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Chapter 1  Introduction 

This dissertation developed a high order Vlasov equation solver and investigated 

the discharge current oscillation of a thruster with anode layer (TAL). In this chapter, the 

model of plasma simulation is discussed, following an introduction of the Hall thruster 

concepts. Then the oscillations in the Hall thruster are discussed. Finally, the objective 

and outlines of this dissertation are introduced.  

1 

1.1  General approaches of plasma simulation 

During the past decades, researchers developed numerous simulation models to 

investigate the characteristics of plasma flow. However, since plasma flow is strongly 

coupled with ions, neutrals, electrons, and electromagnetic fields, it is a challenge for 

researchers to come up with a well-defined simulation method that may hold a balance 

between the computational cost and the resolution of the physical phenomenon. 

One of the critical parameters in plasma flow is the Knudsen number, which 

represents the collisions between the particles: 

𝐾𝑛 =
𝜆

𝐿
, (1. 1) 

where 𝜆 is the mean free path and 𝐿 is the characteristic physical length of the research 

object. 

To investigate a certain physical problem of plasma mechanics or gas dynamics, 

the Knudsen number can provide a guidance that whether the kinetic assumption or the 

continuum fluid assumption should be employed. If 𝐾𝑛 ≥ 1, the particle’s mean free 

path is at the same order as the object’s characteristic physical length, the continuum 



 

2 

 

fluid approach cannot predict the physical phenomenon correctly. In such cases, the 

kinetic model is more appropriate to the problem compared with fluid description[1]. 

1.1.1 Kinetic description 

 

The elementary explanation of the plasma mechanics is the kinetic description, a 6-

dimensional (3 in space and 3 in velocity) velocity distribution function 𝑓(𝐱, 𝐯, 𝑡)  is 

employed to represent the time evolution of each species in plasma. 

 

A kinetic description can be achieved by solving the Boltzmann equation: 

 

𝜕𝑓

𝜕𝑡
+ 𝐯

𝜕𝑓

𝜕𝐱
+ 𝐚

𝜕𝑓

𝜕𝐯
= (

𝜕𝑓

𝜕𝑡
)

coll
, (1. 2) 

where 𝑓  represents the velocity distribution function, 𝒗  stands the velocity, 𝒂  is the 

acceleration of the particles and right hand side (
𝜕𝑓

𝜕𝑡
)

coll
 demonstrates the collision term. 

If the species in the plasma can be treated as collisionless, where only the long-range 

aggregated interactions is considered (right hand side (
𝜕𝑓

𝜕𝑡
)

coll
= 0 ), Equation (1.2) 

becomes the Vlasov equation.  

 

1.1.2 Fluid description 

 

To simplify the description for the plasma flow, the fluid model characterizes the 

physical phenomenon based on macroscopic quantities including density, velocity, and 

energy, by taking the velocity moments of the velocity distribution function, the 

macroscopic quantities can be expressed as: 

𝑛(𝐱, 𝑡) = ∫ 𝑓(𝐱, 𝐯, 𝑡) ⅆ𝐯
+∞

−∞

, (1. 3) 
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𝑢(𝐱, 𝑡) = 𝑛−1 ∫ 𝐯𝑓(𝐱, 𝐯, 𝑡) ⅆ𝐯
+∞

−∞

, (1. 4) 

𝜀(𝐱, 𝑡) = 𝑛−1 ∫
1

2
𝑚𝐯𝟐𝑓(𝐱, 𝐯, 𝑡) ⅆ𝐯

+∞

−∞

, (1. 5) 

where 𝑛 is the number density, 𝑢 is the mean velocity and 𝜀 is the mean energy. 

 

Integrating the moments of velocity of Vlasov equation and assuming the 

Maxwellian distribution for plasma distribution function, the conservation equations for 

the macroscopic quantities are: 

Mass conservation: 

 

𝜕𝑛

𝜕𝑡
+ 𝛁(𝑛𝐮) = 0, (1. 6) 

Moment conservation: 

 

𝑚𝑛 [
𝜕𝐮

𝜕𝑡
+ (𝐮 ⋅ 𝛁)𝐮] + 𝛁𝑝 − 𝑞𝑛(𝐄 + 𝐮 × 𝐁) = 0, (1. 7) 

Energy conservation: 

 

𝜕

𝜕𝑡
(

3

2
𝑝) + 𝛁 ⋅ (

3

2
𝑝𝐮 + 𝐪) + 𝑝𝛁 ⋅ 𝐮 = 0, (1. 8) 

where 𝑝 is the pressure term and 𝐪 is the heat flux. 

 

1.1.3 Hybrid description 

 

The hybrid description employs both fluid and kinetic models based on their 

physical characteristics. Some components of the system can be treated as fluid (𝐾𝑛 ≪

1) and others kinetically.  
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1.2  Hall thruster concepts 

 

Hall thrusters (HTs) are the electric propulsion device characterized by an annular 

acceleration channel with a radial magnetic field. The radial magnetic field captures the 

electrons at a desired location (perk magnetic flux density location), generating the Hall 

drift in the azimuthal (𝐄 × 𝐁) direction and leading to a concentrated ionization zone[2]. 

Propellants (Xenon or Krypton) are jet into the channel through the holes on the anode 

and ionized in the ionization region.  

 

Generally, HTs operates in the low electron temperature regime of 𝑂(10) eV, which 

refer to the partially ionized plasmas. With the increase of discharge voltage, the electron 

temperature may reach to 60 eV[3] . And of HTs’ plasma density ranges from 

1016 − 1018 m−3, referring  to an approximate Knudsen number from 0.1 to 10. In that 

case, the plasma inside the HTs may not be treated as full continuous fluid. Figure 1.1 

gives the HTs’ plasma parameters’ range. 

 

HTs can be classified into two kinds, the stationary plasma thruster (SPT[4]) 

employs a relatively longer channel and has ceramic channel walls, meanwhile the 

thruster with anode layer (TAL[5]) claims for a shorter channel with metallic walls. In 

HTs, the energy loss is mainly caused by the plasma-wall interaction. Owning to the 

metallic channel walls, the electron energy loss to the wall inside TAL can be minimized, 

and with a shorter channel length, the energy loss caused by the ions-wall interaction 

can also be reduced because of the short acceleration region. The total energy losses are 

very small inside the TAL[7], which lead to a higher efficiency than SPT. Figure 1.2 

shows the schematic of SPT (left) and TAL (right). 
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Figure 1.1 Hall thrusters’ plasma parameter range. 

 

 

 

Figure 1.2 Schematic of SPT (left) and TAL (right)[6]. 
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1.3  Oscillations in Hall thruster’s plasma 

Although HTs operate in the low plasma temperature regime, the ion and electron 

currents oscillate in a very broad frequency spectrum range from 10 kHz  to 1 GHz 

spontaneously. Figure 1.3 shows the magnitude ordering of relevant frequencies[8].  

 

The ionization oscillations (also being called the breathing mode) are always 

observed in the frequency band of 10 kHz. Such low frequency oscillations lead to a big 

fluctuation in discharge current, which yields the largest oscillation amplitude among 

oscillations occurred in HTs[9][10]. The trend of discharge current amplitude will affect 

the weight of power processing units (PPU). The azimuthal rotating spoke holds the 

same frequency with the ionization oscillation[11][12], which has an impact on electron 

transportation. 

 

 The transient-time oscillations are in the frequency band of 70 −  500 kHz, which 

was first presented by Esipchuck[13]. This oscillation yields a frequency that compare 

to the scale of 𝑢𝑖/𝐿, where L is the characteristic scale of acceleration. Here the transient-

time oscillations have a great effect on the plasma turbulent conductivity inside HTs[14]. 

 

Figure 1.3 Spectra bands of relevant frequencies[8]. 



 

7 

 

 

The oscillation band of 2 − 5 MHz is related to the electron oscillation scale. These 

types of oscillations were called the low-frequency electron drift instability (EDI), which 

were generated in the 𝐄 × 𝐁  direction. One mode of the oscillations has been first 

presented theoretically[15] before the observation by experiment. 

 

The high frequency EDI (10 − 100 MHz), were drawing significant attention in the 

recent research of HTs[16][17], it had a strong evidence that the EDI has an influence 

on the anomalous electron transport. Several electron anomalous collision frequencies 

associated to each of the different mechanisms are shown in Table 1.1.  

 

Table 1.1 Mechanisms for electron anomalous collision frequencies. 

Mechanisms 𝑣e,ano Reference 

Near wall conductivity 𝛽w𝑐s Barral[18] 

Bohm diffusion 𝑘ano𝜔e Fife[19] 

Shear-turbulence 

interaction 
𝑘ano𝜔e

1

1 + (𝐴𝛻𝑣de)𝐵
 Scharfe[20] 

Microscales of turbulence 𝑘ano𝜔e (
𝑣de

𝑐s
)

2

 Cappelli[21] 

Turbulence-wave 

interaction 
𝑘ano

|𝛻 ⋅ (𝐮i𝑛e𝑇e)|

𝑚e𝑛e𝑐s𝑣de
 Lafleur[22][23][24] 

 

1.4  Numerical methods proposed for Hall thruster simulation 

 

To study the Plasma characteristics of HTs, it claims a high-resolution 

computational model that may predict the real physic in a broad frequency spectrum. 

There are three models which have been employed by the researchers: full kinetic, full 

fluid and hybrid models.  

 

A continuum fluid model cannot describe the correct physical phenomenon for the 
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species with high Knudsen number (𝐾𝑛 > 1) inside the plasma. However, fluid models 

can still yield useful numerical results if there are enough collisions between the particles 

(𝐾𝑛 ≪ 1). Solving ions’ plasma behaviors are the most critical goal in HTs simulation 

since the heavy ions provides most of the thrust[25]. Among the majority simulation 

cases of HTs, the ion and neutral with large Knudsen number are calculated kinetically, 

and the magnetized electrons with small Knudsen number is treated as fluid, which lead 

to a hybrid model that will be explained in the later of this section. 

1.4.1 Particle-in-cell (PIC) method 

PIC methods are commonly used numerical simulation tools for kinetic plasma 

modelling. It employs the macroparticle to represent several amount of real particles, 

tracing each macroparticle under the Lagrangian framework. The equations of 

macroparticle motion follow Newton’s second law: 

ⅆ𝐱α

ⅆ𝑡
= 𝐯,

ⅆ𝐯α

ⅆ𝑡
= 𝐚α, (1. 9)

where α is the species of tracing macroparticle, 𝐯 is the macroparticle’s speed and 𝐚 is 

the acceleration of the macroparticle. A second-order leap-frog method has been 

commonly used for numerically integration, and a piecewise linear function is used for 

weighting between the particle positions and grid points. 

1.4.1.1  Statistical noise in PIC method 

In plasma simulation, the full PIC method traces all the species (including ions, 

electrons, and neutrals) as macroparticles. It can predict most of the physical phenomena. 

One of the demerits of this approach is the enormous computational cost due to the 

macroparticles need to be propagated in the electron motion time scale. Another 

disadvantage is the statistic noise (also called the discreate particle noise) caused by the 

finite number of macroparticles. 
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In one timestep, the PIC method can be divided into two simulation procedures: 

first, calculate the fields base on the simulated plasma velocity distribution function; 

second, update each macroparticle’s trajectory in the fields. The noise is generated in the 

first calculation procedure when the plasma velocity distribution function is solved with 

a small number of macroparticles (In an electron temperature gradient simulation, 

𝑁~108 vs 𝑁~1020 in experiment). Figure 1.4 shows the convergence study of electron

thermal diffusivity in electron temperature gradient simulation[26], the statical noise 

cause the physical distortion in the simulation results. Since each macroparticle contains 

the information of plasma velocity distribution function, finding the moments of the 

distribution function becomes equivalent with finding the solution of integrals in a large 

phase using the Monte-Carlo techniques[27]. 

The statistical noise exist in the PIC simulation leads to a difficulty in distinguishing 

the physical oscillations and numerical noises. Since the PIC method needs to maintain 

a minimum number of macroparticles inside one cell for the computation, it cannot 

resolute the correct distribution function when the number density becomes extremely 

small in some cells. The particle splitting method[28][29][30], which control the number 

of local macroparticles may keep the PIC simulation running with correct physical 

description, but this technique also increase the computational cost and the complexity 

of algorithms.  

Figure 1.4 Convergence study of electron thermal diffusivity in electron temperature 

gradient simulation, full PIC method[26]. 
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1.4.1.2  Pioneer works of HTs simulation by using full PIC method 

Contemporary works of HTs employing the full PIC method are conducted by many 

researchers. Szabo[31] developed a two-dimensional full PIC model to analysis a TAL 

thruster, since all the species needs to calculate on the electron motion time scale, Szabo 

increased the electron-ion mass ratio and the permittivity in space to accelerate the 

computational speed. The latter research which had been conducted by Blateau[32] and 

Irishkov[33] using the same approach to investigate the internal physical effects of SPTs. 

Cho[34] employed the semi-implicit method together with the artificial mass ratio model 

to investigate the discharge oscillation and wall erosion effect of UT-SPT-62. 

Lafleur[22][23] calculated the EDI by using a 1D-azimuthal PIC model and analyzed 

the electron anomalous collision frequency.  

 

1.4.2 Eulerian framework Vlasov equation solver for kinetic 

problem 

 

The grid-based Eulerian framework Vlasov equation (Equation 1.2 without source 

term) solver can be an alternative way to solve the kinetic plasma problem rather than 

the PIC method. Since the Vlasov equation solver calculates plasma velocity distribution 

function on the grid, the statistical noise caused by the PIC method can be eliminated 

through the interpolation procedure. As a result, the design order of accuracy can be 

achieved globally on all the grid point. However, the Vlasov equation solver requires a 

large storage of the multi-dimension problems (3D in space and 3D in velocities), and 

the numerical diffusion exists during the simulation procedure.  
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1.4.3 Hybrid model 

 

Most of the numerical studies of HTs simulate the SPT type configuration. The 

plasma behaviors indicate that the electrons can be described as the continuum fluid, 

meanwhile ions and neutrals are calculated kinetically. 

