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Abstract 

Understanding the main turbulent structures is of vital importance for pedestrian-level 

wind or outdoor air ventilation control. However, the turbulence still has not been fully 

understood in physics, and continuing inability to understand the turbulence limits 

reliable predictions and further technological advancement. Modal analysis methods are 

the potential solutions, and the technique called spectral proper orthogonal 

decomposition (SPOD) is one of them. SPOD is a decomposition method combining the 

spatial decomposition of proper orthogonal decomposition (POD) and temporal analysis 

of the Fourier series.  

 

This study pioneers the applications of SPOD in wind environment fields. The 

applications in the following two classical cases were introduced: the flow field around 

a single square-section building model and a two-dimensional street canyon flow. The 

effectivity of SPOD in the identification of characteristic flow structures was well proved, 

even for the cases with very high Reynolds numbers. In addition, mathematical tools for 

evaluating the pedestrian-level wind environment and outdoor air exchanging are also 

developed in this study.  

 

First, SPOD analysis was performed on the flow field around a square-section building 

model calculated by large-eddy simulation (LES) to identify the three-dimensional main 

flow features within the sampling field. The identified features, including the low-

frequency modes related to the fluctuation of the incoming flow, primary wake vortex 

shedding (Kármán-type vortex shedding), tip and base vortices, and primary side vortex 

shedding (flow separation), were extracted from the single case at once. The primary 

frequency and the intensity of these features were revealed by studying the typical SPOD 

modes and estimating the energy percentage. In addition, the local-space SPOD spectrum 

was also defined to analyse the composition of the kinetic energy within some local parts 

of the sampling domain.  

 

The identified flow features and their details are summarised as follows: first, two 

energetic modes at low frequency were chosen as the typical modes to depict the 

symmetric and antisymmetric fluctuations around the building. They were found to be 
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directly related to the inflow fluctuation by the local-space SPOD spectrum. The primary 

wake vortex shedding was depicted using a complex mode at the Strouhal frequency, 

which exhibited periodic vortex shedding. The tip and base vortex pair on one side of the 

building appeared in one SPOD mode, which indicated their correlation. The mode also 

showed an arch structure by which the tip and base vortices were connected. The same 

structure was found on the roof of the building illustrated by another mode, which 

showed the other kind of development of the tip vortices. The primary side vortex 

shedding caused by the strong shear force and separation appeared on both the roof and 

sides of the building. However, the vortices at different heights on the sides were not 

synchronised. Finally, the local-space SPOD spectrum precisely showed the different 

compositions of the fluctuation patterns on the front, side, and back of the prism. In 

general, the SPOD spectrum provided a comprehensive view of the turbulent structures 

in this flow field, which was an integration of all the above flow features. Unlike previous 

studies, where different flow features were studied by different physical quantities, this 

study revealed the primary frequency and intensity for all features, using a single 

mathematical process.  

 

Subsequently, the target was focused on the pedestrian-level wind of the same case. The 

SPOD results for two simulation cases were compared, where the only difference was 

the existence of fluctuation at the inflow boundary, to show how the inflow fluctuation 

influenced the turbulent structures around the building. The results showed that the input 

of the inflow fluctuation on the inlet boundary had a significant influence on the turbulent 

structures at a low frequency because the modes and energy significantly differed. In 

both cases, the strongest modes corresponded to the Kármán-type vortex shedding, while 

the frequency was slightly larger when no fluctuation was input at the inflow boundary. 

The difference in the shapes of the Kármán-type vortex shedding was considered related 

to the difference in the mean velocity and TKE fields of the two cases. At a high 

frequency, flow separation phenomenon occurred on both sides of the building. In the 

case where no fluctuation was input at the inflow boundary, this phenomenon exhibited 

a peak on the distribution of energy, while it was not quite significant in the other case. 

A method was developed to decompose the TKE at a certain point and display the extent 

to which the fluctuating wind speed at the point is influenced by each mode. This is 

considered useful in the finding the main reason of large fluctuation and improvement of 

pedestrian-level wind. 

 

In the other application, the SPOD technique was applied to decompose the velocity field 

of a two-dimensional street canyon. The SPOD modes, depicting the large-scale coherent 

structures and Kelvin–Helmholtz instabilities, were well extracted and visualised. The 
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SPOD modes depicted the Kelvin–Helmholtz instabilities as a series of vortices, which 

are generated at the roof level, and enter the canyon following the principal recirculation, 

while the fluctuation caused by the external large-scale coherent structures directly 

strengthens or weakens the principal recirculation. In addition, the ejection events and 

pollutant removal were quantitatively analysed using the newly defined SPOD co-spectra 

to understand their relationships with the turbulent fluctuation patterns. The results 

showed that both Kelvin–Helmholtz instabilities and large-scale coherent structures can 

cause ejection and sweep events at the roof level, thus contributing to pollutant removal. 

However, the former contributed to stronger ejection and sweep events with stronger 

vertical components. The Kelvin–Helmholtz instabilities accounted for a small 

percentage of TKE, but they contributed most to the vertical turbulent mass flux at the 

roof level. In contrast, the large-scale coherent structures occupied a large proportion of 

the TKE, while they contributed less towards vertical turbulent mass flux. The 

intermittent concentration fluctuation fit better with the time scale of the Kelvin–

Helmholtz instabilities.  

 

The spanwise performance and nonlinear interactions of the turbulent structures were 

investigated by modifying the original SPOD to the one combining two-dimensional 

Fourier transform (2DFT). The SPOD co-spectrum defined in our previous study was 

also modified to a 2DFT version. As the result, the modes extracted by SPOD with 2DFT 

showed clearer shapes of turbulent structures than the previous study because of the 

increase of the flow realisations. These turbulent structures were depicted by periodic 

fluctuation patterns detected along both the time and spanwise direction with specific 

frequencies and wavenumbers. The nondimensional time scales were found 

approximately 1–5 times of the nondimensional spanwise length scales for both large- 

and small-scale structures, although the mechanisms of these structures differ. This can 

be explained by the self-similarity of the high-Reynolds-number turbulence, i.e., a 

constant aspect ratio of the length scale is maintained. The SPOD co-spectra showed that 

the sweep and ejection events at the roof level mainly occurred at the spanwise 

nondimensional wavenumber of 1–4 and frequency of 0.2–0.8. This range coincided with 

that of the small-scale structures caused by the Kelvin–Helmholtz instabilities at the roof 

level. The same range of wavenumber and frequency were found for pollutant removal. 

Although the large-scale structures contributed less to the pollutant removal than the 

small-scale structures, they still had a good chance to enhance the pollutant removal 

indirectly by amplifying the small-scale structures. The amplitude of the small-scale 

structures showed a weak but non-negligible correlation with the state of the large-scale 

structures. The joint probability distribution indicated that the high- and low-momentum 

fluids passing through the canyon were related to the amplifying and suppressing of the 



Abstract 

iv 

small-scale structures. This phenomenon appeared stochastically along both the time and 

spanwise direction. 

 

In summary, as SPOD has shown its effectiveness and efficiency in turbulent structure 

analysis for high-Reynolds-number turbulence, it has the potential to become another 

useful tool for further research or design in the field of wind environment. Techniques 

developed in this study are also considered of great application value in broad application 

prospects. 
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Chapter 1   

Introduction 

1.1 Backgrounds 

1.1.1 Urban wind environment  

The construction of buildings in urban area brings inevitable change to the microclimate. 

The air flow depends highly on the shape and size of a single building it passes, as well 

as the interaction of the multiple buildings. The change of the air flow can further change 

the transport of heat and air pollution. These changes can be either favourable or 

unfavourable, depending on how they affect the comfort and health of the human beings 

living in urban area.  

 

On the one hand, the dense and higher-rise buildings in the metropolitan area can block 

the flow of fresh air into the urban area and deteriorated the ventilation performance 

inside. The urbanization results in the concentration of pollutants and heat emitted from 

transportation and residential/industrial facilities, while the weak airflow results in a 

weak air circulation, making the urban area a thermally uncomfortable space and causing 

the air pollution problems. From this perspective, it seems that strong winds are preferred. 

 

On the other hand, the local strong winds around high-rise buildings can cause uncomfort 

or even danger to the pedestrian. Since the first report of a human fatal accident due to a 

gust around a building (Lawson and Penwarden, 1975), the research on the pedestrian-

level wind has been more and more conducted. Wind comfort and wind danger criteria 

has been made in many countries to prevent such wind nuisance by making restrictions 

to urban design.  

 

The urban design depends on the precise evaluation of the wind environment, and the 

latter requires effective methods for accurately understanding of the complex flow field. 
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1.1.2 CFD simulation for outdoor wind environment  

Wind tunnel experiment (WTEs) and computational Fluid Dynamics (CFD) simulation 

are the two main methods for studying the outdoor wind environment. The latter becomes 

more and more popular today due to the rapid development of the computational 

technology. Large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes 

simulations (RANS) are the two most widely used approaches. In RANS, the Navier–

Stokes equations are averaged to solve the mean flow. However, the velocity fluctuations 

still appear in the RANS equations due to the nonlinearity of the Navier–Stokes equations, 

which is known as the Reynolds stress. To close the equations, Reynolds stress is 

modelled by known (averaged) quantities. In LES, the velocity fluctuations are resolved, 

but in large length scales, while the fluctuations in the scale smaller than the filter are 

modelled. Due to the low computational cost, the applications of RANS in the wind 

environment, (e.g. Blocken et al., 2012; Liu et al., 2017; Peng et al., 2018) are much more 

than those of LES (e.g. Adamek et al., 2017; Gousseau et al., 2011). However, the 

limitation of RANS is its incapability to model the transient features of the flow field 

such as separation and recirculation downstream of windward edges and vortex shedding 

in the wake (Blocken, 2018). In general, LES gives more accurate results than RANS 

(Tominaga and Stathopoulos, 2011) 

 

In the early years, applying CFD to the outdoor wind environment was quite challenging 

due to the following four main difficulties, summarised by Murakami (1998): (1) the high 

Reynolds numbers requiring find grid resolution and accurate wall functions; (2) the 

highly three-dimensional and complex flow field characterized by impinging, separation, 

vortex shedding; (3) the numerical problems related to the sharp edges of bluff body; (4) 

the treatment of the inflow boundary condition, especially in LES. Although the situation 

has changed a lot with the development of new models and the enhancement of 

computation ability, these potential problems remain our great concern in the application 

of CFD. 

 

Compared to the full-scale field measurement or WTE, the main advantages of CFD are 

that it can provide detailed information of the flow variables in the whole flow field 

(Blocken, 2018). However, the accuracy and reliability of CFD are concerned, since the 

simulation is sensitive to many numerical conditions set by the user, including the setting 

of the computational geometry and grid, turbulent models, boundary conditions, 

discretisation schemes, wall treatment methods, etc. Therefore, it always requires 

validation after simulation, in which the results of CFD should be compared to the 

measurement results.  
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This stimulates the development of practice guidelines for CFD applications. The most 

detailed and systematic guidelines for wind environment simulation is provided by 

Architectural Institute of Japan (AIJ) (Tominaga et al., 2008; Yoshie et al., 2007) and 

European Cooperation in the Field of Scientific and Technical Research (COST) (Franke 

et al., 2007). These efforts mainly focus on the instructions towards reliable RANS 

simulation, but provide little hints for LES application. The AIJ is currently establishing 

appropriate LES guidelines for the pedestrian wind environment in built-up areas (Okaze 

et al., 2017).  

 

1.1.3 Coherent turbulent structures 

Turbulent flows are a regime in fluid dynamics where the velocity varies irregularly in 

both space and time. They consist of multi-scale and chaotic motions which can be 

divided into elementary components, termed as coherent turbulent structures. The notion 

of “coherence” refers to the property that a turbulent structure must keep its shape for a 

relatively long time, or appear periodically and intermittently. Therefore, turbulent 

structures are usually observed and studied by statistical methods.  

 

One of the most typical and basic turbulent structures is the hairpin vortices, which have 

been suggested to be the main sustaining flow pattern in turbulent boundary layer (Perry 

and Chong, 1982). Hairpin vortices are usually described as the simplest structures in 

wall turbulence, through which the momentum is transport and the turbulent kinetic 

energy is produced (Adrian, 2007). Please refer to the review of Alfonsi (2006) for more 

of the coherent structures developing in wall-bounded flows. 

 

In building engineering, building structures are usually modelled as three-dimensional 

finite-length cylinder mounted on the wall (floor), located within an atmospheric 

boundary layer. The end effect and boundary layer cause the flow field to become 

complex and strongly three-dimensional (Kawamura et al., 1984; Sumner et al., 2004; 

Wang et al., 2009). Wang et al. (2004) provided a simplified model for the complex flow 

structures around a wall-mounted finite-length cylinder with a square cross-section. The 

four main flow features include the horseshoe vortices, located at the front base of the 

cylinder; base vortices, developing from the base on the two sides; primary vortex 

shedding (or Kármán vortex street), along the cylinder sides; and tip vortices, emitting 

from the free end of the cylinder. The interrelationship between these vortices are further 

studied by Wang and Zhou (2009), who assumed an integrated model for these vortices. 

 

No doubt that an urban area, consisting of multiple buildings with various shapes, can 
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produce more complex combination of turbulent structures, or may even generate new 

type of turbulent structures. As a simplified case study, the turbulent structures produced 

by a uniform two-dimensional street canyon are studied in many literatures. The turbulent 

structures in this case can be abstracted by one type of large-scale structures carrying the 

low- and high- momentum fluids passing through the canyon (Inagaki and Kanda, 2010; 

Kanda, 2006; Michioka et al., 2011; Michioka and Sato, 2012), and another type of small-

scale structures mainly occurring at the roof level of the canyon (Cui et al., 2004; Letzel 

et al., 2008; Louka et al., 2000). Both were shown to be related to the pollutant removal 

from the canyon. Blackman and Perret (2016) indicated a non-linear interactions between 

these two types of structures, that the amplitude of the small-scale structures have a low 

but unneglectable correlation with the low- and high- momentum fluids of the large-scale 

structures.  

 

Previous methods for investigating these turbulent structures varied, and were primarily 

based on quantitative flow visualisation. Both CFD simulations and WTEs provide 

detailed flow field data for examining flow structures. However, when the target is in the 

boundary layer flow with a high Reynolds number, which is usually true in studies of 

building engineering (Uehara et al., 2003), the turbulent motion and the strong 

perturbation caused by the approaching flow can be obstacles to obtaining a clear 

visualisation of the featured flow structures. Direct observation of the instantaneous flow 

field will not provide a clearly recognisable flow structure, while the time-average field 

will lose the information of chronological vortex development. Moreover, measuring the 

frequency or the intensity for a certain flow feature can also be a difficult task because 

the flow field is mixed by the features of all the time scales. Because flow features are 

controlled by different physical mechanisms that require various physical quantities to 

describe them, previous research tended to observe these different physical quantities. 

However, this makes it difficult to compare or study the correlation between features. 

Similar problems also exist in the design work regarding a turbulent fluid field. For 

example, due to the lack of quantitatively analysing the turbulent structures around 

buildings, empirical explanations are usually preferred when assessing and improving 

the wind environment for an urban area. Understanding the main flow patterns from the 

turbulence is of vital importance for pedestrian-level wind control or wind pressure 

assessment on a building surface. The continuing inability to understand the turbulence 

limits reliable predictions. Thus, this further limits technological advancement in many 

aspects (Cantwell, 1981). 
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1.1.4 POD based analysis methods 

Almost 50 years ago, a technique called proper orthogonal decomposition (POD) was 

first applied by Lumley (1970, 1967), and has become one of the widely used methods 

for extracting coherent structures from turbulent flow data. POD is a technique used to 

obtain a linear basis according to the spatial linear correlation of the data, which allows 

it to decompose data most efficiently. In subsequent developments, POD has been known 

as a new analysis tool in wind engineering (Bienkiewicz, 1996). Tamura et al. (1999) 

reviewed the application of POD in random wind pressure fields and further used it to 

predict the responses to wind forces acting on buildings. Additionally, Solari et al. (2007) 

and Carassale et al. (2007) summarized some theoretical aspects and cutting-edge studies 

on POD with special regard to applications in wind engineering. Recent applications of 

POD include Kikitsu et al. (2008), who decomposed the wind velocity field in the wake 

region behind a vibrating three-dimensional square prism and demonstrated systematic 

structures; Kawai et al. (2012), who investigated the near wake structure behind a 3D 

square prism and discussed the motion of the arch-type vortex; Wang et al. (2019a), who 

identified extreme wake patterns of turbulent wind fields around three different 

rectangular building models measured using particle image velocimetry; Wang et 

al.(2019b) and Wang and Lam (2019) extracted the symmetric and antisymmetric 

fluctuating wake characteristics by performing POD on the symmetric or antisymmetric 

part of the velocity field on several horizontal planes in the near wake. 

 

However, only spatial correlation is considered in the original theory of POD, and 

because flow is a time-dependent phenomenon in most scenarios, the temporal 

correlation is also unneglectable to capture the coherent structure with the strongest 

correlation. A possible solution can be treating the time as the fourth direction in addition 

to the three spatial coordinates. In such way, four-dimensional modes will be provided 

in POD. Theoretically, if the flow field is homogeneous in one or more directions, the 

spectrum of the eigenvalues becomes continuous and the eigenfunctions become Fourier 

modes (Aubry et al., 1988). Therefore, combining Fourier transformation with POD is a 

better application. The fluctuations along the inhomogeneous directions can analysed by 

POD, and the fluctuations along the homogeneous directions are decomposed Fourier 

analysis.  

 

Following this idea, spectral POD (SPOD) was developed (Picard and Delville, 2000), 

which treats the fluctuation along time as homogeneous. This makes SPOD as an 

advanced technique of performing POD analysis in the frequency domain via discrete 

Fourier transform (DFT). This approach is expected to be an effective method in 

elucidating the spatiotemporal structures of flows (Towne et al., 2018). SPOD has been 
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applied to a variety of flows. Recent applications include boundary layers (Tutkun and 

George, 2017), the wake of a wind turbine (Araya et al., 2017), turbulent jets (Schmidt 

et al., 2017), and the flow around an airfoil (Abreu et al., 2017). However, the 

applications are still few, and no reports have been found in the field of wind 

environments. 

 

In addition to the SPOD, other DFT-POD hybrid approaches were also developed 

recently. The decomposition proposed by Sieber et al. (2016), which was also called 

SPOD, applied a low-pass filter along the diagonals of POD correlation matrix to force 

POD to resemble DFT. The multi-scale proper orthogonal decomposition (mPOD) 

proposed by Mendez et al. (2019) combined the ideas from Sieber’s SPOD and the SPOD 

in Towne et al. (2018) to integrate their advantages. However, none of the 

aforementioned methods preserve the orthogonality property. Thus, the spatial modes are 

not mutually orthogonal. The orthogonality property of POD or SPOD makes it easy to 

compute the mode energy and provides comprehensible physical meaning to mode 

energy. It directly connects mode energy to turbulent kinetic energy (TKE), or root mean 

square (RMS) velocity fluctuation, which is considered convenient in the applications of 

wind engineering and wind environment assessment. 

 

1.1.5 Other modal analysis methods: Koopman analysis and DMD 

In addition to POD, there exist other modal analysis methods developed for elucidate the 

physically important features of the flow. In this section, the series of methods based on 

the Koopman analysis and dynamic mode decomposition (DMD) are briefly reviewed, 

while other methods, mainly applied in turbulence control, are not included in the review 

of this section. For a complete introduction of modal analysis methods in fluid mechanics, 

please refer to Taira et al. (2017). 

 

The Koopman operator is an infinite dimensional linear operator for describing a 

nonlinear dynamical system by describe the evolution of observables with infinite 

numbers (Koopman, 1931). The observables are related to the states of the system, and 

thus are described mathematically as the functions of states. To fully capture the 

nonlinear dynamics, one may need to observe on an infinite number of such functions, 

while this is impossible in application. The idea of Mezić (2005) is to decompose the 

infinite dimensional Koopman operator into dynamically relevant modes based on the 

eigenfunctions. Then, a truncation can be made, and the infinite dimensional Koopman 

operator can be approximated by the combination of the modes with a finite number. 

Each mode describes a spatial motion of the fluid, multiplied by a time-dependent 
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function, exp(λt), where λ is a complex-valued eigenvalue describing the oscillation 

characteristics of such a motion. The methods based on the Koopman operator 

decomposition are applied in the analysis the flow past a circular cylinder (Bagheri, 2013), 

neural data (Brunton et al., 2016), and power system (Susuki et al., 2016), and were 

proved useful.  

 

In most applications, the explicit form of the dynamical system is unknown, and only the 

snapshot data at the timesteps within an infinite time period are available. In these cases, 

data-driven methods are preferred. The first of such approach was DMD (Schmid, 2010), 

which implicitly uses the linear combination of the states as the dictionary of the 

observables. Rowley et al. (2009) demonstrated that DMD modes constitute a subset of 

Koopman modes. Chen et al. (2012) proved that DMD will reduce essentially to the 

discrete Fourier transform if the mean of snapshots is subtracted. After the development 

of DMD, many modifications have been developed aiming for making the decomposition 

results closer to Koopman operator decomposition. Extended DMD (EDMD), developed 

by Williams et al. (2015a), applied a more complicate dictionary (e.g. high-order 

polynomials) of the observable functions so that it is more powerful when applied to 

nonlinear systems. However, this rich dictionary can easily reach the boundary that the 

algorithm is invalid to perform. The solution is provided by Williams et al. (2015b), 

where the kernel trick is applied. This medicated approach is call kernel DMD. However, 

the careful choice of the dictionary is needed, since it largely affects the decomposition 

results which should be converge to the Koopman modes. This issue is addressed by Li 

et al. (2017), where they employed ideas from machine learning to improve EDMD. The 

limitation of this approach is the low computational speed, so it is considered 

unpracticable in urban wind environment where extremely high dimensional nonlinear 

systems are dealing with.  

 

1.1.6 Method comparison for time series analysis 

The flow fields are usually spatiotemporal data, which requires the modal analysis 

methods to deal with the fluctuations along multiple directions (i.e., the spatial directions 

and time). The methods applied for different directions can be either the same or different. 

One can apply the same methods for multiple directions, which results in a multi-

dimensional version of the method. Alternatively, one can also apply the multiple 

methods for multiple directions, which results in a combined method. For better 

comparison, this section discusses the methods applied to the fluctuation along a single 

direction—time. The time series analysis methods are listed as follows. 
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(1) Fourier transform. Fourier transform is the most frequently used transform that 

decomposes functions depending on time into sinusoid basis functions depending on 

temporal frequency. The Fourier transform of a function is a complex-valued function of 

frequency, whose magnitude represents the amount of that frequency present in the 

original function, and whose argument is the phase offset of the basic sinusoid in that 

frequency.  

 

(2) Karhunen–Loève transform. If POD is performed on a single stochastic process, it 

reduces to Karhunen–Loève transform. Similar to the description of POD, Karhunen–

Loève transform represents a stochastic process as a linear combination of orthogonal 

functions, i.e., a function basis (Ghanem and Spanos, 1991). For a homogeneous process, 

the Karhunen–Loève basis is then a Fourier basis (Aubry et al., 1988). 

 

(3) Koopman analysis and DMD. Although Koopman analysis treats the spatial and 

temporal fluctuations differently, it is a systematic method where the spatial and temporal 

processes cannot be separated. Here, we only inspect how it treats the temporal 

fluctuation. In Koopman analysis, each mode describes a spatial motion of the fluid, 

multiplied by a time-dependent function in the form of exp(λt) (Mezić, 2013). As a subset 

of Koopman modes, DMD modes will reduce to DFT modes if the mean of snapshots is 

subtracted (Chen et al., 2012). 

 

(4) Hilbert transform. Hilbert transform is a linear operator that produces a 90° phase 

shift in a signal. It is useful for analysing nonstationary signals by expressing frequency 

as a rate of change in phase, so that the frequency can vary with time. Combining the 

original signal and its Hilbert transform, the instantaneous frequency can be obtained. 

However, multiple time-varying frequencies coexist typically in raw recordings. 

Therefore, decomposing the time signal before computing the instantaneous frequency is 

suggested, which results in the following methods.  

 

(5) Empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT). EMD 

is a method of breaking down a signal without leaving the time domain. It decomposes a 

signal into so-called intrinsic mode functions (IMFs) which form a complete and nearly 

orthogonal basis for the original signal. HHT (Huang et al., 1998) further applies the 

Hilbert transform to the IMFs to obtain instantaneous frequency data. EMD and HHT are 

designed to work well for data that is nonstationary and nonlinear. In contrast to other 

common transforms like the Fourier transform, EMD and HHT are more like an 

algorithm (an empirical approach) that can be applied to a data set, rather than a 

theoretical tool. 
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(6) Wavelet transform. A wavelet is a wave-like oscillation with an amplitude that begins 

at zero, increases, and then decreases back to zero. Wavelet transform decomposes a 

function into a set of wavelets with various scales and locations. By using wavelet 

transform, one can extract local spectral and temporal information simultaneously. While 

a major disadvantage of the Fourier transform is it only captures global frequency 

information. 

 

The flow around the buildings is usually considered as homogenous and, sometimes even, 

stationary temporal stochastic process in many researches and designs. Therefore, expect 

for the long-lasting regular or periodic fluctuations lying in the field, other stochastic or 

transient temporal variation is inconsequential in the study. A combination of POD and 

Fourier analysis is considered sufficient for the analysis. 

 

1.2 Research objectives 

The limitations of previous studies with regard to a turbulent flow around buildings are 

mainly caused by the lack of methods for quantitatively and concretely analysing the 

turbulent structures, while modal analysis methods are considered to be the potential 

solutions. In this study, SPOD is chosen to be the tool for decomposing the turbulent flow 

and elucidating the turbulent structures. As a start of applying SPOD in wind 

environment, the research targets are chosen to be the two most fundamental and classical 

cases: (1) the flow field around single square-section building model and (2) the two-

dimensional street canyon flow. The effectivity of SPOD when applied on the cases with 

high Reynolds numbers is investigated. In addition to the turbulent structure 

identification, this study also focusses on the developing mathematical tools for 

evaluating the pedestrian-level wind environment and outdoor air exchanging. The 

questions to be addressed in the present study are listed as follow. 

 

(1) For the case of single square-section building model: 

a. What are the main turbulent structures around this single building? How do they move 

in space over time?  

b. How much is primary frequency and intensity of each turbulent structure? Especially, 

how to evaluate these quantities quantitatively? 

c. How to evaluate and identify the main turbulent structures which determine the 

dynamics within a local space of interest?  

d. How do these turbulent structures influence the pedestrian-level wind? How to identify 

the main cause of a too-large fluctuation wind velocity at a certain point of interest? 
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e. How does the inflow fluctuation influence the turbulent structures around the building, 

and further influence the pedestrian-level wind? 

 

(2) For the case of two-dimensional street canyon: 

a. What are the main turbulent structures within the two-dimensional street canyon flow? 

We have known that these turbulent structures were described as large- and small-

scale structures by the statistics performed in the previous studies, but what do they 

exactly look like? How do they move in space over time?  

b. Which of these turbulent structures relate to ejection and sweep events at the roof level? 

How much do they contribute to the pollutant removal at the roof level, quantitatively? 

c. How do these turbulent structures perform on the spanwise direction? And again, how 

do these characteristics on the spanwise direction relate to ejection and sweep events 

and pollutant removal at the roof level? 

d. What is nonlinear interactions between the large- and small-scale structures? How 

much are the small-scale structures amplified or suppressed by the large-scale 

structures?  

 

1.3 Thesis structure 

The structure of this thesis is illustrated in Figure 1.1, which also provides the theme of 

each chapter. The thesis is divided into five parts and eight chapters:  

 

(1) The first part, i.e., Chapter 1, introduces the research background and clarifies the 

research purpose. 

 

(2) All the fundamental theories applied in this study are introduced in the second parts. 

The basic theories and algorithms of CFD and SPOD are briefly explained.  

 

(3) In third part, we start to apply SPOD on the flow around a square-section building 

model. In Chapter 4, the analysis is performed on the three-dimensional velocity field 

obtained by LES. We present a comprehensive view of the three-dimensional turbulent 

structures in this flow, which is an integration of almost all the flow features. The 

identified flow features are visualised to examine the details, and then compared to 

previous studies. Based on the SPOD theory, new quantities are defined to quantitatively 

reveal the primary frequency and relative intensity of these flow features. In addition, the 

local-space spectrum was proposed to observe the detailed energy composition within a 

local space, to show which flow features directly related to the fluctuation within this 

local space. In Chapter 5, the target is focused on the pedestrian-level wind of the same 
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case. The turbulent structures that have large influence on the pedestrian-level wind is 

examined. The SPOD results for two simulation cases are compared, where the only 

difference is the existence of fluctuation at the inflow boundary, to show how the inflow 

fluctuation influenced the turbulent structures around the building. Finally, a 

mathematical tool is developed to pinpoint the main cause of a too-large wind fluctuation 

at a certain point of interest, which is considered useful in attempting to improve 

pedestrian wind comfort. 

 

(4) SPOD is also applied on the two-dimensional canyon flow in the fourth part. In 

Chapter 6, this study begins by reproducing the LES for a two-dimensional street canyon 

with reference to the simulation and wind tunnel experiment conducted by Michioka et 

al. (2011). SPOD technique is applied to decompose the velocity field. The SPOD modes, 

depicting the large-scale coherent structures and Kelvin–Helmholtz instabilities, are well 

extracted and visualised. The ejection events and pollutant removal are quantitatively 

analysed using the newly defined SPOD co-spectra to understand their relationships with 

the turbulent fluctuation patterns. Chapter 7 continues the study, but the spanwise 

performance of the structures are mainly focused on. This is done by modifying the 

original SPOD to the one combining 2DFT. The SPOD co-spectrum defined in our 

previous study is also modified to a 2DFT version. These tools are applied to the street 

canyon case as the post-processing methods to further study on the turbulent structures 

and pollutant removal mechanism. Finally, based on these results, the nonlinear 

interactions between the large- and small-scale structures are discussed. 

 

(5) The final part, i.e., Chapter 8, closes the thesis, summarises the findings obtained of 

this study, and prospects future studies. 
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Chapter 2   

CFD simulation for urban wind environment 

2.1 Overview 

This chapter briefly summarise the CFD techniques used in the simulation of urban wind 

environment. The wind flow in urban areas is usually simulated as incompressible fluids 

governed by incompressible Navier-Stokes equations, which is provided in Section 2.2. 

Section 2.3 briefly introduced the numerical methods used in solving the equation, 

including the spatial and temporal discretisation and solving algorithm. To avoid 

enormous and unfordable calculation, the turbulence is modelled by either RANS or LES 

in practice. The latter is introduced in Section 2.4 and applied in the studies in the 

subsequent chapters. 

 

2.2 Governing equations 

The wind flow in urban areas is turbulent flow, whose motion is described by the 

governing equations of the fluid in general. The governing equations are derived from 

the conservation laws of mass and momentum. For meteorological problems, both the 

equations expressing the state of the air and the laws of thermodynamics are naturally 

required. However, considering that the thermal influence on the urban flow during the 

strong winds is relatively small, the simulation target is simplified to an isothermal flow 

field. In the simulation, the velocity vector  , ,u v wu
T

 and pressure p of the air are 

expressed as the functions of time t and position  , ,x y zx
T

. 

