m. The tsunami was also recorded by the offshore OBPGs, including the 

DONET and the DSFO off Muroto Cape (Figure 2.10; Kubota, 2018). In this section, I 

assimilate the actual tsunami data recorded at OBPGs from the 2015 Torishima 

earthquake and retroactively forecast the coastal tsunami arrival time and amplitude. 
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Figure 2.10. Bathymetry map of the 2015 Torishima earthquake.  

The observation network is composed of 23 DONET stations (red triangles) and two 

DSFO stations off Muroto Cape. They are far from the earthquake epicenter, as shown 

by the focal mechanism solution of the United States Geological Survey (USGS). Two 

tide gauges (PoIs), Kushimoto and Tosashimizu, are indicated with yellow circles. 

 

2.5.1 Observed Tsunami Data 

I assimilate the tsunami records of DONET and the DSFO off Muroto Cape. 

There are 23 DONET stations and two DSFO stations: PG1 and PG2, with available 

tsunami records for the 2015 Torishima earthquake. The data are obtained from NIED 

and JAMSTEC. DONET records have a sampling rate of 0.1 s, and DSFO records have 

a sampling rate of 1 s. The raw records are plotted in Figure 2.11. 

I first examine the records to ensure no data gaps, spikes, or repeating values in 

the time series and convert the pressure to water height by assuming the hydrostatic 
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pressure. Then, I remove the tidal components by fitting them with trigonometric 

functions. Finally, I remove the high-frequency components and extract tsunami signals. 

I apply a band-pass filter with cut-off frequencies of 0.002 and 0.01 Hz (500 and 100 s). 

The band-pass filter is the same as that used by Kubota (2018) for extracting tsunami 

signals of the 2015 and 2018 Torishima earthquakes. In this application, the tsunami 

signals are not affected by the seismic waves as the tsunami source is not close to the 

observation network. The processed data are plotted in Figure 2.12. 

The tide gauge data are used for comparison to validate the method. As this 

tsunami event is quite small, there were tsunami records only at two tide gauges: 

Kushimoto, located in the Kii Peninsula of Honshu Island, and Tosashimizu at Shikoku 

Island (Figure 2.10). The tide gauge data are downloaded from the website of Sea Level 

Station Monitoring Facility, Intergovernmental Oceanographic Commission (IOC): 

http://www.ioc-sealevelmonitoring.org/. They have continuous records with a sampling 

rate of 60 s. The data processing steps are similar to those of OBPGs, but I apply a band-

pass filter (0.002–0.00833 Hz) to tide gauge data as the Nyquist frequency was 0.00833 

Hz.  
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Figure 2.11. Raw records from 25 observational stations of DONET and DSFO. 
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Figure 2.12. Processed data from 25 observational stations of DONET and DSFO.  

Here I plot the time window of Forecasting 3 (38–54 min; see Section 2.5.2) as an 

example. 

 

2.5.2 Assimilation Setting 

The tsunami arrives at the observation network (KMC10) 38 min after the 

earthquake, which is defined by a threshold of 0.15 cm, at which point the data 

assimilation process begins. The first tsunami forecast is made 40 min after the 

earthquake. As time passes by, the records of more stations are assimilated, and the 

forecasting results are continuously updated at two PoIs, Kushimoto and Tosashimizu. 

The forecasted and observed waveforms with different assimilation time windows are 

then compared. A longer time window indicates that more offshore data are used in the 

assimilation process. 
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The bathymetry and topography data are derived from GEBCO_2014. The 

numerical grids of two tide gauges are located on land when using the current bathymetry 

data resolution. Therefore, I shift the original station locations to the nearest wet grid. As 

the shifted grid of Tosashimizu has a depth of more than 10 m, I correct its forecasted 

heights by the Green’s Law, assuming that the coastal depth is 1 m (Baba et al., 2004; 

Wang et al., 2012). 

The JAGURS model calculates Green’s functions between the 25 observational 

stations and two PoIs with the linear DSP model (Baba et al., 2015). A time step of 1 s 

and a grid spacing of 0.5 arcmin are employed. 

 

2.5.3 Results 

For the tide gauge at Kushimoto (Figure 2.13a), the tsunami arrives 60 min after 

the earthquake, with a first-peak amplitude of 1.3 cm. The maximum amplitude is 2.7 cm. 

I compare the forecasted waveforms with time windows of 38–40 min and 38–45 min 

(i.e., 20 and 15 min before the arrival, respectively). At 40 min, the forecasting has an 

acceptable performance. The arrival time is predicted to be 61 min, slightly later than the 

observation. The forecasted first-peak and the maximum amplitudes are 0.9 and 1.4 cm. 

At 45 or 15 min before the tsunami arrival, the forecasted waveform also matches well 

with the observation. The forecasted first-peak amplitude is almost the same as the one at 

40 min, but the forecasted maximum amplitude is 2.2 cm. 

For the tide gauge at Tosashimizu (Figure 2.13b), the first-peak amplitude is 

1.2 cm, and the maximum amplitude is 6.6 cm. I compare the forecasted waveforms with 

time windows of 38–54 min and 38–74 min (i.e., 35 and 15 min before the arrival, 

respectively). At 54 min, the forecasted amplitude is much lower than the observation; 

thus, it is difficult to determine the arrival time from the forecasted waveform. At 74 or 

15 min before the tsunami arrival, the forecasted arrival time is 89 min, matching well 

with the observation. The forecasted first-peak and maximum amplitudes are 0.8 and 3.7 

cm.  
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Figure 2.13. Waveform comparison of two PoIs. 

I compare the observed and forecasted waveforms at Kushimoto (a) and Tosashimizu (b) 

with different time windows. The black curves indicate the observation. The blue curves 

indicate the forecasted waveforms computed at 20 min (Kushimoto) or 35 min 

(Tosashimizu) before tsunami arrival. The red curves indicate the forecasted waveforms 

computed 15 min before tsunami arrival. The dashed blue lines and dashed red lines 

represent the different timings before the tsunami arrival for obtaining the tsunami 

forecast. 

 

I also compare the spectrum of the observation and the forecasted waveforms 

(Figure 2.14). I use the forecasted waveforms that are computed 15 min before the 

tsunami arrival at each station. The tsunami spectrum at Kushimoto has a large peak at 

approximately 0.0033 Hz (5.00 min) and small peaks at approximately 0.0021 Hz (7.93 

min) and 0.0054 Hz (3.08 min). The spectrum of the forecasted waveform is smoother 

than that observed. It has a large peak at approximately 0.0022 Hz (7.58 min) and a small 
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peak near 0.0033 Hz (5.00 min). The tsunami spectrum at Tosashimizu has the greatest 

energy near 0.004 Hz (4.17 min) and another prominent peak at approximately 0.0025 

Hz (6.67 min). In general, the spectrum of forecasted waveforms has a similar shape as 

that of the observation, except that the amplitude is lower for some frequencies. 

At the two PoIs, the tsunami data assimilation approach forecasts the tsunami 

arrival time and first-peak amplitude accurately. The following waveform is also well 

predicted at the Kushimoto tide gauge. On the one hand, a longer time window leads to 

better forecasting as more data is assimilated. On the other hand, the tsunami early 

warning should be issued promptly, leaving enough time before the tsunami arrival. 

The maximum amplitude of Kushimoto is accurately forecasted, but for 

Tosashimizu, the forecasting is not satisfactory. The reason for this is that Tosashimizu is 

located inside a harbor that lacks a dedicated local bathymetry. Although I correct its 

amplitude by Green’s Law, the harbor effects could not be well simulated. This could also 

explain why the frequency spectrum of forecasted waveforms does not match well with 

observations. The spectral amplitudes of forecasted waveforms are generally smaller than 

those of observations likely caused by the resolution issue of bathymetry. The spectrum 

of tsunami waveforms greatly depends on the local bathymetry (Rabinovich, 1997; Saito, 

2019). It contains components of the complex geometries of bays and harbors that are not 

well simulated. To solve this problem, bathymetric grids with higher resolution are 

necessary to simulate the effect of radiation damping through the mouth of the bay/harbor. 

Additionally, as I shift the station locations to the nearest wet grid, the arrival time 

estimation may be slightly inaccurate. 
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Figure 2.14. Spectrum comparison of two PoIs. 

The spectrums of observed (black curves) and forecasted (red curves) waveforms are 

shown. The forecasted waveforms are computed 15 min before the tsunami arrival. 

 

2.5.4 Accuracy and Number of Stations 

For the 2015 Torishima volcanic tsunami earthquake, I utilize tsunami data 

recorded at the stations of a dense observation network in the Nankai region. As some 

stations are located quite close, the information may be redundant. In future operations, 

some stations may also encounter technical problems and may not be able to provide real-

time data transmission. Therefore, I investigate the relationship between the number of 

observational stations and the forecast accuracy. A similar type of study has previously 

been proposed (e.g., Heidarzadeh et al., 2019; Hossen et al., 2018; Mulia et al., 2017a; 

Navarrete et al., 2020). Here, I discuss which stations are more important for tsunami data 

assimilation. To evaluate the forecasting performance in terms of tsunami amplitude and 

arrival time, I use a general error function 𝐺 (Navarrete et al., 2020) as follows. 
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𝐺 = 𝛼(1 − 𝑃) + 𝛽𝑄  (2.9) 

𝑃 = 1 −
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max)2+∑(𝐻𝑓
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∑
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arr|

𝑇eva
  (2.11) 

The subscripts 𝑓  and 𝑜  represent the forecasted and observed tsunami 

waveforms, respectively. Equation (2.10) characterizes the forecast accuracy of tsunami 

amplitude, developed from the method of Tsushima et al. (2012). 𝑃 is a normalized index 

(ranging from 0 to 1), 𝐻max is the maximum amplitude of the tsunami waveform, and 

𝐻arr  is the first-peak amplitude. A higher (close to 1) 𝑃  value indicates better 

forecasting. Using Equation (2.11), I evaluate the forecast accuracy of tsunami arrival 

time. Both early and late arrival time predictions are regarded as forecasting errors. 𝑁𝑠 

is the total number of PoIs. The 𝑡arr represents the arrival time of the first tsunami peak. 

Here I use the absolute value to avoid canceling out of the positive and negative time lags. 

The average time shift 𝑄 is the ratio of absolute time lag and evacuation time, meaning 

that a smaller 𝑄  is more accurate. The evacuation time is the interval between the 

forecasting time and the tsunami arrival time. The index 𝛼 and 𝛽 in Equation (2.9) are 

two positive weight parameters determined as per forecasting requirements. Their relative 

values represent the assumption of whether the accurate forecasting of arrival time or 

amplitude is more important. Hence, I set these two parameters in such a way that 𝛼 +

𝛽 = 1.0. Overall, general error function 𝐺 evaluates the tsunami forecast accuracy quite 

well. As the absolute value of 𝐺  largely depends on the absolute value of weight 

parameters, I normalize the 𝐺 for comparison. A relatively smaller value of 𝐺 indicates 

a higher accuracy. 

I start from the entire number of observational stations and gradually decrease 

the number. The general error function 𝐺 varies with a changing station distribution. For 

each number, I perform a search of the best design that could produce the least general 

error function 𝑚𝑖𝑛𝐺. I use the gradient descent algorithm for searching for the optimal 

solution (Garg et al., 2012). The results represent the best distribution of a certain number 

of stations. This evaluation method was first adopted in the optimal design of OBPGs off 
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the Chilean coast (Navarrete et al., 2020). In this study, the goal is to evaluate the 

importance of existing stations in tsunami data assimilation. 

 

Figure 2.15. Minimum general error function and location of critical stations.  

(a) Relationship between the number of stations and general error function 𝐺 . The 

minimum general error function 𝑚𝑖𝑛𝐺 for each station is searched by a gradient descent 

algorithm. For a better comparison, the results of the three settings are plotted by adjusting 

the second and third settings so that they all have the same values with 25 stations. (b–d) 

Location of critical stations of different settings. According to the value of weight 

parameters 𝛼 and 𝛽, the number and location of critical stations are different. 
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I choose the assimilation time window of 7 min (38–45 min) for Kushimoto 

and 36 min (38–74 min) for Tosashimizu. This means that for both PoIs, the forecast is 

made 15 min before tsunami arrival. Therefore, the evacuation time 𝑇eva is 15 min for 

both stations. 

First, I set the two weight parameters 𝛼  and 𝛽  to be equal at 0.5, which 

indicates that I assume that the accurate forecasting of arrival time and amplitude are 

equally important, and calculate the minimum general error function 𝑚𝑖𝑛𝐺 for each 

number of stations (Figure 2.15a). I start from the current number 25. In the beginning, 

as the number of stations decreases, 𝑚𝑖𝑛𝐺 increases slowly with small variations. In this 

situation, even though I remove some “unimportant” stations from the observation 

network, there is not a substantial influence on the forecast accuracy as the remaining 

network is dense enough. This trend continues until there are ten remaining stations. After 

that, as the number of stations decrease, 𝑚𝑖𝑛𝐺 increases dramatically. That is to say, all 

stations in this state are important for tsunami data assimilation. If one of the stations has 

technical problems, the overall forecast accuracy would be seriously affected, and the 

tsunami data assimilation approach would no longer be reliable. All in all, in the first set 

with 𝛼 = 0.5, 𝛽 = 0.5, six is the critical number of stations. This could achieve a fair 

forecast accuracy (𝑚𝑖𝑛𝐺 = 9.37) with the least number of observational stations. At this 

number, the network is composed of KMC09, KMC10, MRB06, MRF25, PG1, and PG2 

(Figure 2.15b). These stations play a significant role in tsunami data assimilation because 

of their locations. For data assimilation purposes, more attention should be paid to their 

operation and maintenance. 

