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Chapter 1

Introduction

1.1 Overview of artificial intelligence applied to
radiation therapy

1.1.1 General introduction
Lung cancer is the second most prevalent form of cancer worldwide with 2.2 million
new cases in 2020, representing 11.4% of new total cancer cases Sung et al. [2020].
The most prevalent cancer type is female breast cancer, with 2.3 million new cases
in 2020. Lung cancer is the leading cause of cancer death, with approximately
1.8 million deaths worldwide (18% of all cancer deaths), followed by colorectal and
liver cancer, which represent respectively 9.4% and 8.3% of all cancer deaths. The
survival rate of patients with lung cancer at 5 years after diagnosis is only 10% to
20% in most countries.

More than 50% of cancer patients are treated with radiotherapy. The radio-
therapy process involves several steps: patient assessment, image acquisition, treat-
ment planning, radiation delivery, and post-treatment follow-up. The data used
in radiation oncology takes various forms, such as four-dimensional computed to-
mography (4DCT), four-dimensional cone beam computed tomography (4D-CBCT),
magnetic resonance imaging (MRI), fluoroscopic imaging, positron emission tomog-
raphy (PET) imaging, genomics data, and dosimetry data. In this context, artificial
intelligence (AI) applications to radiotherapy are being developed to ensure better
patient outcome (cf the literature review articles [Feng et al., 2018, Huynh et al.,
2020, Jarrett et al., 2019, Meyer et al., 2018]). These need to tackle the challenges
posed by complex treatment workflow and multimodal data described above.

The application of AI to radiotherapy also faces many difficulties that are shared
with medical imaging in general. Publicly available datasets are limited, which pre-
vents reproducibility of results and advances in the field. In addition, most datasets
comprise few training examples, which hampers the performance of prediction al-
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CHAPTER 1. INTRODUCTION

gorithms. Therefore, one of the current research directions focuses on leveraging
the data available in the best possible way, for instance by using transfer learning.
Real-time performance, as well as high reliability, are critical in image-guided robotic
radiosurgery. Furthermore, AI faces lack of trust by medical practitioners. Indeed,
in computer-aided diagnosis, a certain degree of explainability and interpretability
of the results is highly desirable.

1.1.2 Artificial intelligence within the radiotherapy work-
flow

AI can help physicians appropriately decide the best treatment for each patient using
a data-centric and quantitative approach. Indeed, software can provide information
about the benefit to risk balance associated with different potential treatment plans
(e.g., intensity modulated radiation therapy, 3D conformal radiotherapy, proton
therapy, etc.), making selection of the best option for each individual patient easier.
For example, recurrent marginal networks have successfully been applied to the
forecast of the tumor volume over time depending on the treatment selected [Lim
et al., 2018]. Computer-aided diagnosis and detection from medical images are
also extremely valuable. For example, identification of nodal metastasis and tumor
extranodal extension (ENE) from pre-treatment radiographic images, despite being
a difficult task for clinicians, can be performed with convolutional neural networks
(CNN) with high accuracy [Kann et al., 2018].

Image processing during radiotherapy planning can help reduce artifacts due to
the presence of metal parts in the human body (dental fillings, spinal implants, hip
prostheses, etc.) for better dose estimation using sinogram completion methods and
model-based iterative algorithms [Giantsoudi et al., 2017]. Artificial neural network
(ANN) architectures such as U-Nets [Han, 2017], fully convolutional networks (FCN)
[Nie et al., 2016], and generative adversarial networks (GAN) [Wolterink et al.,
2017] can help generate synthetic computed tomography (CT) images with electronic
tissue density information necessary for treatment planning from magnetic resonance
(MR) images, in which tumors are more easily distinguishable due to a higher visual
contrast [Hsu et al., 2013]. AI is also used in reconstruction algorithms to obtain
higher quality images with low-dose X-ray images, therefore reducing the risks of
overexposure to radiation. In other words, AI developments in image reconstruction
help improve the trade-off between image quality and dose exposure [Willemink and
Noël, 2019].

Automatic segmentation of organs at risk (OAR) and target volume on the
planning images can help physicians save time. It can also help mitigate the high
degree of inter-observer variability as well as the absence of an absolute ground
truth for contouring, which are some of the most important sources of uncertainty
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CHAPTER 1. INTRODUCTION

Figure 1.1: Applications of AI in the radiation therapy workflow1

in treatment planning [Roques, 2014]. A large-scale example of such work is the col-
laboration between DeepMind and the University College London Hospitals on the
automatic segmentation of 21 OARs of the head and neck anatomy using a three-
dimensional (3D) U-Net trained with 663 CT scans, which achieved human-level
performance on 19 of the OARs studied [Nikolov et al., 2018].

After delineation, machine learning algorithms can be used to estimate dose
distribution [Barragán-Montero et al., 2019, Shiraishi and Moore, 2016] and assess
dosimetric trade-offs [Valdes et al., 2017]. Identification of the optimal parameters
of the treatment system to achieve the best dose distribution is another area of re-
search in AI for treatment planning. In adaptive radiotherapy (ART), the treatment
plan is modified using a system involving feedback measurements obtained during
the treatment. Deep reinforcement learning has recently been applied to ART by
assessing the need to perform re-planning in the case of non-small-cell lung can-
cer [Tseng et al., 2017]. Machine learning models such as support vector machines
(SVM) or random forests can also benefit quality assurance (QA) by helping detect
anomalies with linear accelerator (LINAC) imaging systems [Valdes et al., 2015]
and discrepancies between planned and recorded multi-leaf collimator movements
[Carlson et al., 2016].

Positioning the beam precisely during the treatment is important for safety as
high-dose irradiation should not be delivered to critical areas. For instance, in the
case of head and neck cancer, guiding incorrectly the radiation beam can result in
damage to the optic nerve (optic neuropathy). This can lead to visual loss in one
or both eyes, visual field defects, or defective color vision [Mihalcea and Arnold,
2008]. Improvements in image registration algorithms contribute to precise patient
positioning before treatment and help in motion management during the treatment
[Brock et al., 2017]. Indeed, the recent addition of new imaging modalities such as
MRI or optical imaging to treatment systems provides valuable information that

1Reprinted from [Huynh et al., 2020] with permission from Springer Nature, Copyright 2020.
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CHAPTER 1. INTRODUCTION

can be used to make radiation delivery more accurate [Ma et al., 2018].
AI software could also help as a clinical support tool that allows better charac-

terizing tumor response to the treatment. As an example, SVMs have successively
been applied to detect early signs of lung cancer recurrence after stereotactic surgery
[Mattonen et al., 2016].

1.2 Time series forecasting for motion manage-
ment in lung radiation therapy

1.2.1 Clinical background
In lung cancer therapy, a certain amount of normal tissue surrounding the tumor
receives irradiation. This is due to normal movements of the organs causing tumor
displacements, such as breathing in the case of lung cancer. Lung tumors exhibit a
rather cyclic motion, with some changes in frequency and amplitude over time. It
has previously been reported that such motion can be up to 5cm [Chen et al., 2001].
Phase shift, as well as intrafractional baseline shift and drift, can be observed. The
term ”shift” refers to sudden changes in the mean tumor position whereas the term
”drift” refers to continuous changes, during a single treatment. Baseline drifts of
1.65± 5.95 mm (mean position ± standard deviation), 1.50± 2.54 mm, and 0.45±
2.23 mm have respectively been reported concerning the spine axis, dorsoventral
axis, and left-right direction in [Takao et al., 2016]. Patients tend to relax while
lying on the treatment couch may and also slightly change their overall position
from time to time, which contributes to the variability of the respiratory records.
Sudden changes or irregular patterns may arise from yawning, hiccup, or cough.
Noise is naturally present and can be partly caused by cardiac or gastrointestinal
movements. The tumor shape is not rigid and deforms over time to a certain extent
(Fig. 1.2). Moreover, the motion of lung tumors can vary across patients and
fractions [Ehrhardt et al., 2013, Verma et al., 2010].

He et al. provided several examples illustrating the variability of the respiratory
motion for a single individual. First, they compared two 4DCT sequences from
the same subject, acquired at different times. Deformable image registration (DIR)
was performed to estimate local chest tissue motion due to breathing. They found
that the average magnitude of deformation both on the chest surface and lung field
differed between the two imaging sessions (Fig. 1.3).

To further illustrate inter-fractional variability, they registered chest images of a
single patient at different treatment days. The result of these calculations is shown
in Fig. 1.4. The large discrepancies at the armpit are caused by the difficulty
of performing prior positioning. There was a significant difference between the
calculated displacements of the recorded chest surface during the different sessions,
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CHAPTER 1. INTRODUCTION

Figure 1.2: Pancreatic tumor at the end of inspiration phase (left) and end of
expiration phase (right) in a series of CT scan images. The center of mass of the
tumor moves up and down due to the breathing motion and the tumor shape also
changes following that motion.2

Figure 1.3: Magnitude of deformation from the baseline (phase 0) to the other
respiratory phases in two 4DCT acquisitions of the same subject.3

of up to 4.5mm. Respiratory motion variability and safety requirements motivate
the development of breathing motion management techniques in radiotherapy.

Different targets are defined by clinicians to take into account tumor position
uncertainties during the treatment. In conventional motion encompassing meth-
ods, the internal target volume (ITV) takes into consideration internal physiological
motion such as lung motion (Fig. 1.5). The final target, called planning target
volume (PTV), also encompasses intra-fraction and inter-fraction setup errors in-
fluencing the dose delivery [Chhatkuli, 2016] (Fig. 1.6). PTV margins can be as
large as 0.9cm, 1.0cm and 2.7cm in the left-right (LR), antero-posterior (AP) and
superior-inferior (SI) directions, respectively [Li et al., 2016].

Irradiating a large area around the tumor results in high irradiation to surround-
ing healthy tissues, leading to potential undesirable side effects. Inflammation of the
cells that line the alveoli, also called radiation pneumonitis, makes oxygen transfer
less efficient and is characterized by symptoms such as cough, fever, and fullness of
the chest. In pulmonary fibrosis, stiff scar tissue develops in the lungs, which reduces
lung elasticity and therefore the amount of air one can breathe in. Some rare side

2Figure used in [Chhatkuli, 2016] (open access doctoral dissertation)
3Reprinted from [He et al., 2017] with permission from Springer Nature, Copyright 2017.
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Figure 1.4: Magnitude of deformation of the chest surface of one patient under free
breathing conditions, calculated from 4D-CBCT scan images acquired on different
treatment days (”TD” here stands for ”treatment day”).4

Figure 1.5: Large irradiated area in conventional lung radiotherapy 5

Figure 1.6: Visualization of the different target volumes in the case of a lung cancer
patient, in the transverse (a), sagittal (b) and coronal (c) planes of a 4DCT image.
The ITV is represented in blue and the PTV in yellow. The GTV is delineated in
red. 6

effects of lung radiation therapy include spinal cord damage, which causes walking
difficulties and loss of sensation in the lower body, inflammation of the lining sur-
rounding the heart (pericarditis), and weakening of the heart muscle (myopathy).

4Reprinted from [He et al., 2017] with permission from Springer Nature, Copyright 2017.
5Figure used in [Chhatkuli, 2016] (open access doctoral dissertation)
6Figure used in [Li et al., 2016] (open access article)
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In rare cases, damage to the blood vessels supplying the heart may increase the risk
of a heart attack [CancerConnect, 2020, N., 2015].

To decrease the amount of irradiation to healthy tissues, several options have
been proposed. The first one is breath-holding and consists of asking the patient
not to move for a certain duration. This causes much discomfort to the patient.
Beam-gating is another method that consists of delivering radiation to the tumor
only when it reaches a certain location by alternatively turning the beam on and off
[Jiang, 2006], thereby making the treatment accurate but lengthy. Recent advances
in robotics and sensor technology should however allow for continuous accurate
tracking and irradiation of the tumor as it moves. Indeed, the latter could be
directly tracked in real-time using kilovoltage (kV) or MR imaging [Bertholet et al.,
2019]. In addition, indirect models can estimate the tumor location from chest
optical imaging or the position of internal or external markers.

Direct real-time lung tumor tracking has been performed based on optical flow
registration [Xu et al., 2008], Principal component analysis (PCA) followed by re-
gression [Lin et al., 2009], dynamic decomposition of image intensities [Homma
et al., 2013], histogram-based target modeling [Zhang et al., 2014], particle filtering
[Bourque et al., 2016], and extended Kalman filters [Shieh et al., 2017]. Some recent
tracking approaches focus on ANNs [Hirai et al., 2019, Terunuma et al., 2018, Yun
et al., 2015].

Figure 1.7: Excessive irradiation of healthy lung tissue due to an overall system delay
∆t not compensated. The area irradiated, represented here using diagonal stripes,
is larger than the tumor size, to take into consideration effects such as variation of
the tumor shape during the treatment.

Current treatment systems generally suffer from an inherent time latency due to
image acquisition and processing, communication delays, and preparation of the ra-
diation delivery system. A latency of around 300ms has been reported for a robotic
arm-mounted LINAC in [Schweikard et al., 2000]. Concerning gantry-mounted mul-
tileaf collimator (MLC) based LINACs, Shirato et al. reported a latency of 90ms
[Shirato et al., 2000], whereas Poulsen et al. mentioned time lags from 350ms to
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1,400ms for sampling intervals between 150ms and 1,000ms [Poulsen et al., 2010].
Verma et al. summarise the situation as follows: ”For most radiation treatments,
the latency will be more than 100ms, and can be up to two seconds” [Verma et al.,
2010]. If this phenomenon is not compensated, it may lead to errors in the esti-
mation of the tumor position, and thus to serious damage to healthy tissue and
ineffective irradiation of the tumor (Fig. 1.7).

1.2.2 Recent advances in Artificial Neural Networks for time
series forecasting

Time-series forecasting is a self-supervised task, which means that there is no need
for human data labeling before training [LeCun and Misra, 2021]. Deterministic
forecasting, which provides the most likely value of the estimated variable, differs
from probabilistic forecasting, which provides a probability distribution for that
variable, thereby estimating uncertainties numerically. Single-step prediction con-
sists of providing the estimated value corresponding to a certain look-ahead time
in the future, whereas in multi-step prediction, one estimates at once several values
corresponding to multiple look-ahead times.

Classical predictive models such as Auto-Regressive Integrated Moving Average
(ARIMA) [Box et al., 1994] or exponential smoothing [Hyndman et al., 2008] have
become less used nowadays as ANNs perform well at extracting complex patterns
and enable building global models using multiple related temporal datasets, as op-
posed to patient-specific models.

One of the current research directions concerning time-series forecasting is the
elaboration of more sophisticated neural network architectures based on transformer
networks (e.g., temporal fusion transformers [Lim et al., 2019], convolutional trans-
formers [Li et al., 2019]), GANs (e.g., adversarial space transformers [Wu et al.,
2020]), graph networks (e.g., spectral temporal graph network [Cao et al., 2021]),
and convolutional and recurrent neural networks (e.g., temporal convolutional net-
works [Bai et al., 2018] [Lässig, 2020], DeepAR [Salinas et al., 2020], quasi-recurrent
neural networks [Bradbury et al., 2016], dilated RNNs [Chang et al., 2017]). Some
new approaches establish links between deep learning and classical methods such as
linear Gaussian state spaces [de Bézenac et al., 2020]. Other recent works tackle spe-
cific problems arising in time series prediction such as the sharp prediction of sudden
changes [Guen and Thome, 2019] [Guen and Thome, 2020] [Guen and Thome, 2021],
prediction with missing data [Cui et al., 2020], prediction with logical assumptions
on signal properties such as imposing a reasonable range of values [Ma et al., 2020],
or interpretability of the predictions [Barić et al., 2021].

Time-series forecasting is partly motivated by practical problems arising in vari-
ous areas such as finance (e.g., stock price, index, commodity price, volatility, foreign
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exchange rate, and cryptocurrency price forecasting) [Sezer et al., 2020], the energy
industry [Wei et al., 2019] [Wang et al., 2019], and the transportation industry
(e.g., road traffic flow, road traffic speed, taxi demand, train passenger flow) [Jiang
and Luo, 2021]. It has been applied in healthcare for epidemiology [Chimmula and
Zhang, 2020] and diabetes management [Zhu et al., 2020]. More generally, time
series analysis has other useful applications in healthcare such as cardiovascular
disease detection from ECG signals [Faust et al., 2018].