 

First, the conservation of mass is considered. Since the flow speed is far lower than the 

sonic speed, the fluid is considered incompressible, that is, the density is constant. The 

conservation of mass indicates that, for an arbitrary control volume in the domain, the 

volume of the fluid flowing in is equal to the volume flowing out. Mathematically, it is 

expressed as 

0 u . (2.1) 

Then, the equation for the conservation of momentum can be written as 
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
  

2

diffusion term
convective termtransient term pressure term

1
p

t





       



u
uu u




T , (2.2) 

where   and   are the density and kinematic viscosity of air, respectively, which are 

considered constant. Eq. (2.2), usually called Navier-Stokes equation, indicates that the 

temporal variation of the momentum of the fluid per mass is caused by the pressure and 

frictional force. When dealing with the atmospheric boundary layer, the Coriolis force 

caused by the rotation of the earth and the buoyancy caused by the temperature difference 

should also be considered, and added to the right side of Eq. (2.2) as the source term. The 

governing equations can also be written in the tenser form as 

0i

i

u

x





, (2.3) 

  21i ji i

j i j j

u uu up

t x x x x




 
   

    
. (2.4) 

 

2.3 Numerical methods 

2.3.1 Spatial discretisation  

For the first step, the space where the flow is to be computed is divided into a large 

number of geometrical elements called grid cells. As the requirements, there should be 

no holes between the grid cells, and the grid cells do not overlap. In addition, the grid 

cells should be as regular as possible with no abrupt changes in the volume or in the 

stretching ratio. 

 

Subsequently, as the calculation domain has been divided into small elements, the 

governing equations are discretised by the finite volume method. The governing equation 

(2.2) is integrated over the Jth element J  as 

  21
, 1, 2,...,

J J J J

d d p d d J N
t




   

 
         

  
   

u
x uu x x u xT . (2.5) 

N  is the total number of the elements. The transient and the pressure terms are usually 

considered constant in the small element. The equation is further divided by the element 

volume JV , we get  

  21 1 1 1
, 1, 2,...,

J J J

J J J

J J J J

Con Pre Dif

d p d d J N
t V V V




  

  
           

   
  

u
uu x x u x

  

T , (2.6) 
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where the quantities with the subscript J denotes their values within the Jth element. For 

brevity, the vector consisting of the values from all the elements is represented by the 

quantity within square blankets. For instance, the velocity within the Jth element is 

represented by uJ, and the vector consisting of the velocities in all the elements is 

represented by [u], that is, 

  J

 
   
  

u u





. (2.7) 

Now Eq. (2.6) is written in the matrix form as  

 
     Con Pre Dif

t


  



u
. (2.8) 

The goal at this point is to express all these terms in Eq. (2.8) as the linear combinations 

of the velocity and pressure values at the cell centroids. If it is done, the momentum 

equation (2.8) can be written into the algebraic form as  

       A B p C u , (2.9) 

where  A ,  B , and  C  are the already-known coefficient matrices, whose sizes are 

3N × 3N, 3N × N, and 3N × 1, respectively. The continuity equation (2.1) is discretised 

as  

  0 u , (2.10) 

where the operator on the aggregated vector is defined as        u u , which 

converts a 3N × 1 vector to a N × 1 vector. The velocity-pressure coupling problem 

indicated by Eq. (2.9) with the restriction of Eq. (2.10) can be solved by numerical 

procedures. The widely used ones are the semi-implicit method for pressure linked 

equations (SIMPLE) algorithm (Patankar and Spalding, 1972) and the pressure-implicit 

splitting of operators (PISO) algorithm (Issa, 1986). 

 

The following subsections will be arranged as follows: The discretisation methods of the 

transient, convective, pressure and diffusion terms are introduced in Subsection 2.3.2 to 

2.3.5, respectively. The PISO algorithm is introduced in Subsection 2.3.6 to solve the 

velocity-pressure coupling problem indicated by Eqs. (2.9) and (2.10). 

 

2.3.2 Time matching method 

The transient term in Eq. (2.8) is discretised by the time matching methods. the time 

matching methods provide the link between the already-known flow state at time t and 

the unknown flow state at time t + t. By solving the state step-by-step, the whole time 
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series of the state can be obtained. There are two types of time matching methods: the 

explicit methods and the implicit methods. In the explicit methods, the unknown state is 

expressed only by the known flow states, so that the solution be simply calculated the 

substitution. Although the calculation time per step is short, the time step needs to be 

small enough to avoid the instability. In the implicit methods, linear equations need to be 

solved to obtain the unknown state. Therefore, the calculation time per step increases, 

but the stability is easier to control.  

 

In this subsection, Eq. (2.8) is briefly written as 

 
  f

t






u
u , (2.11) 

where   f u  denotes all other terms in Eq. (2.8). The following time matching 

methods are the typical ones, where  
n

u  denotes the state of the velocity at the nth time-

step which is already known,  
1n

u  denotes the state at the (n+1)th time-step which we 

want to solve. The known states should be sorted into the coefficient matrix  C  in Eq. 

(2.9). 

(1) Explicit Euler method: 

      1n n n
f t


  u u u . (2.12) 

(2) Adams–Bashforth methods (explicit): 

The first-order Adams–Bashforth method is equivalent to the explicit Euler method. The 

second- and third-order Adams–Bashforth methods are as follow 

         1 13 1

2 2

n n n n
f f t

  
    

 
u u u u . (2.13) 

            1 1 223 16 5

12 12 12

n n n n n
f f f t

   
     

 
u u u u u . (2.14) 

(3) Implicit Euler method: 

      1 1n n n
f t

 
  u u u . (2.15) 

(4) Crank–Nicolson method (implicit): 

         1 11 1

2 2

n n n n
f f t

  
    

 
u u u u . (2.16) 
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2.3.3 Discretisation of the convective term 

The volume integral of the convective term is first replaced by the surface integral using 

the divergence theorem, that is 

   
1 1

, 1,2,...,
J J

J

J J

Cov d dS J N
V V

 

     uu x u u nT , (2.17) 

where J  denotes the surface of the element J , and n denotes the normal direction 

vector of the surface. If the element is a polyhedron and values are assumed constant over 

each face, the convective term can be further written as 

 
,

,

, , , , ,

1
, 1,2,...,

J m

J m

J J m J m J m J m J m
m mJ J

F

F
Cov S J N

V V
    u u n u


, (2.18) 

where S  is the area of the surface, and the face-values are indexed by the subscript J,m 

denoting the mth surface of the Jth element. Here, the velocity ,J mu  needs to be 

interpolated by the velocity values at the centroids. Note that in the linear solver, the 

velocity in the brackets in Eq. (2.18) is regarded as already known, which takes the values 

obtained in the last iteration or given in the initial guess in the first iteration. In Eq. (2.18), 

the known parts can be substituted by FJ,m, which denotes the volume flux across the mth 

surface of the Jth element. This volume flux is constant in each time-step, and should be 

sorted into the coefficient matrix  A  in Eq. (2.9).  

 

 

Figure 2.1 Geometry of an element on the x direction. 

The target now is to provide the interpolation for the face-value ,J mu . For simplicity, an 

element in a Cartesian grid in Figure 2.1 is considered. The target element, with the 

centroid of P, is surrounded by the elements with the centroids named as E and W in the 

x direction, and the surfaces of the target element adjacent to the other elements are 

named as e and w correspondingly, whose normal direction is pointing in the positive x 

direction. We use the general scalar quantity  to denote the x-, y-, or z-directional 

velocity. e denotes the velocity on face e, which is the face-value we want to find. The 

volume flux on face e is denoted by Fe. The velocity values at the centroids distinguished 

by the subscripts U and D, which the upstream and downstream of face e, respectively. 

Our target is to approximate face-value e by the linear combination of UU, U, D, and 
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DD. The most typical schemes for this purpose are as follows: 

 

(1) Upwind differencing (UD) scheme: 

e e U    . (2.19) 

The face-value is approximated by the value at the first node upstream of the face. To 

evaluate the scheme, U is expanded by the Tayler series at face e as  

   e U e e e e
1,3,5,... 2,4,6,...e e

1 1

2 ! 2 !

n n
n n

n n n n
n n

F F F x F x
n x n x

 
 

 

    
       

    
  . (2.20) 

The error of the current scheme is 

   e e e e e e
1,3,5,... 2,4,6,...e e

1 1

2 ! 2 !

n n
n n

n n n n
n n

F F F x F x
n x n x

 
 

 

    
        

    
  . (2.21) 

Note that none of the terms on the right side equal to zero, so the UD scheme is a first-

order scheme. Specifically, the n = 1 term relates to the dissipation error, which is 

dominated by  
e

x  , same form with the diffusion term (see Subsection 2.3.5), and 

thus causes the artificial viscosity (numerical viscosity). The artificial viscosity has a 

positive effect on numerical stabilisation. However, the numerical viscosity can 

sometimes reach the same level of the molecular and eddy viscosity, and may cause large 

errors. On the other hand, the n = 2 term relates to the dispersion error, which can cause 

spatial numerical vibration in the region where discontinuities or shocks occur and the 

gradient is large.  

 

(2) Central differencing (CD) scheme:  

U D
e e

2

 
 


  . (2.22) 

The central differencing scheme provides a linear interpolation between two 

neighbouring values. The above approximation is valid under the condition that the mesh 

is regular, i.e., x is constant for all the grid cells. If it is not the case, the above 

interpolation should be weighted by the distance from the target face to the neighbouring 

centroids. To evaluate the scheme, U is expanded by the Tayler series at face e in Eq. 

(2.20), and D is expanded as  

   e D e e e e
1,3,5,... 2,4,6,...e e

1 1

2 ! 2 !

n n
n n

n n n n
n n

F F F x F x
n x n x

 
 

 

    
       

    
  . (2.23) 

The error of the current scheme is 

 e e e e e
2,4,6,... e

1

2 !

n
n

n n
n

F F F x
n x
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 
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 , (2.24) 



Chapter 2  
CFD simulation for urban wind environment 

23 

Note that note that the first nonzero terms on the right side is ordered by 2, so the CD 

scheme is a second-order scheme with no dissipation error. However, the existence of 

the dispersion error implies that the numerical vibration is likely to happen. 

 

(3) Linear upwind differencing (LUD) scheme (second-order): 

e e U UU

3 1

2 2
      , (2.25) 

under the assumption a regular mesh with constant x. To evaluate the scheme, U is 

expanded by the Tayler series at face e in Eq. (2.20), and UU is expanded as 

   e UU e e e e
1,3,5,... 2,4,6,...e e

3 3

2 ! 2 !

n n n n
n n

n n n n
n n

F F F x F x
n x n x

 
 

 

    
       

    
  . (2.26) 

The error of the current scheme is 

 

 

e e e e e
1,3,5,... e

e
2,4,6,... e

3 3 1

2 2 2 !

3 3 1
,

2 2 2 !

n n
n

n n
n

n n
n

n n
n

F F F x
n x

F x
n x


 







   
       

   

   
     

   







 (2.27) 

Note that note that the first nonzero terms on the right side is ordered by 2, so the LUD 

scheme is a second-order scheme. 

 

(4) Quadratic upstream interpolation for convective kinematics (QUICK) scheme (third-

order): 

e e D U UU

3 3 1

8 4 8
        , (2.28) 

under the assumption a regular mesh with constant x. To evaluate the scheme, U, D, 

and UU are expanded by the Tayler series at face e in Eqs. (2.20), (2.23), and (2.27). The 

error of the current scheme is 

 

 

e e e e e
1,3,5,... e

e
2,4,6,... e

3 3 1

8 8 2 !

9 3 1
,

8 8 2 !

n n
n

n n
n

n n
n

n n
n

F F F x
n x

F x
n x


 







   
       

   

   
     

   







 (2.29) 

Note that note that the first nonzero terms on the right side is ordered by 3, so the LUD 

scheme is a third-order scheme. 

 

Before introducing the next schemes, a general form for the four schemes above can be 

given as 

   e D D U

1

2
r       , (2.30) 

where 
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U UU

D U

r
 

 





, (2.31) 

and  is a limiter function of r. The  function is unique for each of the four schemes:  

UD:  (r) = 0;  

CD:  (r) = 1;  

LUD:  (r) = r;  

QUICK:  (r) = (3+r)/4. 

 

(5) Total variation diminishing (TVD) schemes: 

The concept of TVD is proposed by Harten (1983). First, the total variation (TV) is 

defined as 

  1
n n n

J J
J

TV     , (2.32) 

to measure the spatial variation of the quantity. A numerical method is said to be TVD 

if, 

   1n nTV TV   , (2.33) 

which implies that the spatial variation decreases with the time-step. Godunov's theorem 

proves that monotonicity-preserving linear schemes are at most only first order accurate. 

Higher order linear schemes, although more accurate for smooth solutions, are not TVD 

and tend to introduce spurious oscillations where discontinuities or shocks arise. Sweby 

(1984) indicated that the second-order TVD schemes should have the limiter function in 

the range shown in Figure 2.2. Three classical TVD schemes (Roe, 1986) are as follow 

MIN_MOD:  (r) = max[0, min(1, r)];  

Van Leer:  (r) = (r + |r|)/(1 + r);  

SUPERBEE:  (r) = max[0, min(1, 2r), min(2, r)].  

The MIN_MOD and SUPERBEE are the lowest and highest boundaries of the second 

order TVD region, respectively. Generally, the higher the limiter function is located, the 

higher accuracy it can achieve in capturing discontinuities or shocks.  
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Figure 2.2 Second-order TVD region. 

2.3.4 Discretisation of the pressure term 

Similar to the convective term, the volume integral of the pressure term is replaced by 

the surface integral, then converted to the sum of the face-values multiplied by the surface 

areas, which takes the form 

, , ,

, , ,

1 1 1

1
, 1, 2,..., .

J J

J

J J

J m J m J m

J m J m J m
m mJ J

p
Pre p d dS

V V

p S
S p J N

V V

 

 

 

   
       

   

  
      

   

 

 

x n

n
n

 (2.34) 

We only need to provide the interpolation for the face-value ,J mp , since other quantities 

are already known. This is usually be done by the CD scheme, whose process is the same 

as introduced in the last subsection, where the general scalar quantity  can also denote 

the pressure field. The coefficients are sorted into the coefficient matrix  B  in Eq. (2.9) 

 

2.3.5 Discretisation of the diffusion term 

Again, the volume integral of the diffusion term is replaced by the surface integral, then 

converted to the sum of the face-values multiplied by the surface areas, which takes the 

form  

 

   

2

,

,, ,

1 1

1
, 1,2,..., ,

J J

J

J J

J m

J mJ m J m
m mJ J

Dif d dS
V V

S
S J N

V V

 




 

   

 
     

 

 

 

u x n u

n u n u

 (2.35) 

where  
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 
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,
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x y zJ m

x y z

u u u
n n n

x y z

v v v
n n n

x y z

w w w
n n n

x y z

   
     

   
       

   
  

   

n u . (2.36) 

For simplicity, an element in a Cartesian grid in Figure 2.1 is again considered. We focus 

on approximating the value on face e, where normal direction of the face is pointing in 

the positive x direction. Again, we use the general scalar quantity  to denote the x-, y-, 

or z-directional velocity. Our target is to approximate face-value  
e

x   by the linear 

combination of P, and E, which denoting the values at the centroids of P and W, 

respectively. This can usually be done by the central differencing scheme as  

P E

ex x

   
 

  
, (2.37) 

under the assumption a regular mesh with constant x. If the mesh is not regular, P, and 

E should be weighted by the distance. The discretisation on the y and z direction can be 

performed in the same manner.  

 

2.3.6 PISO algorithm 

The main problem in solving the velocity-pressure coupling problem indicated by Eqs. 

(2.9) and (2.10) is that, Eq. (2.10) is just a restriction to the momentum equation, and no 

equation is available for the pressure. Therefore, the velocity field solved directly from 

the momentum equation will not satisfy the continuity equation, and needs to be corrected 

by iteration, which is done by the SIMPLE algorithm. The PISO algorithm modified the 

iteration process of the SIMPLE algorithm so that the solution can converge faster.  

 

The PISO algorithm utilises the splitting of operations in the solution of the discretised 

momentum and pressure equations. First, the coefficient matrix  A  in Eq. (2.9) is 

splatted into diagonal part and off-diagonal part, so that 

               0pA B p C A B p H       u u , (2.38) 

where pA    is the diagonal matrix consisting of the diagonal elements of  A , and  

        pH A A C    u u , (2.39) 

The inverse matrix of the diagonal matrix is easy to found. Therefore, it gives an explicit 

expression for the velocity field that 
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       
1

pA B p H


   u . (2.40) 

The divergence operator is imposed on both side of Eq. (2.40), the Poisson equation for 

pressure is obtained as 

       
1 1

0p pA B p A H
 

          u , (2.41) 

The pressure field is updated by solving the pressure field from this equation. The 

velocity field calculated by Eq. (2.40) with this pressure field will satisfy the continuity 

equation, but this explicit process brings errors so that this new velocity field will be 

slightly off the momentum equation, because the  H  vector also depends on the 

velocity field. Therefore, the fields should be corrected by iteration. 

 

The iteration process of the PISO algorithm is as follow: 

Step1: The velocity field  


u  is solved by the original equation 

       
n

A B p C

 u , (2.42) 

using the pressure field  
n

p  solved in the last time-step. Note that this velocity field 

does not satisfy the continuity equation, so it needs to be corrected. 

Step 2: The  H


 vector corresponding by the current velocity field  


u  is calculated 

by 

        pH A A C
  

    u u . (2.43) 

Step 3: The updated pressure field  p


 is solved by the following equation 

      1 1

p pA B p A H
  

          . (2.44) 

Step 4: The updated velocity field  


u  calculated by 

       1

pA B p H
  

   u . (2.45) 

This new velocity field satisfies the continuity equation, but does not satisfy the 

momentum equation.  

Step 5: Go back to Step 2 to update the  H  vector using the new velocity field. Step 2 

to 4 is iterated until a low residual is obtained. Finally, we get the velocity field  
1n

u  

and the pressure field  
1n

p


 for the next time-step. 
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2.4 Large-eddy simulation 

2.4.1 Turbulent modelling 

In urban wind environment problems usually with a very large Reynolds number, the 

turbulence to be dealt with contains the fluctuation of various scales. Ideally, the basic 

governing equations are solved by direct numerical simulation (DNS) to obtain the 

vortices of all scales. However, a sufficiently fine calculation grid is required to resolve 

the vortices of all the scales, and thus the required amount of calculation is enormous. 

Such approach can be difficult in practical application. 

 

To solve this problem, only the vortices of the scales larger than a threshold are simulated, 

and the fluctuations of the scales smaller than that threshold are expressed by a simpler 

model. Such approaches can be roughly classified into two types. One type of approaches 

takes the ensemble mean or the time average for the governing equations, so that only 

the averaged fields are simulated. The ensemble mean refers to the mean weighted by the 

probability of the occurrence of all possible states of the system. During the averaging, 

the fluctuation components are expressed by models. This kind of models are called the 

RANS turbulence models. The other type of approaches coarse-grains the governing 

equations by applying an appropriate spatial filter, and simulates only the flow of a scale 

larger than the scale corresponding to the filter width. The variable components of the 

scale below that filter width are expressed by models. This kind of approach is called 

LES. The models used in both types of approaches are collectively called turbulence 

models. 

 

In the current study, since the analysis of the turbulent fluctuation is aimed for, the time 

signal data of the instantaneous field is required. The RANS approach is considered not 

suitable for this study. Although the obtained turbulence is spatially filtered on a small 

scale by LES so that it is not exactly equivalent to the real instantaneous field, the 

turbulent flow features to be identified are on a much larger scale compared to the filter 

scale. Therefore, LES is performed for each case in this study. The filtered governing 

equations and models in LES are introduced in the next section. 

 

2.4.2 Filtered governing equations 

LES is based on the spatial filtering operation, which decomposed the variable   into 

the filtered (grid scale, resolved) part   and the sub-filter (subgrid scale, unresolved) 

part  , that is 
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( , ) ( , ) ( , )t t t   x x x . (2.46) 

The filtered variable is defined as 

( , ) ( , , ) ( , )t G t d 


 x x x x x   , (2.47) 

where  is the simulation domain, and G  is the filter function. The filtered function 

depends on the difference x x  and on the filter width  . The following filter 

functions are the most frequently used ones: 

(1) Gaussian filter: 
3 2
2

2 2

66
( , , ) exp

π
G

  
          

x x
x x


 . (2.48) 

(2) Top-hat filter: 

3

1
,

2( , , )

0,
2

G


   

  


x x

x x

x x







. (2.49) 

For three-dimensional computations with the filter widths in three directions x , y , 

and z , the filter width in the filter functions is often taken as to be 3 x y z     . 

 

Subsequently, the spatial filtering is applied to the Naiver-Stokes equations to remove 

the small-scale turbulence. For the incompressible flow, the governing equations (2.3) 

and (2.4) are filtered on both sides and take the form as 

0i

i

u

x





, (2.50) 

  21i j iji i

j i j j j

u uu up

t x x x x x






  
    

     
, (2.51) 

where ij i j i ju u u u    is called the subgrid-scale (SGS) stress tensor. The SGS stress 

tensor describes the influence of the unresolved-scale turbulence on the resolved-scale 

motions, which is unknown in the equations and needs to be modelled to close the 

equations.  

 

2.4.3 Subgrid-scale modelling 

On the average, the turbulent energy is transported from the large scales to the small 

scales. Therefore, the main task of a SGS model is to simulate the energy transfer and to 

provide the means of energy dissipation. The standard Smagorinsky model, which is the 

most representative SGS model, is introduced below.  
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In standard Smagorinsky model (Smagorinsky, 1963), the SGS stress tensor is taken to 

be proportional to the strain rate of the resolved flow, that is 

T

1
2

3
ij ij kk ijS      , (2.52) 

where T  is the eddy viscosity, and 

1

2

ji
ij

j i

uu
S

x x

 
     

, (2.53) 

is the strain-rate tensor of the filtered velocity. Subsequently, the eddy viscosity T  is 

estimated by the SGS length scale   and the velocity scale 2 ij ijS S  that  

 
2

T s 2 ij ijC S S   , (2.54) 

where sC  is the Smagorinsky constant. Although Lilly (1967) found the theoretical 

value for the Smagorinsky constant to be 0.18, it still depends on the effect of the mean 

flow strain or shear in various flow types. Moreover, the eddy viscosity is nonzero at the 

wall boundaries, which is contrary to the notion that there is no turbulence near walls. To 

reduce the eddy viscosity near walls, the model is modified by the Van Driest damping 

(Van Driest, 1956) as 

  
2

25
T s 1 2y

ij ijC e S S
   , (2.55) 

where y   is the dimensionless wall distance. For the calculation of the dimensionless 

wall distance, please see the next section. In OpenFOAM (The OpenFOAM Foundation 

Ltd, 2020), the Van Driest damping is applied in the region up to y  of 500. 

 

2.4.4 Wall modelling 

The gradient of the velocity field near the wall varies greatly, and the accurate calculation 

of the gradient near the wall is crucial to the calculation of the shear force. For example, 

in the case the no-slip boundary condition is imposed on the wall, the velocity on the wall 

is zero. As the distance from the wall increases, the velocity gradually increases to the 

mainstream velocity. In this near-wall region, the closer to the wall, the greater the 

gradient of speed change, so a dense grid is needed to resolve these gradients. However, 

a poor convergence may occur if the thickness of the grid near the wall is extremely thin, 

which results in high aspect-ratio cells. At the same time, the number of grids increases 

sharply, and the solution time increases accordingly. Alternatively, the wall models may 

be used in LES. In this case, the grid is not fine enough to resolve the gradients near the 

wall, but the transition between the wall velocity and outer flow (the velocity at the first 

grid point) and the shear force should be modelled.  
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Figure 2.3 provides the experiments measurements showing the relation of the 

nondimensional velocity u  and wall distance y  defined by  

u
u

u

  , (2.56) 

py u
y 


  , (2.57) 

where u  is the friction velocity, and py  is the normal distance to the wall surface. The 

near-wall region is usually divided into three regions, namely the viscous sub-layer 

region ( 0 5y  ), buffer layer region ( 5 30y  ), and log-law region 

( 30 200y  ). The standard wall functions for the viscous sub-layer and log-law 

region can be written as  

, 0 5u y y     , (2.58) 

 1
ln , 30 200u Ey y


     , (2.59) 

where   and E  are von Kármán constant and wall roughness parameter which are 

approximately 0.4187 and 9.793, respectively.  

 

 
Figure 2.3 Experimental measurements and the law-of-the-wall (Humble et al., 2006). 

One can simply use piecewise functions to model the relation in the whole near-wall 

region. Alternatively, one can also choose to use a single and smooth function, the 

Spalding’s wall function (Spalding, 1962):  
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   
2 31 1 1

1
2 6

uy u e u u u
E

   
     

      
 

. (2.60) 

This wall function can be applied in the cases that one cannot guarantee that the position 

of first cell centroid is always located in the viscous sub-layer or log-law region. 

 

In OpenFOAM, this wall function is realised by manipulating the eddy viscosity T . The 

friction velocity u  is calculated from the following equation 

     
2 31 1 1

1 0
2 6

uf u y u e u u u
E


   

     
         

 
. (2.61) 

Since the velocity and normal distance at the first grid is known (given by the last 

iteration), the only unknown variable u  can be calculated by Newton-Raphson method, 

where the iteration is 

 
  old

old

new old

u

f u
u u

df du




 



  . (2.62) 

Subsequently, the eddy viscosity T  at the first cell is calculated by  

2

T

u

d d
  

u n
, (2.63) 

where d du n  is the magnitude of the velocity gradient along the wall normal. 

 

2.5 Summary 

In this chapter, the CFD techniques is briefly introduced, including the governing 

equations, numerical methods, and LES. In the studies described in the subsequent 

chapters, LES is applied to obtain the turbulence data for further analysis. 
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Chapter 3   

Basic theory and algorithm of SPOD 

3.1 Overview 

In this chapter, the basic theory of POD and SPOD is introduced in Section 3.2, followed 

by their algorithms in Section 3.3. This chapter only provide the theory relating to the 

application of wind velocity field, which is low-speed incompressible flow. For more 

general introduction and details of SPOD, please refer to Towne et al. (2018) and Schmidt 

and Colonius (2020). 

 

3.2 Basic theory 

3.2.1 Function space and inner product 

Let  ( , ) ( , ), ( , ), ( , )t u t v t w tu x x x x
T

 denotes the vector field of velocity, where

 , ,x y z x
T

, that is, a spatial location within an interval , and 0 t T   is time. 

The superscript T denotes the transpose of the matrix. The research target is the 

fluctuation velocity field  ( , ) ( , ) E ( , )t t t  u x u x u x , where  E   denotes the 

expectation. 

 

In POD, the vector field is described as a (sometimes complex-valued) vector function 

defined on . The problem is restricted to the space of square-integrable functions, L2 

functions, which implies that the fields should have finite kinetic energy. In such space, 

the definition of the inner product is needed for measuring distance and correlation, 

which is chosen to be the following form in this study 

†1
( ), ( ) ( ) ( )d

V


 f x g x g x f x x , (3.1) 

where V d


  x  is the total volume of the field, f and g are two functions, 
†g  denotes 

the Hermitian transpose of g, which is taking the transpose and then taking the complex 

conjugate. This integral is divided by a volume V to normalise the inner product value 
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to the spatial average. Then, the norm of the function f is ( ), ( )f x f x , which denotes the 

spatial average kinetic energy in physics. 

 

3.2.2 POD 

The target of POD is seeking a deterministic function among all the functions in the space, 

which is most similar to the stochastic function u  on average. Mathematically, the 

notion of “most similar” corresponds to seeking a function ( )ψ x  which will maximise 

the following the quantity 

 2
E ( , ), ( )

( ), ( )

t





u x ψ x

ψ x ψ x
. (3.2) 

This means that the function is found to maximise the inner product to the fluctuation 

field, so it most closely resembles to the fluctuation. A necessary condition for this 

maximisation problem is that ψ  is the eigenfunction of the two-point correlation tensor. 

This results in a Fredholm eigenvalue problem (Fredholm, 1903) 

1
( , ) ( ) ( )d

V




C x x ψ x x ψ x   , (3.3) 

where  

 †
1 2( , ) E ( , ) ( , )t t C x x u x u x , (3.4) 

is the space correlation tensor between the two points, x  and x . According to the 

Hilbert-Schmidt theory (Pipkin, 1991), a finite set of eigenvalues n  and eigenfunctions 

( )nψ x  exist, which can be ranked by the eigenvalues 1 2 0    . The largest 

eigenvalue 1  and the its corresponding eigenfunction 1ψ  is the solution to the 

aforementioned maximisation problem.  

 

All the eigenfunctions are normalised, and they are orthogonal with each other as follows: 

0,
( ), ( )

1,
n m nm

n m

n m



  


ψ x ψ x . (3.5) 

Therefore, they can serve as a complete linear basis for ( , )tu x . The fluctuating velocity 

can be represented by a modal decomposition in the eigenfunctions: 

( , ) ( ) ( )n n
n

t a t u x ψ x , (3.6) 

where 

( ) ( , ), ( )n na t t u x ψ x , (3.7) 

is a set of linearly uncorrelated time series, with the property 
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 *E ( ) ( )n m n nma t a t   , (3.8) 

where *
ma  denotes the conjugate of ma . In most applications, ( )nψ x  is called the mode 

which represents the fluctuation pattern of the flow field, and n  measures the intensity 

of the corresponding mode, called the mode energy. 

 

Furthermore, taking use of Eqs. (3.6) and (3.8), the correlation tensor can be represented 

by eigenfunctions as 
†( , ) ( ) ( )n n n

n

C x x ψ x ψ x  . (3.9) 

Moreover, the TKE can be represented by the summation of the eigenvalues, 

 †1 1
2 2 ( ) E ( , ) ( , )k k d t t

V V


   x x u x u x   

 *E ( ) ( ) ( ), ( )n n n n n
n n

a t a t   ψ x ψ x . (3.10) 

where ( )k x is the TKE at the point x, and k  denotes the spatial average TKE. From Eq. 

(3.10), one can know that the mode energy n , which depicts the intensity of the 

corresponding mode ( )nψ x , is also a part of the TKE of the flow field. The fluctuation 

velocity has been decomposed into a set of spatial mode, ( )nψ x , stochastically vibrating 

with time with the intensity n .  

 

3.2.3 Extension to SPOD 

The space-time correlation tensor is considered in SPOD:  

 †( , , , ) E ( , ) ( , )t t t t C x x u x u x   . (3.11) 

On the condition that the wind speed time series is a stationary stochastic process, the 

space-time correlation tensor depends only on the time lag t t    . Subsequently, the 

cross-spectrum tensor is represented by the Fourier transform of the correlation tensor as 

2π( , , ) ( , , ) i ff e d 





 S x x C x x  . (3.12) 

where 1i   , and f is the frequency. The cross-spectrum tensor can also be written as  

 † †1 1
ˆ ˆ ˆ ˆ( , , ) E ( , ) ( , ) ( , ) ( , )f f f f f

T T
    S x x u x u x u x u x , (3.13) 

where ˆ u  denotes the Fourier transformation of u . 