 

One of the pioneering works conducted by Komurasaki[36] employed the flux tube 

ion model and electron fluid model in two dimensions. The thrust performance and ion 

loss to the wall were investigated. A self-consistent PIC model for ions and quasi one-

dimensional electron fluid model were used by Fife[19] to describe the plasma-wall 

interaction. Kawashima[37][38] developed the hyperbolic equation system for the 

electron fluid model by adding the pseudo-time term to the elliptical equation set. The 

hybrid PIC method with hyperbolic electron fluid solver successfully predicted the 

rotating spoke in HTs. 

 

Boeuf[39] investigated the ionization oscillation by using a 1D quasi-neutral hybrid 

Vlasov-fluid model. The ions were simulated through the Vlasov equation and neutrals 

were solved through a continuity equation with constant flow speed. The Vlasov 

equation was solved by a second-order upwind scheme, and he insisted that ' the ion 

distribution in velocity space shows some obvious numerical diffusion effects when the 

upwind scheme is used. ' Morozov[40] developed another 1D hybrid Vlasov fluid code 

for transient 1D analysis, the ionization oscillation and ion’s distribution function were 

studied. Hara[41] reproduced the ionization oscillation and transient-time oscillation by 

developed the hybrid direct kinetic (DK) method, the Vlasov equation for ions and 

neutrals are solved through a finite volume method (FVM) with Monotonic Upwind 

Scheme for Conservation Laws (MUSCL) scheme[42]. 
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1.4.4 Full Fluid model 

 

In the plasma simulation, if the Knudsen number is small enough or the kinetic 

effect is not the main reason of the interested physical phenomenon, the full fluid model 

can be applied to simulate ions, neutrals, and electrons. The fundamental equation set 

contains several partial differential equations (PDEs) which describe the conservation of 

mass (Equation 1.6), momentum (Equation 1.7) and energy (Equation 1.8) with some 

additional equations to make the whole set self-consistent. 

 

A two-dimensional full fluid simulation model (Hall2De) for HTs has been 

developed by Mikellides[43][44], it employed a two-dimensional magnetic-field-

aligned mesh (MFAM) to get rid of unexpected sharp gradients that may not align with 

the calculation grid. Hall2De holds several merits over the hybrid-PIC method. It can 

extend the calculation domain widely in the plume region outside the thruster channel, 

and a noiseless result can be achieved compared with the statistical fluctuations inherent 

in PIC simulation. 

1.5  Comparison with previous work 

Table 1.2 Comparison with Direct Kinetic model[41]. 

 DK model SL model  

Numerical scheme Second-order FVM Fourth order SL method 

Specification  Eulerian Eulerian-Lagrangian 

Reconstruction method Arora-Roe scheme Fourth-order WENO scheme 

Stability Conditionally stable Unconditionally stable 

Conservative Mass conservative Mass conservative 

 

Table 1.2 shows the previous work conducted by Dr. Hara[41] which employed the 

same approach of Vlasov equation solver to solve the ion flow in HTs. The DK model 

was developed by FVM and the second-order Arora-Roe scheme was used for the flux 
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reconstruction. The Vlasov equation solver employed in this work was developed by the 

SL method with fourth-order WENO scheme. The SL method shows less dispersion error 

than the FVM, according to the stability analysis[45], SL method is unconditionally 

stable and FVM is conditionally stable. 

Figure 1.5 gives the results of strong nonlinear Landau damping generated by the 

second-order DK model and fourth-order SL model, as shown in the figure, the fourth-

order SL model captured the small energy tail better than the second-order DK model, 

and fourth-order SL model successfully captured the damping and growth rate of the 

electron energy, on the other hand it’s hard to justify the growth rate from the results 

generated by second-order DK model. The fourth-order SL model shows a higher 

resolution than the second-order DK model. 

  

Second-order FVM[41] Fourth-order SL method 

Figure 1.5 The simulation results of strong nonlinear Landau damping. 

 

1.6  Objective and outlines of this dissertation 

The objective of this dissertation is to develop a high resolution Vlasov equation 

solver that may replace the PIC method in the hybrid code. The following improvements 

are challenged: 

 

1. High spatial Accuracy: Fourth-order accuracy in space is achieved by employing 

the fourth-order Vlasov equation solver. 

2. Free from statistical noise: The Vlasov equation solver yields a smooth result 

which is free from statistical noise, and the numerical diffusion is small compared 
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with low order solver. 

3. Applicability to high dynamic density variation: The Vlasov equation solver 

shows the applicability to the kinetic problems especially in the low number density 

regime. 

 

Following the improvements, a constrained interpolation profile conservative semi-

Lagrangian (CIPCSL3) scheme is applied to solve the Vlasov equation. To keep the high 

spatial accuracy, a fourth order weighted essentially non-oscillatory (WENO) limiter has 

been employed.  

 

This dissertation contains five chapters. In chapter 2 the pioneer work of Vlasov 

solver and the numerical methods employed in this study are introduced. 

 

In chapter 3, the verification of CIPCSL3 method and the applications to the 

Vlasov-Poisson equation system are presented. The numerical features of fourth-order 

WENO limiter and second-order TVDCW limiter are investigated through all the test 

cases. Finally, the numerical results of two stream instability calculated by fourth-order 

CIPCSL3 Vlasov solver and full PIC solver are compared. 

 

In chapter 4, the one-dimensional hybrid ion-Vlasov and electron-fluid model of 

ionization oscillation simulation in Hall thruster is presented., the hybrid PIC solver 

solves the same case as a reference. The numerical results are compared between the two 

solvers. 

 

Finally in chapter 5, the conclusions of this dissertation are summarized. The future 

improvements for this study are presented as the future work. 
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Chapter 2  Implementations of the high-

resolution Vlasov equation solver 

In this chapter, the pioneer works and the numerical methods of Vlasov equation 

solver are introduced and the originality of this work is shown at the end.  

2.1 Upwind scheme 

The upwind scheme is a numerical method which design to solve the hyperbolic 

PDEs, to introduce the scheme, following one-dimensional linear advection equation is 

investigated:  

 

𝜕𝑓

𝜕𝑡
+ 𝑢

𝜕𝑓

𝜕𝑥
= 0, (2. 1) 

where 𝑢  is the velocity and 𝑓(𝑥, 𝑡)  is the physical valuable. A straightforward first 

upwind discretization of Equation (2.1) reads: 

 

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

∆𝑡
+ 𝑢

𝑓𝑖
𝑛 − 𝑓𝑖−1

𝑛

∆𝑡
= 0     𝑖𝑓 𝑢 > 0

𝑓𝑖
𝑛+1 − 𝑓𝑖

𝑛

∆𝑡
+ 𝑢

𝑓𝑖+1
𝑛 − 𝑓𝑖

𝑛

∆𝑡
= 0     𝑖𝑓 𝑢 < 0,

(2. 2) 

the upwind scheme discretizes PDEs with more points in the upwind side (based on the 

velocity direction). A series of numerical methods [46][47][48] have been developed 

under the upwind framework to solve hyperbolic PDEs problems. 

 

2.2  Pioneer works of semi Lagrangian Vlasov equation solver 

 

The semi-Lagrangian (SL) method is a numerical solution technique for solving the 

linear PDE (Equation 2.1) that represents the advection process. it was first presented by 

Wiin-Nielsen[49], this upwind method solves the Lagrangian parcels under a Eulerian 
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framework. It keeps the advantage of stability and avoids the disadvantage of statistical 

noise caused by the Lagrangian type numerical method. The scheme is also 

unconditionally stable and reveals little numerical dispersion. 

 

In 1976, Cheng[50] first applied SL method to solve the Vlasov-Poisson (VP) 

equation system by using cubic-splines and time vector splitting. Sonnendrücker[51] 

developed the SL method with cubic-splines and without time splitting for VP system. 

Nakamura[52] replace the polynomial with Hermite interpolation and transport the 

gradients information of the distribution function to keep the high-resolution feature. To 

maintain the mass conservation in SL method, Qiu presented the conservative WENO[53] 

reconstruction. In the recently year, many high order SL schemes, based on finite 

difference method (FDM), finite volume method (FVM) and discontinuous Galerkin 

method (DG), have been developed to simulate the Vlasov equation[55][56][57].  

 

Notwithstanding that several schemes with high spatial accuracy have been 

successfully developed for the VP system, no such research had been done for the HTs 

simulation by using a high-order Vlasov equation solver with electron fluid model. One 

of the challenges is that the ghost cell boundary condition for high order scheme is 

difficult to implement to keep the high-order feature near the boundary. The number of 

the ghost cells needs to satisfy the order of the scheme, and it needs to avoid the 

unphysical numerical oscillation enter the simulation domain. For a smooth wave form, 

the Lagrange polynomial can be used to extrapolate the values in the ghost cells, 

otherwise, numerical techniques (such as buffer zone boundary condition, WENO 

extrapolation or perfectly matched layer boundary condition) need to be applied to the 

ghost cell to eliminate the numerical oscillations outside the calculation domain. 
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2.3 Semi-Lagrangian method of linear advection equation 

 

Figure 2.1 Schematic of the backward semi-Lagrangian procedure. 

Considering the linear PDE as Equation (2.1), The SL method usually employs the 

Lagrangian invariant at time 𝑡: 

𝑓(𝑥, 𝑡) = 𝑓(𝑥̂, 𝑡 − 𝛥𝑡), (2. 3) 

where 𝑥̂ is the departure point of the physical valuable 𝑓(𝑥, 𝑡) at the time level of 𝑡 − 𝛥𝑡. 

The invariant valuable arrives at 𝑥  after 𝛥𝑡 . Figure 2.1 shows the schematic of SL 

procedure, the subscripts d stands for departure point and a stands for the arrival point. 

Since the departure point 𝑥̂  is not on the grid, two steps need to be done for the SL 

method to find the solution[54]: 

 

1. Calculate the trajectory of all the parcels on the grid. 

2. Construct an interpolation polynomial for 𝑓(𝑥̂, 𝑡 − 𝛥𝑡)  that contains the 

departure point of the trajectory. 

 

2.3.1 Conservative numerical schemes for SL method 

 

The semi Lagrangian method solving the Lagrangian parcel under Eulerian 

framework, it shows less dissipation and unconditional stable with large calculation time 

step. Since the SL method is developed to solve the pure linear advection equation, it 

does not guarantee the mass conservation law[59], this will affect the long-term 
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simulation’s results. Several numerical schemes [50] [58][60] developed for SL method 

in the early year still show the demerit of mass nonconservative.  

Recently, many researchers present the conservative form SL method by following 

the conservation law. Qiu[55] solved the conservation form equations by FDM with 

several high order WENO interpolations; Bonaventura[59] developed a conservative 

flux form SL method for the diffusion equations; Heath[56] demonstrated a DG method 

with upwinding for solving the VP equation system and Xiao[54] presented a compact 

CIP scheme with conservative relation to maintain the mass conservation. 

2.3.2 CIP method Families 

The Cubic-Interpolated Propagation (CIP) method was first presented by Yabe for 

solving hyperbolic equations[60][61], the CIP scheme propagated both point value and 

first derivative to maintain the correct waveform inside one cell Figure 2.2 compared the 

phase error of several schemes and demonstrated that ‘the CIP method reproduce the 

correct phase speed even up to 𝑘∆𝑥 = 𝜋 , which means that it can reproduce the 

wavelength by three points.’[62] Owing to the compact feature of this method, it can 

keep the high order accuracy by only employing one ghost cell at the boundary. 

Nakamura[52] developed the existed scheme to solve the multi-dimensional VP system, 

an exactly conservative SL framework multi-dimensional hyperbolic equations solver 

had also been developed with the same author[63]. A series of CIP schemes had been 

modified to make nonconservative semi-Lagrangian schemes be exactly conservative 

and change the name of the schemes to Constrained Interpolation Profiles (CIP) 

method[65]. Xiao[54] developed the Constrained Interpolation Profiles Conservative 

Semi-Lagrangian method with a third-order reconstruction polynomial inside the cell 

(CIPCSL3), and applied it to solve several physical problems[66][67]. Based on Xiao’s 

work, Sun[68] presented a fourth-order scheme which employed the fourth-order 

WENO limiter under the multi-moment FVM framework. 
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Figure 2.2 Phase error of various schemes[62]. 

 

2.3.3 High order CIPCSL3 approach 

2.3.3.1 CIPCSL3 framework 

 

 

 

Figure 2.3 Schematic of Point Value (PV) and Volume Integrated Average (VIA) 

value. 

 

To construct the interpolation polynomial inside the cell, a third-order Hermite 

interpolation function reads: 

 

𝑓(𝑥) = 𝑓(𝑥𝑖−1/2) + 𝑐1𝑖(𝑥 − 𝑥𝑖−1/2) + 𝑐2𝑖(𝑥 − 𝑥𝑖−1/2)
2

+

𝑐3𝑖(𝑥 − 𝑥𝑖−1/2)
3

. (2. 4)
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Figure 2.3 gives the schematic of each valuable inside a single one-dimensional cell. 