1.2.3 Artificial Neural Networks for time series forecasting
in external beam therapy

This section specifically reviews the application of ANNs to time series forecasting
for motion management in radiotherapy. Other algorithms have also been used to
predict respiratory motion (e.g., kernel density estimation [Ruan, 2010], relevance
vector machines [Dürichen et al., 2013] [Fan et al., 2020], random convolution nodes
[Wang et al., 2020]), and comparison of these with neural network approaches was
performed in several works such as [Verma et al., 2010] [Lee and Motai, 2014, Chap-
ter 2] [Ehrhardt et al., 2013, Chapter 12]. In some studies, it was observed that
ANNs are stronger than classical methods at performing prediction with high re-
sponse time values, superior to 500ms.

Comparison between the performance of different algorithms is difficult because
the datasets generally differ from article to article. In particular, the sampling rate,
the amplitude of the signals, and selection of the response time are different, al-
though a sampling frequency of 30Hz is common. The prediction errors reported also
differ between the studies. They generally comprise the mean average error (MAE),
root-mean-square error (RMSE), normalized root-mean-square error (nRMSE), and
maximum error.

The first studies about prediction in radiotherapy mainly involved ANNs with
only one hidden layer, but deeper architectures and recurrent connections are com-
mon in recent works. The latter also tend to use more training and testing data
(i.e., more time-series records with a higher duration) to improve performance. The
study from Lin et al. in 2019 involves the largest largest amount of data in a study
about time-series forecasting for motion management. That data comprises 1703
respiratory traces from 985 patients, and was acquired with the Real-Time Position
Management (RPM) system in three clinical institutions [Lin et al., 2019].

The previous studies have discussed topics such as parameter selection (e.g.,
[Murphy and Pokhrel, 2009]), architecture selection (e.g., [Mafi and Moghadam,
2020]), training method selection (e.g., [Goodband et al., 2008]), the influence of
the sampling frequency and horizon (e.g., [Sharp et al., 2004]), and the efficiency of
dynamic learning (e.g., [Mafi and Moghadam, 2020]). Some works focused on the
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Work Network Training Breathing Sampling Amount of Signal Response Prediction
method data rate data amplitude time error

[Sharp et al., 2004] 1-layer Conjugate gradient 1 implanted 1 Hz to 14 records 9.1mm 1) 33ms RMSE ∈
MLP (offline) marker 30 Hz 48s to 352s to 31.6mm 2) 200ms 1) [1.8mm, 4.2mm]

per record 3) 1.0s 2) [2.5mm, 4.9mm]
3) [4.3mm, 6.0mm]

[Isaksson et al., 2005] 1-layer Levenberg-Marquardt Internal and 10 Hz 3 patients - 200ms nRMSE from
MLP & adaptive training external markers 90s to 160s to 800ms 0.22 to 0.65

per patient (external marker)
[Kakar et al., 2005] 5-layer Combination of grad. 1 external marker 25 Hz 11 patients Greater than - RMSE 1.8mm

ANFIS descent and LMS (RPM data) 6.95mm
[Murphy and Dieterich, 2006] 1-layer Back propagation 1 external marker 30 Hz 9 patients 1mm to 2mm 1) 100ms 1) nRMSE ≤ 0.40

MLP and LMS (Cyberknife Sync.) 45min to 105min 2) 300ms 2) nRMSE ≤ 0.86

[Goodband et al., 2008] 1-layer 1) Conjugate 1 external 30 Hz 331 records 8mm to 60mm 400ms 1a) RMSE 1.092mm
MLP gradient (CG) marker of 4 min 1b) RMSE 1.202mm

2) CG + Bayesian a) average filter (24 patients) 2a) RMSE 0.970mm
regularization b) unfiltered 2b) RMSE 1.341mm

[Murphy and Pokhrel, 2009] 1-layer Back propagation Cyberknife 30 Hz 27 records - 1) 100ms 1) nRMSE ≤ 0.178

MLP and LMS Synchrony data of 167s 2) 500ms 2) nRMSE ≤ 0.889

[Lee et al., 2011] 1-layer Hybrid extended Cyberknife 26 Hz 15 records Normalized 1) 192ms 1) nRMSE ≤ 0.146

RNN Kalman filter data 50min to 120min to [−1, 1] 2) 500ms 2) nRMSE ≤ 0.192

[Krauss et al., 2011] 1-layer Gradient-based Tumor position 30 Hz 12 records 6mm to 14mm 600ms RMSE 1.78mm
MLP optimization with from implanted 15 Hz of 83s (SI direction) averaged over

L2 regularization markers 7.5 Hz the sampling rates
[Lee and Motai, 2014] RNN Customized pred. Cyberknife 26 Hz 130 patients Normalized 1) 192ms 1) nRMSE ≤ 0.177

-FCL with multiple data records from to [−1, 1] 2) 500ms 2) nRMSE ≤ 0.314

patient interactions 25min to 132min
[Choi et al., 2014] 3-layer Back propagation RPM data 10 Hz 87 records - 100ms RMSE 0.041

MLP & adaptive training (Varian) 3.6 to 8min 500ms RMSE 0.147
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[Sun et al., 2017] 1-layer Levenberg-Marquardt RPM data 30 Hz 138 records Normalized 500ms RMSE 0.17
MLP & adaptive boosting (Varian) of 330s to [−1, 1] nRMSE 0.28

[Kai et al., 2018] 1-layer BPTT 1 implanted 30 Hz 7 records of - 1.0s RMSE from
RNN marker 40s to 70s 0.48mm to 1.37mm

[Wang et al., 2018] 7-layer BPTT 1D trace from 26 Hz 306 records - 1.0s MAE 0.075mm
bi-LSTM external markers 25 to 132 min RMSE 0.097mm

(Cyberknife) per record nRMSE 0.081
[Teo et al., 2018] 1-layer Back propagation & Cyberknife 7.5 Hz 27 records 2mm to 16mm 650ms MAE 0.65mm

MLP adaptive training Synchrony data of 1 min (development RMSE 0.95mm
set) Max error 3.94mm

[Yun et al., 2019] 2-layer LSTM BPTT with ADAM 3D center of 25 Hz 158 records 0.6mm 280ms RMSE 0.9mm
& one FCL & adaptive training mass of the tumor of 8 min to 51.2mm

[Lin et al., 2019] 3-layer BPTT with ADAM RPM data 30 Hz 1703 records Normalized 280ms MAE 0.112
LSTM (Varian) of 2 to 5 min to [−1, 1] 500ms RMSE 0.139

[Mafi and Moghadam, 2020] 3-layer ANN RTRL Cyberknife 7.5 Hz 43 records of - 665ms MAE 0.54mm
(1 rec. layer) Synchrony 2.2s to 6.4s RMSE 0.57mm

[Yu et al., 2020] 3-layer BPTT with ADAM 1D PCA signal 17 Hz 6 patients Normalized 600ms MAE < 0.16mm
bi-GRU & online training from 3 ext. markers 15-20 min to [0, 1] RMSE < 0.17mm

(accuTrack 250) per patient Max error < 0.28mm
[Jöhl et al., 2020] 3-layer Levenberg-Marquardt Cyberknife data 25 Hz 95 records Up to 12mm 160ms nRMSE 0.38

MLP SNR: 1) 30dB 2) 20dB 11min to 131min nRMSE 0.66
[Lee et al., 2021] 1-layer LSTM BPTT RPM data 30 Hz 550 records 11.9mm 210ms RMSE 0.28mm

& one FCL (Varian) 91s to 188s to 25.9mm
[Wang et al., 2021] 2-layer LSTM BPTT with ADAM External markers 20 Hz 7 records - 450ms RMSE < 0.5mm

& 2 FCLs mini-batch, dropout (accuTrack 250) 5min to 6min

Table 1.1: Previous ANN models proposed for prediction in radiotherapy. The term ”RNN” designates a vanilla RNN, as opposed to LSTMs and GRUs. A field
with ” - ” indicates that the information is not available in the corresponding research article. Abbreviations defined at the beginning of the thesis document.
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combined use of surrogate signal prediction and correspondence models [Isaksson
et al., 2005, Wang et al., 2021]. Dosimetric assessment has been conducted in [Lee
et al., 2021] to understand more thoroughly how tumor position forecasting can
positively impact dose delivery accuracy.

Adaptive or dynamic learning has been applied several times to radiotherapy,
and some studies demonstrated the merits of that approach in comparison with static
models [Krauss et al., 2011, Mafi and Moghadam, 2020, Teo et al., 2018]. Online
learning is beneficial to prediction in radiotherapy because it helps the prediction
system conform to changing respiratory patterns (Section 1.2.1). The introduction
of online learning in radiotherapy may also have arisen from difficulties in accessing
large amounts of data, which are due to regulations about patient personal infor-
mation protection. In this context, adaptive learning can be regarded as a form of
transfer learning that helps compensate for the inability of small training sets to
capture all the variations in the test set.

Most of the literature about respiratory motion prediction has been focusing
on single-step deterministic prediction of univariate signals. However, because the
motion of the tumor’s center of mass is three-dimensional, multivariate prediction is
needed to reduce uncertainties in target localization. Probabilistic prediction could
also help better conform the beam shape by taking into account target location
uncertainties.

Most of the recent studies about time series forecasting for latency compensation
in radiotherapy has been analyzing the capabilities recurrent neural networks (RNN)
and their variants such as Long Short-Term Memory (LSTM) networks and gated
recurrent units (GRU). These have also been used in related medical data process-
ing problems such as cardiorespiratory motion prediction from X-ray angiography
sequences [Azizmohammadi et al., 2019]. An RNN is a specific type of ANN charac-
terized by a feedback loop that acts as a memory and allows retaining information
over time. RNNs can efficiently learn features and long-term dependencies from
sequential and time-series data. They have been applied to various problems in nat-
ural language processing (e.g., machine translation [Cho et al., 2014, Sutskever et al.,
2014]), audio processing (e.g., speech recognition [Graves et al., 2013]), and com-
puter vision (e.g., handwriting recognition [Graves and Schmidhuber, 2009, Graves
et al., 2008] and scene labeling [Byeon et al., 2015]).

1.2.4 Impact of tumor position forecasting on dose delivery
Prediction of the lung tumor position is performed to reduce the dose delivered
to healthy tissue during the radiotherapy treatment. It has experimentally been
observed that forecasting respiratory signals with an RNN could improve radiation
delivery accuracy [Lee et al., 2021]. In that study, the surface of a motion phantom
was tracked by four external markers on the chest. An iron sphere was inserted
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Figure 1.8: Experimental setup involving an articulated robotic couch system in
[Lee et al., 2021]. ”EPID” stands for ”electronic portal imaging device”. 7

inside the phantom and a robotic treatment couch was used to compensate for the
one-dimensional (1D) respiratory motion, so that the ball does not move in the beam
axis (Fig. 1.8). Prediction was performed using a network composed of LSTM layer
followed by a fully connected layer (FCL). Motion traces of 550 patients lasting
from 91s to 488s sampled at 30Hz acquired with the RPM system (Varian) were
used for training. Prediction was performed with a horizon of 210ms and resulted
in an RMSE of 0.28mm over a test set comprising of the motion of 6 patients with
an average amplitude of 17.8mm.

The two-dimensional (2D) distribution of the delivered dose was measured using
a radiochromic film inserted into the respiratory phantom. Dosimetry analysis was
conducted by calculating gamma index distributions to compare the planned and
delivered dose [Low and Dempsey, 2003, Low et al., 1998, Radiofísica con Valdo
(Youtube), 2019]. Gamma index measures are relative to arbitrary tolerance criteria:
a spatial criterion called distance to agreement (DTA), expressed in millimeters,
and the dose difference criterion, expressed in percentage. Given a certain location
x⃗, a gamma index γ(x⃗) lower than 1 indicates high local correlation between the
calculated and measured dose. The gamma passing rate is defined as the percentage
of points x⃗ for which γ(x⃗) < 1. Concerning the the 2%/2mm criterion, the gamma
passing rate associated with the RNN and averaged over the 6 patients, equal to
89.0%, was higher than that associated with double exponential smoothing and no
prediction, respectively equal to 82.7% and 73.0%. Similarly, the gamma passing
rate corresponding to the 3%/3mm criterion was higher for the RNN (97.4%) than
double exponential smoothing (94.2%) and no prediction (87.8%).

7Reprinted from [Lee et al., 2021] with permission from Springer, Copyright 2021
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Figure 1.9: Dose difference distribution under the 3%/3 mm criteria for the dosi-
metric evaluation of Patient 3 in [Lee et al., 2021]. ”NP” and ”ES2” respectively
refer to ”no prediction” and the ”double exponential smoothing” algorithm. 8

The study of Lee et al. shows that latency compensation results in better con-
formity of the dose delivered with the planned dose distribution. The quantitative
physical evaluation of the benefits of respiratory motion prediction regarding the
delivered dose is not the goal of this thesis. The results above are rather men-
tioned to highlight the importance and positive impact of algorithmic developments
in time-series data forecasting on external beam radiation therapy.

1.3 Online training of Recurrent Neural Networks
The design of learning algorithms for RNNs is one of the main areas of research in
machine learning (see for instance [Ke et al., 2018, Liao et al., 2018, Salehinejad
et al., 2017, Tallec, 2019]). A good introduction to RNNs and classical algorithms
for training RNNs can be found in [Tallec, 2019, Chapter 2]. In this section, we
introduce briefly the standard RNN model, also called vanilla RNN, and we review
the latest dynamic methods for training RNNs.

The behavior of RNNs is characterized by the state equation, which describes the
dynamics of the internal states, and the measurement equation, which describes how
the RNN output is influenced by the hidden states (Eq. 1.1)9. In these equations,
un ∈ Rm+1, xn ∈ Rq, and yn ∈ Rp respectively represent the input, state, and
output vector at time tn. The synaptic weight vector is denoted θ. Fig. 1.10 gives a
graphical representation of these two equations. A one-hidden-layer RNN computes
q internal states x1

n+1, ..., xq
n+1 (scalar values) from the input un and the internal

states x1
n, ..., xq

n. The RNN output layer computes the output vector yn+1 from the
internal states x1

n+1, ..., xq
n+1.

xn+1 = Fst(xn, un, θ) yn = Fout(xn, θ) (1.1)

8Reprinted from [Lee et al., 2021] with permission from Springer, Copyright 2021
9The general formulation of the measurement equation is yn = Fout(xn, un, θ) but we do not
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Figure 1.10: Structure of an RNN with one hidden layer. When predicting data,
the input vector un corresponds to the the past data and the output vector yn+1

corresponds to the predicted data.

When incoming data arrives in a streaming fashion, with learning examples
(un, yn+1) coming one after another, it may be necessary to adapt the RNN synaptic
weights θ with each newly available example. This process, called online learning,
is opposed to offline learning. The design of online training algorithms for neural
networks is an active area of research in machine learning (see for example [Jain
et al., 2014, Pérez-Sánchez et al., 2018, Sahoo et al., 2017]). When performing
online learning, the parameter vector is updated as the examples arrive, therefore
we denote it by θn instead of θ. Equation 1.1 thus becomes Eq. 1.2.

xn+1 = Fst(xn, un, θn) yn = Fout(xn, θn) (1.2)

The classical methods for online training of RNNs are real-time recurrent learn-
ing (RTRL) and truncated back-propagation through time (BPTT). RTRL suffers
from a high computational complexity O(q4) and truncated BPTT from bias in the
computation of the gradient loss. Reducing the time complexity of online learning
algorithms for RNNs while calculating an unbiased estimate of the gradient of the
loss Ln with respect to θn at each time step tn has motivated the research com-
munity to devise more sophisticated training approaches (cf Table 1.2). Marschall
et al. proposed a classification of these based on different characteristics. The
algorithms referred to as “past-facing” adjust the synaptic weights θn based on a
loss function defined over the training examples already observed. On the con-
trary, “future-facing” algorithms estimate and minimize a loss function defined over
non-observed upcoming examples using only information until the current time step

use RNNs for which un directly influences the output yn in our work.
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CHAPTER 1. INTRODUCTION

tn. Past-facing algorithms compress the immediate influence matrix ∂xn/∂θn, while
future-facing algorithms predict the immediate credit assignment vector ∂Ln/∂xn.
Another distinction concerns the update of the synaptic weights, which is either de-
terministic or stochastic, and uses either numerical approximations or a closed-form
formula. For instance, reducing the RTRL complexity in unbiased online recurrent
optimization (UORO) is made at the expense of introducing randomness in the up-
date of the parameter vector. The last distinction is the tensor structure inherent
to the influence matrix compressed by past-facing algorithms. Besides the online
training algorithms listed in Table 1.2, we can also mention “NoBackTrack” [Ollivier
et al., 2015], “Anticipated Reweighted Truncated Back Propagation” (ARTBP) [Tal-
lec and Ollivier, 2017b], “Adaptive Truncated BPTT” [Aicher et al., 2020], and on-
line spatio-temporal learning (OSTL) [Bohnstingl et al., 2020]. A theoretical proof of
convergence for algorithms approximating RTRL, such as UORO and NoBackTrack
has recently been established by Massé and Ollivier.