 

For a given frequency f, the eigenvalue problem becomes 
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1
( , , ) ( ) ( )f f ff d

V




S x x ψ x x ψ x    . (3.14) 

Similar as in POD, the equation above defines a finite set of eigenvalues 
,f n  and 

eigenfunctions 
, ( )f nψ x  where the eigenfunctions are normalised and orthogonal to each 

other as  

, ,( ), ( )f n f m nmψ x ψ x . (3.15) 

Subsequently, the Fourier transformation of the fluctuation velocity will be expanded as 

, ,
ˆ ( , ) ( )f n f n

n

f a u x ψ x . (3.16) 

where ,f na  is the mode coefficient which can be calculated by 

, ,
ˆ= ( , ), ( )f n f na fu x ψ x . (3.17) 

The mode coefficients also have the property  

 * *
, , , , ,

1 1
E f n f m f n f m f n nma a a a

T T
   . (3.18) 

If the unitary Fourier transformation is performed on both sides of Eq. (3.16), we get 

2π
, ,( , ) ( , ) i f

f n f n
n

t a t e df



  u x ψ x . (3.19) 

which is the decomposition form of SPOD, and is a hybrid of the Fourier transformation 

and POD. In Eq. (3.19), if this part 2π
, ( ) i ft

f n eψ x  is seen as a whole, it becomes a period 

function showing a harmonic fluctuation pattern. Creating an animation of its real part  

         2π
, , ,Re ( ) Re ( ) cos 2π Im ( ) sin 2πi ft

f n f n f ne ft ft ψ x ψ x ψ x  (3.20) 

is considered an excellent way of flow visualisation. If one uses the imaginary part to 

make the animation, the same harmonic fluctuation will show, but it will have a π 2  

phase difference with respect to the real part. 

 

Furthermore, taking use of Eqs. (3.13), (3.16), and (3.18), the cross-spectrum tensor can 

be represented by the eigenfunctions as 
†

, , ,( , , ) ( ) ( )f n f n f n
n

f S x x ψ x ψ x   (3.21) 

Moreover, an important property of SPOD is the relationship between the mode energy 

and the TKE, which is deduced as follows:  

†

0

†1 1 1 1
ˆ ˆ2 ( , ) ( , ) ( , ) ( , )

T

k t t dt d f f df d
V T V T




 

          
   
   u x u x x u x u x x   
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*
, , , , ,

1
( ), ( )f n f n f n f n f n

n n

a a df df
T


 

 

 
  

 
  ψ x ψ x . (3.22) 

The second equation in Eq. (3.22) is an application of Parseval's theorem, and the third 

used the decomposition form, Eq. (3.16), along with the orthogonality properties, Eqs. 

(3.15) and (3.18). This property shows that the mode energies are parts of the TKE, and 

they make up the TKE of the whole flow field when they are integrated over all the 

frequencies f and summed over all the mode numbers n. 

 

3.3 Algorithm 

3.3.1 Eigenvalue problem in the matrix form 

A common way for calculating the POD modes from the data is to directly convert the 

eigenvalue problem Eq. (3.3) to the matrix form. Usually, the interval  is discretised by 

cells, and the vector field is described by the values at the cell centroids. Denote the 

coordinates of the cell centroids by 
s1 2, ,..., Nx x x , and the discrete time by 

t1 2, ,..., Nt t t . 

The whole data of the fluctuation velocity vector field will be included in the following 

3Ns × Nt matrix 

 
t

s s t

1 1 1

1

( , ) ( , )

( , ) ( , )

N

N N N

t t

t t

  
 

   
  
 

u x u x

u

u x u x



  



. (3.23) 

The correlation matrix can be written as  

    
†

t

1

N
 C u u , (3.24) 

which is a 3Ns × 3Ns matrix. The matrix form of the eigenvalue problem of Eq. (3.3) 

becomes 

     C W ψ ψ , (3.25) 

where  

 

s

1( )

( )N

 
 

  
 
 

ψ x

ψ

ψ x

  (3.26) 

is the vector form of the eigenfunction in the size of 3Ns × 1, and  

  s s s1 1 1 2 2 2, , , , , ,..., , ,
N N NV V VV V V V V V

diag
V V V V V V V V V

        
  

 
W  (3.27) 

is the diagonal weight matrix whose elements consist of the cell volume jV  of the jth 
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cell. Note that the spatial grids are typically not uniform, if they are inherited directly 

from CFD simulation. Therefore, the weight matrix is necessary in this case, if a correct 

TKE is aimed for when performing the reconstruction.  

 

The eigenvalue problem indicated in Eq. (3.25) can be solved by a computer algebra 

system program, such as Matlab (2020) or Octave (2020), or by a linear algebra library 

of a programming language, such as NumPy on Python (2020) or LINPACK on 

FORTRAN (1982). However, this algorithm might be too costly to perform, because the 

cell number Ns may be exceedingly large to obtain a satisfying spatial resolution for 

three-dimensional field visualisation. In such a situation, computing the eigenvalues for 

a 3Ns × 3Ns matrix is usually unpractical.  

 

3.3.2 Snapshot POD algorithm 

If the cell number largely exceeds the snapshot number, i.e., s tN N , which is usually 

true for the data directly obtained from CFD simulation, then the snapshot POD algorithm 

(Sirovich, 1987) is preferred in this case. Without losing the spatial resolution, the 

snapshot POD algorithm greatly reduces the amount of calculation by sacrificing the 

number of the available modes.  

 

The algorithm starts by constructing the matrix 

      
t

†1

N
 C u W u . (3.28) 

Note that the size of  C  is Nt × Nt, which is much smaller than the correlation matrix 

 C , but the following eigenvalue problem  

        C ψ ψ , (3.29) 

shares the same non-zero eigenvalues with Eq. (3.25), and the eigenvectors of these two 

eigenvalue problems can be related to each other. This can be easily proved by the 

singular value decomposition. With the nth eigenvectors 
n

  ψ  solving from the above 

smaller eigenvalue problem, the eigenvectors corresponding to the POD modes can be 

recovered by 

    t

1
, 1,2,...,

n n
n

n N


   ψ u ψ . (3.30) 

Due to the great reduction of the computation amount and memory resources, the 

snapshot POD algorithm has been used in fluid mechanics to computing POD modes 

from high-dimensional data. 
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3.3.3 DFT and Welch’s method 

Before introducing the algorithm of SPOD, the algorithms for estimating the Fourier 

spectrum should be introduced first.  

 

For simplicity, a one-dimensional stochastic time series u(t) is considered in this 

subsection with the sampling frequency fs. The time series is discretised and written into 

a row as  

 
t1 2( ) ( ) ( )Nu u t u t u t    . (3.31) 

The DFT for this time series can be performed by  

    û u  , (3.32) 

where    is the well-known DFT matrix (Frigo and Johnson, 1998) defined as 

   

   

F

F

2
F FF

12

2 12 4

2 1 11

1 1 1 1

1

1

1

N

N

N NN

  

  

  





 

 
 
 
 
 
 
 
  







    



, (3.33) 

where F2πi Ne  , and NF is the number of discretisation in DFT, which equals to Nt in 

this case. Now the jth element of  û  is the Fourier component ˆ( )ju f  at the discrete 

frequency 

F
s

t

F F
s

t

1
,

2

1
,

2

j

Nj
f j

N
f

j N N
f j

N





 

  


. (3.34) 

Subsequently, the spectrum of u(t) can be naively estimated by  

*
F

s F

ˆ ˆ( ) ( ), 1 2
1

( ) , ,...,j j ju f uS f j N
f N

f   , (3.35) 

and the cross-spectrum of u(t) and another stochastic time series, e.g., v(t), can be naively 

estimated by 

*
F

s F

ˆ ˆ( ) ( ), 1 2
1

( ) , ,...,j j ju f vS f j N
f N

f   , (3.36) 

where the DFT of v(t) is calculated in the same manner. However, the spectrum estimated 

in this way do not converge as Nt increases (Bartlett, 1948), and the uncertainty of the 

estimation is unacceptable. This problem can be solved by averaging the spectra over 

multiple realizations of the stochastic time series.  
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To this end, the Welch’s method (Welch, 1967) is preferred and has become the most 

widely used approach for spectral density estimation. It is carried out by dividing the 

time signal into blocks, forming the periodogram for each block, and averaging. First, 

 u  is divided into a set of overlapping blocks with the block length NF. The mth block 

 
m

u  is represented as 

             
F o F o F o F b1 1 1 2 1

, 1, 2,...,
m N N m N N m N N Nm

u u t u t u t m N
        

  
 

 ,

 (3.37) 

where No is the number of the elements by which the blocks overlap (usually equals to 

NF/2), and Nb is the number of the blocks. In this case, NF is the number of elements 

which no longer equals to Nt. After that, the DFT is performed to each block as 

       b
ˆ , 1, 2,...,

m m
u u m N   , (3.38) 

where  

   
F1 2, ,..., Ndiag    , (3.39) 

is the weight matrix consisting of the nodal values of a window function. The window 

function is imposed to reduce the spectral leakage (Harris, 1978) due to the truncation in 

at the both sides of each block. Now the spectrum of u(t) can be estimated by averaging 

the DFTs of all the blocks as 

b

F
1

*

b

ˆ ˆ( ) ( ) 1, 2,..
1

) , .( ,j
m

N

m j m ju f u fS j Nf
N 

  , (3.40) 

where ˆ ( )m ju f  is the jth element of  ˆ
m

u , and  

F

1

2
s F p

N

p

N wf


  . (3.41) 

The cross-spectrum of u(t) and another stochastic time series v(t) is estimated by 

b

F
1

*

b

ˆ ˆ( ) ( ) 1,2,..
1

) , .( ,j
m

N

m j m ju f v fS j Nf
N 

  , (3.42) 

where v(t) is also divided into blocks, and the DFT of each block is performed in the 

same manner. 

 

3.3.4 Algorithm of SPOD 

Combining the advantages of the snapshot POD algorithm (Sirovich, 1987) and Welch's 

method (Welch, 1967), Towne et al. (2018) proposed an efficient algorithm for 

calculating only a few of the SPOD modes with the highest fluctuation energy, which is 



Chapter 3  
Basic theory and algorithm of SPOD 

43 

introduced in this subsection. 

 

Same as the Welch's method, the data in Eq. (3.23) is first divided into blocks. The mth 

block is represented by 

 
       

       

F o F o F

s sF o F o F

1 11 1 1

b

1 1 1

, ,

, 1, 2,...,

, ,

m N N m N N N

m

N Nm N N m N N N

t t

m N

t t

     

     

  
 
   
 
  
 

u x u x

u

u x u x



  



. (3.43) 

The DFT of the mth block is calculated by 

       b
ˆ , 1, 2,...,

m m
m N   u u . (3.44) 

The jth column of  ˆ
m

u , denoted by  
( )

ˆ
j

m
u , is the Fourier component at the discrete 

frequency jf  given by Eq. (3.34). Now we construct a new matrix consisting of the jth 

columns extracted from all the blocks as  

       
b

( ) ( ) ( ) ( )

F1 2
ˆ ˆ ˆ ˆ ˆ , 1,2,...,

j

j j j j

m Nf
j N          

U u u u u  . (3.45) 

Subsequently, the cross-spectrum matrix for the discrete frequency jf  is estimated by 

 
†

F

b

ˆ ˆ , 1,2,. ,
1

..
j j j

f f f
j N

N
        U US , (3.46) 

where the coefficient   is given in Eq. (3.41). The matrix form of the eigenvalue 

problem in Eq. (3.14) is represented as 

       F, 1,2,...,
jj j j

ff f f
j N W ψ ψS , (3.47) 

where  W  is the weight matrix given by Eq. (3.27). Note that the size of ˆ
jf

 
 U  is 

F bN N  and F bN N , the idea of the snapshot POD can be applied here to reduce the 

required computation. The matrix in size Nb × Nb can be constructed by  

   
†

F

b

ˆ ˆ , 1,2,...,
1

j j j
f f f

j N
N

        U W US . (3.48) 

The eigenvalue problem to be solved becomes 

  F, 1, 2,...,
jj j j

ff f f
j N       ψ ψS . (3.49) 

The eigenvalue problem in Eq. (3.49) shares the same non-zero with that in Eq. (3.47). 

With the nth eigenvectors 
,jf n

  ψ  solving from Eq. (3.49), the eigenvectors 

corresponding to the SPOD modes can be recovered by 

  F b, ,
,

1 ˆ , 1,2,..., , 1,2,...,
j jj

j

f n f nf
f n

j N n N


       ψ U ψ . (3.50) 

The obtained eigenvectors are the discrete form of the eigenfunctions, as shown in Eq. 
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(3.26). 

 

As suggested by Schmidt and Colonius (2020), a proper number of snapshots within each 

block needs to be chosen to strike a balance between the resolvable frequency range and 

the uncertainty. In Welch’s method, if the number of snapshots within each block is too 

small, the frequency resolution will be low, and aliasing errors will occur. If it is too large, 

the number of blocks will be insufficient because of the invariant amount of data, which 

will cause uncertainty in the energy estimation. In practice, the resolvable frequency 

range should cover the lowest frequency of interest, and the number of blocks should be 

sufficient to obtain a relatively precise result. For the time series which is not long enough, 

the above two requirements can be mutually exclusive. Collecting more data to get more 

realisations of the Fourier transform might be the only valid solution for this problem. 

 

3.4 Summary and application guide 

In this chapter, the basic theory and algorithms of POD and SPOD is briefly introduced. 

The general POD theory is first introduced, then extended to SPOD by combining it with 

the Fourier decomposition on time. Consequently, the algorithm of SPOD is established 

as a combination of the snapshot POD algorithm and Welch’s method with DFT.  

 

As a simple application guide of SPOD, for each specific set of (f, n), the complex mode 

, ( )f nψ x  depicts a harmonic fluctuation pattern decomposed from the flow fluctuation. 

Animating the time-periodic function 2π
, ( ) i ft

f n eψ x  is considered an excellent method 

for turbulent visualisation. In addition, the intensity of this fluctuation pattern can be 

measured quantitatively using the value of the mode energy ,f n . Similar to the Fourier 

spectrum, the SPOD spectrum can be obtained by plotting the mode energy versus 

frequency to show the energy distribution. The phase information of each mode was also 

obtained from the mode coefficient ,f na . All these are considered to have the potential 

to facilitate understanding the turbulent flow to a great extent. 
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Chapter 4   

Identification of three-dimensional flow 

features around a square-section building 

model 

4.1 Introduction 

Most man-made architectural structures present bluff forms to the wind (Irwin, 2008). 

The effects of wind flow indicate the unique nature of the problems that can be 

encountered by building structures. Therefore, an understanding of bluff body 

aerodynamics is pivotal to make progress in our understanding of wind engineering (Flay, 

2013). 

 

Inspired by classical studies in the aeronautical field, flow around infinite cylinders has 

been well studied, and an enormous amount of research has been published (Matsumoto, 

1999; Williamson, 1996; Zdravkovich, 1990). However, the practical demand in 

engineering impelled the study of the flow around a finite-length cylinder. In the field of 

wind environment, or wind engineering, building structures are usually represented by 

three-dimensional prisms with free ends located in the atmospheric boundary layer flow. 

 

The end effect and boundary layer cause the flow field to become strongly three-

dimensional, which differs from the two-dimensional flow around infinite cylinders 

(Kawamura et al., 1984; Sumner et al., 2004; Wang et al., 2009). Wang et al. (2004) 

provided a simplified model for the complex flow around a wall-mounted finite-length 

cylinder with a square cross-section. The four main flow features include the horseshoe 

vortices, located at the front base of the cylinder; base vortices, developing from the base 

on the two sides; primary vortex shedding (or Kármán vortex street), along the cylinder 

sides; and tip vortices, emitting from the free end of the cylinder. 

 

Previous methods for investigating these flow features varied, and were primarily based 

on quantitative flow visualisation. Both CFD simulations and WTEs provide detailed 
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flow field data for examining flow features (Uffinger et al., 2013). However, when the 

finite-length cylinder is in the boundary layer flow with a high Reynolds number, the 

turbulent motion and the strong perturbation caused by the approaching flow can be 

obstacles to obtaining a clear visualisation of the featured flow structures. Direct 

observation of the instantaneous flow field will not provide a clearly recognisable flow 

structure, while the time-average field will lose the information of chronological vortex 

development. Moreover, measuring the frequency or the intensity for a certain flow 

feature can also be a difficult task because the flow field is mixed by the features of all 

the time scales. Because flow features are controlled by different physical mechanisms 

that require various physical quantities to describe them, previous research on bluff body 

aerodynamics tended to observe these different physical quantities. However, this makes 

it difficult to compare or study the correlation between features. Similar problems also 

exist in the design work regarding a turbulent fluid field. For example, due to the lack of 

quantitatively analysing the turbulent structures around buildings, empirical explanations 

are usually preferred when assessing and improving the wind environment for an urban 

area (Zhang et al., 2020). 

 

To solve this problem, we seek a single mathematical procedure to identify and extract 

the various flow features. The modal decomposition methods (Taira et al., 2017) were 

considered as potential solutions. On this point, POD and SPOD is considered good tools 

for extracting coherent structures from turbulent flow data. Recent applications of POD 

or SPOD for identifying coherent structures around three-dimensional bluff bodies 

placed in the boundary layer are limited. Wang et al.(2019) and Wang and Lam (2019) 

extracted the symmetric and antisymmetric fluctuating wake characteristics by 

performing POD on the symmetric or antisymmetric part of the velocity field on several 

horizontal planes in the near wake. Nevertheless, the influence of the three-dimensional 

flow structures was not well illustrated by the two-dimensional flow field in these studies.  

 

This study identified the three-dimensional main flow features around a square-section 

building model using SPOD analysis. The analysis was performed on the three-

dimensional velocity field obtained by LES. Using this single technique, we presented a 

comprehensive view of the turbulent structures around the square-section cylinder, which 

is an integration of almost all the flow features. The identified three-dimensional flow 

features were visualised in multimedia views to examine the details, and then compared 

to previous studies. Based on the SPOD theory, new quantities were defined to 

quantitatively reveal the primary frequency and relative intensity of these flow features. 

In addition, the local-space spectrum was proposed to observe the detailed energy 

composition within a local space, to show which flow features directly related to the 
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fluctuation within this local space.  

 

This chapter is organised as follows. The analysis methods based on SPOD technique is 

first introduced in Section 4.2. Section 4.3 introduces the simulation of the flow field. 

Section 4.4 provides the SPOD analysis results. Wherein, the typical modes for each of 

the flow features are displayed, studied in detail, and compared to the observations of the 

former studies. Section 4.5 provides the summaries and conclusion. 

 

4.2 Analysis methods 

4.2.1 Similarity between inter-frequency modes 

After performing SPOD to the data, spatial similarity can usually be observed between 

the modes from different frequencies, especially when the frequency values are close. 

Sometimes, the most energetic modes within a range of frequencies can resemble each 

other, depicting almost the same vortex motion, with only a slight difference in the vortex 

size or some other details. Typically, the SPOD modes change continuously with the 

frequency, as is the case for circular functions in the Fourier transformation. To 

quantitatively measure this similarity of the modes, we define the spatial similarity 

coefficient  between mode (f1, n1) and mode (f2, n2) as follows: 

    1 1 2 21 1 2 2 , ,, , ,
( ), ( )f n f nf n f n

  ψ x ψ x , (4.1) 

where   denotes the modulus of a complex number. Note that  has a range of 0 1  , 

given by the Cauchy–Schwarz inequality, and the values 0 or 1 are taken when f1 = f2. 

This coefficient can also be understood as:   

   
1 1 2 2 1 1 2 2

1 1 2 2

1 1 1 1 2 2 2 2

*

, , , ,

, , , *

, , , ,

( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

f n f n f n f n

f n f n

f n f n f n f n

 
ψ x ψ x ψ x ψ x

ψ x ψ x ψ x ψ x
, (4.2) 

Because the denominator equals 1, Eq. (4.2) is equivalent to Eq. (4.1). Note that Eq. (4.2) 

is analogous to the definition of the correlation coefficient between two random variables. 

 

Furthermore, it can be interesting and sometimes significant to calculate the percentage 

of the total energy that a certain coherent motion accounts for. Because a strict physical 

definition of the coherent structure is still not quantitatively given (Träumner et al., 2015), 

this paper offers an intuitive estimation. First, we select a typical periodic fluctuation 

pattern 
1 1, ( )f nψ x  defined by an SPOD mode, which is considered best for depicting the 

coherent motion of interest. Then, the estimated percentage value is calculated by: 
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   1 1 1 1

2
, ,, , ,

1
100%

2
f n f nf n f n

n

P df
k

 



  . (4.3) 

Here, the 2  value can be understood as a weight, so that the more similar the mode (f, 

n) is to the selected typical mode (f1, n1), the more energy is counted. The derivation is 

provided below. 

 

The procedure of determining the energy of a certain spatial fluctuation pattern is similar 

to that of the classical POD technique (Lumley, 1970, 1967). One can assume that 

1 1, ( )f nψ x  is one of the POD modes of this dataset, and then try to find its energy. Note 

that 
1 1, ( )f nψ x  is typically not one of the POD modes, but our purpose is the same. First, 

the wind velocity data are projected onto the spatial pattern 
1 1, ( )f nψ x : 

1 1 1 1 1 1

POD 2π
, , , , ,( ) ( , ), ( ) ( ), ( ) i ft

f n f n f n f n f n
n

a t t a e df



  u x ψ x ψ x ψ x . (4.4) 

where 
1 1

POD
, ( )f na t  denotes the temporal fluctuation under this pattern. The Fourier 

transformation of it can be easily obtained as  

1 1 1 1

POD
, , , ,

ˆ ( ) ( ), ( )f n f n f n f n
n

a f a  ψ x ψ x . (4.5) 

Subsequently, the energy 
1 1

POD
,f n  is defined as the variance of this complex time series, 

which can be deduced as: 

   

1 1 1 1 1 1 1 1 1 1

1 1 1 1

POD *POD POD *POD POD
, , , , ,0

2
* 2

, , , , ,, , ,

1 1
ˆ ˆ( ) ( ) ( ) ( )

1
( ), ( ) .

T

f n f n f n f n f n

f n f n f n f n f nf n f n
n n

a t a t dt a f a f df
T T

a a df df
T



 





 

 

 

 
   

 

 

  ψ x ψ x

 (4.6) 

The second equation is an application of Parseval's theorem, and the third equation uses 

the orthogonality property of 
,f na . Finally, the resulting energy value is divided by the 

total energy 2k , and Eq. (4.3) can be obtained.  

 

4.2.2 Local-space spectrum  

The kinetic energy in POD-based methods is usually calculated as the sum (or average) 

in the entire flow field. However, some small-scale flow features are concentrated within 

a local space and can be easily overlooked because of their low kinetic energy. In some 

applications, we are interested in how much a certain global flow feature influences the 

velocity within an interested local space. One optional solution is to directly perform the 

POD-based methods on this local space, but the correlation information between the local 

space and other fields will be sacrificed. Recognising the mechanism of the flow features 

within such a small space could be a difficult task. This section aims to provide an 
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alternative solution.  

 

Suppose     is the local space of interest. The local-space SPOD spectrum 
,f ns  is 

defined as:  

†,

, , ,= ( ) ( )f n

f n f n f ns d
V



 
ψ x ψ x x , (4.7) 

where V  is the volume of the local space  , 
, ( )f nψ x  and 

,f n  are the mode and 

mode energy calculated from the whole field  , respectively. The average kinetic 

energy within the field  , 2k , is decomposed into local-space mode energy 
,f ns  

corresponding to mode (f, n), which can be derived as follows:  

†

0

*
,

†

, , ,
†

,

2 1 1 1
ˆ ˆ2 ( , ) ( , ) ( , ) ( , )

2

1 1
( ) ( ) .

T

f n f n f n f n f n
n n

k t t dt d f f df d
V T V T

a a d df s df
T V



 
  

 

 
 

          
   

  
   

  

   

   

u x u x x u x u x x

ψ x ψ x x

 (4.8) 

This technique can be applied to analyse the composition of the kinetic energy for a 

certain local part of the sampling field, and to provide information about which modes 

(or flow features) are directly related to the kinetic energy in this local space. 

 

4.3 Outline of simulation of the flow field 

The flow field around a single building model (1:1:2 prism) (Figure 4.1) was calculated 

via LES using open source CFD software, OpenFOAM, with reference to the guidebook 

proposed by the AIJ (Architectural Institute of Japan, 2016). This simulation reproduced 

the results of the WTE for the same building model (Meng and Hibi, 1998).  

 

This case was chosen because it is a typical bluff body representing a common building 

type in the real world, around which the flow structures illustrated in Wang et al. (2004) 

occur. As a typical case for studying the accuracy of CFD, AIJ has provided the WTE 

database, which can serve as the exact values, and several CFD guidelines were 

developed based on this case study (Okaze et al., 2017; Tominaga et al., 2008; Yoshie et 

al., 2007). Therefore, the accuracy of this simulation can be easily guaranteed.  

 

The data were not directly obtained by performing a WTE because it is still not a popular 

technique to obtain the three-dimensional velocity for the whole three-dimensional field 

simultaneously by particle image velocimetry. In addition, considering that the 

instantaneous velocity was needed in the SPOD analysis, LES was performed rather than 

solving the Reynolds-averaged Navier–Stokes equations. The calculation conditions of 
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LES were basically set according to the study by Okaze et al. (2017). In their study, they 

compared the results for the same building model using various computational conditions 

and provided some guidelines for LES. Figure 4.1 presents the simulation domain. The 

velocity input on the inlet boundary was obtained from an additional LES that simulated 

an urban boundary layer flow in a wind tunnel, which was the same as that of Kikumoto 

et al. (2018). The mean velocity profile was close to the α = 0.27 power law with UH ≈ 

4.5 m/s at the building height. The other simulation conditions are listed in Table 4.1. 

Although the obtained turbulence was spatially filtered on a small scale by LES (Versteeg 

and Malalasekera, 2007) so that it was not exactly equivalent to the real instantaneous 

velocity at each spatial point, the flow features to be identified were on a much larger 

scale compared to the filter scale. Therefore, we judged it to have little impact on the 

feature identification. 

 

During the simulation, the vector wind speed data were sampled within the field below: 

  = = , , | 1.5 3.5 , 2 2 , 0 3.5x y z b x b b y b z b        x
T

, (4.9) 

where b is the building width, which was 0.16 m in the simulation. This field was 

considered large enough to contain most of the main flow features around the building. 

The inflow mean velocity UH (≈ 4.5 m/s) at the building height was considered as the 

reference wind speed, which was used to normalise the wind speed data. The sampling 

frequency was set to 1000 Hz.  

 

The mean velocity and TKE are shown in Figures 4.2 and 4.3, respectively. The 

streamlines of the mean velocity show the flow separating at the leading edge on the roof 

and on both sides. The wake flow showed a downward trend and caused a vertical bubble 

in the time-average sense. The same situation was observed on the horizontal plane where 

the wake flow narrowed downstream and caused two symmetric bubbles in the time-

average sense. The high values of TKE were mainly concentrated within the shear layers 

on the roof and on both sides of the building, and stretched downstream to the wake field. 

The streamwise mean velocity and TKE are compared with the results of the wind tunnel 

test provided by the AIJ guidebook and the original WTE results of Meng and Hibi 

(1998), in Figure 4.4. Most of the results are consistent, except that the LES tended to 

slightly underestimate the TKE on the sides of the building. The author considered the 

LES to be sufficiently accurate for the purposes of this study.  
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Table 4.1 CFD simulation conditions 

Item Content 

Sub-grid scale model Standard Smagorinsky model (Smagorinsky, 1963) with ��= 0.12 

The length scale near the wall was modified using the Van Driest 

damping function (Van Driest, 1956). 

Building size b (x) × b (y) × 2b (z)  (b = 0.16 m) 

Simulation domain x: 9.5b + b (building) + 14.5b 

y: 6.375b + b (building)+ 6.375b 

z: 2b (building) + 11.75b 

Grid partitioning 142 (x) × 122 (y) × 87 (z) 

Total cells: 966,016 

Minimum grid size: b/32  

adjacent to building wall and tunnel floor (y+ ≈ 100) 

Stretching function: hyperbolic tangent function 

Time step and marching 0.00025 s, Pressure-implicit with splitting order (PISO) (Issa, 1986) 

Simulation period Preparatory: 0~60 s, Sampling: 60~120 s 

Inlet boundary conditions Velocity inlet boundary condition:  

Inflow turbulence data was shared by Kikumoto et al. (2018), who did 

an additional LES that simulated an urban boundary layer flow in a 

wind tunnel. The mean velocity profile is close to the α = 0.27 power 

law with UH ≈ 4.5 m/s at the building height and U0 ≈ 6.5 m/s at the 

tunnel height. 

Outlet boundary conditions Zero gradient pressure outlet boundary condition 

Wall function Surfaces of the tunnel floor: Spalding’s law (Spalding, 1962) 

Building walls: Spalding’s law 

Tunnel wall and ceiling: Spalding’s law 

Space discretisation  2nd-order central difference 

Time discretisation Euler-implicit 

 

 

Figure 4.1 Simulation domain. 
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Figure 4.2 Mean velocity within the sampling domain. The left panel shows the streamlines seeding from 

the spatial points, where the vorticity magnitude was high. 

 
Figure 4.3 TKE within the sampling domain. The left panel only shows colour at the spatial points, where 

TKE is higher than 0.075, to provide a better view.  
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Figure 4.4 Comparison of the results between the LES (blue lines) and experiment (red circles). (a) Mean 

streamwise velocity on plane y = 0. (b) TKE on plane y = 0. (c) Mean streamwise velocity on plane z = 

1.25b. (d) TKE on plane z = 1.25b. 

 

4.4 SPOD analysis of the velocity field 

4.4.1 Performing SPOD 

The SPOD modes were calculated using the method proposed by Towne et al. (2018), 

which made good use of Welch’s method (Welch, 1967). Welch's method for estimating 

power spectra is carried out by dividing the time signal into blocks, forming the 

periodogram for each block, and averaging. As previously suggested by Schmidt and 

Colonius (2020), a proper number of snapshots within each block need to be chosen to 

strike a balance between the resolvable frequency range and the uncertainty. In Welch’s 

method, if the number of snapshots within each block is too small, the frequency 

resolution will be low, and aliasing errors will occur. If it is too large, the number of 

blocks will be insufficient because of the invariant amount of data, which will cause 

uncertainty in the energy estimation. In this study, this number was chosen to be 4,096 

because the resolvable frequency range precisely covered the lowest frequency of the 

main vortex motion, and the number of blocks (28) was considered sufficient to obtain a 
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relatively precise result. Moreover, the overlap between the blocks was chosen to be 50% 

of the number of snapshots within each block, which is commonly accepted in the 

practise of Welch’s method, and the Hamming window was applied to avoid spectral 

leakage. 