Furthermore, I test two other settings: 𝛼 = 0.2, 𝛽 = 0.8; 𝛼 = 0.8, 𝛽 = 0.2. 

The former indicates a higher requirement on the forecasting of arrival time as I set a 

larger value of weight parameter 𝛽. In other words, I assume that the accurate forecasting 

of arrival time is more important. In contrast, the latter indicates a higher requirement on 

the forecast accuracy of amplitude. I normalize the value of 𝑚𝑖𝑛𝐺 of these two settings, 

assuming that their values are equal to those of first setting, at 25 stations. It is found that 

they have similar shapes as that of the first setting. The critical points are 6 and 16 for the 

second and third setting, respectively (Figure 2.15c; d). Different settings represent a 

different emphasis on the forecast accuracy of tsunami amplitude or arrival time. 

Furthermore, the determination of “critical points” is arbitrary, depending on the tolerance 
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of forecasting errors. Here, the results of critical stations are calculated from a single 

tsunami event. To analyze the necessary design of OBPGs thoroughly, we can use 

Empirical Orthogonal Function analysis to find the place where the most energetic wave 

dynamics occur (Navarrete et al., 2020). 

To summarize, by using the evaluation method based on the general error 

function 𝐺 , I could determine which stations are more important in tsunami data 

assimilation. Therefore, more efforts could be devoted to the operation and maintenance 

of these stations. 

 

2.6 Discussion 

The previous tsunami data assimilation approach of Maeda et al. (2015) and 

Gusman et al. (2016b) can provide accurate tsunami forecasting for coastal regions, even 

though the computational cost is high. To provide accurate tsunami forecasting more 

rapidly, I develop a new method based on Green’s functions. In the previous approach, 

the observed data are repeatedly assimilated over the time window, and in the remaining 

time, the tsunami propagation model is run for the assimilated tsunami wavefield. In 

contrast, GFTDA does not need to calculate the whole tsunami wavefield during the data 

assimilation process. Instead, I directly synthesize the waveforms at PoIs by a simple 

matrix manipulation.  

The 2012 Haida Gwaii earthquake application indicates that GFTDA has a 

similar accuracy as that of the previous approach, with a much shorter assimilation time. 

The previous method usually requires supercomputers for the assimilation process, and 

the high computational complexity inevitably results in time-consuming calculations. 

GFTDA simplifies the assimilation process because Green’s functions are calculated and 

stored in advance. The assimilation process is so simple that it can even be run on personal 

computers. For early tsunami warnings, saving time means saving lives. The reduction of 

the assimilation time is thus essential for an effective tsunami early warning.  

The application to the 2004 off the Kii Peninsula earthquake shows that the 

simple assimilation process of GFTDA makes it possible to apply more complicated 

models, apart from the LLW model. For potential tsunamis with more dispersive 
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characteristics or tsunamis that propagate over a longer distance from the observation 

network, the linear DSP model can make improvements in forecasting the arrival time 

accurately. 

Moreover, the application to the 2015 Torishima earthquake is the first time 

that uses the records of a real-time observation network to forecast a tsunami by the data 

assimilation approach. The forecasted waveforms computed 15 min before the tsunami 

arrival have a good consistency with real observations. The tsunamis at two tide gauges, 

Kushimoto and Tosashimizu, are predicted merely based on the offshore observed data, 

avoiding the complexities in the source characterization of the volcanic tsunami 

earthquake. Although the tsunami is small, retroactive forecasting is very meaningful in 

tsunami disaster mitigation. If a tsunami is larger, by combining the GFTDA with 

nonlinear tsunami inundation models on coastal regions of interest (Liu et al., 2009), 

inundation forecasting will also be possible. 
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Chapter 3   Tsunami Data Assimilation with 

Interpolated Virtual Stations 

 

3.1 Linear Interpolation with Huygens–Fresnel Principle 

In this chapter, I adopt virtual stations to perform tsunami data assimilation for 

regions without a dense observation network. The artificial waveforms of virtual stations 

are computed by the linear interpolation of real data. The principle of this method is 

similar to the Huygens–Fresnel principle in optics. According to the Huygens–Fresnel 

principle (e.g., Hadamard, 1924), every point on a wavefront is itself the source of 

spherical wavelets. The resulting amplitude at any position in the scattered field will be 

the vector sum of the amplitudes of all the individual waves. For the data assimilation of 

a tsunami wave, the observational stations resemble the points on the wavefront. If there 

is a wavefront consisting of dense observational stations, the wavefield could be 

reproduced using the data assimilation approach. Otherwise, some information can be 

lost during the assimilation process. Hence, to compensate for the lost information 

because of sparse observations, I artificially construct waveforms at virtual stations. 

Virtual stations do not exist, and their “waveforms” are only used for building 

the assimilation wavefield. I consider several virtual stations between two real stations 

(Figure 3.1). The virtual stations are located at equal distances along a straight line 

between real stations. The effects of the number of stations, or the distance between the 

virtual stations, will be discussed in Section 3.2.3. More generally, the interpolation 

scheme can be applied to three or more real stations (e.g., virtual stations inside a triangle), 

but I only consider two stations for the sake of simplicity. The network of stations (both 

real and virtual) could form a wavefront as in the Huygens–Fresnel principle.  

The first task for constructing a virtual waveform is a linear interpolation of 

two real arrival times to estimate the tsunami arrival time at a virtual station. I define a 

threshold for tsunami arrival in each station, using 𝑡𝐴
𝑎𝑟𝑟  and 𝑡𝐵

𝑎𝑟𝑟  to represent the arrival 
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times of two real stations. Then I calculate the arrival time of the i-th virtual station 

between two real stations as: 

𝑡𝑖
𝑎𝑟𝑟 = 𝑤𝑖𝐴 ⋅ 𝑡𝐴

𝑎𝑟𝑟 + 𝑤𝑖𝐵 ⋅ 𝑡𝐵
𝑎𝑟𝑟  (3.1) 

where 𝑤𝑖𝐴 and 𝑤𝑖𝐵 are two weight parameters for linear interpolation. The subscripts 

A and B represent the two neighboring real stations. Practically, 𝑤𝑖𝐴 and 𝑤𝑖𝐵 are the 

relative distances between the virtual and real stations if the tsunami velocity around the 

two stations is assumed to be constant. Their sum equals one. For instance, if the i-th 

virtual station is located at the middle point of two real stations, the value of the two 

weight parameters are both 0.5. After obtaining the arrival time of the virtual station, the 

amplitudes of the two real observations are interpolated to obtain that of the artificial 

waveform by taking the water depths at the stations into consideration. The tsunami 

waveforms after the arrival time of two real stations are represented as 𝑌𝐴(𝑡 − 𝑡𝐴
𝑎𝑟𝑟) and 

𝑌𝐵(𝑡 − 𝑡𝐵
𝑎𝑟𝑟). The tsunami waveform at the i-th virtual station is calculated as follows. 

𝑦𝑖(𝑡 − 𝑡𝑖
𝑎𝑟𝑟) = [

𝑤𝑖𝐴⋅𝑌𝐴(𝑡−𝑡𝐴
𝑎𝑟𝑟)

𝑑𝐴
−1/4 +

𝑤𝑖𝐵⋅𝑌𝐵(𝑡−𝑡𝐵
𝑎𝑟𝑟)

𝑑𝐵
−1/4 ] ⋅ 𝑑𝑖

−1/4
   (3.2) 

where 𝑤𝑖𝐴 and 𝑤𝑖𝐵 are weight parameters, and 𝑑𝐴, 𝑑𝐵 and 𝑑𝑖 are the water depths 

of two real stations and the i-th virtual station. The correction to water depth follows 

Green’s law that suggests that the tsunami amplitude is inversely proportional to the 

fourth root of water depth (Satake, 2015).  

The main characteristic of the linear interpolation method is that the virtual 

waveforms are calculated by shifting the arrival times considering the distance and the 

amplitudes are corrected considering the water depths at the stations. The arrival times 

are linearly interpolated by assuming constant velocity because we do not know the 

direction of wave arrival. On the contrary, the correction of amplitudes depends only on 

the water depths at the known stations, based on the assumption that the tsunami 

propagates as a plane wave. I validate my method with real data in Section 3.3.2. The 

virtual stations help construct a complete tsunami wavefront. As the interpolation 

depends on the waveform information of two adjacent real stations, the virtual waveforms 

cannot be computed until the tsunami arrives at both real stations. During the assimilation 

process, the tsunami height at both real and virtual stations is used to forecast the tsunami 
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waveforms. 

 

Figure 3.1. Illustration of the linear interpolation process. 

I first find the tsunami arrival time of two real stations and calculate the arrival time of 

virtual station(s) by the weighted average. Then, I calculate the virtual waveform(s) by 

shifting the arrival time with a correction for water depth. The virtual waveform(s) will 

be adopted in data assimilation along with real waveforms. 

 

3.2 Test with Synthetic Data—2004 Sumatra–Andaman Earthquake 

To test the effectiveness of the improved tsunami data assimilation method, I 

perform a synthetic experiment of the 2004 Sumatra–Andaman earthquake. The 

earthquake occurred at 00:58:53 UTC on December 26, 2004, and generated a tsunami 

that caused more than 283,000 deaths (Lay et al., 2005). The tsunami propagated across 

the Bay of Bengal (Figure 3.2) and arrived at India and Sri Lanka’s coasts about 2 h after 

the earthquake (Fujii and Satake, 2007). As no OBPGs were installed near the location of 

this tsunami event, I use synthetic data in the experiment. 

 

3.2.1 Synthetic Tsunami Data 

The fault model and seismic parameters are based on the results of Fujii and 

Satake (2007). They estimate the slip distributions by inverting the tide gauge and satellite 

altimeter data, assuming a rupture velocity of 1.5 km/s. I calculate the seafloor 
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displacement from the faulting (Okada, 1985) and use it as the initial condition for 

tsunami propagation (Figure 3.2). The LLW model is employed in the numerical 

simulation. The bathymetry grid data is derived from GEBCO_2014, with a grid size of 

2 arcmin. The computation domain for Green’s functions is 70°E–100°E, 0°–25°N, with 

the total grid number of 675,000. In the numerical simulation, the time step is 1 s, which 

satisfies the Courant–Friedrichs–Lewy condition, necessary for a stable simulation. I 

store the simulated tsunami waveforms at six OBPGs in the Bay of Bengal as the synthetic 

observations: Stations 23217, 23218, 23219, 23227, 23223, and 23401. These stations 

were installed after the 2004 Sumatra–Andaman earthquake, and they are currently the 

only available stations for tsunami detection in the Bay of Bengal (north Indian Ocean). 

Then, I use linear interpolation to compute the waveforms at 25 virtual stations with an 

average interval of approximately 50 km (Figure 3.2). 

To validate the method of tsunami forecasting, I compare the tsunami 

waveforms at seven near-shore PoIs along the coasts of India, Sri Lanka, and Maldives 

(Figure 3.2). As the tsunami waveforms computed from the source model by Fujii and 

Satake (2007) do not match well with the real observations, probably because of 

inaccurate bathymetry data near the stations, I use the synthetic waveforms. Green’s 

functions of observations (real and virtual stations) and near-shore PoIs are computed and 

stored in advance. The characteristic distance of the Optimal Interpolation algorithm is 

20 km. 
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Figure 3.2. Bathymetry map of the Bay of Bengal and synthetic tsunami waveforms. 

(a) The six OBPGs used in the numerical simulation are indicated with large red triangles. 

The 25 virtual stations indicated with small red triangles are interpolated between OBPGs. 

The seven near-shore points (green circles) record the tsunami waveform, and I compare 

them with the forecasted waveforms calculated by tsunami data assimilation. (b) 

Synthetic tsunami waveforms at six OBPGs. The assimilation begins 30 min after the 

earthquake.  
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3.2.2 Assimilation Setting and Results 

I set the earthquake origin time as 𝑡 = 0 . When the propagating tsunami 

reaches the OBPG Station 23217, at around 30 min after the earthquake, the data 

assimilation process begins. After this time, the tsunami height and arrival time are 

forecasted by the superposition of Green’s functions. 

 

Figure 3.3. Comparison of the observed and forecasted waveforms at seven near-shore 

points. 

The black curves represent the simulated waveforms. The blue curves represent the 

assimilated waveforms without virtual stations, whereas the red curves represent the 

assimilated waveforms with virtual stations. The assimilation time window is 60 min for 

both cases. 