RNN characteristic
Output layer size p
Input layer size m
Number of hidden layers 1
Size of the hidden layer q
Activation function Φ Hyperbolic tangent
Training algorithm RTRL or UORO or SnAp-1
Optimization method Stochastic gradient descent
Weights initialization Gaussian
Gradient clipping Yes
Input data normalization Yes (online)

Table 1.3: Configuration of the RNNs forecasting the breathing signals in this thesis.

In the following, we use a vanilla or standard RNN architecture, described by
Eq. 1.3, where the parameter vector θn consists of the elements of the matrices Wa,n,
Wb,n, and Wc,n, of respective size q × q, q × (m + 1), and p× q. Φ is the nonlinear
activation function, and in this thesis we use the hyperbolic tangent function (Eq.
1.4).

Fst(xn, un, θn) = Φ(Wa,nxn +Wb,nun) Fout(xn, θn) = Wc,nxn (1.3)

Φ

a1

...

aq

 =

ϕ(a1)

...

ϕ(aq)

 where ϕ(a) = tanh(a) (1.4)

We normalize the multidimensional RNN input un by first calculating its mean
µtrain and standard deviation σtrain of the training set and then by replacing each

30



CHAPTER 1. INTRODUCTION

new arriving vector input un with (un − µtrain)/σtrain (the division is performed
element-wise). This enables faster and more efficient learning with stochastic gra-
dient descent. Moreover, RNNs updated by the gradient rule may be unstable. We
thus prevent large weight updates by clipping the gradient norm to avoid numeri-
cal instability [Pascanu et al., 2013]. The characteristics of the RNNs studied are
summarized in Table 1.3.

1.4 Study objectives and structure of the thesis
The primary goal of this thesis is to develop and evaluate algorithms involving
online training of RNNs that will positively impact breathing motion management
in radiotherapy. Forecasting the respiratory motion will help estimate the tumor
position accurately and in turn, reduce irradiation to healthy tissues. This will
ultimately lead to a decrease in the occurrence of side effects such as radiation
pneumonitis or pulmonary fibrosis.

In Chapter 2, we track chest internal points by performing deformable registra-
tion of CT scan images with the pyramidal Lucas-Kanade optical flow algorithm.
These points are close to the tumor and may represent implanted fiducial markers.
RTRL is used to predict their 3D positions. A linear relationship between the lat-
ter and the chest internal displacement vector field (DVF) then enables estimating
future images.

In Chapter 3, we consider the problem of forecasting the position of external
markers placed on the chest and abdomen, recorded by infra-red cameras. We
compare the performance of RTRL, UORO, least mean squares (LMS) and linear
regression for different values of the horizon: the time interval in advance for which
prediction is performed. We also examine robustness to irregular motion and trade-
off between accuracy and jitter. The latter is a measure of the oscillatory behavior
of the predicted signal and needs to be minimized to ensure proper control of the
robotic system.
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Chapter 2

Prediction of the position of chest
internal points using Real-Time
Recurrent Learning

2.1 Introduction
2.1.1 Systems for lung tumor tracking

In image-guided radiotherapy (IGRT), several methods have been designed to track
the three-dimensional (3D) position of the lung tumor in real-time as accurately as
possible. Indeed, it has been mentioned that ”a systematic tracking error of 2mm
can be significant” [Murphy, 2004] regarding dose delivery accuracy and safety. One
of these modalities is called beam gating and consists of turning on and off a static
beam according to the recorded tumor position. Conversely, in beam tracking, the
radiation beam follows the tumor and conforms to its position as it moves.

Visualizing clearly a lung tumor in 3D during the radiotherapy treatment is
difficult. Therefore, one often records surrogate signals and uses a correspondence
model to infer the tumor location. Such signals may be the position of internal or
external markers. Internal fiducial markers are small metallic objects, such as gold
coils or spheres, that are implanted in the lung, close to the tumor, prior to the
radiotherapy treatment (Fig. 2.1). Marker placement can be percutaneous (using
a needle), endovascular, or endobronchial (e.g., Veran system). Their position can
be measured by fluoroscopic imaging systems, such as CyberKnife’s orthogonal X-
ray imaging sources and flat-panel detectors (Fig. 2.2) [Khankan et al., 2017]. In
contrast, external fiducial markers are objects attached to the patient’s chest whose

The content of this chapter has been published in the journal ”Computerized Medical Imaging
and Graphics” [Pohl et al., 2021a]. More details are available in the journal article.
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Figure 2.1: Implanted fiducial markers, circled in red, near a lung tumor on a 4DCT
image. 1

Figure 2.2: Cyberknife radiosurgery device. X-ray tubes and kV flat panel detectors
are used to acquire images of the implanted fiducial markers, whose 3D position
is automatically detected by an image analysis software. That position is used to
guide the robotic arm as the patient breathes during the treatment. 2

position can be recorded using an infrared tracking system.

2.1.2 Prediction for latency compensation

Due to mechanical limitations, signal exchange, and processing time, there is a delay
between anatomical image acquisition and radiation beam activation. That latency
time is specific to each treatment system and was reported to be between 100ms and
2s in general [Verma et al., 2010]. As that phenomenon impedes accurate radiation
delivery and can lead to more damage to healthy tissue, there is a need for proper

1Figure used in [McDonald et al., 2019] (open access article)
2Figure used in [Roberge and Cabrera, 2011] (open access article)
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compensation using forecasting algorithms (Fig. 1.7). In this work, we propose
and investigate a standard online training algorithm for recurrent neural networks
(RNN) called real-time recurrent learning (RTRL) and apply it to the prediction of
lung tumor position.

2.1.3 Chest image registration

In the proposed study, we artificially track arbitrary internal points near the tu-
mor by calculating the deformation or displacement vector field (DVF) in the whole
chest in computed tomography (CT) scan images. This internal correspondence
calculation process, known as deformable image registration (DIR), has been ex-
tensively studied for various applications in radiotherapy, such as tumor tracking,
correction of the irradiation plan relative to the patient position on the couch, and
ventilation imaging for lung function estimation. The different DIR algorithms can
be classified into two categories. The first category is referred to as feature-based
registration [Ehrhardt et al., 2013]. In feature-based registration, highly structured
image regions such as vertebrae, ribs, the lung surface, the bronchial and vascu-
lar tree are first matched by algorithms such as the iterative closest point (ICP)
[Besl and McKay, 1992], and a dense deformation field is subsequently calculated
using interpolation methods such as B-splines [McClelland et al., 2006]. In contrast,
intensity-based deformable registration methods consist in calculating directly the
entire global deformation using only image intensity information without perform-
ing segmentation or feature extraction beforehand. The Lucas-Kanade optical flow
[Lucas et al., 1981], the Horn-Schunck optical flow [Horn and Schunck, 1981], and
the different variants of the ”Demons algorithm” [Thirion, 1998, 1995] are examples
in that category. Computing large displacements with these methods can be diffi-
cult. To cope with this problem, an approach referred to interchangeably as ”coarse
to fine strategy”, ”pyramidal implementation”, or ”multi-resolution scheme” can be
used. It consists of iteratively calculating and refining the DVF of gradually more
detailed versions of the images to be matched.

2.1.4 Contributions of the proposed study

The main contributions of this study are the following. First, we discuss in detail
parameter optimization of the iterative and pyramidal version of the Lucas-Kanade
optical flow algorithm in the context of DIR of chest CT scan images. That algorithm
has often been used in chest imaging [Akino et al., 2014, Dhont et al., 2019, Xu et al.,
2008], but there are no studies about proper selection of the parameters for accurate
registration of chest CT scan images, to the extent of our knowledge. Secondly,
this is the first application of RNNs trained with the RTRL algorithm to predict
breathing signals and compensate for the inherent latency of treatment systems in
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Position of internal 
markers (simulation with 

the Lucas-Kanade pyramidal 
optical flow algorithm)

Initial 3D 
chest ROI 

image

Prediction of the position 
of the markers 

(RNN trained with RTRL)

Prediction of the chest 
entire DVF (linear 

correspondence model)

Forward-warping the initial 
image to estimate the image 

in the future (Nadaraya- 
Watson regression)

Predicted 
image

Figure 2.3: Overview of the proposed prediction algorithm

radiotherapy. The optimal choice of the RNN parameters is discussed thoroughly.
In contrast to the related studies about marker position prediction with artificial
neural networks (ANN) mentioned in the general introduction, our study describes
the simultaneous prediction of the position of 3 markers, rather than the position of 1
marker only. Finally, we propose a simple method for reconstructing and predicting
3D lung tumor images given only the trajectory of internal markers and an initial
3D image of that tumor (Fig. 2.3).

2.2 Materials and methods
2.2.1 Chest image data

The data used in this study consists of chest 3D 16-bit image sequences of 4 patients
with lung cancer. Each of the 4 sequences consists of ten 3D images of the chest at
different phases of the breathing process. The first sequence is a four-dimensional
cone beam computed tomography (4D-CBCT) (four-dimensional cone-beam com-
puted tomography) sequence acquired by the Elekta Synergy XVI system in the Uni-
versity of Tokyo Hospital and the three remaining sequences are four-dimensional
computed tomography (4DCT) (four-dimensional computed tomography) sequences
acquired by a 16-slice helical CT simulator (Brilliance Big Bore, Philips Medical Sys-
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t = t1 t = t3 t = t5 t = t7 t = t9

Figure 2.4: Sagittal (top line) and coronal (bottom line) cross-sections of the 3D
ROI of patient 2 at different phases of the breathing cycle. The coordinates of the
cross-sections are the same as in Fig. 2.5. The tumor was delineated by a physician
in each image.

Patient 1 2 3 4
ROI size (in mm3) 65× 56× 82 76× 87× 116 41× 39× 56 80× 79× 67
T (in s) 400 320 800 480
A (in mm) 2.0 1.5 4.0 2.5

Table 2.1: Description of the ROI size and motion parameters, defined in Eq. 2.1,
for each patient.

tems) in Virginia Commonwealth University Massey Cancer Center.
Each sequence was resampled using trilinear interpolation such that 1 voxel cor-

responds to 1mm3. For each sequence, a 3D region of interest (ROI) encompassing
the tumor was selected (Figs. 2.4, 2.5) and the size of each of them is indicated
in Table 2.1. Then, each sequence was extended to N = 2400 images3by intro-
ducing a breathing drift in the z-direction (the spine axis). Indeed, it has been
reported that the axis along which the respiratory drift is the greatest is the cranio-
caudal axis [Takao et al., 2016]. More precisely, I(·, tk), the image at time tk, where
k ∈ {1, ..., 2400}, results from the translation along the z-axis defined in Eq. 2.1. In
the following, we denote by I(x⃗, t) the image intensity at pixel x⃗ and time t.

I(x⃗, tk) = I

(
x⃗+ Asin

(
2πtk
T

)
e⃗z, tk mod 10

)
(2.1)

In this equation, x⃗ refers to a selected voxel in the image I(·, tk), e⃗z is a unit
vector in the z-direction, and A and T are respectively the amplitude and the period

3Prior to the extension of the sequences, the 10 original images were permuted for each patient so
that each series begins at a phase where the tumor is approximately located at its center position,
with regards to the overall cyclic breathing motion. This is performed in order to increase the
accuracy of the optical flow registration that follows.
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Patient 1
sagittal

Patient 2 - sagittal Patient 3 - sagittal Patient 4 - sagittal

Patient 1
coronal

Patient 2 - coronal Patient 3 - coronal Patient 4 - coronal

Figure 2.5: Sagittal (top line) and coronal (bottom line) cross-sections of the 3D ROI
of each patient at t = t1. The tumor of each of patients 2, 3, and 4 was delineated
by a physician.

of the added sinusoidal drift (see Table 2.1). The voxel intensity values on the right
side of Eq. 2.1 are computed using trilinear interpolation. Finally, Poisson noise
with parameter λ = 1, 000 is added to the extended sequences, given that this type
of noise is prevalent in CT scan imaging [Boas and Fleischmann, 2012, Diwakar and
Kumar, 2018]. Because the average breathing cycle of an adult lasts 4s [Barrett
et al., 2019], we can assume that the interval of time between each image is equal
to 400ms, or in other words, that the sampling rate is equal to 2.5Hz.

2.2.2 Chest image registration

First, the pyramidal and iterative Lucas-Kanade optical flow algorithm (Algorithm
1) is used to calculate u⃗(·, t), the DVF between the first image (at time t1) and the
image at time t, which approximately satisfies Eq. 2.2.

I(x⃗, t1) = I(x⃗+ u⃗(x⃗, t), t) (2.2)

In the pyramidal and iterative Lucas-Kanade optical flow algorithm, a multires-
olution representation of the two images to be registered, I(·, t1) and I(·, t), is first
computed. For this purpose, an initial low-pass Gaussian filter of standard devi-
ation σDV F

init is first applied to both of them. Given the representations of I(·, t1)
and I(·, t) at the layer l, denoted by Il(·, t1) and Il(·, t), these representations have
another low-pass Gaussian filter of standard deviation σsub applied to them. They
are then subsampled by a factor 2 to create their representations at the layer l + 1,
Il+1(·, t1) and Il+1(·, t). Indeed, prior Gaussian filtering has been shown to increase
the accuracy of the resulting computed optical flow in general [Sharmin and Brad,
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2012].
The displacement vector at a given voxel x⃗0 and layer l between t1 and t is the

argument v⃗0 that minimizes the energy E(v⃗) in Eq. 2.3.

E(v⃗) =
∑
x⃗

KσLK
(∥x⃗− x⃗0∥2)

[
∇⃗Il(x⃗, t1) · v⃗ +

∂Il
∂t

(x⃗, t1)

]2
(2.3)

In that equation, ∇⃗ refers to the spatial gradient operator, calculated here by ap-
plying the Scharr filter [Levkine, 2012, Wikipedia contributors, 2020]. Furthermore,
KσLK

refers to the probability density function of a centered normal distribution of
standard deviation σLK (Eq. 2.4).

Kσ(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
(2.4)

The minimization of E(v⃗) is iterated to decrease the residual error, and the
displacement field calculated at the layer l is propagated at the layer l − 1 to give
a first approximation of the displacement field at the layer l − 1. The algorithm is
detailed in [Bouguet et al., 2001, Fleet and Weiss, 2006].

2.2.3 Prediction of the position of internal points

After the computation of the optical flow, r = 3 internal points x⃗1, ..., x⃗r are selected
close to the tumor in the initial image at t = t1. They are considered to be points
of known position during the treatment. It is reported in [Harley et al., 2010] that
internal markers are usually implanted near or inside the tumor and that their
number is generally 3 or 4.