The point value (PV) is defined at the cell boundary and the Volume Integrated Average 

(VIA) value is determined at the cell center. At two boundaries of the cell, we have: 

 

𝑓(𝑥𝑖−1/2) = 𝑓𝑖−1/2
𝑃 , (2. 5) 

and 

 

𝑓(𝑥𝑖+1/2) = 𝑓(𝑥𝑖−1/2) + 𝑐1𝑖𝛥𝑥 + 𝑐2𝑖𝛥𝑥2 + 𝑐3𝑖𝛥𝑥3 = 𝑓𝑖+1/2
𝑃 , (2. 6) 

the VIA in the middle of the cell is imposed as: 

 

1

𝛥𝑥
∫ 𝑓(𝑥) ⅆ𝑥

𝑖+1/2

𝑖−1/2

= 𝑓(𝑥𝑖−1/2) + (
1

2
) 𝑐1𝑖𝛥𝑥 + (

1

3
) 𝑐2𝑖𝛥𝑥2 +

(
1

4
) 𝑐3𝑖𝛥𝑥3 = 𝑓𝑖

𝑉 , (2. 7)

 

finally, the first derivative defined in the middle point of the cell reads:  

 

ⅆ𝑓(𝑥)

ⅆ𝑥
|

𝑥=𝑥𝑖

= 𝑐1𝑖 + 𝑐2𝑖𝛥𝑥 +
3

4
𝑐3𝑖𝛥𝑥2 = ⅆ𝑖 . (2. 8) 

Each coefficient of Equation (2.6) can be expressed by the point value 𝑓𝑃  defined 

at each boundary, VIA 𝑓i
𝑉  described at cell center and first derivative ⅆ𝑖 specified at cell 

center. By employing the upwind-bias at the boundary, the coefficients read: 

 

if 𝑢 ≥ 0, 

V P

1 1 1/2 13

V P P

2 1 1/2 3/2 14 2

P P

3 1/2 3/2 13 2

6 6
2

6 3 6
(3 )

4 4
( )

L n n n

i i i i

L n n n n

i i i i i

L n n n

i i i i

c f f d
x x

c f f f d
x x x

c f f d
x x

− − −

− − − −

− − −


= − + −  




= − + − −
  


= − −   , (2. 9)
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if 𝑢 < 0, 

V P

1 1/2 13

V P P

2 1/2 1/2 14 2

P P

3 1/2 1/2 13 2

6 6
2

6 3 6
(3 )

4 4
( )

R n n n

i i i i

R n n n n

i i i i i

R n n n

i i i i

c f f d
x x

c f f f d
x x x

c f f d
x x

− +

− + +

− + +


= − −  




= − + − +
  


= − − −   , (2. 10)

 

once all the coefficients are determined, the solution of the physical valuable 𝑓 at time 

level 𝑡𝑛+1 can be obtained through: 

 

1 ( )   if 0

( )   if 0

L

n

R

f x u t u
f

f x u t u

+
 −  

= 
−   . (2. 11)

 

Here the superscripts 𝐿 and 𝑅 represent the coefficients (Equations 2.9, 2.10) depending 

on the velocity direction. 

 

To keep the mass conservation, the VIA should be advanced by the conservative 

relation[64][65]: 

 

𝑓𝑉̅̅̅ ̅n+1 = 𝑓𝑉̅̅̅ ̅n − (𝑔𝑖+1/2 − 𝑔𝑖−1/2), (2. 12) 

where g𝑖+1/2 is the flux of physical valuable that get through the boundary 𝑥 = 𝑥𝑖+1/2 

during 𝛥𝑡, and it can be estimated by: 

 

𝑔𝑖+1/2 = ∫ [min(0, 𝑢) 𝑓𝑖+1/2
𝑅 (𝑥𝑖+1/2 − 𝑢(𝑡 − 𝑡𝑛)) +

𝑡𝑛+1

𝑡𝑛

                                 max(0, 𝑢)𝑓𝑖+1/2
𝐿 (𝑥𝑖+1/2 − 𝑢(𝑡 − 𝑡𝑛))]ⅆ𝑡 , (2. 13)

 

and the velocity 𝑢 keeps constant during the time interval 𝛥𝑡 leads to: 

 

𝑔𝑖+1/2 = − min(0, 𝜉) (𝑓𝑖+1/2
𝑛 +

1

2
𝑐1𝑖

𝑅 𝜉 +
1

3
𝑐2𝑖

𝑅 𝜉2 +
1

4
𝑐3𝑖

𝑅 𝜉3) 

                               − max(0, 𝜉) (𝑓
𝑖+

1
2

𝑛 +
1

2
𝑐1𝑖

𝑅 𝜉 +
1

3
𝑐2𝑖

𝑅 𝜉2 +
1

4
𝑐3𝑖

𝑅 𝜉3) , (2. 14) 

where 𝜉 = −𝑢𝛥𝑡. 
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The first derivative defined at the cell center ⅆ𝑖
𝑛  is a free parameter that can be 

modified to maintain the interpolation polynomial, in order to make the numerical 

simulation reach some designed properties. In this dissertation, the first derivative has 

been interpolated by a fourth-order WENO limiter, a second-order TVDCW limiter is 

also being taken into consideration as a reference. 

 

Full computational procedures within one CIPCSL3 step: 

 

⚫ Construct the interpolation formula 

1. Compute the first derivative ⅆ𝑖
𝑛 by any numerical approximation. 

2. Calculate the coefficients of cubic polynomial by Equations (2.9, 2.10). 

 

⚫ Advance the valuable 

1. Compute the SL solution by Equation (2.11). 

2. Update the VIA through Equation (2.12). 

Here the calculation procedure in one dimension can be expressed as: 

 

CIPCSL1D(𝑢̃𝑖𝑗
, 𝑓𝑉̅̅̅ ̅, 𝑓𝑉̅̅̅ ̅new, 𝑓𝑃 , 𝑓𝑃 𝑛𝑒𝑤), (2. 15) 

where 𝑓𝑉̅̅̅ ̅ and 𝑓𝑃  are the old valuables of VIA and PV in 1D, 𝑓𝑉̅̅̅ ̅new and 𝑓𝑃 𝑛𝑒𝑤 are 

the updated valuables after the CIPCSL3 procedure. 
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2.3.3.2 Fourth order WENO limiter 

 

 

Figure 2.4 Stencils of WENO limiter. 

 

The fourth order WENO limiter[68] is built with the PV and VIA locally getting 

from the CIPCSL3 scheme. 

Here, the PV at cell center can be calculated through: 

 

𝑓𝑖
𝑃 =

3

2
𝑓𝑖

𝑉 −
1

4
( 𝑓𝑖−1/2 + 𝑓𝑖+1/2

𝑃𝑃 ). (2. 16) 

By employing the PV at the cell center, WENO interpolation sub stencils can be 

settled as  

Figure 2.4. The first derivative can be calculated on each stencil and weighted by 

the second-order polynomials: 

 

                              𝑞0
[1](𝑥𝑖) =

3 𝑓𝑖
𝑃 + 𝑓𝑖−1 − 4 𝑓𝑖−1/2

𝑃𝑃

𝛥𝑥
 

𝑞1
[1](𝑥𝑖) =

𝑓𝑖+1/2 − 4 𝑓𝑖−1/2
𝑃𝑃

𝛥𝑥
(2. 17) 

                                𝑞2
[1](𝑥𝑖) =

3 𝑓𝑖 + 𝑓𝑖+1
𝑃 − 4 𝑓𝑖+1/2

𝑃𝑃

𝛥𝑥
.  

A fourth-order polynomial inside sub stencil 𝑆3 can be derived to approximate the 

first derivative with fourth-order spatial accuracy: 

 

𝑄𝑖
[1](𝑥𝑖) =

8 𝑓𝑖+1/2 + 𝑓𝑖−1 −𝑃𝑃 8 𝑓𝑖−1/2 − 𝑓𝑖+1
𝑃𝑃

6𝛥𝑥
. (2. 18) 

Equation (2.17) can be reconstructed through the linear combination of second-order 
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polynomials (Equation 2.16): 

𝑄𝑖
[1](𝑥𝑖) = ∑ 𝛾𝑗

2

𝑗=0

𝑞2
[1](𝑥𝑖), (2. 19) 

where the linear weights are: 𝛾0 =
1

6
, 𝛾1 =

2

3
, 𝛾2 =

1

6
. 

 

The WENO reconstruction substitute the linear weights 𝛾𝑗  with nonlinear weights 𝜔𝑗, 

here the smoothness indicator is designed as: 

 

1/8

1/8

2
2 1 2

1

( )
( ) ,    0,1,2

i

i

x jl
j i lx

l

q x
x dx j

x


+

−

−

=


=  =




. (2. 20)
 

 

For the computing of WENO nonlinear weights, many researchers followed the 

classical WENO-JS scheme which presented by Jiang and Shu[70]. By comparing series 

algorithms of WENO nonlinear weights such as WENO-Z[71] and WENO-M[72] et al. 

Shen[73] analyzed the accuracy loses near the contact discontinuity regime of each 

scheme. The results proved that WENO-Z provided a reasonable balance between the 

order of accuracy in space and the algorithmic complexity. 

 

Here, the WENO-Z scheme is applied to the reconstruction of the first derivative 

by calculating the nonlinear weights with: 

 

2

0

,     (1 ( ) ),     0,1,2
j p

j j j

jkk

j
 

  
 

=

= = + =
+ , (2. 21)

 

where 𝜀 = 10−40  and  𝜏 = |𝛽2 − 𝛽0| . 𝑝  controls the weights of the stencils which 

contain discontinuity, increasing this value will make the solution in smooth region close 

to the central scheme, but will generate large numerical dissipation near the 

discontinuities. For the work in this dissertation, 𝑝 = 1 is employed. 

 

 

 



 

25 

 

The WENO scheme reconstructed the first derivative by: 

 

2
[1] [1]

0

( ) ( )i i j j i
j

Q x q x
=

=
, (2. 22)

 

where 𝑄𝑖
[1]̃

(𝑥𝑖)  is corresponding to ⅆ𝑖
𝑛  which has been treated as a free parameter in 

CIPCSL3 method above Equations (2.9, 2.10).  

 

Although this WENO limiter provides a good spatial accuracy during the 

simulation, it is not following the rule of positive-persevering. During the simulation of 

VP equation system which will be introduced in the next chapter, a very small 

undershooting (negative value of distribution function) with the order of 𝑂(10−4)  in 

strong nonlinear Landau damping and 𝑂(10−10) in two stream instability are observed. 

 

2.3.3.3  The TVDCW limiter 

 

To compare with the low order scheme, a second-order limiter which has the same 

form as Collela and Woodward[74] is employed. 

 

Recalling the PV defined at cell center (Equation 2.15), the first derivative can be 

calculated through: 

 

1 1 1 1

1 1

min( ,2 ,2 )
   if ( )( ) 0

0                                        otherwise

P P P P P P

i i i i i i P P P P

i i i i
i

f f f f f f
f f f f

d x

+ − + −

+ −

 − − −
 − − 

=  

 . 

(2. 23) 

This CW reconstruction claims a second-order accuracy in smoothness region, but it 

creates a plateau in the area where the first derivative changes the sign[54]. 
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2.4  Time discretization for Vlasov equation 

 

The collisionless Boltzmann equation, also known as Vlasov equation reads: 

 

0
f f f

t

  
+ + =

  
v a

x v , (2. 24)
 

the nonlinear Vlasov equation can be discretized into several linear advection PDEs by 

using the second-order Strang time splitting[75] and solving by the CIPCSL3 method:  

 

0

0

f f

t

f f

t

 
+ =  


  + =

  

v
x

a
v . (2. 25)

 

 

Figure 2.5 gives the schematic of PV VIA and SIA in two-dimensional case. The 

calculation procedures read: 

 

Procudure 1:          

𝑢̃𝑖𝑗 = (𝑢𝑖−1 2⁄ 𝑗−1 2⁄ + 𝑢𝑖−1 2⁄ 𝑗+1 2⁄ ) 2⁄

𝐶𝐼𝑃𝐶𝑆𝐿1𝐷(𝑢̃𝑖𝑗 , 𝑓𝑉̅̅̅ ̅, 𝑓𝑉̅̅̅ ̅𝑝1, 𝑓𝑆̅̅̅ ̅
𝑌, 𝑓𝑆̅̅̅ ̅

𝑌
𝑝1

)

𝐶𝐼𝑃𝐶𝑆𝐿1𝐷(𝑢𝑖−1 2⁄ 𝑗−1 2⁄ , 𝑓𝑆̅̅̅ ̅
𝑋, 𝑓𝑆̅̅̅ ̅

𝑋
𝑝1

, 𝑓
𝑝

, 𝑓
𝑝 𝑝1)

(2. 26) 

 

Procudure 2:

𝑣̃𝑖𝑗 = (𝑣𝑖−1 2⁄ 𝑗−1 2⁄ + 𝑣𝑖−1 2⁄ 𝑗+1 2⁄ ) 2⁄

CIPCSL1D(𝑣̃𝑖𝑗
, 𝑓𝑉̅̅̅ ̅𝑝1, 𝑓𝑉̅̅̅ ̅p2, 𝑓𝑆̅̅̅ ̅

𝑋
𝑝1, 𝑓𝑆̅̅̅ ̅

𝑋
p2

)

CIPCSL1D(𝑣𝑖−1 2⁄ 𝑗−1 2⁄
, 𝑓𝑆̅̅̅ ̅

𝑌
𝑝1, 𝑓𝑆̅̅̅ ̅

𝑌
p2, 𝑓𝑝1𝑝 , 𝑓

𝑝 p2),

(2. 27) 

where 𝑢̃𝑖𝑗 , 𝑣̃𝑖𝑗 are the averaged velocity in each direction, 𝑢𝑖−1 2⁄ 𝑗−1 2⁄ , 𝑣𝑖−1 2⁄ 𝑗−1 2⁄  are 

the velocity in each direction defined at cell boundary, 𝑓𝑉̅̅̅ ̅ is the VIA defined at cell 

center, 𝑓𝑆̅̅̅ ̅ is the SIA defined at the center of each boundary and 𝑓𝑃  is the PV defined at 

the boundary, the superscript 𝑝1 and 𝑝2 stand for the new valuables which are updated 

during produce 1 and produce 2, the subscript 𝑋  and 𝑌  represent the valuables in 𝑥 

direction and 𝑦 direction. 
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Figure 2.5 The schematic of Point Value (PV) defined at boundary, Surface Integrated 

Average (SIA)defined at surface and Volume Integrated Average (VIA) in two-

dimensional case. 