 

Figure 3.3 compares the simulated and forecasted tsunami waveforms at seven 

near-shore stations, with an assimilation time window of 60 min. The forecasted 

waveforms generally match with the simulated waveforms at all stations. However, 

without virtual stations, the forecasted waveforms underestimate the maximum amplitude 

of the first tsunami peak. On the contrary, the assimilation with virtual stations has better 
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performance, improving the forecasting of tsunami amplitude and period. For example, 

at the near-shore PoI of Male, the simulated maximum amplitude of the first tsunami peak 

is 1.16 m. The assimilated amplitudes without and with virtual stations are 1.06 and 0.51 

m, respectively, indicating a significant improvement of the results by including virtual 

stations. Overall, the forecast accuracy calculated by Equations (2.5) and (2.6) increases 

from 51.4% to 73.1% with the help of virtual stations. 

It is important to note that the tsunami forecast is made at 60 min (90 min after 

the earthquake) when the first tsunami peak has passed all OBPGs. As the tsunami arrives 

at the Indian coast around 150 min after the earthquake and arrives at Sri Lanka and the 

Maldives even later, there is enough time to conduct the data assimilation process and 

transfer appropriate warning messages to the public at risk. 

 

3.2.3 Effects of Interpolation Interval 

In this application, I use synthetic waveforms at six OBPGs to artificially build 

a dense network. Different interpolation intervals may affect forecast accuracy. 

Meanwhile, in the Optimal Interpolation algorithm, the covariance matrices of the 

forward numerical simulation and the observation are assumed to have a Gaussian 

correlation with a certain characteristic distance (Kalney, 2003; Maeda et al., 2015). In 

the last section, a Gaussian-distributed covariance is assumed for the correlation function 

of errors, with a characteristic distance of 20 km (Equation 1.28). The relationship 

between the characteristic distance and the interpolation interval remains to be discussed. 

According to the recent study of Yang et al. (2019), the Optimal Interpolation algorithm 

may have a poor performance if the interval between the neighboring stations is greater 

than ~50 km. 

To study these effects, I use synthetic 2004 Sumatra–Andaman earthquake data 

and test four interpolation scenarios of virtual stations at the Bay of Bengal (Figure 3.4). 

In Case 1, only four virtual stations are assumed to be present, with station intervals of 

~150 km. In Case 2, 10 stations are assumed at intervals of ~100 km. Case 3 is adopted 

in Section 3.2.2, with 25 virtual stations at ~50 km intervals. In Case 4, 40 virtual stations 

are assumed with the smallest interval of ~30 km. For each case, I test different 
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characteristic distances for the Optimal Interpolation algorithm, from 20 to 80 km, and 

calculate their forecast accuracies. 

 

Figure 3.4. Four interpolation scenarios of virtual stations at the Bay of Bengal.  

The number and location of real OBPGs are fixed, but the number and interpolation 

interval of virtual stations are different. From Case 1 to Case 4, the interpolation becomes 

denser. 

 

After computing the synthetic tsunamis, I calculate the forecast accuracy by 

Equations (2.5) and (2.6) for each case with different characteristic distances (Figure 3.5). 

Case 1 has the lowest accuracy for all characteristic distances, and Case 2 has a better 

accuracy. Cases 3 and 4 have the best performance, and their results are close to each 

other. It can be concluded that a dense interpolation of virtual stations may help improve 

the forecasting up to a certain level, but beyond that, the accuracy tends to saturate. On 

the other hand, the number of Green’s functions will also increase by adding virtual 

stations, which may affect the forecasting efficiency. Therefore, it is important to balance 

the number of virtual stations and the desired forecast accuracy. 

It is also observed that the characteristics distance affects the optimum point of 

forecast accuracy. The smallest characteristic distance of 20 km results in the highest 

accuracy for Cases 3 and 4, which have interpolation intervals of ~50 and ~30 km, 

respectively. Case 2 with an interpolation interval of ~100 km requires a 30 km 
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characteristic distance, and Case 1 with an interpolation interval of ~150 km requires a 

40 km characteristic distance to produce a high forecast accuracy.  

As the interpolation becomes denser, the interval between the two stations 

becomes smaller. A dense interpolation is helpful to improve the forecast accuracy. In 

this study, the station interval should be less than ~ 50 km to guarantee a high accuracy 

over 75%. This empirical value is consistent with the distance criterion for Optimal 

Interpolation (Yang et al., 2019). A characteristic distance of 20 km is appropriate in such 

interpolation scenario. 

 

Figure 3.5. Forecast accuracies of four scenarios versus different characteristic distances.  

The characteristics distances range from 20 to 80 km. The accuracy is calculated by 

Equations (2.5) and (2.6). 

 

3.3 Test with Real Data—2009 Dusky Sound Earthquake 

The Dusky Sound earthquake (M 7.8) occurred near the southwestern coast of 

New Zealand at 09:22:29 UTC on July 15, 2009 (Beavan et al., 2010; Fry et al., 2010; 

Heidarzadeh and Gusman, 2019). It was the largest event ever recorded at the Puysegur 

subduction zone. The earthquake generated a tsunami that was recorded by tide gauges 

around the southwestern South Island and by DART gauges in the south Pacific (Clark et 
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al., 2011). The Marine Observations of Anisotropy near Aotearoa (MOANA) OBS 

network also detected the signal of the tsunami (Sheehan et al., 2019). 

 

3.3.1 Observed Tsunami Data 

At the time of the earthquake, up to 30 OBSs were equipped with OBPG in the 

west and east of South Island. The raw data are available at the Ocean Bottom 

Seismograph Instrument Pool (website: http://www.obsip.org). The tsunami signals are 

extracted by removing the tidal components and bandpass filtering at 0.0002–0.005 Hz 

with a fourth-order Butterworth filter. Then, the instrument responses are de-convolved, 

following the method of Sheehan et al. (2019). As the tsunami was recorded by 

differential pressure gauges, the tsunami amplitude at each station is corrected by the ratio 

between the observed and simulated peak amplitude at each station (Beavan et al., 2010).  

Tide gauge data are used for waveform comparison to validate the method. As 

the region of interest is the western coast of South Island, I only use the tide gauge 

observation of Charleston (Figure 3.6a). The tsunami amplitude of tide gauges is usually 

affected by local bathymetry and harbor effects (Baba et al., 2004; Heidarzadeh et al., 

2016a; Kontar et al., 2013; Leonard, 2006). 

http://www.obsip.org/
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Figure 3.6. Tsunami data assimilation for the 2009 Dusky Sound earthquake.  

(a) Distribution of OBPGs and the Charleston tide gauge. The seven OBPGs indicated 

with large red triangles are used for data assimilation. The 28 virtual stations indicated 

with small red triangles are interpolated between OBPGs. (b) The observed tsunami 

waveforms at seven OBPGs. The assimilation begins 30 min after the earthquake. The 

real (black curve) and virtual (yellow and green curves) waveforms at NZ13 are compared. 

(c) Comparison of the observed and forecasted waveforms at the Charleston tide gauge 

with an assimilation time window of 40 min. 

 

3.3.2 Assimilation Setting  

Though 30 OBSs are installed during the MOANA project, data from only a 

few stations are available for data assimilation. Among the stations in the west, NZ15 was 

trawled up by a fishing vessel, and NZ17 was not recovered (Yang et al., 2012). NZ01 

and NZ02 waveforms were clipped (Sheehan et al., 2019). Additionally, some stations 

are too far from the Charleston tide gauge, so the tsunami arrives at these even later than 
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at the tide gauge. Therefore, there are only seven stations for tsunami data assimilation: 

NZ08, NZ09, NZ10, NZ11, NZ12, NZ13, and NZ16. 

I use 28 virtual stations interpolated between real stations, with an average 

interpolation interval of approximately 50 km. I choose neighboring station pairs so that 

virtual stations do not overlap with each other. As station NZ13 is nearly located in the 

line between NZ09 and NZ12 and the line between NZ11 and NZ16, it provides an 

opportunity to validate the linear interpolation method of virtual stations. I interpolate a 

virtual waveform at NZ13 using data from NZ09 and NZ12 (yellow curve in Figure 3.6b) 

and another virtual waveform at NZ13 using the data from NZ11 and NZ16 (green curve 

in Figure 3.6b). Then I compare this with the real waveform (black curve).  

The characteristic distance of the Optimal Interpolation algorithm is 20 km. The 

bathymetry grid data is derived from GEBCO_2014 with a grid size of 0.5 arcmin. The 

computation domain for Green’s functions is 163°E–175°E, 49°S–37°S, with the total 

grid number of 2,073,600. The time step of the numerical simulation is 1 s. Unlike the 

approach of Sheehan et al. (2019), I only use the real tsunami data as the input and 

interpolate virtual stations to overcome the problem of sparse observations. 

 

3.3.3 Results 

In the test of NZ13, the arrival time and amplitude of the first tsunami peak are 

very similar between the real observation and the two virtual waveforms (Figure 3.6b). 

Hence, it validates the linear interpolation method of virtual stations. Although there are 

slight discrepancies, virtual waveforms could supplement real observation in tsunami data 

assimilation and compensate for the lost information because of sparse stations.  

The data assimilation process begins 30 min after the earthquake when the 

tsunami arrives at the first OBPG (NZ10). Figure 3.6c compares observed and forecasted 

waveforms at the Charleston tide gauge at the time window of 40 min (i.e., 40 min after 

the tsunami arrival at NZ10). The forecasted waveform matches the observed waveform 

reasonably, and their periods are similar. However, without virtual stations, the amplitude 

of the forecasted waveform (8.4 cm) is smaller than that of the observation (16.0 cm). 

The accuracy is only 52.5%. The method with virtual stations gives a better forecast of 
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the tsunami amplitude (13.4 cm), with an accuracy of 83.8%. As the tsunami arrives at 

the Charleston tide gauge at 112 min after the earthquake, the tsunami forecast is made at 

approximately 32 min before arrival.  

 

3.4 Application to Far-field Event—2015 Illapel Earthquake 

The 2015 Illapel earthquake occurred on September 16, 2015, at 22:54:33 

(UTC) offshore Illapel, Chile, because of thrust faulting on the interface between the 

Nazca and South America Plates. The West Coast & Alaska Tsunami Warning Center  

of NOAA issued a rapid magnitude estimation of M 7.2 at 4 min after the earthquake, and 

the PTWC estimated the magnitude to be M 7.9 at 5 min after the earthquake (Cienfuegos 

et al., 2016). Finally, the USGS revised the magnitude to M 8.3. The location of the 

epicenter is 31.573°S, 71.674°W, at a depth of 22.4 km. The earthquake caused 15 deaths, 

six missing people, and considerable damage to coastal cities. It generated a tsunami that 

reached the Chilean coastal region within 8 min after the earthquake (An and Meng, 2017; 

Aránguiz et al., 2016) and resulted in flooding in the cities along the coast. The tsunami 

propagated across the Pacific Ocean and was recorded by tide gauges and DART 

tsunameters, though the amplitude was much smaller than that of the 2010 tsunami and 

slightly smaller than that of the 2014 tsunami (Satake and Heidarzadeh, 2017). The 

DART stations provide tsunami time series recorded at the open ocean and can be used 

to reconstruct the source model of the earthquake (Heidarzadeh et al., 2016b; Williamson 

et al., 2017). For example, Ren et al. (2017) studied the characteristics of tsunami waves 

in the deep ocean by using the records of 16 DART tsunameters of this event. 

In this research, I focus on far-field tsunami forecasting of Chilean earthquakes. 

Tsunamis generated by Chilean earthquakes produce significant damage not only to the 

Chilean coast but also in areas far away from the source, including Easter Island (Fritz et 

al., 2011), Oceania (Hébert et al., 2001), and even Japan (Satake et al., 2020). The recent 

installation of DART tsunameters off the Chilean coast enables the application of the 

tsunami data assimilation approach. The DART stations are 32401 and 32402 owned and 

maintained by the Hydrographic and Oceanographic Service of the Chilean Navy, and 

stations 32403, 32404, and 34420 owned and maintained by the Cooperative Effort 

DART 4G Buoy (Figure 3.7a). They record water levels and transmit a signal to the land 
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in real time (González et al., 2005). I use the tsunami data from the 2015 Illapel 

earthquake as an application of far-field tsunami data assimilation. I retroactively predict 

the tsunami in the east Pacific using the tsunami data assimilation approach and compare 

the forecasted results with the observations. 

 

3.4.1 Observed and Synthetic Tsunami Data 

Tsunami waveform data from DART tsunameters and tide gauges are 

considered for this study. Four DART tsunameters are used for data assimilation, and 

forecasted waveforms are compared with the observed data on tide gauges and other 

DART tsunameters. 

The DART data of the 2015 Illapel earthquake are available at NOAA’s website 

(https://www.ngdc.noaa.gov/hazard/dart/2015chile.html). Tsunami signals have already 

been extracted and processed by the Tsunami Detection Algorithm that estimates the 

amplitude of the pressure fluctuations within the tsunami frequency band (Meinig et al., 

2005). Then, the amplitude is computed by subtracting predicted pressures from the 

observations, in which the predictions closely match the tides and lower frequency 

fluctuations. In my retroactive study, to remove the high-frequency components like 

seismic waves, I also use a low-pass filter with a cut-off frequency of 0.002 Hz and apply 

a zero mask before the arriving tsunami because I only need the waveforms after the 

tsunami arrival. For most tsunamis generated from mega-thrust earthquakes, the first peak 

of the tsunami at OBPGs is free of coastal reflections and harbor effects (Williamson and 

Newman, 2018). 