We predict the motion of these r points using a standard RNN (cf section 1.3).
The input un of the RNN is a vector of size 3rL+ 1, where L represents the signal
history length (SHL): the time interval in the past, the information of which is used
for making one prediction. un consists of the concatenation of the displacement vec-
tors u⃗(x⃗p, tn), ..., u⃗(x⃗p, tn+L−1) for each point p ∈ [1, ..., r] (Eq. 2.5). An additional
1 was added to account for a bias unit. Each time-series

(
ud(x⃗p, tn)

)
n=1,...,N

, for
d = x, y, and z, and p ∈ [1, ..., r], is normalized prior to being used as an input, in
order to facilitate the learning process. The output yn+1 of the RNN is a vector of
size 3r consisting of the position of these r points at the time tn+L (Eq. 2.5). In
particular, this means that the positions of all the markers are predicted simultane-
ously. Specifically, not only information concerning marker 1 but also the positions
of markers 2,..., r = 3 are used to predict the position of that first marker, which
may help in mitigating the influence of noise.
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Algorithm 1 Pyramidal Iterative Lucas-Kanade Optical Flow
1: Input :
2: I initial image at time t1, J image at an arbitrary time t
3: Parameters :
4: σDV F

init , σsub, σLK : standard deviation of various Gaussian filters
5: nlayers : number of layers, niter : number of iterations
6:
7: Pyramidal representation of I and J
8: In what follows G(·, σ) designates the isotropic Gaussian filter operator with standard deviation

σ, and S2(·) the subsampling operator by a factor 2, defined by S2(I)(x⃗) = I(2x⃗)
9: I1 := G(I, σDV F

init ), J1 := G(J, σDV F
init ) (initial filtering)

10: for l = 1, ..., nlayers − 1 do
11: Il+1 := S2(G(Il, σsub))
12: Jl+1 := S2(G(Jl, σsub))

13: gnlayers
:= 0 (DVF guess initialization)

14:
15: Computation of the DVF
16: for l = nlayers, ..., 1 do
17: for x ∈ Il do

18: G(x) :=
∑

v KσLK
(∥x− v∥2)

 Ix(v)
2 Ix(v)Iy(v) Ix(v)Iz(v)

Ix(v)Iy(v) Iy(v)
2 Iy(v)Iz(v)

Ix(v)Iz(v) Iy(v)Iz(v) Iz(v)
2


19: where Ix (resp. Iy, Iz) is the partial derivative of Il in the x-direction (resp. y and z

directions) and KσLK
is defined in Eq. 2.4

20: r0l := 0 (DVF refinement initialization)
21: for i = 1, ..., niter do
22: for x ∈ Il do
23: δIi(x) := Il(x)− Jl(x+ gl(x) + ri−1

l (x))

24: for x ∈ Il do

25: b(x) :=
∑

v KσLK
(∥x− v∥2)

δIi(v)Ix(v)δIi(v)Iy(v)
δIi(v)Iz(v)


26: ril(x) := ri−1

l (x) +G(x)−1b(x)

27: if l > 1 then
28: for x ∈ Il−1 do
29: gl−1(x) := 2(gl(x/2) + rniter

l (x/2))

30:
31: Output : 3D displacement field u(x) := g1(x) + rniter

1 (x)

un =



1

ux(x⃗1, tn)

uy(x⃗1, tn)

uz(x⃗1, tn)

...

uz(x⃗r, tn)

ux(x⃗1, tn+1)

...

uz(x⃗r, tn+L−1)


yn+1 =


ux(x⃗1, tn+L)

uy(x⃗1, tn+L)

uz(x⃗1, tn+L)

...

uz(x⃗r, tn+L)

 (2.5)

The RNN is trained using RTRL (Algorithm 2). Prior to the learning process,
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each synaptic weight is initialized according to a normal distribution of standard
deviation σinit. RTRL is an online learning method, and so the weight matrices
Wa,n, Wb,n, and Wc,n are updated at every time step to take into account the recent
changes in the breathing characteristics of the patient. Given the predicted positions
of the markers yn and the real position of the markers y∗n, we can compute the
instantaneous error vector en and instantaneous error function Ln as in Eq. 2.6.

en = y∗n − yn Ln =
1

2
∥en∥22 (2.6)

The weight matrix Wk,n+1 at time n + 1, where k = a, b or c, is computed from
the corresponding weight matrix Wk,n at time n by performing a single gradient
descent update. However, RNNs updated by the gradient rule may be unstable, and
as proposed in [Pascanu et al., 2013], we prevent large weight updates by clipping the
gradient norm to address instability. Details concerning the calculation of the terms
∂Ln/∂Wk,n can be found in [Haykin et al., 2009], whose description was extended in
this work to encompass RNNs with a multidimensional output vector (Appendix ??).
The RNN main characteristics are summarized in Table 1.3. The RTRL computation
complexity is O(q2(q +m)(q + p)).

2.2.4 Application to chest image prediction

In what follows, we propose a simple method to predict future 3D images of the
ROI based on marker position prediction as described in 2.2.3. First, we assume
that the motion of each voxel is linked to the motion of the markers via a linear
relationship, which indirectly models the connectivity between the tissues (Eq. 2.7).
The coefficients γp(x⃗) are calculated using linear regression.

u⃗(x⃗, t) =
r∑

p=1

γp(x⃗)u⃗(x⃗p, t) (2.7)

t1 t

Figure 2.6: Warping the initial lung image at t = t1 to estimate the lung image at t

Given the position of the markers at time t1, ..., tn, their position at time tn+1

can be predicted using the RNN, and the whole DVF at tn+1, u⃗(·, tn+1), can then
be recovered using Eq. 2.7. In order to estimate the image at time tn+1, we can
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Algorithm 2 Real-Time Recurrent Learning
1: Parameters :
2: L : signal history length, r : nb. of internal points, m = 3rL input space dimension
3: q : state space dimension, p = 3r output space dimension, η : learning rate
4: glstau : gradient threshold, σinit : std. dev. of the initial weights
5:
6: Initialization
7: Wa,n=1 : q × q matrix initialized according to a Gaussian distribution N (0, σinit

2)
8: Wb,n=1 : q × (m+ 1) matrix initialized according to a Gaussian distribution N (0, σinit

2)
9: Wc,n=1 : p× q matrix initialized according to a Gaussian distribution N (0, σinit

2)
10: State vector xn=1 := 0q×1

11: for j = 1, ..., q do
12: Λj,n=1 := 0q×(q+m+1)

13:
14: Learning and prediction
15: for n = 1, 2, ... do
16: yn := Wc,nxn (prediction), en := y∗n − yn (error vector update)
17: for j = 1, ..., q do (gradient calculation)

18: wj,n :=

[
wa,j,n

wb,j,n

]
where Wa,n = [wa,1,n, ..., wa,q,n]

T

Wb,n = [wb,1,n, ..., wb,q,n]
T

19: ∆wj,n := ΛT
j,nW

T
c,nen

20: ∆Wc,n := en ⊗ xn

21: κ :=
√
∥∆w1,n∥22 + ...+ ∥∆wq,n∥22 + ∥∆Wc,n∥22

22: if κ > τ then (gradient clipping)
23: for j = 1, ..., q do
24: ∆wj,n := τ

κ∆wj,n

25: ∆Wc,n := τ
κ∆Wc,n

26: Wc,n+1 := Wc,n + η∆Wc,n (gradient update)

27: ξn :=

[
xn

un

]
, Φn := diag(ϕ′(wT

1,nξn), ..., ϕ
′(wT

q,nξn))

28: for j = 1, ..., q do
29: wj,n+1 := wj,n + η∆wj,n (gradient update)

30: Uj,n :=

 0
ξTn
0

← jth row, Λj,n+1 := Φn[Wa,nΛj,n + Uj,n]

31: Wa,n+1 := [wa,1,n+1, ..., wa,q,n+1]
T , Wb,n+1 := [wb,1,n+1, ..., wb,q,n+1]

T

32: xn+1 := Φ(Wa,nxn +Wb,nun) (hidden states update)

warp the initial image I(·, t1) by the field u⃗(·, tn+1) (Fig. 2.6). This relies on the
assumption that the image at tn+1 can be approximately reconstructed via warping
the image at t1.

Figure 2.7: Forward-warping the initial image at t = t1 using Nadaraya-Watson
regression with a Gaussian kernel. The closer a point at t = t1 arrives next to the
square point at t, the more it contributes to the intensity of that square point at t.

In order to estimate the image at time t from the DVF at time t1, we use the
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Nadaraya-Watson non-parametric regression method, described in Fig. 2.7 and Eq.
2.8. The modified kernel K̃ used in that equation is a variant of the Gaussian kernel
K defined in Eq. 2.4. σw represents the standard deviation of the new kernel K̃
and hw represents the window size of the kernel calculation. Imposing an arbitrary
window size hw is necessary because the calculations would be slow otherwise4.
However, this may lead to some voxels in the destination image I(·, t) not having any
corresponding voxel in the source image I(·, t1). Therefore, hw needs to be chosen
appropriately large. Furthermore, σw needs to be selected such that the images
do not appear either too blurry or with too many artifacts, such as inappropriate
impainting due to voxels in the destination image having only one antecedent voxel.
Theoretical details about the Nadaraya-Watson statistical estimator can be found
in [Tsybakov, 2008]. The computational complexity of image warping is O(V h3

w)

where V is the volume (in voxels) of the image considered.

INW (x⃗, t) =

∑
p⃗ I(p⃗, t1)K̃σw,hw

(
∥x⃗− (p⃗+ u⃗(p⃗, t))∥2

)∑
p⃗ K̃σw,hw

(
∥x⃗− (p⃗+ u⃗(p⃗, t))∥2

) (2.8)

K̃σw,hw(x) =

{
Kσw(x) if |x| < hw (cf Eq. 2.4)

0 otherwise
(2.9)

2.3 Results and Discussion
2.3.1 Chest image registration

In order to determine the parameters giving the most accurate DVF for each image
sequence, we calculated the registration error defined in Eq. 2.10, for the following
set of parameters, on the initial ROI sequences of n = 10 images :

• σDV F
init ∈ {0.2, 0.5, 1.0, 2.0}

• σsub ∈ {0.2, 0.5, 1.0, 2.0}

• σLK ∈ {1.0, 2.0, 3.0, 4.0}

• number of layers nlayers ∈ {1, 2, 3, 4}

• number of iterations niter ∈ {1, 2, 3}

eDV F =

√√√√ 1

(n− 1)|I|

n∑
k=2

∑
x⃗

[
I(x⃗, t1)− I(x⃗+ u⃗(x⃗, tk), tk)

]2 (2.10)

4When calculating the optical flow, K̃ was also used instead of K to process the data reasonably
fast, but we did not introduce this notation for two reasons. First, it is generally assumed that
there is a window when using a Gaussian kernel so that was implicit. Secondly, adjusting the size
of the window is particularly important when reconstructing images, because of the problem of
voxels without antecedent.
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Figure 2.8: Registration error eDV F as a function of the parameters of the Lucas-
Kanade iterative and pyramidal optical flow algorithm (cf Eq. 2.10). The minimum
error refers to the minimum of the registration error across every parameter, and
the mean error refers to the registration error averaged over the four parameters not
studied in each graph.

The results of this grid search optimization are displayed in Fig. 2.8 and Fig.
2.9. Fig. 2.8 shows for each parameter two different types of errors. The first
one is the mean registration error: the registration error averaged over every other
parameter. The second type is the minimum registration error, which represents
the minimum error over the entire set of parameters. Both the minimum error

43



CHAPTER 2. PREDICTION OF THE POSITION OF CHEST INTERNAL
POINTS USING REAL-TIME RECURRENT LEARNING

Figure 2.9: Relative influence of the parameters of the Lucas-Kanade optical flow
algorithm on the registration error.

and mean error increase for every patient when σDV F
init increases, which means that

initial filtering had a detrimental effect on the accuracy of the registration, because
the initial images were not very noisy. Similarly, the registration minimum error
increases with σsub, except for patient 3. Both errors as a function of σLK are either
decreasing or strictly convex, except for the minimum error of patient 2. Setting
σLK = 1.0 (lowest value tested) leads to large mean registration errors. Likewise, the
errors associated with nlayers are either decreasing or strictly convex. Using only one
layer (simple Lucas-Kanade algorithm) entails large errors, because the motion of
the chest has a high amplitude relative to the imaging resolution. This supports the
previous claims in the literature that a multiresolution scheme is generally needed
for accurate registration of chest CT scan images [Xu et al., 2008, Zhang et al., 2008].
Increasing niter results in a decrease in the minimum error, except for patient 2, and
an increase in the mean error, except for patient 3. For all the patients, σDV F

init = 0.2,
σsub = 0.2, and σLK = 2.0 led to the highest displacement field accuracy. The
registration was the most accurate using nlayers = 3 and niter = 3 for patients 1, 3,
and 4, and using nlayers = 4 and niter = 2 for patient 2.

The normalized standard deviation of the mean error and minimum error relative
to each parameter is reported in Fig. 2.9. ”Normalization” means that for each
patient, the sum of all the contributions was set to be equal to 1 by multiplying them
by a proportionality coefficient. σLK is the parameter that contributes the most to
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Patient 1 t = t2209 Patient 2
t = t2209

Patient 3
t = t2209

Patient 4 t = t2209

Patient 1 t = t2374 Patient 2
t = t2374

Patient 3
t = t2374

Patient 4 t = t2374

Figure 2.10: Displacement vector field in the ROI for each patient at t = t2209 (end of
expiration for patient 1 and end of inspiration for the other patients) and t = t2374
(opposite case) projected in a coronal plane (same coordinates as in 2.5). The
corresponding coronal cross-section at t = t1 is displayed in the background. The
origins of each of the displayed 2D displacement vectors are separated from each
other by 6 voxels.

the variation in the mean error. σLK and nlayers are the two parameters that have
the highest influence on the minimum registration error, and this emphasizes the
importance of using more than one layer when performing lung image registration.
The minimum registration error varied with σLK from 68.5 to 55.8 for patient 1,
from 86.4 to 33.0 for patient 2, from 45.9 to 36.7 for patient 3, and from 44.7 to 33.8
for patient 4. In other words, optimizing σLK led to a 31.3% average decrease in
the minimum registration error. Similarly, carefully selecting nlayers led to a 36.2%
average decrease in the minimum registration error.

The deformation vectors in the lungs mainly point downwards during inspira-
tion and upwards during expiration (Fig. 2.10). The trajectories of the selected
points of each patient also reflect the up and down motion of the lung structures
(Fig. 2.11). These points move predominantly along the z-direction (spine axis) but
other directions can be non-negligible. Marker 3 of patient 3 is the only marker for
which the motion in the z-direction is not the most significant. Indeed, its motion
amplitude during one breathing cycle in the y-direction (dorsoventral direction) is
approximately equal to 6.5mm, whereas it is approximately equal to 3.5mm along
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Patient 1 sagittal Patient 2 sagittal Patient 3 sagittal Patient 4 sagittal

Patient 1 coronal Patient 2 coronal Patient 3 coronal Patient 4 coronal

Figure 2.11: Trajectories of the internal points between t = t1 and t = t10 for each
patient, calculated using the pyramidal Lucas-Kanade optical flow algorithm and
displayed on top of the AIP of the ROI at t = t1. The positions of these internal
points at t = t1 are denoted by black cross markers.

the z-direction (Fig. 2.14).
The optical flow algorithm optimized on the first breathing cycle (10 images)

captured relatively well the z component of the motion, including the artificial drift,
on the entire sequence of 2,400 images, despite the added noise (Fig. 2.12).

Patient number 1 2 3 4
Marker 1 19.4 19.7 15.8 13.2
Marker 2 22.7 17.5 17.7 13.7
Marker 3 21.9 16.7 12.0 13.6

Table 2.2: Amplitude of the motion of the selected internal points, in mm, between
t = t1 and t = t2400

2.3.2 Prediction of the position of internal points

The parameters intervening in the RTRL learning algorithm have also been opti-
mized by grid search, with the following range of parameters :

• gradient threshold τ ∈ {0.5, 1.0, 2.0}

• learning rate η ∈ {0.01, 0.02, 0.05, 0.10}
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Figure 2.13: Prediction error eMAE calculated on the cross-validation set between
t = t2001 and t = t2200, as a function of the RNN parameters (Eq. 2.11).

• weights std. deviation σinit ∈ {0.01, 0.02, 0.05, 0.10}

• signal history length L ∈ {10, 25, 40}

• nb. of hidden units q ∈ {10, 25, 40, 55, 100, 145, 200, 250}

Fig. 2.13 details how the prediction mean average error (MAE) on the cross-
validation set between t2001 and t2200, defined in Eq. 2.11, is affected by the choice

48



CHAPTER 2. PREDICTION OF THE POSITION OF CHEST INTERNAL
POINTS USING REAL-TIME RECURRENT LEARNING

Fi
gu

re
2.

