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Abstract 

Anthropogenic effects have altered forest globally. Russia is one of the few countries 

that has remaining large intact forest. The forest in the Russian Far East is now on a long-term 

decline due to major forest fires and illegal cutting. Because of the low protection and lack of 

accessibility, the impacts of forest fires and human disturbances in far east region is not well 

studied, raising concerns in the scientific community about the impact of forest loss and 

degradation. Major tree die-off and shrinking forest sequestration areas are expected. 

The thesis aims to raise awareness within the scientific community to find solution for 

future challenge of the current impacts on forest loss in the Russian Far East. Many studies 

pointed out that monitoring the fire influence and possible causes of human disturbances may 

provide the scientific community with a way to avoid the catastrophic effects of future 

consequence. The protected area served as important targeted area for my field experiment 

because the protected area keeps the environment away from human activities and allowing the 

full potential of ecosystem functioning and the development of forest regrowth after 

disturbance.  

In terms of protected areas, the Russian Federation has its own separate governance 

structure. The study chose the highest-level restriction area, Zapovednik type as the study area. 

I selected Zeya Zapovednik, or Zeya State Nature Reserve (hence “The Reserve”) as my study 

area. The Reserve located in the Zeya city in Amur oblast, the Russian Far East. The Reserve 

is home to more than 1000 of plant and wildlife species. Many species are red-listed by the 

International Union for Conservation of Nature (IUCN). Human settlements and recreational 

activities are strictly prohibited; only staff cabins and instructional activities licensed by the 

park rangers are permitted. This particular research site is has recently become more vulnerable 

to anthropogenic threats such as fires and clear-cutting. The Reserve is facing more frequent 

burning inside the Reserve and illegal clearcutting area around the edge of the Reserve. 
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Extreme impacts from human disturbances degrade forest development and ecological 

processes, affecting forest cover transitioning over time. Tracking forest disturbance and forest 

cover transition is therefore essential to protect its natural complexity, biological diversity, and 

ecological role. 

Remote sensing methods are the most advanced way to collect information from large 

ground area. Using remote sensing data to track and analyze forest changes and disturbances 

on the environment provides critical information to help scientists address global warming 

problems. The study used high-quality Landsat images from 1975 to 2019 with less than 10% 

cloud during the growing season acquired from the United States Geological Survey (USGS) 

Data Center. The center housed the most extensive continuously collected database of space-

based moderate-resolution data, to which scientists and non-scientists from all academic 

disciplines had free access.  

The overall objectives of the study were to analyze forest cover change around 

protected area in The Russian Far East and evaluate an effectiveness of protected area using 

remote sensing data. Three critical questions that lead to new insights for my interested in the 

Reserve locations included: 1) If the areas did not have frequent image data available, how can 

we monitor forest cover change and disturbances and effectiveness of protected area by using 

long-time interval satellite image analysis? 2) How did disturbances distribute around the 

protected area in relation to environmental and climatic factors? 3) After new images available 

that allow the research to conduct single image classification, how did forest and disturbance 

covers change around protected area and can we monitor the stableness of the forest and 

disturbance covers around protected area based on vegetation indices using short-time interval 

satellite image analysis? addressing these questions gave me the opportunity to discover how 

human activities impact interacted to shape the forest ecosystem, particularly in comparison 

between the protected area and outside protected area. 
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The outline of the thesis included introduction, study areas, research data, experiment, 

and discussion. Chapter 1 addressed the study context, general goal, and three specific 

questions. The background of study area’s biodiversity, conservation status, and ecosystem 

benefits was guided by the study field was described in Chapter 2 with the remote sensing data 

information. Chapters 3-5 included research questions, approaches, and an interpretation of the 

results of each experiment to answer the overall objectives and specific questions. From 2016 

to 2019, a forest investigation in the field was conducted. There are a total of 23 plots. Six plots 

were developed in August 2016, eleven in August 2017, and six in August 2018. These data 

provided information on the physical characteristics of each site, such as habitat type, species 

composition, disturbance evidence, and vegetation group structure. When doing analysis, these 

plot-level data are used to check forest cover style position on satellite imagery around 

protected areas—chapter 3 used six plots from 2016 to address the first question while chapter 

5 used all the plots. Chapter 6 presented the general discussion and summarized the conclusions 

of Chapters 3-5 and addressed the broad questions of whether using remote sensing data can 

enhance forest cover change detection and whether such research can add value to park 

information for future management. 

For a long term, long-time intervals of two-year-overlaid object-based segmentation 

classification using nearest neighbors (NNs) classification algorithm were developed using plot 

surveys and high-resolution photos as references to understand forest dynamics and forest 

successional stage path. The aim of Chapter 3 was to investigate the effects of disturbance and 

forest dynamics in the Reserve and surroundings. The chapter used two-year overlaid Landsat 

images from the Landsat 5 Thematic Mapper (TM) and the Landsat 8 Operational Land Imager 

(OLI) to produce forest-cover-change maps from 1988 to 1999, 1999 to 2010, and 2010 to 

2016. I look at the course of forest successional stages to see how successful the protected area 

is at preventing fire and human-caused disturbances using vegetation indices. The vegetation 
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indices included the normalized burn ratio (NBR), the normalized difference vegetation index 

(NDVI), and the normalized difference water index (NDWI). The NDWI was used to 

distinguish between areas with and without water. The mean NBR and NDVI values were 

determined to assess the forest successional stages of fire, woodland regeneration, grassland, 

mixed forest, oak forest, and birch and larch trees. Land dimensions, field photos, and high-

resolution photographs were used as sources to determine the accuracy. Overall, the 

classification results for all three maps are highly accurate more than 80% accuracy. The most 

disturbed period was from 2010 to 2016. The reserve was well-protected, with no human 

disturbances. During the period 1999–2010, however, large areas of burned area (137 km2) 

was discovered inside the Reserve. Burned areas also appeared in the buffer zone and outside 

of the reserve. Over the period 2010–2016, mixed disturbance rose to nearly 50 km2 in the 

buffer zone and outside the reserve. Future research could apply the two-year overlaid image 

technique in Chapter 3 to compare forest succession and disturbance within and outside the 

protected area in other ecosystem zones. 

The chapter 4 analyzed disturbance types (forest fire, clearcutting for timber and 

agriculture and mixed disturbance) from Chapter 3 classification results, comparing with 

environmental factors and climatic factors. The elevation gradient, slope and aspect were 

obtained from digital elevation model (DEMs) of NASA Shuttle Radar Topographic Mission 

(SRTM). The study analyzed as patch-wise to calculate largeness and frequency of the 

disturbance area in different types. The MaxEnt model have been used to produce disturbance 

vulnerability maps. The climatic data of BIO1-BIO19 bioclimatic factors from Worldclim 

Version 2.0, averages for the years 1970-2020, were used together with environmental factors, 

as variable inputs. The results showed most of the disturbance occurrence follow the trend 

rarely occurred in larger patch size but very frequent in smaller patch size. Most of disturbance 

in all types have been occurring at the lower elevation, the area closer to the road and at the 
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narrower slope angle, with some exception of forest fire inside of the Reserve that found upon 

the high elevation and steeper slope angle. Some mixed disturbance was found high in elevation 

outside of the Reserve and steep slope in the buffer area. Most disturbances occurred in the 

easily accessible areas. The MaxEnt showed that several climatic factors might potentially 

influence how the disturbance were distributed around the Reserve, such as, temperature 

seasonality, annual precipitation, and annual mean temperature. The technique acquired 

essential information without vast field-based information gathering. The study provided 

vulnerable area information based on an open-source Landsat data and freely-analyzing 

software to understand the distribution of disturbances around protected area. 

With substantial field investigation and more high-resolution and medium-resolution 

images, it helps me to use the data until major infrastructure was constructed in the late 1970s. 

The chapter employed object-based classification using nearest neighbors (NNs) classification 

algorithm similar to Chapter 3 to classify eleven single-year images (1975, 1988, 1993, 1996, 

1999, 2001, 2005, 2010, 2014, 2016, 2019) and eleven time-series forest cover maps were 

generated. Then, I roughly estimated area changes of forest covers and disturbances. I proposed 

a change vector analysis (CVA) method to evaluate the change of stableness of forest cover 

and disturbance classes in the inside, buffer, and outside zones of the Reserve by using spectral 

characteristics based on vegetation indices: the NDVI and NBR. Because there was neither a 

SWIR band nor an additional NIR band in the Landsat 2 MSS, the study excluded 1975 for the 

NDVI and NBR vegetation index analysis. The vegetation index was calculated pixel-wise. 

The average index value of pixels representing each class were compare between years. Mixed 

disturbance and forest fire showed a significant increasing trend while grassland showed the 

opposite trend. The disturbance classes showed large change magnitude of change (S) or 

stableness between pre-and post- period compared with the forest classes. The classes inside 

the Reserve contain smaller change of stableness between pre- and post- period, indicating that 
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the inside of the Reserve is effective in term of preventing human disturbance and maintaining 

the forest area from the past to present.   

The thesis results showed that the overall objective and specific questions were mostly 

accomplished using remote sensing data. Such tools are very essential to detect forest fire and 

forest cover changes around the Reserve’s protected area. The large and remote spatial extents 

only allowed remote sensing as feasible method to observed forest dynamics from a far. By 

applying object-based segmentation classification method using long-time interval 

classification technique or single year technique could provide details of forest cover change 

and disturbance in more meaningful way.  