At the time of the 2015 Illapel earthquake, only two DART stations, 32401 and 

32402, were operational. Therefore, in addition to these two observed waveforms (blue 

curves), I build synthetic waveforms (green curves) at stations 32404 and 34420 (Figure 

3.7b) by using the fault model of Ren et al. (2017). I only compute synthetic waveforms 

at two other stations to ensure that at least half of the data are real records. Therefore, I 

skip the station 32403, which is close to station 32401. Ren et al. (2017) assumed a focal 

depth of 25 km, strike angle of 4°, dip angle of 19°, and rake angle of 90°. The fault size 

(length × width) is 230 km × 100 km and a uniform slip of 4.64 m is adopted. The 
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numerical simulation from this uniform fault matches well with the real observations from 

near-field and far-field DART stations. In addition to DART stations near the Chilean 

coast, I also extract the data of DART station 32412, located off the southwest of Peru. I 

compare its observations with the forecasted waveform to evaluate the accuracy of the 

method. 

The tide gauge data are available at Sea Level Station Monitoring Facility, IOC 

(http://www.ioc-sealevelmonitoring.org/). The tidal components are removed by 

polynomial fitting. I use the far-field tsunami records of tide gauges in the east Pacific, 

including those of San Felix, Easter, Rikitea, Nuku Hiva Island, Papeete Tahiti, Huahine, 

and Rarotonga (Figure 3.8a). The distance between tide gauges and South America ranges 

from hundreds to ten thousand kilometers. 

Figure 3.7. Tsunami data assimilation of DART tsunameters along the Chilean coast. 

(a) Bathymetry of the source region. I assimilate the data at four real DART stations and 

32 virtual stations interpolated between them. The focal mechanism is plotted by using 

the USGS solution. The fault model of Ren et al. (2017) is plotted with a red rectangle. 
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(b) Waveforms at the four DART stations. Grey curves represent the raw data from the 

NOAA website, blue curves represent observed waveforms, and green curves represent 

synthetic waveforms. Observed waveforms at stations 32401 and 32402 and synthetic 

waveforms at stations 32404 and 34420 are considered as the “observations.” The 

synthetic waveforms are calculated from the fault model of Ren et al. (2017). Station 

32403 is not considered. The time for the beginning and end of data assimilation and 

tsunami forecasting are marked by the dashed lines. (c) The process of linear interpolation 

to create waveforms at virtual stations. The virtual waveforms are calculated by shifting 

the arrival times considering the distance and correcting the amplitudes considering the 

water depths at the stations. 

 

3.4.2 Assimilation Setting 

The waveforms at the four DART tsunameters are adopted as the input for the 

tsunami data assimilation (Figure 3.7b). I interpolate 32 virtual stations between the 

neighboring DART tsunameters (Figure 3.7a). To prove the effectiveness of the method, 

I compare the data assimilation results with and without virtual stations.  

The Green’s functions are calculated by the JAGURS tsunami code (Bata et al., 

2015) with a linear DSP model on spherical coordinates. To ensure linearity, nonlinear 

effects such as bottom friction are not considered in the numerical simulation. As most of 

the tsunami propagation path is in the deep ocean, I select the grid spacing of 2 arcmin to 

avoid a large computational cost, and the time step is 1 s, which meets the requirements 

of the stability condition. For far-field tsunamis, most of the propagating path is in the 

wide Pacific Ocean, for which the bathymetry or tsunami velocity is well known. 

The bathymetry data are derived from the 30 arcsec gridded data of 

GEBCO_2014. Because of the grid size, the exact location of tide gauges at the coast 

cannot be well represented. The altitude of the corresponding point sometimes becomes 

positive (i.e., above the sea surface). To avoid this problem, I moved the gauge location 

and shift it to the nearest wet grid.  

I forecast the tsunami amplitudes and arrival times at PoIs, including DART 

tsunameters and tide gauges (Figure 3.8a). Tide gauge data are more affected by local 
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topography and harbor effects and thus have larger amplitudes and more complicated 

waveforms and spectrums than OBPG records (Rabinovich, 1997; Rabinovich et al., 

2015).  

 

3.4.3 Results 

I define the time of origin 𝑡 = 0 when the 2015 Illapel earthquake occurred. 

The tsunami arrival time is defined by a threshold of 0.02 m. The tsunami arrives at station 

32404 at 𝑡 = 12 min, after which the assimilation process begins. It is important to 

mention that the waveforms at virtual stations are not calculated until the tsunami arrives 

at both neighboring stations. This may cause some delay in forecasting, but the effects 

are small when considering far-field tsunamis. The first tsunami forecasting is made at 

𝑡 = 1 h when the first tsunami peak has passed stations 32402 and 32404, as well as the 

virtual stations interpolated between them, and the tsunami waveforms at PoIs (e.g., San 

Felix) are synthesized. As time passes, more observed data are used in the assimilation, 

and the forecast accuracy improves. The whole assimilation process ends at 𝑡 = 2 h 20 

min when the first tsunami peak has completely passed the four DART tsunameters. 

I compare the forecasted and observed tsunami waveforms at PoIs (Figure 3.8b). 

The tsunami heights at tide gauges have already been corrected by Green’s Law, assuming 

that the coastal depth is ~1 m. (Baba et al., 2004; Synolakis and Skjelbreia, 1993; Wang 

et al., 2012). Additionally, the waveforms at tide gauges are affected by local topography 

and harbor effects that may not be fully modeled by the simulation using the 2 arcmin 

grid. Thus, I mainly focus on the amplitude and arrival times of the first tsunami peak at 

tide gauges as the first peak is less affected (Calisto et al., 2016; Yamazaki and Cheung, 

2011). 

The tsunami waveforms forecasted by data assimilation without virtual stations 

(blue curves) show poor results when compared with the observations. They 

underestimate the tsunami amplitudes and do not predict the arrival time accurately. On 

the contrary, with the help of virtual stations (red curves), the results improve substantially. 
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Figure 3.8. Locations of and waveforms at PoIs. 

(a) Locations of eight PoIs. The far-field tsunami in the east Pacific is forecast from the 
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ocean off the Chilean coast to regions in Oceania. (b) Comparison of the observed and 

forecasted waveforms at PoIs. The black curves represent the observed waveforms. The 

red curves represent the forecasted waveforms by data assimilation with virtual stations. 

The blue curves represent the forecasted waveforms by data assimilation without virtual 

stations. 

 

At the San Felix tide gauge near the Chilean coast, the actual tsunami arrives at 

1 h 17 min after the earthquake with an amplitude of 0.39 m. The results show that the 

forecasted tsunami arrival time is 1 h 13 min after the earthquake, and the amplitude is 

0.41 m. As the tsunami arrives at San Felix before the end of the data assimilation process, 

I use the results forecasted at 𝑡 = 1 h 6 min. DART station 32412 records the tsunami 

arrival at 2 h 45 min after the earthquake, and the amplitude is 0.07 m. The forecasted 

waveform has an arrival time of 2 h 45 min and an amplitude of 0.05 m. At both stations, 

there is a high consistency between the observed and forecasted waveforms. 

At Easter Island, the tsunami arrives at 5 h 36 min after the earthquake, and the 

amplitude of the first tsunami peak is 0.40 m. The comparison indicates that the method 

forecasts the tsunami arrival time (5 h 34 min) precisely. Additionally, the forecasted 

amplitude is 0.51 m, which is higher than the first observed peak, but at the same level as 

the following observed peaks. 

In Oceania, as tide gauges are quite far from the source, the tsunami takes a 

very long time to propagate. The forecasted waveforms still generally match the 

observation. The tsunami arrival times of the first tsunami peak are predicted well at most 

tide gauges, including Nuku Hiva Island, Papeete Tahiti, and Rarotonga. At Rikitea, the 

forecasted tsunami arrives approximately 18 min earlier than real observation. At 

Huahine, the forecasted tsunami arrives approximately 14 min later than the real 

observation. As for the tsunami amplitude of the first tsunami peak, the forecasted results 

underestimate the observed values at Rikitea, Nuku Hiva Island, and Papeete Tahiti, while 

at Huahine and Rarotonga, the amplitude of the first tsunami peak is slightly 

overestimated. Although I mainly focus on the first tsunami peak, the following 

waveforms after the first peak are consistent with the real observations at most stations. 

However, at Nuku Hiva Island, the following waveform shows strong oscillation 
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characteristics, which are not captured well by the forecasted results. 

Overall, the forecast accuracy is 87.5% for all the stations as per Equations (2.5) 

and (2.6). I also calculate the average value of absolute time lag as 5.75 min using 

Equation (2.8). Considering the long travel time of several hours, the arrival time 

forecasting is judged to be accurate. I compare the forecasted and observed arrival times 

at each PoI (Figure 3.9). The slope of the regression line is 1.0037, with an R-square value 

of 0.999. This indicates that the method does not have a bias in forecasting the arrival 

time. 

 

Figure 3.9. Comparison of the observed and forecasted tsunami arrival time at eight 

PoIs. 

 

3.5 Discussion 

The adoption of virtual stations enables us to perform tsunami data assimilation 

in regions without a dense observation network, such as the Bay of Bengal. The new 

method does not introduce any new information except the water depth. It is based on the 

assumption that a tsunami propagates as a plane wave, and that the wavefront is a nearly 

straight line. Hence, the tsunami amplitude in the open sea depends on the water depth in 

most cases. The data assimilation approach resembles the Huygens–Fresnel Principle. If 

there is no dense observation network, the previous assimilation procedure can lose some 
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information of the wave as there are not enough “secondary sources” on the wavefront. 

Therefore, the interpolated virtual stations are an approximation of the lost information 

because of sparse stations. They help reconstruct the wavefront and prevent information 

loss to some extent. Of course, if there is enough budget, it will be better to build sufficient 

real stations to prevent such information loss instead of using interpolated virtual stations 

as an approximation. 

As this method is based on the assumption that the tsunami travels as a plane 

wave, I acknowledge that it will have some limitations when this assumption cannot be 

satisfied. Generally, there are mainly two scenarios where the method of virtual stations 

that cannot be applied. In the first scenario, the source is close to the observational stations 

(Figure 3.10a), and the tsunami wavefront is more like a spherical wave instead of a plane 

wave. Therefore, it is not applicable to create waveforms at virtual stations. However, 

Tanioka (2018) proposed a tsunami data assimilation method based on OBPG data in the 

earthquake source region. Inoue et al. (2019) successfully applied this method to synthetic 

studies of the 1952 Tokachi-oki earthquake (M 8.2) and the 1968 Tokachi-oki earthquake 

(M 8.1). Although this method is different from the Optimal Interpolation algorithm, it 

can help in cases where the virtual-station method cannot be applied. In the second 

scenario, the bathymetry varies very quickly. For example, when there is a seamount 

between two real observational stations (Figure 3.10b), the tsunami wavefront will be 

bent and no longer be a straight light. Because the tsunami velocity depends on water 

depth, the bathymetry change should be smooth to satisfy the plane-wave assumption. 

Except for these two scenarios, the virtual waveforms calculated by linear interpolation 

could compensate for the lack of real observations, which has been verified by the case 

study on the 2009 Dusky Sound earthquake. Hence, it can improve tsunami data 

assimilation performance and can make it affordable for more countries and regions. 
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Figure 3.10. Two scenarios where the virtual-station method cannot be adopted. 

(a) The scenario where the source is close to the observational stations (marked by orange 

triangles). The blue curve indicates the tsunami wavefront. (b) The scenario where the 

bathymetry varies very quickly. 
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Chapter 4   Real-Time Tsunami Detection based on 

Ensemble Empirical Mode Decomposition (EEMD) 

 

4.1 EEMD 

Time–frequency analysis can characterize and manipulate signals in time and 

frequency domains. The EEMD is an adaptive time–frequency analysis method that is 

widely adopted in the atmospheric and oceanic sciences, for investigating parameters 

such as the variation of sea level pressure index, irregular coastal water waves, and the 

spatial–temporal change in air pollutants (Dätig and Schlurmann, 2004; Liu et al., 2018; 

Wu and Huang, 2009). The decomposition assumes that at any given time, the original 

data has many coexisting oscillatory modes of significantly different frequencies 

superimposed on each other.  

The Empirical Mode Decomposition (EMD) is the predecessor of EEMD. It 

decomposes the time series into a finite number of basis, defined as Intrinsic Mode 

Functions (IMFs). IMFs represent the natural oscillatory modes embedded in the signal 

and work as the basis functions. The number of IMFs is decided by the length of the data 

(Wu and Huang, 2009). The IMFs need to satisfy the following two conditions: 1) The 

number of extrema and zero crossings must either be equal or differ at most by one. 2) 

The mean value of the upper envelope and lower envelope should be zero (Huang et al., 

1998; 1999). Further details of EMD can be found in Huang et al. (1998). Here, I briefly 

describe the decomposition process as the following steps (Figure 4.1):  

(1) Find the local maxima and minima of the original time series.  