14
:

R
N

N
tr

ai
ni

ng
fo

r
pr

ed
ic

tin
g

th
e

po
sit

io
n

of
m

ar
ke

r
1

of
pa

tie
nt

3,
di

sp
la

ye
d

be
tw

ee
n
t
=

t 1
an

d
t
=

t 1
0
0
.

T
he

ax
es

ar
e

th
e

sa
m

e
as

in
Fi

g.
2.

11
.

49



CHAPTER 2. PREDICTION OF THE POSITION OF CHEST INTERNAL
POINTS USING REAL-TIME RECURRENT LEARNING

of these parameters.

eMAE =
1

200r

2200∑
k=2001

r∑
p=1

∥∥∥ #                                         »

Mp
true(tk)M

p
pred(tk)

∥∥∥
2

(2.11)

In this equation, Mp
true(tk) is the 3D position of the pth marker at the instant

tk, calculated by the optical flow registration algorithm, Mp
pred(tk) is the predicted

position of that marker at the same instant, and ∥ · ∥2 refers to the euclidean norm.
In order to take into consideration the random initialization of the initial synaptic
weights, the MAE was averaged over 10 runs. Each graph in Fig. 2.13 describes
the influence of one parameter and for each graph, two types of errors are displayed.
The first one is the mean error: the MAE averaged over all the other parameters
not studied in the graph. The second one is the minimum error: the minimum
of the MAE across all the parameters. The mean prediction error as a function
of η presents a bell shape. Both errors are maximum for η = 0.10 and we found
the lowest minimum errors for η = 0.01 or η = 0.02, depending on the patient
index. The mean error varies with σinit from 1.27mm to 0.88mm for patient 1, from
1.14mm to 0.90mm for patient 2, from 0.81mm to 0.54mm for patient 3, and from
0.72mm to 0.51mm for patient 4. In other words, optimizing σinit led to a 28.4%
average decrease in the mean error. Both error curves are strictly convex because
when the initial weights are too low, many time steps are required to grow them
using the gradient descent updating rule, and when they are too high, they are
difficult to control. Both errors were maximum for σinit = 0.1 and attained their
minimum for σinit = 0.02, except the mean error of patient 2 which was minimized
for σinit = 0.05. The mean prediction error increases with the SHL, but the variation
of the minimum error with the SHL was dependent on the patient index. Finally,
the prediction error strongly decreases when q increases. The minimum error for
q = 10, equal to 1.14mm, 1.22mm, 0.80mm, and 0.65mm respectively for patients
1,2,3 and 4, dropped down to 0.51mm, 0.57mm, 0.32mm, and 0.28mm for q = 250,
which corresponds to a 56.3% error decrease on average. It is thus recommended to
set a high value of q while keeping in mind that this may also result in a relatively
high computing time. The mean error as a function of q is strictly convex and
increases from q = 100 to q = 250.

The standard deviation of the mean prediction error and the minimum prediction
error, relative to each parameter, is reported in Fig. 2.15. We observe that both
σinit and q are the parameters having the strongest impact on prediction accuracy.
It would be interesting to evaluate the RNN trained with RTRL using less repetitive
temporal data and reevaluate the importance of the SHL in that case.

The parameters that achieved the lowest (minimum) MAE error on the cross-
validation set without leading to any numerical error have been used for evaluation
on the test data between t2201 and t2400. For every patient, we set q = 250 and
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(a) Influence of each RNN parameter on the pre-
diction mean error

(b) Influence of each RNN parameter on the pre-
diction minimum error

Figure 2.15: Relative influence of each of the RNN parameters on the prediction
performance on the cross-validation set

Figure 2.16: RNN loss function Ln on the normalized data for patient 3 (cf Eq. 2.6)

σinit = 0.02. The value of η was set to 0.01 for patients 3 and 4, and 0.02 for
patients 1 and 2. Table 2.3 shows the performance of the RNN on that test data,
using the parameters selected as mentioned beforehand, in terms of the maximum
prediction error, root-mean-square error (RMSE), and normalized root-mean-square
error (nRMSE), defined respectively in Eq. 2.12, Eq. 2.13 and Eq. 2.14. In Eq.
2.14, µp

true designates the mean position of all observations of point p on the test set.

emax = max
k=2201,...,2400

max
p=1,...,r

∥∥∥ #                                         »

Mp
true(tk)M

p
pred(tk)

∥∥∥
2

(2.12)

eRMS =

√√√√ 1

200r

2400∑
k=2201

r∑
p=1

∥∥∥ #                                         »

Mp
true(tk)M

p
pred(tk)

∥∥∥2

2
(2.13)
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Error Prediction Patient 1 Patient 2 Patient 3 Patient 4 Error averaged
type method over the 4 patients
Max RTRL 1.82 1.65 1.16 1.42 1.51
error ± 0.06 ± 0.04 ± 0.03 ± 0.06
(in mm) Lin. reg. 1.96 2.30 1.65 1.30 1.80

LMS 2.07 1.69 1.40 1.21 1.59
No prediction 9.11 5.98 4.66 4.60 6.09

RMSE RTRL 0.529 0.585 0.338 0.324 0.444
(in mm) ± 0.005 ± 0.003 ± 0.002 ± 0.002

Lin. reg. 0.512 0.610 0.333 0.341 0.449
LMS 0.595 0.661 0.360 0.344 0.490
No prediction 4.29 3.23 2.25 2.08 2.96

nRMSE RTRL 0.0829 0.118 0.121 0.109 0.108
(no unit) ± 0.0007 ± 0.001 ± 0.001 ± 0.001

Lin. reg. 0.080 0.124 0.121 0.115 0.110
LMS 0.0932 0.133 0.129 0.116 0.118
No prediction 0.671 0.651 0.807 0.701 0.708

Jitter RTRL 3.72 2.83 1.96 1.86 2.59
(in mm) Lin. reg. 3.69 2.86 1.98 1.82 2.59

LMS 3.74 2.91 2.01 1.88 2.63
No prediction 3.76 2.96 2.03 1.87 2.66

Table 2.3: RNN prediction performance computed on the test data, between t = t2201
and t = t2400, in comparison with other methods. Each cell indicates the maximum
error, RMSE, nRMSE or jitter associated with the prediction of the position of
the markers (Eq. 2.12, Eq. 2.13, Eq. 2.14 and Eq. 2.15). The error and 95%
mean confidence interval mentioned for the RNN are calculated using 10 random
initializations and assuming that the error distribution is Gaussian (Eq. 2.16 and
Eq. 2.17). The confidence half range associated with the jitter measure has not
been provided as the former is low compared with the latter (order of magnitude
10−3 mm).

enRMS =

√∑2400
k=2201

∑r
p=1

∥∥∥ #                                         »

Mp
true(tk)M

p
pred(tk)

∥∥∥2

2√∑2400
k=2201

∑r
p=1

∥∥∥ #                             »

Mp
true(tk)µ

p
true

∥∥∥2

2

(2.14)

Furthermore, we evaluated the jitter of each prediction method on the test data.
Jitter measures how oscillatory the predicted signal is (Eq. 2.15). Prediction with
low jitter is desirable since it makes control of the treatment robot easier. The jitter
measure J is minimized when the prediction is constant, thus there is a trade-off
between accuracy and jitter.

J =
1

199r

2399∑
k=2201

r∑
p=1

∥∥∥ #                                               »

Mp
pred(tk+1)M

p
pred(tk)

∥∥∥
2

(2.15)

Because the RNN is evaluated using 10 runs with random weight initialization,
not only the errors emax and eRMS are calculated, but also the corresponding 95%
mean confidence intervals Imax and IRMS (assuming that both emax and eRMS follow
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a Gaussian distribution) defined in Eq. 2.16 and Eq. 2.17, where σmax and σRMS

are the corresponding standard deviations of emax and eRMS over the 10 runs5.

Imax =

[
emax −

1.96σmax√
10

, emax +
1.96σmax√

10

]
(2.16)

IRMS =

[
eRMS −

1.96σRMS√
10

, eRMS +
1.96σRMS√

10

]
(2.17)

The performance of the RNN was compared with the point-wise and coordinate-
wise linear predictor defined in Eq. 2.18. In that equation, p is the tracked point
index, d represents the x,y, or z component of the 3D displacement u⃗(x⃗p, t), (ad,pk )

are regression constants, and Llin is the SHL, arbitrarily set to Llin = 10. We
also compared the RNN with the least mean squares (LMS) filter [Haykin, 2008]
(Algorithm 3), for which we selected an SHL of LLMS = 10 and a learning rate
ηLMS = 0.01. The time series input data for the LMS algorithm was also normalized
as described in Section 2.2.3.

upred
d (x⃗p, tn+Llin

) = ad,p0 +

Llin∑
k=1

ad,pk ud(x⃗p, tn+Llin−k)

d = x, y, z p = 1, 2, 3

(2.18)

Algorithm 3 Least Mean Squares
1: Parameters :
2: L : signal history length
3: r : number of internal points considered
4: m = 3rL dimension of the input space
5: p = 3r dimension of the output space
6: η : learning rate
7:
8: Initialization
9: Wn=1 = 0p×(m+1)

10:
11: Learning and prediction
12: for n = 1, 2, ... do
13: yn := Wnun (prediction)
14: Wn+1 := Wn + η(y∗n − yn)u

T
n (weights update)

The RNN achieves a lower maximum and root-mean-square (RMS) prediction
error as well as a lower jitter (averaged over the 4 patients) than linear prediction and
LMS (Table 2.3). In particular, the maximum prediction error corresponding to the
RNN, averaged over the 4 patients, equal to 1.51mm, is respectively 16.1% and 5.0%
lower than the maximum error corresponding to linear prediction and LMS, equal
to 1.80mm and 1.59mm. Furthermore, the averaged maximum prediction error and
the averaged RMSE given by the RNN are respectively approximately 4 times and
7 times lower than the corresponding errors given by a system without prediction,
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defined by −−→upred(·, tn+1) = u⃗(·, tn). The prediction errors are higher for patients 1
and 2, which correlates with the overall highest motion amplitude of these patients’
markers (Table 2.2). Concerning prediction with the RNN, the maximum tracking
error for each patient is below the 2mm threshold recommended by Murphy and
Lee et al.. By contrast, the maximum error with linear prediction corresponding to
patient 2 and maximum error with LMS corresponding to patient 1 exceeded that
threshold.

Prediction algorithm Calculation time per time step (in ms)
RNN with RTRL 119.1
Linear regression 0.0052
LMS 0.318

Table 2.4: Time performance of the RNN in comparison with other prediction meth-
ods (Dell Intel Core i9-9900K 3.60GHz CPU NVidia GeForce RTX 2080 SUPER
GPU 32Gb RAM with Matlab).

The average calculation time per time step (time for performing one prediction)
of the RNN obtained with graphics processing unit (GPU) programming was equal
to 119.1ms (Dell Intel Core i9-9900K 3.60GHz CPU NVidia GeForce RTX 2080
SUPER GPU 32Gb RAM with Matlab), which is lower than the marker position
sampling time, approximately equal to 400ms (Table 2.4).

The prediction errors corresponding to the RNN in our study are lower than
most of those reported in related studies about prediction in radiotherapy (Table
1.1). However, comparison with the prediction methods in the literature is difficult
because the datasets, sampling rates, and look-ahead time vary between the studies.
The regularity of the breathing motion as well as the low motion amplitudes in our
dataset are factors that may have contributed to lower prediction errors in our
research.

During the beginning of the learning process, the predicted values oscillate
around the mean position signal and adjust progressively to reach the actual signal
(Fig. 2.14). This is illustrated by the loss function decreasing for small values of
the time index (Fig. 2.16). The error loss function of patient 3 rises again between
t1200 and t1800 when variations in the marker motion pattern appear (cf Fig. 2.12).
The predicted values on the test data follow closely the original motion signal. The
breathing drift, corresponding to a decreasing trend in the z position of the markers
on the test data for patient 3, is also well captured by the RNN (Fig. 2.17).

2.3.3 Chest image prediction

We chose the window size hw = 3 and the standard deviation σw = 0.5 based on the
visual quality of the resulting images, to warp I(·, t1) using the Nadaraya-Watson
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t = t2209

Patient 1
original
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original
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original
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original
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original
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original
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Figure 2.18: Original and predicted ROI coronal cross-sections (same coordinates
as in Fig. 2.5), at t = t2209 (end of expiration for patient 1 and end of inspiration
for the other patients) and t = t2374 (opposite case).

Patient 1
predicted
t = t2209

Patient 1
original
t = t2209

Patient 1
predicted
t = t2374

Patient 1
original
t = t2374

Patient 2
predicted
t = t2209

Patient 2
original
t = t2209

Patient 2
predicted
t = t2374

Patient 2
original
t = t2374

Patient 3
predicted
t = t2209

Patient 3
original
t = t2209

Patient 3
predicted
t = t2374

Patient 3
original
t = t2374

Patient 4
predicted
t = t2209

Patient 4
original
t = t2209

Patient 4
predicted
t = t2374

Patient 4
original
t = t2374

Figure 2.19: Original and predicted ROI sagittal cross-sections (same coordinates
as in Fig. 2.5), at an end-of-exhale and an end-of-inhale positions. The predicted
image at t = t2374 for patient 4 seems to have high voxel intensity values but this is
in fact due to post-processing with contrast enhancement, which takes into account
the black voxels appearing on the lower right corner when displaying the image.

estimator (Appendix ??). The position of the tumor on the predicted images is
almost the same as on the initial images (Fig. 2.18). The predicted images are less
noisy due to the Gaussian filtering inherent to the warping process. However, some
structures like blood vessels may have an unclear or imprecise position, or even be
absent in the predicted images, such as the vessel on the bottom left of the tumor
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DVF used for warping Patient 1 Patient 2 Patient 3 Patient 4 Average
Initial DVF 0.960 0.982 0.976 0.992 0.978
DVF from markers 0.923 0.957 0.959 0.979 0.954
Predicted DVF from markers 0.923 0.958 0.959 0.978 0.955

Table 2.5: Precision of the DVF calculated at each step of the image prediction
process. Each cell in the table corresponds to the cross-correlation between the
initial ROI images, that is, the images from the sequence constructed in Section
2.2.1, and the warped initial image at t = t1, averaged over the test data. The
first line corresponds to the average for k ∈ {2201, ..., 2400} of the cross-correlation
between the initial image at time tk and the initial image at time t = t1 warped
with the DVF directly calculated using the optical flow algorithm (cf section 2.2.2).
The second line corresponds to the average for k ∈ {2201, ..., 2400} of the mean
cross-correlation between the initial image at time tk, and the initial image at time
t1 warped with the DVF calculated from the markers’ position using the linear
correspondence model (Eq. 2.7), without prediction. Most importantly, the last
line corresponds to the mean cross-correlation between the predicted and the initial
images.

in the predicted coronal cross-section of patient 1 at t = t2209 (Fig. 2.18). Artifacts
consisting of trails of white dots and blurring appeared below the tumor of patient
2. These white trails may have appeared due to an inexact DVF and target voxels
with only one antecedent voxel in the initial image at t1. Moreover, points without
antecedent voxels appeared for patient 4 (lower right corner of the sagittal cross-
section at the end-of-exhale point), which resulted in voxels impainted in black by
default.

The efficiency of the proposed image prediction algorithm is confirmed by the
high cross-correlation between the predicted and original images averaged over the
test data and the four patients, equal to 0.955 (Table 2.5). We also observe from
Table 2.5 that the step most hampering the image prediction process is not the
prediction of the markers’ location, but the reconstruction of the entire DVF from
the linear correspondence model (cf Eq. 2.7). We chose a simple correspondence
model because it is not the main focus of the study. However, this model can be
improved to take into account effects such as hysteresis and phase offset [Ehrhardt
et al., 2013].