Even though the Reserve is very well protected, there is no guarantee that the forest 

cover and disturbance patterns around the reserve will not affect forest dynamics inside the 

reserve. If there are more frequent massive burning, the reserve will face difficulty in 

maintaining its biological diversity and ecological function. There is an urgent need of multi 

spatial-scale study of how forest fire behaved in recent time. The frequency, intensity, and 

severity data will enrich more knowledge of susceptible area. Unexpected climate events could 

cause severe damage to boreal forest, thus more understanding about the impacts of forest fires 

and human disturbance is needed to establish better management for preserving biological 

diversity and ecological resources. The study provides supporting evidence of forest fires in 

remote protected area. I recommend that future studies to apply knowledge from the thesis to 

other protected areas, so that we can understand the effectiveness of forest conservation there 

as well.  
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Assessing Impacts of Climate Change and Human Disturbance on Forests in the 

Protected Area of Russian Far East using Remote Sensing Data 

Chapter I 

Introduction 

1.1 Background 

1.1.1 Boreal forest and forest fire in the Russian Far East 

The Russian Far East contains one of the most extensive intact boreal forests on earth 

(Potapov et al., 2008b). This biome offers various ecosystem services, including mitigating the 

global climate (Melillo et al., 1993). A large area of this northern hemisphere is less likely to 

be explored, preserving unique permafrost forest ecosystem that most plant species and 

permafrost soil depend on fire, protecting wildlife habitats and biodiversity from human 

activities (Sofronov and Volokitina, 2010). This area is considered a reservoir that controls the 

flux of water and CO2, exchanges gas for many living organisms (Kasischke and Stocks, 2000; 

Sellers et al., 1995). The boreal forest consists of fire-resisted species such as oaks, aspens, 

larch, spruce, and even some grasses. This species-rich community depends on a forest fire to 

be able to regenerate its offspring and restore its successional stages from grass, lower shrub 

vegetation, to a deciduous tree and replaced by confers at a later stage (Chistyakova and 

Leonova, 2003; Jasinski and Angelstam, 2002; Kämpf et al., 2016; Marozas et al., 2007).   

The region faces numerous issues during the modern era, including illegal logging, 

increasing returning massive fire, and climate change (Shuman et al., 2017; Wu et al., 2018). 

The evidence of growing population and urban expansion is seen in the higher demand for 

timber harvesting in young forests, creating depletion in carbon stocks over the last several 

decades (Goodale et al., 2002; Uotila et al., 2002). The changing climate is also another driver, 

challenging the weather during the millennium era that to be hardly predicted and the 
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consequences of an extreme climatic condition such as the high intensity of forest fire from 

June to August to be more severed (Conard et al., 2002; Damoah et al., 2004; Feurdean et al., 

2020; Stocks et al., 1998). The estimate of forest loss and the impact of dramatic events is still 

complicated and not fully understand. It raises awareness within the scientific community to 

find the solution for future management practices. 

The boreal forest serves as an essential role in keeping earth’s climate; however, many 

areas are still empty and unoccupied by humans, making it susceptibility to infrastructure, 

wildfire, and other human activities. The potential of massive tree die-off and the decreasing 

forest sequestration areas is expected, resulting in a release of CO2 to the atmosphere and the 

possibility of air pollution (Conard and A. Ivanova, 1997; Potapov et al., 2017). The effects of 

natural devastation and human impacts are still underestimated (Bondur et al., 2019). The 

warmer climate increase vegetation shifts toward higher latitude or move upward higher 

elevation and outcompete several rare species (Shuman et al., 2011; Soja et al., 2007).  

There is the need of monitoring forest fire in the boreal forest to estimate the 

unfavorable condition that could depreciate plant development and the causes which influence 

massive fire in order to maximize the survival rate of the young population within the 

community (Feurdean et al., 2020; Shvetsov et al., 2019; Suleymanova et al., 2019). The young 

and mature forest are crucial roles in maintaining carbon flux within the community after forest 

fire, especially larch species that contain most gas exchanges (Chen et al., 2016; Goetz et al., 

2007; Shuman et al., 2017). Larch and birch forest dominated Siberian, expanding its range 

from low to high altitude (Chen et al., 2017). The forest community contains regrowth and 

resilience to its successional stage after significant fire disturbance, making it the most resistant 

group of forest in the region to succeed and outcompete other species in the past decades (Chen 

et al., 2016). However, the potential of warming climate leads to more frequent extreme fire 
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effects and magnificent loss of the forest community (Chen et al., 2018; Kharuk et al., 2016, 

2011).  

In recent decades, climate change led to uncertainty of fire frequency and magnitude in 

this region, unable to predict the impacts of an upcoming catastrophe or even underestimate 

the aptitude of the fire effects (Kukavskaya et al., 2013; Stocks et al., 1998).  The loss of 

dominant forest in the Russian Far East enhances radiation balance alternation, losing its 

strange to hold soil moisture, creating positive feedback loops that magnify the next summer 

fire (Amiro et al., 2006; Betts, 2000; Soja et al., 2007). Several studies point out that increasing 

magnitude of forest fire severity across boreal region emitted a large amount of carbon and 

affect species composition and structure, which could make climate susceptible; or, in worst-

case scenarios, could collapse the entire ecosystem (Bonan et al., 1992; Conard and A. Ivanova, 

1997; de Groot et al., 2013; Randerson et al., 2006). Thus, monitoring climate impact and 

potential causes of disturbances in this region provide a solution to the scientific community to 

avoid devastating effects from climate change.    

1.1.2 Effectiveness of Protected Areas in Russia 

The Russian Federation has a unique geographical landscape, expanding from far west 

Eurasia to the Russian Far East (Potapov et al., 2008b). This largest territory has its independent 

governing system in terms of the protected area. Due to the large area and disappearance of 

existing humans, many forest areas are still untouched. This region has become a high interest 

in the scientific community after the more frequent forest fire in recent decades has been found 

to have connections with anthropogenic activities (Gromtsev and Petrov, 2014). The protected 

area showed significant importance in the ecosystem, controlling temperature within its region, 

and also develop the growth of forest community, creating wildlife habitats and protection to 

some species to take advantage of the development of the successional stage, and also changing 

climate direction (Zyryanova et al., 2010). The natural resources had been extensively used, 
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more than the forest’s protection status available for its use, around 26% of the Russian natural 

reserves have been located in the Russian Far East (Kondrashov, 2004). The protection status 

postponed or delayed the opportunity of upcoming human-related disturbance activity; some 

highly restricted area even benefits from its resource use. Three categories of protected areas 

in Russia served to be important ecological areas cover many large intact remote areas across 

the regions; Zapovednik, national parks, and federal zakazniks (Degteva et al., 2015; 

Kondrashov, 2004). The level of strictness is high to low accordingly. With Zapovednik to be 

the prohibited areas of all uses, national parks allow some recreational activity that follows 

national policy, and the least restricted multiple-uses federal zakazniks allow several activities 

set by the regionals. After the Soviet collapse, the disturbances were sharply decreased in the 

highly protected area compared to the other two types, indicating the high effectiveness of 

protected areas (Wendland et al., 2015).     

The protected area’s role was found to avoid forest canopy and stabilizing landscape 

from human activity that intensified forest use, resulting in a drastic change of forest landscape 

(Bragina et al., 2015). Several studies found significant positivity of having forest areas 

protected. After intensified land use for agricultural farming in 1988 and abandoned after 1991, 

Oksky and Mordovsky State Nature Reserve have been regrowth its forest (Sieber et al., 2013). 

The area contained fewer disturbances compared to the outside of the protected area. This land-

cover change represented conservation planning success that protected biodiversity and 

stabilized the landscape (Norton, 1996; Tishkov et al., 2020).  Many forest areas have long 

been exposed to a forest fire in the ecological cycle, thus, protecting this area allowed the forest 

community to adapt and restore to its original state after post-fire (Ostroukhov et al., 2020) 

The protection areas serve as a control location for a research experiment that allows 

an analyst to take advantage in measuring tree cover loss, wildlife habitat vulnerability, fire 

effect, and disturbance behavior in the future, such that they can mitigate and set a standard 
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way of conservation practices and management to avoid high severity damage from 

anthropogenic activities (Marcot et al., 1997; Volokitina et al., 2019; Wade et al., 2020). Even 

though that protected area in Russia is still well effective after the post-Soviet era, illegal and 

unregulated resource harvest are still concerned due to the lack of information and difficulty 

accessing many remote territories (Newell and Henry, 2016). The expansion of infrastructure 

and human habitats increased the risk of reconstructing the protection policy that could pose 

the forest community (Fiorino and Ostergren, 2011). Russia included many last intact forests 

of the world, the need for conservation priority depended on the region’s management and 

development strategies. The protected areas’ effectiveness needs to be determined to avoid 

future threats and unpredicted consequences (Scullion et al., 2019). 

1.1.3 The Use of Remote Sensing in the Russian Far East 

      The Russian Far East covers vast areas from the eastern Siberia to the Pacific Ocean. 

The majority of the region is inaccessible, creating difficulty for scientists to obtain ground 

information (Potapov et al., 2008b, 2017). To understand the landscape structure and the 

environment changes, including forest conditions, the most practical ways to receive 

information from this region are remote sensing techniques (Gaston, 1997; Potapov et al., 

2008b). Using remote sensing data to monitor and observe the change of forest and disturbance 

on the landscape provide essential information to guide scientists to solve global climate issues 

(Cohen and Goward, 2004; Coppin et al., 2004; Kerr and Ostrovsky, 2003; Turner et al., 2003). 

Many organizations used satellite data to monitor global change; including The European 

Space Agency (ESA), The European Commission (EC), Food, and Agriculture Organization 

of the United Nations (FAO), The National Aeronautics and Space Administration of the 

United States (NASA), and The Japan Aerospace Exploration Agency (JAXA). Many of the 

programs focused on forested and non-forested areas and how they changed corresponding to 

each driver. Several studies set experiments and observe forest cover change in the field; 
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however, the studies of protected area in the Russian Far East is still limited (Chen et al., 2016; 

Potapov et al., 2008b). In the past decades, many researchers lack interests due to difficulty 

accessing those regions and limited access to technology such as satellite data (Potapov et al., 

2008b). So, the forest dynamics and fire-dependent ecosystem information are hardly found 

nor understood in the literature (Chen et al., 2016; Dubinin et al., 2010; Potapov et al., 2011).  