 

For the VP equation system, the velocity space becomes 𝑦  direction, and the 

velocity in 𝑦 direction stands for the acceleration. the calculation following: 

 

Step1: Doing procedure 1 in 𝑥 direction for 1/2∆𝑡. 

Step 2: Update electric field E. 

Step 3: Doing procedure 2 in velocity direction (𝑦 direction) for ∆𝑡. 

Step 4: Repeat step 1. 

 

Since the departure point problem of the SL method can be solved through an 

ordinary differential equation: 

 

0 0 1/2

( , )

( )n
i

dX
a X t

dt
X t t X x

+







= −

= = =
, (2. 28)

 

a third-order Runge-Kutta method is employed for each CIPCSL3 procedure: 
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2.5  Summary of this chapter 

This chapter introduces the pioneer work of the Vlasov equation solver and the CIP 

methods family. The Vlasov equation solver developed in this dissertation is based on 

the CIPCSL3 method, by applying the fourth-order WENO limiter to the first derivative, 

the important findings are: 

 

1. The CIPCSL3 framework shows a high-resolution feature on the coarse mesh 

due to the characteristic of compact scheme. It maintains the mass conservation 

by employing a flux type conservation equation (Equation 2.12). The first 

derivative is a free parameter which can be modified to design the ideal 

computational method. 

 

2. By applying the fourth-order WENO limiter to the CIPCSL3 reconstruction 

procedure, the stability and accuracy can be guaranteed, the WENO limiter also 

generate in a compact form which employs the PV defined at cell center. 

 

3. For CIPCSL3 method, more storages are needed because it propagates the VIA 

together with PV, which is a demerit when calculating the multi-dimension 

problem.  

 

The originality of this dissertation is to develop a high resolution noiseless Vlasov 

equation solver for the HTs simulation, the CIPCSL3 method with fourth-order WENO 

limiter is employed to solve the Vlasov equation. Compared with previous works of SL 
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method Vlasov equation solver, the CIPCSL3 method keeps the conservation in mass by 

propagating the VIA through a flux type conservative relation Equation (2.12). 

For the boundary condition implementation, only one ghost cell needs to be applied 

to one side of the boundary because of the compact feature of CIPCSL3 method.  

 

The pioneer works of HTs simulation with hybrid Vlasov-fluid model employed 

second-order schemes [39][41] to solve the Vlasov equation, which yield large 

numerical diffusion on a coarse mesh. The Vlasov equation solver developed in this 

dissertation achieved low numerical diffusion results on a coarse mesh, this feature will 

significantly reduce the storage of the calculation domain in multi-dimension simulation. 

The verifications of the method will be shown in the next chapter. 
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Chapter 3  Verification of CIPCSL3 method 

and Vlasov solver 

A high resolution noiseless Vlasov equation solver is successfully developed under 

the CIPCSL3 framework. In this chapter, the CIPCSL3 method is verified through 

several test problems. The order of accuracy with fourth-order WENO limiter and 

second-order TVDCW limiter is checked through sinusoidal wave propagating problems. 

The ability to capture the discontinuities is tested by the one-dimensional square wave 

propulsion and two-dimensional rigid body test cases, and the applicability to solve the 

Vlasov equation is confirmed by solving the Vlasov-Poisson equation system. Linear 

Landau damping, nonlinear Landau damping and two-stream instability are discussed.  

3.1 The Courant-Freidrich-Lewy condition 

Considering the simply linear advection equation (Equation 2.10), the Courant-

Freidrich-Lewy (CFL) condition[69] is defined as: 

 

𝐶𝐹𝐿 = 𝑢
Δ𝑡

Δ𝑥
, (3. 1) 

where Δ𝑡 is the timestep for one loop in the simulation and Δ𝑥 is the size of grid. The 

CFL condition represents the physical information propagate during one timestep inside 

the grid must be smaller than the grid size, which is 𝐶𝐹𝐿 < 1. 

 

For the numerical simulation, the CFL number or the timestep can be fixed to satisfy 

the stability condition. The test cases in this chapter employ the fixed CFL number, and 

the timestep is calculated by Δ𝑡 = 𝐶𝐹𝐿 ∗ Δ𝑥/𝑢. For the Vlasov equation solver, the CFL 

condition needs to be satisfied in each direction (𝑥  in space and 𝑣  in velocity), the 

timestep for Vlasov equation solver reads: 
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Δ𝑡 = 𝐶𝐹𝐿 ∗ min (
Δ𝑥

𝑢
,
Δ𝑣

𝑎
) , (3. 2) 

where a is the acceleration of the physical valuable and Δ𝑣 is the grid size in velocity 

space. 

 

For the spatial accuracy and discontinuities test cases, 𝐶𝐹𝐿 = 0.4 is used. For the 

Vlasov equation solver, the CFL number is set based on the problem requirement. 
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3.2  Outline of the code verification 

Confirmation of the spatial accuracy 

 

➢ Scalar sinusoidal wave propagation with periodic boundary condition in one 

dimension and two dimensions. 

 

Confirmation of the ability to capture discontinuities 

 

➢ One-dimensional square wave propagation, Jiang Shu’s problem. 

➢ Two-dimensional rigid body rotation. 

 

Applicability of CIPCSL3 method to solve the 1D1V Vlasov-

Poisson system 

 

➢ Landau damping 

 Weak linear Landau damping 

 Strong nonlinear Landau damping 

 

➢ Two stream instability 

 Confirmation of spatial accuracy in VP system 

 Comparison between fourth-order CIPCSL3 method and fully PIC method 
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3.3 Confirmation of the spatial accuracy 

 

In this subsection, the numerical test advected with the smooth distribution in one-

dimension and two-dimension.  

 

Case 3.1 One-dimensional sinusoidal wave advection 

This test advects the non-dimensional profile with the linear advection equation: 

 

𝜕𝑓

𝜕𝑡̃
+

𝜕𝑓

𝜕𝑥̃
= 0, (3. 3) 

where the initial condition reads: 

 

𝑓(𝑥̃, 0) = sin(2𝜋𝑥̃),       𝑥̃ ∈ [0,1], (3. 4) 

the periodic boundary condition is employed in 𝑥 direction and the 𝐿2 error is calculated 

by: 

 

𝐿2 = (
∑(𝑓𝑛 − 𝑓𝑒𝑥𝑡)

2

𝑁
)

1
2

, (3. 5) 

where 𝑁 is the number of grids. All the solution plots and 𝐿2 errors are estimated at 𝑡 =

2.0 (after two periods). 

 

Figure 3.1 Shows the solution plots of each limiter with grid number 𝑁𝑥 = 50, the 

WENO scheme achieved a good agreement with the exact solution, on the other hand, 

the TVDCW scheme created a plateau near the peak values, Figure 3.2 demonstrates the 

convergence speed of 𝐿2 errors, Table 3.1 shows the  𝐿2 errors with order of accuracy in 

space, each limiter achieved the design order of accuracy in 1D respectively.  
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a) Fourth-order WENO limiter 

 

b) Second-order TVDCW limiter 

Figure 3.1 Numerical solution of one-dimensional sinusoidal wave advection, 𝑁𝑥 =

50, 𝑡̃ = 2.0. 
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Table 3.1 𝐿2 errors and order of accuracy for one-dimensional test case, 𝑡̃ = 2.0. 

𝑁𝑥 4th order WENO  2nd order TVDCW 

𝐿2 error order  𝐿2 error order 

50 2.85E-07   1.14E-02  
100 1.09E-08 4.74E+00  3.01E-03 1.92E+00 

200 4.59E-10 4.56E+00  7.68E-04 1.97E+00 

400 2.18E-11 4.39E+00  1.92E-04 2.00E+00 

800 1.20E-12 4.19E+00  4.75E-05 2.02E+00 

 

 

 

Figure 3.2 𝐿2 errors of one-dimensional test case. 
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Case 3.2 Two-dimensional sinusoidal wave advection 

The two-dimensional sinusoidal wave is proposed by: 

𝜕𝑓

𝜕𝑡̃
+

𝜕𝑓

𝜕𝑥̃
+

𝜕𝑓

𝜕𝑦̃
= 0, (3. 6) 

the non-dimensional initial condition follows: 

𝑓(𝑥̃, 𝑦̃, 0) = sin(2𝜋(𝑥̃ + 𝑦̃)),    𝑥̃ ∈ [0,1], 𝑦̃ ∈ [0,1]. (3. 7) 

the periodic boundary conditions are applied to both 𝑥 and 𝑦 directions. the simulation 

stops at 𝑡̃ = 2.0. 

 

Figure 3.3 gives the analytical solution contour plot at 𝑡̃ = 2.0. Figure 3.4 plots the 

cross-section at  𝑥 = 0.5 for each limiter with grid number of 𝑁𝑥 ∗ 𝑁𝑦 = 100 ∗ 100, the 

plateau created by the TVDCW scheme is confirmed in two-dimensional test case. Table 

3.2 shows the 𝐿2 error and the order of accuracy of each limiter in two-dimensional 

sinusoidal wave advection problem, the convergence speed is shown in Figure 3.5. Both 

limiters achieve the design spatial accuracy in 2D respectively. 

Table 3.2 𝐿2 errors and order of accuracy for two-dimensional test case, 𝑡̃ = 2.0. 

𝑁𝑥 ∗ 𝑁𝑦 
4th order WENO  2nd order TVDCW 

𝐿2 error order  𝐿2 error order 

50*50 4.00E-07   8.03E-03  
100*100 2.37E-08 4.08E+00  2.09E-03 1.94E+00 

200*200 1.45E-09 4.03E+00  5.35E-04 1.97E+00 

400*400 8.18E-11 4.14E+00  1.35E-04 1.99E+00 

800*800 5.20E-12 3.98E+00  3.30E-05 2.03E+00 

 

Figure 3.3 The analytical contour plot of two-dimensional sinusoidal wave advection. 
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Cross-section plot 

 

Local zoom-in view 

Figure 3.4 Cross-section plots and the zoom-in view of two-dimensional sinusoidal 

wave advection at 𝑥 = 0.5, 𝑁𝑥 ∗ 𝑁𝑦 = 100 ∗ 100, 𝑡̃ = 2.0. 
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Figure 3.5 𝐿2 errors of two-dimensional test case. 
 

 

3.4 Confirmation of the ability to capture discontinuities 

 

In this subsection, the ability to capture the jump discontinuities is investigated 

through the one-dimensional square wave transportation problem, Jiang Shu problem 

and two-dimensional rigid body rotation problem. 

 

Case 3.3 One dimensional square wave transportation 

 

Recalling the calculation condition in Case 3.1, the non-dimensional initial 

condition of square wave profile reads: 

 

𝑓(𝑥̃, 0) = {
1          if 0.35 ≤ 𝑥̃ ≤ 0.65
0          otherwise                

, (3. 8) 

the simulation runs with grid number of 𝑁𝑥 = 100  and stops at 𝑡 = 2  (two periods), 

Figure 3.6 shows the solutions of the two limters. Both algothams capture the jump 



 

39 

 

discontinuities without generate significant oscillations, the WENO limiter captures the 

sharp gradients of the wave within 5 grid points, meanwhile the TVDCW limiter 

captures it with 12 points. 

 

 

 

Figure 3.6 Numerical results of one-dimensional square wave transportation.𝑁𝑥 =

100, 𝑡̃ = 2.0. 

 

Case 3.4 Jiang and Shu’s linear advection test case 

This test was proposed by Jiang and Shu[70], here the initial condition follows the 

equation set (3.43) and the calculation domain is 𝑥̃ ∈ [−1,1] with periodic boundary 

condition, the calculation condition employed the grid number of 𝑁𝑥 = 200. The 

functions inside the non-dimensional initial condition read:  

 

𝐺(𝑥̃, 𝛽, 𝑧) = exp(−𝛽(𝑥̃ − 𝑧)2) , 𝐹(𝑥̃, 𝛼, 𝑎) = √max(1 − 𝛼2(𝑥̃ − 𝑎)2, 0) , (3. 9) 

the coefficients are given by: 
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𝑎 = 0.5, 𝑧 = −0.7, 𝛼 = 10, 𝛿 = 0.005 𝑎𝑛ⅆ 𝛽 =
log2

36𝛿2
, (3. 10) 

and the initial condition follows: 

 

1
( ( , , ) ( , , ) 4 ( , , )),   0.8 0.6

6

1,                                                                           0.4 0.2

( ,0) 1 10( 0.1) ,                                            

G x z G x z G x z x

x

f x x

    − + + + −   −

−   −

= − −                 0 0.2

1
( ( , , ) ( , , ) 4 ( , , )),       0.4 0.6

6
0,                                                                                 otherwise

x

F x a G x a G x a x    













 

− + + +  

. 