(2) Connect all the local maxima (minima) by a cubic spline line as the upper 

(lower) envelope.  

(3) Subtract the mean value of two envelopes from the original time series.  
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(4) Iterate these processes until the extracted signals satisfy the two conditions 

of IMFs (i.e., if the two conditions are satisfied, the residue becomes the raw IMF. 

Otherwise, it enters the next iteration and repeats Steps 1–3 again to the residue). 

After obtaining the 1st raw IMF, I subtract it from the original input signal and 

repeat the iteration above to extract the 2nd raw IMF and 3rd raw IMF. The number of 

raw IMFs, 𝑛𝑟, depends on the length of data: 𝑛𝑟 = log2 𝑁𝐿, where 𝑁𝐿 is the length of 

the input signal (Wu and Huang, 2009). The raw IMFs are listed in order of descending 

frequency. Short-period oscillation tends to appear in the lower mode IMFs, whereas 

higher-mode IMFs mostly contain long-period signals. The dominant period of each 

mode is not fixed and depends on the characteristics of the input signal. 

To make it more robust to noise, Wu and Huang (2009) modified the EMD by 

introducing the noise-assisted data analysis and proposed the EEMD. They used the mean 

of an ensemble of EMD trials, each consisting of the signal plus white noise of finite 

amplitude.  

Compared with other time–frequency analysis methods like Fast Fourier 

transform or wavelet analysis, the most pronounced characteristic of EEMD is that the 

decomposition is determined by the characteristics of the original time series itself rather 

than a pre-determined basis (e.g., trigonometric functions). Therefore, it is an adaptive 

signal processing method that can be applied to nonlinear and non-stationary processes 

(Huang and Wu, 2008). Moreover, unlike causal filters, EEMD does not cause any change 

of the tsunami peak by group delay. These advantages make it suitable for real-time 

tsunami detection. 
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Figure 4.1. EMD of the input signals.  

The decomposition of an input signal (a) is iterated nine times until the residue satisfies 

the two conditions of IMFs (b–e). Blue and red dots represent local maxima and minima. 

The blue curve represents the upper envelope that connects all the local maxima, the red 

curve represents the lower envelope that connects all the local minima, and the green 

curve represents the mean value of two envelopes. Then it becomes the 1st raw IMF (e). 

After that, the 1st raw IMF is subtracted from the input signal and the iteration is repeated 

to extract other raw IMFs (f). 



 86 

To employ EEMD in a real-time tsunami detection algorithm, I follow several 

steps. The first step is the quality control of real-time data. I examine if there are any 

technical problems with the observational devices. Next, the time series in the past 3 h 

are selected: the segment from 𝑦(𝑡 − 3ℎ) to 𝑦(𝑡), where 𝑦 is the value of tsunami 

height, and 𝑡 is the time. I use the same segment length as NOAA’s algorithm (Mofjeld, 

1997). These processes can be done in real time. Then, I conduct EEMD to the 3 h 

segment and obtain the corresponding raw IMFs. Each of the raw IMF has different 

frequency characteristics. However, it is important to note that these raw IMFs are not 

orthogonal, and therefore some neighboring raw IMFs with similar frequency 

characteristics should be combined artificially (Liu et al., 2018; Wu and Huang, 2009). 

The input 3 h time series has 180 data points, and hence the decomposition of the 3 h time 

series generates seven raw IMFs, listed in descending order of frequency. I use the 1st 

raw IMF as IMF1, combine the 2nd to 4th raw IMFs as IMF2, and combine the 5th to 7th 

raw IMFs as IMF3. The combination of raw IMFs is automatic and common for different 

events. In Appendix A1, I demonstrate the combination of raw IMFs. Finally, I compare 

the IMF amplitude at the last moment with a threshold value. If the Last-Moment IMF 

(LM-IMF) exceeds the threshold, the algorithm will declare the tsunami arrival. 

Otherwise, these steps are repeated for the next interval, with the new segment from 

𝑦(𝑡 − 3ℎ + ∆𝑡)  to 𝑦(𝑡 + ∆𝑡) , where ∆𝑡  is the sampling interval. The IMFs are 

recalculated, and the amplitudes of LM-IMF are compared again, similar to the automatic 

phase detection method of seismograms, STA/LTA (Allen, 1978). 

 

4.2 Validation Test—2016 Fukushima Earthquake 

To validate the real-time tsunami detection algorithm based on EEMD, I use 

the data of the 2016 Fukushima earthquake (M 7.4) as an example. The earthquake 

occurred on November 21, 2016, at 20:59:47 UTC, offshore Fukushima Prefecture, Japan. 

Based on the JMA earthquake catalog, the hypocenter of the earthquake was at 37.355°N, 

141.604°E, at a depth of 25 km (Gusman et al., 2017; Figure 4.2a). The earthquake 

generated a moderate tsunami, with the maximum tsunami amplitude of 1.4 m measured 

at Sendai Port. It was the largest tsunami event since the 2011 Tohoku earthquake 

(Suppasri et al., 2017). 
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Figure 4.2. Bathymetry and the OBPG records of the 2016 Fukushima earthquake. 

(a) Map of the epicenter of the 2016 Fukushima earthquake and OBPGs that recorded the 

tsunami. The locations of OBPGs are marked by red triangles. (b) The OBPG records of 

the event. These records have already been converted from water pressure to water height 

from the bottom. The tsunami signals are mixed up with tidal components and seismic 

waves. 

 

4.2.1 Observed Tsunami Data 

The tsunami is clearly recorded by OBPGs offshore Iwate Prefecture: TM1, 

TM2, YTM1, YTM2, and YTM3 (Figure 4.2b). The sampling rates are 1 s for the two 

TM gauges and 0.1 s for the three YTM gauges.  

For all five OBPGs, I convert the water pressure to water height by assuming 

hydrostatic pressure at the OBPG depth (Gusman et al., 2017). I resample the data by 

calculating the 1 min average for each OBPG. Then, I select a 3 h segment for EEMD. I 

test the algorithm as if it is processed in “real time” and assume no priori information 
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about the earthquake event. I start the EEMD process approximately 1 h before the 

earthquake, with the first segment from 17:00 to 20:00 UTC. I obtain raw IMFs and 

combine the neighboring ones. Then, I compare the amplitude of LM-IMF2 with a 

threshold of 2.0 cm to decide whether the tsunami has arrived or not. 

 

4.2.2 Results 

In Figure 4.3a, I plot the EEMD results of TM1 at 20:00 UTC, before the 

earthquake. At this moment, there is no seismic wave nor tsunami waves. The IMFs have 

a very small amplitude. IMF1 represents high-frequency components, including the 

background noise and the white noise artificially added for ensembling. The IMF3 

represents the tide, oceanic, and meteorological signals. Unlike the traditional detection 

algorithm, the new algorithm does not need a theoretical model to predict tides. Instead, 

these signals are removed automatically by EEMD. In Figure 4.3b, I plot the EEMD 

results of TM1 at 21:30 UTC. At this moment, the earthquake has already occurred, but 

it is before the tsunami arrival. The results suggest that the seismic waves are detected by 

OBPGs and represented in IMF1. IMF2, which represents the tsunami signal, still has a 

very small amplitude. Although the recorded amplitude is very large in the original time 

series because of ground motion caused by seismic waves, the algorithm does not confirm 

the tsunami arrival as the amplitude of IMF2 does not exceed the threshold. Therefore, it 

successfully avoids false tsunami alarms caused by ground motion. In Figure 4.3c, I plot 

the EEMD results of TM1 at 21:46 UTC. This is the first moment when the amplitude of 

IMF2 exceeds the negative threshold (-2 cm). Hence, I determine that the tsunami arrives 

at this time. In Figure 4.3d, I plot the EEMD results at 22:00 UTC, 14 min after the 

tsunami arrival. The dominant period bands of each IMF is adaptively determined by the 

characteristic of the input signal. It is different from digital filtering that has a specific 

period band. In this retroactive study, the dominant period of IMF1 is less than 100 s, the 

dominant period of IMF2 is 100–800 s, and the dominant period of IMF3 is above 1000 

s. 
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Figure 4.3. Demonstration of the real-time tsunami detection algorithm.  

The OBPG records and EEMD results of TM1 at 20:00 UTC (a), 21:30 (b), 21:46 (c), 

and 22:00 (d) are plotted, representing the moment before an earthquake, after an 

earthquake, and at and after tsunami arrival, respectively. IMF2 represents the tsunami 

signal. In real-time operation, the EEMD results are updated continuously. When the 

amplitude of LM-IMF2 exceeds the threshold, tsunami arrival is confirmed. 

 

4.2.3 Evaluation of Detection: Comparison with Post-Processed Waveforms  

I also compare the real-time detected results with post-processed waveforms. 

The series of real-time detected results of EEMD are LM-IMF2 at different times. They 

are used to determine the tsunami arrival and characterize the tsunami amplitude as if in 

“real time”. For the post-processed waveforms, I use polynomial fitting to remove the 

tidal components, following Gusman et al. (2017) and Heidarzadeh et al. (2020). 

Additionally, I use a band-pass filter to process the time series, with the corner frequencies 

at 0.000667 and 0.0083 Hz (1500 and 120 s). The post-processed waveforms can 

characterize the tsunami arrival time and amplitude accurately, but they cannot be applied 

in real time. In TM1, the post-processed waveform shows that the tsunami arrives at 21:45 
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UTC, which is slightly earlier than the real-time detected results (< 1 min; Figure 4.4). 

Hence, the EEMD algorithm could detect the tsunami arrival at TM1 in real time, with a 

very short detection delay. For comparison, I also use a casual filter within the same 

frequency band to process the time series as if in “real time”. Though the causal filters 

can be applied in real time, the detection delay (~ 3 min) is larger than that of EEMD and 

the tsunami amplitude is underestimated. 

I also plot the detected results at the other four OBPGs and compare them with 

the post-processed waveforms. For most OBPGs, there is only a very short detection delay. 

The average tsunami detection delay is less than 1 min, whereas the tsunami wave period 

is approximately 10 min in this event. Compared with the average detection delay of one 

wave period of the NOAA’s algorithm (Chierici et al., 2017; Mofjeld, 1997), the 

algorithm can detect the tsunami arrival with a shorter delay. As for tsunami amplitude 

characterization, the real-time detected results of EEMD slightly underestimate the 

amplitude of the negative phase of the first tsunami peak, but they slightly overestimate 

the amplitude of the positive phase. Generally, they match quite well with the post-

processed waveforms, with a mean-square error of 0.9308. Whereas, the real-time 

detected results of causal filter are less consistent with the post-processed waveforms, 

with a mean-square error of 2.2227. The amplitude of the positive phase is underestimated 

and there exist evident discrepancies in the following peaks.  

 

Figure 4.4. Comparison of the real-time detected results and post-processed waveforms. 
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The red stars represent the amplitude of LM-IMF2, calculated by EEMD. The dark green 

curves present the tsunami waveforms that are processed with a causal filter as if operated 

in “real time”. The blue curves represent the tsunami waveforms that are post-processed 

with an acausal filter.  

 

4.3 Discussion 

4.3.1 Applications to Extreme Cases 

To test the applicable range of the real-time tsunami detection algorithm, I 

apply it to extreme tsunami cases. First, I adopt the 2011 Tohoku earthquake (M 9.0) as 

an example of extremely large tsunami. The earthquake occurred at 05:46:18 on March 

11, 2011 (UTC), at 38.103°N, 142.860°E, at a depth of 24 km, according to JMA. At the 

time of this extremely large event, only stations TM1 and TM2 were installed offshore of 

the Tohoku region. The two OBPGs recorded the first peak of the tsunami (Figure 4.5). 

However, at approximately 30 min after the earthquake, the devastating tsunami damaged 

the transmission station on land, and the two OBPGs lost connection. In the short records, 

the pressure data of TM1 and TM2 include the effects of seismic waves, tsunami, ocean 

tides, the vertical deformation of the seafloor, and atmospheric and oceanographic 

disturbances (Hayashi et al., 2011; Tsushima et al., 2011). After removing the high-

frequency components, both records show a two-stage tsunami, an initial gradual increase 

for ~10 min, followed by a rapid increase within a few minutes (Fujii et al., 2011; Maeda 

et al., 2011; Satake et al., 2013; Tsushima et al., 2011). 
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Figure 4.5. Records of stations TM1 and TM2 during the 2011 Tohoku earthquake. 

 

Similar to the application to the 2016 Fukushima earthquake, I apply the 

algorithm to the records of the two OBPGs, as if in “real time.” Figure 4.6 demonstrates 

the EEMD results at 06:16:00 UTC (i.e., approximately 30 min after the earthquake origin 

time). IMF1 represents the high-frequency components, including the seismic waves and 

the first part of the two-stage tsunami (Fujii et al., 2011; Maeda et al., 2011; Tsushima et 

al., 2011). EEMD determines the dominant period bands of each IMF adaptively. The 

strong seismic signals are partly filtered out in advance because of the data resampling 

(averaging over 1 min). IMF2 represents the main tsunami signals. IMF3 is the low-

frequency component that represents the tidal components and the sea level increase 

owing to the vertical deformation of the seafloor. Though the IMF2 is affected by the 

long-period ground motion for this extremely large earthquake, it still characterizes the 

tsunami arrival time and amplitude. Therefore, it can confirm the tsunami arrival and 

provide information for tsunami early warning of such a large event. 