2.4 Conclusion
This is the first study of RNNs trained with RTRL for latency compensation in
lung cancer radiotherapy, to the extent of our knowledge. RNNs are ANNs that are
well suited for time-series prediction and the RTRL online learning method enables
the predictor to continuously adapt to changes in the patient’s respiratory patterns.
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Gradient clipping was performed to minimize the likelihood of a numerical error
while continually updating the synaptic weights. The image data used in this study
consisted of four patients’ temporal series of 10 3D chest CT scan images. Each of
them was extended artificially into a series of 2,400 images by simulating the natural
drift process while breathing. The sampling time is equal to approximately 400ms.
Comparatively, it has been reported that the time delay of radiotherapy treatment
systems ranges from 100ms up to 2s. The positions of internal points near the tumor
of lung cancer patients, derived from the Lucas-Kanade pyramidal and iterative op-
tical flow algorithm, were predicted with a 400ms response time. The amplitude of
the motion of these points varied from 12.0mm to 22.7mm. The RMSE, maximum
error, and jitter on the test set were all smaller than the corresponding performance
measures given by linear prediction and LMS. In particular, the maximum predic-
tion error given by the RNN trained with RTRL was equal to 1.51mm, which is
respectively 16.1% and 5.0% lower than the maximum prediction error given by lin-
ear prediction and LMS (Table 2.3). In comparison, the maximum error and RMSE
resulting from the prediction with the RNN were respectively 4 times and 7 times
lower than the same errors resulting from a system without prediction. Furthermore,
when performing prediction with the RNN, the maximum tracking error for each
patient was below the 2mm threshold suggested by Murphy. The average calcula-
tion time per time step of the RNN was equal to 119.1ms (Dell Intel Core i9-9900K
3.60GHz CPU NVidia GeForce RTX 2080 SUPER GPU 32Gb RAM with Matlab),
which is lower than the marker position sampling time, equal to 400ms. Finally, we
combined prediction of the position of internal points using the RNN with a linear
correspondence model and forward-warping using Nadaraya-Watson non-linear re-
gression to perform 3D chest image prediction. The mean cross-correlation between
the initial and predicted images is equal to 0.955 (Table 2.5), and the overall tumor
position in the predicted images appears to be visually correct.

This research gives valuable insight concerning proper parameter adjustment for
maximizing prediction performance with RNNs trained with RTRL in the context
of radiotherapy. We performed grid search and found that q = 250 hidden units
and an initial standard deviation of the synaptic weights equal to σinit = 0.02 were
optimal on the cross-validation set for all patients. These two parameters were the
parameters having the largest impact on the prediction error on the cross-validation
set. Optimizing q and σinit respectively led to a decrease of 56.3% and 28.4% in the
MAE. The minimum prediction error is a convex function of σinit and decreases when
q increases. However, the general variation of that prediction error as a function of
the SHL was different from patient to patient, hence the optimal value of the SHL
also varied among the patients.

This is also the first detailed study of the pyramidal iterative Lucas-Kanade opti-
cal flow algorithm applied to lung CT scan images providing details about the precise
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influence of each parameter on the registration error. The pyramidal iterative Lucas-
Kanade optical flow is a classical DIR algorithm, but proper parameter adjustment,
which is key to ensure high accuracy of the deformation field, had not been discussed
in detail in previous studies related to registration of CT scan images, to the extent
of our knowledge. In this work, we provided experimental results about param-
eter selection for performance optimization. σLK and nlayers were the parameters
having the most significant impact on registration performance. Carefully selecting
σLK and nlayers respectively led to a decrease in the minimum registration error of
31.3% and 36.2%. With our dataset, we found optimal results with σLK = 2.0 and
nlayers = 3 or nlayers = 4. It was confirmed that using only one layer was hampering
the registration performance, which correlates with the observations in [Xu et al.,
2008, Zhang et al., 2008]. This is due to the high amplitude of the lung motion in
the CT scan images used, relative to the image resolution.

This study is a step forward in lung radiotherapy because better compensation
of the treatment system latency will entail more accurate tumor targeting. In addi-
tion, it will enable reducing the radiation margin around the tumor for compensation
of unexpected motion, leading thus to a decrease in the irradiation of surrounding
healthy tissue, and in turn to less undesirable side effects such as radiation pneu-
monitis. Further research about prediction of more irregular breathing patterns will
bring more insights into the capabilities of online learning methods such as RTRL
to adapt to unexpected temporal events. This study of the RTRL algorithm could
be further enriched by investigating the variation of the prediction performance as
a function of the prediction horizon. Finally, we could extend this work by tracking
more accessible surrogate signals such as points on the diaphragm recorded using
kilovoltage (kV) imaging, or external markers placed on the skin [Ehrhardt et al.,
2013].
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Chapter 3

Prediction of the position of
external markers using Unbiased
Online Recurrent Optimization

3.1 Introduction

3.1.1 External markers in lung cancer radiotherapy
During lung cancer radiotherapy, respiratory motion makes tumor targeting dif-
ficult. Indeed, tumors can move up to 5cm within the same treatment fraction
due to breathing [Chen et al., 2001]. Respiratory motion is largely cyclic but ex-
hibits variations in frequency and amplitude, shifts and drifts, as well as differences
across patients and fractions [Ehrhardt et al., 2013, Verma et al., 2010]. The term
”shift” designates abrupt changes of the respiratory signal, whereas ”drift” desig-
nates continuous variations. To overcome this problem, the position of external
markers placed on the chest and abdomen can be recorded by infrared cameras (e.g.
Cyberknife system [Khankan et al., 2017] in Fig. 3.1). By using an appropriate
correspondence model, these positions may be correlated to the three-dimensional
(3D) position and shape of the tumor for accurate irradiation [Ehrhardt et al., 2013,
McClelland et al., 2013].

Radiotherapy treatment machines are subject to a time latency due to commu-
nication delays, robot control, and radiation system delivery preparation. It was
reported that ”for most radiation treatments, the latency will be more than 100ms,
and can be up to two seconds” [Verma et al., 2010]. Delay compensation is neces-
sary to minimize excessive damage to healthy tissues (Fig. 1.7), and to achieve this,
various prediction methods have been proposed (see for instance [Jöhl et al., 2020,

This chapter has been published as a preprint on Arxiv [Pohl et al., 2021b].
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Figure 3.1: Radiotherapy treatment system (Cyberknife) using external markers to
guide the irradiation beam1.

Lee and Motai, 2014, Verma et al., 2010]). Our research investigates the feasibility
to predict breathing motion with online training algorithms for recurrent neural net-
works (RNN). In contrast to offline methods, online methods update the synaptic
weights with each new training example. That enables the neural network to adapt
to the continuously changing breathing patterns of the patient, therefore providing
robustness to complex motion.

3.1.2 Estimating internal respiratory motion using corre-
spondence models

This chapter focuses on the prediction of surrogate respiratory signals (the position
of external markers), but in this section, we provide general background information
concerning respiratory correspondence models and the clinical workflow associated
with the use of external markers. Respiratory correspondence models are statistical
models that relate surrogate signals to the motion of internal anatomy. They are
used when the target is not imaged directly during the treatment, as respiratory
signals can provide information that can help estimate tumor position. Surrogate
signals can be measurements of the volume or flow of air being inhaled or exhaled
by the patient using a spirometer [Wilms et al., 2014], internal anatomy measure-
ments (e.g., the motion of points on the diaphragm [Zhang et al., 2007], or full
two-dimensional (2D) images [Stemkens et al., 2016]), as well as displacement of the
surface of the chest and abdomen. The latter can be estimated using systems that
measure the position infra-red markers such as the Real-Time Position Manage-
ment (RPM) system (Varian), the Cyberknife system (Accuray), or the ExacTrac
system (Brainlab). One can also use laser tracking systems [Seppenwoolde et al.,

1Adapted from [Schweikard et al., 2004] with permission from Wiley, Copyright 2004 American
Association of Physicists in Medicine.
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2007] or respiratory belts around the patient’s chest (Anzai respiratory system from
Siemens). Alternatively, the entire surface of the chest skin can be considered as a
surrogate signal. In that scenario, stereo imaging techniques such as the AlignRT
system from VisionRT [Seppenwoolde et al., 2007] can be employed to obtain surface
information in real-time. The surface model is subsequently built by extracting the
skin surface from computed tomography (CT) or magnetic resonance (MR) imaging.
In Chapter 2 Sections 2.2.4 and 2.3.3, we used a linear correspondence model to link
the motion of a few internal points to the dense displacement vector field (DVF) in
a region of interest (ROI) containing the tumor (Eq. 2.7).

The process involved in the use of a motion correspondence model comprises
two main steps. First, before the treatment, surrogate respiratory signals (in this
chapter, the motion of external markers) are acquired simultaneously with imaging
data. In the case of a surrogate signal based on chest surface motion, the imaging
data itself is sufficient. For instance, the location where the external markers will be
placed can be tracked directly using the volumetric images. The motion of the inter-
nal anatomy is measured from the imaging data using deformable image registration
(DIR) (e.g., the Lucas-Kanade optical flow as presented in Chapter 2 Sections 2.1.3
and 2.2.2). Statistical modeling is performed to estimate the relationship between
the internal motion and the surrogate signal (Fig. 3.3). Second, that relationship is
used during the treatment phase to calculate the internal motion from the measured
surrogate signal to guide gated or tracked treatments(Fig. 3.4).

Establishing statistical correlations between the surrogate signal and the target
position is challenging for several reasons. First, the tumor trajectory is subject to
hysteresis, i.e., it follows a different path between inhalation and exhalation. Also,
there are phase offsets between the tumor and surrogate signals, which means there
may be a time interval between the peaks of both signals. A simple linear model
may thus be insufficient to accurately estimate the target position (cf the graphs
corresponding to patients B and C in Fig. 3.5). The development of different
mathematical tools for correspondence modeling is an active area of research. In this
chapter, we will report geometrical errors related only to external marker position
forecasting, but additional errors due to inaccuracies in the correspondence model
also need to be considered in further comprehensive studies (Fig. 3.2).

POHL Michel
UESAKA /TAKAHASHI lab.

PH.D. THESIS 
DEFENSE

35

3. Chest external marker position prediction using Unbiased Online Recurrent Optimization (UORO)

Objectives of the research

Prediction
Position of 
the markers 
at t

Position of 
the markers 
at 𝑡 + ∆𝑡

Geometric 
correspondance 

model

Position and 
shape of the 
tumor at 𝑡 + ∆𝑡

Objectives :
❑ Predict the position of external markers 

using online learning of RNNs
❑ Influence of the look-ahead time: time in 

advance for which the prediction is made
❑ Evaluate the robustness to irregular 

breathing

26/07/2021
TUMOR POSITION PREDICTION USING DYNAMICALLY TRAINED RECURRENT NEURAL 

NETWORKS FOR LATENCY COMPENSATION IN LUNG CANCER RADIOTHERAPY

Figure 3.2: Deriving the future position of the tumor from external marker position
measurements using a correspondence model. In this chapter, we focus exclusively
on the prediction step to compensate for the latency of treatment systems.
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Figure 3.3: Correspondence model building process2.

Figure 3.4: Correspondence model usage during the radiotherapy treatment.3.

3.1.3 Contributions of this study
Many techniques for online training of RNNs have recently emerged [Marschall et al.,
2020], such as unbiased online recurrent optimization (UORO) [Tallec and Ollivier,
2017a]. Most of these seek to approximate real-time recurrent learning (RTRL)
[Haykin et al., 2009, Williams and Zipser, 1989], which suffers from a large computa-
tional complexity. They also aim to provide an unbiased estimation of the gradient
estimates, that truncated back-propagation through time (BPTT) [Haykin et al.,
2009, Jaeger, 2002] cannot compute, therefore guaranteeing theoretical convergence

2Reprinted from [Ehrhardt et al., 2013] with permission from Springer Nature, Copyright 2013.
3Reprinted from [Ehrhardt et al., 2013] with permission from Springer Nature, Copyright 2013.
4Reprinted from [Isaksson et al., 2005] with permission from Wiley, Copyright 2005 American

Association of Physicists in Medicine.
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(a) Patient A

(b) Patient B (c) Patient C

Figure 3.5: Correlation between tumor and external marker position reported for
three patients in [Isaksson et al., 2005], plotted by sampling one data point every
second. Patient A had a pancreatic tumor, and patients B and C had middle lobe
lung tumors. Patients B and C exhibited irregular respiratory patterns associated
with non-stationary correlations between the positions of the marker and the tumor.
4

and appropriate balance between short-term and long-term temporal dependencies.
The theoretical convergence of RTRL and UORO, which could not be proved by
standard stochastic gradient descent theory, has recently been established [Massé
and Ollivier, 2020].

This is the first study to evaluate the capabilities of RNNs trained online with
UORO to predict the 3D position of external markers on the chest and abdomen for
safety in radiotherapy. The proposed RNN model does not perform prediction for
each marker separately but instead learns patterns about the correlation between
their motion to potentially increase its forecasting accuracy. We compare UORO
with different forecasting algorithms, namely RTRL, least mean squares (LMS),
and linear regression, for different look-ahead values h, ranging from hmin = 0.1s

to hmax = 2.0s, by observing different prediction metrics as h varies. We divide
the subjects’ data into two groups: regular and irregular breathing, to quantify the
robustness of each prediction algorithm. We analyze the influence of the hyper-
parameters on the prediction accuracy of UORO as the horizon value changes and
discuss the selection of the best hyper-parameters.
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3.2 Materials and Methods

3.2.1 Marker position data
In this study, we use 9 records of the 3D position of 3 external markers on the chest
and abdomen of individuals lying on a treatment couch (HexaPOD), acquired by an
infrared camera (NDI Polaris). The duration of each sequence is between 73s and
320s and the sampling rate is 10Hz. The superior-inferior, left-right, and antero-
posterior trajectories respectively range between 6mm and 40mm, between 2mm
and 10mm, and between 18 mm and 45mm. In five of the sequences, the breathing
motion is normal and in the four remaining sequences, the individuals were asked
to perform actions such as talking or laughing. More details concerning the dataset
can be found in [Krilavicius et al., 2016].

3.2.2 The RTRL and UORO algorithms for training RNNs
In this study, we train an RNN to predict the position of the 3 markers in the future
(cf section 1.3). The instantaneous square loss Ln of the network can be calculated
from the instantaneous error en between the correct output y∗n and predicted output
yn (Eq. 3.1).

en = y∗n − yn Ln =
1

2
∥en∥22 (3.1)

By using the chain rule, one can derive Eqs. 3.2 and 3.3, which describe how
changes of the parameter vector θn affect the instantaneous loss Ln+1 and state vector
xn+1. Computation of the gradient of Ln+1 with respect to the parameter vector
using Eq. 3.2, followed by recursive computation of the influence matrix ∂xn/∂θ

using Eq. 3.3 constitutes the RTRL algorithm. RTRL is computationally expensive,
and UORO attempts to solve that problem by approximating the influence matrix
with an unbiased rank-one estimator. In UORO, two random column vectors x̃n and
θ̃n are recursively updated at each time step so that E(x̃nθ̃

T
n ) = ∂xn/∂θ (Algorithm

4). It was reported that ”UORO’s noisy estimates of the true gradient are almost
orthogonal with RTRL at each time point, but the errors average out over time and
allow UORO to find the same solution” [Marschall et al., 2020] (Fig. 3.6).