(3. 11) 

 

Jiang and Shu’s problem evaluated the scheme’s ability of capturing both 

discontinuities and smoothness profiles, Figure 3.7 shows the numerical results at 𝑡̃ =

2.0, WENO scheme successfully obtains the correct waveforms, on the other hand, the 

CW limiter failed to predict the waveforms with sharp gradients. Figure 3.8 shows the 

long-time calculation features where 𝑡̃ = 200.0  (100 periods). Compared with the 

TVDCW scheme, WENO shows the characteristics of high spatial resolution all the time. 
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a) Fourth-order WENO limiter 

b) Second-order TVDCW limiter 

Figure 3.7 Numerical results of Jiang and Shu’s test case, 𝑁𝑥 = 200, 𝑡̃ = 2.0. 
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a) Fourth-order WENO limiter 

b) Second-order TVDCW limiter 

Figure 3.8 Numerical results of Jiang and Shu’s test case, 𝑁𝑥 = 200, 𝑡̃ = 200.0. 
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Case 3.5 Two-dimensional rigid body rotation problem 

Considering the non-dimensional rigid body rotation problem: 

 

𝜕𝑓

𝜕𝑡̃
− (𝑦̃ −

1

2
)

𝜕𝑓

𝜕𝑥̃
+ (𝑥̃ −

1

2
)

𝜕𝑓

𝜕𝑦̃
= 0, (3. 12) 

the initial condition employed the smooth hump which follows: 

 

𝑓(𝑥̃, 𝑦̃, 0) =
1

4
(1 + cos(𝜋𝑟(𝑥̃, 𝑦̃))) , 𝑥̃ ∈ [0,1], 𝑦̃ ∈ [0,1], (3. 13) 

where: 

 

𝑟(𝑥̃, 𝑦̃) =
min(√(𝑥̃ − 𝑥0)2 + (𝑦̃ − 𝑦0)2, 𝑟0)

𝑟0
, (3. 14) 

with 𝑥0 = 0.25, 𝑦0 = 0.5 𝑎𝑛ⅆ 𝑟0 = 0.15. A cone and a disk with radius of 0.15 and are 

centered at (0.5,0.25) and (0.5,0.75) are also concerned[76][77].  

 

Figure 3.9 gives the initial condition for the three-rigid body. Periodic boundary 

conditions are employed, and the calculation conditions are: 𝑁𝑥 ∗ 𝑁𝑦 = 100 ∗ 100, 𝑡̃ =

12𝜋 (Six periods).Figure 3.10 shows the contours plot after 6 periods, the discontinues 

has been captured successfully without oscillations by WENO scheme, on the other hand, 

the TVDCW scheme flats the maximum value of the cone and smooth hump, and it 

generates small oscillations inside the domain.  

Initial profile 
Initial countor 

Figure 3.9 Initial condition of rigid body rotation problem, 𝑁𝑥 ∗ 𝑁𝑦 = 100 ∗ 100. 
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a) Fourth-order WENO limiter 

b) Second-order TVDCW limiter 

Figure 3.10 Contours of rigid body rotation, 𝑁𝑥 ∗ 𝑁𝑦 = 100 ∗ 100, 𝑡̃ = 12𝜋. 

 

Figure 3.11, Figure 3.12 give several cross-sections along 𝑥  and 𝑦  axial, the 

TVDCW scheme creates a plateau near the maximum values of each wave, leading to a 

distortion in waveform. 
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𝑥 = 0.25 

𝑥 = 0.5 

Figure 3.11 Numerical results of rigid body rotation, cross-sections at 𝑥 = 0.25 and 

𝑥 = 0.5. 
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𝑦 = 0.25 

𝑦 = 0.75 

Figure 3.12 Numerical results of rigid body rotation, cross-sections at y= 0.25 and 

𝑦 = 0.75. 
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3.5  Applicability of CIPCSL3 method to solve the 1D1V 

Vlasov-Poisson system 

 

This subsection shows the verification of CIPCSL3 Vlasov equation solver by 

solving the test problems of Landau damping and two stream instability based on the 

1D1V VP system. Following physical quantities can be checked numerically to 

investigate the quality of the numerical scheme: 

𝐿𝑝 norm:  

 

𝐿𝑝 = ∬|𝑓(𝑥, 𝑣, 𝑡)|𝑝ⅆ𝑥ⅆ𝑣 , (3. 15) 

Kinetic energy: 

 

Energy = ∬ 𝑓(𝑥, 𝑣, 𝑡)𝑣2ⅆ𝑥ⅆ𝑣 + ∫ 𝐸(𝑥)2ⅆ𝑥 . (3. 16) 

 

3.5.1 Governing equations for Vlasov-Poisson equation system 

 

The VP equation system in 1D1V phase (one dimension in space and one dimension 

in velocity) reads: 

 

( , ) 0

( , , ) 1

f f f
v E x t

t x v

E
f x v t dv

x

+

−

  
+ + =

  


= −

 
. (3. 17)

 

Here, the ion distribution function is assumed to be uniform and unchanged as the 

background charge. Only electron distribution function is handled during the simulation. 

The Vlasov equation can be solved through the CIPCSL3 method with Strang splitting 

and the electric field can be simulated through the direct integral method of Poisson’s 

equation, or, if the boundary condition of Poisson’s equation is periodic, the pseudo 
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spectral method can be applied[78]. 

 

By employing the second-order Strang splitting, the calculation procedures in one 

time step for the VP system can be expressed as: 

Step 1: Advect the electron distribution function 𝑓𝑒 in 𝑥 direction for half time step 

∆𝑡/2. 

Step 2: Generate the electric field through Poisson’s equation solver. (By FFT, 

tridiagonal method or hyperbolic approach[87]). 

Step 3: Advect electron distribution function 𝑓𝑒 in 𝑣 direction for fully time step ∆𝑡. 

Step 4: Repeat step 1. 

Figure 3.13 shows the flow chat of the Vlasov equation solver for VP system. 

 

 

Figure 3.13 Flowchart of the Vlasov equation solver for VP system. 
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3.5.2 Boundary conditions 

 

Boundary conditions need to be implemented for 1D1V Vlasov equation in two 

directions, the test cases below all employ the periodic boundary conditions in the 𝑥 

direction and zero boundary conditions in the 𝑣 direction. 

 

For the inlet and outlet boundary condition, the particles that flow into the 

calculation domain with 𝑢 > 0 at 𝑥 = 0 and 𝑢 < 0 at 𝑥 = 𝐿 , where 𝑥 = 0  is the left-

end and 𝑥 = 𝐿 is right-end of the calculation domain. If the shape of the distribution 

function is smooth, simply Lagrange polynomial with the same order of the scheme can 

be used for the extrapolation to keep the same resolution at the boundary[79][80], if the 

distribution function flows in with a sharp gradient, the WENO extrapolation[81] can be 

applied to keep the simulation stable at each boundary. Since CIPCSL3 method is a 

compact method, only one ghost cell needs to be applied at each boundary, which 

simplify the boundary condition implementation significantly. 

 

The boundary condition in 𝑣 direction is simply to implement if the upper boundary 

and lower boundary are large enough. The distribution function at the boundary will 

become zero since there are no particles near each velocity boundary. The Dirichlet 

boundary condition can be set as zero in the ghost cell and Neumann condition can also 

be set as the gradient equal to zero. 

 

3.5.3 Frequency resolution of Poisson’s equation solver 

 

In the last part of this chapter, the applicability of CIPCSL3 method to 1D1V 

Vlasov-Poisson equation system is investigated through the Landau damping and two 

stream instability problems. Since the periodic boundary conditions are employed in 

space for both cases, the pseudo spectral method[88] can be applied to solve the 
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Poisson’s equation[89]. 

 

The sampling frequency will affect the frequency resolution of the pseudo spectral 

method. For a problem that defined on 𝑥 ∈ [0, 𝐿] with grid number of 𝑁, the sampling 

frequency is the same with 𝑁 . Sonnendrücker[90] presented that the pseudo spectral 

solver showed a very quickly convergence speed with different grid size ℎ = 𝐿/𝑁 

compared with second-order and fourth-order finite differences methods (Figure 3.14). 

It proves that the pseudo spectral solver for Poisson’s equation will not affect the order 

of accuracy in space due to the fast convergence speed related to the mesh size. 

 

 

Figure 3.14 Error as a function of grid size periodic Poisson problem for second-

order Finite Differences (FD2), fourth order Finite Differences (FD4) and pseudo 

spectral method[90]. 
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3.5.4 Landau damping 

3.5.4.1 Physic of Landau damping 

 

Figure 3.15 Schematic of distribution function for Landau damping. 

 

Landau damping has been widely used for the verification of VP system. These 

Langmuir oscillations was first predicted by Landau[82]. It arises due to the interaction 

between the electromagnetic wave with phase velocity 𝑣𝑝ℎ and particles in the plasma 

that hold a close speed with 𝑣𝑝ℎ[83]. The slower particles will get the energy from the 

electric field and accelerate to the speed of 𝑣𝑝ℎ and the faster particles will lose energy 

to the electromagnetic wave. Figure 3.15 gives the schematic of slower and faster 

particles following the distribution function 𝑓(𝑣). 

 

The damping rate can be estimated through [84]: 

 

𝛾 = −
𝜋𝜔p

3

2𝑘2𝑛e
[
𝜕𝑓0

𝜕𝑣
]

𝑣ph

, (3. 18) 

where 𝑘 = 2𝜋/𝜆0  is the wave number, 𝜆0  is the wave length, 𝑓0  is the normalized 

velocity distribution function, 𝑛𝑒 is the electron number density which 𝑛e = ∫ 𝑓0ⅆ𝑣, 𝜔p 

is the plasma oscillation frequency and 𝑣ph  is the phase velocity. If the velocity 

distribution function employed the Maxwellian distribution, the damping rate becomes: 
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𝛾 = −√
𝜋

8

1

(𝑘𝜆D)3

𝜔

𝜔p
exp (

1

2
(

𝜔

𝑘𝑣th
)

2

) , (3. 19) 

where 𝜆D = 𝑣th/𝜔p is the Debye length and 𝑣th is the electron thermal velocity. 

For Landau damping case, the 𝐿2 norm of electric field is always investigated for the 

damping rate analyses. 

 

3.5.4.2 Numerical test cases 

 

All the Landau damping test cases employed the same calculation condition if not 

special specified: 

 

𝑁𝑥 ∗ 𝑁𝑣 = 50 ∗ 50, 𝑥 ∈ [0,
2𝜋

𝑘
] , 𝑦 ∈ [−2𝜋, 2𝜋], 𝐶𝐹𝐿 = 0.1, (3. 20)   

where 𝑁𝑥 and 𝑁𝑣 are the grid number in space and velocity and 𝑘 is the wave number. 

The initial condition reads: 

 

𝑓(𝑥, 𝑣, 0) = (1 + 𝐴𝑐𝑜𝑠(𝑘𝑥))𝑓M(𝑣), (3. 21) 

where 𝐴 is a small perturbation in density and 𝑓𝑀(𝑣) is the Maxwellian distribution: 

 

𝑓𝑀(𝑣) = (2𝜋)−
1
2 exp (−

𝑣2

2
) , (3. 22) 

 

Case 3.6 Weak linear Landau damping 

 

For the weak linear Landau damping case, the small density perturbation 𝐴 = 0.01. 

Figure 3.16 shows the time history results of electric field in 𝐿2 norm with three different 

wave numbers, both schemes solve the electric field decay rate correctly. Since the 𝐿2 

norm is an integrated value over the whole calculation domain, it is not very sensitive to 
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the spatial resolution. The comparison of the spatial resolution will be demonstrated in 

the latter two stream instability problem. Even compared with the electric field’s 𝐿2 

norm, the WENO scheme shows a highly resolution feature that it can simulate the tail 

of 𝐿2 norm lower than 10−8 in each problem.  

 

In Landau damping, the small density perturbation causes the fluctuation in velocity 

space. Because of the periodic boundary conditions, the phase is mixed in each period, 

leading to a frequency growth in time. When the grid in velocity space cannot capture 

the fluctuations, the unphysical recurrence phenomena occurred. For the case with 

wavenumber of 𝑘 = 0.5 , the recurrence phenomena[85][86] occurred at 48s, which 

shows an agreement with the theoretical one 𝑇the = 2𝜋/(𝑘∆𝑣) = 50 𝑠.  

 

Figure 3.17 demonstrates the physical quantities of weak linear Landau damping in 

the case of 𝑘 = 0.5. Since the density perturbation is small, there shows no significantly 

difference between each scheme, both schemes present the conservative features. 
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𝑘 = 0.3 

𝑘 = 0.4 

𝑘 = 0.5 

Figure 3.16 Weak linear Landau damping. Time history of electric field in 𝐿2 norm 

with different wave numbers, top: 𝑘 = 0.3, middle: 𝑘 = 0.4, bottom: 𝑘 = 0.5, dash 

line shows the theoretical damping rate of each case. 
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𝐿1 norm of distribution function 𝑓 

𝐿2 norm of distribution function 𝑓 

Kinetic energy 

Figure 3.17 Weak linear landau damping, physical quantities of 𝐿1 norms (top) and 𝐿2 

norms (middle) for the distribution functions and kinetic energy (bottom), 𝑘 = 0.5. 
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Case 3.7 Strong nonlinear Landau damping 

 

The strong nonlinear Landau damping employed the initial condition of Equation 

(3.21), with a big density perturbation 𝐴 = 0.5 and wave number 𝑘 = 0.5. Here the first 

linear decay rate generated by the WENO scheme is 𝛾1
𝑊 = −0.2893, almost the same 

with TVDCW scheme 𝛾1
𝐶𝑊 = −0.2891. Compared with other literatures, it is a litter 

bigger than the value of 𝛾1 = −0.281 , presented by Cheng and Knorr[50],  𝛾1 =

−0.281  presented by Wei[77], identical to Rossmanith[57] with 𝛾1 = −0.292  and 

Heath[56] with 𝛾1 = −0.288. The WENO scheme also predicts the second growth rate, 

which is  𝛾2
𝑊 = 0.0829 on the other the TVDCW scheme fails to capture this growth 

rate, which may due to the numerical diffusion caused by the TVDCW scheme. The 

growth rate also compared with the same literatures, the sum-up results are shown in 

Table 3.3. 