  In recent years, modern technology and high cloud storage capacity allow scientists to 

utilize the open-accessed remote sensing data (e.g., Landsat) and various software available on 

the online platform (Potapov et al., 2008b; Song et al., 2001; Turner et al., 2003). The 

availability of high-resolution images from several websites also gave opportunities for 

researchers to detect and confirm forest cover change and disturbance areas that may have been 

easily observed in the open-access data (Hansen et al., 2013). After 2000, satellite observation 

provided a deeper understanding of Siberian larch forest dynamics that the growing of young 

forested areas associated with large fire events (Chen et al., 2016; Kharuk et al., 2010). An 

increasing trend of forest loss was detected in the Russian Far East compared to other regions 

using the normalized difference vegetation index (NDVI), an index detecting the health of 

vegetation growth on satellite images for 30-meter spatial resolution (Hansen et al., 2013). 

These open-accessed images can be obtained from The United States Geological Survey 

(USGS) website, a survey conducted by the United States government’s agency to monitor 

natural hazards, trends of landscape change around the worlds, and environmental issues that 

cover all scope of academic disciplines (Chander et al., 2009).  

This study focused on forest cover change in the protected area in the Russian Far East. 

Adapting this advanced technology can estimate the number of trees affected by fire in different 

timing and model the distribution of future forest types on the different landscapes (Krylov et 

al., 2014). (Potapov et al., 2017) is another mega-study that used Landsat-based imagery to 

monitor forest loss in the Russian Federation from 1990 to 2005 to monitor forest change 
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related to political power transition. A dramatic increment of annual forest fire was found to 

be ranged from 33 to 73 thousand hectares per year during 1990 and 2005. The situation of 

forest fire in the Russian Far East by (Chen et al., 2016) also agreed there were massive burned 

areas, accounting for more than 8,000 km2 annually during the past 24 years. The most affected 

forest to the massive fire included birch and larch forests. Using available Landsat 

Multispectral Scanner (MSS) imagery of post-2000 using spectral characteristics of forest stand 

ages to produce a comprehensive assessment of the pre-2000 “wall-to-wall” stand age 

distribution map of Siberian larch forest. For the Russian Far East region, (Loboda et al., 2012) 

studied the change of land cover regarding forest fire in the Russian Far East using Landsat 

image between 1972-2002; they found an expansion of burn area expanding from cropland, 

grassland, to the extent of sizeable mature forest land, and the surprising annual burn of around 

520,000 ha on average between 2001-2005. The pattern of forest disturbance history and the 

accuracy of reliability in remote regions are still not fully available and hardly achieved across 

the region because Landsat data’s spectral characteristics still limit. The study of (Shishov and 

Vaganov, 2010) found the use of NDVI trend and temperature change associated with Russia’s 

vegetation growth rate. Some studies also found human activity associated with the increasing 

forest fire in the Russian Far East. A significant decrease of the young forest from intensifying 

harvesting appeared nearby forest fire area and nearby village on the satellite images (Hitztaler 

and Bergen, 2013). This result showed interest in this research to study further the areas where 

previous studies have not covered. Remote sensing data increased the detectability of forest 

cover change and disturbances in remote areas (Chen et al., 2016; García and Caselles, 1991; 

Loboda et al., 2012; Potapov et al., 2008b). This provides sufficient data for scientists to 

improve forest management and policy and accuracy to predict forest conversion, forest fire, 

logging, post-disturbance succession along with other potential data without endangering 

themselves (Krylov et al., 2014).  
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1.2 Objectives of the study 

Many previous studies provide useful information for researchers to conduct research 

experiments in the Russian Far East using remote sensing data such as satellite imagery, 

creating a target for conservation planning and forestry management. However, the application 

of remote sensing techniques is limited to only the area where the location is easily accessible 

or having enough advanced technology to produce such kinds of data. Many areas that contain 

high interests of research are found to locate nearby human settlements or contain tremendous 

amounts of high-quality image data. There is still limited information on forest cover change 

in areas where specific transportation types and limited time can access fewer human 

settlements and farther places. After intensive literature review, I found that the research in the 

protected area in the Russian Far East were very few and lacks of information on forest cover 

changes. Most literature were produced in Russian-language basis, yet still quite a few. The 

historical information on disturbances were still rare, especially clearcutting and forest fire in 

areas located in a very remote region. Most of the literature monitored forest fire in the very 

broad study area which may overlook the local scale forest dynamics. With so much land and 

a few humans inhabited in the remote area in the Russian Far East, the effectiveness of the 

protected area in this region has not been well studied. The overall objective of this thesis is to 

analyze forest cover change around protected area in The Russian Far East and monitor an 

effectiveness of protected area using remote sensing data. This thesis provided an 

understanding of forest dynamics around remote protected area and evaluate whether or not the 

protected area can achieve protecting its environment from experiencing various threats and 

preserve forest stability. I found three research questions that needed to be answered to generate 

more useful knowledge for scientists, particularly those interested in exploring remote regions 

that are challenging to conduct experiments and may be difficult to access or obtain ground 

information: 1) If the areas did not have frequent image data available, how can we monitor 
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forest cover change and disturbances and effectiveness of protected area by using long-time 

interval satellite image analysis? 2) How did disturbances distribute around the protected area 

in relation to environmental and climatic factors? 3) After new images available that allow this 

research to conduct single image classification, how did forest and disturbance covers change 

around protected area and can we monitor the stableness of the forest and disturbance covers 

around protected area based on vegetation indices using short-time interval satellite image 

analysis? Resolving these mysterious questions helped the environmentalist community find a 

way to overcome hardness in the research planning and discover the ecological structure and 

forest dynamics related to climate and human activities—this research question developed 

strategies for conservationists and ecologists to develop a better forest conservation planning 

and management.  

The first question was set to explore the different methods that could not be achieved 

when data availability is rare. Ecologists often overlook the remote areas because of its 

inaccessibility and inability to obtain satellite images because the summer season in this study 

is limited to only a few months (Potapov et al., 2008a). The other season contained much of 

high snow on the mountainous region and some other high latitude places, closing the satellite’s 

possibility to capture high-quality ground information (Schroeder et al., 2011). Thus, few 

images are available for the research to use. During the master thesis (Khatancharoen, 2017), 

a previous study found that using single image classification diminishes the classes’ stability, 

producing a lower accuracy for the forest cover interpretation. The use of a two-year overlaid 

image completed with higher accuracy and producing a promising result on forest cover 

change. For the first part, this Ph.D. thesis continues to use two-year-overlaid images 

classification results to analyze the distribution of forest cover change and disturbance around 

a protected area in the Russian Far East. Additionally, the analysis included the forest 

successional stage to see the effectiveness of the protected area. This question contributed to 
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the importance of park protection status compared to unprotected surroundings, highlighted the 

points of achievement in conservation and management, and raised concerns of endangering in 

other hotspot areas that might be vulnerable if no protection plan for the future (Elbakidze et 

al., 2013). The analysis of Long-time interval satellite image tackled down the existing problem 

when there were limited satellite images available in the study area. It also provided an 

alternative way of assess forest cover change and disturbances and monitor the effectiveness 

of the protected area. 

The forest cover change classification results allow further usage to help understand the 

dynamics of the forest. However, few studies have explored the dynamics through the 

environmental factors. This study provided the first in-depth information data of forest cover 

changes related to environmental factors, including climatic factors, to show the different 

effects of different factors and different effects on both inside and outside of the protected area. 

The second question of this thesis is to focus on how did disturbances spread throughout the 

region based on environmental factors elevation, slope, aspect, distance to the nearest road) 

and climatic data (min. and max. temp., precipitation, etc.) This analysis gave an essential 

understanding of the environmental impacts and the scale of different effects, proving the 

impacts from anthropogenic activity (Loranty et al., 2016). The study provided essential 

information based on the distribution of the disturbances to cope with the existing problem that 

lacked knowledge of climatic and environmental factor information. The distribution of those 

factors allowed researchers to gain knowledge of the location of disturbances and whether or 

not the protected area was effective at preventing the disturbances. The assessment of climate 

and environmental impacts on disturbances can help researcher find a solution to reduce the 

risk of reoccurrence of unexpected consequences in the future (Conard et al., 2002). 

Even though understanding the effect of environment on forest cover change can be 

essential in the research community, measuring impact is another exciting research that needs 
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to be comprehended. Research on the magnitude of forest loss or recovery and disturbance 

effects was seldom in the Russian Far East (Zyryanova et al., 2010). This thesis touched on the 

third question that gained more knowledge of how forest covers and disturbances change in 

frequent time series analysis of satellite data. This thesis was not only the first study to 

undertake analysis on forest cover change and disturbances around the study area but also 

compare variation of vegetation index values between inside and outside of the protected area 

to evaluate the stableness of the forest and disturbance cover inside, buffer, and outside of the 

Reserve. The analysis upscale the scope of the use of remote sensing to be more applicable to 

other researchers. The data on vegetation indices around the protected area helped researchers 

understand the different effects in each conservation zone of the protected area, such that they 

can improve conservation management and planning to protect biodiversity and forest 

community structure (Biswal et al., 2013).  