 

4.4.2 SPOD spectrum 

Figure 4.5 presents the SPOD spectrum, which shows the results of the largest 28 

eigenvalues (single-sided spectrum) at all discrete frequencies. The eigenvalues and the 

frequencies are nondimensionalised and normalised, so that if one integrates these 

eigenvalues over a certain range, the area (or volume) obtained under the curve (or 

surface) will equal the proportion of the energy within that range in the total energy.  

 

Note that the eigenvalue presented in Figure 4.5 corresponds to an SPOD mode. The 

modes can be understood by examining the real and imaginary parts of the eigenfunctions, 

or by watching the animation created by 2π
,Re( )i ft

f neψ . The animation process was 

approximately ,Re( )f nψ → ,Im( )f n ψ → ,Re( )f n ψ → ,Im( )f nψ → ,Re( )f nψ . Figures 

4.6–4.13 provide several modes showing some characteristic flow phenomena, which 

will be introduced in detail in the latter subsections. Furthermore, the animations are 

shown in the multimedia views. 

 

From the distribution of energy, the energy was primarily concentrated within the range 

of low frequency and low mode number. All the extracted modes accounted for nearly 

100% of the total energy in this flow field. Almost all the basic flow features were 

captured by the SPOD modes with mode number n = 1 or 2, listed in Table 4.2, except 

for the horseshoe vortex. According to the study of Sau et al. (2003), the horseshoe vortex 

is located 1.5x b   upstream of the building and extends to 2y b  on both sides of 

the building, which is beyond the sampling domain of the present study. Fortunately, the 

horseshoe vortex does not join the vorticity interaction process with the near wake 

vortices (Sau et al., 2003), so it has little influence on other features.  

 

For each of the other flow features, one or multiple typical modes, which were considered 

best depicting the flow features, were selected and are listed in Table 4.2. The primary 

frequency and intensity of each flow feature can be quantitatively estimated by the 

frequency of the typical modes listed in Table 4.2 and the energy percentage of the 

corresponding spatial pattern is shown in Figures 4.6–4.13. The following subsections 

describe these features in detail via SPOD modes. 
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Figure 4.5 SPOD spectrum. (a) The nondimensional eigenvalues are plotted versus the nondimensional 

frequency. (b) The nondimensional eigenvalues (shown by colour) are plotted versus both the frequency 

and the spatial mode number. It also shows the summed or integrated eigenvalues along the frequency or 

the spatial mode number. 

 

Table 4.2 Basic flow features and the corresponding typical SPOD modes.  

Flow feature Typical SPOD mode 

Low-frequency  

modes  

Mode (fb/UH = 0.0169, n = 1)  Figure 4.6 Antisymmetric mode 

Mode (fb/UH = 0.0169, n = 2)  Figure 4.7 Symmetric mode 

Primary wake  

vortex shedding 
Mode (fb/UH = 0.0845, n = 1)  Figure 4.8 Primary periodic vortices 

Tip and base  

vortices 

Mode (fb/UH = 0.2281, n = 1)  Figure 4.9 A pair on one side 

Mode (fb/UH = 0.2281, n = 2)  Figure 4.10 A pair on the other side 

Mode (fb/UH = 0.4562, n = 1)  Figure 4.11 A pair on the roof 

Primary side  

vortex shedding 

Mode (fb/UH = 0.8786, n = 1)  Figure 4.12 Vortices on the roof 

Mode (fb/UH = 0.8870, n = 2)  Figure 4.13 Vortices on building side 
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Figure 4.6 Mode (fb/UH = 0.0169, n = 1). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. Each of (a) and (b) provides a 3D view (left), a characteristic horizontal plane (upper right) 

and a characteristic vertical plane (lower right). The real or imaginary part of the eigenfunction is displayed 

by the streamlines where the colour shows the magnitude. The colours in the 3D view are shown only at 

the spatial points, where the magnitude is relatively high, to provide a better view. (c) Spatial similarity 

coefficient shown by the colour and displayed based on the same panel of Figure 4.5 (a). The spatial 

similarity coefficient between the current mode and all other SPOD mode is given by Eq. (4.1), and the 

energy percentage value P is calculated by Eq. (4.3), where (f1, n1) is substituted by the index of the current 

mode.   
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Figure 4.7 Mode (fb/UH = 0.0169, n = 2). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details.  
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Figure 4.8 Mode (fb/UH = 0.0845, n = 1). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details.   
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Figure 4.9 Mode (fb/UH = 0.2281, n = 1). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details. (d) 

Schematic of the vortex structure.   
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Figure 4.10 Mode (fb/UH = 0.2281, n = 2). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details.   
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Figure 4.11 Mode (fb/UH = 0.4562, n = 1). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details. (d) 

Schematic of the vortex structure.   
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Figure 4.12 Mode (fb/UH = 0.8786, n = 1). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details.   
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Figure 4.13 Mode (fb/UH = 0.8870, n = 2). (a) Real part of the eigenfunction. (b) Imaginary part of the 

eigenfunction. (c) Spatial similarity coefficient. See the caption of Figure 4.6 for more details.  
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4.4.3 Low-frequency modes 

The mode (fb/UH = 0.0169, n = 1) (Figure 4.6) and mode (fb/UH = 0.0169, n = 2) (Figure 

4.7) were chosen to be the typical modes in the low-frequency region (fb/UH ≈ 10-2). The 

spatial shape of the former mode is nearly antisymmetric, and the latter is nearly 

symmetric, where the notion of “antisymmetric” is defined as: 
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and the notion of “symmetric” is defined as: 
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where (1)
,f n , (2)

,f n , and (3)
,f n  are the three components of 

,f nψ  along the x, y, and z 

directions, respectively. In Subsection 4.7, we show that the modes in the low-frequency 

region are directly related to the fluctuation of the incoming flow. 

 

The eigenfunctions in Figures 4.6 (a) and (b) show that strong fluctuations concentrate 

on both sides of the building, and then extend to the wake. This provides an insight into 

the difference in the velocity on the building sides caused by the inflow fluctuation. In 

contrast, the eigenfunctions in Figures 4.7 (a) and (b) show that strong fluctuations almost 

fill up the whole sampling field, while no apparent fluctuations can be observed within 

the separation zone on the building sides or in the wake. It appears that a wind gust 

collided with the building, but few vortices were observed as a result.  

 

Figures 4.6 (c) and 4.7 (c) display the spatial similarity coefficient of these two typical 

modes and all the other modes, which show that the modes related to these features are 

mostly concentrated in the low-frequency region (fb/UH ≈ 10-2). In this region, note that 

these two spatial modes hold the largest dominant energy, which is far larger than the 

third.  

 

The features in these two spatial patterns are 6.97% and 5.57%, respectively, of the total 

energy in this field (calculated by Eq. (4.3)), which are relatively large compared to most 

of the other spatial patterns extracted by SPOD.  
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4.4.4 Primary wake vortex shedding 

The mode (fb/UH = 0.0845, n = 1), as shown in (Figure 4.8), exhibits primary vortex 

shedding in the wake, which is usually termed as the Kármán vortex shedding in the two-

dimensional flow.  

 

This mode played an important role in periodic vortex shedding because it dominated the 

energy around the Strouhal frequency, which was fb/UH ≈ 10-1 for the finite height square 

cylinder (Sakamoto and Arie, 1983; Wang and Lam, 2019). If the flow field is analysed 

by POD, a couple of POD modes depicting the same structure will be obtained, and an 

approximately π 2  phase difference can be observed between the mode pair 

(Bourgeois et al., 2013; Wang et al., 2019). While as a hybrid of POD and Fourier 

transformation, SPOD can better recognise this kind of travelling wave in a complex 

mode. Recently, Wang and Lam (2019) also extracted the antisymmetric low-frequency 

mode and periodic vortex shedding mode pairs via POD, and they applied a low-pass 

Gaussian filter to properly separate the two coherent structures. The filtered POD 

technique was also introduced by Sieber et al. (2016), also called SPOD, to obtain a better 

insight into the harmonic oscillator in the flow. However, these are unnecessary in the 

present study because the SPOD applied in this study already encompassed the Fourier 

analysis. The energy percentage for this mode was 6.40%. It contained the unignorable 

energy components in the Strouhal frequency region.  

 

4.4.5 Tip and base vortices 

Mode (fb/UH = 0.2281, n = 1) (Figure 4.9) and mode (fb/UH = 0.2281, n = 2) (Figure 4.10) 

exhibit the tip and base vortex pair on the two sides of the building, respectively. These 

two modes were almost symmetric, and were the two most energetic modes at the same 

frequency.  

 

The tip and base vortices were observed in a number of bluff body studies (Kawamura et 

al., 1984; Sumner et al., 2004; Wang et al., 2009, 2004), while the present study provides 

proof of the relationship existence between the tip vortices and the base vortices. Because 

the vortices and their rotational directions are not well-shown by the vector plot in the 

3D view, Figure 4.9 (d) provides a schematic of the vortex structure. The upper and lower 

parts of the vortices lag behind the driven part due to the obstruction of the upstream 

building corners, and they tear apart when leaving the building. This arch structure 

appears to be a large version of the hairpin vortices attached to the building walls. The 

fact that the pair of tip and base vortices were extracted in the same SPOD mode indicates 

that the correlation between them was detected by SPOD. Wang and Zhou (2009) also 
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discovered a similar arch-type structure, which was assumed to be the connection 

between the tip and base vortices. The results in the present study support their 

assumption; however, more evidence is needed for solid proof, because SPOD only 

proves their correlation and not the existence of their dynamic mechanism. 

 

One deficiency of this SPOD analysis is that the rotation direction of the tip and base 

vortices cannot be determined. This is because the vortex structures are deemed as zero-

mean sinusoidal functions by SPOD, which means that a vortex must be chronologically 

followed by another vortex whose direction is opposite to the former. However, although 

the real rotation direction of the tip and base was unknown in this study, the two modes 

indicated that the tip and base vortices always rotated in the opposite direction. Wang et 

al. (2009) indicated that the opposite rotation direction of the tip and base vortices 

induces a secondary flow around the centreline, which may influence the heat diffusion 

in the building wake.  

 

Mode (fb/UH = 0.4562, n = 1) (Figure 4.11) is another development of the tip vortices, 

which has usually been argued as the origin of the tip vortices in many studies (Wang et 

al., 2004; Zdravkovich et al., 1989). The schematic in Figure 4.11 (d) illustrates that the 

mechanism of this mode is the same as that of the aforementioned two modes, but occurs 

on the building roof.  

 

Wang et al. (2004) illustrated two types of tip vortices rotating in different directions. 

Although the shapes were similar to the spatial patterns depicted by the SPOD modes, 

they cannot be directly compared. Because SPOD identifies waves or vortices travelling 

spatially, which results in a zero mean for each observed spatial point, while the tip and 

base vortices are examined in mean flow by Wang et al. (2004). However, imagine that 

the harmonically fluctuating spatial patterns are added onto the mean flow patterns in the 

same shape, then the vortices in the opposite rotation direction will be cancelled out. The 

tip and base vortices are shown as intermittent travelling vortices with a specific 

frequency.  

 

The energy of these spatial patterns was estimated quantitatively. The spatial pattern of 

mode (fb/UH = 0.2281, n = 1) and mode (fb/UH = 0.2281, n = 2) were 1.13% and 0.93% 

of the total energy, respectively, while the spatial pattern of mode (fb/UH = 0.4562, n = 

1) was 0.24%. 
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4.4.6 Primary side vortex shedding 

Mode (fb/UH = 0.8786, n = 1) (Figure 4.12) and mode (fb/UH = 0.8870, n = 2) (Figure 

4.13) provides an insight into the primary vortices within the shear layer on the roof and 

on the sides, respectively. These vortices are hereafter called “primary side vortex 

shedding” to distinguish from “primary wake vortex shedding”. 

 

These vortices have also been observed in several studies (Bruno et al., 2010; Joubert et 

al., 2015).  Bruno et al. (2010) found that the primary vortex shedding period was 

approximately 0.75 non-dimensional time unit, which corresponds to a normalised 

frequency of 1.33. This roughly corresponded to the frequency (fb/UH ≈ 1), where we 

found this typical mode. The authors considered that two reasons may cause errors. First, 

the sampling length was only 4.25 non-dimensional time unit, as stated by Bruno et al. 

(2010), which might not be enough to reveal the long-term features. Second, the prism 

in our study was placed in a boundary layer, while Bruno et al. (2010) used an infinite-

length 2D cylinder. The choice of the reference length and reference velocity can also 

affect the normalised frequency. Again, SPOD failed to provide information on the 

rotation direction of these vortices, but it was well illustrated by Bruno et al. (2010) via 

direct observation of the instantaneous flow field.  

 

The energy percentage of the vortex pattern on the roof was 0.08%, which was much 

lower than that of the aforementioned patterns. In addition, although mode (fb/UH = 

0.8870, n = 2) was chosen as the typical mode for the same phenomenon occurring on 

the building side, this mode only showed the vortices on one side and the upper part of 

the building, while several modes around fb/UH ≈ 1 depicted the same type of vortices 

occurring on all parts of the building sides. This indicated that these vortices were not 

synchronised, so they could not be depicted by a single mode uniformly or a set of 

spatially similar modes. Considering the boundary layer set in this case, the impinging 

velocity was different at different heights, so the frequency of these vortices may be 

slightly different. This also caused the energy percentage of the spatial pattern of the 

typical mode to be only 0.05%, whereas the total energy for all the vortices in this type 

occurring on the building sides can be several times greater than that.  

 

4.4.7 Local-space spectrum 

In this subsection, the local-space SPOD spectrum defined in Section 2.4 is applied to 

examine some details for this sampling field, which varies in different spatial locations.  

 

In the first application, the local space   was chosen as the inlet face of the sampling 
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field, to show which modes directly related to the inflow fluctuation. Figure 4.14 shows 

this local space spectrum. The energy is mainly concentrated in the low-frequency region 

(fb/UH ≈ 10-2), where one each for symmetric mode and antisymmetric mode is found. 

This indicates that these two features are the direct results of the inflow fluctuation. In 

addition, note that this spectrum decreases much faster than the global SPOD spectrum 

in Figure 4.5 (a) in the high-frequency region (fb/UH > 1), indicating that many small-

scale features are generated by the prism when the flow passes it.  

 
Figure 4.14. Local-space SPOD spectrum for the inlet face of the sampling domain. 

 

Figures 4.15 (a–c) provide the local-space spectrum for three local spaces, as defined by 

the following: 

 Front: -1.5b < x < -0.5b, -0.5b < y < 0.5b, 0 < z < 2b 

 Side: -0.5b < x < 0.5b, 0.5b < y < 1.5b, 0 < z < 2b 

 Back: 0.5b < x < 1.5b, -0.5b < y < 0.5b, 0 < z < 2b 

where the original point was at the bottom centre of the prism. For a better comparison, 

the spectra of n = 1 and 2 are summed (i.e. 
,1 ,2f fs s ) and shown in Figure 4.15 (d). 

From these results, we see that different local spaces were influenced by different flow 

features. The modes in the low-frequency region dominated the flow fluctuation on the 

front of the prism, while the primary wake vortex shedding dominated the flow 

fluctuation in the back. The situation on the side of the prism was the most complicated. 

It was largely influenced by the low-frequency features, while most of the flow features 

caused by the prism have a certain proportion of the kinetic energy.  

 

The above analysis technique is considered useful in real design work with regard to 

turbulent flow. Using SPOD, the global flow features can be well identified and provide 

general cognition for the whole field. Meanwhile, a local place of interest can be chosen 

to observe the details of the flow. It tells us which features are directly related to the 

fluctuation in this local space. This kind of reference benefits local modifications and 
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improvements.  

 

 

Figure 4.15. Local-space SPOD spectra for the front, side, and the back of the prism, respectively in (a–

c). The spectra of n = 1 and 2 are summed and compared in (d).  

4.5 Summary  

This study reproduced the flow field around a square-section building model using LES, 

and performed SPOD analysis to identify the three-dimensional main flow features 

within the sampling field. The identified features, including the low-frequency modes 

related to the fluctuation of the incoming flow, primary wake vortex shedding, tip and 

base vortices, and primary side vortex shedding, were extracted from the single case at 

once. The primary frequency and the intensity of these features were revealed by studying 

the typical SPOD modes and estimating the energy percentage. In addition, the local-

space SPOD spectrum was also defined to analyse the composition of the kinetic energy 

within some local parts of the sampling field.  

 

The identified flow features and their details are summarised as follows: first, two 

energetic modes at low frequency were chosen as the typical modes to depict the 

symmetric and antisymmetric fluctuations around the building. They were found to be 

directly related to the inflow fluctuation by the local-space SPOD spectrum. The primary 
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wake vortex shedding was depicted using a complex mode at the Strouhal frequency, 

which exhibited periodic vortex shedding. The tip and base vortex pair on one side of the 

building appeared in one SPOD mode, which indicated their correlation. The mode also 

showed an arch structure by which the tip and base vortices were connected. The same 

structure was found on the roof of the building illustrated by another mode, which 

showed the other kind of development of the tip vortices. The primary side vortex 

shedding appeared on both the roof and sides of the building. However, the vortices at 

different heights on the sides were not synchronised. Finally, the local-space SPOD 

spectrum precisely showed the different compositions of the fluctuation patterns on the 

front, side, and back of the prism. 

 

In general, the SPOD spectrum provided a comprehensive view of the turbulent 

structures in this flow field, which was an integration of all the above flow features. 

Unlike previous studies, where different flow features were studied by different physical 

quantities, this study revealed the primary frequency and intensity for all features, using 

a single mathematical process. To make this identification more quantitative, new 

quantities were defined (Sections 2.3 and 2.4). The spatial similarity in Section 2.3 was 

defined to classify the modes by similarity of the shapes, so that the energy percentage 

values for the flow features could be estimated. This made it possible to directly compare 

the intensity between features. The local-space spectrum in Section 2.4 was defined to 

reveal detailed information of the fluctuation pattern, so that the flow features responsible 

for the strong fluctuation at a local space could be precisely pinpointed. This was 

considered a good design tool with broad application prospects. The flow features were 

also animated using the animations for the SPOD eigenfunctions. The visualisations were 

more direct and intuitive than traditional methods, which facilitated the understanding of 

the turbulent structure. 

 

This work may be the first study to apply SPOD for the identification of the three-

dimensional flow features around a wall-mounted bluff body with a high Reynolds 

number. Although none of the flow features are new, the successful identification of these 

flow features proves that SPOD has the potential to become another effective tool for 

further research or design of bluff body aerodynamics.  
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Chapter 5   

Analysis of the pedestrian-level wind around 

a square-section building model: the effect of 

inflow fluctuation on turbulent structures 

5.1 Introduction 

In recent years, technological progress on numerical calculations and WTEs has enabled 

the recording of detailed and large amounts of flow field data. However, extracting 

meaningful phenomena from a large amount of data using the conventional analysis 

method is often difficult. On this point, one may refer to the concept of coherent 

structures, which are characterized as correlated and concentrated dynamic systems lying 

in the complex multi-scale and chaotic motions of turbulent flow (Fiedler, 1988). Often, 

coherent structures can be clearly identified visually, but their quantitative assessment is 

still a challenge (Träumner et al., 2015) as the mechanism of turbulence is still not very 

clear. Therefore, in the field of wind environment analysis, observation-based empirical 

explanations are often preferred to mathematics-based analytical methods when 

elucidating the cause of maximum wind speeds within a complex urban area or planning 

countermeasures against them. For example, Blocken and Carmeliet (2004) reviewed a 

large number of case studies conducted by former researchers and summarized that 

corner streams and the frontal vortex are the most important causes of wind nuisance. A 

few recent reports of pedestrian-level wind studies for existing urban areas also 

conducted research in the same manner, and these are Zahid Iqbal and Chan (2016), 

Adamek et al. (2017), and Shui et al. (2018). 

 

On another side, it is well known that inflow turbulence can greatly affect the flow field 

around buildings, and thus may further affect the fluctuation properties of the wind load 

on buildings. The simulations by Tamura and Ono (2003) shows that the size of the wake 

increases as the inflow turbulence increases, although there were no clear turbulence 

effects under vortex-induced oscillation. Mochida and Lun (2008) indicate that LES 

without inflow turbulence can reproduce the reattachment, but the reattachment length is 
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over-estimated, while the result of LES with inflow turbulence shows close agreement 

with the experiment. In Yan and Li (2015), four widely used inflow turbulence generation 

methods are adopted to generate inflow turbulence for numerical simulations of wind 

loadings, wind effects on the tall building was examined. Difference was found in the 

wind force and mean flow patterns. Especially, the difference of the latter was a 

significant one. Until now, studies on the influence of the inflow turbulence were based 

only on relatively superficial observation and comparison of the results. However, still 

no studies clearly explained the deep reasons behind these differences. 

 

It is considered that studying on the differences of the turbulent structures can provide a 

deeper insight on this issue, and the SPOD technique is a good way to extract the 

turbulent structures. In this study, the effect of inflow fluctuation on turbulent structures 

around the building is focused on. The spatiotemporal structures of turbulent flow around 

a single building model (1:1:2 prism) are investigated using the SPOD technique. The 

vector velocity on the surface near the ground is decomposed to show and sort the main 

fluctuation patterns of the velocity by their frequencies, which provide a clear insight into 

the physical phenomena within the turbulence. The SPOD results for two simulation 

cases are compared, where the only difference is the existence of fluctuation at the inflow 

boundary, to show how the inflow fluctuation influenced the turbulent structures around 

the building. Additionally, the fluctuation energy of these fluctuation patterns is 

calculated, which is considered useful in attempting to improve pedestrian wind comfort.  

 

5.2 Outline of the simulation of the flow field 

The geometry and simulation settings in the current study were the LES in Chapter 4. 

Please refer to Section 4.3 for the details. In this study, two cases were calculated: the 

velocity inlet boundary condition was set as the wind speed, without fluctuation (Case 1) 

and with fluctuation (Case 2). In Case 1, the velocity input at the inlet boundary was keep 

constant as the mean velocity of the inflow turbulence data shared by Kikumoto et al. 

(2018), while in Case 2, the turbulence data was input normally. 

 

During the simulation, the vector velocity data on a plane of z = 0.125b (b: building width) 

height were sampled. The plane was chosen to be relatively close to the ground to 

represent pedestrian-level wind. The sampling frequency was set at 1000 Hz. The inflow 

mean velocity UH (≈ 4.5 m/s) at the building height was taken as the reference velocity, 

with which the velocity data were made dimensionless. 
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 (a) Mean velocity at  (b) Mean velocity at (c) Mean velocity at 

    , = 0.75 , 0.125x z b b     , = 1.25 , 0.125x z b b     , = 2 , 0.125x z b b  

 

 (d) RMS velocity fluctuation at  (e) RMS velocity fluctuation at (f) RMS velocity fluctuation at 

    , = 0.75 , 0.125x z b b     , = 1.25 , 0.125x z b b     , = 2 , 0.125x z b b  

Figure 5.1 Comparison of mean velocity and RMS velocity fluctuation in the x, y, z directions between 

LES (Case 2) and the WTE database provided by AIJ. 

As the case validation, Figure 5.1 compares the simulation results of Case 2 in this study 

with the WTE database of the guidebook proposed by the AIJ (Architectural Institute of 

Japan, 2016) in terms of mean velocity and RMS velocity fluctuation. The simulation 

results were in good agreement with the WTE, except that the LES tended to slightly 

underestimate the RMS velocity fluctuation in the x direction. However, the authors 

considered the LES to be sufficiently accurate for the purposes of this study. Furthermore, 

because performing a WTE using a correct profile of inflow without fluctuation is 

difficult and meaningless, no results validation was provided for Case 1. However, the 

authors considered that the accuracy of the result of Case 1 should be the same as that of 

Case 2 because the simulation conditions were the same with exception to the inlet 

boundary. 

 

The mean velocity and TKE, for the two cases are shown in Figures 5.2 and 5.3. In Case 

1, the width between the shear layers on the two sides of the building was narrower than 

that in Case 2, and the location of the maximum mean velocity was slightly different. In 
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Case 1, a large peak was observed in the value of TKE at the rear of the building, which 

was consistent with the results of the guideline mentioned above. In the following section, 

SPOD is performed to show the relationship between the turbulent energy distribution 

and vortex structure.  

    

Figure 5.2 Mean velocity (left) and TKE (right) on z = 0.125b plane (Case 1) 

    

Figure 5.3 Mean velocity (left) and TKE (right) on z = 0.125b plane (Case 2) 

5.3 Analysis results 

5.3.1 Analysis results for the whole flow field at the pedestrian level 

SPOD was implemented on the vector wind speed at all the cell centroids x  within the 

spatial interval  , defined by 

  = = , , | 3.5 , 2 2 , 0.125x y z b x b b y b z b       x
T

, (5.1) 

where 4697 spatial points existed within this field. The SPOD mode was calculated using 

the method proposed by Towne et al. (2018), along with other parameters listed in Table 

5.1. Figures 5.4 and 5.5 show the results of the largest 28 
,f n  values (single-sided 

spectrum) at all the discrete frequencies f . The coordinates are normalised so that if 

one integrates these eigenvalues over a certain frequency range, the area obtained under 

the curve will equal the proportion of the energy within that range in the total TKE.  
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Table 5.1 Parameters used when performing SPOD, according to Towne et al. (2018) 

Total number of snapshots 60,000 snapshots 

Window Hamming window with a length of 4,096 snapshots 

Blocks 28 blocks with a block length of 4,096 snapshots each 

Overlap length 2,048 snapshots 

 

Figure 5.4 Result of the SPOD eigenvalues (Case 1) 

 

Figure 5.5 Result of the SPOD eigenvalues (Case 2)  
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Each 
,f n  value in Figures 5.4 and 5.5 corresponded to a fluctuation mode 

,f nψ . Here, 

although the output of periodic function 2π
, ( ) i ft

f n eψ x   was a complex number, it was 

understood by watching the animation of its real part, One cycle of which was 

approximately 
,Re( )f nψ →

,Im( )f n ψ →
,Re( )f n ψ →

,Im( )f nψ →
,Re( )f nψ , where the 

eigenfunctions 
, ( )f nψ x   corresponding to some main fluctuation modes are shown in 

Figure 5.6. The magnitude of 
,f n  indicated the intensity of this fluctuation mode.  

 

(a) 
,

Case 1)at 1, / 0.0086 (
f n H

n fb U ψ  

 

(b) 
,

Case 2)at 1, / 0.0084 (
f n H

n fb U ψ  

 

(c) 
,

Case 1)at 1, / 0.1034 (
f n H

n fb U ψ  

Figure 5.6 (continued on next page)  
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(d) 
,

Case 2)at 1, / 0.0760 (
f n H

n fb U ψ  

 

(e) 
,

Case 1)at 2, / 0.0947 (
f n H

n fb U ψ  

 

(f) 
,

Case 2)at 2, / 0.0591 (
f n H

n fb U ψ  

Figure 5.6 (continued on next page) 
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(g) 
,

Case 1)at 1, / 0.8614 (
f n H

n fb U ψ  

(The parts in the red boxes are magnified and shown at the bottom) 

  

 

(h) 
,

Case 2)at 1, / 0.8448 (
f n H

n fb U ψ  

(The parts in the red boxes are magnified and shown at the bottom) 

Figure 5.6 Eigenfunctions corresponding to the SPOD modes at some specific frequencies. Left: 
,

Re( )
f n

ψ , 

Right: 
,

Im( )
f n

ψ . The colour shows the magnitude of the vector. The fluctuation mode 2 π

,
( )

i ft

f n
eψ x  is 

understood by watching the animation of its real part, 
,

Re( )
f n

φ  , one cycle of which is approximately 

,
Re( )

f n
ψ →

,
Im( )

f n
 ψ →

,
Re( )

f n
 ψ →

,
Im( )

f n
ψ →

,
Re( )

f n
ψ .  
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Furthermore, the SPOD theory indicates that, at a certain frequency, if the largest or 

several 
,f n   values are significantly larger than the others, one or several physical 

coherent structures exist at that frequency, as these fluctuation modes hold most of the 

TKE at that frequency. In this study, main turbulent structures were observed at the 

following frequencies. 

 

 / 0.01Hfb U    

The input of the inflow fluctuation on the inlet boundary had a significant influence on 

the fluctuation mode of the wind speed. As Figures 5.4 and 5.5 show, the energy of the 

first two modes in Case 2 was far higher than for other modes, while in Case 1, the 

superiority was not very clear. Therefore, the proportion of the energy around this 

frequency in Case 2 was much larger than that in Case 1. Figures 6 (a) and (b) show the 

respective first modes in the two cases, which were entirely different. In Case 1, the wind 

speed did not change significantly at the upstream side of the prism and generated two 

almost symmetrical vortices in the wake of the building. In Case 2, the wind fluctuated 

from the upstream side and separated from both sides because it collided with the 

building. However, the mode in Case 2 also exhibited an asymmetry due to the inevitable 

asymmetry of the inflow fluctuation wind. 

 

 / 0.1Hfb U    

The Strouhal number 1 0/f b U , where 1f  is the frequency value where the first peak of 

energy in Figures 5.4 and 5.5 was observed, was approximately 0.07, which roughly 

coincided with the value given by Sakamoto and Arie (1983), who measured the Kármán-

type vortex shedding frequency behind a rectangular prism. Figures 6 (c) and (d) show 

the first mode. In the range of H0.06 / 0.18fb U   (Case 1) or H0.04 / 0.14fb U  , 

the size of the vortex varied with frequency, but the fluctuation modes were qualitatively 

the same as that in Figure 5.6 (c) or (d). The total fluctuation energies in this range were 

12% (Case 1) and 9% (Case 2), which can be seen as the strongest fluctuating patterns in 

this flow field. Additionally, the size of the Kármán-type vortex in Case 2 was slightly 

larger than that in Case 1. The wake fluctuation concentrated within the width of the 

building in Case 1, while it was much wider in Case 2, which explains the different wake 

widths indicated by the mean velocities shown in Figures 5.4 and 5.5. Also note that the 

large TKE peak in the wake of Case 1 corresponds well with the shape of the Kármán-

type vortex identified by the SPOD mode. 

 

Additionally, an arch-type vortex shedding was observed in the second modes in both 
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cases, shown in Figures 6 (e) and (f), although they appeared to be slightly asymmetrical, 

which was caused by a calculation error. Previous studies (Okamoto and Sunabashiri, 

1992; Sakamoto and Arie, 1983) reported that when the aspect ratio H/b is under a critical 

value, vortex shedding changes from the anti-symmetrical Kármán-type to the symmetric 

arch-type and the critical value depends on the thickness of the boundary layer. However, 

recently, Wang et al.(2019) preformed a POD on symmetrical and anti-symmetrical parts 

of the velocity field respectively and demonstrated that both types of vortex shedding 

occur in the wake of the building model. Referring to the decomposition results of SPOD, 

the authors of this article are inclined to agree with the latter. When one of the two vortex 

shedding phenomena contains more fluctuation energy than the other, it will be clear to 

observe. 