 

Table 3.3 Damping and growth rate of Strong nonlinear Landau damping, compare with 

other literatures. 

 𝛾1 damping rate 𝛾2 growth rate 

4th order WENO -0.2893 0.0829 

2nd order TVDCW -0.2891 Failed 

Cheng and Knorr[50] -0.2812 0.084 

Wei Guo[77] -0.281 0.0813 

Rossmanith[57] -0.292 0.0815 

Heath[56] -0.288 0.0746 
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a) Fourth order WENO limiter 

b) Second-order TVDCW limiter 

Figure 3.18 Strong nonlinear Landau damping, Time history of electric field in 𝐿2 

norm. 
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Figure 3.19 shows the distribution function comparison of the two schemes at 𝑡 =

30 s, the TVDCW scheme case was running with the grid number of 𝑁𝑥 ∗ 𝑁𝑣 =  200 ∗

200 . more beneficial resolution is observed with the high-order WENO scheme. By 

employing the grid number with four times finer that the WENO scheme, the second-

order TVDCW scheme somehow achieved the same resolution as WENO did, but the 

calculation time will be increased by 16 times due to the increasing in grid number. The 

features that high-order scheme achieved a fast convergence speed in the smooth regime, 

and shows less dissipation near the sharp gradient or discontinuities are confirmed. 

 

Figure 3.20 gives the physical quantities of Case 3.7, the fourth-order WENO 

scheme’s 𝐿1 norm of distribution function 𝑓 shows an oscillate result than the second-

order TVDCW scheme because although the CIPCSL3 method is mass conservative, the 

WENO limiter is not positivity preserving, it will generate very small under shooting in 

the region that the value of distribution function is near zero. The minimum value of 

distribution function at  𝑡 = 60𝑠 is: min (𝑓(𝑥, 𝑣, 60)) = −0.00053. 

 

Figure 3.21 demonstrates the time evolution of the distribution function, the results 

are analogous to what Qiu and Christlieb[53] shown in their paper, since Qiu employed 

the ninth-order WENO reconstruction for the same plot, some more details were shown 

in her results compared with this work. 
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a) Fourth-order WENO limiter 

 

b) Second-order TVDCW limiter 

Figure 3.19 Strong nonlinear Landau damping, contours of distribution function at 

𝑡 = 30 s, the lower figure b) running with grids number of 𝑁𝑥 ∗ 𝑁𝑣 =  200 ∗ 200. 
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𝐿1 norm of distribution function 𝑓 

 

𝐿2 norm of distribution function 𝑓 

 

Kinetic energy 

Figure 3.20 Strong nonlinear Landau damping, physical quantities of 𝐿1 norms (top) and 

𝐿2 norms (middle) for the distribution functions and kinetic energy (bottom). 
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𝑡 = 5 s 𝑡 = 15 s 

𝑡 = 25 s 𝑡 = 35 s 

𝑡 = 45 s 𝑡 = 55 s 

Figure 3.21 Strong nonlinear Landau damping, Time history of distribution function at different 

physical time level, fourth-order WENO scheme. 
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3.5.5 Two stream instability 

 

In this subsection, the spatial accuracy and temporal accuracy have been checked. 

Since there was no analytical solution for the two stream instability case, the numerical 

solution with a very fine mesh was calculated as the reference. The 𝐿2  error was 

calculated based on the fine mesh results. At the last part of this subsection, the same test 

was running with PIC method to compare the smoothness and resolution with fourth-

order WENO scheme.  

 

3.5.5.1 Physic of two stream instability 

 

The two stream instability behaviors as the inversed energy transportation of 

Landau damping. When an electron beam with high energy jet into a thermal equilibrium 

plasma, it will create a bump-on-tails structure which is shown in Figure 3.22. If the 

distribution function holds a positive gradient at the phase speed 𝑣𝑡ℎ, there would be 

more particles with the speed a bit greater than 𝑣𝑡ℎ. The energy will transfer from the 

faster particles to the wave, which may lead to an exponential increase rate of wave 

energy, this phenomenon stops when the particles with high energy are all trapped by the 

electric field. The trapping particles create a circular profile in the middle of the domain. 

 

Figure 3.22 The bump on tail structure of distribution function. 
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3.5.5.2 Numerical test cases 

 

Case 3.8 Confirmation of spatial accuracy 

 

Considering the initial condition of: 

 

𝑓(𝑥, 𝑣, 0) = (1 + 𝐴𝑐𝑜𝑠(𝑘𝑥))𝑣2𝑓𝑀(𝑣), (3. 23) 

where 𝑓𝑀(𝑣)  is the Maxwellian distribution which shown in Equation (3.22). Here 

assume 𝐴 = 0.05 and 𝑘 = 0.5, respectively. The calculation conditions are: 𝑁𝑥 ∗ 𝑁𝑣 =

100 ∗ 100, 𝐶𝐹𝐿 = 0.1. 

 

Figure 3.23 and Figure 3.24 demonstrate the numerical results of distribution 

functions and the cross-sections at 𝑥 = 2𝜋 at 𝑡 = 30𝑠 and 𝑡 = 45𝑠. The WENO scheme 

shows a better resolution to capture the filamentation structures than the TVDCW 

scheme. Figure 3.25 gives the physical quantities of case3.8, the same oscillations in L1 

norm of distribution function are observed as in case3.7 due to the non-positivity 

preserving feature. High-order WENO scheme provides a better conservative feature in 

L2 norm and kinetic energy than the TVDCW scheme. 

 

Since the two stream instability case has no analytical solution, to check the spatial 

convergence speed quantitatively, a test case with gird number of 𝑁𝑥 ∗ 𝑁𝑣 = 800 ∗ 800, 

CFL= 0.1 is simulated as a reference result. The simulation stops at 𝑡 = 0.5 𝑠. The 𝐿2 

errors are calculated through: 

 

𝐿2 = (
∑(𝑓(𝑥, 𝑣, 𝑡1) − 𝑓𝑟𝑒𝑓(𝑥, 𝑣, 𝑡1))

2

𝑁𝑥 ∗ 𝑁𝑣
)

1/2

. (3. 24) 

 

Table 3.5 give the order of spatial accuracy in 𝑥 direction and 𝑣 direction, the 
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expected spatial accuracies of the schemes are confirmed. Fourth-order WENO scheme 

provides a better performance than the second-order TVDCW scheme. To get the same 

resolutions of the waveform, second-order scheme needs to employed four times finer 

grid number than the fourth-order one, and the computational time will be increased 

about sixteen times.  



 

65 

 

a) Fourth-order WENO limiter 

b) Second-order TVDCW limiter 

Cross-section at 𝑥 = 2𝜋 

Figure 3.23 Two stream instability, the cross-section is at 𝑥 = 2𝜋. 𝑁𝑥 ∗ 𝑁𝑣 = 100 ∗

100, 𝐶𝐹𝐿 = 0.1, 𝑡 = 30 s. 
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a) Fourth-order WENO limiter 

 

b) Second-order TVDCW limiter 

 

Cross-section at 𝑥 = 2𝜋 

Figure 3.24 Two stream instability, the cross-section is at 𝑥 = 2𝜋. 𝑁𝑥 ∗ 𝑁𝑣 = 100 ∗

100, 𝐶𝐹𝐿 = 0.1, 𝑡 = 45 s. 
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𝐿1 norm of distribution function 𝑓 

 

𝐿2 norm of distribution function 𝑓 

 

Kinetic energy 

Figure 3.25 Two stream instability, physical quantities of 𝐿1 norms (top) and 𝐿2 

norms (middle) for the distribution functions and kinetic energy (bottom). 
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Table 3.4 Order of spatial accuracy in 𝑥 direction, reference results calculated by 𝑁𝑥 ∗

𝑁𝑣 = 800 ∗ 800, CFL=0.1, 𝑡 = 0.5 s. 

𝑁𝑥 ∗ 𝑁𝑣 
4th order WENO  2nd order TVDCW 

𝐿2 error order  𝐿2 error order 

50*800 5.27E-04   2.05E-03 
 

100*800 3.50E-05 3.91E+00  4.91E-04 2.06E+00 

200*800 2.09E-06 4.07E+00  1.07E-04 2.20E+00 

400*800 1.28E-07 4.03E+00  2.52E-05 2.08E+00 

 

Table 3.5 Order of spatial accuracy in 𝑣 direction, reference results calculated by 𝑁𝑥 ∗

𝑁𝑣 = 800 ∗ 800, CFL=0.1， 𝑡 = 0.5 s. 

𝑁𝑥 ∗ 𝑁𝑣 
4th order WENO  2nd order TVDCW 

𝐿2 error order  𝐿2 error order 

800*50 9.08E-04 
 

 9.11E-03 
 

800*100 7.72E-05 3.56E+00  2.97E-03 1.62E+00 

800*200 5.31E-06 3.86E+00  7.54E-04 1.98E+00 

800*400 3.37E-07 3.98E+00  1.75E-04 2.11E+00 

 

Case 3.9 Comparison between fourth-order CIPCSL3 method and 

full PIC method[38] 

 

In this case, the numerical results of fourth-order WENO scheme is compared with 

the full PIC method. Both simulations employ 100 grids in space. The PIC method 

calculates with 100 macroparticles per cell in corresponding to 100 grids in velocity 

space of Vlasov equation solver.  

 

Recalling the same calculation condition in Case 3.8, Figure 3.26 shows the 3D 

contour plots of both solvers at 𝑡 = 30s.The PIC solver shows lots of statistical noises 

due to the finite number of macroparticles, meanwhile the Vlasov equation solver 

generates a smooth result. Figure 3.27 shows the cross-section at 𝑥 = 2𝜋, the PIC solver 

generates overshooting at the peak of the waveform, and it lost the characteristic of 

symmetry near 𝑣 = 0 m/s, where the number density is low. 
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a) Fourth-order Vlasov equation solver 

b) Fully PIC solver 

Figure 3.26 3D contour plots of two stream instability at 𝑡 = 30 s , Vlasov 

equation solver: 𝑁𝑥 ∗ 𝑁𝑣 = 100 ∗ 100, 𝐶𝐹𝐿 = 0.1,  PIC solver: 𝑁𝑥 = 100,  100 

macroparticles per cell. 

 

Figure 3.27 Cross-section at 𝑥 =2𝜋. 
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3.6  Summary of this chapter 

 

In this chapter, several cases have been tested for the code verification. The 

important findings are:  

 

1. All schemes achieve the design order of accuracy for one-dimensional and two-

dimensional test problems with analytical solution, and the fourth-order WENO 

scheme shows the fastest convergence speed among the schemes tested in this 

chapter. 

 

2. Fourth-order WENO scheme shows high resolution in the region near sharp 

density gradient and discontinuities without generating unexpected numerical 

oscillations. 

 

3. The Vlasov equation solver is successfully developed by using CIPCSL3 

method with fourth-order WENO limiter, the last subsection shows the 

applicability of VP system by solving the Landau damping and two stream 

instability problems. In the weak linear Landau damping case, both of fourth 

order WENO limiter and second-order TVDCW limiter predict the damping 

rate correctly, and in the strong nonlinear Landau damping case, the fourth-

order WENO scheme predicts the damping and growth mode correctly, the 

results are compared with other literatures. On the other hand, the low order 

scheme fails to capture the growth mode. In the two stream instability case, the 

design spatial accuracies of the schemes are confirmed. 

 

4. The fourth-order CIPCSL3 Vlasov equation solver generates a noiseless result 

compares with the PIC solver, it also shows a high-resolution feature to capture 

the symmetric profile in low-density region, on the other hand, the PIC solver 

fails to solve the symmetric profile.  
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Chapter 4  The one-dimensional hybrid ion-

Vlasov and electron-fluid model of Hall 

thruster simulation 

In this chapter, the one-dimensional hybrid Vlasov-fluid solver is applied to the HTs 

discharge current oscillation simulation, and the results are compared with hybrid PIC 

solver. 

 

4.1  Governing equations of heavy species 

 

The ionization procedure exists during the operation of the HTs, this procedure can 

be described by adding the source term to the right-hand side of the Vlasov equation, 

here for ions, the governing equation reads: 

 

𝜕𝑓𝑖

𝜕𝑡
+ 𝑣x,i

𝜕𝑓i

𝜕𝑥
+

𝑒

𝑚i
𝐸(𝑥, 𝑡)

𝜕𝑓i

𝜕𝑣x
= 𝑆ion, (4. 1) 

and the Vlasov equation for neutral particles is written as: 

  

𝜕𝑓n

𝜕𝑡
+ 𝑣x,n

𝜕𝑓n

𝜕𝑥
= −𝑆ion, (4. 2) 

where 𝑓𝑖 , 𝑓𝑛 are the distribution functions, 𝐸(𝑥, 𝑡) is the electric field, 𝑒 is the elemental 

charge, 𝑚i is the mass of ions and 𝑣x,i, 𝑣x,n are the velocity in 𝑥 direction. Subscripts i 

and n respectively signify the ions and neutral particles. 𝑆ion is the ionization source term. 

The ion and neutral number densities 𝑛i(𝑥) and 𝑛n(𝑥) are computed by integrating the 

distribution functions in the velocity dimension. In this simulation, the velocity of neutral 

is set as a constant to guarantee that the anode mass flow rate is kept the same. 
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The relation of 𝑆ion to the electron-neutral collisional ionization is expressed as: 

 

∫ 𝑆ionⅆ𝑣𝑥 = 𝑛e𝑛n𝑘ion

+∞

−∞

, (4. 3) 

where 𝑛e represents the number density of electron and 𝑘ion stands for the reaction rate 

coefficient given as a function of the electron temperature[91]. The distribution of 𝑆ion 

in the 𝑣𝑥 direction is assumed to be similar to that of 𝑓n. Therefore, Equation (4.3) is 

simplified as: 

 

𝑆ion = 𝑛e𝑘ion𝑓n. (4. 4) 

 

Because of the finite size of the gird in velocity direction, the source term 𝑆ion is 

simplify as a single value inside one cell without distribution. During the calculation, the 

first derivative of the source term is not calculated and the PV and VIA are directly added 

to the ion velocity distribution function. 