Lastly, this thesis comprises several research questions to gain in-depth knowledge and 

understanding of forest structure in the remote ecosystem (Norton, 1996). The Russian Far East 

information is quite rare and often misunderstood because fewer humans neither exploring nor 

conducting research in this area (Gaston, 1997; Kondrashov, 2004; Loboda et al., 2012). Most 

of the research based on remote sensing in the Russian Far East only provided rough 

information on changes in landscape over time and how forest fire had spread across regions, 

but not how the effectiveness of the specific remote protected area was accomplished due to 

the difficulty in ground investigation (Turner et al., 2003). This thesis provided an alternative 

way to obtain rigorous information on forest cover change and historical disturbance effects to 

understand the role of protected area in forest conservation without endangering and intensive 

ground surveying on extensive remote area (Cohen and Goward, 2004). Thus, this thesis 

enabled researchers to understand the health of the forest and expand their ideas on how to 

develop the solution for future climate change and human disturbance activities.     
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1.3 Organization of thesis chapters 

The thesis contained introduction, study areas, research experiments, and discussion 

chapters, as summarized in the study design (figure 1.1). The research background and general 

aim, and three specific objectives have been discussed in Chapter 1. The study area introduced 

in Chapter 2 guided the importance of the location in terms of biodiversity, protection status, 

and ecosystem benefits. Chapter 3-5 provided research questions, methods, and analysis of 

each study’s findings. Forest investigation took place from 2016 to 2019. The total plot 

numbers are 23 plots. 6 plots established in August 2016, 11 plots in August 2017, and 6 plots 

in August 2018. These data provided information on each location’s physical attributes, 

including forest type, species diversity, disturbance evidence, and vegetation community 

structure. These plot-level data are used to verify forest cover type location on satellite images 

around protected areas when conducting research—chapter 3 used six plots from 2016 to 

answer the first question. 

Long-time intervals of two-year-overlaid image classification maps were produced 

using plots survey and high-resolution images as references to understand forest dynamics and 

forest successional stage direction for a long time. This chapter also analyzed the significant 

importance of park protection status and whether the protection’s effectiveness can be seen in 

this area. Chapter 4 used the previous chapter’s classification maps to analyze the forest cover 

change trend around the protected area. The relationships between forest cover change, and 

each environmental factor were compared. The inside and outside of the protected area were 

compared. The major environmental factors and climatic data were used to model and identify 

each factor’s contribution to the forest cover change. The predicted climatic data were also 

used to estimate forest cover’s vulnerability level in different climate scenarios. The new 

remote sensing data were uploaded on the archive at the end of 2018 and 2019, allowing the 
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thesis to obtain more image data to classify more frequent single images—chapter 5 hence used 

several more high-quality images to produce forest cover classification maps. 

Along with substantial field investigation and more high-resolution data available, this 

allows me to use such data to analyzed forest cover patterns before human mega-infrastructure 

had been built in 1975 and after the construction has been finished. The chapter analyzed each 

forest cover class’s change and identified the different spectral characteristics in each year’s 

image. Chapter 6 summarized the findings of Chapter 3-5 and answered the whole scope 

questions whether using remote sensing data can improve forest cover change detection and 

whether such analysis can gain values and attain some importance of the park management in 

the remote area. This chapter also included the limitation and recommendation of future 

research to tackle future challenges and other difficulties.  
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Chapter II 

Study Area and Data 

2.1 Study Area Information 

Zeysky State Nature Reserve (Зейский заповедник) or "Zeysky Zapovednik" 

(hereafter "the Reserve") located 13km. north of Zeya city, in the Zeysky District of Amur 

oblast in East Russia. The region of study area covered the entire protected area and some areas 

outside the Reserve. UTM coordinates of image extents were 345,105 to 403,695 Easting and 

5,959,755 to 6,025,965 Northing, total area 3,881.78 km2. The datum is World Geodetic 

System 1984 (WGS84). I selected this study region because the Reserve placed in the northern 

hemisphere in the eastern region of Russia (Figure 2.1). The Reserve is located at a number of 

boundaries, including the southern limit of Taiga and the longitudinal divide between oceanic 

(Pacific) and continental (east Siberian) climates and biomes. The ecosystems adjacent to such 

boundaries will be particularly vulnerable to climate change and subsequent changes in forest 

fire regimes. The Reserve is already facing more frequent burning inside the Reserve and illegal 

clearcutting area around the edge of the Reserve in the past decades. Extreme impacts from 

human disturbances degrade forest development and ecological processes, affecting forest 

cover transitioning over time. Tracking forest disturbance and forest cover transition is 

therefore essential to protect its natural complexity, biological diversity, and ecological role.  

The Reserve was established on October 3rd, 1963, with a total area of 99,390 hectares 

and located in the north of the Amur River in the eastern end of the Tukuringra Ridge, a part 

of the four mountain ridges, Yankan-Tukuringra-Soktakhan-Djagdy ridge. The elevation of the 

Reserve was categorized into four levels: 40% of the area has an elevation of up to 700 m a.s.l., 

35% for 700-1,000 m a.s.l., 18% for 1,000-1,300 m a.s.l., and 7% for over 1,300 m a.s.l. The 

largest rivers located in the state reserve are Motovaya River (length of 27 km) and Bolshaya 
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Garmakan River (length of 20 km). The area contained more than two hundred small rivers 

and streams that supply water to nearby and Zeya reservoirs.  

Winds prevail in the north and northeast direction during winter and autumn and in the 

south and southeast direction in spring and summer. The state in which the cold and dry spring, 

followed by the wet hot summer, leads to the slow mineralization phase of dead organic matter, 

resulting in the formation of coarse humus. In January, the average temperature is around -

28.8 ° C, and in July, during the summer, the average temperature is around +19.7 ° C. The 

mean annual precipitation is 515.2 mm (Naprasnikov et al. 1983). Up to 75 percent of 

northeastern wind speed range from 1.2 to 2.2 m/s (Ministry of Natural Resources of the 

Russian Federation. 2011).  

 

Figure 2.1. The study area and field plots established at Zeya State Nature Reserve. (a) 

The normalized different vegetation index (NDVI) distribution map of East Asia. (b) Zeya 

State Nature Reserve. (c) The study area elevation (m) and field plots. 
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Due to high acidity and low biological activity in the soils, soils in the Zeya State Nature 

Reserve do not favor vegetation growth. The mountains in the Reserve are primarily formed 

by many large peaks (area of more than 3 hectares), many large saddles (more than 3 hectares) 

and variable slopes from shallow (steepness 5-7 °), gently sloping (steepness up to 14-16 °) to 

very steep (up to 40 °). More than two hundred small rivers and streams in the reserve. In the 

winter, the water freezes to the bottom. In summer, though, water flows quicker in steep 

valleys; high water levels often increase as glacier melts or rains.  

The river valleys act as pathways for animals to migrate to the Amur area from the 

southern Amur Basin. The fauna is more prosperous in the Zeya State Nature Reserve than in 

any other reserve in the Russian Far East. The 240 species represent birds. The most numerous 

and prevalent in this region is the hazel grouse (Tetrastes bonasia). You will find the Western 

Capercaillie (Tetrao urogallus) in the Reserve. Two species of partridge inhabit the ponds of 

the Tukuringra Range, grey partridge (Perdix perdix) and snow partridge (Lerwa lerwa). The 

most endemic and rare bird is the dikusha, black grouse (Tetrao tetrix). This species is listed 

in the Red Book of the IUCN. 

In the state reserve, 47 species of mammals are found. There are very few populations 

of ungulates in the Tukuring River Range. Occasionally, the boars (Sus scrofa) migrate up to 

the northern valley of Zeya and come down to breed in the valleys south of Zeya. The Siberian 

musk deer (Moschus moschiferus) is present in several places at the upper part of the mountain 

tundra belt at many sites. In the Reserve, the most impressive species are the Manchurian wapiti 

(C. c. xanthopygus), the roe deer (C. capreolus), Manchurian wapiti (C. c. xanthopygus), the 

roe deer (C. capreolus), and the moose (Alces alces). The Wapitis of Manchuria are primarily 

found in the Manchu fauna area. For their scrambling, they favor river valleys and slopes in 

the lower part of the forest belt. In the southern section of the Reserve, roe deer are evenly 

spread and can be seen only in the summer. The southeastern tip of the Reserve is restricted to 
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the wintering roe deer. For the Tukuringra Range foothills, two distinct subspecies of moose 

are found: The East Siberian moose (A. alces cameloides) or Kolyma moose (A. alces buturlini) 

and the Western Siberian moose or Ussuri Moose. The Altai elk (C. c. sibiricus) is found 

throughout the Reserve; however, they are mostly seen in the river valleys. They visit the 

mountain tundra in summer, because of the forage available. The stoat (Mustela erminea) and 

the sable (Martes zibellina) are abundant. The Siberian tiger (Panthera tigris altaica) 

sometimes shows up in the Reserve and leaves its footprint along the trails. The permanent 

inhabitant species of the Reserve is the gray wolf (Canis lupus lupus). These animals prefer 

river valleys. The East Siberian brown bear (Ursus arctos collaris) is found in all high-altitude 

belts. For invertebrate species, about 2000 species were recorded in 2014. These included 

Equilateral Crayfish, horsetails, Caddisflies, flies, beetles, sawflies, wasps, bees, ants, etc. Two 

species of insects are listed in the Red Book of the Russian Federation: Longhorn beetles 

(Callipogon relictus) and Northern Yellow Bumble Bee (Bombus distinguendus) and two 

endemic species of butterflies. A total of 23 species of cyclostomes and fish are found in Zeya 

District; two common species are the Siberian salmon (Hucho taimen) and Manchurian trout 

(Brachymystax lenok). The Amur pike (Esox reichertii) and roaches (Rutilus lacustris) are 

common in the Zeya reservoir. Simultaneously, in the rivers, the gudgeon (Gobio gobio) and 

Arctic charr (Salvelinus alpinus) are mostly found. The Zeya State Nature Reserve has also 

recorded 4 species of amphibians and 3 species of reptiles. 