 

 / 1Hfb U    

In the energy distribution of Case 1 (Figure 5.4), another peak was observed, while in 

Case 2 (Figure 5.5) this peak was unclear. This energy value corresponded to the flow 

separation phenomenon on both sides of the building. In the first mode of Case 1, as 

shown in Figure 5.6 (g), vortices were emitted mainly from one corner of the building. 

Although not shown, the second mode was symmetric with the first, which depicted the 

emitted vortices on the other side of the building. The total fluctuation energy of the two 

modes in this frequency area was approximately 3% of the total TKE. The first mode of 

Case 2 at the same frequency is also shown in Figure 5.6 (h), which was similar to that 

in Case 1, but the energy was quite significant. The reason was assumed to be that this 

phenomenon was more easily activated by the tidy inflow, such as the unfluctuating one 

in Case 1; thus, the vortices released from the corner of the building appeared clearly 

with a much higher energy than Case 2. 

 

In summary, the result of SPOD depicted the difference between the two cases at all 

frequency levels, which provided an insight into how the inflow fluctuation influenced 

the turbulence around the building. Because the mechanism of turbulence was still not 

very clear, this result may provide some hints for further research on turbulence. From 

the perspective of pedestrian-level wind analysis, considering the inflow fluctuation 

would undoubtedly bring the result closer to reality. First, the inflow fluctuation would 

clearly increase both the TKE and instantaneous wind speed, which may harm the 

pedestrian. Furthermore, as shown above, some vortex shedding phenomena around the 

building would differ, which, for example, may change the place where a wind nuisance 

occurs. 
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5.3.2 Comparison of results with POD 

In this section, a brief comparison of results between POD and SPOD is presented. While 

a detailed and theoretic comparison was discussed by Towne et al. (2018), the authors of 

this paper intuitively explain the advancement of SPOD over POD. Case 1 has been used 

as an example here. 

 

Figure 5.7 (a) and (b) demonstrates the first two modes calculated using POD on the wind 

speed data from Case 1. The wake is similar to that of Kikitsu et al. (2008), who 

implemented POD on the wind speed data obtained using particle image velocimetry. 

Note that the appearance of these two modes is quite similar to the real and imaginary 

parts shown in Figure 5.6 (c). In addition, modes 3 and 4 (Figure (c) and (d)) correspond 

to the arch-type vortex, and modes 23 and 25 (Figure (e) and (f)) correspond to the flow 

separating on one side of the building. The corresponding relations between POD modes 

and SPOD modes are shown in Table 5.2. Figure 5.8 provides the power spectral density 

functions of the POD mode coefficients for all these modes, where power spectral density 

functions of each pair of modes exhibit almost the same trend. The peaks occur at the 

same frequency as observed in the results of SPOD. Further, the power spectral density 

functions demonstrate that the POD mode is composed of contributions from 

spatiotemporal coherent structures at many frequencies, which implies that certain flow 

phenomena would probably be buried. However, this is not the case of SPOD because it 

separates the flow phenomena in different time scales, as reported by Towne et al. (2018). 

 

It is interesting to note that POD separated one classical flow dynamics into two modes 

with uncorrelated coefficients. This can be explained by a simple example. Consider two 

signals, 1( ) cos( )u t t  and 2 ( ) sin( )u t t . The covariance between them is 0, which 

makes the covariance matrix diagonal, so they will be regarded as uncorrelated in the 

eigenvalue problem raised by POD. However, the link between them is clear that 
2 2
1 2 1u u  . In mathematics, the covariance measures the linear correlation, and “linearly 

uncorrelated” is a necessary but not a sufficient condition for “independent”. Hence, 

beyond linear correlation (which POD can process), nonlinear correlation, such as 
2 2
1 2 1u u  , also exists and cannot be measured by the classical covariance matrix. Thus, 

POD does not recognize such a relationship. Actually, Wang et al. (2019) confirmed that 

an approximate 2  phase difference existed between the first two anti-symmetric 

POD mode coefficients, which was similar to the relationship between cos( )t  and 

sin( )t , and between the each of the mode pairs in Case 1. However, each of the SPOD 

modes shows a simple harmonic motion within the data, such as the ones shown in Table 

5.2. 
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In general, a simple harmonic motion will be decomposed by POD into two modes. This 

can be theoretically proved. First, let dataset ( )mu t , 1,2,...,3m M  represent all the 

wind speed data in ( , )tu x , where M  denotes the number of the spatial points x . A 

simple harmonic motion is usually defined as ( ) cos(2 )m m mu t A ft    , where mA  is 

the amplitude and m  is the phase. ( )mu t  can be further written as  

( ) cos( ) cos(2π ) sin( ) sin(2π )m m m m mu t A ft A ft    , (5.2) 

The vector form can be 

     
3 3 3

( ) cos( ) cos(2π ) sin( ) sin(2π )m m m m mM M M
u t A ft A ft    , (5.3) 

where  
3M
  denotes a vector, whose length is 3M. Consider the general case that the 

vectors  
3

cos( )m m M
A   and  

3
sin( )m m M

A   are not along the same line. This indicates 

that all the data can be plotted on a two-dimensional plane in the 3M-dimensional space, 

so the true dimension of the dataset ( )mu t  is 2. Consequently, POD will also need two 

orthogonal modes to depict a two-dimensional dataset with two non-zero eigenvalues. 

 
Table 5.2. Corresponding relations between POD modes and SPOD modes. In each row, the appearance 

of the two POD modes is similar to the real and imaginary parts of the SPOD eigenfunction. 

Physical phenomenon POD SPOD 

Karman type vortex 
Modes 1 and 2 

(Figure 9 (a) and (b)) 

Mode 1, / 0.1034
H

n fb U   

(Figure 8 (c)) 

Arch type vortex 
Modes 3 and 4 

(Figure 9 (c) and (d)) 

Mode 2, / 0.0947
H

n fb U   

(Figure 8 (e)) 

Flow separation on one 

side of building 

Modes 23 and 25 

(Figure 9 (e) and (f)) 

Mode 1, / 0.8614
H

n fb U   

(Figure 8 (g)) 
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 (a) 
1
( )ψ x  (b) 

2
( )ψ x  

  

 (c) 
3
( )ψ x  (d) 

4
( )ψ x  

  

  

 (e) 
23

( )ψ x  (f) 
25

( )ψ x  

(The parts in the red boxes are magnified and shown at the bottom) 

Figure 5.7 POD modes (Case 1)  



Chapter 5  
Analysis of the pedestrian-level wind around a square-section building model: the effect of inflow 

fluctuation on turbulent structures 

90 

 

Figure 5.8 Power spectral density functions of the POD mode coefficients (Case 1) 

As a hybrid decomposition skill of POD and discrete Fourier transform (DFT), SPOD is 

no doubt a better solution to deal with such simple harmonic motion in the flow field. 

However, in addition to the SPOD applied in this study, other DFT-POD hybrid 

approaches were also developed recently. The decomposition proposed by Sieber et al. 

(2016), which was also called SPOD, applied a low-pass filter along the diagonals of 

POD correlation matrix to force POD to resemble DFT. The multi-scale proper 

orthogonal decomposition (mPOD) proposed by Mendez et al. (2019) combined the ideas 

from Sieber’s SPOD and the SPOD in Towne et al. (2018) to integrate their advantages. 

Additionally, the dynamic mode decomposition (DMD) was developed as an alternative 

to POD (Rowley et al., 2009; Schmid, 2010) and was proved to be related to DFT (Chen 

et al., 2012). However, none of the aforementioned methods preserve the orthogonality 

property. Thus, the spatial modes are not mutually orthogonal. The orthogonality 

property of POD or SPOD makes it easy to compute the mode energy and provides 

comprehensible physical meaning to mode energy. It directly connects mode energy to 

TKE, or RMS velocity fluctuation, which is considered convenient in the applications of 

wind engineering and wind environment assessment. Further, this leads to the idea 

introduced in the next section. 

 

5.3.3 Energy distribution at a certain point 

The above introduced SPOD as a mathematic tool to analyse the whole flow field, while 

in this section SPOD will be applied to resolve the fluctuation energy of wind speed at a 

certain point, x . This can be done by realise   in Eq. (4.7) as a single spatial point x , 
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and the volume of   can be omitted. After such manipulation, we get 

†

, , , ,( ) ( ) ( )f n f n f n f ns x ψ x ψ x , (5.4) 

In this case, 
, ( )f ns x  can be considered as the contribution of each SPOD mode to the 

TKE at point x , because the relationship between the TKE at point x  and , ( )f ns x  can 

be represented as 

,2 ( ) ( )f n
n

k s df



 x x , (5.5) 

which indicates that the TKE at point x  is divided by both spatial mode and frequency. 

, ( )f ns x  can be considered as the extent to which the fluctuating wind speed at the point 

x  is influenced by the nth mode at frequency f . 

 

Taking Case 2 as a calculation example, the results of , ( )f ns x  at two points, xA and xB, 

are shown in Figures 5.9 and 5.10, and the three modes with the largest , ( )f ns x  values 

are marked by ◯. Assuming that one is analysing the wind environment around this 

building, and is not satisfied with the instantaneous wind speed at points xA and xB, then 

restraining the physical phenomena indicated by the three modes in Figures 5.9 and 5.10 

is the most effective action because they form the larger part of TKE at these two points. 

Among the three marked modes, two are low-frequency modes and are the same for the 

two points. This shows that the wind speed at the two points is affected by the low-

frequency modes due to the inflow fluctuating wind. By observing the other mode which 

is different for the two points, the mode corresponding to the first peak at point B 

represents the Kármán-type vortex, while it is different at point A with low energy, which 

means the Kármán-type vortex has a greater effect on point B. 

 

The above analysis provides a method to recognize the most influential fluctuation modes, 

which contributes to the planning of countermeasures against a too-large TKE at a certain 

point, and further against the wind nuisance caused by the fluctuating wind speed. 

However, neither POD nor SPOD provides a hint on the cause of the too-large mean 

wind speed, because the mean value has already been deducted before the implementing 

of POD or SPOD. In practice, the target point of the analysis should not be restricted to 

the places where the strongest winds occur, because the standards of wind nuisance differ 

for the places with different functions. For the places such as parks and public squares 

where the pedestrians tend to concentrate and stay for a relatively long time, the standards 

for the wind environment are usually more strict. Such places might not be the places 

where the strongest winds occur, but the probability of wind nuisance is larger because 

of the strict standard. Therefore, the target of the analysis can be anywhere, which 

depends on the cases.  
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Figure 5.9 Result of 
,

( )
f n

s x  at observation point 
A

(0, 0.6 )bx  in Case 2 

 

Figure 5.10. Result of 
,

( )
f n

s x  at observation point 
B

(0.7 , 0.6 )b bx  in Case 2 
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5.4 Summary 

In this study, turbulent structures around a rectangular prism building model are analysed 

using the SPOD technique, with which one can decompose the fluctuation energy of wind 

velocity based on the spatiotemporal correlation and obtain an insight into the fluctuation 

pattern of the flow. Two cases of wind speed time series data (with and without the 

fluctuation at the inflow boundary) were analysed using SPOD. By observing the results, 

some conclusions can be obtained, as follows: 

 

(1) The input of the inflow fluctuation on the inlet boundary had a significant influence 

on the turbulent structures at a low frequency because the fluctuation modes and energy 

differed between the two cases. 

 

(2) In both cases, the strongest fluctuation mode corresponded to the Kármán-type vortex 

shedding, while the frequency was slightly larger when no fluctuation was input at the 

inflow boundary. The difference in the shapes of the Kármán-type vortex shedding was 

considered related to the difference in the mean velocity and TKE fields of the two cases. 

 

(3) The arch-type vortex shedding was observed in the second modes of both cases. The 

results of this study correspond with those of the former study (Wang et al., 2019). Both 

the Kármán-type and arch-type vortices occurred in any case regardless of the aspect 

ratio. However, the clarity required to observe either of them depends on their fluctuation 

energy. 

 

(4) At a high frequency, flow separation phenomenon occurred on both sides of the 

building. In the case where no fluctuation was input at the inflow boundary, this 

phenomenon exhibited a peak on the distribution of energy, while it was not quite 

significant in the other case. 

 

(5) Considering the inflow fluctuation will undoubtedly bring the results closer to reality 

when performing pedestrian-level wind analysis, because the inflow fluctuation will 

increase both the TKE and instantaneous wind speed, and some vortex shedding 

phenomena will be different such that the place where the wind nuisance occurs will 

change.  

 

(6) For each of the physical phenomena investigated in this manuscript, the two modes 

calculated using POD was quite similar to the real and imaginary parts of the 

eigenfunction calculated using SPOD. This indicated that SPOD successfully detected 

the simple harmonic motions from the turbulence data, while the original POD needed 

two modes with uncorrelated coefficients to depict each of these simple harmonic 

motions. 
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(7) SPOD can be used to decompose the TKE at a certain point and display the extent to 

which the fluctuating wind speed at the point is influenced by each mode. This is 

considered useful in finding the main reason of large fluctuation and the improvement of 

pedestrian-level wind. 

 

Grasping the factors that compose the flow field is important to improving the wind 

environment in an urban area. However, because flows of various scales are mixed, the 

flow field around a building can be so intricate that capturing the characteristic turbulent 

structures from it is not always easy. In this study, SPOD has been proved to be an 

effective tool to analyse turbulent structures. 
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Chapter 6   

Spectral analysis of turbulent flow in a two-

dimensional street canyon and its role in 

pollutant removal 

6.1 Introduction 

Modern construction of urban areas has led to the development of semi-enclosed spaces 

surrounded by buildings and a rapidly growing residential population. Within these 

spaces, which are often termed as street canyons, air pollutants, including gases and 

particulate material that harm the microclimate and air quality, are frequently emitted. A 

street canyon with an aspect ratio (i.e., the ratio between building height and street width) 

larger than 0.65 is common in a high-density urban area. According to Oke (1987), the 

flow in such a canyon is classified as a skimming flow, within which the lower part is a 

weak wind area. The efficiency of pollutant dispersion is relatively low, which may lead 

to deterioration of air quality. In a common situation where the temperature difference is 

insignificant, inertial convection outweighs buoyancy. In this case, the transfer of 

pollutants is determined by the flow pattern within and near the canyon. Therefore, 

understanding the characteristics of canyon flows is vital for urban planning. 

 

The mechanism of pollutant removal by pure inertial processes has been investigated in 

many studies. Although the efficiency of pollutant removal varies with the geometry of 

the canyon and surrounding buildings, such as the aspect ratio of the canyon (Park et al., 

2015) and the roof geometries of surrounding buildings (Cintolesi et al., 2021; Kastner-

Klein et al., 2004), it is usually assumed that turbulence, rather than mean wind, plays a 

major role in pollutant removal from the canyon. The RANS simulation by Cheng et al. 

(2008) revealed that ventilation (pollutant removal) by turbulence exhibits a broad 

maximum covering the entire roof of the street canyon, while mean flow-induced 

ventilation mainly occurs on the windward side. This was supported by an LES 

conducted by Michioka et al. (2011). By contrast, the inward and outward pollutant 

transport driven by the mean wind is almost balanced, which results in an insignificant 
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net pollutant exchange (Liu and Wong, 2014). Quadrant analysis has shown that strong 

ejection events carried by turbulent fluctuations are highly correlated with pollutant 

removal at the rooftop (Cheng and Liu, 2011; Di Bernardino et al., 2018; Michioka et al., 

2011). 

 

It was found that the exchange process at the interface between the canyon and external 

flow is driven by the momentum flux in the shear layer (Barbano et al., 2021; Solazzo 

and Britter, 2007). The shear layer is shed from the upstream roof and becomes unstable 

through Kelvin–Helmholtz instabilities (Louka et al., 2000). Cui et al. (2004) showed 

that the streamwise and vertical fluctuation velocities at the roof level were highly 

intermittent, and the time scale of the ejection events fit well with that of the Kelvin–

Helmholtz instabilities. Letzel et al. (2008) also concluded that the shedding of Kelvin–

Helmholtz waves causes unsteadiness of the shear layer and renders the canyon 

recirculation highly intermittent. 

 

However, Salizzoni et al. (2009) demonstrated that external turbulence directly 

influences the flow and dispersion within the canyon. Zhang et al. (2011) claimed that 

the turbulence affecting the pollutant transport at the roof level might not be due to 

Kelvin–Helmholtz instabilities; instead, it might be a result of the evolution of the 

resolved scale velocities caused by the changes in the time series of upper boundary wind 

conditions. Michioka et al. (2011) and Michioka and Sato (2012) indicated that large 

amounts of pollutants are removed from the canyon by ejection because of the large-scale 

coherent structure. This was supported by the observations reported by Han et al. (2018). 

Indeed, large-scale low- and high-momentum fluids have also been confirmed to cause 

strong ejection and sweep events (Coceal et al., 2007; Inagaki and Kanda, 2010; Kanda, 

2006). 

 

This may not be an either-or problem. A reasonable explanation is that the shear layer 

dynamics at the interface are modified by external turbulence. Salizzoni et al. (2011) 

revealed that turbulent transfer is caused by the coupling between the instabilities of the 

shear layer and turbulent structures in the external flow; thus, no single velocity scale 

exists that characterises all aspects of the flow. The results obtained by Klein and Galvez 

(2015) agree with these findings. These authors collected data from a real street canyon 

located in suburban terrain and found that the turbulence properties inside the canyon 

varied with external flows in two cases where the wind directions were perpendicular to 

the street. Blackman and Perret (2016) found nonlinear interactions between large- and 

small-scale structures, where small-scale structures can be amplified or suppressed by 

high- or low-momentum fluids carried by large-scale structures. A low but unneglectable 



Chapter 6  
Spectral analysis of turbulent flow in a two-dimensional street canyon and its role in pollutant removal 

99 

correlation was detected between the fluctuations of the two structures. A similar analysis 

was conducted by Jaroslawski et al. (2020), who found that sweep and ejection events 

were mainly caused by the dynamic contribution of small-scale structures. However, 

although large-scale structures may not contribute directly to pollutant removal, they 

contribute indirectly by promoting small-scale turbulence. 

 

To gain deeper insights into turbulent structures and mass transfer mechanisms, 

decomposition of the turbulence should be performed before fluid mechanisms and their 

relationships with pollutant transport are discussed. Several attempts have been made in 

previous studies. Such approaches include POD (Perret and Rivet, 2013), linear 

stochastic estimation decomposition (Blackman et al., 2018; Blackman and Perret, 2016), 

and the use of a spanwise filter to distinguish large- and small-scale structures 

(Jaroslawski et al., 2020). However, to the best of our knowledge, an approach that can 

accurately decompose canyon flow into various fluctuation patterns according to the 

scales and can concretely illustrate these fluctuation patterns, which are directly related 

to already known physical mechanisms in street canyon flow, has not been developed 

yet. For this purpose, SPOD (Schmidt and Colonius, 2020; Towne et al., 2018) is 

considered a more suitable tool.  

 

This study aims to apply SPOD to extract turbulent structures from a two-dimensional 

street canyon flow and provide vivid flow visualisations for observing the flow 

fluctuations at various scales in detail, which have already been related with known 

physical mechanisms in street canyon flow. Based on these results, the pollutant removal 

mechanisms are unveiled by quantitatively computing the amount of ejection events and 

turbulent mass flux at the roof level contributed by various turbulent structures. 

 

In this study, we first describe reproduction of  the LES for a two-dimensional street canyon 

with reference to the simulation and wind tunnel experiment conducted by Michioka et al. (2011). 

The LES models, simulation conditions, and basic statistical results are reported in 

Section 6.2. In Section 6.3, the newly defined SPOD co-spectrum are briefly introduced. 

The application of these tools is described in Sections 6.4 and 6.5. Section 6.4 provides 

the decomposition results of the velocity field and discusses the sweep and ejection 

events provided by the decomposed structures. Section 6.5 uses the SPOD co-spectrum 

to link the turbulent structures to pollutant removal and discusses the pollutant removal 

mechanism. 
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6.2 Large-eddy simulation 

6.2.1 Physical Models and Equations 

The flow field was calculated via LES using open-source computational fluid dynamics 

(CFD) software, OpenFOAM v8 (The OpenFOAM Foundation Ltd, 2020). The standard 

Smagorinsky model (Smagorinsky, 1963) was employed to evaluate the eddy viscosity 

T  at the sub-grid scale. The Smagorinsky constant Cs was set to 0.12 (Tominaga and 

Stathopoulos, 2011). The length scale near the wall was modified using the van Driest 

damping function (Van Driest, 1956). 

 

The transport equation of the filtered concentration c (ppm) of the tracer gas can be 

written as: 

  T

T

c

c
c c P

t Sc Sc

  
             

u , (6.1) 

where u  (m/s) is the filtered velocity vector, Sc  is the Schmidt number (= 1), TSc  is 

the SGS turbulence Schmidt number (= 0.5),   is the kinematic viscosity of air (= 1.5 

× 10−5 m2/s), and cP  (ppm/s) is the source term of the tracer gas. 

 

6.2.2 Simulation design 

The geometry of the simulated domain (Figure 6.1) was mainly set with reference to the 

wind tunnel experiment conducted by Michioka et al. (2011). The size of the roughness 

bars was H (x) × H (z), where H = 0.12 m. A continuous line source was placed on the 

ground at the centre of the target canyon to represent pollutant emissions. Periodic 

boundary conditions were imposed on streamwise (x) and spanwise (y) directions. The 

streamwise pressure gradient was adjusted during the simulation to maintain the volume-

average streamwise velocity in the entire computational domain at 1 m/s. The Reynolds 

number based on the bar height and free-stream velocity (≈ 1.4 m/s) was approximately 

11,200. The inlet boundary concentration was adjusted to 0 to prevent the tracer gas from 

returning to the simulation domain through the inlet. The slip and no-slip boundary 

conditions were imposed on the upper and lower boundaries, respectively. The total 

variation diminishing (TVD) scheme (Roe, 1986) for the advection term of pollutant 

concentration was employed to avoid unphysical concentration fluctuations caused by its 

steep spatial gradient. Other details of the simulation conditions are presented in Table 

6.1. 
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Figure 6.1 Simulation domain 

 
Table 6.1 CFD simulation conditions 

Item Content 

Simulation domain 20H (x) ×4H (y) ×6H (z) 

x: streamwise; y: spanwise; z: vertical 

Roughness bar size H (x) × H (z) (H = 0.12 m) 

Grid partitioning 

(Case 1) 

448 (x) × 160 (y) × 100 (z) 

Total cells: 5,233,920 

In target canyon: 40 (x) × 160 (y) × 40 (z) 

Minimum grid size in target canyon: H/60 (adjacent to the wall and roof) 

Time marching Pressure-implicit with splitting order (PISO) (Issa, 1986) 

Simulation period Preparatory: 0–120 s, Sampling: 120–240 s 

Time-step During preparatory: 0.0013–0.002 s,  

(adjusted automatically to keep the maximum Courant’s number equal to 1) 

During sampling: 0.00125 s  

Sampling time step: 0.0025 s (Sampling frequency: 400 Hz) 

Inlet and outlet B.C. Periodic 

The concentration on the inlet boundary was adjusted to 0. 

Side B.C. Periodic 

Ground and wall B.C. Velocity: no-slip; Pressure and concentration: zero-Gradient 

Top B.C. Velocity: slip; Pressure and concentration: zero-Gradient 

Momentum source The volume average streamwise velocity in the whole computational domain 

was kept constant 1 m/s by adjusting the streamwise pressure gradient. 

Tracer gas source Total emission rate Q = 100 ppm·m3/s at the line source 

Wall function Wall and ground: the Spalding’s law (Spalding, 1962) 

Space discretisation  2nd-order central difference 

TVD scheme for advection terms in scalar transport equations 

Time discretisation Euler-implicit 
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To confirm the grid-independent, three cases with different grid resolution were 

computed. In the case where the grid is the finest (Case 1), the simulation domain was 

partitioned into 448 (x) × 160 (y) × 100 (z) grids, and the target canyon was partitioned 

into 40 (x) × 40 (z) grids. The total number of cells was 5,233,920. The minimum grid 

size in the target canyon, which was adjacent to the wall and roof, was H/60. The grid 

was stretched using a hyperbolic tangent function. The grid independence was tested by 

comparing the results with those of the other two cases with coarser grids. Case 2 used a 

mesh with 30 (x) × 30 (z) grids within the target canyon with a minimum size of H/40, 

and Case 3 used a mesh with 20 (x) × 20 (z) grids with a minimum size of H/30. Only 

the information of Case 1 is presented in Table 6.1, because we will show in the latter 

section that the grid resolution of Case 1 was sufficient, and all further statistics and post-

processing presented in this study were calculated based on the results of Case 1. 

 

During the simulation, the velocity and concentration data were sampled within the 

following domain: 

  = = , , | 0.5 1.5 , 0, 0 2x y z H x H y z H      x
T

, (6.2) 

which contained 3450 cells. The time signals of the velocity and concentration at all the 

cell centres were recorded. The sampling frequency was set at 400 Hz. The time-average 

velocity at z/H = 2 was chosen as the reference velocity Uref (≈ 0.96 m/s), which was used 

to normalise the velocity samples. The concentration samples were normalised by the 

reference concentration Cref, defined by 

ref

ref y

Q
C

U HL
 , (6.3) 

where Q is the total emission rate (=100 ppm·m3/s), and Ly is the length of the line source 

(= 4H). All statistics and post-processing presented in this paper were calculated based 

on the time signals lasting for 120 s, which was approximately 1000 H/Uref. 

 

6.2.3 Statistics and validation 

Figures 6.2 and 6.3 show the profiles of the mean streamwise velocity and root mean 

square of the streamwise fluctuating velocity at x/H = 0.25, 0.50, and 0.75. Figure 6.4 

shows the profiles of the mean concentrations at x/H = 0, 0.50, and 1. The results of all 

three cases with different grids are consistent with the wind tunnel experimental results 

of Michioka et al. (2011) and Pavageau and Schatzmann (1999), with the only exception 

being that the mean concentration on the windward wall computed in Case 3 (the coarsest 

grid), which was considerably different from the results computed in Cases 1 and 2. 

Because both Cases 1 and 2 can produce grid-independent results, all further statistics 
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and post-processing presented in this paper were calculated based on the results of Case 

1, where the finest grid was used. 

 

Figure 6.2 Profiles of the mean streamwise velocity at (a) x/H = 0.25, (b) x/H = 0.5 and (c) x/H = 0.75. 

Filled circles are the results of the wind tunnel experiment conducted by Michioka et al. (2011).  

 

Figure 6.3 Profiles of the root mean square of the streamwise fluctuating velocity at (a) x/H = 0.25, (b) 

x/H = 0.5 and (c) x/H = 0.75. Filled circles are the results of the wind tunnel experiment conducted by 

Michioka et al. (2011).   
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Figure 6.4 Profiles of the mean concentration at (a) x/H = 0, (b) x/H = 0.5 and (c) x/H = 1. Filled circles 

are the results of the wind tunnel experiment conducted by Pavageau and Schatzmann (1999). 

The mean flow within the canyon was characterised by a principal recirculating cell with 

smaller counter-rotating vortices in the corners, as shown by the streamlines plotted in 

Figure 6.5 (a); however, the TKE within the canyon was much lower than that in the 

external flow, as shown in Figure 6.5 (b). The maximum TKE was generated at the 

junction between the canyon and external flow, where the TKE plume collided on the 

upper corner of the downstream bar before dividing into two bundles. One bundle 

continued flowing downstream with the external flow, while the other entered the canyon 

along the windward wall, resulting in the left–right asymmetric distribution of the TKE 

in the canyon. These results are consistent with the results of the wind tunnel experiment 

by Cheng et al. (2008) and the CFD results reported by Walton and Cheng (2002). The 

mean concentration, plotted in Figure 6.5 (c), also showed a left–right asymmetric 

distribution. The concentration plume followed the principal recirculation and travelled 

along the leeward wall. However, most of the concentration plume re-entered the canyon 

on reaching the roof level rather than travel with the external flow. 
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Figure 6.5 Cross-sections of (a) mean velocity with streamlines on the x-z plane, (b) TKE and (c) mean 

concentration. 

Figure 6.6 shows the streamwise distributions of the vertical advective, turbulent, and 

total mass fluxes at z/H = 1, which is similar to the results of Michioka et al. (2011). 

Generally, these results match very well, although there is a slight difference in the 

gradient near the windward wall. This is considered as due to the different strategies 

applied to the mesh, discretisation, and wall function in the LES simulation, which have 

no significant influence on further analyses. The advective mass fluxes are close to zero 

or even negative, indicating that its contribution to pollutant removal from the canyon 

was small. The peak of the advective mass fluxes near x/H = 1 is considered unrelated to 

the pollutant removal, judging by the streamline passing through the point of (x/H = 1, 

z/H = 1) in Figure 6.5 (a). However, the turbulent mass fluxes were much larger than the 

advective mass fluxes, indicating that turbulent fluctuations mainly affect pollutant 

removal from the canyon (Michioka et al., 2011).  

  

(a) (b) 

(c) 
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Figure 6.6 Streamwise distributions of advective, turbulent and total vertical mass fluxes at z/H = 1. A 

similar result can also be found in Michioka et al. (2011) and Michioka and Sato (2012). 

Turbulent fluctuation contains complex multiscale and chaotic motions, and the type of 

turbulent motion mainly responsible for pollutant removal remains unclear based on 

basic statistics. In the next section, SPOD serves as a post-processing tool for 

decomposing the flow and extracting the turbulent structures. 

 

6.3 Definition of SPOD co-spectrum 

To better apply the SPOD technique to the current study, the SPOD co-spectrum is newly 

defined in this section, where the properties and algorithm are also discussed. 

 

Besides the SPOD spectrum, the SPOD co-spectrum can be defined to illustrate the 

relationship between the velocities in different directions or even between the velocity 

and another scalar field. For elucidating the mechanism of pollutant removal in the 

canyon case described in Section 6.2, the turbulent structure and vertical mass flux at the 

roof level should be understood. Considering these issues, the two co-spectra are defined 

as follows: 

 

(1) The SPOD cross-spectrum between the streamwise fluctuation velocity ( , )u t x  and 

vertical fluctuation velocity ( , )w t x  is defined as 

( ) ( ) ( )*
, , , ,( ) ( ) ( )uw u w

f n f n f n f nS   x x x . (6.4) 

Then, the SPOD co-spectrum is the real part of the SPOD cross-spectrum 

 ( ) ( ) ( )*
, , , ,( ) Re ( ) ( )uw u w

f n f n f n f nS   x x x , (6.5) 

where ( )
,
u

f n  and ( )
,
w

f n  denote the u and w components of the vector ,f nψ , respectively. 