∂Ln+1

∂θ
=

∂Ln+1

∂y
(yn+1)

[
∂Fout

∂x
(xn, θn)

∂xn

∂θ
+

∂Fout

∂θ
(xn, θn)

]
(3.2)

∂xn+1

∂θ
=

∂Fst

∂x
(xn, un, θn)

∂xn

∂θ
+

∂Fst

∂θ
(xn, un, θn) (3.3)
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Algorithm 4 Unbiased Online Recurrent Optimization
1: Parameters :
2: L ∈ N∗ : signal history length, nM = 3 : number of external markers considered
3: m = 3nML, q ∈ N∗ and p = 3nM dimension of the RNN input, state and output
4: η ∈ R>0 and τ ∈ R>0 : learning rate and gradient threshold
5: σinit ∈ R>0 : standard deviation of the Gaussian distribution of the initial weights
6: ϵnorm = 1.10−7, ϵprop = 1.10−7

7:
8: Initialization
9: Wa,n=1, Wb,n=1, Wc,n=1 synaptic weight matrices of respective sizes q × q, q × (m + 1) and

p× q, initialized according to a Gaussian distribution with std. dev. σinit.
10: Notation : |Wa| = q2, |Wb| = q(m+ 1), |Wc| = pq, and |W | = q(p+ q +m+ 1)
11: xn=1 := 0q×1 : state vector, x̃n=1 := 0q×1, θ̃n=1 := 01×|W | : vectors such that ∂xn/∂θ ≈ x̃nθ̃n

12: δθ := 01×|W |, δθg = 01×|W | vectors defined by δθ =
∂Lt+1

∂yn+1

∂Fout

∂θ
and δθg = νT

∂Fst

∂θ
13:
14: Learning and prediction
15: for n = 1, 2, ... do
16: zn := Wa,nxn +Wb,nun, xn+1 := Φ(zn) (hidden state update)
17: yn+1 := Wc,nxn+1 (prediction), en+1 := y∗n+1 − yn+1 (error vector update)
18: [δθ1+|Wa|+|Wb|, ..., δθ|W |] := −[(en+1x

T
n )1,1, ..., (en+1x

T
n )p,q]

19: ∆θ := −eTn+1Wc,nx̃nθ̃n + δθ (gradient estimate)
20: ν : column vector of size q with random values in {−1, 1}

21: x̃n+1 :=
Φ[Wa,n(xn + ϵpropx̃n) +Wb,nun]− xn+1

ϵprop
(tgt forward propagation)

22: δθauxg := ν ∗ Φ′(zn) (element-wise or scalar product)
23: [(δθg)1, ..., (δθg)|Wa|] := [(δθauxg xT

n )1,1, ..., (δθ
aux
g xT

n )q,q]

24: [(δθg)|Wa|+1, ..., (δθg)|Wa|+|Wb|] := [(δθauxg uT
n )1,1, ..., (δθ

aux
g uT

n )q,m+1
]

25:

26: ρ0 :=

√
∥θ̃∥2

∥x̃∥2 + ϵnorm
+ ϵnorm, ρ1 :=

√
∥θ̃g∥2

∥ν∥2 + ϵnorm
+ ϵnorm

27: x̃n+1 := ρ0x̃n+1 + ρ1ν θ̃n+1 := θ̃n/ρ0 + (δθg)/ρ1
28: θn := [(Wa,n)1,1, ..., (Wa,n)q,q, (Wb,n)1,1, ..., (Wb,n)q,m+1, (Wc,n)1,1, ..., (Wc,n)p,q]
29: if ∥∆θ∥2 > τ then
30: ∆θ :=

τ

∥∆θ∥2
∆θ (gradient clipping)

31: θn+1 := θn − η∆θ (weights update)

32: Wa,n+1 :=

(θn+1)1 ... (θn+1)q(q−1)+1

... ... ...
(θn+1)q ... (θn+1)|Wa|

 Wb,n+1 :=

(θn+1)|Wa|+1 ... (θn+1)|Wa|+qm+1

... ... ...
(θn+1)|Wa|+q ... (θn+1)|Wa|+|Wb|


33: Wc,n+1 :=

(θn+1)|Wa|+|Wb|+1 ... (θn+1)|Wa|+|Wb|+p(q−1)+1

... ... ...
(θn+1)|Wa|+|Wb|+p ... (θn+1)|Wa|+|Wb|+|Wc|


34:
35: Convention : for A ∈ RM × RN we note [A1,1, ..., AM,N ] = [A1,1, ..., AM,1, A1,2, ..., AM,N ]

3.2.3 Online prediction of the position of the markers with
a vanilla RNN

If we denote by u⃗j(tk) = [ux
j (tk), u

y
j (tk), u

z
j(tk)] the normalized 3D displacement of

marker j at time tk, the input un of the RNN consists of the concatenation of
the vectors u⃗j(tn), ..., u⃗j(tn+L−1) for each marker j, where L designates the signal
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Figure 3.6: Weak alignment of the gradients of UORO with those of RTRL from
the point of view of the loss optimization.5

history length (SHL), expressed here in number of time steps. The prediction of
the displacement of the 3 markers is performed simultaneously to use information
about the correlation between each of them. The output vector yn+1 consists of
the position of these 3 points at time tn+L+h−1, where h refers to the horizon value,
expressed also in number of time steps (Eq. 3.4).

un =



1

ux
1(tn)

uy
1(tn)

uz
1(tn)

...

uz
3(tn)

ux
1(tn+1)

...

uz
3(tn+L−1)


yn+1 =


ux
1(tn+L+h−1)

uy
1(tn+L+h−1)

uz
1(tn+L+h−1)

...

uz
3(tn+L+h−1)

 (3.4)

Past Future

tn tn+L−1 tn+L+h−1

horizon

time

position

Figure 3.7: Forecasting a one-dimensional position signal. The signal history length
L is the time interval in the past, the information of which is used for performing
one prediction. The horizon h, also called response time or look-ahead time, is the
time interval in advance for which the prediction is made (cf Eq. 3.4).

The RNN used in this chapter is a vanilla RNN (cf section 1.3). The implemen-
tation of the UORO algorithm in the case of the vanilla model described above is
detailed in Algorithm 4 and the proof of the equations used are in Appendix ??.
The RNN characteristics are summarized in Table 1.3.

5Reprinted from [Marschall et al., 2020], Copyright JMLR 2020.
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3.2.4 Experimental design
We compare RNNs trained with UORO with other prediction methods: RNNs
trained with RTRL (Algorithm 2), LMS (Algorithm 3), and multivariate linear re-
gression (Table 3.1). We clipped the gradient estimate of the instantaneous loss (Eq.
3.1) with respect to the parameter vector ∇⃗θ(Ln) for UORO, RTRL, and LMS when
∥∇⃗θ(Ln)∥2 > τ with the same threshold value τ = 2.0 for these three algorithms.

Prediction Mathematical Training & Hyper-parameters’
method model cross-val. range for cross-val.
RNN xn+1 = Φ(Wa,nxn +Wb,nun) Training 30s η ∈ {0.05, 0.1, 0.2}
UORO yn = Wc,nxn cross-val. 30s σinit ∈ {0.02, 0.05}

L ∈ {10, 30, 50, 70, 90}
q ∈ {10, 30, 50, 70, 90}

RNN xn+1 = Φ(Wa,nxn +Wb,nun) Training 30s η ∈ {0.02, 0.05, 0.1, 0.2}
RTRL yn = Wc,nxn cross-val. 30s σinit ∈ {0.01, 0.02, 0.05}

L ∈ {10, 25, 40, 55}
q ∈ {10, 25, 40, 55}

LMS yn+1 = Wnun Training 30s η ∈ {0.002, 0.005, 0.01,
cross-val. 30s 0.02, 0.05, 0.1, 0.2}

L ∈ {10, 30, 50, 70, 90}
Linear yn+1 = Wun Training 54s L ∈ {10, 20, 30, 40, 50,
regression cross-val. 6s 60, 70, 80, 90}

Table 3.1: Overview of the different forecasting methods compared in this study.
The input vector un, corresponding to the positions in the past, and the output
vector yn+1, corresponding to the predicted positions, which appear in the second
column, are defined in Eq. 3.4. The fourth column describes the hyper-parameter
range for cross-validation with grid search. η refers to the learning rate, σinit to the
standard deviation of the initial Gaussian distribution of the synaptic weights, L to
the SHL (expressed in number of time steps), and q to the number of hidden units.
Wn and W are matrices used respectively in LMS and linear regression, and their
size is p× (m+ 1).

Learning is performed using only information from the sequence that is used for
testing. Each time series is split into a training and development set of 1 min and the
remaining test set. The training set comprises the data between 0s and 30s except
in the case of linear regression as using more data is beneficial to offline methods.
The hyper-parameters that minimize the root-mean-square error (RMSE) (Eq. 3.6)
of the cross-validation set during the grid search process are selected for evaluation.
The term δj(tk) in Eq. 3.6 designates the instantaneous prediction error at time tk

due to marker j, defined in Eq. 3.5.

δj(tk) = ∥u⃗pred
j (tk)− u⃗true

j (tk)∥2 (3.5)
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RMSE =

√√√√ 1

3(kmax − kmin + 1)

kmax∑
k=kmin

3∑
j=1

δj(tk)2 (3.6)

To analyze the forecasting performance of each algorithm, we compute the
RMSE, but also the normalized root-mean-square error (nRMSE) (Eq. 3.7), mean
average error (MAE) (Eq. 3.8), and maximum error (Eq. 3.9) of the test set. In Eq.
3.7, µ⃗true

j designates the mean 3D position of marker j on the test set. Because the
weights of the RNNs are initialized randomly, given each set of hyper-parameters,
we average the RMSE of the cross-validation set over ncv = 50 successive runs.
Then, during performance evaluation, each metric is averaged over ntest = 300 runs.

nRMSE =

√∑kmax

k=kmin

∑3
j=1 δj(tk)

2√∑kmax

k=kmin

∑3
j=1 ∥µ⃗true

j − u⃗true
j (tk)∥22

(3.7)

MAE =
1

3(kmax − kmin + 1)

kmax∑
k=kmin

3∑
j=1

δj(tk) (3.8)

emax = max
k=kmin,...,kmax

max
j=1,2,3

δj(tk) (3.9)

Furthermore, we examine the jitter of the test set, which evaluates the amplitude
of the predicted signal oscillations (Eq. 3.10). High fluctuations of the prediction
signal result in difficulties concerning robot control during the treatment. The jitter
J is minimized when the prediction is constant, thus there is a trade-off between
accuracy and jitter [Krilavicius et al., 2016].

J =
1

3(kmax − kmin)

kmax−1∑
k=kmin

3∑
j=1

∥u⃗pred
j (tk+1)− u⃗pred

j (tk)∥2 (3.10)

We assume that given an RNN training method, each associated error measure
ei,h (the MAE, RMSE, nRMSE, maximum error, or jitter) corresponding to sequence
i and horizon h follows a Gaussian distributionN (µi,h, σ

2
i,h). Indeed, each realization

of the random variable ei,h depends on the run index r ∈ [[1, ..., ntest]], and we
denote that value e

(r)
i,h . This enables calculating the 95% confidence interval [µi,h −

∆µi,h, µi,h +∆µi,h] for µi,h, where ∆µi,h is defined in Eq. 3.11. 6

σ2
i,h =

1

ntest − 1

ntest∑
r=1

(
e
(r)
i,h − µi,h

)2

∆µi,h = 1.96
σi,h√
ntest

(3.11)

The mean of the error ei,h over a subset I ⊆ [[1, ..., 9]] of the 9 sequences7and
h ∈ H = {hmin, ..., hmax}, denoted by eI , follows a Gaussian distribution with mean

6We write µi,h instead of µi,h and σi,h instead of σi,h to designate estimators of these parameters
given the ntest runs.
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µI . The half-range of the 95% confidence interval for µI , denoted by ∆µI , can be
calculated according to Eq. 3.12.

∆µI =
1

|I| |H|

√√√√∑
i∈I

hmax∑
h=hmin

(∆µi,h)2 (3.12)

3.3 Results

3.3.1 Prediction accuracy and oscillatory behavior of the
predicted signal

UORO achieves the lowest RMSE, nRMSE and maximum error averaged over all the
sequences and horizons (cf Table 3.2). It is relatively robust to irregular motion, as
its nRMSE only increases by 10.6% between regular and irregular breathing. LMS
is subject to high jitter values (cf also Fig. 3.8, Fig. 3.11, Fig. 3.12, and Fig. 3.13).
The high maximum errors corresponding to RTRL, relative to UORO and LMS, can
be observed in Fig. 3.14. The narrow 95% confidence intervals associated with the
performance measures reported in Table 3.2 indicate that selecting ntest = 300 runs
is sufficient for providing accurate results.

The graphs representing the performance of each algorithm as a function of the
horizon value h appear to have irregular and changing local variations, especially
in the case of RTRL and LMS, because the set of hyper-parameters automatically
selected by cross-validation is different for each horizon value (Fig. 3.8). These
instabilities may also be caused by the relatively low number of breathing records
in our dataset. However, it can be observed that the prediction errors and jitter of
the test set corresponding to each algorithm globally tend to increase with h.

Linear regression achieves the lowest RMSE and nRMSE for h ≤ 0.2s as well
as the lowest MAE and maximum error for h = 0.1s. The RMSE corresponding
to linear regression for h = 0.2s is equal to 0.92mm. LMS gives the lowest RMSE
for 0.3s ≤ h ≤ 0.5s, the lowest MAE for 0.2s ≤ h ≤ 0.4s, the lowest nRMSE for
h = 0.3s and h = 0.4s, and the lowest maximum error for 0.4s ≤ h ≤ 0.6s. The
RMSE corresponding to LMS for h = 0.5s is equal to 1.23mm. UORO outperforms
the other algorithms in terms of RMSE for h ≥ 0.6s and maximum error for h ≥ 0.7s.
The RMSE associated with UORO is rather constant and stays below 1.33mm across
all the horizon values considered. RTRL and UORO both have a lower prediction
MAE than LMS for h ≥ 0.5s. Our analysis of the influence of the latency on the
relative performance of linear filters, adaptive filters, and artificial neural networks
(ANN) agrees with the review of Verma et al. [Verma et al., 2010].

7When I is the set [[1, ..., 9]], the confidence intervals calculated are those associated with the
9 records. Otherwise, we select I as the set of indexes associated with the regular or irregular
breathing sequences.

70



CHAPTER 3. PREDICTION OF THE POSITION OF EXTERNAL MARKERS
USING UNBIASED ONLINE RECURRENT OPTIMIZATION

Error Prediction Average over Regular Irregular
measure method the 9 sequences breathing breathing8

MAE RNN UORO 0.845± 0.001 0.674± 0.001 0.916± 0.001
(in mm) RNN RTRL 0.834± 0.002 0.684± 0.002 0.973± 0.003

LMS 0.957 0.907 1.18
Lin. regression 4.45 3.23 6.57
No prediction 3.27 2.89 3.43

RMSE RNN UORO 1.275± 0.001 1.030± 0.001 1.505± 0.002
(in mm) RNN RTRL 1.419± 0.005 1.119± 0.004 1.721± 0.005

LMS 1.370 1.247 1.818
Lin. regression 6.089 4.454 9.164
No prediction 4.243 3.952 4.461

nRMSE RNN UORO 0.2824± 0.0002 0.2868± 0.0004 0.3211± 0.0004
(no unit) RNN RTRL 0.3027± 0.0007 0.2914± 0.0008 0.3688± 0.0010

LMS 0.3116 0.2987 0.4198
Lin. regression 1.411 1.181 2.132
No prediction 0.9312 1.006 0.9833

Max error RNN UORO 8.81± 0.01 7.20± 0.02 12.34± 0.02
(in mm) RNN RTRL 11.68± 0.04 10.01± 0.04 14.56± 0.06

LMS 9.31 8.59 12.9
Lin. regression 30.6 23.2 49.0
No prediction 14.8 13.9 18.2

Jitter RNN UORO 0.9672± 0.0004 0.7778± 0.0002 0.9973± 0.0007
(in mm) RNN RTRL 0.7532± 0.0015 0.6494± 0.0012 0.8735± 0.0014

LMS 1.596 1.646 1.724
Lin. regression 0.7767 0.6011 1.078
No prediction 0.4395 0.3877 0.5045

Table 3.2: Comparison of the forecasting performance of each algorithm. Each error
value corresponds to the average of a given performance measure of the test set over
the sequences considered and the horizon values between 0.1s and 2.0s. The 95%
mean confidence intervals associated with the RNNs are calculated assuming that
the error distribution is Gaussian (Eq. 3.12).

The jitter associated with RTRL and UORO respectively increases from 0.71mm
and 0.94mm for h = 0.1s to 0.78mm and 0.96mm for h = 2.0s. However, the jitter
associated with linear regression and LMS increases more significantly with h. The
jitter corresponding to linear regression is the lowest among the four prediction
methods for h ≤ 0.6s.

The performance of each algorithm as a function of the horizon in the cases of
8Sequence 201205111057-LACLARUAR-3-O-72 (cf [Krilavicius et al., 2016]) has been removed

from the sequences with abnormal respiratory motion when reporting performance measures in
the last column, as it does not contain abrupt or sudden motion that typically makes forecasting
difficult. In particular, this is why the nRMSE of UORO averaged over the 9 sequences is lower
than nRMSE of UORO averaged over the regular or irregular breathing sequences.