More than 90% of the land of the Reserve is covered with forests. Along the Zeya 

reservoir on well-warmed rocky slopes with an altitude between 350 and 500 m over sea level, 

oak and black walnut forests are prevalent. Mongolian oak, Chinese magnolia vine, Amur 

linden, Lesredets, Maximovitch are found under the canopy of pine and black birch woods. 

Above the pine and black birch forests are larch forests, which spread across the mountain in a 

variety of habitat and end up in the mountain tundra belt (1,000 m above sea level). Larch 
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forms together with all the birch flat-leaf, spruce and aspen. Vegetation located under the 

canopy of larch forests include cowberries, Ledum marsh, Rhododendron Daurian and green 

mosses. The mountain tundra belt of dark green coniferous woods is located at the altitudes of 

1,000-1,300 m a.s.l. These woods were formed by Siberian spruce and Ayan spruce. Spruce is 

also located in the valleys of mountain rivers, and sometimes mixed with larch on the mountain 

slopes of northern exposures. Above the spruce forests (1,100-1,300 m a.s.l.), there are 

congregated of cedar pine tree. They frame the shirts of the Tukurings mountain range. They 

can be found together with Siberian Juniper, Golden Rhododendron, and Pallas mountain ash 

in certain areas. With an altitude of 1,100-1,142 m a.s.l.., three major biomorphs of tundra 

vegetation communities (i.e. lichens, shrubs and leaf-stalked mosses) are present. Along the 

river valley, willow and Chosenia-poplar woods are dispersed with Gmelin larch and birch. 

Other kinds of vegetation along the river valley are including five-leafed shrub, white syringe, 

purine reed, and sedge. 

Meadow vegetation or grasslands are scattered in several areas such as forest fire 

disturbed area and floodplains. Marshes, however, occupy small area inside the Reserve. The 

lands at the Zeya State Nature Reserve are not favoring the plant growth because of high acidity 

and reduced biological activity in the soils. The mountain reliefs in the book are primarily 

formed by several enormous peaks (region of over 3 hectares), several enormous saddles 

(greater than 3 hectares), and variant slopes from shallow (steepness 5 -7 °), gently sloping 

(steepness around 14-16 °), into a very steep (up to 40 °)—over two hundreds of little rivers 

and lakes in the Reserve. In winter, the water trickle to the bottom.  

The Reserve landscapes offered various ecosystems from mountain tundra vegetation 

on the highest altitude, lichen tundra, shrub tundra, moss tundra, and dwarf pine forest, cedar 

trees, fir trees, birch forests, larch forests, pine forests, oak forests, to the valley meadow. 

Human settlements and recreational activities are prohibited, only cabins and educational 
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activities approved by park rangers allowed. These ecosystems have been described and 

mapped by Dudov's Zeya State Nature Reserve vegetation (2018) and translated to English-

language data to represent each forest cover type in this thesis (Table 2.1).  Mountain tundra 

vegetation is dominated by dry heath alpine tundra species, such as Vaccinium uliginosum L., 

Arctous alpina (L.) Niedenzu, Betula nana L., and edge-surrounded by a Siberian dwarf 

(Makoto et al. 2016) Spruce species, Picea ajanensis, occurs in two elevation classes, high 

altitude on the mountain and river valleys. Larix gmelinii and Betula divarivata species occupy 

the majority of the area in the reserve and Amur regions. Grasses and willows are present in 

the river valleys and floodplains in lower elevation—Querqus mongolica, oak species present 

in the lower elevation near the Zeya reservoir, and the agricultural area. 

There are 710 species of vascular plants in the Zeya State Nature Reserve. 28 species 

listed below are red-listed species of the International Union for Conservation of Nature 

(IUCN) (Table 2.2). 9 species are listed in the Red Data Book of Russia in 2008 (Table 2.3). 

This specific research site is full of biodiversity and well protected but lately become more 

vulnerable to anthropogenic threats, like fires and clear-cutting. It is crucial for forest 

conservation studies. The Reserve faces more regular massive burning and a sizable loggings 

area, particularly the buffer zone area. The extreme pressures from fires and loggings degrade 

forest resources and ecological functions, influencing forest cover change during time. Thus, 

to preserve its natural complexity, biological diversity, and ecological function, tracking forest 

disturbance and forest cover change is required.  
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Table 2.1. Major land cover types of Zeya District. 

Abbrev. 

Name 
Major land cover types Physical Description 

BURN Burn area*** Forest disturbance by wildfire 

CCTA 
Clearcutting for timber or 

agricultural*** 

Forest disturbance by harvesting for timber and 

ranching 

CCE Clearcutting for electricity lines*** 
Forest disturbance by clearcutting to settle down 

electricity lines 

MD Mixed disturbance*** 
Forest disturbance by human-induced fire and 

harvesting at the same place 

VGR Vegetation recovery*** Vegetation recovery after disturbance 

GRASS 
Bogged larch forests in a wide valley 

and grassland 
Muddy, wetland, willow, floodplain, grassland 

MF Mixed forests in a river valley Larch mixed with Spruce, willow, grass 

OBF Oak - Daurian birch forests Querqus mongolica, Lespedeza bicolor 

BLF Birch and larch forests Larix gmelinii, Betula platyphylla 

SFRV Spruce forests in a river valley 
Picea ajanensis (315-700 m a.s.l.) sparsely 

dispersed near stream 

MSF Mountain spruce forests Picea ajanensis on steep slope (700-1300 m a.s.l.) 

DPW Dwarf pine woodland Pinus pumila, Betula lanata (1100 - 1300 m a.s.l.) 

MTV Mountain tundra vegetation shrub, sedge, lichen, moss (1100m a.s.l. or up) 

TOWN Settlement Houses and airports 

ROAD Unpaved road Roads or ways for transportation without pavement 

ROCK Stream bedrocks River or Stream bedrocks where no water flows 

WATER Water Water bodies (e.g. river, lake) 
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Table 2.2. Red-listed species of IUCN inhabited inside the Reserve. 

Common Name (Scientific Name) 

Adlumia asiatica (Adlumia asiatica Ohwi) Golden root (Rhodiola rosea L.) 
A lady's-slipper orchid (Cypripedium 
calceolus L.) 

 Lupinaster Eximius (Lupinaster eximius 
(Steph. Ex Ser.) C.Presl), 

The Large-flowered Cypripedium 
(Cypripedium macranthon Sw.) 

 Amur cortusa (Cortusa amurensis Fed.) 

Red Garden Orchid (Cypripedium 
ventricosum (Sw.) Soó) 

Yakutiya ladybells (Adenophora jacutica 
Fed.) 

The spotted lady's slipper (Cypripedium 
guttatum Sw.) 

Silver aleuritopteris (Aleuritopteris argentea 
(SF Gmel.) Fée) 

The white adder's mouth (Malaxis 
monophyllos (L.) Sw.) 

Carex conspissata (Carex conspissata V. 
Krecz.) 

The hooded Neottianthe (Neottianthe 
cucullata (L.) Schlechter) 

Lilium buschianum (Lilium buschianu) 

The calypso orchid, (Calypso bulbosa (L.) 
Oakes) 

The Coral Lily (Lilium pumilum Delile) 

The ghost orchid (Epipogium aphyllum 
Sw.) 

Japanese iris (Iris laevigata Fisch, et CA 
Mey) 

Downy clematis (Atragene macropetala 
(Ledeb.) Ledeb.) 

Woodland Peony (Peony obovata Maxim.) 

Large bloom (Delphinium grandiflorum L.) 
Yellow coralroot (Corallorrhiza trifida 
Chatel.) 

Stinking Meadow-rue (Thalictrum foetidum 
L.) 

Hystrix komarovii (Hystrix komarovii 
(Roshev.) Ohwi) 

Meadow rue (Thalictrum squarrosum 
Steph.) 

Asplenium incisum (Asplenium incisum 
Thunb.) 

Five-flavor berry (Schisandra chinensis 
(Turcz.) Baill) 

Wall-rue (Asplenium ruta-muraria L.).  

Table 2.3. Species listed in the Red Data Book of Russia in 2008 inhabited inside the 

Reserve. 

Common Name (Scientific Name) 
Adenophora jacutica (Adenophora jacutica Fed.) 
Golden root (Rhodiola rosea L.) 
A lady's-slipper orchid (Cypripedium calceolus L.) 
The Large-flowered Cypripedium (Cypripedium macranthon Sw.) 
Red Garden Orchid (Cypripedium ventricosum (Sw.) Soó) 
The hooded Neottianthe (Neottianthe cucullata (L.) Schlechter) 
 The calypso orchid, (Calypso bulbosa (L.) Oakes) 
The ghost orchid (Epipogium aphyllum Sw.) 

Woodland Peony (Peony obovata Maxim.) 
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2.2 Data 

2.2.1 Field Data 

My field visit was taken once in a year; each field investigation took at least 13 days 

(Figure 2.2; Appendix 1). The month to collect data was August in 2016, 2017, 2018, and 2019. 