 

Figure 4.6. EEMD results of stations TM1 and TM2. 

The EEMD results are calculated at 06:16:00 (UTC), approximately 30 min after the 2011 

Tohoku earthquake origin time. 
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The algorithm is also tested for a micro tsunami event by considering the 1998 

off Sanriku earthquake (M 6.4). The earthquake occurred off the Sanriku region at 

18:18:09 on May 30, 1998 (UTC) at 39.028°N, 143.847°E, at a depth of 11 km according 

to JMA (Figure 4.7a). A micro tsunami was generated and observed by OBPGs TM1 and 

TM2 (Figure 4.7b). Hino et al. (2001) conducted a retroactive study and extracted the 

tsunami signals from the records of the OBPGs. The maximum peak-to-peak amplitude 

observed is approximately 1.5 cm (Hino et al., 2001), and it is in good agreement with 

the numerical simulation. I apply the real-time tsunami detection algorithm to the OBPG 

records and extract tsunami signals from the original time series.  

 

Figure 4.7. Bathymetry and the OBPG records of the 1998 off Sanriku earthquake. 

(a) Map of the epicenter of the 1998 off Sanriku earthquake and OBPGs that recorded the 

tsunami. The locations of OBPGs are marked by red triangles. (b) The records of stations 

TM1 and TM2 during the 1998 off Sanriku earthquake. 
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Figure 4.8 demonstrates the EEMD results at 21:00:00 UTC. The IMF1 

represents the high-frequency components. Seismic waves could be observed after the 

earthquake, but the strong seismic signals are partly filtered out because of the 1 min data 

resampling. IMF3 is the low-frequency component, which shows the tidal signals. IMF2 

is supposed to represent the tsunami signals. However, the tsunami cannot be observed 

in IMF2. The absolute value of the IMF amplitude never exceeds 0.01 m. It thus does not 

reach the threshold of 2 cm during the event, so I could not detect the tsunami arrival by 

the algorithm. If I set a smaller threshold, there will be too many false alarms to give 

reliable tsunami detection. Therefore, for such small events with a magnitude of 

approximately M 6.4, which are unlikely to cause tsunami damage, the algorithm does 

not work for real-time tsunami detection. 

 

Figure 4.8. EEMD results of stations TM1 and TM2. 

The EEMD results are calculated at 21:00:00 (UTC), around 2 h 30 min after the 1998 

off Sanriku earthquake. 

 

4.3.2 False Alarms and Missed Alarms 

The EEMD algorithm performance is estimated by evaluating the detection 

probability, detection delay, and occurrence rate of false alarms (Chierici et al., 2017). It 

is very important to choose an appropriate threshold for the tsunami detection algorithm. 
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In the application to the 2016 Fukushima earthquake, I use a threshold of 2.0 cm, which 

is slightly smaller than the threshold of NOAA’s method (3.0 cm; Mofjeld, 1997). A 

larger threshold decreases the occurrence rate of false alarms, but it also makes the 

algorithm less sensitive to moderate tsunamis.  

To find a proper threshold of the real-time tsunami detection algorithm, I 

calculate the LM-IMF2 for one month before the 2016 Fukushima earthquake. I use the 

observational records of the same five OBPGs. Starting from the data of October 22, 2016, 

I repeat the EEMD process as if in “real-time operation” and calculate the LM-IMF2 of 

each trial (Figure 4.9). 

 

Figure 4.9. LM-IMF2 of five OBPGs for one month before the 2016 Fukushima 

earthquake. 

 

During the one-month period before the earthquake, the value of LM-IMF2 has 

a very small variation, within the range of -3 to 3 cm. When the tsunami arrives after the 
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earthquake, the value of LM-IMF2 immediately increases, and the algorithm detects the 

tsunami. As the LM-IMF2 never exceeds the absolute value of 3 cm in the one-month 

records, a threshold of 3 cm will never cause a false alarm in this period. This setting is 

similar to the threshold of NOAA’s algorithm. Though there may be some missed alarms 

for very small tsunamis, it could effectively detect tsunamis that could result in potential 

flooding. On the other hand, if a stricter threshold is set (i.e., 2 cm in this study), the 

possibility of missed alarms will decrease, but false alarms will increase. For example, a 

threshold of 2 cm will lead to false alarms: three times at YTM1 and once at TM2. The 

false alarms of non-tsunami perturbation may result from oceanographic or 

meteorological phenomena like storm surges (Bernard and Robinson, 2009; Hayashi, 

2008). If their frequency characteristics are similar to tsunamis, it is likely that these 

signals are also extracted in IMF2, leading to a false alarm. Therefore, it is important to 

select a threshold according to the requirements of the early warning system. 

Furthermore, stations YTM1 and TM2 are the closest to the coast, and their 

depths are lower than those of the other three OBPGs (Figure 4.2a). The amplitudes of 

tsunamis and other non-tsunami perturbations become larger according to Green’s Law 

(Satake, 2015; Wang et al., 2012). As a result, stations with a smaller depth are more 

sensitive to perturbations and are more likely to give a false alarm. Therefore, it is also 

meaningful to consider different thresholds for stations at different depths. 
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Chapter 5   Real-time Tsunami Data Assimilation of S-

net Pressure Gauge Records during the 2016 Fukushima 

Earthquake 

 

5.1 Introduction 

In previous chapters, I improve the tsunami data assimilation approach and 

propose a real-time tsunami detection algorithm using EEMD. In this chapter, I combine 

the real-time tsunami detection algorithm and data assimilation approach to forecast 

tsunamis on the coast.  

The 2016 Fukushima earthquake is used as an example. In this event, the S-net 

pressure gauges recorded the sea-surface variations (Figure 5.1). Although the 

observation systems suffered mechanical issues at a few OBPGs, the tsunami signals at 

many stations were extracted by Kubota et al. (2020a). I apply the tsunami data 

assimilation approach to S-net pressure gauge records and forecast the tsunami 

waveforms at tide gauges in the Sanriku region. Although this study is still conducted 

retroactively, I use the real-time tsunami detection algorithm to process the raw records 

as if operating in real time. Then, I compare the forecasted waveforms with the real 

observations at tide gauges to validate the method. 
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Figure 5.1. Bathymetry map around the S-net pressure gauges and tide gauges.  

The red and pink circles indicate the OBPGs used for data assimilation, belonging to 

groups S2 and S3, respectively. The grey circles indicate other OBPGs that are not used 

in this study. Yellow triangles represent the tide gauges used for waveform comparison. 

The focal mechanism of the 2016 Fukushima earthquake is shown. 

 

5.2 Data and Methods 

5.2.1 Tsunami Records 

The raw S-net pressure gauge records are obtained from NIED. The raw data are 

water pressure records, with a sampling rate of 0.1 s (Figure 5.2). I use the tsunami records 

from 28 stations: S2N01–12 and S3N11–26 (Figures 5.1 and 5.2). Here, the prefixes S2 
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and S3 refer to the groups of S-net stations. At each station, the records of the two pressure 

gauges are almost identical (Kubota et al., 2020a). I use the records of the second sensor 

(HP2WP) because there are more broken first sensors (HP1WP) than second sensors. 

The tide gauge records are used for waveform comparison to validate the 

method. I use the records of four tide gauges in the Sanriku region: Miyako, Kamaishi, 

Ofunato, and Ayukawa (Figure 5.1). The tide gauge records of Miyako are digitized from 

a JMA report (https://www.jishin.go.jp/main/chousa/16dec/p16-e.htm). The records of 

Kamaishi are obtained from the Japan Oceanographic Data Center, with a sampling rate 

of 30 s. The records of Ofunato are obtained from IOC, with a sampling rate of 60 s. The 

digital records for Ayukawa are obtained from JMA, with a sampling rate of 60 s. 

Although the S-net pressure gauges are also located to the south of the source 

region and recorded the 2016 tsunami waveforms, few coastal tide gauge stations to the 

south recorded the tsunami (Gusman et al., 2017). Therefore, I limit the assimilation area 

to the north of the source area, where a large number of observed tsunami waveforms are 

available, both offshore and on the coast. 
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Figure 5.2. Raw records from S-net pressure gauges during the 2016 Fukushima 

earthquake.  

Each station is equipped with two identical pressure gauge sensors to maintain 

redundancy. I use the records of the second sensor (HP2WP) in this study. 

 

5.2.2 Waveform Processing 

The raw S-net records contain tidal components and seismic signals. Tsunami 

signals should be extracted before being used as an input for data assimilation. I compare 

two different methods of waveform processing: 1) the traditional post-processing method, 

including de-tiding and filtering (Heidarzadeh et al., 2016a), and 2) the real-time tsunami 
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detection algorithm based on EEMD. For both methods, I first convert the water pressure 

records to water height using the hydrostatic equation 𝑝 = 𝜌𝑔ℎ, where 𝑝 is the water 

pressure, and 𝜌 is the density of seawater (1013 𝑘𝑔/𝑚3). For some short-wavelength 

tsunamis, the pressure on OBPGs may deviate from the hydrostatic relation when the 

wavelength of the sea-bottom deformation is not much greater than the sea depth (Saito 

and Kubota, 2020).  

The traditional post-processing method is widely adopted in retroactive studies 

to extract tsunami signals from OBPG sea-level records or tide gauges. First, the tidal 

components are removed by polynomial fitting. Then, a low-pass filter with a corner 

frequency of 0.01667 Hz (60 s) is applied to remove high-frequency components such as 

seismic waves (Kubota et al., 2020a). However, as mentioned in Section 1.5, this method 

is not applicable in real-time operations because of the features of digital filters. On the 

contrary, EEMD can extract tsunami signals in real time. Over time, the decomposition 

is repeated continuously, and the time series of the LM-IMF2 can be used as the input for 

tsunami data assimilation, following the method in Section 4.1. 

 

5.2.3 Tsunami Data Assimilation 

 I apply the tsunami data assimilation approach to forecast the waveforms at tide 

gauges based on offshore observations. In the study of the 2016 Fukushima earthquake, 

the assimilation begins at 21:00:30 UTC, when the tsunami is detected at the first OBPG 

(S2N12). In Table 5.1, I list the tsunami detection time at each S-net station determined 

by the algorithm. The waveforms at tide gauges are forecasted and updated continuously 

within the assimilation time window, at a time interval of 1 s. I test the time windows of 

20 and 35 min for tsunami early warning and compare their performance. 

To improve the assimilation speed, I adopt GFTDA, in which the Green’s 

functions between the OBPGs and the tide gauges are computed in advance. Then, the 

forecasted waveforms are directly synthesized by the superposition of Green’s functions. 

For the numerical simulation of tsunamis, the linear long-wave propagation model of 

JAGURS (Baba et al., 2015) is adopted. Nested grids with four layers are used for the 

numerical simulation. Layer 1 covers the entire region of the OBPGs and tide gauges, 
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with a grid size of 18 arcsec (~ 555 m), and is derived from the bathymetry data of 

GEBCO_2014. Layers 2–4 are finer grids that cover the tide gauges, with a grid size of 6 

arcsec (~ 185 m), 2 arcsec (~ 60 m), and 0.667 arcsec (~ 20 m), respectively. They are 

derived from the M7000 Digital Bathymetric Chart from the Japan Hydrographic 

Association. The time step for calculating Green’s functions is 0.25 s. The simulation is 

conducted on the EIC supercomputer at the Earthquake Research Institute, the University 

of Tokyo. 

 

5.3 Results 

5.3.1 Extracted Tsunami Signals 

Figure 5.3 shows the tsunami signals extracted by the traditional post-

processing method and real-time tsunami detection algorithm. In the traditional post-

processing method, the S-net raw records are processed using polynomial fitting and low-

pass filtering. In the real-time detection algorithm based on EEMD, the amplitude of LM-

IMF2 represents the tsunami height characterized in real-time operations. For most 

OBPGs (e.g., S2N05, S3N11, and S3N26), the waveforms of the real-time tsunami 

detection algorithm match well with the waveforms of the traditional post-processing 

method in terms of both tsunami height and arrival time. These results are consistent with 

Section 4.2.3, where the raw records of five OBPGs owned by Earthquake Research 

Institute, the University of Tokyo, were processed using two similar methods. Hence, I 

confirm that the algorithm based on EEMD can detect the tsunami arrival and can 

accurately characterize the amplitude in real time. 

In Table 5.1, I list the detected tsunami arrival time at each S-net station. The 

arrival time is determined by the real-time tsunami detection algorithm based on EEMD. 

After decomposition, I compare the value of last-moment IMF2 (LM-IMF2) with a 

threshold of 3.0 cm. The time that this threshold is exceeded is recorded as the detected 

tsunami trigger time. The data assimilation process begins after the first OBPG is 

triggered. As the OBPGs are near the source region, the tsunami is detected by OBPGs 

soon after the earthquake happens. At most stations (e.g., S3N11, S3N14), the detected 

arrival time is the moment when tsunami actually arrives, indicating that the real-time 
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tsunami detection algorithm accurately detects the tsunami arrival. 