4.2  Electron fluid model 

 

4.2.1 Governing equations of electron fluid model 

 

The quasi-neutrality of charge is assumed in the electron fluid model[37]. The 

Debye length of the bulk discharge plasma in HTs is typically 10 μm, which is much 

smaller than the 10 mm discharge channel length. Consequently, the effects of charge 

separation are neglected for simulating the bulk plasma. The relation 𝑛𝑒 = 𝑛𝑖 is used. 

 

The 1D electron fluid model consists of the conservation equations of mass, 

momentum, and energy. With the quasi-neutrality assumption, the mass conservation is 

written in the form of the equation of continuity as: 



 

73 

 

 

𝜕

𝜕𝑥
(𝑛e𝑢e) = 𝑆ion, (4. 5) 

where 𝑢e represents the electron flow velocity. In the conservation equation of electron 

momentum, the electron inertia is neglected due to the small mass of single electron. The 

drift–diffusion equation is derived as: 

𝑛e𝜇⊥

𝜕𝜙

𝜕𝑥
− 𝐷⊥

𝜕

𝜕𝑥
(𝑛e) = 𝑛e𝑢e, (4. 6) 

where 𝜇⊥  and 𝐷⊥  represents the electron mobility and electron diffusion coefficient 

perpendicular to the magnetic lines. The model for the cross-field electron mobility is 

explained later in this section. By substituting Equation (4.6) into Equation (4.5), an 

elliptic equation (diffusion equation) is obtained as: 

 

𝜕

𝜕𝑥
(𝑛e𝜇⊥

𝜕𝜙

𝜕𝑥
− 𝐷⊥

𝜕

𝜕𝑥
(𝑛e)) = 𝑆ion. (4. 7) 

Here, by employing the Einstein relation 𝐷⊥ = 𝜇⊥𝑇e, Equation (4.7) can be expressed 

as: 

 

𝜕

𝜕𝑥
(𝑛e𝜇⊥

𝜕𝜙

𝜕𝑥
− 𝜇⊥

𝜕

𝜕𝑥
(𝑛e𝑇e)) = 𝑆ion. (4. 8) 

 

In the energy conservation equation, the kinetic component is ignored. The equation 

is written in terms of the electron internal energy as: 

 

𝜕

𝜕𝑡
(

3

2
𝑛e𝑇e) +

𝜕

𝜕𝑥
(

5

2
𝑛e𝑇e𝑢e − 𝜅

𝜕𝑇e

𝜕𝑥
) = 𝑛e𝑢e

𝜕𝜙

𝜕𝑥
− 𝛼E𝜀ion𝑆ion, (4. 9) 

the second and third terms on the left-hand side respectively denote the enthalpy 

convection and heat conduction. The first and second terms of the right-hand side are 

the Joule heating and energy losses by inelastic collisions. The coefficient 𝛼E  is a 

function of electron temperature determined for xenon, which is used conveniently to 

include energy losses by ionization, excitation, and radiation [91]. Also, 𝜀ion represents 

the ionization potential of xenon. 
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The thermal conductivity and thermal diffusivity hold a relation as: 

 

𝜅 =
5

2
𝑛e𝐷t, (4. 10) 

where 𝐷t is the thermal diffusivity, and in the electron energy conservation, the thermal 

diffusivity can be treated as: 

 

𝐷t ≈ 𝐷e， (4. 11) 

where 𝐷e is the electron diffusion coefficient. By applying the Einstein relation 𝐷e =

𝑇e𝜇, the thermal conductivity can be expressed as: 

𝜅 =
5

2
𝑛e𝐷t =

5

2
𝑛e𝑇e𝜇， (4. 12) 

in axial one-dimensional case, 𝜅 =
5

2
𝑛e𝑇e𝜇⊥. 

The cross-field electron mobility is modelled using a combination of classical 

diffusion and anomalous components as: 

 

𝜇⊥ = 𝜇⊥,cla + 𝜇⊥,ano, (4. 13) 

where 𝜇⊥,cla  and 𝜇⊥,ano  respectively denote the classical and anomalous electron 

mobilities. The classical electron mobility is written as: 

 

𝜇⊥,cla =
𝜇e

1 + (𝜇e𝐵)2
, (4. 14) 

where 𝜇e  stands for the mobility of non-magnetized electrons as 𝜇e = 𝑒/𝑚e𝑣ela  and 

𝐵 is the magnetic flux density. The anomalous electron mobility is modelled by a Bohm-

type diffusion model as: 

 

𝜇⊥,ano =
𝛼B

16𝐵
, (4. 15) 

where 𝛼B is designated as the Bohm diffusion coefficient. 

 

The Bohm diffusion coefficient 𝛼B is given empirically as a function of the axial 
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position. Several models have been proposed for the distribution of 𝛼B [92][93]. For this 

study, the three-region model[94] is adopted, where 𝛼B= 0.14 near the anode, 𝛼B= 0.02 

around the channel exit, and 𝛼B= 0.7 in the plume region. These values are interpolated 

using the Gaussian functions[38] to obtain a smooth axial distribution of 𝛼B. 

 

4.2.2 Numerical method for electron fluid model[37] 

 

The space potential 𝜙 and electron temperature 𝑇e are obtained through the electron 

fluid model. The diffusion equation in Equation (4.8) is solved for 𝜙. The diffusion terms 

for 𝜙 and pressure are discretized using central differencing. A direct matrix-inversion 

method is used to obtain the 𝜙 distribution from the discretized equation set. The energy 

conservation equation in Equation (4.9) is used to derive 𝑇e. The convection term of 

enthalpy flow is discretized using a second-order upwind method. A minmod-type flux 

limiter is used to gain the stability of the calculation. The diffusion term of heat 

conduction is discretized by second-order central differencing. The second-order 

differencing methods are used in the electron fluid model because the distributions of 

the plasma parameters such as 𝑛e, 𝑇e, and 𝜙, are smooth in the 𝑥- (axial-) direction in 

HTs. Equation (4.9) is treated as a time-dependent equation. Time integration is 

implemented using a fully implicit method. 

 

Equations (4.8, 4.9) are calculated iteratively to obtain 𝜙 and 𝑇e. The time step for 

the electron fluid is set to one-tenth of the time step for ions and neutral particles, i.e. ten 

electron sub-loops are used in a single time step for heavy particles. The electron 

mobility is calculated only in the first electron sub-loop. The computational grid in the 

1D space for the electron fluid is the same as that for the Vlasov equation solver for ions 

and neutral particles. 
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4.3  Flowchart of hybrid Vlasov-fluid solver 

 

Figure 4.1 Flowchart of the hybrid Vlasov-fluid solver for HTs simulation. 

The calculation process of the hybrid Vlasov-fluid solver is demonstrated in Figure 

4.1, the calculation domain and initial distribution function are assumed as the input 

process. 

 

In the beginning, new ions are generated through the ionization process and added 

to the ion distribution function. The same number of particles are eliminated in the 

neutral distribution function. Then, ions and neutrals are advected by the Vlasov 

equation solver for half physical time step in space. Notice that neutral particles only 

have a single velocity, it doesn’t propagate in the velocity space. 

 

Then the ion and neutral number densities are generated by integrating ion and 
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neutral’s distribution function. These parameters are transferred into the electron fluid 

solver to calculate space potential 𝜙 and electron temperature 𝑇𝑒 iteratively. Once 𝜙 is 

updated, the electric field is updated.  

 

Finally, the ions and neutrals are propagated for a fully physical time step in 𝑣 

direction and another half physical time step in 𝑥 direction. 

 

4.4  1D1V simulation of ionization oscillation in Hall thruster  

 

4.4.1 Calculation conditions 

 

The fourth-order Vlasov equation solver is coupled with the magnetized electron 

fluid model for HTs simulation. The simulation target is the TAL type HTs developed at 

The University of Tokyo[95]. An axial 1D1V simulation is performed. The thruster 

operation parameters assumed for the simulation are presented in Table 4.1. An axial 

distribution of magnetic flux density is assumed based on the measured data. The 

schematic of the Hall thruster calculation domain and the magnetic field distribution are 

portrayed in Figure 4.2. The calculation domain contains the anode, discharge channel, 

and plume regions. The left-hand and right-hand side boundaries respectively 

correspond to the anode and cathode. After the propellant gas of xenon is injected into 

the domain from the left-hand side, it is ionized in the domain, and ejected from the 

right-hand side boundary.  

 

In the grid-based Vlasov equation solver, the minimum and maximum velocities 

are set respectively to -5 km/s and 18 km/s. To resolve the distribution function correctly, 

the velocity space must be discretized finely enough where ∆𝑣 < 250 m/s [41]. In this 

simulation, 192 grids are used in the velocity domain; 48 grids are used in the space 
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domain, which are corresponding to ∆𝑥 = 0.2 mm and ∆𝑣 = 120 m/s. The time step is 

set to 1 ns to satisfy the CFL condition for the Vlasov equation solver. With this time 

step, the CFL numbers are calculated as xmax xmax

i x

0.04 and 0.06
v t eE t

x m v

 
= =

 
 .The 

simulation results are output every 1000 time steps, which is equal to 1000 ns. The 

simulation stops at 1ms, and the total time steps are 106. 

 

Table 4.1 Simulation parameters for thruster operation assumed in the simulation. 

 

 

 

 

 

 

 

  

Operation parameters Values 

Mass flow rate 3.35 mg/s 

Propellant gas xenon 

Discharge voltage 250 V 

Channel cross-sectional area 2035 mm2 

Channel length 12 mm 

Inlet gas temperature 650 K 

  
Figure 4.2 Schematic of Hall thruster calculation domain and magnetic field 

distribution. 
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4.4.2 Comparison of computed results by hybrid Vlasov-fluid 

solver and hybrid PIC solver 

 

4.4.2.1  Computational time comparison 

 

The simulations are running on a 2.9 GHz CPU with 32 GB memory, the hybrid 

Vlasov-fluid solver spends 1.92 hours to finish the 1 ms simulation, meanwhile the 

hybrid PIC solver which employs 6000 macroparticles per cell takes 4.20 hours. For the 

Vlasov equation solver, following procedures are required: 

 

1. Calculate ion distribution function with three steps (two steps in space and one 

step in velocity), since each direction’s propagation contains two CIPCSL3 

procedures, and third-order Runge-Kutta method is employed, the whole 

process needs eighteen steps. 

2. Calculate neutral distribution function with one step. (two CIPCSL3 procedures) 

3. Update new physical valuables. 

 

it represents that the total calculation time for one velocity bin in the Vlasov equation 

solver is about eleven times more than one macroparticle in the PIC solver. The rate of 

computational steps can be calculated as: 

 

6000 macroparticles per cell ∗ 2 steps(hybrid PIC solver)

192 velocity bins per cell ∗  22steps(hybrid Vlasov − fluid solver)
= 2.8409,

(4. 16)

 

this value shows a good agreement with the total calculation time rate: 4.2/1.92 =

2.1875.  
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4.4.2.2  Convergence speed of discharge amplitude 

The oscillation amplitude Δ of discharge current is used as a criterion for the 

ionization oscillation analyses. It can be estimated as: 

 

2 0.5

d,i d

1d

1 1
[ ( ) ]

N

i

I I
NI =

 = −
, (4. 17)

 

where  𝐼𝑑̅ represents the time-averaged discharge current, 𝐼d,i stands for the time varying 

discharge current, and N denotes the number of samples. 

 

Figure 4.3 and Figure 4.4 present the discharge current oscillations and oscillation 

amplitude over time for the case with classical diffusion coefficient in which 𝐵r,max =

16 mT. Here, anomalous electron diffusion coefficient is not used. The calculation grids 

for the hybrid Vlasov-fluid solver are 48 grids in space and 192 grids in velocity. The 

hybrid PIC solver is calculated on the domain of 48 grids, and the number of 

macroparticles in each cell is about 6000, which is the minimum macroparticle number 

for a converged calculation.  

 

The Vlasov solver achieved a quasi-steady state oscillation mode with constant 

oscillation amplitude in a very short time. However, in results obtained from a hybrid 

PIC simulation, the oscillation amplitude is not stable because of the static noise. It is 

difficult to judge if the simulation reaches a quasi-steady state of coherent waveforms. 

This unstable oscillation amplitude continues for a long time even if the simulation is 

performed as exceeding 1 ms. The Vlasov solver generated a steady oscillation 

waveform within the 1 ms simulation.  

 

The convergence speed of the steady oscillation amplitude is presented in Table 4.2. 

In addition to the slow convergence speed, the computational cost (CPU seconds) for a 

given period of simulation is large when using the hybrid PIC method. This high cost is 

attributable to the large macroparticle number being employed for the simulation. In fact, 
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the number of macroparticles in the simulation domain is less than 100 during low Id, 

although the average macroparticle number is approximately 6000. During low Id, most 

of the ions are exhausted. Neutral particles are depleted. Consequently, the number of 

particles in the hybrid PIC method cannot be decreased. The computational cost becomes 

large. 

Table 4.2 Vlasov solver and hybrid PIC solver convergence speeds. 

 

  

Solvers Grids and particles 
CPUs for 1 μs 

calculation 
Convergence time 

Hybrid Vlasov 48 × 192 grids 6.92 s 0.25 ms 

Hybrid PIC 
48 grids in space and 

6000 particles in 1 

cell 

15.1 s More than 1 ms 
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Figure 4.3 Time history of discharge current oscillations with classical diffusion 

coefficient, the maximum magnetic flux density 𝐵r,max = 16 mT. 