Similar to the relationship between SPOD spectrum and TKE, the Reynolds shear stress 
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at the spatial point x  will be obtained if the SPOD cross-spectrum is integrated over all 

frequencies f and summed over all the mode numbers n as 

  ( )
,E ( , ) ( , ) ( )uw

f n
n

u t w t S df



   x x x . (6.6) 

When summed over all the mode numbers n, the result equals the usual Fourier co-

spectrum between u  and w  at the spatial point x , 

( ) * ( )
,

1
ˆ ˆ( , ) Re ( , ) ( , ) ( )uw uw

f n
n

S f u f w f S
T

    
 

x x x x . (6.7) 

 

(2) Similarly, the SPOD cross-spectrum between the vertical fluctuation velocity 

( , )w t x  and fluctuation concentration  ( , ) ( , ) E ( , )c t c t c t  x x x  is defined as 

( ) ( ) *
, , ,

1
ˆ( ) ( ) ( , )wc w

f n f n f nS a c f
T

 x x x . (6.8) 

where  denotes the Fourier transformation of . Then, the SPOD co-

spectrum is the real part of the SPOD cross-spectrum 

( ) ( ) *
, , ,

1
ˆ( ) Re ( ) ( , )wc w

f n f n f nS a c f
T


   
 

x x x . (6.9) 

Similar to the relationship between SPOD spectrum and TKE, the vertical turbulent mass 

flux at the spatial point x  will be obtained if the SPOD cross-spectrum is integrated 

over all frequencies f and summed over all the mode numbers n as 

  ( )
,E ( , ) ( , ) ( )wc

f n
n

w t c t S df



   x x x . (6.10) 

When summed over all the mode numbers n, the result equals the usual Fourier co-

spectrum between w  and c  at the spatial point x , 

( ) * ( )
,

1
ˆ ˆ( , ) Re ( , ) ( , ) ( )wc wc

f n
n

S f w f c f S
T

    
 

x x x x . (6.11) 

 

If the SPOD for the velocity is performed according to the algorithm proposed by Towne 

et al. (2018), the mode coefficient ,f na  is not explicitly available. Although the mode 

coefficient can be calculated using the Fourier coefficients in each block, the values differ 

for different blocks because of the phase differences. Therefore, when estimating the 

SPOD co-spectrum ( )
,
wc

f nS , Welch's method (Welch, 1967) was followed again. The 

concentration should also be divided into blocks, whose number should be the same as 

that of the blocks of the velocity. Then, the ( )
,
wc

f nS  value was calculated independently for 

each block, according to Eq. (6.9). The final estimation of ( )
,
wc

f nS  for the whole signal was 

obtained by averaging the values from all blocks. 

 

ˆ ( , )c f x ( , )c t x
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6.4 Decomposition of the velocity field 

The SPOD analysis results of the velocity field within the sampling field are presented 

in this section. 

 

6.4.1 Performing SPOD 

The SPOD modes were calculated using the method proposed by Towne et al. (2018). In 

this study, the sampled time signal data consisted of 48,000 snapshots of the velocity 

field. They were divided into 19 blocks with 50% overlap, and each block consisted of 

4,800 snapshots. The Hamming window was imposed on each block when performing a 

discrete Fourier transform to reduce the impact of spectral leakage. In this case, where 

the sampling frequency is 400 Hz, the resolution frequency is 400/4800 Hz = 0.0833 Hz 

(≈ 0.01 Uref /H), and the Nyquist frequency was 400/2 Hz = 200 Hz (≈ 25 Uref /H). These 

are also the minimum and maximum resolved frequency values in the SPOD spectrum. 

These parameters are also listed in Table 6.2. 

 

Given that the total signal length is fixed, a proper block length should be chosen. On the 

one hand, each block should have a sufficient length to prevent the occurrence of a bias 

error and so that a good frequency resolution can be obtained. On the other hand, the 

block number should be sufficient so that a relatively precise and converged energy 

estimation with low uncertainty can be obtained. This is ultimately a trade-off when 

Welch’s method is used (Schmidt and Colonius, 2020). In the current study, we trialled 

several schemes to divide the time signals when computing the SPOD spectrum and 

modes. The block number was chosen from a minimum of nine (with 9,600 snapshots in 

each block) up to a maximum of 79 (with 1,200 snapshots in each block). The analysis 

results revealed no substantial difference, and the results of 19 blocks are provided in this 

paper for further analysis. The case with fewer blocks gave relatively vague mode 

visualisations owing to its relatively poor convergence, although the turbulent structures 

can still be recognised. The cases with more blocks provided relatively clear mode 

visualisations, but the frequency resolution of the spectrum was not as good as that 

provided in this study.  

 

These parameters are not newly proposed in the SPOD algorithm but are directly 

inherited from Welch’s method (Welch, 1967). They are also necessary when a usual 

Fourier spectrum analysis is performed. Therefore, to understand the relationship 

between the fluctuation velocity and another scalar field, it is better to take the same 

block number and block length when performing the Fourier transform for the scalar field, 
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as is reported in Section 6.5 when dealing with the concentration field. 

 

Table 6.2 Parameters used when performing SPOD according to the algorithm proposed by Towne et al. 

(2018) 

Item Content 

Total number of snapshots 48,000 

Sampling frequency 400 Hz 

Window (block length) Hamming window with a length of 4,096 snapshots 

Blocks 19 blocks with a block length of 4,800 snapshots each 

Overlap length 2,400 snapshots (50% overlap) 

Resolution frequency  400 Hz / 4800 = 0.0833 Hz = 0.01 Uref /H 

Nyquist frequency 400 Hz / 2 = 200 Hz =25 Uref /H 

6.4.2 SPOD spectrum and turbulent fluctuation patterns 

Figure 6.7 presents the SPOD spectrum, showing the results of 19 eigenvalues (single-

sided spectrum) at all discrete frequencies. Each eigenvalue (point) in the figure 

corresponds to an SPOD mode. The modes can be understood by examining the real and 

imaginary parts of the eigenfunctions or by watching the animation created by 
2π

,Re( )i ft
f neψ . The animation process is approximately ,Re( )f nψ → ,Im( )f n ψ →

,Re( )f n ψ → ,Im( )f nψ → ,Re( )f nψ . For example, Figure 6.8 provides the streamlines for 

the seven selected modes, which correspond to the seven boxed eigenvalues in Figure 

6.7. Modes A–B2 are chosen because they show large energy in Figure 6.7, while modes 

C–D3 are chosen according to their importance to pollutant removal at the roof level, as 

confirmed by the SPOD co-spectrum in Figures 6.10and 6.11, which will be explained 

later. These modes are chosen according to their importance to pollutant removal at the 

roof level, as confirmed by the SPOD co-spectrum, which will be explained later. Please 

note that the modes, especially at high frequencies, change gradually with the frequency, 

so many modes show similar shapes. In this study, only several representative modes are 

visualised and analysed, as observing modes with similar energy at similar frequencies 

will not qualitatively change the conclusions. 
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Figure 6.7 SPOD spectrum (single-sided). The nondimensional eigenvalues are plotted versus the 

nondimensional frequency. At each discrete frequency, 19 eigenvalues are numbered from largest to 

smallest as n = 1, 2, …, 19, distinguished by colours. Each eigenvalue corresponds to a complex 

eigenfunction, depicting a certain spatial distribution of the velocity. For instance, the eigenfunctions of 

the seven selected modes, whose eigenvalues are boxed, are shown in Figure 6.8. 

 

(a) Real (left) and imaginary (right) parts of the eigenfunction of mode A (fH/Uref = 0.0417, n = 1) 

Figure 6.8 (continued on the next page)   
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(b) Real (left) and imaginary (right) parts of the eigenfunction of mode B1 (fH/Uref = 0.0938, n = 1) 

 

(c) Real (left) and imaginary (right) parts of the eigenfunction of mode B2 (fH/Uref = 0.1667, n = 1) 

 

(d) Real (left) and imaginary (right) parts of the eigenfunction of mode C (fH/Uref = 0.2708, n = 1) 

Figure 6.8 (continued on the next page)   
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(e) Real (left) and imaginary (right) parts of the eigenfunction of mode D1 (fH/Uref = 0.4479, n = 1) 

 

(f) Real (left) and imaginary (right) parts of the eigenfunction of mode D2 (fH/Uref = 0.7813, n = 1) 

 

(g) Real (left) and imaginary (right) parts of the eigenfunction of mode D3 (fH/Uref = 0.9062, n = 2) 

Figure 6.8 Eigenfunctions for the seven selected modes. The colour shows the magnitude of the vector. 

The fluctuation pattern is understood by watching the animation of 
,

2π
Re( )

f n

i fteψ , one cycle of which is 

approximately 
,

Re( )
f n

ψ →
,

Im( )
f n

 ψ →
,

Re( )
f n

 ψ →
,

Im( )
f n

ψ →
,

Re( )
f n

ψ .   
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Previous studies (Lee et al., 2011; Michioka et al., 2011; Takimoto et al., 2013) have 

measured the length scale of the coherent structures over a two-dimensional canyon using 

the two-point correlation coefficient calculated from the streamwise fluctuation velocity. 

The streamwise length scale was measured by the maximum streamwise distance 

between the two points where the chosen threshold (0.3 or 0.4) of the two-point 

correlation coefficient occurred. The results of the streamwise length scale at z ≈ 2H were 

approximately 9H (Lee et al., 2011), 7H (Michioka et al., 2011), and 6H (Takimoto et 

al., 2013). Therefore, the time scale of the coherent structures can be estimated as 6–9 

H/Uref, which roughly corresponds to the normalised frequency of modes B1 and B2 in 

Figure 6.7, with high mode energy. These large-scale coherent structures have been 

found to strongly affect pollutant removal (Han et al., 2018; Michioka et al., 2011; 

Michioka and Sato, 2012). Judging by the figures in Kanda (2006) and Michioka et al. 

(2011), the instantaneous coherent structures of low-momentum fluid have a streaky 

shape along the streamwise direction. As an illustration, mode B2 shows a large-scale 

coherent structure that is sufficiently low near the roof level, as illustrated in Figure 6.8 

(c). When this large-scale pattern passes over the canyon, the fluctuation enters the 

canyon along the windward wall, strengthening or weakening the principal recirculation 

within the canyon. However, according to Michioka et al. (2011), if the coherent 

structures in the external flow do not expand to the roof level, they have little influence 

on the pollutant within the canyon, which is the case for mode B1 in Figure 6.8 (b). 

 

Another large-scale structure detected by SPOD was named mode A. In this simulation, 

periodic boundary conditions were imposed on the inlet and outlet, which resulted in an 

inevitable periodic fluctuation, whose period could be estimated by the streamwise length 

of the simulation domain (= 20H) divided by the prevailing velocity (≈ Uref). This period 

corresponds to the frequency of mode A (≈ Uref /20H). Therefore, unlike modes B1 or 

B2, mode A is not the physical consequence of the flow passing through the canyon but 

is due to the artificial simulation setting. However, it can be regarded as a representation 

of the slow change in the approaching flow due to external conditions, such as 

meteorological variations. Although the variation in the approaching flow is an artifact, 

the induced flow around the target canyon is not. The eigenfunction of mode A in Figure 

6.8 (a) shows that this pattern affects the flow similar to mode B2 by strengthening or 

weakening the principal recirculation within the canyon. 

 

As shown in Figures 6.8 (e), (f), and (g), modes D1, D2, and D3 in the frequency range 

from Uref/2H to Uref/H are considered to represent the Kelvin–Helmholtz instabilities, 

because they illustrate vortices in the shear layer. The frequencies also fit well with the 

time-scale of the Kelvin–Helmholtz instabilities indicated by Cui et al. (2004). These 
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vortices generated at the roof level move downstream and enter the canyon following the 

principal recirculation within the canyon. Previous studies have indicated that Kelvin–

Helmholtz instabilities render intermittent pollutant dispersion (Cui et al., 2004; Letzel 

et al., 2008). These three modes show similar Kelvin–Helmholtz vortices of different 

sizes. 

 

It is also interesting to note that all the modes D1–D3 also show some vortices in the 

external flow upon the canyon, with a similar scale as the Kelvin–Helmholtz vortices. 

One possible interpretation is that these outside vortices are generated by the free ends 

of the roughness bars in the upstream because they appear to be generated upstream 

outside the sampling domain. These external vortices in the same scale in the region 

called roughness sublayer. Castro et al. (2006) showed that the dominant length scales in 

the roughness sublayer are of the same order as the canyon length scale. Because they 

share the same time scale with the Kelvin–Helmholtz vortices, they are captured by the 

same modes with the Kelvin–Helmholtz vortices. In the next chapter, we will show that 

the spanwise scales of these external vortices are highly different from the Kelvin–

Helmholtz vortices, which gives a way to separate these two types of vortices in different 

modes. 

 

If the information provided by the two types of modes are combined, we can see that the 

Kelvin–Helmholtz vortices travel with the principal recirculation, while the fluctuation 

caused by the external large-scale coherent structures directly strengthens or weakens the 

principal recirculation. This implies the existence of nonlinear interactions between the 

large- and small-scale structures, which was detected statistically by Blackman and Perret 

(2016), and that the external large-scale coherent structures may play a role in triggering 

and transporting the Kelvin–Helmholtz vortices at the roof level. The modes in the 

current study show such a process more intuitively rather than in an abstract manner. 

 

In addition, mode C illustrated in Figure 6.8 (d) shows both features of the large-scale 

coherent structures and the Kelvin–Helmholtz instabilities, which can be regarded as a 

smooth transition between these two physical mechanisms. The frequency of mode C is 

also shown in Figure 6.7. This frequency is regarded as the boundary between the large-

scale coherent structures and Kelvin–Helmholtz instabilities. At frequencies larger than 

Uref /H, that is, the right side of mode D3, the energy quickly fades. 

 

In this spectral analysis, only the leading modes with n = 1 or 2 were observed. 

Theoretically, the higher modes with higher n can show minor fluctuation patterns at 

each frequency, which are different from the leading modes. However, observations of 
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the higher modes are not suggested. As a common weakness of POD-based methods, 

POD is based on second-order correlation, and higher-order correlations are ignored 

(Taira et al., 2017). The higher-order relationships provided by the fluid dynamics were 

not detected by POD and were excessively decomposed into multiple modes. The higher 

modes are bounded considerably by spatial orthogonality with the modes ahead. Note 

that the spatial orthogonality of POD modes is a mathematical requirement rather than a 

physical one; therefore, the fluctuation patterns depicted by the higher modes may be 

unphysical. They are, therefore, difficult to explain unless the higher-order relationships 

are known beforehand. Although POD-based methods are now widely used in many 

fields, owing to their effectiveness in detecting the most characteristic features of 

turbulence, few studies have made good use of the higher modes. 

 

6.4.3 Ejection and sweep events at the roof level 

Quadrant analysis, employed to inspect the momentum exchange mechanism in many 

studies (Cheng and Liu, 2011; Cui et al., 2004; Kikumoto and Ooka, 2012), is also 

feasible for SPOD modes. Figure 6.9 shows the Lissajous curves between the streamwise 

and vertical components of the seven selected modes at the roof-height centre point of 

the target canyon (x/H = 0.5, z/H = 1); that is, the streamwise components are plotted 

versus the vertical components. The streamwise or vertical component of a mode refers 

to the streamwise or vertical component of the periodic vector function 2π
, , ( ) i ft

f n f na eψ x , 

which is a part of the fluctuation velocity (see the decomposition form of SPOD). With 

the exception of mode B1, Figure 6.9 illustrates six harmonic motions oscillating between 

ejection and sweep. The shapes of these Lissajous curves indicate a /2–3/2 phase 

difference between the streamwise and vertical components, resulting in a negative 

correlation and negative Reynolds shear stress. It should be noted that the inclination 

angles of these shapes differed. The ejection and sweep events caused by the Kelvin–

Helmholtz instabilities (modes D1–D3) have relatively strong vertical components and 

weak streamwise components, whereas those caused by the large-scale coherent 

structures (modes A and B2) have relatively strong streamwise components and weak 

vertical components. The performance of mode C appears between them. This difference 

may affect pollutant removal efficiency. For the same intensity, the ejection events with 

stronger vertical components are expected to boost pollutant removal. 
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Figure 6.9 Lissajous curves between the streamwise and vertical components of the seven selected modes 

at the roof-height centre point (x/H = 0.5, z/H = 1).  

Similar to mode B1, the ejection-sweep circle is not apparent for all modes. This can be 

examined using the SPOD co-spectrum, defined by Eq. (6.5). In Fourier analysis, the co-

spectrum denotes the in-phase component of the cross spectrum. A large positive value 

in the co-spectrum indicates high signal amplitudes and a phase difference near 0, 

implying strong outward and inward interaction events. In contrast, a large negative value 

indicates high signal amplitudes and phase difference near , implying strong ejection 

and sweep events. 

 

Figure 6.10 (a) shows the single-sided SPOD co-spectrum between the streamwise and 

vertical fluctuation velocities at the roof-height centre point (x/H = 0.5, z/H = 1). Most of 

the modes show negative values in the SPOD co-spectrum, implying that they all 

contribute to the ejection and sweep events at this point, but the extent differs. The 

ejection and sweep events are caused by both the large-scale coherent structures and 

Kelvin–Helmholtz instabilities, while the latter seems to be more important. A similar 

co-spectrum shape can also be found in Michioka and Sato (2012). However, using 

SPOD, the specific fluctuation patterns corresponding to the energy values in the co-

spectrum can be observed. This finding is also supported by Jaroslawski et al. (2020), 

who found that sweep and ejection events are mainly due to the dynamical contribution 

of small-scale coherent structures using a spatial filter to distinguish the large- and small-

scale coherent structures. Moreover, within the range of the large-scale coherent 
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structures, mode A causes stronger ejection and sweep events than modes B1 and B2, 

indicating that the effect of the large-scale structures caused by the canyon roughness is 

quite limited, whereas the change in the approaching flow caused by the external 

conditions plays a relatively larger role. Similar results can also be found in Figure 6.10 

(b), where the SPOD co-spectrum is spatially integrated along the roof-height line (0 < 

x/H < 1, z/H = 1). This provides a more comprehensive understanding of the ejection and 

sweep events occurring at the roof level. 

 

 

Figure 6.10 SPOD co-spectrum (single-sided) between the streamwise and vertical fluctuation velocity (a) 

at the roof-height centre point (x/H = 0.5, z/H = 1), (b) integrated spatially along the roof-height line  (0 

< x/H < 1, z/H = 1).   
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Although ejection and sweep events strongly affect pollutant removal, velocity 

decomposition alone does not explain the pollutant removal mechanism because the 

direction of the fluctuation velocity is undetermined. The fluctuation patterns are deemed 

zero-mean sinusoidal functions by SPOD, indicating that a sweep will chronologically 

follow an ejection. The discussion of pollutant removal is invalid without discussing the 

phase consistency between the fluctuation pattern and the concentration, which is the 

target of the next section. 

 

6.5 Spectral analysis for the pollutant removal 

In this section, the SPOD co-spectrum defined in Eq. (6.9) is applied in the canyon case 

to elucidate the relationship between turbulent fluctuation and pollutant removal. Similar 

to velocity discussed in Section 3.3, the concentration signals were initially divided into 

blocks with the identical parameters, listed in Table 6.2. Then, Fourier transformation 

was performed on the concentration signals, and SPOD co-spectrum was calculated 

within each block. The SPOD co-spectrum for the whole-length signal was then 

estimated by averaging the co-spectra over all blocks. 

 

Figure 6.11 (a) shows the single-sided SPOD co-spectrum between the vertical 

fluctuating velocity and concentration at the roof-height centre point (x/H = 0.5, z/H = 1). 

This co-spectrum is again analysed as the velocity spectrum. The positive values in this 

SPOD co-spectrum indicate that the phase difference between the vertical components 

and concentration ranges from −/2 to /2. Thus, the vertical components and 

concentration are positively correlated, which is consistent with previous studies (Cheng 

and Liu, 2011; Cui et al., 2004; Kikumoto and Ooka, 2012). If the magnitude of these 

values is observed, the SPOD co-spectrum shows a highly similar shape to that in Figure 

6.10(a). A similar shape of the co-spectrum can also be found in Michioka and Sato 

(2012). Given the positive correlation between the vertical components and concentration, 

it can be concluded that the ejections caused by both the large-scale coherent structures 

and Kelvin–Helmholtz instabilities are highly correlated to pollutant removal. The 

spatially integrated SPOD co-spectrum in Figure 6.11 (b) also supports the same 

conclusion. 
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Figure 6.11 SPOD co-spectrum (single-sided) between the vertical fluctuating velocity and concentration 

(a) at the roof-height centre point (x/H = 0.5, z/H = 1), (b) integrated spatially along the roof-height line  

(0 < x/H < 1, z/H = 1). 

As shown in Eq. (6.10), the SPOD co-spectrum can also be considered as a 

decomposition of the vertical turbulent mass flux. Reconstructing the parts of interest 

will approximate the amount of pollutants removed by large-scale coherent structures or 

Kelvin–Helmholtz instabilities. This can also be compared with the reconstruction of the 

TKE. The percentage values are provided in Table 6.3, where the SPOD co-spectrum in 

Figure 6.11 (b) and SPOD spectrum in Figure 6.7 are the integrands. The frequency of 

mode C was used as the boundary of the frequency range, and all modes within the 

frequency range were considered for the integrations. Within the frequency range of 0 < 
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fH/Uref < 0.27, which contains large-scale coherent structures, the modes accounted for 

51% of the TKE, while they only contributed 27% of the vertical turbulent mass flux at 

the roof level. In contrast, the modes within the frequency range of 0.27 < fH/Uref < 1 

containing the Kelvin–Helmholtz instabilities only account for 33% of the TKE, but they 

contribute 63% of the vertical turbulent mass flux at the roof level. The large TKE of the 

large-scale coherent structures indicates that they can be easily observed on the 

instantaneous snapshots of the velocity field (Michioka et al., 2011; Michioka and Sato, 

2012), while the waves of the Kelvin–Helmholtz instabilities and their contribution to 

pollutant removal require closer observation over a certain period (Cui et al., 2004). Note 

that, in this rough estimation of TKE and pollutant removal, the modes are classified 

according to the frequency only but not to the mode number; therefore, irrelevant modes 

may be involved in the integrations. However, the modes of large-scale coherent 

structures account for the vast majority of TKE at low frequencies, judging by the SPOD 

spectrum, and the modes of Kelvin–Helmholtz instabilities account for the majority of 

pollutant removal at high frequencies, judging by the SPOD co-spectra. This conclusion 

will not qualitatively change, even if irrelevant modes are involved. However, the current 

analysis does not take the nonlinear interactions (Blackman and Perret, 2016) into 

account. Based on the shapes of the fluctuations of the modes, the external large-scale 

coherent structures play a role in triggering and transporting the small-scale turbulence 

at the roof level, which may indirectly help with the pollutant removal. 

 
Table 6.3 Percentage of vertical turbulent mass flux at the roof level and whole-field TKE. These 

percentage values are calculated by integrating the SPOD co-spectrum in Figure 6.11 (b) or the SPOD 

spectrum in Figure 6.7 within a specific frequency range.  

Frequency range 
Percentage of the vertical turbulent 

 mass flux at the roof level 

Percentage of  

the whole-field TKE 

0 < fH/Uref < 0.27 27% 51% 

0.27 < fH/Uref < 1 63% 33% 

fH/Uref > 1 10% 16% 

 

More intuitively, Figure 6.12 shows the spatial-temporal variation in the normalised 

concentration and vertical components of the selected modes on the roof-height line (0 < 

x/H < 1, z/H = 1). This intermittent distribution of the concentration in Figure 6.12 (a), 

reported in previous studies (Cui et al., 2004; Walton and Cheng, 2002), agrees well with 

the shapes of the vertical components of modes D1 and D2 in Figures 6.12 (d) and (e), 

respectively, which represent the Kelvin–Helmholtz instabilities, while its relationship 

with modes A and B2 in Figures 6.12 (b) and (c), respectively, representing large-scale 

coherent structures, is ambiguous. The performance of mode C in Figure 6.12 (d) appears 

to fall between the performances these two groups of modes.  
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Figure 6.12 Spatial-temporal variation in (a) normalised concentration, (b) vertical component of mode A, 

(c) vertical component of mode B2, (d) vertical component of mode D1, (e) vertical component of mode 

D2 on the roof-height line (0 < x/H < 1, z/H = 1) from nondimensional time tUref/H = 0 to tUref/H = 48.  

 

Figure 6.13 Spatial variation of the SPOD co-spectrum values for the seven selected modes along the roof-

height line (0 < x/H < 1, z/H = 1). These results indicate that different flow patterns provide pollutant 

removal at different spatial positions. The co-spectrum values integrated over all the frequencies and 

summed over all the mode numbers will equal to the vertical turbulent mass flux shown in Figure 6.6. 
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Finally, note that the oblique stripes in Figure 6.12 (e) are more skewed towards x/H > 

0.5, than those in Figure 6.12 (f), indicating that different modes may contribute 

differently to pollutant removal at different spatial locations. This can be examined by 

the spatial variation of the SPOD co-spectrum values shown in Figure 6.13. Although the 

modes D1 to D3 correspond to the Kelvin–Helmholtz instabilities, the spatial 

distributions of the pollutant removal amount slightly differ, which might be attributed 

to their different vortex shapes. Mode A facilitates pollutant removal, but a small amount 

of the pollutant returns into the canyon near the windward wall. Although modes B1 and 

B2 show poor performance in pollutant removal at the canyon centre, it plays a role near 

the windward wall, although it is very limited. It is natural that the turbulent structures at 

close frequencies exhibit basically the same shape but different details. The details 

captured in this study show the effectiveness of SPOD in identifying turbulent structures 

and analysing the mass transfer mechanism. Further studies are suggested on the 

differences between the modes to obtain deeper insights. 

 

6.6 Summary 

In this study, the SPOD technique was applied to decompose the velocity field of a two-

dimensional street canyon. The SPOD modes depicting the large-scale coherent 

structures and Kelvin–Helmholtz instabilities were extracted and visualised. The Kelvin–

Helmholtz instabilities were depicted as a series of vortices, which were generated at the 

roof level, and entered the canyon following the principal recirculation, while the 

fluctuation caused by the external large-scale coherent structures directly strengthened 

or weakened the principal recirculation. These results also suggest the presence of 

nonlinear interactions between the large- and small-scale structures (Blackman and Perret, 

2016), and that the external large-scale coherent structures may play a role in triggering 

and transporting the Kelvin–Helmholtz vortices at the roof level.  

 

The ejection events and pollutant removal were quantitatively analysed using the newly 

defined SPOD co-spectra to understand their relationships with the turbulent fluctuation 

patterns. Both the Kelvin–Helmholtz instabilities and large-scale coherent structures can 

cause ejection and sweep events at the roof level, thus contributing to pollutant removal. 

However, the former contributed to stronger ejection and sweep events with stronger 

vertical components. As Michioka et al. (2011) stated, not all large-scale coherent 

structures contribute to the ejection and sweep events if they do not expand down to the 

roof level. Therefore, not all modes depicting large-scale coherent structures were found 

providing obvious ejection and sweep events at the roof level. In addition, the results also 

revealed that large-scale structures caused by external conditions contribute to stronger 
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ejection and sweep events than those caused by canyon roughness. 

 

The reconstruction provides quantitative estimations of ejection events and pollutant 

removal due to various flow mechanisms. The results revealed that the Kelvin–Helmholtz 

instabilities accounted for a small percentage of TKE, but they contributed most to the 

vertical turbulent mass flux at the roof level. In contrast, the large-scale coherent 

structures occupied a large proportion of the TKE, while they contributed less to the 

vertical turbulent mass flux. The intermittent concentration fluctuation fits better with the 

time scale of the Kelvin–Helmholtz instabilities. Therefore, the exchange process is 

dominated by the Kelvin–Helmholtz vortices in the shear layer. Although large-scale 

coherent structures provide less pollutant removal numerically, they may indirectly 

contribute to pollutant removal by intensifying the turbulence and transporting the 

Kelvin–Helmholtz vortices, judging by the appearance of the modes. 

 

Finally, we showed that the fluctuations illustrated by different modes may contribute 

differently to pollutant removal at different spatial locations. This depends on the nature 

of turbulent structures. Even for the modes that were classified as the same type, a slight 

difference was observed in the SPOD analysis. Further studies are suggested on the 

detailed differences between the modes to obtain deeper insights. 

 

This study might be the first to extract turbulent structures from instantaneous fields with 

vivid animations that can be directly related to already known physical mechanisms in 

street canyon flow. This makes it possible to quantitatively estimate and compare the 

pollutant removal contributed by each mechanism. Our findings offer insights that could 

improve our understanding of fluid mechanisms and inertially driven pollutant removal 

from street canyons. Furthermore, more quantitative analyses can be performed based on 

our results.  

 

A potential weakness of the present study is that the time signal was only sampled from 

a two-dimensional plane. However, coherent structures also exist along the spanwise 

direction (Kanda et al., 2004; Lee et al., 2011), contributing to pollutant removal 

(Michioka and Sato, 2012). The problem that the spanwise fluctuations were not 

considered also causes the incomplete extracting of the Kelvin–Helmholtz vortices. As 

shown in Figures 6.8 (e–g), the external vortices in the roughness sublayer were also 

captured in the same modes with the Kelvin–Helmholtz vortices. They share similar time 

scales but may largely vary in spanwise scales. Although the computation cost might be 

considerable, the discrete Fourier transformation along the homogeneous spanwise 

direction during SPOD is considered feasible and will be discussed in the future. 
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Chapter 7   

Analysis of a two-dimensional street canyon 

flow and mechanism of pollutant removal via 

SPOD with 2DFT 

7.1 Introduction 

At the end of Chapter 6, a limitation is pointed out, which inspires us to further consider 

the spanwise fluctuations in the two-dimensional street canyon. Therefore, this chapter 

continues the study on the turbulent structures and their relationship to pollutant removal. 

The research target and objective are the same as those in Chapter 6, but the spanwise 

performance of the structures are additionally considered, aiming for better 

decomposition and visualisation. 

 

In the case of the two-dimensional street canyon, coherent structures also exist along the 

spanwise direction (Jaroslawski et al., 2020; Lee et al., 2011; Volino et al., 2009), and 

may contribute to pollutant removal. However, the studies are still few. The existing 

studies mainly focused on general statistics indicators to describe the turbulent structures, 

e.g., the Reynolds shear stress, fluctuating velocity correlations and integral length scales. 

Volino et al. (2009) and Lee et al. (2011) calculated the streamwise and spanwise length 

scales of the turbulence in a boundary layer over a two-dimensional roughness array and 

compared with those over a smooth wall and over a three-dimensional roughness. The 

results show that the streamwise length scale was 3–4 times the spanwise length. 

Michioka and Sato (2012) showed that the spanwise size of the coherent structures of the 

low-momentum fluid depends on the upwind block configuration. The amount of 

pollutant removal is also directly related to the size of this coherent structure. Jaroslawski 

et al. (2019) made a systematic study on how the oncoming boundary-layer flow 

influences the flow in a horizontal plane at canyon rooftop level. The variation of the 

two-point correlations and integral length scales in the streamwise and spanwise 

directions were investigated. It was found that these quantities were strongly affected by 

the upstream roughness. However, to the best of our knowledge, there has not been a 
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study that provides specific and intuitive insights for the characteristic spanwise 

structures.  