Table 5.1. Detected tsunami arrival time at each S-net station.  

The trigger time is in UTC. 

Station 
Trigger 

Time 
Station 

Trigger 

Time 
Station 

Trigger 

Time 
Station 

Trigger 

Time 

S2N01 21:01:00 S2N08 21:28:00 S3N13 21:45:30 S3N20 21:12:30 

S2N02 21:05:00 S2N09 21:03:00 S3N14 21:41:30 S3N21 21:35:00 

S2N03 21:01:00 S2N10 21:01:00 S3N15 21:35:30 S3N22 N/A 

S2N04 21:01:30 S2N11 21:01:00 S3N16 21:40:00 S3N23 21:28:00 

S2N05 21:22:30 S2N12 21:00:30 S3N17 21:05:30 S3N24 21:27:00 

S2N06 21:29:00 S3N11 21:48:30 S3N18 21:10:00 S3N25 21:01:30 

S2N07 21:30:30 S3N12 21:50:30 S3N19 21:05:00 S3N26 21:03:30 

 

However, at some stations close to the epicenter, there are some large drift 

components (e.g., S2N06) or abrupt steps (e.g., S2N11) at the earthquake origin time. 

According to the analysis of Kubota et al. (2020a), these drifts or steps are possibly caused 

by the mechanical issue of the observation system as the trend of the drifts or steps is 

completely identical in the pair of pressure sensors (i.e., HP1WP, HP2WP) at each S-net 

station. Similar steps were also found in the records of a much smaller tsunami (< 1 cm) 

caused by the 2016 off Sanriku earthquake (Mw 6.0; Kubota et al., 2020b). The traditional 

post-processing method cannot completely remove these unexpected signals, and they 

also appear in the waveforms of the real-time detection algorithm at some stations (Figure 

5.3). The detected arrival time is affected by such unexpected signals at these stations, 

which may cause false tsunami alarms. Nevertheless, the real-time tsunami detection 

algorithm accurately characterizes the waveforms after the earthquake origin time, 

especially that of the first tsunami peak, which is very important for data assimilation. In 

this study, the waveforms processed with the two methods are used separately as the input 

for tsunami data assimilation. 
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Figure 5.3. Tsunami signals extracted by the traditional post-processing method (blue 

curves) and the real-time tsunami detection algorithm based on EEMD (red stars). 

 

5.3.2 Forecasted Tsunami Waveforms at Tide Gauges 

Figure 5.4 shows the comparison between the forecasted tsunami waveforms 

and the real observations. The waveforms are forecasted by tsunami data assimilation for 

time windows of 20 min (a) and 35 min (b). The actual tsunami arrives first at Ayukawa 

(57 min after the earthquake), and then at Ofunato (68 min), Kamaishi (77 min), and 

Miyako (80 min). At most tide gauges, the waveforms forecasted using the traditional 

post-processing method and real-time tsunami detection algorithm match well with real 

observations. 

At Miyako, the data assimilation approach forecasts the arrival time of the first 

tsunami peak accurately. The observed first-peak amplitude is 26 cm, though the 

assimilation result with a 20 min time window may underestimate the first-peak 

amplitude. The 35 min time window has a better performance in forecasting the amplitude, 
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especially for the results with input time series obtained using the real-time detection 

algorithm. Its forecasted first-peak amplitude is 18 cm. Moreover, the forecasted 

waveform is also consistent with the real observation in another peak of the later phase 

(102 min). At Kamaishi, the forecasted waveforms generally match real observations, but 

the amplitude of the first tsunami peak is overestimated. This issue is discussed in Section 

5.4.  

At Ofunato, the forecasted waveforms match quite well with the real 

observations regarding the arrival time and amplitude. Both input time series lead to 

accurate forecasting by data assimilation. For example, for a 35 min time window, the 

observed amplitude of the first tsunami peak is 26 cm, and the forecasted amplitudes are 

29 cm (by post-processing method) and 23 cm (by real-time detection algorithm). The 

forecast could be accurately made more than 30 min before the tsunami arrival. 

Nevertheless, the forecasted waveforms do not match well with the real observations at 

Ayukawa. The tsunami arrival time is not well predicted, and the forecasted results 

overestimate the amplitude of the first tsunami peak.  

 

Figure 5.4. Comparison of observed and forecasted tsunami waveforms. 

The assimilation time windows are 20 min (a) and 35 min (b). The black curves indicate 

the real observations. The blue curves represent the results forecasted by data assimilation 

with input time series obtained by the traditional post-processing method. The red curves 

represent the results forecasted by data assimilation with the input time series obtained 
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using the real-time tsunami detection algorithm. 

 

To evaluate the forecast accuracy quantitatively, I use Equation (2.7). For a 20 

min time window, the scores are 47% (by post-processing method) and 41% (by real-time 

detection algorithm) when considering all stations. For a 35 min time window, the scores 

are 60% and 74%, respectively. If I do not consider the Kamaishi and Ayukawa stations, 

the scores are 91% (by post-processing method) and 77% (by real-time detection 

algorithm) for a 20 min time window and they become 89% and 94%, respectively, for a 

35 min time window. 

 

5.4 Discussion 

5.4.1 Adoption of a Real-time Detection Algorithm  

Compared with previous studies on tsunami data assimilation (e.g., Sheehan et 

al., 2019; Wang et al., 2019b), the most notable feature of this work is the adoption of a 

real-time tsunami detection algorithm for waveform processing. I process the raw OBPG 

records as if operating in real time and use the processed waveforms as the input for data 

assimilation. The assimilation results with input obtained by the real-time tsunami 

detection algorithm perform well in tsunami forecasting. Hence, my experiment proves 

the feasibility of establishing a real-time tsunami early warning system based on the data 

assimilation approach. Although there are some unexpected signals at the earthquake 

origin time, as shown in Section 5.3.1, they do not significantly affect the performance of 

tsunami data assimilation as data assimilation is a self-correcting process. Over time, the 

effects of such unexpected signals are gradually corrected by assimilating more input data 

into the model, and the forecasted wavefield matches the real observations more 

accurately (Maeda et al., 2015). 

 

5.4.2 Results of the Synthetic Experiment 

To further investigate the forecasting performance, I conduct a synthetic 
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experiment using numerical simulations. Data assimilation for synthetic data can 

facilitate the separation of two factors of assimilation performance: imperfect modeling 

and insufficient observations. If there is a discrepancy between the observed and synthetic 

waveforms, and if the data assimilation performs better for synthetic data, the modeling 

is not perfect. On the other hand, if the observed and synthetic waveforms are similar, 

and the data assimilation does not perform well for synthetic data, then the offshore 

observations are insufficient for tsunami data assimilation.  

I adopt the source model of Gusman et al. (2017), which is inverted from OBPG 

and tide gauge records. The bathymetry files are the same as those used to compute 

Green’s functions. First, I run the tsunami propagation model JAGURS to compute the 

synthetic waveforms at S-net OBPGs and tide gauges. I compare the synthetic waveforms 

at four tide gauges with the real observations in Figure 5.5. Next, I use the synthetic 

waveforms at the OBPGs as the input for tsunami data assimilation and forecast the 

waveforms at tide gauges. The forecasted waveforms and the synthetic results at tide 

gauges are compared in Figure 5.6.  

 

Figure 5.5. Comparison of synthetic tsunami waveforms and real observations.  

The green curves represent synthetic tsunami waveforms, and the black curves represent 

real observations. The synthetic waveforms are generally consistent with the real 

observations at Miyako, Ofunato, and Ayukawa, but overestimate the tsunami amplitude 

at Kamaishi. 
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In Figure 5.5, the synthetic first-peak amplitude at Kamaishi (42 cm) is much 

higher than the real observation (18 cm). However, the data assimilation with synthetic 

data works perfectly at Kamaishi (Figure 5.6). This indicates that the discrepancies 

between the forecasted and observed waveforms at Kamaishi may have resulted from 

imperfect modeling because of bathymetry data and the source model. The Kamaishi tide 

gauge is located deep inside the harbor. Local bathymetry (e.g., breakwater and wave 

attenuator) has a substantial effect on tsunami simulation, difficult to model even with the 

0.667 arcsec grid (~ 20 m). Green’s functions between the OBPGs and the Kamaishi tide 

gauge are also computed using these grid files; hence, the forecasted waveform 

synthesized by Green’s functions overestimates the amplitude systematically. For a 20 

min time window, there are fewer offshore data used for assimilation. This counteracts 

such systematic errors. For a 35 min time window, there are sufficient offshore data to 

make the systematic error evident. If we could obtain finer grids that represent the detailed 

bathymetry around the Kamaishi tide gauge, the accuracy of data assimilation could be 

improved. Furthermore, in my study, a Gaussian-distributed covariance is assumed for 

the correlation functions of both observation and computational errors when calculating 

the weight matrix 𝑾 (Equation 1.28). If the parameters of correlation functions are 

adjusted according to different data quality, the accuracy may also be improved. 

 

Figure 5.6. Comparison of synthetic and forecasted tsunami waveforms. 
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The green curves represent synthetic tsunami waveforms, and the red curves represent 

forecasted tsunami waveforms. The assimilation time windows are 20 min (a) and 35 min 

(b). The synthetic waveforms at tide gauges are used as the “observations” for comparison. 

 

However, the synthetic experiment still has unsatisfactory assimilation results 

at the Ayukawa tide gauge. The first tsunami peak and the following waveforms are not 

well predicted at both time windows (Figure 5.6). The location of Ayukawa is quite close 

to the epicenter (Figure 5.1). There are very few OBPGs between the epicenter and the 

tide gauge. Although data assimilation does not require source information, it requires 

sufficient offshore data to reconstruct the tsunami wavefield and facilitate the forecasting. 

Hence, the discrepancies at Ayukawa are caused by insufficient offshore observations. 

The installation of some OBPGs inside Sendai Bay is necessary for improving the 

forecasting ability. 

 

5.4.3 Data Assimilation at Ayukawa with Assumed OBPGs 

To prove the effectiveness of additional OBPGs, I add two assumed OBPGs 

inside Sendai Bay and use data assimilation to forecast the tsunami waveforms at the 

Ayukawa tide gauge (Figure 5.7). The locations of two assumed OBPGs are V01 

(38.20°N, 141.25°E) and V02 (38.00°N, 141.25°E). The synthetic waveforms at the 

OBPGs are used as the input for tsunami data assimilation. The other conditions are the 

same as those in the synthetic experiment. 
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Figure 5.7. Bathymetry map around Ayukawa tide gauge.  

The red circles indicate the real S-net OBPGs used for data assimilation. The blue circles 

indicate two hypothetical OBPGs: V01 and V02. The yellow triangle represents the 

Ayukawa tide gauge. The focal mechanism of the 2016 Fukushima earthquake is shown. 

 

Figure 5.8 shows the comparison between the synthetic and forecasted tsunami 

waveforms. Here, the synthetic waveforms at tide gauges are used as the “observations” 

for comparison. I compare the forecasted results with and without two hypothetical 

OBPGs, for assimilation time windows of 20 and 35 min. For a 20 min assimilation time 

window, additional OBPGs inside Sendai Bay do not significantly improve the forecast 

accuracy, though the prediction of the first tsunami peak is better. However, for a 35 min 

assimilation window, the results with two hypothetical OBPGs have better performance. 

The first tsunami peak can be predicted better, and it works particularly well for the 

following waveform at 40–90 min after the earthquake. Hence, it is confirmed that 

installing OBPGs inside Sendai Bay is necessary to improve forecasting. 
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Figure 5.8. Comparison between the synthetic and forecasted tsunami waveforms.  

The green curves represent synthetic tsunami waveforms, the blue curves represent 

forecasted tsunami waveforms with hypothetical OBPGs, and the red curves represent 

forecasted tsunami waveforms without hypothetical OBPGs at the Ayukawa tide gauge. 

The assimilation time windows are 20 min (a) and 35 min (b). The synthetic waveform 

at Ayukawa is used as the “observation” for comparison. 
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Chapter 6   Tsunami Early Warning System Using Data 

Assimilation of Offshore Data 

 

6.1 Practical Implementation 

In Chapter 5, the retroactive study of the 2016 Fukushima earthquake 

confirmed the applicability of real-time tsunami forecasting independent of the source. 

Therefore, a tsunami early warning system can be designed for Japan based on data 

assimilation. 

The main target regions are the Tohoku and Nankai regions. These two regions 

face potential tsunami hazards, and there are dense OBPG networks with real-time data 

transmission: DONET and S-net. These networks represent reliable hardware for tsunami 

early warning. In general, four steps need to be taken to establish the tsunami early 

warning system using data assimilation of offshore data. 

First, Green’s functions between OBPGs and the coastal points (PoIs) are 

calculated and stored in advance. GFTDA is adopted to improve the efficiency of the 

system. Although the calculation of Green’s functions is time-consuming, it does not 

affect the speed of the assimilation process. 