9see the previous footnote.
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Figure 3.8: Forecasting performance of each algorithm as a function of the prediction
horizon. Each point corresponds to the average of one performance measure of the
test set across the 9 sequences.

normal breathing and abnormal breathing is detailed in Figs. 3.9 and 3.10. The
local unsteadiness of the variations of each performance measure with h is more
pronounced in these two figures than in Fig. 3.8 because both situations involve
averaging results over fewer respiratory traces. However, it still appears that the
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Figure 3.9: Forecasting performance of each algorithm as a function of the prediction
horizon. Each point corresponds to the average of one performance measure of the
test set across the sequences corresponding to regular breathing.
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Figure 3.10: Forecasting performance of each algorithm as a function of the predic-
tion horizon. Each point corresponds to the average of one performance measure of
the test set across the records corresponding to irregular breathing. 9
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Figure 3.11: Prediction performance of each algorithm in terms of nRMSE and jitter.
Each point corresponds to the mean of the nRMSE and jitter of a given algorithm
of the test set over the regular or irregular breathing sequences for a single value of
the horizon. Datapoints corresponding to linear regression with high horizon values
have not been displayed for readability as they correspond to high nRMSEs.

prediction errors globally tend to increase with h in both cases. UORO performs
better than the other algorithms for lower horizon values in the scenario of abnormal
breathing. Indeed, it achieves the lowest RMSE and nRMSE for h ≥ 0.3s, and the
lowest MAE for h ≥ 0.2s (RTRL and UORO achieve comparable performance for
higher horizons in terms of MAE).

3.3.2 Influence of the hyper-parameters on prediction accu-
racy

The prediction nRMSE of the cross-validation set tends to increase as the horizon
value h increases (Fig. 3.15). On average over the 9 sequences and all the horizon
values, η = 0.1 and L = 7.0s give the best prediction results. However, for h =

2.0s, a higher learning rate η = 0.2 and a lower value of the SHL L = 5.0s give
better results (Figs. 3.15a, 3.15c). In other words, when performing prediction
with a high look-ahead time, it is better to make the RNN more dependent on
the recent inputs, and quickly correct the synaptic weights when large prediction
errors occur. In our experimental setting, σinit = 0.02 and q = 90 hidden units
correspond to the lowest nRMSE of the cross-validation set (Figs. 3.15b, 3.15d). The
nRMSE of the cross-validation set decreases as the number of hidden units increases,
therefore we may achieve higher accuracy with more hidden units. However, that
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(a) Prediction with an RNN trained with UORO

(b) Prediction with an RNN trained with RTRL

(c) Prediction with LMS

Figure 3.12: Comparison between RTRL, UORO, and LMS regarding the prediction
of the position of the z coordinate (spine axis) of marker 3 in sequence 1 (person
talking)

would consequently increase the computing time (Fig. 3.17). Similarly, it has been
reported in Chapter 2 that increasing the number of hidden units of a vanilla RNN
with a single hidden layer trained with RTRL to predict breathing signals led to
a decrease of the prediction MAE (Fig. 2.13). Fig. 3.15 displays the nRMSE
averaged over the 9 sequences, and the general aforementioned recommendations are
not optimal for each sequence. Therefore, we recommend using cross-validation to
determine the best hyper-parameter set for each breathing record. The learning rate
and SHL appear to be the most important hyper-parameters to tune (Fig. 3.16).
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(a) Prediction with an RNN trained with UORO

(b) Prediction with an RNN trained with RTRL

(c) Prediction with LMS

Figure 3.13: Comparison between RTRL, UORO, and LMS regarding the prediction
of the position of the z coordinate (spine axis) of marker 3 in sequence 5 (normal
breathing)

Appropriately selecting them resulted in a decrease of the mean cross-validation
nRMSE of 18.2% (from 0.395 to 0.323) and 21.3% (from 0.417 to 0.329), respectively.

3.3.3 Time performance
UORO has a prediction time per time step equal to 2.8ms for 90 hidden neurons
and an SHL of 9.0s, whereas RTRL requires 55ms to perform a single prediction
using 55 hidden units with an SHL of 5.5s (Dell Intel Core i9-9900K 3.60GHz CPU
32Gb RAM with Matlab, Fig. 3.17). The complexity O(q3(q + L)) and resulting
high computing time of RTRL is the reason why we performed cross-validation for
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(a) Sequence 1 - UORO (b) Sequence 5 - UORO

(c) Sequence 1 - RTRL (d) Sequence 5 - RTRL

(e) Sequence 1 - LMS (f) Sequence 5 - LMS

Figure 3.14: Prediction instantaneous square loss (cf Eq. 3.1) for sequence 1 (person
talking) and sequence 5 (normal breathing). The horizon value is h = 2.0s and the
loss is averaged over 300 runs.

RTRL with fewer hidden units and lower SHL values than UORO, which has a
complexity O(q(q + L)) (Table 3.1).

3.4 Discussion

3.4.1 Significance of our results relative to the dataset used
One drawback of our study is the number of sequences used and their duration,
which are low in comparison with some other studies related to forecasting in ra-
diotherapy (cf Section 1.2.3 and Table 1.1). Therefore, our numerical results might
appear to lack a certain degree of confidence. However, the dataset used is represen-
tative of a large variety of breathing patterns including shifts, drifts, slow motion,
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(a) Prediction nRMSE of the cross-validation
set as a function of the learning rate

(b) Prediction nRMSE of the cross-validation
set as a function of the standard deviation of
the Gaussian distribution of the initial synap-
tic weights

(c) Prediction nRMSE of the cross-validation
set as a function of the signal history length

(d) Prediction nRMSE of the cross-validation
set as a function of the number of hidden
units

Figure 3.15: Prediction nRMSE of the cross-validation set as a function of each
RNN hyper-parameter, for different horizon values. Given one hyper-parameter,
each color point of the associated graph corresponds to the minimum of the nRMSE
over every possible combination of the other hyper-parameters in the cross-validation
range (Table 3.1). Each nRMSE measure is averaged over the 9 sequences and 50
runs. The black dotted curves correspond to the nRMSE minimum averaged over
the horizon values between 0.1s and 2.0s, and the associated error bars correspond
to its standard deviation over these horizon values.

sudden irregularities, as well as resting and non-perturbed motion. In addition, our
results are consistent with previous studies that claim that linear prediction, linear
adaptive filters, and ANNs achieve high performance respectively for low, interme-

79



CHAPTER 3. PREDICTION OF THE POSITION OF EXTERNAL MARKERS
USING UNBIASED ONLINE RECURRENT OPTIMIZATION

Figure 3.16: Standard deviation of the nRMSE of the cross-validation set (black
dotted curves in Fig. 3.15) for each hyper-parameter. A hyper-parameter corre-
sponding to a high standard deviation value has a high influence on the prediction
error.

Figure 3.17: Time performance of each algorithm (Dell Intel Core i9-9900K 3.60GHz
CPU 32Gb RAM with Matlab)

diate, and high horizon values (cf section 3.3.1). The algorithms studied in our work
are online algorithms that do not need a high amount of prior data for making ac-
curate predictions, as demonstrated by the high performance that we achieved with
only one minute of training. Because of the reasons mentioned above, we think that
the results presented in our study have a significantly high level of confidence and
would generalize well to larger datasets.

The online availability of the dataset used is a particular strength of our study,
as it enables reproducibility of our results. Most of the previous studies about the
prediction of breathing signals for radiotherapy rely on datasets that are not publicly
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available (cf section 1.2.3 and Table 1.1), which makes performance comparison
difficult.

Laughing and talking are situations where prediction is difficult and they do not
happen in a clinical setting. However, evaluating performance with such difficult
scenarios gives information about other situations that will sometimes happen during
treatment, such as yawning, hiccuping, and coughing. Detecting these anomalies
and turning off the irradiation beam when they occur is currently the standard
clinical approach. Distinguishing between normal and irregular breathing enabled
us to objectively study and quantify the robustness of the algorithms compared (cf
Table 3.2, and Figs. 3.9 and 3.10). Since irregular breathing sequences comprise
almost half of our entire dataset, the numerical error measures averaged over the
nine sequences should be higher than one can expect in more realistic scenarios.

3.4.2 Comparison with previous works
Table 3.3 compares the performance of UORO in our study with some of the results
previously reported in the literature (cf Table 1.1 for a more comprehensive literature
overview). Comparison with previous studies is complex because the datasets are
different. In particular, the frequency, amplitude, and regularity of the signals vary
from study to study. Furthermore, the response time, as well as the partition of the
data into development and test set are usually arbitrarily selected, thus they also
differ between the studies.

The prediction errors in our research might appear relatively large, but this is
due to the low sampling frequency (10Hz), the high amplitude of the breathing
signals, and the high proportion of irregular patterns in our dataset (cf section
3.4.1). Furthermore, the breathing records that we use have a relatively low duration
and therefore the RNNs have fewer data available for training. When taking these
circumstances into account, it appears that the errors reported in our study are
consistent with the findings of the previous related works.

Our purpose is to examine the extent to which RNNs can efficiently learn to
adaptively predict respiratory motion with little data. We do not aim to build a
generalized model with a high amount of data. All the RNN-based models reported
in Table 3.3 may benefit from adaptive retraining with UORO.

Teo et al. studied breathing records with a frequency of 7.5 Hz and reported
lower errors using a multilayer perceptron (MLP) with one hidden layer trained
first with backpropagation and retrained online [Teo et al., 2018]. Our higher errors
are partly due to the amplitude of the breathing signals in our dataset, which are
approximately 3 times higher. Mafi et al. also reported similar but lower prediction
errors for a signal sampled at 7.5 Hz using RTRL [Mafi and Moghadam, 2020].
However, they do not provide information concerning signal amplitude, and our
results demonstrate that UORO has more benefits than RTRL in practice. The
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Work Network Training Breathing Sampling Amount of Signal Response Prediction
method data rate data amplitude time error

[Sharp et al., 2004] 1-layer - 1 implanted 10 Hz 14 records 9.1mm 1) 200ms RMSE 2.6mm
MLP marker 48s to 352s to 31.6mm 2) 1s RMSE 5.3mm

[Sun et al., 2017] 1-layer Levenberg-Marq. RPM data 30 Hz data from Rescaling 500ms Max error 0.65
MLP & adapt. boosting (Varian) 138 scans between -1 RMSE 0.17

and 1 nRMSE 0.28
[Kai et al., 2018] 1-layer BPTT 1 implanted 30 Hz 7 records of - 1.0s RMSE from

RNN marker 40s to 70s 0.48mm to 1.37mm
[Teo et al., 2018] 1-layer Backprop. & Cyberknife 7.5 Hz 27 records 2mm 650 MAE 0.65mm

MLP adapt. training Synchrony of 1 min to 16mm RMSE 0.95mm
(dvlpmt set) Max error 3.94mm

[Yun et al., 2019] 3-layer - tumor 3D 25 Hz 158 records 0.6mm 280ms RMSE 0.9mm
LSTM adapt. training center of mass of 8 min to 51.2mm

[Lin et al., 2019] 3-layer - RPM data 30 Hz 1703 records Rescaling 280ms MAE 0.112
LSTM (Varian) of 2 to 5 min between -1 500ms RMSE 0.139

and 1 Max error 1.811
[Mafi and Moghadam, 2020] RNN RTRL Cyberknife 7.5 Hz 43 records of - 665ms MAE 0.54mm

-FCL Synchrony 2.2s to 6.4s RMSE 0.57mm
[Lee et al., 2021] LSTM BPTT RPM data 30 Hz 550 records 11.9mm 210ms RMSE 0.28mm

-FCL (Varian) 91s to 188s to 25.9mm
Our 1-layer UORO 3 external 10 Hz 9 records 6mm 0.1s MAE 0.85mm
work RNN markers 73s to 222s to 40mm to 2.0s Max error 8.8mm

(Polaris) (SI RMSE 1.28mm
direction) nRMSE 0.28

Table 3.3: Comparison of our work with previous studies about time-series forecasting with ANNs for respiratory motion compensation in radiotherapy. In this
table, the term ”RNN” designates a vanilla RNN, as opposed to LSTMs. ”LSTM-FCL” designates a combination of LSTM layers and fully connected layers. A
field with ” - ” indicates that the information is not available. The results corresponding to our study are the performance measures averaged over the horizon
values between 0.1s and 2.0s in Table 3.2. The interested reader can refer to Table 1.1 (Section 1.2.3) for further comparisons. 10

10MLP, FCL, and RPM respectively stand for ”multilayer perceptron”, ”fully connected layer” and ”real-time position management”. By abuse of language,
the number of layers mentioned actually refers to the number of hidden layers. For instance, a ”1-layer MLP” architecture refers to an MLP with 1 hidden layer.
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RMSE error that we achieved is approximately 2 to 4 times lower than the RMSEs
reported by Sharp et al., who used an MLP with one hidden layer and breathing
records of the same frequency (10Hz) with similar amplitudes [Sharp et al., 2004].
The RMSE that we found is within the range reported by Kai et al., who predicted
the position of an internal marker using an RNN with 1 hidden layer trained with
BPTT with a much higher frequency (30 Hz) [Kai et al., 2018].

3.5 Conclusion
This is the first study of RNNs trained with UORO for forecasting the position of
external markers on the chest and abdomen for safe radiotherapy, to the extent of
our knowledge. This method can mitigate the latency of treatment systems due to
robot control and radiation delivery preparation. This will in turn help decrease
irradiation to healthy tissues and avoid lung radiation therapy side effects such as
radiation pneumonitis or pulmonary fibrosis.

Online processing is suitable for breathing motion prediction during the radio-
therapy treatment as it enables adaptation to each patient’s individual respiratory
patterns varying over time. We could efficiently train RNNs using only one minute
of breathing data per sequence, as dynamic training can be implemented with lim-
ited data. Prediction was performed simultaneously for the three markers so that
the RNN discovers and uses information from the correlation between their motion.

UORO achieved the lowest prediction RMSE for horizon values h ≥ 0.6s, with
an average value over 9 breathing sequences not exceeding 1.4mm. These sequences
last from 73s to 222s, correspond to a sampling rate of 10Hz and marker position
amplitudes varying from 6mm to 40mm in the superior-inferior direction. Moreover,
UORO achieved the lowest maximum error for h ≥ 0.7s with an average value over
the 9 sequences not exceeding 9.1mm. The average of the RMSE and maximum
error over the sequences corresponding to regular breathing were respectively lower
than 1.1mm and 7.7mm. The nRMSE of UORO only increased by 10.6% when
performing the evaluation with the sequences corresponding to irregular breathing
instead of regular breathing, which indicates good robustness to sudden changes in
respiratory patterns. The calculation time per time step of UORO is equal to 2.8ms
for 90 hidden units and an SHL of 9.0s (Dell Intel Core i9-9900K 3.60GHz CPU
32Gb RAM with Matlab). UORO has a much better time performance than RTRL,
whose calculation time per time step is equal to 55.2s for 55 hidden units and an
SHL of 5.5s.

Linear regression was the most efficient prediction algorithm for low look-ahead
time values, with an RMSE lower than 0.9mm for h ≤ 0.2s. LMS gave the best
prediction results for intermediate look-ahead values, with an RMSE lower than
1.2mm for h ≤ 0.5s. These observations regarding the influence of the horizon agree

83



CHAPTER 3. PREDICTION OF THE POSITION OF EXTERNAL MARKERS
USING UNBIASED ONLINE RECURRENT OPTIMIZATION

with those in Verma et al. [2010]. The errors reported in our study may be higher
than in clinical scenarios due to the high proportion of records corresponding to
irregular breathing in our dataset.

Gradient clipping was used to ensure numerical stability and we selected a clip-
ping threshold τ = 2.0. The learning rate and SHL were the hyper-parameters with
the strongest influence on the prediction performance. We found that a learning rate
η = 0.1 and SHL of 7.0s gave the best results on average, except with high horizon
values close to h = 2.0s, for which a higher learning rate η = 0.2 and lower SHL
of 5.0s led to better performance. The prediction error decreased as the number of
hidden units increased. That fact has previously been observed in the case of RTRL
(Chapter 2 Fig. 2.13).

Long Short-Term Memory (LSTM) networks or gated recurrent units (GRU)
could be used instead of a vanilla RNN structure, as that could lead to higher
prediction accuracy. Furthermore, UORO could be used to dynamically retrain in
real-time the last hidden layer of a deep RNN that predicts respiratory waveform
signals, as a form of transfer learning. This could improve the robustness of that
RNN to unseen examples corresponding to irregular breathing patterns.
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