 

In the classical POD theory, if the flow field is homogeneous in one or more directions, 

the spectrum of the eigenvalues becomes continuous and the eigenfunctions become 

Fourier modes (Aubry et al., 1988). Therefore, combining Fourier transformation with 

POD may be a better application. Here, the notion of “homogeneous direction” can be 

either spatial direction or time. The stationary in time is a quite often assumption for the 

flow process with a sufficient length in time, which provides a relatively broader 

application scope for combining Fourier transformation in time and POD in space. This 

kind of spatial and frequency decomposition, termed as SPOD later by Towne et al. 

(2018), was applied in some fields such as boundary layers (Tutkun and George, 2017), 

the wake of a wind turbine (Araya et al., 2017), and turbulent jets (Schmidt et al., 2017). 

In contrast, the assumption of spatial homogeneity is suitable for only a few cases, one 

of which is the wall layer of a turbulent channel flow, where the two directions horizontal 

to the wall are usually simulated as periodic and stationary. Derebail Muralidhar et al. 

(2019) extended POD using Fourier transformation in both the two horizontal directions 

and time, and applied it to the channel flow as a data reduction technique. 

 

Because there is clear evidence of homogeneous turbulent statistics over the spanwise 

direction of the two-dimensional street canyon (Bright et al., 2013), decomposing the 

turbulent field on the spanwise direction by the Fourier modes, the same manner in which 

the temporal fluctuation is dealt with in SPOD, is considered worth trying. The non-

homogeneous streamwise and vertical directions are decomposed classically by POD. 

This combination, called SPOD with the two-dimensional Fourier transformation (2DFT) 

in this paper, is applied to elucidate the spatiotemporal structures of the flow within the 

two-dimensional street canyon. The insights are provided not only for the fluctuation 

patterns on the streamwise-vertical plane, but also on the spanwise direction.  

 

The simulation and wind tunnel experiment conducted by Michioka et al. (2011) is again 

referred to in this study when performing the LES for a two-dimensional street canyon. 

The LES models, simulation conditions, and basic statistical results are reported in 

Section 7.2. In Section 7.3, the theory and algorithm of SPOD with 2DFT is introduced. 

The SPOD co-spectrum defined in our previous study is also modified to a 2DFT version. 

These tools are applied to the street canyon case as the post-processing methods in 

Sections 7.4 to reveal the relationship between the turbulent fluctuation patterns and 

pollutant removal. Finally, based on these results, the nonlinear interactions between the 

large- and small-scale structures are discussed in Section 7.5.  
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7.2 Large-eddy simulation 

7.2.1 Physical models and simulation design 

The physical models used in the simulation were identical to the LES in Chapter 6. Please 

refer to Section 6.2.1 for the details.  

 

The simulation case was also the same as the one in Chapter 6 (see Section 6.2.2), which 

was mainly set according to the wind tunnel experiment conducted by Michioka et al. 

(2011), with the only exception of the spanwise size. The spanwise size of the current 

case was increased to 8H, where H = 0.12 m is the size of the roughness bars, to provide 

more realisations for the flow on the spanwise direction so that the later Fourier analysis 

can catch large-scale periodic fluctuations on the spanwise direction. The geometry of 

the simulated domain is shown in Figure 7.1. The mesh of the simulation was also 

adjusted accordingly. Other details of the simulation conditions are presented in Table 7.1, 

which are the same as those in Chapter 6. 

 

During the simulation, the velocity and concentration data were sampled within the 

following domain: 

  = , , | 0.5 1.5 , 4 4 , 0 2x y z H x H H y H z H         
T

, (7.1) 

which contained 1,104,000 cells. This number equals to the cell number on a x-z plane 

(3450) multiplied by the partitioning number on the y-direction (320). The sampling 

wavenumber on the spanwise direction was set at 20 H-1, so the total number of the 

sampled cells are 3450 × 160 = 552,000. The time signals of the velocity and 

concentration at these cell centres were recorded. The sampling frequency was set at 400 

Hz. The sampling wavenumber/frequency was chosen so that the range between the 

resolution and Nyquist wavenumber/frequency can cover the wavenumber/frequency of 

interest in the later Fourier analysis. 

 

The volume average streamwise velocity in the whole computational domain was chosen 

as the reference velocity Uref (≈ 1 m/s), which was used to normalise the velocity samples. 

The concentration samples were normalised by the reference concentration Cref, defined 

by 

ref

ref y

Q
C

U HL
 , (7.2) 

where Q is the total emission rate (=100 ppm·m3/s), and Ly is the length of the line source 
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(= 8H). All statistics and post-processing presented in this paper were calculated based 

on the time signals lasting for 120 s, which was approximately 1000 H/Uref. 

 

 
Figure 7.1 Simulation domain 

 
Table 7.1 CFD simulation conditions 

Item Content 

Simulation domain 20H (x) ×8H (y) ×6H (z) 

x: streamwise; y: spanwise; z: vertical 

Roughness bar size H (x) × H (z) (H = 0.12 m) 

Grid partitioning 448 (x) × 320 (y) × 100 (z) 

Total cells: 10,467,840 

In target canyon: 40 (x) × 320 (y) × 40 (z) 

Minimum grid size in target canyon: H/60 (adjacent to the wall and roof) 

Time marching Pressure-implicit with splitting order (PISO) (Issa, 1986) 

Simulation period Preparatory: 0–120 s, Sampling: 120–240 s 

Time-step During preparatory: 0.0013–0.002 s,  

(adjusted automatically to keep the maximum Courant’s number equal to 1) 

During sampling: 0.00125 s  

Sampling time step: 0.0025 s (Sampling frequency: 400 Hz) 

Inlet and outlet B.C. Periodic 

The concentration on the inlet boundary was adjusted to 0. 

Side B.C. Periodic 

Ground and wall B.C. Velocity: no-slip; Pressure and concentration: zero-Gradient 

Top B.C. Velocity: slip; Pressure and concentration: zero-Gradient 

Momentum source The volume average streamwise velocity in the whole computational domain 

was kept constant 1 m/s by adjusting the streamwise pressure gradient. 

Tracer gas source Total emission rate Q = 100 ppm·m3/s at the line source 

Wall function Wall and ground: the Spalding’s law (Spalding, 1962) 

Space discretisation  2nd-order central difference 

TVD scheme for advection terms in scalar transport equations 

Time discretisation Euler-implicit 
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7.2.2 Statistics and validation 

Before the general statistic, it needs to clarify that the velocity and concentration fields 

are regarded as stochastic and homogeneous over both the time and spanwise (y-) 

coordinate in this study. Therefore, the expectation is redefined which should remove the 

fluctuation along both the time and y-direction. For a general stochastic quantity 

( , , , )x y z tΦ , the expectation is estimated by temporal average over time and spatial 

average over the y-direction, that is, 

 
0 0

1
E ( , , , )

yL T

y

dy x y z t dt
TL

  Φ Φ , (7.3) 

where T is the length of the time signal, and Ly is the spanwise length.  

 

Figures 7.2 and 7.3 show the profiles of the mean streamwise velocity and root mean 

square of the streamwise fluctuating velocity at x/H = 0.25, 0.50, and 0.75. Figure 7.4 

shows the profiles of the mean concentrations at x/H = 0, 0.50, and 1. These results are 

consistent with the wind-tunnel experiment results of Michioka et al. (2011) and 

Pavageau and Schatzmann (1999). The mean flow in Figure 7.5 (a), TKE in Figure 7.5 

(b) and mean concentration in Figure 7.5 (c) show almost the same shape with those in 

Chapter 6. Note the principal recirculation shown in the mean flow, following which the 

TKE generated at the roof level was brought into the canyon along the windward wall 

and the concentration was driven onto the roof level along the leeward wall. A large 

amount of concentration re-entered the canyon on reaching the roof level rather than 

travel with the external flow. Previous researches show that turbulence plays a major role 

in pollutant removal from the canyon (Cheng et al., 2008; Cheng and Liu, 2011), while 

the mean wind carries pollutants into and out of a street canyon simultaneously (Liu and 

Wong, 2014). Therefore, turbulent structures are focus on in the following study, and 

their relationship to pollutant removal is also the aim. 
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Figure 7.2 Profiles of the mean streamwise velocity at (a) x/H = 0.25, (b) x/H = 0.5 and (c) x/H = 0.75. 

Filled circles are the results of the wind tunnel experiment conducted by Michioka et al. (2011).  

 

Figure 7.3 Profiles of the root mean square of the streamwise fluctuating velocity at (a) x/H = 0.25, (b) 

x/H = 0.5 and (c) x/H = 0.75. Filled circles are the results of the wind tunnel experiment conducted by 

Michioka et al. (2011).   

(a) (b) (c) 

(a) (b) (c) 
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Figure 7.4 Profiles of the mean concentration at (a) x/H = 0, (b) x/H = 0.5 and (c) x/H = 1. Filled circles 

are the results of the wind tunnel experiment conducted by Pavageau and Schatzmann (1999).  

 

 

Figure 7.5 Cross-sections of (a) mean velocity with streamlines on the x-z plane, (b) TKE and (c) mean 

concentration. 

(a) (b) (c) 

(a) (b) 

(c) 
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7.3 SPOD with 2DFT 

As we have noted, both the velocity and concentration field are regarded as stochastic 

with both the time and spanwise coordinate. The Fourier transformation in SPOD is 

extended to a two-dimensional one to elucidate the periodic properties of the turbulent 

structures and pollutant removal, especially on the spanwise direction. The basic theory 

and algorithm of SPOD with 2DFT, are introduced in Sections 7.3.1 and 7.3.2. The SPOD 

co-spectrum defined in our previous study is also modified to a 2DFT version, which is 

introduced in Section 7.3.3. 

  

7.3.1 Theory 

The velocity vector is denoted by  

( , , , )

( , , , ) ( , , , )

( , , , )

u x y z t

x y z t v x y z t

w x y z t

 
   
  

u , (7.4) 

For briefness, the independent variables in the brackets are omitted hereafter. For 

example, the velocity ( , , , )x y z tu  is simply written as u  after its first appearance. The 

fluctuation velocity targeted in the POD based analysis can be written as  

 ( , , , ) Ex y z t  u u u , (7.5) 

which is the target of the current analysis. Please refer to Eq. (7.3) for the definition of 

the expectation operator  E  . 

 

Because of the homogeneity and stationarity of the statistics in the spatial y-direction and 

in time, the exact solutions of POD modes are identical to Fourier series in these 

directions (Berkooz et al., 1993; Carassale et al., 2007). Therefore, Fourier 

transformation over these directions is a more direct process. In this study, the 2DFT is 

performed over the time t and y-coordinate, which is written as  

 2π

0 0
ˆ ( , ; , )

yL T i ft y
x z f dy e dt

     u u , (7.6) 

where ˆ u  denotes the 2DFT of u , i is the imaginary unit, f is the frequency, and η is 

the wavenumber along the y-direction which has the unit of m-1. The following symmetry 

property can easily be obtained: 

*ˆ ˆ( , ; , ) ( , ; , )x z f x z f    u u , (7.7) 

where *ˆ u  denotes the conjugate of ˆ u . Such a symmetry property is termed as 

“conjugate symmetry” hereafter. In addition, the inverse transformation is represented as  
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 2πˆ i ft y
d e df


  

 
   u u . (7.8) 

The Fourier transformation over the time and y-coordinate can be performed separately 

to reach the 2DFT. For example, one can first take the Fourier transformation over the y-

coordinate, and then take the Fourier transformation of the results over the time. 

 

The above 2DFT is applied to SPOD, and the decomposition form can be written as 

ˆ ( , ) ( , ; , )n n
n

a f x z f  u ψ , (7.9) 

where ( , ; , )n x z fψ  and ( , )na f  is the mode and mode coefficient, respectively, with 

the index of n. Both the mode and mode coefficient are conjugate symmetric functions 

of η and f, so three indexes (n, η and f) are needed to specify a certain mode. The 

decomposition form can also be written into a similar form with the inverse 2DFT as 

 2πi ft y

n n
n

d a e df


  

 
   u ψ . (7.10) 

This brings the direct connection to the modes and fluctuation velocity.  

 

The decomposition form is not unique, if the following orthogonal conditions are not 

given. Similar to POD, both the modes and mode coefficients hold the orthogonal 

conditions. For the modes, the orthogonal condition is written as 

0
,

1
n m nm

n m

n m



  


ψ ψ , (7.11) 

where the inner product is defined as  

†
1 2 2 1

1
,

xzxz

dxdz
A



 Φ Φ Φ Φ . (7.12) 

†  denotes Hermitian transpose. xz  is the sampling interval on the x-z plane, which is 

invariant with the time and the y-coordinate. xzA  is the area of this interval, which equals 

to 
xz

dxdz
 . Next, the orthogonal condition for the mode coefficients is written as 

*1
( , )n m n nm

y

a a f
TL

   , (7.13) 

where ( , )n f   is termed as “mode energy”, which represents the intensity of the mode. 

The mode energy is a symmetric function of η and f, that is  

( , ) ( , )n nf f      . (7.14) 

 

The above orthogonal conditions can bring an important property that constructs the 

relationship between the mode energy and spatial average TKE, k , that  
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2 n
n

k d df 
 

 
   , (7.15) 

which is deduced as follows: 

0 0

† †2 1 1
ˆ ˆ2

2

y

xz xz

L T

xz y xz y

k dxdz dy dt dxdz d df
TA L TA L


 

 
 

         u u u u   

*1
,n n n n n

n ny

d a a df d df
TL

  
   

   

 
   

 
    ψ ψ . (7.16) 

The second equation in Eq. (7.16) is an application of Parseval's theorem, and the third 

used the decomposition form, Eq. (7.9), along with the orthogonality conditions, Eqs. 

(7.11) and (7.13). As a function of wave number and frequency, n  is also called 

“SPOD spectrum”, which denotes the energy density on the f-η plane. 

 

7.3.2 Algorithm 

Theoretically, the modes and mode energies are the eigenfunctions and eigenvalues of 

the two-point spectrum tensor. To enhance the convergence and enforceability of the 

estimation of the modes and energies from the discrete velocity data, an algorithm was 

proposed by Towne et al. (2018), which combined the Welch's method for spectral 

estimation and the snapshot POD algorithm (Sirovich, 1987). This algorithm, introduced 

in Chapter 3, is still applicable to estimate the modes nψ  and mode energies n  in 

SPOD with 2DFT, although some complement needs to be made. 

 

If the Fourier transformation over the y-coordinate is performed on both sides of Eq. 

(7.10), it becomes  

2π 2π

0

yL
i y i ft

n n
n

e dy a e df





   u ψ . (7.17) 

The right side shows the form of the original SPOD, and the nψ  and n  can be 

estimated directly by the algorithm proposed by Towne et al. (2018) if the term on left 

side is given in advance. Note that the term on the left side is just the one-dimensional 

Fourier transformation of u , so one can simply discretise the y-coordinate into yj, j = 1, 

2, …, Ny, and perform the discrete Fourier transformation over y-coordinate.  

 

The algorithm for SPOD with 2DFT is as follows: 

(1) Calculate the one-dimensional discrete Fourier transformation of the fluctuation 

velocity u  over the y-coordinate. For a specified wavenumber ηj, we get 

  2π

0
, , ; , 1, 2,...,

y j
L i y

j yx z t e dy j N



  u u . (7.18) 

(2) Replace the u  in the original SPOD algorithm by the above  , , ; jx z t u , and 
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calculate the mode  , ; ,n jx z fψ  and mode energy  ,n j f  .  

(3) Repeat until the modes and mode energies at all the discrete wavenumbers are 

obtained. 

 

Note that the SPOD algorithm is processed independently for each discrete wavenumber, 

so the parallel processing can be applied here to accelerate the computing. Also note that 

 , , ; jx z t u  usually consists of complex numbers, so the modes are not symmetric with 

respect to f = 0. One may need to compute for both positive and negative f with the same 

wavenumber. However, because the mode energy is symmetric, and the mode and mode 

coefficient are conjugate symmetric with respect to the original point on the f-η plane, 

the results in only two quadrants need to be computed. 

 

7.3.3 SPOD co-spectrum 

Similar to that introduced in Chapter 6, the SPOD co-spectrum based on the SPOD with 

2DFT can be also defined.  

 

The SPOD co-spectrum between the streamwise fluctuation velocity  , , ,u x y z t  and 

vertical fluctuation velocity  , , ,u x y z t  is defined as 

   ( ) ( ) ( )*, ; , Reuw u w
n n n nS x z f    , (7.19) 

where ( )u
n  and ( )w

n  denote the u and w components of the vector nψ , respectively. 

This co-spectrum shows the planar density of the Reynolds shear stress on the f-η plane, 

and its integral equals to the Reynolds shear stress at the spatial position (x, z), that is 

  ( )E uw
n

n

u w d S df
 

 
     . (7.20) 

 

The SPOD co-spectrum between the vertical fluctuation velocity  , , ,w x y z t  and 

fluctuation concentration      , , , , , , Ec x y z t c x y z t c    is defined as 

 ( ) ( ) *1
ˆ, ; , Rewc w

n n n

y

S cx z f a
TL

 
 

   





, (7.21) 

where ĉ  is the 2DFT of the c  whose spatial and temporal discretisation should be the 

same with the velocity. This co-spectrum shows the planar density of the vertical 

turbulent mass flux on the f-η plane, and its integral equals to the vertical turbulent mass 

flux at the spatial position (x, z), that is 

  ( )E wc
n

n

w d dfc S
 

 
     . (7.22) 

The SPOD spectrum is estimated by the Welch's method (Welch, 1967), in which the 
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time signal is first divided into blocks, and the energy of the entire signal is estimated by 

averaging the energy values over all the blocks. In this case, the mode coefficient na  is 

not the same value in different blocks. Therefore, the values of ( )wc
nS  need to be 

estimated by the same Welch's method, i.e., dividing then averaging, where the block 

dividing and window function (if used) should be kept the same with the velocity when 

performing SPOD.  

 

In application, because both ( )uw
nS  and ( )wc

nS  are symmetric with respect to the original 

point on the f-η plane, the results in only two quadrants need to be computed. 

 

Table 7.2 Parameters used in the energy and mode estimation when performing SPOD with 2DFT 

Item 
Fourier transformation  

along time 

Fourier transformation  

along spanwise direction 

Total number  

of snapshots 
48,000 160 

Sampling  

frequency/wavenumber 
400 Hz = 48 Uref /H 167 m-1 = 20 H-1 

Window (block length) 
Hamming window  

with a length of 4,800 snapshots 
None 

Block dividing 
19 blocks with a block length  

of 4,800 snapshots each 
1 block (undivided) 

Overlap length 2,400 snapshots (50% overlap) None 

Resolution 

frequency/wavenumber  

400 Hz / 4800 = 0.0833 Hz  

= 0.01 Uref /H 

167 m-1 / 160 = 1.04 m-1  

= 0.125 H-1 

Nyquist 

frequency/wavenumber 

400 Hz / 2 = 200 Hz  

=24 Uref /H 

167 m-1 / 2 = 83 m-1  

=10 H-1 

 

7.4 Results and discussion 

7.4.1 Performing SPOD with 2DFT on the velocity field 

The modes were calculated using the algorithm provided in Section 7.3.2. The parameters 

used in the estimation of modes and energies are listed in Table 7.2. Appropriate block 

length was chosen so that the block number was considered sufficient to obtain a 

relatively precise energy estimation with low uncertainty, and the resolvable frequency 

range can also cover the lowest frequency of interest. Because the snapshots along the 

spanwise direction were not as many as those along time, the process was not divided 

into blocks along the spanwise direction. This will not cause any convergence problem, 

because there were still sufficient realisations of the flow in different time periods so that 

the energies can be estimated by averaging. In addition, the Hamming window was 
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applied before the Fourier transformation over time to prevent the spectral leakage caused 

by the non-periodicity at the boundaries of each block, while window function is 

unnecessary for the spanwise direction, because the process along the spanwise direction 

was periodic due to the periodic boundary condition in LES. The same manner of 2DFT 

was also applied on the concentration data.  

7.4.2 SPOD spectrum and turbulent fluctuation patterns 

Figure 7.6 presents the SPOD spectrum, showing the largest of the computed 19 

eigenvalues at all discrete frequencies. The eigenvalues are nondimensionalised as  

 ,
2

n
n

f
f

k


   . (7.23) 

Because the purpose of the current study is to perform data analysis but not dimension 

reduction, where the energy completeness is not required, observation only on the modes 

with the largest energy in on the f-η plane is considered sufficient for understanding the 

turbulent flow. Therefore, only the eigenvalues with n = 1 and 2 are provided in Figures 

7.6 and 7.7, respectively. All the following analysis is focused on the modes with n = 1, 

which depicts the most characteristic fluctuation patterns in this turbulent flow, along 

with some inspection on the eigenvalues with n = 2, which provide additional remarks 

for better understanding. Note that the mode energy is theoretically symmetric with 

respect to the original point on the f-η plane, only two quadrants, (f > 0, η > 0) and (f > 0, 

η < 0), are shown in Figures 7.6 and 7.7. Also note that the SPOD spectrum is almost 

symmetric with respect to η = 0, indicating the statistical symmetry of the flow along the 

spanwise direction. 

 

Each eigenvalue at the resolved (f, η) point in the figures corresponds to a SPOD mode. 

The modes can be understood by examining the real and imaginary parts of the 

eigenfunctions, or by watching the animation created by the function   2πRe i ft y

ne
ψ , 

which is both time-periodic and y-periodic. With the increasing of t or y, the animation 

process is approximately Re( )nψ → Im( )n ψ → Re( )n ψ → Im( )nψ → Re( )nψ . For 

example, Figure 7.8 provides the streamlines for the eight selected modes, which 

correspond to the eight circled eigenvalues in Figure 7.6. Compared to the modes 

provided in Chapter 6, the modes in the current study show clearer shapes of flow patterns, 

especially inside the target canyon where the fluctuation is relatively weak. This is 

because the samples are increased by extending the coordinates on the spanwise direction, 

which is equivalent to provide more flow realisations. In addition to the real and 

imaginary parts of the eigenfunctions, the spanwise variation on the y-z planes with x/H 

= 0.5 and 0.9 are also provided in Figure 7.8 for the eight selected modes, which are also 

created by the function   2πRe i ft y

ne
ψ  but with t = 0. With the increasing of t, the 
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spanwise variation will show translational motions that move left for (f > 0, η > 0) or 

move right for (f > 0, η < 0).  

 

Before taking a closer look at the spectrum and modes, we first divided the f-η plane into 

four zones, named A, B, C, and D, for the convenience of description and further study. 

The chosen modes are also named corresponding to the zone name they are in. Please see 

Table 7.3 for the range of frequency and wavenumber for each zone. The zones are 

mainly divided according to the key characteristics of the modes in them, and the 

eigenvalues with n = 2 in Figure 7.7 was also taken as reference. To better explain why 

the eigenvalues with n = 2 are examined in this case, Figure 7.9 provides a schematic to 

illustrate how the SPOD spectrum deal with multiple physical structures. Because the 

POD process is performed separately at various frequencies/wavenumbers, SPOD will 

recognise the largest energy as the eigenvalue with n = 1 and the second-largest energy 

as the eigenvalue with n = 2 regardless of which physical structure they belong to. 

Therefore, at the junction of the two spectra of the physical structures, circled in Figure 

7.9, the eigenvalue with n = 2 will reach its maximum. In addition, the modes at the 

junction will mix with each other due to the numerical issues, e.g., the mode with n = 1 

may present both characteristics of the two physical structures. For the same reason, the 

boundaries of the zones are chosen at the frequency/wavenumber where the eigenvalues 

with n = 2 in Figure 7.7 are large. However, please note that the modes change gradually 

along the frequency and wavenumber, so the boundaries of the zones are actually not so 

obvious as shown by the white dash lines in Figures 7.6 and 7.7. The division in this 

study is rough and qualitative. 

Table 7.3 Zone division and percentages of whole-field TKE and vertical turbulent mass flux at the roof 

level within the zones. These percentage values are calculated by integrating the SPOD spectrum in Figure 

7.6 by Eq. (7.5) or the SPOD co-spectrum in Figure 7.11 (b) by Eq. (7.22) within a specific 

frequency/wavenumber range.  

Zone 
Range of frequency  

and wavenumber  

Percentage of  

the whole-field TKE 

Percentage of the vertical 

turbulent mass flux at the 

roof level 

A 
0 < |fH/Uref| < 0.3 

and 0 < |H| < 0.9 
39% 8% 

B 
0.3 < |fH/Uref| < 3 

and 0.9 < |H| < 9 
24% 40% 

C 
0 < |fH/Uref| < 0.3 

and 0.9 < |H| < 9 
12% 22% 

D 
0.3 < |fH/Uref| < 3 

and 0 < |H| < 0.9 
22% 29% 

Other 
|fH/Uref| > 3 

or |H| > 9 
3% 1% 
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Figure 7.6 SPOD spectrum showing the largest nondimensional eigenvalues (n = 1) plotted versus the 

nondimensional frequency and wavenumber. This spectrum is theoretically symmetric with respect to the 

original point on the f-η plane, so only two quadrants are shown. At each resolved (f, η) point, the colour 

shows the eigenvalue with the index of n = 1. Each eigenvalue corresponds to a complex eigenfunction, 

depicting a certain spatial distribution and fluctuation pattern of the velocity. For instance, the 

eigenfunctions of the eight selected modes, whose eigenvalues are circled, are shown in Figure 7.8. The f-

η plane is divided into zones bounded by the white dash lines to classify the modes by the key 

characteristics. See Table 7.3 for the range of frequency and wavenumber for each zone.  
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Figure 7.7 SPOD spectrum showing the second largest nondimensional eigenvalues (n = 2) plotted versus 

the nondimensional frequency and wavenumber. Please see the capture of Figure 7.6 for more description.  
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(a) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode A1  

(fH/Uref = 0.05, ηH = -0.250, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   
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(b) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode A2  

(fH/Uref = 0.09, ηH = -0.50, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   
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(c) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode A3  

(fH/Uref = 0.10, ηH = 0.375, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   
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(d) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode B1  

(fH/Uref = 0.48, ηH = -2.000, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   



Chapter 7  
Analysis of a two-dimensional street canyon flow and mechanism of pollutant removal via SPOD with 2DFT 

147 

 

 

 

(e) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode B2  

(fH/Uref = 0.66, ηH = 2.625, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   
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(f) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode C  

(fH/Uref = 0.10, ηH = 2.500, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom). 

Figure 7.8 (continued on next page)   
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(g) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode D1  

(fH/Uref = 0.51, ηH = -0.250, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom).  

Figure 7.8 (continued on next page)   
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(h) Real (top-left) and imaginary (top-right) parts of the eigenfunction of mode D2  

(fH/Uref = 0.57, ηH = 0.250, n = 1), and spanwise variation on the y-z planes with x/H = 0.5 (middle) and 

0.9 (bottom).  

Figure 7.8 Eigenfunctions for the eight selected modes. The corresponding eigenvalues are shown in 

Figure 7.6. The colour shows the magnitude of the vector. The fluctuation pattern is understood by 

watching the animation of the time-periodic and y-periodic function 
  2 π

Re
i ft y

n
e


ψ , one cycle of which 

is approximately Re( )
n

ψ → Im( )
n

 ψ → Re( )
n

 ψ → Im( )
n

ψ → Re( )
n

ψ . The spanwise variation on the 

y-z planes with x/H = 0.5 and 0.9 are also made by the same function with t = 0. With the increasing of t, 

the spatial variation will show travelling waves moving left for (f > 0, η >0) or moving right for (f > 0, η 

<0).  
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Figure 7.9 Schematic of the manner by which SPOD spectrum shows multiple physical structures. 

In the SPOD spectrum of Figures 7.6 and 7.7, it can be noted that the large energy values 

with the bright colours exhibit the shapes with a 45-degree inclination, indicating the 

spanwise wavenumber is always roughly proportion to the frequency when large energy 

values are obtained, regardless of the scales of the structures. The ratio of the 

nondimensional wavenumber and frequency (= |ηUref/f|) is approximately 3 if the central 

lines of the shapes are taken. Similar linear relation between the streamwise and spanwise 

length scales was also found in high-Reynolds-number turbulent boundary layer by 

Chandran et al. (2017). They indicated that this linear relation is a necessary condition 

for self-similarity, i.e., the range of scales with an equal energetic contribution to the 

streamwise velocity maintain a constant aspect ratio. This self-similarity theory is valid 

only for high-Reynolds-number turbulence. According to the aforementioned mode 

division, the modes in zones A and B are close to the lines of |ηUref/f| = 3, so they are the 

main turbulent structures in this case. The modes in zones A and B correspond to the 

large- and small-scale structures, respectively. Because most of the modes in zones C 

and D are not adjacent to the lines of |ηUref/f| = 3, these structures are relatively unstable 

and statistically less common. 

 

In zone A, the modes mainly show the large-scale coherent structures outside the canyon. 

These modes have the highest eigenvalues, indicating that the fluctuation in these 

patterns is in strong intensity, and holds a large amount of TKE. The low- and high-

momentum fluid caused by the large-scale coherent structures can strongly affect 

pollutant removal (Han et al., 2018; Michioka et al., 2011; Michioka and Sato, 2012). 

Modes A1–A3 are examples. The eigenfunctions illustrated in Figure 7.8 (a)–(c) well 

depict the low- and high-momentum fluid with large streamwise length scales passing 

through the canyon. The fluctuation enters the canyon along the windward wall, directly 

strengthening or weakening the principal recirculation within the canyon. The energy 

distribution shows that the nondimensional time scales are 1–5 times of the 

nondimensional spanwise length scales, indicating that the streamwise length scales are 

much larger than the spanwise length scales, which is consistent with previous studies 
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(Jaroslawski et al., 2019; Volino et al., 2009). In the figures of spanwise variations, the 

external coherent structures exhibit large-scale vortices on the y-z planes, which are 

identical on the planes of x/H = 0.5 and 0.9 because of the large streamwise scale of these 

structures. However, the pattern within the canyon differs for x/H = 0.5 and 0.9. On the 

plane of x/H = 0.5, which is the middle of the canyon, the flow is divided clear at the roof 

level so that the external fluid can hardly be brought into the canyon, while on the plane 

of x/H = 0.9, the fluid is exchanged near the windward wall, which may contribute to the 

ventilation of the canyon.  

 

In these three modes, mode A1 differs from the other two. Previous studies (Lee et al., 

2011; Michioka et al., 2011; Takimoto et al., 2013) measured the streamwise length scale 

of the coherent structures at z ≈ 2H, which are approximately 6–9H. This roughly 

corresponds to the frequency of modes A2 and A3. However, the frequency of mode A1 

(≈ Uref /20H) corresponds to the period in which the flow needs to pass the simulation 

domain through the inlet and outlet periodically. This fluctuation pattern is not caused by 

the roughness of the canyon, and is thus unphysical but inevitable in LES simulation. It 

can be regarded as the slow change in the approaching flow due to external conditions 

such as meteorological variation. Its effect on the flow around the canyon is almost the 

same with the fluctuation caused by the canyon roughness. 