For the field survey, 11 plots (NR1~NR11) located inside the Reserve, 6 plots in the buffer 

zone area (BZ1-BZ6), and 6 plots outside of the reserve area (ONR1-ONR6) (Table 2.4). Tree 

species, tree height and diameter at breast height (DBH) data were collected to identify the type 

of forest cover along with the disturbance intensity. Larix gmelinii and Betula platyphylla 

dominated most of the plots. The higher elevation plot was dominated by Picea ajanensis. The 

buffer zone and outside nature reserve plots, however, experienced forest fire and clear-cutting 

in the past in the meadow valley.  
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Figure 2.2. 23 Field survey plots; Light green box indicated inside the Reserve plots (NR1-NR11), orange box indicated plots in the buffer zone 

of the Reserve (BZ1-BZ6), and red box indicated outside the Reserve plots (ONR1-ONR6).  
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Table 2.4. Field Investigation Plots around the Reserve 

Plot 
name 

Date 
(mm/dd/yyyy) 

Latitude Longitude 
Elevation 

(m) 
Slope 

direction 

Slope 
angle 

(Degree) 
Dominant species (#of trees) 

Average 
DBH of 

dominant 
species (cm) 

Average 
height of 
dominant 

species (m) 

Forest Fire 
Disturbance 

Intensity 

NR1 8/6/2016 54.1218440 126.932333 1,305.40 195 12 Picea ajanensis (18) 21.1 11.2 N/A 
NR2 8/7/2016 54.1083570 126.932428 853.04 192 5.5 Larix gmelinii (13) 17.5 14.8 N/A 
NR3 8/8/2016 54.0913000 126.882125 626.02 335 1 Larix gmelinii(29), Picea ajanensis (22) 8.7, 6.3 9.4, 5.7 N/A 
NR4 8/8/2016 54.0831370 126.874603 600.15 245 2 Larix gmelinii (11) 19.3 18.5 N/A 
NR5 8/2/2017 54.1418611 126.758556 716.00 10.5 9.7 Picea ajanensis (8) 25.94 16.14 N/A 
NR6 8/3/2017 54.1479444 126.779139 1065.00 53 9.4 Picea ajanensis (26) 14.18 11.67 N/A 

NR7 8/3/2017 54.1473333 126.781278 1073.00 136 11.0 
Pinus pumila (10), Picea ajanensis (4), 

Larix gmelinii (5) 
3.71, 4.00, 

6.39 
2.68, 2.78, 

4.83 
N/A 

NR8 8/4/2017 54.1315000 126.739833 622.00 112 4.1 Betula platyphylla (13) 14.59 16.54 N/A 

NR9 8/5/2017 54.0135833 127.039083 594.00 26 7.7 
Betula platyphylla (5),  

Larix gmelinii (13) 
15.36, 11.71 17.41, 14.34 N/A 

NR10 8/7/2017 54.0135833 127.039083 569.00 78 8.4 Betula platyphylla (15) 3.41 4.43 High 

NR11 8/8/2017 54.0080555 127.047361 509.00 116 3.2 
Betula platyphylla (13),  

P. ajanensis (38) 
13.93, 2.18 12.38, 4.38 High 

BZ1 8/10/2016 54.0119300 127.037063 555.61 198 34 Betula platyphylla (36) 2.5 3.6 High 
BZ2 8/7/2017 53.8724722 127.109806 491.00 38 4.9 Betula platyphylla (23) 4.57 6.74 Medium 
BZ3 8/1/2018 54.0578056 126.920083 545.91 135 1 Larix gmelinii (12) 10 9.4 Low 
BZ4 8/2/2018 54.1035556 126.796111 561.05 207 2 Betula platyphylla (4) 8.2 3.8 Medium 
BZ5 8/3/2018 54.1273056 126.704778 559.85 180 4 Larix gmelinii (7) 12.5 11.6 N/A 
BZ6 8/5/2018 53.8680556 127.121556 458.19 165.5 4.4 Larix gmelinii (14) 8.5 11.1 N/A 

ONR1 8/10/2016 53.8178850 127.150909 508.97 265 10.1 Larix gmelinii (4) 17.3 16.1 High 
ONR2 8/5/2017 53.9668333 127.056333 455.00 0 0.0 Larix gmelinii (4) 26.36 16.67 High 

ONR3 8/7/2017 53.9180556 127.073889 498.00 0 0.0 
Betula platyphylla (6),  

Larix gmelinii (16) 
10.39, 10.24 12.67, 11.07 High 

ONR4 8/8/2017 53.8365556 127.146806 451.00 1 8.0 Betula platyphylla (16) 3.72 5.80 High 
ONR5 8/1/2018 53.9619722 127.045139 409.40 135 1 Larix gmelinii (6) 22.5 16.5 Medium 
ONR6 8/5/2018 54.1512778 126.661583 503.61 304 3 Larix gmelini (7), Picea ajanensis (15) 15.6, 5.4 18.7, 6.2 Low 

  



26 
 

2.2.2 Remote Sensing Data 

2.2.2.1 Landsat Image Data  

Satellite imageries become the advanced tools for scientists to detect the change of 

environment around the world. All imageries were acquired from the United States Geological 

Survey (USGS) Earth Resources Observation and Science (EROS) Data Center. The center 

contained the most comprehensive continuously collection of space-based moderate-resolution 

data that provide free-access to scientists and non-scientists in all academic disciplines ((USGS 

2017) 2017). Landsat has enhanced the number of spectral bands and spatial resolution through 

time (Table 2.5). The images were downloaded from The USGS Global Visualization Viewer 

(GloVis) website (http://glovis.usgs.gov/) and USGS EearthExplorer website 

(https://earthexplorer.usgs.gov/).  

Table 2.5. Landsat Satellite Band Designations (USGS 2017). 

Landsat-8 OLI & TIRS Sensor (February 11, 2013 - Present) 
Band Number  Description  Wavelength  Resolution 
Band 1  Coastal / Aerosol  0.433 to 0.453 µm  30 meter 
Band 2  Visible blue  0.450 to 0.515 µm  30 meter 
Band 3  Visible green  0.525 to 0.600 µm  30 meter 
Band 4  Visible red  0.630 to 0.680 µm  30 meter 
Band 5  Near-infrared (NIR) 0.845 to 0.885 µm  30 meter 
Band 6  Short-wave infrared (SWIR1) 1.56 to 1.66 µm  30 meter 
Band 7  Short-wave infrared (SWIR2) 2.10 to 2.30 µm  60 meter 
Band 8  Panchromatic  0.50 to 0.68 µm  15 meter 
Band 9  Cirrus  1.36 to 1.39 µm  30 meter 
Band 10  Long wavelength infrared  10.3 to 11.3 µm  100 meter 
Band 11  Long wavelength infrared  11.5 to 12.5 µm  100 meter 
Operational Land Imager (OLI) generates 9 spectral bands (Band 1 to 9) and is onboard 
Landsat-8. OLI images can discriminates vegetation types, cultural features, biomass and 
vigor,etc. 
Thermal Infrared Sensor (TIRS) consists of 2 thermal bands with a spatial resolution of 
100 meters. TIRS measures Earth's thermal energy particularly useful for tracking how land 
and water are being used. 
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Table 2.5. Landsat Satellite Band Designations (Continued). 

Landsat-5 Thematic Mapper (March 1, 1984 - June 5, 2013) 
Band Number  Description  Wavelength  Resolution 
Band 1  Visible blue  0.45 to 0.52 µm  30 meter 
Band 2  Visible green  0.52 to 0.60 µm  30 meter 
Band 3  Visible red  0.63 to 0.69 µm  30 meter 
Band 4  Near-infrared (NIR) 0.76 to 0.90 µm  30 meter 
Band 5  Short-wave infrared (SWIR1) 1.55 to 1.75 µm  30 meter 
Band 6  Thermal  10.4 to 12.3 µm  120 meter 
Band 7  Short-wave infrared (SWIR2) 2.08 to 2.35 µm  30 meter 
Thematic Mapper (TM) was a high-resolution scanner on Landsat satellites (Landsat 4 
and 5). It collected images in visible, near infrared, mid infrared and thermal bands with a 
spatial resolution of 30 meters. 
 

Landsat-2 Multispectral Scanner System (January 22, 1975 - February 25, 1982) 
Band Number  Description  Wavelength  Resolution 
Band 4  Near-infrared (NIR) 0.5 to 0.6 µm  60 meter 
Band 5  Short-wave infrared (SWIR1) 0.6 to 0.7 µm  60 meter 
Band 6  Thermal  0.7 to 0.8 µm  60 meter 
Band 7  Mid-infrared (SWIR2) 0.8 to 1.1 µm  60 meter 
 Panchromatic    
Multispectral Scanner System (MSS) is line scanning systems perpendicular to the 
orbital track. An oscillating mirror performed cross-track scanning; for each mirror sweep, 
six lines were scanned simultaneously in each of the 4 spectral bands. The forward motion 
of the satellite provided the advancement of the scan line along the route. 

 
 

The high-quality Landsat images from 1975 to 2019 with less than 10% cloud during 

the growing season were selected (Tucker 1980; Tucker, Grant, and Dykstra 2004). Due to 

Scan Line Corrector (SLC) failure of Landsat ETM+ on May 31, 2003, most of the images 

after this date were discarded; after the screening process, the four most suitable images with 

appropriate time intervals from Landsat TM and OLI images (WRS2 path 120, row 22) were 

chosen at first for Chapter 3 and Chapter 4 (Table 2.6).  
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Table 2.6. List of processed 4 Landsat images used for Chapter 3 and Chapter 4 

Path/Row Date Sensors Band Combination for false color 

composite (R,G,B) 

120/22 1988-09-23 Landsat 5 TM B5, B4, B3 

120/22 1999-08-21 Landsat 5 TM B5, B4, B3 

120/22 2010-09-04 Landsat 5 TM B5, B4, B3 

120/22 2016-08-19 Landsat 8 OLI B6, B5, B4 

 

During the end of 2018 and early 2019, USGS uploaded more images into the archive. 