Next, the real-time tsunami detection algorithm based on EEMD is used. It can 

detect the tsunami arrival without a priori earthquake information, and is thus suitable for 

tsunami data assimilation. The algorithm is performed continuously, and the LM-IMF2 

is compared with the pre-defined threshold at each moment. Before the earthquake (or 

landslide or volcano eruption), the LM-IMF2 should remain below the threshold, and the 

system is in the General Mode (Figure 6.1). The assimilation process does not begin. 

After an earthquake (or landslide or volcano eruption) event, as long as the tsunami does 

not arrive at OBPGs, the system remains in the General Mode. 

When a tsunami arrives at OBPGs, the LM-IMF2 calculated by the EEMD 

algorithm will exceed the threshold. The early warning system is triggered and enters the 
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Assimilation Mode. The pre-calculated Green’s functions are superposed by matrix 

manipulation to predict the waveforms at the coast (Figure 6.1). As time passes, more 

offshore tsunami data is observed and assimilated. The forecasted waveforms are updated 

continuously. Based on the forecasted results, we can decide whether to issue a tsunami 

warning or tsunami advisory to specific regions. 

Finally, after the tsunami arrives at the coast, the performance of the tsunami 

early warning system is evaluated by comparing the forecasted results with real 

observations. 

 

Figure 6.1. Flow chart for the proposed tsunami early warning system based on the data 

assimilation approach. 

 

To summarize, the tsunami early warning system based on the data assimilation 

approach can provide early warning for coastal regions, regardless of the tsunami source. 

However, it is important to note that the goal of such a system is not to replace the 

traditional tsunami early warning system based on seismic observations (Duputel et al., 

2011). Instead, it can be an important supplement to traditional early warning systems. If 

a tsunamigenic earthquake occurs, the traditional method can take advantage of the rapid 
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availability of seismic data and make an initial warning quickly. When OBPGs detect the 

tsunami, the new system can start the data assimilation process and update the tsunami 

forecast by assimilating the offshore observations continuously. Additionally, it can also 

help with forecasting methods based on tsunami waveform inversion, such as the tFISH 

method operated by JMA (Tsushima et al., 2011). Using the EEMD algorithm, the 

tsunami waveforms for inversion could be extracted directly without the need of a 

theoretical tide model, and the tFISH method can become more efficient. 

Although this system is designed for Japan, it can be used as a reference in 

other tsunamigenic zones, especially in regions with tsunami events caused by non-

earthquake origins like landslides or volcanoes. For example, the collapse of the Anak 

Krakatau Volcano in December 2018 generated a tsunami in the Sunda Strait, Indonesia, 

with a maximum run-up height of 13.5 m (Muhari et al., 2019). And the September 2018 

Palu tsunami is widely believed to be of a dual landslide–earthquake source (Carvajal et 

al., 2019; Heidarzadeh et al., 2018). Traditional tsunami early warning systems have 

difficulties in forecasting such non-earthquake tsunamis. To the contrary, the early 

warning system based on data assimilation does not require the construction of 

seismic/tsunami source model, nor even the detection of ground motion. Thus, it is very 

effective in non-seismic tsunamis. Additionally, the method of tsunami data assimilation 

with virtual stations can reduce the engineering cost of installing OBPGs in these regions. 

 

6.2 Future Improvements 

In the future, the tsunami early warning system based on data assimilation can 

be further improved by adopting deep learning techniques. 

As mentioned in Chapter 4, the EEMD algorithm can detect the tsunami signals 

by comparing the LM-IMF2 with a pre-defined threshold. However, the threshold is set 

artificially according to experience. A higher threshold can cause more missed alarms, 

and a lower threshold increases the rate of false alarms. It is challenging to select an 

appropriate threshold. Therefore, we could use the deep learning technique to improve 

the real-time tsunami detection algorithm and to avoid setting a threshold artificially. 

Deep learning greatly improves the development of neural networks and has been widely 
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used in earth science (Kuyuk et al., 2018; Zhang et al., 2018). After being trained, the 

deep learning model can detect the tsunami arrival and characterize the amplitude 

automatically instead of artificially setting a threshold for comparison. With the help of 

deep learning, the input for data assimilation can be more accurate, which would lead to 

better forecasts of the tsunami early warning system. 
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Chapter 7   Summary  

 

In this thesis, I improve the tsunami data assimilation approach and propose a 

real-time tsunami detection algorithm.  

First, I propose GFTDA to increase the assimilation speed. Green’s functions 

between the offshore observational stations and coastal points are calculated and stored 

in advance. During the assimilation process, tsunami waveforms are forecasted by the 

superposition of Green’s functions without calculating the tsunami wavefield of the entire 

region. Hence, it greatly reduces the real-time tsunami forecasting time and enables the 

use of more complicated linear models. The application to the 2012 Haida Gwaii 

earthquake reveals that GFTDA achieves the same accuracy as the previous data 

assimilation approach while reducing the time required to issue a valid tsunami warning. 

The application to the 2004 off the Kii Peninsula earthquake shows that tsunami data 

assimilation based on the linear DSP model could predict the tsunami arrival time more 

accurately than the LLW model. It is also successfully applied to the records of the real-

time observation network of the 2015 Torishima volcanic tsunami earthquake. The 

relationship between the accuracy and station number is discussed. Depending on the 

requirement of forecast accuracy, more attention should be paid to some specific 

observational stations that play an important role in tsunami data assimilation. 

Second, I introduce the concept of virtual stations to conduct tsunami data 

assimilation for regions with sparse observations. I produce artificial waveforms at virtual 

stations by interpolating real data of neighboring real stations. I demonstrate the use of 

this method for the synthetic 2004 Sumatra–Andaman earthquake. The tsunami 

waveforms at the coasts of India, Sri Lanka, and the Maldives can be forecasted with 

greater than 70% accuracy. The application of this method to the 2009 Dusky Sound, 

New Zealand earthquake suggests that the method overcomes the problem of insufficient 

observations and improves the accuracy from 52.5% to 83.8%. Moreover, it can forecast 

the far-field tsunamis in the east Pacific generated by the earthquakes in the Chilean 

subduction zone. The DART tsunameters along the Chilean subduction zone, together 

with virtual stations, can form a dense network with a substantial spatial coverage. The 
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application of this method to the 2015 Illapel earthquake achieves an accuracy of 87.5% 

in the east Pacific. The adoption of virtual stations can reduce the investment for tsunami 

disaster mitigation. 

Third, I propose a real-time tsunami detection algorithm based on EEMD to 

detect tsunamis without tidal prediction. In the application of the method to the 2016 

Fukushima earthquake (M 7.4), the algorithm can detect a tsunami in real time with a 

detection delay of less than 1 min (i.e., less than 1/10 of the tsunami wave period). The 

algorithm could also detect the tsunami signals for the extremely large tsunami from the 

2011 Tohoku earthquake (M 9.0) but fails to detect a micro-tsunami from the 1998 off 

Sanriku earthquake (M 6.4). Whereas the Tohoku earthquake generated a devastating 

tsunami, the off Sanriku earthquake did not. Hence, the algorithm can greatly improve 

the efficiency of tsunami early warning system, especially when OBPGs are located close 

to the coasts of interest. Although there are slight differences between the amplitudes of 

real-time detected results and the post-processed waveforms, the algorithm can 

sufficiently determine the tsunami arrival, especially for tsunamis with the potential for 

substantial inundation. Additionally, the algorithm does not require any source 

information, and can thus be applied to the tsunami data assimilation approach for 

providing an early warning for non-earthquake tsunamis.  

Finally, I combine the tsunami data assimilation approach with the real-time 

tsunami detection algorithm. I assimilate the S-net pressure gauge records of the 2016 

Fukushima earthquake to forecast the tsunami waveforms at tide gauges in the Sanriku 

region. To process the raw records for assimilation, I adopt the real-time tsunami 

detection algorithm based on EEMD to imitate real-time operations. I also compare this 

method with the traditional post-processing method. The assimilation results of both input 

time series forecast the tsunami waveforms accurately. The forecast scores of the post-

processing method and real-time detection algorithm are 60% and 74%, respectively, for 

a 35 min assimilation time window; these values improve to 89% and 94%, respectively, 

on neglecting the stations with imperfect modeling or insufficient offshore observations. 

Therefore, the combination facilitates a satisfactory tsunami forecast and enables the 

establishment of a real-time tsunami early warning system. I design a tsunami early 

warning system based on the data assimilation approach for Japan. It can forecast the 

tsunami independent of the source, and it can be an important supplement of the 
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traditional tsunami early warning system. Apart from tsunami early warning, in the future, 

the data assimilation approach can be applied to understand the tsunami propagation 

processes. The tsunami source characteristics can also be studied through wavefield 

reconstructing. For example, after an earthquake/landslide occurs, data assimilation may 

help reconstruct the tsunami wavefield by assimilating offshore data. Then, we can use 

tsunami inversion method to estimate the tsunami source geometry. It can help us 

understand the source characteristics (i.e., length, width, slip). 
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Data Resources 

 

The bathymetric data of ocean floor is provided by the General Bathymetric 

Chart of the Ocean (https://www.gebco.net), and the Japan Hydrographic Association 

(https://www.jha.or.jp/en/jha/). I use tsunami simulation code JAGURS (Baba et al., 2015; 

available at https://github.com/jagurs-admin/jagurs) and data assimilation code TDAC 

(Maeda et al., 2015; Gusman et al., 2016b; available at https://github.com/takuto-

maeda/tdac). The open tsunami data are obtained from Intergovernmental Oceanographic 

Commission (http://www.ioc-sealevelmonitoring.org), Japan Agency for Marine-Earth 

Science and Technology (http://www.jamstec.go.jp/j/), Japan Meteorological Agency 

(https://www.jma.go.jp/jma/index.html), National Research Institute for Earth Science 

and Disaster Resilience (https://hinetwww11.bosai.go.jp/auth/oc/) and National Oceanic 

and Atmospheric Administration (https://nctr.pmel.noaa.gov/Dart/).  
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Appendix 

 

A1 Combination of Raw IMFs 

In this section, I demonstrate the combination of raw IMFs. I use the tsunami 

records of the 2016 Fukushima earthquake as an example. The input signal is a three-hour 

record of station TM1 from 19:00 to 22:00 (UTC), November 21, 2016. The 

decomposition generates seven raw IMFs, listed in a descending order of frequency. 

Short-period oscillation tends to appear in the lower mode of IMFs, whereas the higher-

mode IMFs mostly contain long-period signals (Figure A1, left column). I plot their 

amplitude spectrum in the middle column to show the frequency characteristics. The 1st 

raw IMF has a dominant frequency of over 0.01 Hz (< 100 s). The 2nd to 4th raw IMFs 

have dominant frequencies of 0.002–0.01 Hz (500–100 s). The 5th to 7th raw IMFs have 

dominant frequencies of approximately 0.001 Hz (1000 s).  

Hence, I use the 1st raw IMF as IMF1, combine the 2nd to 4th raw IMFs as 

IMF2, and combine the 5th to 7th raw IMFs as IMF3. Each IMF represents different 

components. The tsunami signal is presented in IMF2.  
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Figure A1. Combination of raw IMFs.  

The input signal is the sea-level record of station TM1 from 19:00 to 22:00 (UTC), 

November 21, 2016. It is decomposed into seven raw IMFs (left column). The frequency 

characteristics of raw IMFs are plotted in the middle column. I combine the raw IMFs 

with similar frequency characteristics artificially and obtain three IMFs (right column). 
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A2 Abbreviations 

ANN: Artificial Neural Network 

CLVD: Compensated Linear Vector Dipole 

DART: Deep-ocean Assessment and Reporting of Tsunami 

DONET: Dense Oceanfloor Network System for Earthquakes and Tsunamis  

DSFO: Deep Sea Floor Observatory 

DSP: Dispersive 

EEMD: Ensemble Empirical Mode Decomposition 

EIC: Earthquake Information Center 

EMD: Empirical Mode Decomposition 

EnKF: Ensemble Kalman Filter 

4-D Var: Four-dimensional variational assimilation 

GEBCO_2014: General Bathymetric Chart of the Ocean released in 2014 

GFTDA: Green’s Function-based Tsunami Data Assimilation 

IMF: Intrinsic Mode Function 

IOC: Intergovernmental Oceanographic Commission 

JAMSTEC: Japan Agency for Marine-Earth Science and Technology 

JMA: Japan Meteorological Agency 

LLW: Linear Long-Wave 

LM-IMF: Last-Moment IMF 

MOANA: Marine Observations of Anisotropy near Aotearoa 

NIED: National Research Institute for Earth Science and Disaster Resilience 
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NOAA: National Oceanic and Atmospheric Administration 

OBPG: Offshore Bottom Pressure Gauge 

OBS: Ocean Bottom Seismometer 

PoI: Point of Interest 

PTWC: Pacific Tsunami Warning Center 

S-net: Seafloor Observation Network for Earthquakes and Tsunamis 

3-D NS: Three-dimensional Navier-Stokes 

tFISH: tsunami Forecasting based on Inversion for sea-Surface Height 

TRI: Time Reverse Imaging 

USGS: United States Geological Survey 
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