 

The modes in zone B are characterised by the wave caused by the Kelvin–Helmholtz 

instabilities at the interface of the canyon and external flow. The eigenfunctions of modes 

B1 and B2 in Figure 7.8 (d) and (e) are considered good visualisation of the Kelvin–

Helmholtz instabilities. Previous studies have indicated that Kelvin–Helmholtz 

instabilities render intermittent pollutant dispersion (Cui et al., 2004; Letzel et al., 2008). 

On the x-z plane, the vortices generated at the roof level move downstream and enter the 

canyon following the principal recirculation within the canyon. On the y-z plane, it can 

be seen that the array of waves provides high-rate ejection and sweep events, which 

enhance the exchanging of the fluid on the roof level. The fact that vortices enter the 

canyon along the windward wall is also embodied in the figures of the spanwise variation 

on the plane of x/H = 0.9 by the slanting stripes.  

 

Most of the modes in zones C and D does not satisfy the self-similarity. As a 

representation, mode C in Figure 7.8 (f) shows the vortices along the streamwise 

direction occurring at the interface of the canyon and external flow. These vortices have 

relatively large scales on the streamwise direction, and small scales on the spanwise 

direction. These vortices separate when they reach the free end of the downstream 

building. A part of them enters the canyon and travels with the principal recirculation, 
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similar to the structures of the Kelvin–Helmholtz vortices. The high-rate air exchanging 

can be also observed in the spanwise direction. 

 

The modes in zone D mainly depict the external vortices. Complex and various structures 

are observed in these modes, and finding a common character in shapes is difficult. For 

example, both modes D1 and D2 illustrated in Figure 7.8 (g) and (f) show the external 

vortices travelling upon the canyon, but their shapes vary largely. Castro et al. (2006) 

showed that the dominant length scales in the roughness sublayer (the region within 

which the flow remains spatially inhomogeneous) are of the same order as the canyon 

length scale. This length scale is close to those of the Kelvin–Helmholtz instabilities 

depicted by the modes in zone B. Therefore, the modes in zones B and D share the same 

frequencies. However, the spanwise wavenumbers largely differ, indicating different 

spanwise scales between them. Our previous study in Chapter 6 did not separate these 

two structures well, because the spanwise fluctuation was not considered, while the 

decomposition in this study gives a better visualisation. 

 

The percentage of the whole-field TKE in each zone is also listed in Table 7.3. In the 

gross, most of the whole-field TKE is held by the external fluctuation out of the canyon 

(zones A and D), which can also be confirmed by Figure 7.5 (b), due to its large spatial 

scale. Especially, zone A, where the modes mainly show the very large-scale external 

coherent structures, holds the largest percentage of TKE. The fluctuation caused by the 

Kelvin–Helmholtz instabilities at the roof level, shown in the modes in zone B, also 

accounts for a considerable part of TKE, because the TKE shows maximum values at the 

roof level.  

 

7.4.3 Results of SPOD co-spectrum 

The two SPOD co-spectra defined in Section 7.3.3 are applied to evaluate the 

performance of turbulent structures on the pollutant removal at the roof level. The two 

SPOD co-spectra are integrated over the line at the roof level and nondimensionalised by 

the following equations: 
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The integral domain   is defined as  
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  , | 0 ,x z x H z H     , (7.26) 

which denotes the line at the roof level. The absolute operator is applied on the 

denominator in Eq. (7.24), because the Reynolds shear stress  E u w   is negative at the 

roof level.  

 

The nondimensionalised SPOD co-spectrum between the streamwise and vertical 

fluctuation velocity, ( )uw
nS , and the nondimensionalised SPOD co-spectrum between the 

vertical fluctuation velocity and concentration, ( )wc
nS , are presented in Figures 7.10 and 

7.11, respectively. The ( )uw
nS  and 

( )wc
nS  are examined at each resolved (f, η) point only 

for the modes with n = 1, which is considered sufficient for analytical purposes. Note that 
( )uw
nS  and 

( )wc
nS  are theoretically symmetric with respect to the original point on the f-η 

plane, so only two quadrants, (f > 0, η > 0) and (f > 0, η < 0), are shown. Also note that 
( )uw
nS   and 

( )wc
nS   is almost symmetric with respect to η = 0, indicating the statistical 

symmetry of both the velocity and concentration along the spanwise direction. 

 

The distributions of ( )
1

uwS  and ( )
1

wcS  in the figures show high similarity, although the 

former is negative and the latter is positive. According to the theory of Fourier analysis, 

the co-spectrum denotes the in-phase component of the cross-spectrum. A positive value 

in the co-spectrum indicates a phase difference near 0, and a large negative value 

indicates a phase difference near . The magnitude denotes the amplitude of the two 

signals at the specified frequency/wavenumber. In the current case, the negative values 

of ( )
1

uwS  indicate the negative correlation between the streamwise and vertical velocity, 

which implies the ejection ( 0, 0u w   ) and sweep ( 0, 0u w   ) events at the roof 

level. The positive values of ( )
1

wcS  indicate the positive correlation between the vertical 

velocity and concentration. Because the pollutant removal events are denoted by the 

positive values of the vertical mass flux ( 0w c   ), also given by the similar shape of 
( )

1
uwS  and ( )

1
wcS , it can be concluded that the ejection events are highly related to the 

pollutant removal at the roof level. The same results can also be obtained by quadrant 

analysis performed in many studies (Cheng and Liu, 2011; Cui et al., 2004; Kikumoto 

and Ooka, 2012). The current study shows that the ejection and sweep events and the 

pollutant removal mainly occur at the wavenumber of |ηH| ≈ 1–4 and frequency of 

|fH/Uref| ≈ 0.2–0.8. A similar frequency range was also given by Michioka and Sato 

(2012), while the range of the spanwise wavenumber is revealed by the current study.  
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Figure 7.10 SPOD co-spectrum between the streamwise and vertical fluctuation velocity integrated 

spatially along the line at the roof level line (0 ≤ x/H ≤ 1, z/H = 1) computed based on the leading mode (n 

= 1). This co-spectrum is theoretically symmetric with respect to the original point on the f-η plane, so only 

two quadrants are shown. At each resolved (f, η) point, the co-spectrum value denotes the density of the 

Reynolds shear stress E(u’w’) contributed by the corresponding SPOD mode. 
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Figure 7.11 SPOD co-spectrum between the vertical fluctuating velocity and concentration integrated 

spatially along the line at the roof level line (0 ≤ x/H ≤ 1, z/H = 1) computed based on the leading mode (n 

= 1). This co-spectrum is theoretically symmetric with respect to the original point on the f-η plane, so only 

two quadrants are shown. At each resolved (f, η) point, the co-spectrum value denotes the density of the 

vertical turbulent mass flux E(w’c’) contributed by the corresponding SPOD mode. 
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Another advantage of SPOD is that the fluctuation patterns corresponding to the energy 

values in the co-spectrum can be easily specified, so that the ejection and sweep events 

and the effect of the pollutant removal can be directly linked to the turbulent structures 

depicted by the SPOD modes. The modes in zone B fall in both the ranges of wavenumber 

and frequency, and the modes in zone C and D fall in either of the ranges. These structures 

are considered related to pollutant removal at the roof level. 

 

To quantify the pollutant removal contributed by the modes in each zone, the percentage 

of the vertical turbulent mass flux at the roof level that the modes in each zone contribute 

is listed in Table 7.3. These values are calculated by integrating the SPOD co-spectrum 

within a specific range of frequency/wavenumber by Eq. (7.22) and then dividing the 

total vertical turbulent mass flux at the roof level. Although the modes in zone A 

accounted for the largest percentage of the TKE, they only contributed 8% of the vertical 

turbulent mass flux at the roof level, indicating that the pollutant provided by the large-

scale coherent structures is very limited. For the small-scale structures, 40% of the 

vertical turbulent mass flux is contributed by the modes in zone B, which denote the 

Kelvin–Helmholtz instabilities. The modes in zones C and D also show good 

performance in pollutant removal, by contributing 22% and 29% of the vertical turbulent 

mass flux.  

 

Although the pollutant removal contributed by the modes in zone A is little in the gross, 

they still have their roles in pollutant removal near the windward wall. This can be 

confirmed by the spatial variation of the SPOD co-spectrum ( )wc
nS , provided in Figure 

7.12. The peaks can be observed near x/H = 0.9 for modes A1–A3, which corresponds to 

the air exchanging illustrated in the spanwise structures in Figure 7.8 (a)–(c). For the 

modes in zones B and C, one can see from Figure 7.12 that the pollutant removal mainly 

occurs in the middle of the target canyon, which indicates a trend that the fluctuation 

caused by these vortices grows to be the strongest near the centre, then becomes weaker 

in moving downstream, and finally collides the windward wall and enters the canyon. 

For the modes in zone D, it is difficult to find a common pattern on the air exchanging, 

because the shapes of the external vortices vary significantly depending on the chosen 

modes.  
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Figure 7.12 Spatial variation of the SPOD co-spectrum values for the eight selected modes along the line 

at the roof level line (0 ≤ x/H ≤ 1, z/H = 1). These results indicate that different flow patterns provide 

pollutant removal at different spatial positions.  

7.5 Nonlinear interactions between large- and small-scale 

structures 

The nonlinear interactions between the large- and small-scale structures in street canyon 

were first investigated by Blackman and Perret (2016) by the skewness decomposition 

and correlation analysis. They found that, as the high- or low-momentum fluids carried 

by the large-scale structures pass over the canyon, the small-scale structures are amplified 

or suppressed. Therefore, the large-scale structures may indirectly contribute to the 

turbulent removal. Please refer to Figure 17 in Blackman and Perret (2016) for a more 

intuitive view. The effects of the upstream-flow regime and canyon aspect ratio on these 

nonlinear interactions is further investigated in Blackman et al. (2018). The same 

interactions are also confirmed by Jaroslawski et al. (2020) using a different filtering 

process. Although these findings are quite attractive, the correlation coefficients are only 

around 0.2 and no larger than 0.5, which, in our opinion, is too low to be considered as 

solid evidence. Because there still does not exist a strict physical or mathematical 

definition of the large- or small-scale structures, the computed correlation coefficients 

highly depend on the different mathematical assumptions made in the decomposition 

process. This gives difficulty in quantitative analysis on this problem. 

 

Because the current study provides specific spatial fluctuation patterns that can directly 

link to the already-known mechanisms of large- or small-scale structures, the nonlinear 

interactions between them can be further investigated based on the obtained SPOD modes 

to provide more intuitive and quantitative insights via the joint probability distributions 

of the states of the fluctuation patterns.  
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7.5.1 Definition of the mode state 

We start by computing the state of the fluctuation patterns of interest, which can be 

defined as the projection of the fluctuation velocity on the corresponding mode. For a 

certain mode X indexed by (f, η, n), the state at (y, t) can be written as 

 X , , ny t  u ψ . (7.27) 

The state X  is a two-dimensional complex-valued stochastic process. For a better 

understanding of the concept of the state, please recall the periodic fluctuation pattern 

depicted by mode X, the animation of which provides the variation of the field on x-z 

plane with the phase changing from 0 to 2π with the unit intensity. The realisation of the 

flow at (y, t) is constructed by the modes, so a part of it can be denoted by a snapshot of 

the periodic fluctuation indicated by mode X at a certain phase and multiplied by a certain 

intensity value. Both the phase and intensity values are stochastic processes over y and t. 

The phase is denoted by the argument of the complex state, and the intensity is denoted 

by the modulus of the complex state. 

 

7.5.2 Correlation analysis between the states of large- and small-scale structures 

We first study statistics on this state process performed base on the samples over both 

time and spanwise direction without distinguishment. The probability distribution of such 

a process shows different shapes for large- and small-scale structures represented by, e.g., 

modes A1 and B1. The probability density functions are provided in Figure 7.13 (a) and 

(b). The distribution for a large-scale structure (mode A1) shows a stretched shape along 

a certain direction on the complex plane, while that for a small-scale structure (mode B1) 

shows a nearly isotropic shape. This difference is directly related to the spatial scale of 

the structure. Note that the width of the sampling domain in this study is two times of the 

canyon length scales, which is much larger than that of small-scale structures, and much 

smaller than that of large-scale structures. Therefore, for the small-scale structures, the 

spatial periodic motions occur totally within the sampling domain, so the kinetic energy 

within the entire sampling domain does not change much with the phase of the fluctuation. 

However, it is not the case for large-scale structures. The sampling domain is periodically 

filled by the low- or high-momentum fluids, which causes a significant change in the 

kinetic energy. These reflect well on the magnitude of the fluctuation states.  

  



Chapter 7  
Analysis of a two-dimensional street canyon flow and mechanism of pollutant removal via SPOD with 2DFT 

160 

 

Figure 7.13 Probability density functions of the fluctuation states. (a) Mode A1, representing the large-

scale structure. (b) Mode B1, representing the small-scale structure. (c) Joint probability density function 

between the state of the large-scale structure and the amplitude of the small-scale structure. (c) Conditional 

probability density functions of the amplitude of the small-scale structure under different state intervals of 

the large-scale structure. Please see the text for the definition and details of the fluctuation states. 

Therefore, the target of the next step is to identify the phase denoting the appearance of 

the low- or high-momentum fluids, i.e., the main stretching direction in Figure 7.13 (a). 

This can be easily realised by solving the eigenvector (the one corresponding to the larger 

eigenvalue) of the following matrix:  

   
   

A1 A1 A1 A1

A1 A1 A1 A1

E Re( ) Re( ) E Re( ) Im( )

E Im( ) Re( ) E Im( ) Im( )

   

   

 
 
 

. (7.28) 

Alternatively, one can also perform a line fitting for the state samples, which was also 

tried in this study and the result will show little difference. In this study, the eigenvector 

is adopted, the direction of which is shown by the blue line in Figure 7.13 (a). One can 

refer to the shape of the corresponding mode to judge which of the two opposite 

directions of that line is for the high-momentum fluids. For example, the imaginary part 

of the mode nψ  shown in Figure 7.8 (a) presents the external fluctuation velocities 

which have the same direction of the mean wind. This indicates the high-momentum 

fluids. Therefore, if u  also presents the same shape as the high-momentum fluids, the 



Chapter 7  
Analysis of a two-dimensional street canyon flow and mechanism of pollutant removal via SPOD with 2DFT 

161 

inner product in Eq. (7.27) will results in a complex value with a relatively large negative 

imaginary part.  

 

The fluctuation state for the large-scale structure, L , is defined as the projection of A1  

on the blue line in Figure 7.13 (a), and the fluctuation state for the small-scale structure, 

S , is defined as equal to B1 . At this stage, the relationship between L  and S  is 

studied, where   denotes the modulus of a complex number. The correlation coefficient 

between them is defined as  

L S L S
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where yl and tj are the resolved y-coordinates and time, l = 1, 2, …,160, j = 1, 2, …,48000, 

M is the number of the samples which equals the product between the numbers of the 

resolved y-coordinates (160) and time (48,000). In this case, the correlation coefficient is 

found approximately 0.19. To confirm the universality, the same procedure was repeated 

for choosing modes A1–A3 as the large-scale structure and B1–B2 as the small-scale 

structure in turn. The resulted correlation coefficients are listed in Table 7.4, which are 

all around 0.2. The results are roughly consistent with those in Blackman and Perret 

(2016), although totally different filtering methods are applied. The correlation 

coefficients may imply the weak correlation between the motion of the large-scale 

structures and the amplitude of the small-scale structures. 

Table 7.4 Correlation coefficients between the state of the large-scale structure and the amplitude of the 

small-scale structure when choosing various modes as the large- and small-scale structure.  

Correlation coefficients 

Mode chosen as the large-scale structure 

A1 A2 A3 

Mode chosen 

as the small-

scale structure 

B1 0.1936 0.1958 0.1949 

B2 0.2134 0.2184 0.2163 

 

However, because such low correlation coefficients may be attributed to statistical 

uncertainties rather than correlation, the joint probability density function is further 

examined. Figure 7.13 (c) provides the joint probability density function between L  

and S  when choosing modes A1 as the large-scale structure and B1 as the small-scale 

structure. The results are similar if other modes are chosen. The figure shows that, with 

the increase of L , S  has the larger probability to become large. Although it is not a 
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necessary outcome, the small-scale structure has a good chance to be amplified or 

suppressed by the high- or low-momentum fluids. The conditional probability density 

functions of S  under the conditions of L 0.05   , L0.05 0.05   , and 

L 0.05  , are plotted in Figure 7.13 (d). These distributions also show the same 

tendency. Quantitively, the amplitude of the small-scale structure under a strong high-

momentum fluid is approximately 29% larger than that under a strong low-momentum 

fluid, and 13% larger than that when the large-scale structures are absent. These values 

are computed based on the comparisons of the expectations of the three conditional 

probability distributions. 

 

Finally, the statistics were performed base on the samples over the time and spanwise 

direction separately, to confirm that the nonlinear interactions occur along both the 

directions. The correlation coefficient over either direction is calculated as follow: 

 
L S L S

2 2

22
L L S S

1

48000
, 1,2,...,160

1 1

48000

j j j

j j j j

t t t

t l

t t t t

R y l

M

   

   



 
     
                

  

   

, (7.30) 

 
L S L S

2 2

22
L L S S

1

160
, 1, 2,..., 48000

1 1

160

l l l

l l l l

y y y

y j

y y y y

R t j

M

   

   



 
     
      
       

  

   

. (7.31) 

Rt denotes the correlation coefficient over the time, which varies with y and has 160 

samples. Ry denotes the correlation coefficient over the spanwise direction, which varies 

with t and has 48,000 samples. Again, the example of choosing modes A1 as the large-

scale structure and B1 as the small-scale structure is given, but the results are similar if 

other modes are chosen. The results are provided in Figure 7.14 by presenting the 

probability density function of the correlation coefficients. The majority of the samples 

of both correlation coefficients show positive values, which indicates the nonlinear 

interactions between the large- and small-scale structures occurs along both the time and 

spanwise direction.  
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Figure 7.14 Probability density functions of the correlation coefficient over (a) the time and (b) spanwise 

direction. Please see the text for more information. 

7.6 Summary 

This chapter continued the study of Chapter 6 on elucidating the turbulent structures 

within a two-dimensional street canyon, and seeking their contributes to the pollutant 

removal. To extract the turbulent structures over the spanwise direction, this study 

applied a technique named SPOD with 2DFT, which combines the spatial modal 

decomposition of POD along the streamwise and vertical directions and the Fourier 

modal decomposition along the time and the spanwise direction. The SPOD spectrum 

and co-spectra were all modified based on this technique. The modes showing the various 

fluctuation patterns were better visualised than Chapter 6, and their intensities and 

contributions to the pollutant removal were quantitatively analysed via the SPOD 

spectrum and co-spectra. In addition, based on these results, the nonlinear interactions 

between the large- and small-scale structures were discussed. The following was 

observed. 

 

(1) Because of the increase of the flow realisations, clearer shapes of turbulent structures 

were illustrated by the modes than the previous study. The large-scale structures mainly 

directly strengthen or weaken the principal recirculation within the canyon, and provide 

the air exchange mainly near the windward wall. The small-scale coherent structures 

provide the air exchange via the vortices induced by the Kelvin–Helmholtz instabilities. 

Not like the previous study where the Kelvin–Helmholtz vortices and the external 

vortices were presented in the same mode, the Kelvin–Helmholtz vortices was 

decomposed completely this time. These periodic fluctuation patterns are detected along 

both time and spanwise direction with specific frequencies and wavenumbers.  

 

(2) The nondimensional spanwise length scales were found approximately 1–5 times of 
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the nondimensional time scales for both large- and small-scale structures, although the 

mechanisms of these structures differ. This can be explained by the self-similarity of the 

high-Reynolds-number turbulence, i.e., a constant aspect ratio of the length scale is 

maintained. 

 

(3) On the SPOD co-spectra, the sweep and ejection events at the roof level mainly 

occurred at the spanwise wavenumber of |ηH| ≈ 1–4 and frequency of |fH/Uref| ≈ 0.2–0.8. 

This range coincided with that of the small-scale structures caused by the Kelvin–

Helmholtz instabilities at the roof level. The same range of wavenumber and frequency 

were found for pollutant removal, indicating that the small-scale structures at the roof 

level contribute the most to the pollutant removal.  

 

(4) Although the large-scale structures contributed less to the pollutant removal than the 

small-scale structures, they still had a good chance to enhance the pollutant removal 

indirectly by amplifying the small-scale structures. The correlation coefficient between 

the amplitude of the small-scale structures and the state of the large-scale structures was 

found approximately 0.2. The joint probability distribution indicated that the high- and 

low-momentum fluids passing through the canyon were related to the amplifying and 

suppressing of the small-scale structures. This phenomenon occurred stochastically along 

both the time and spanwise direction. Quantitively, the amplitude of the small-scale 

structure under a strong high-momentum fluid is approximately 29% larger than that 

under a strong low-momentum fluid, and 13% larger than that when the large-scale 

structures are absent. 

 

This study has provided significant insights into the turbulent structures and pollutant 

removal mechanism of a two-dimensional street canyon. However, we have restricted 

ourselves to the single geometry of the canyon, while previous studies have shown that 

the upstream-flow regime and aspect ratio can largely affect the turbulent structures 

(Blackman et al., 2018; Liu et al., 2005; Michioka and Sato, 2012), and thus may change 

the nature of pollutant removal. Further work may focus on discovering the variation of 

the turbulent structures when these factors are changed.  
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Chapter 8   

Conclusions and prospective 

8.1 Conclusions 

This study pioneers the applications of SPOD in wind environment fields. The 

applications in the following two classical cases were introduced: the flow field around 

single square-section building model and the two-dimensional street canyon flow. The 

effectivity of SPOD in identification of characteristic flow structures was well proved, 

even for the cases with very high Reynolds numbers. In addition, mathematical tools for 

evaluating the pedestrian-level wind environment and outdoor air exchanging are also 

developed in this study. The main findings of this study are listed as follow. 

 

In Chapter 4, SPOD analysis was performed on the flow field around a square-section 

building model calculated by LES to identify the three-dimensional main flow features 

within the sampling field. The identified features, including the low-frequency modes 

related to the fluctuation of the incoming flow, primary wake vortex shedding (Kármán-

type vortex shedding), tip and base vortices, and primary side vortex shedding (flow 

separation), were extracted from the single case at once. The primary frequency and the 

intensity of these features were revealed by studying the typical SPOD modes and 

estimating the energy percentage. In addition, the local-space SPOD spectrum was also 

defined to analyse the composition of the kinetic energy within some local parts of the 

sampling domain.  

 

The identified flow features and their details are summarised as follows: first, two 

energetic modes at low frequency were chosen as the typical modes to depict the 

symmetric and antisymmetric fluctuations around the building. They were found to be 

directly related to the inflow fluctuation by the local-space SPOD spectrum. The primary 

wake vortex shedding was depicted using a complex mode at the Strouhal frequency, 

which exhibited periodic vortex shedding. The tip and base vortex pair on one side of the 

building appeared in one SPOD mode, which indicated their correlation. The mode also 

showed an arch structure by which the tip and base vortices were connected. The same 
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structure was found on the roof of the building illustrated by another mode, which 

showed the other kind of development of the tip vortices. The primary side vortex 

shedding caused by the strong shear force and separation appeared on both the roof and 

sides of the building. However, the vortices at different heights on the sides were not 

synchronised. Finally, the local-space SPOD spectrum precisely showed the different 

compositions of the fluctuation patterns on the front, side, and back of the prism. In 

general, the SPOD spectrum provided a comprehensive view of the turbulent structures 

in this flow field, which was an integration of all the above flow features. Unlike previous 

studies, where different flow features were studied by different physical quantities, this 

study revealed the primary frequency and intensity for all features, using a single 

mathematical process.  

 

In Chapter 5, the target was focused on the pedestrian-level wind of the same case. The 

SPOD results for two simulation cases were compared, where the only difference was 

the existence of fluctuation at the inflow boundary, to show how the inflow fluctuation 

influenced the turbulent structures around the building. The results showed that the input 

of the inflow fluctuation on the inlet boundary had a significant influence on the turbulent 

structures at a low frequency because the modes and energy significantly differed. In 

both cases, the strongest modes corresponded to the Kármán-type vortex shedding, while 

the frequency was slightly larger when no fluctuation was input at the inflow boundary. 

The difference in the shapes of the Kármán-type vortex shedding was considered related 

to the difference in the mean velocity and TKE fields of the two cases. At a high 

frequency, flow separation phenomenon occurred on both sides of the building. In the 

case where no fluctuation was input at the inflow boundary, this phenomenon exhibited 

a peak on the distribution of energy, while it was not quite significant in the other case. 

A method was developed to decompose the TKE at a certain point and display the extent 

to which the fluctuating wind speed at the point is influenced by each mode. This is 

considered useful in the finding the main reason of large fluctuation and improvement of 

pedestrian-level wind. 

 

In Chapter 6, the SPOD technique was applied to decompose the velocity field of a two-

dimensional street canyon. The SPOD modes, depicting the large-scale coherent 

structures and Kelvin–Helmholtz instabilities, were well extracted and visualised. The 

SPOD modes depicted the Kelvin–Helmholtz instabilities as a series of vortices, which 

are generated at the roof level, and enter the canyon following the principal recirculation, 

while the fluctuation caused by the external large-scale coherent structures directly 

strengthens or weakens the principal recirculation. In addition, the ejection events and 

pollutant removal were quantitatively analysed using the newly defined SPOD co-spectra 
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to understand their relationships with the turbulent fluctuation patterns. The results 

showed that both Kelvin–Helmholtz instabilities and large-scale coherent structures can 

cause ejection and sweep events at the roof level, thus contributing to pollutant removal. 

However, the former contributed to stronger ejection and sweep events with stronger 

vertical components. The Kelvin–Helmholtz instabilities accounted for a small 

percentage of TKE, but they contributed most to the vertical turbulent mass flux at the 

roof level. In contrast, the large-scale coherent structures occupied a large proportion of 

the TKE, while they contributed less towards vertical turbulent mass flux. The 

intermittent concentration fluctuation fit better with the time scale of the Kelvin–

Helmholtz instabilities.  

 

In Chapter 7, the study on the two-dimensional street canyon flow is continued, but the 

spanwise performance and nonlinear interactions of the turbulent structures were mainly 

focused on. This was done by modifying the original SPOD to the one combining 2DFT. 

The SPOD co-spectrum defined in our previous study was also modified to a 2DFT 

version. As the result, the modes extracted by SPOD with 2DFT showed clearer shapes 

of turbulent structures than the previous study because of the increase of the flow 

realisations. These turbulent structures were depicted by periodic fluctuation patterns 

detected along both the time and spanwise direction with specific frequencies and 

wavenumbers. The nondimensional time scales were found approximately 1–5 times of 

the nondimensional spanwise length scales for both large- and small-scale structures, 

although the mechanisms of these structures differ. This can be explained by the self-

similarity of the high-Reynolds-number turbulence, i.e., a constant aspect ratio of the 

length scale is maintained. The SPOD co-spectra showed that the sweep and ejection 

events at the roof level mainly occurred at the spanwise nondimensional wavenumber of 

1–4 and frequency of 0.2–0.8. This range coincided with that of the small-scale structures 

caused by the Kelvin–Helmholtz instabilities at the roof level. The same range of 

wavenumber and frequency were found for pollutant removal. Although the large-scale 

structures contributed less to the pollutant removal than the small-scale structures, they 

still had a good chance to enhance the pollutant removal indirectly by amplifying the 

small-scale structures. The amplitude of the small-scale structures showed a weak but 

non-negligible correlation with the state of the large-scale structures. The joint 

probability distribution indicated that the high- and low-momentum fluids passing 

through the canyon were related to the amplifying and suppressing of the small-scale 

structures. This phenomenon appeared stochastically along both the time and spanwise 

direction. 
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8.2 Prospective for further work 

As previously mentioned in the conclusions, this study is just the very beginning of the 

applications of SPOD in the wind environment field. As SPOD has shown its 

effectiveness and efficiency in the analysis of high-Reynolds-number turbulence, it has 

the potential to become another useful tool for further research or design in the field of 

wind environment. Further studies and applications for the following objectives are 

suggested. 

 

(1) The studies in this thesis were restricted on the geometry and setting of building or 

canyon, while the studies can be extended on the following aspects: 

a. The flow around the square-section buildings with different aspect ratios (Sakamoto 

and Arie, 1983; Wang et al., 2009);  

b. Changing the attack angle of the flow in the single building case (Kawai, 1995); 

c. The wind-induced interference effects on multiple buildings (Khanduri et al., 1998; 

Kim et al., 2018); 

d. The canyons with different aspect ratios (Di Bernardino et al., 2018; Liu et al., 2005); 

e. The influence of the upstream-flow regime (Blackman et al., 2018; Jaroslawski et al., 

2019; Michioka and Sato, 2012); 

f. The turbulent structures within three-dimensional street canyon flow (Inagaki and 

Kanda, 2010; Kanda, 2006; Michioka et al., 2014). 

 

(2) Some new elements can also be added into the analysis of SPOD, listed as follow: 

a. Studies on wind-induced forces on buildings and the aerodynamically modifying the 

buildings. This is a new trend in building design. The aerodynamic characteristics of 

the building are highly related to the outer shapes (Sharma et al., 2019). It can be tried 

to modify the building shape according to the identified turbulent structure around it. 

b. The chemical reactions of the pollutant. Some reactive pollutants can still be 

considered as passive scalar quantities, because their chemical oxidation time scale 

is much longer than the canyon dynamical time scale. However, it is not the case for 

the relatively short-lived traffic-related pollutants (Zhong et al., 2016). Some studies 

(Han et al., 2018; Kikumoto and Ooka, 2012) have been conducted for the transport 

of these pollutants. It is considered interesting to study the relationship between 

turbulent structures and the reaction rates  

c. Techniques for improving the pollutant removal of pollution from urban canyons. For 

example, a modification of roof infrastructures was suggested by Cintolesi et al. 

(2021). SPOD might have the potential ability to provide a deeper insight on its 

mechanism and attempt to optimise the design.  
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d. Study on the in-canyon flow or turbulence. These might accelerate or decelerate the 

pollutant travelling from the bottom to the top of the canyon, and the fresh air entering 

the canyon and mixing. Additional quantities can be defined to quantify these speeds, 

such as the time scale (Barbano et al., 2021) or exchanging velocity (Solazzo and 

Britter, 2007). The study can be performed on different SPOD modes separately. 

 

(3) In the current study, several defects of SPOD were also found that might limit its 

applications in some cases. The defects are listed as follow, and further studies are 

suggested to make some improvement on these aspects: 

a. In Chapter 5, a local SPOD spectrum was used to decompose the TKE at a certain 

point, which identifies the most influential fluctuation pattern on this point, and 

contributes to the planning of countermeasures against a too-large TKE. However, 

neither POD nor SPOD provides a hint on the cause of the too-large mean wind speed, 

because the mean value has already been deducted before the implementing of POD 

or SPOD, while the too-large mean wind is also an important cause of wind nuisance. 

b. SPOD technique is based on the spatial and temporal correlation relationships, so it 

only provides correlation information. However, correlation only give hints on the 

relevance of two issues, but it does not confirm the causality. Therefore, in the 

applications of SPOD, remember to stay prudent when giving conclusions such as “A 

is found caused by B”, and provide more solid evidence. 
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