I saw the potential to produce more in-depth research on analyzing spectral-values of forest 

covers and disturbance covers in Chapter 5. The more frequent-time resolution images (Table 

2.7) including Landsat MSS image allowed me to evaluate the Reserve's effectiveness and 

understand disturbance history around the region and its effects from 1975 to 2019. All the 

Landsat images were extracted into study region as shown in Figure 2.3-2.13. The Shuttle 

Radar Topography Mission (SRTM) data available in Landsat Level 1 Terrain Corrected (L1T) 

product which has the resolution of 1 arc-second (approximately 30 meters) was downloaded 

from USGS Earth Explorer website for topographic correction. The SRTM were resampled 

using georeferenced of Landsat 8 OLI image to match 30-m resolution. The resampling method 

was nearest neighbor to cover the study area. Landsat 2 MSS image was also resampled using 

nearest neighbor method to have the same 30-m resolution as other Landsat images. For the 

rest of the images, the resolution remained 30m by 30m.  
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Table 2.7. List of processed 13 Landsat images used for Chapter 5 

Path/Row Date Sensors Band Combination for false color 

composite (R,G,B) 

120/22 1975-07-13 Landsat 2 

MSS 

B5, B6, B4 

120/22 1988-09-23 Landsat 5 TM B5, B4, B3 

120/22 1993-09-21 Landsat 5 TM B5, B4, B3 

120/22 1996-08-12 Landsat 5 TM B5, B4, B3 

120/22 1999-08-21 Landsat 5 TM B5, B4, B3 

120/22 2001-08-26 Landsat 5 TM B5, B4, B3 

120/22 2005-06-02 Landsat 5 TM B5, B4, B3 

120/22 2010-09-04 Landsat 5 TM B5, B4, B3 

120/22 2014-06-11 Landsat 5 TM B5, B4, B3 

120/22 2016-08-19 Landsat 8 OLI B6, B5, B4 

120/22 2019-08-28 Landsat 8 OLI B6, B5, B4 
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Figure 2.3. Landsat image of the Reserve dated 1975-07-13. 
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Figure 2.4. Landsat image of the Reserve dated 1988-09-23. 
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Figure 2.5. Landsat image of the Reserve dated 1993-09-21. 
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Figure 2.6. Landsat image of the Reserve dated 1996-08-12. 
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Figure 2.7. Landsat image of the Reserve dated 1999-08-21. 
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Figure 2.8. Landsat image of the Reserve dated 2001-08-26. 



36 
 

 

Figure 2.9. Landsat image of the Reserve dated 2005-06-02. 
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Figure 2.10. Landsat image of the Reserve dated 2010-09-04. 
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Figure 2.11. Landsat image of the Reserve dated 2014-06-11. 
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Figure 2.12. Landsat image of the Reserve dated 2016-08-19. 
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Figure 2.13. Landsat image of the Reserve dated 2019-08-28.  
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2.2.2.2 High-Resolution Data  

High resolution image from DigitalGlobe WorldView-2 was acquired (Figure 2.14). 

The boundary of the image was NW-Lat 54.31678772, NW-Long 126.89402771, SE-Lat 

54.08684921, and SW-Long 127.08489990. This image covered an extended area to the 

northern part of the Reserve beyond my investigation area. This area was inaccessible, so I 

cannot obtain ground information. High-resolution images allow me to identify the forest cover 

type in such a remote area of the Reserve (Hansen et al. 2013). Other data were later obtained 

from the open-access website. Web search engines such as Bing maps owned and operated by 

Microsoft https://www.bing.com/maps and  Google maps and Google Earth program 

https://maps.google.com/ released tremendous amounts of free-accessed high-resolution 

images, combinations of DigitalGlobe satellite and their aerial imagery help me cover 

inaccessible areas (Hansen et al. 2000). However, available images were depended on location 

and time. Both engines did not provide a full cover of my study area. 
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Figure 2.14 High-resolution image from DigitalGlobe WorldView-2 on 2010/09/20 at Zeya 

State Nature Reserve. The black line indicated the tract of field survey.  
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2.2.3 Literature and Map Data 

Since satellite imagery was taken from a distance and generated output as image data, 

the procedure was based on ground reflectance value. Experts and official personnel confirm 

the presence of forest cover and the location of the disturbance. Global Forest Watch 

www.globalforestwatch.org has also issued new data on land use trend and global forest status 

(World Resources Institute 2014). Other data provided by Russian scientists includes Dudov ’s 

(2018) vegetation cover map data, Borisova and Veklich 2013’s (2013) oak forest plot 

information, overview photos of the coastal forest near artificial lake, Zeya reservoir, and Zeya 

State Nature Reserve wildfire layouts. The information was used to address the problems in 

the latter classification system. All fires officially reported by the reserve office from 1980 to 

2015 were included in the historical wildfire layouts of the Zeya State Nature Reserve. Routine 

observation by satellite has covered reserve territory since 2005. Forest fire information, yet, 

was rarely gathered by aerial observation. According to the Reserve office personal, many fires 

would occur from lightning and burned for several days, particularly in the central part of the 

Reserve, and could vanish after the rainfall. Consequently, there were many missing flames. 

This situation resulted in some mismatches from other historical fire data sources (Chen et al. 

2016).  

2.3 Pre-processing of Remote Sensing Data 

I used TNTmips software version 2019 (MicroImages, USA) to extracted image into 

the region of interest. MSS images, which has pixel size of 60m x 60m, were resampled using 

nearest neighbor method with Resample and Reproject function to match other Landsat images 

(30m resolution). The value of each cell in the resampled raster is calculated by merely copying 

the value from the nearest input cell. After that, all images were processed with 

Image/Radiometric Correction which provides functions to calibrate the image, correct the dark 

object and shadow, and correct the complex topography that favors in different sunlight angle 
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using Digital Elevation Model (DEM) (Figure 2.15). The most suitable input parameter values 

for radiometric correction process were considered to provide the best image for all images 

were “Green” for Skylight Band and “0.80” for Skylight Fraction. The output image was 

radiance value with the pixel size of 30m x 30m. The cloud and shadows were masked (Figure 

2.16). The process removed unnecessary colored pixels polluted by cloud and cloud shadow 

(Potapov, Turubanova, and Hansen 2011).  These corrections allowed more accurate 

assessment of ground surface properties and improve forest cover and result accuracy in boreal 

regions (Potapov et al. 2008). The corrected images; hence, were used to conduct research 

experiments in a later chapter. 

 

Figure 2.15.   Radiometric correction function in TNTmips software. 
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Figure 2.16.   Flow chart of the cloud masking process in TNTmips2016. 

Classify cloud 
and non-cloud 

•Image -> 
Classify -> 
Auto 
Classify

•Create 
training sets 
of cloud 
area -> 
classify

Extract cloud 
class

• Image -> 
Combine ->  
Arithmetic and 
Indices 
-> Logical -> 
Range -> Input 
Rasters (treat 
null input cells 
as zero) -> Input 
cloud class value 
to both upper 
limit and lower 
limit -> set 
output white to 
be inside range -
> Run

Convert Raster to 
geometric 
boundary

•Geometric 
-> Convert 
Raster -> 
Raster to 
Geometric 
Boundarie
s -> Input 
cloud 
mask 
raster -> 
Run

Edit cloud 
polygons

•Main -> Edit
•Delete edge 

polygons 
and non-
cloud 
polygon, 
adding 
other cloud 
polygon if 
not shown 
in cloud 
mask but 
shown in 
Landsat 
images

Create buffer 
area for cloud

•Geometric -> 
Spatial 
Analysis 
-> Buffer 
Zones

•Due to 
mixture of  
thin cloud and 
other classes 
along the 
edge of the 
cloud, buffer 
area of cloud 
is needed to 
eliminate 
those 
mixture.

Convert  
Cloud Vector 
to Raster
•Geometric 

-> Convert 
Raster
-> Vector 
to Raster -
> Input 
Vector -> 
Input 
Reference 
-> Run

•Set null 
cells to 
zero after 
getting 
raster

Compliment 
the raster

• Image -> 
Utilities -> Set 
Null Cells -> 
Change existing 
null cells to valid

• To set cloud to 
zero value for 
usage in Landsat 
Image -> 
Combine ->  
Arithmetic and 
Indices 
-> Logical -> 
Compliment -> 
Input Rasters 
(treat null input 
cells as zero) -> 
Run



46 
 

Chapter III 

Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances 

around Protected Area, Zeya State Nature Reserve in the Russian Far East 

3.1. Introduction 

Boreal forests are considered the largest ecoregion on Earth. This particular area is well-

known for its productivity and diverse forest types which is home to many endangered species. 

About 20% of the world’s boreal forests are located in Eastern Siberia and the Russian Far East 

affected by natural disturbances and human activities (Astrup et al. 2018). Deforestation and 

degradation are expected to expand in the Central Siberia (Loboda et al. 2012), the Eastern 

Siberia, and the Russian Far East (Dong Chen et al. 2016). In recent decades, unprecedented 

large-scale fire events have caused air pollution, smog blankets, ecosystem degradation, and 

biodiversity loss (Astrup et al. 2018; Dong Chen et al. 2016). The increasing temperature of 

and the windy weather may intensify the forest fire on the mountain top after lightning 

occurred. There were significant positive correlations between lightning and wetter 

precipitation and the advent of forest fires during the summer and fall seasons (Zhao, Liu, and 

Shu 2020). More than 70% of forest fire in Russia are caused by human activities, 11% by 

lightning, 10% by agricultural prescribed burning (A. I. Bedritsky, V. G. Blinov, and D. A. 

Gershinkova 2008; Bockel et al. 2014). Road building and bridge construction were expanded 

in Siberia and the Russian Far East, which has a tendency to cause the area more flammable 

when the weather is dry and warm. Mining and prescribed burning are also the causes of huge 

fire area in the 2015 Russia wildfire event and 2003 Siberian Taiga Fires event. The fire was 

out of control, causing as much as ten million hectares from West Siberia to the Russian Far 

East (Viacheslav I. Kharuk et al. 2021). Scientists have linked the loss of forest cover in fires 

to human activity and global climate change, but as some remote regions in the Russian Far 
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East are still unexplored, there are still lack of many data on the information of land-cover 

characteristics and forest dynamics (Cohen and Goward 2004). 