 

Figure 4.4 Time history of oscillation amplitude with classical diffusion coefficient, 

the maximum magnetic flux density 𝐵r,max = 16 mT. 
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4.4.2.3  Thruster performance 

 

The specific impulse 𝐼𝑠𝑝 and thruster efficiency 𝜂𝑡 can be estimated through: 

𝐼𝑠𝑝 =
𝑇

𝑚𝑔̇
(4. 18) 

𝜂𝑡 =
𝑇2

2𝑚̇𝑉𝑑𝐼𝑑̅

(4. 19) 

where T represents the thrust, 𝑚̇ is the anode mass flow rate, 𝑉𝑑 stands for the discharge 

voltage, 𝐼𝑑̅ demonstrates the mean discharge current and 𝑔 is the acceleration of gravity.  

Table 4.3 shows the numerical results of thruster performance. The hybrid Vlasov-

fluid solver provides an acceptable result compared with hybrid PIC solver. The 

differences in thrust is due to the numerical diffusion generates during the simulation. 

Some ions are diffused to the low velocity bins at the exit of the domain. 

 

Table 4.3 Numerical results of thruster performance. 

 Hybrid Vlasov-fluid solver Hybrid PIC solver 

Thrust, T 48.1 mN 51.7 mN 

Specific impulse, 𝐼𝑠𝑝 1465 s 1574 s 

Efficiency, 𝜂𝑡 59.28% 63.41% 

 

4.4.2.4  Time-averaged plasma properties 

Figure 4.5 presents the time-averaged plasma properties of both solvers, the 

calculation conditions are the same as above. The plasma properties generated by the 

hybrid Vlasov-fluid solver (circle marker) show a similar trend as the hybrid PIC solver 

(star marker).  

 

The space potential distribution shows a good agreement between the two solvers, 

which guaranteed the similar mean velocities in each cell, these parameters may affect 

the total performance of HTs. The hybrid Vlasov-fluid solver also calculates the 
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accelerate region correctly in comparison with the hybrid PIC solver. 

 

For the ion and neutral density distribution, both solvers successfully predict the 

peak of density near the channel exit, the hybrid Vlasov-fluid solver shows a slightly 

shift (in the scale of one cell) which may due to the ionization process in Vlasov equation 

solver. During the simulation, the newly generated ions are accelerated at the beginning 

of each time loop, lead to the increase of the fast particles, and decrease of the slow 

particles, this process leads to the shift of maximum value in the ion number distribution. 
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Distributions of neutral (left axis, blue lines) and ion (right axis, red lines) number 

densities, circle: hybrid Vlasov-fluid solver, star: hybrid PIC solver. 

 

Potential distribution, circle: hybrid Vlasov-fluid solver, star: hybrid PIC solver. 

Figure 4.5 Time-averaged distributions of ion and neutral densities (top) and space 

potential (bottom), calculated with classical diffusion coefficient, 𝐵r,max = 16 mT . 

Circle: hybrid Vlasov-fluid solver, Star: hybrid PIC solver. 
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4.4.2.5  Ion number distribution in single oscillation cycle 

Figure 4.6 demonstrates the axial ion number density distribution along with time 

over the course of a single wave. The hybrid PIC solver generates temporal non-

smoothness due to the statistical noise, on the other hand the hybrid Vlasov-fluid solver 

achieves a noiseless result. 

 

However, the hybrid Vlasov-fluid solver shows a duller spatial distribution than the 

hybrid PIC solver due to the numerical diffusion caused by the grid value interpolation. 

In conclusion, from the numerical diffusion view point, the hybrid Vlasov-fluid solver 

shows more diffusion than the hybrid PIC method. 

 

 

 

Figure 4.6 Axial ion number density distribution along with time, over the course of 

a single wave. Top: hybrid Vlasov-fluid solver, bottom: hybrid PIC solver. 
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4.4.2.6  Oscillation amplitude analyses 

 

Figure 4.7 presents discharge oscillation amplitude changes with different peak 

magnetic flux densities. Both the hybrid Vlasov-fluid solver and hybrid PIC solver show 

a trend that is similar to that observed in the experiment [96], although the PIC solver 

simulation collapsed when the maximum magnetic flux density was less than 15 mT in 

the classical diffusion case and 12 mT in the Bohm diffusion case which is because, 

when hybrid PIC solver runs in the low magnetic flux density region, the neutral number 

density becomes extremely small at the peak discharge current timing in the very first 

calculation timesteps, resulting in a divergence of the electron fluid solver. In this case, 

the hybrid PIC solver is unable to generate reasonable results with this number of 

macroparticles. By contrast, the hybrid Vlasov-fluid solver shows stable reproducibility 

in a wide magnetic flux density range, even with a less computational cost. Figure 4.8 

gives the time history of ion number density near the channel exit at 𝑥 = 0.2 𝑚𝑚 with 

classical diffusion coefficient, the dash line demonstrates the ion number density 

oscillation range, the hybrid Vlasov-fluid solver successfully reproduce the plasma 

properties in a widely range and the applicability of hybrid Vlasov-fluid solver to solve 

the high dynamic density variation case (in the order of 𝑂(103) for ions) is confirmed. 
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Figure 4.7 Simulation results of discharge oscillation amplitude. 

 

 

Figure 4.8 Time history of and ion  number density with different maximum magnetic 

flux density with classical diffusion coefficient at 𝑥 = 0.2 𝑚𝑚 , generated by the 

hybrid Vlasov fluid solver. 
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4.5  Summary of this chapter 

 

This chapter demonstrates the development of 1D1V hybrid high-order Vlasov-

fluid solver which is applied to HTs discharge current oscillation simulation. The 

simulation results are compared with a hybrid PIC solver, the merits and demerits are as 

follows: 

 

1. For a single velocity bin calculation in one cell, the hybrid Vlasov-fluid solver 

shows the computational cost about eleven times higher than a single 

macroparticle calculation in one cell of the hybrid PIC solver. But owing to the 

feature of high resolution, the hybrid Vlasov-fluid solver generates the 

convergence result by employing 192 grids in velocity space per cell, on the 

other hand, the hybrid PIC solver needs 6000 macroparticles per cell to achieve 

a reasonable convergence result. 

 

2. For the convergence speed of discharge current amplitude, the hybrid Vlasov-

fluid solver shows at least four times faster than the hybrid PIC solver in 

physical time scale.  

 

3. The thruster performance and time-averaged plasma properties generated by the 

hybrid Vlasov-fluid solver show a good agreement with hybrid PIC solver’s 

result, the single oscillation cycle analyses demonstrate that hybrid Vlasov-fluid 

solver eliminates the statistical noise successfully, but numerical diffusion 

occurs during the calculation. 

 

4. In the single oscillation cycle analyses, the hybrid Vlasov-fluid solver generates 

the noiseless simulation result. But from the numerical diffusion view point, the 

hybrid Vlasov-fluid solver shows more diffusion than the hybrid PIC method. 
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5. In the discharge current amplitude analyses, the hybrid Vlasov-fluid solver 

shows a widely calculation range along with different maximum magnetic flux 

density. The results predict the minimum oscillation amplitude occurs with 

classical diffusion coefficient near B_(r,max)=13 mT, and the trends of 

oscillation amplitude are the same as hybrid PIC solver obtained. 
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Chapter 5  Conclusions 

5.1  Summary of the work 

The originality of this dissertation is to develop a high-resolution noiseless Vlasov 

equation solver which is free of statistical noise and has the applicability to high dynamic 

density variation, which may replace the PIC solver of ions and neutrals in hybrid 

simulation. The CIPCSL3 method with a fourth-order WENO limiter is employed for 

the development of the Vlasov equation solver. 

 

The fourth-order CIPCSL3 method shows the fast convergence feature compared 

with the second-order method, and it captures the sharp density gradient and 

discontinuities correctly without generating unexpected numerical oscillation. In the test 

case of weak linear Landau damping, both fourth-order and second-order Vlasov 

equation solver reproduces the damping rate. In the strong nonlinear Landau damping, 

only fourth-order Vlasov equation solver successfully generates the damping rate and 

growth rate, and the second-order Vlasov equation solver fails to capture the growth rate. 

The fourth-order solver's fast convergence and high-resolution feature are confirmed in 

the two stream instability case compared with the second-order one. In comparison with 

the PIC solver, the fourth-order Vlasov equation solver achieves a noiseless and high-

resolution result. 

 

Finally, the fourth-order Vlasov equation solver is successfully combined with the 

electron fluid model to reproduce the discharge current oscillations in HTs. The main 

findings can be summarized as: 

 

1. the hybrid Vlasov-fluid solver generates the convergence result by employing 

192 grids in velocity space per cell, on the other hand, the hybrid PIC solver 

needs 6000 macroparticles per cell to achieve a reasonable convergence result. 
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2. The hybrid Vlasov-fluid solver shows at least four times faster convergence 

speed than the hybrid PIC solver in physical time scale. 

 

3. The thruster performance and time-averaged plasma properties generated by the 

hybrid Vlasov-fluid solver show a good agreement with hybrid PIC solver’s 

result, the single oscillation cycle analyses demonstrate that hybrid Vlasov-fluid 

solver eliminates the statistical noise successfully, but numerical diffusion 

occurs during the calculation. 

 

4. In the single oscillation cycle analyses, the hybrid Vlasov-fluid solver generates 

the noiseless simulation result. But from the numerical diffusion view point, the 

hybrid Vlasov-fluid solver shows more diffusion than the hybrid PIC method. 

 

5. In the discharge current amplitude analyses, the hybrid Vlasov-fluid solver 

shows a widely calculation range along with different maximum magnetic flux 

density. The results predict the minimum oscillation amplitude occurs with 

classical diffusion coefficient near 𝐵r,max = 13 mT , and the trends of 

oscillation amplitude are the same as hybrid PIC solver obtained. 

 

In conclusion, the fourth-order CIPCSL3 method is successfully applied to the 

hybrid Vlasov-fluid solver to solve the HTs discharge current oscillation in 1D1V. The 

hybrid high-order Vlasov-fluid solver shows a faster convergence speed in physical time 

scale and wider calculation range in discharge current amplitude analyses compared with 

hybrid PIC solver. 
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5.2  Future work of this study 

 

5.2.1 Extend to multi-dimension 

 

Since the CIPCSL3 method needs to propagate all the integral valuables together 

with the point value, the computational cost for multi-dimension simulation will become 

extremely large. Xiao[97] presented an alternative way to calculate the high-dimensional 

averaged integral valuable by employing a time-evolution converting (TEC) formula. 

The same assumption can be applied to the Vlasov solver, it will decrease the degree of 

freedom in CIPCSL3 method significantly.  

 

5.2.2 Positive preserving 

 

The numerical method being used in this dissertation is not positive preserving, a 

small undershooting will be generated where the physical valuables are near zero. 

Several works have been down by Zhang and Shu[98][99] for the typical WENO scheme. 

The idea is to add a linear scaling limiter to the origin scheme. Since the CIPCSL3 

method is a compact scheme, it needs to investigate whether the limiter needs to be 

applied to the conservative relation only or both the first derivative and conservative 

relation. 
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Appendix 

Cost estimation in higher dimension 

computation 
With the same spatial grid number, the ratio of grid elements propagation per time 

step of the Vlasov equation solver over the number of PIC solver can be estimate 

through[100]: 

𝑉𝑙𝑎𝑠𝑜𝑣

𝑃𝐼𝐶
=

𝑁𝑣
𝐷𝑣

𝑛𝑚𝜆𝐷
𝐷 , (A. 1) 

where 𝑁𝑣
𝐷𝑣 is the total number of girds in velocity space, 𝐷𝑣 = 1, 2, 3 is the dimension 

in velocity space, 𝑛𝑚 is the density of macroparticles and 𝜆𝐷
𝐷 is the Debye length, here 

𝑛𝑚𝜆𝐷
𝐷  stands for the number of macroparticles per cell. With the increase of the 

dimension in velocity space, the computational cost of Vlasov equation solver growth 

exponentially and the cost of PIC solver shows a linear growth rate. Because of this 

feature, the Vlasov equation solver claims a large storage and computational cost in the 

high dimension calculation case. 

 

The CIPCSL3 method employs the integral value to keep the mass conservative 

during the simulation, the degree of freedom is highly depending on the dimensions. For 

the 1D1V simulation, the point values (PV), surface integrated averaged (SIA) values 

and volume integrated averaged (VIA) values are claimed to keep the conservation. The 

values need to update through the CIPCSL1D procedure in one direction: 

CIPCSL1D(PV, SIA)

CIPCSL1D(SIA, VIA)
, (A. 2) 

which stand for four CIPCSL1D calculation procedures within one time loop in 1D1V 

calculation. If the simulation extends to 2D2V, the body integrated averaged (BIA) 

values and quadruple integrated averaged (QIA) values also need to be updated, it will 

claim four CICPSL1D procedures in one direction, and the total number of calculation 

procedures in 2D2V is sixteen and in 3D3V is thirty-six respectively. As shown in 

equation (A.1), for a fair comparison in 2D2V case of Vlasov equation solver and PIC 
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solver, if 
𝑉𝑙𝑎𝑠𝑜𝑣

𝑃𝐼𝐶
= 1 , following the computational time comparison in 4.4.2.1, the 

computational time of fourth-order Vlasov equation solver will be approximate 76 times 

higher than the PIC solver. 

 

The high-order Vlasov equation solver is suitable for the simulation in low 

dimension (1D1V or 1D2V), with the dimension increased, the degree of freedom and 

number of grids in velocity space will be increased significantly, which claims a large 

computational cost than the PIC solver. The high order time-evolution converting (TEC) 

formula[97] needs to be applied to the CIPCSL3 method to reduce the degree of freedom. 
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