Several nature reserves have been designated in the Russian Far East, to protect the 

landscape and conservation efforts against land conversion (Wendland et al. 2015; Bartalev et 

al. 2014). Although these remote places have a little human occupation, lack of monitoring 

makes them susceptible to landscape alteration, such as clearcutting for timber, agricultural 

expansion for ranching, mining, and road building (Kareiva et al. 2007). Keeping the forest 

landscape stable and maintaining forest succession after disturbance is necessary to protect 

species diversity and climate regulation. Boreal forests are famous for their annual fire cycle 

(Dong Chen and Loboda 2018). However, some disturbed areas have not recovered to the old-

growth forest, and many old-growth forests have turned into secondary forests and grassland. 

This modern forest dynamic increases the risk of reducing the function of the forest ecosystem, 

raising the risk of global climatic disturbance (Achard et al. 2006). 

The inaccessible area and remote locations mean that forest changes and disturbance 

history have not been well studied (Wendland et al. 2015). Studying areas requires advanced 

technologies such as remote sensing. Using remote sensing to detect the disturbance history is 

essential for evaluating the effectiveness of site protection measures (Wendland et al. 2015). 

For example, satellite image analysis demonstrated that the Russian Far East forests were 

greatly affected by Siberian Taiga Fires in 2003, which destroyed nearly 3 million ha of forest, 

the most considerable loss in the Russian Far East’s history (Loboda et al. 2012; Achard et al. 

2006; Peterson et al. 2009). Satellite imagery is routinely used to calculate the normalized 

difference vegetation index (NDVI) and the normalized burn ratio (NBR), and the normalized 

difference water index (NDWI) which were used to detect vegetation health, fire severity, and 

water (Fiore et al. 2020; Ju and Masek 2016). Such data can be useful for landscape 

management (Amiro et al. 2006; Dong Chen et al. 2016). As commercial satellite images are 
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costly, the use of freely available data, such as Landsat images, is a popular alternative for 

ecologists and environmentalists (Loboda et al. 2012; D. Chen et al. 2017; Vyacheslav I. 

Kharuk et al. 2010). However, the images have disadvantages for studying forest cover in the 

Russian Far East due to frequent cloudiness and short seasons, limiting the number of high-

quality images available (Potapov et al. 2008). Two year images could be overlaid to increase 

reliability. Such a two-image classification can yield higher accuracy than standard single-

image classification, overcoming limited image availability (He et al. 2018). However, the 

potentially long time interval between successive images reduces the accuracy of detecting 

forest disturbances, resulting in underestimation of disturbance (Potapov, Turubanova, and 

Hansen 2011). A disturbed area might have recovered to typical vegetation in the later image 

and can no longer be treated as disturbed area (Loboda et al. 2012; Bright et al. 2019). 

Therefore, to adequately evaluate disturbance, it is necessary to consider changes of the forest 

types or successional forest type direction. 

Here I determined forest-cover change and disturbance in a protected region of the Russian 

Far East to help managers prioritize conservation efforts on protecting flora and fauna and 

managing fuel above ground to prevent severed fire (M. G. Turner 2010; W. Turner et al. 2003; 

Wulder and Coops 2014; Anderson-Teixeira 2018). I present the maps of forest-cover change 

between 1988 and 2016, in this vulnerable ecosystem, based on remote-sensing data, to show 

the following: (1) how forest cover and disturbance differ among inside the protected area, the 

buffer zone, and outside the protected area. The buffer zone indicated the area that runs along 

the boundary of the Reserve that limited some level of human activities but not highly restricted 

as the Reserve and enhance the protection of biodiversity of the reserve. The next is (2) how 

vegetation indices can be used to overcome disadvantages of long-interval image analysis to 

show forest successional stages after disturbance; and the last is (3) how effective the Reserve 
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is in terms of preventing fire disturbance and protecting forest based on the area of forest 

successional directions inside, the buffer zone, and outside of the reserve. 

3.2. Materials and Methods 

3.2.1. Study Area 

The study area is located in Zeya State Nature Reserve, Amur Oblast, Far Eastern Russia 

(53°58′–54°07′ N, 126°52′–127°22′ E; Chapter 2; Figure 2.1). The reserve, with a total area of 

99,430 ha, was established on 3 October 1963, at the eastern end of the Tukuringra Ridge. 

Within the reserve, 40% of the area has an elevation of up to 700 m a.s.l., 35% of 700 to 1000 

m, 18% of 1000 to 1300 m, and 7% of over 1300 m. The average temperature is −28.8 °С in 

January and +19.7 °С in July. The average annual precipitation is 515.2 mm. The prevailing 

winds are northeasterly, most commonly (75%) at 1.2 to 2.2 m/s. The Reserve are considered 

home to more than thousands of species, including 1111 species of plants, 2001 species of 

invertebrates, and 225 species of vertebrates. The biodiversity in the Reserve is richer than 

other protected area in the Russian Far East. More than 35 species of fauna and flora are listed 

on the Red Book of Russia, and 10 species of bird and 1 species of mammal are on the 

International Union for Conservation of Nature (IUCN) Red List (Zeya State Nature Reserve 

2020). 

More than 90% of the Reserve is covered by 7 major different forest types, with the most 

dominant be the Betula platyphylla and Larix gmelinii species (80% of the Reserve and Picea 

ajanensis species (10% of the reserve). According to Dudov’s (Dudov 2018) spatial map of 

vegetation, the mountain tundra belts, located at elevations of >1200 m, are dominated by 

alpine dry heath species, such as Vaccinium uliginosum L., Arctous alpina (L.) Niedenzu, and 

Betula exilis Sukacz., edged by the dark green shrub-like tree Pinus pumila (Pall.) Regal. Picea 

ajanensis (Lindl. et Gord.) Fisch. ex Carr. grows at two elevations, high on the mountains and 

sometimes mixed with larch along river valleys. Larix gmelinii (Rupr.) Kuzen and Betula 
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divaricata Pall. spread across the mountain in various habitats and end at the mountain tundra 

belt (1200 m). Vegetation under the canopy of larch forests includes Vaccinium vitis-idaea L., 

Ledum palustre L., Rhododendron dauricum L., and green mosses. Grasses and willows grow 

in the river valleys and floodplains at lower elevations. Quercus mongolica Fisch. et Ledeb. 

grows in the southeastern part of the Reserve along the northern slopes. Tilia amurensis Rupr., 

Lespedeza bicolor Turcz., and Corylus heterophylla Fisch. ex Trautv. grow under the canopy 

of oak and black birch forests. Other plants along the river valleys include Dasiphora fruticosa 

(L.) Rydb., Syringa amurensis Rupr., Calamagrostis spp., and Carex spp. Meadows and 

grasslands are scattered in several places, such as fire-disturbed areas and floodplains. Marshes 

occupy only a small area inside the reserve, mostly in flat areas and on gentle slopes with 

northern exposure. In 2003, the region experienced a large-scale fire (around 700 km2) that 

caused extensive damage to forests both inside and outside the reserve. 

The Reserve established a buffer zone along the edge of the reserve, extending more than 

5 km distance from the border of the Reserve to the road on the eastern side and to the electricity 

line on the southern side and to the river on the western and northern sides. The area has 

reduced some degree of human activities but is not quite restrictive as inside the reserve. The 

buffer-zone area strengthens the conservation of biodiversity, providing protection shield to 

the reserve’s fauna and flora and only allowed limited intense use of natural resources. There 

is some monitoring at the buffer zone area to track human disturbance and infrastructure 

developments, like roads and bridge construction. Outside areas of the Reserve beyond the 

buffer zone line owned by the federal government is seldom controlled or monitored by 

government officials. Rare surveillance may put the region at risk of forest destruction and 

landscape changes. The Reserve interior was well protected from human disturbance, with no 

settlements or clearcutting activity within it. This situation has shown its effectiveness in 

protecting natural resources and ecosystems. However, many human-induced disturbances 
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were still found nearby. The flat terrain and unprotected status outside the Reserve make large 

forests vulnerable to human disturbance activity (Schroeder et al. 2011). Clearcutting occurred 

more in the buffer zone during the most recent period because of easier accessibility and a new 

mining camp. In recent years, most forest fires have occurred in the clearcutting area, raising 

the question of whether the timber harvesters or the miners caused the fire and whether it was 

accidental or natural. For example, many areas of mixed disturbance located next to the mining 

area and the nearby electricity line in 2010–2016. An increasing fire frequency resulting from 

changes in species composition that favor the regrowth of deciduous forests prone to fire 

(Smith et al. 2016; Sommerfeld et al. 2018) usually occurs in small-scale clearcutting or 

selective logging areas (Schroeder et al. 2011). 

3.2.2. Data and References 

I used two datasets in this study: satellite images of the Reserve during summer, for 

classification; and field data plus maps and literature, along with the high-resolution image and 

photographs, as references. The dataset for classification included Landsat satellite imagery, 

and 30 m Shuttle Radar Topography Mission (SRTM) data were acquired from the US 

Geological Survey’s Earth Resources Observation (USGS) (USGS 2017). I selected Landsat 

images with <10% cloud cover during the growing season (1 June to 30 September). After 

screening, I chose only four most suitable images based on cloud-free and relatively within the 

same season and appropriate time-interval, acquired in 1988, 1999, 2010, and 2016, from the 

Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) imagery (Table 1). The 

images were preprocessed, using radiometric calibration, atmospheric correction made with 

COST model(Chavez 1996), and topographic correction made with SRTM as Digital Elevation 

Model (DEM) with TNTmips 2017 software (MicroImages, Raymond, NE, USA). 
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Table 3.1. List of processed Landsat images. 

Path/Row Date Sensor 
Band Combination for False Color 

Composite (R,G,B) 

120/22 
23 September 

1988 

Landsat 5 

TM 
B5, B4, B3 

120/22 
21 August 

1999 

Landsat 5 

TM 
B5, B4, B3 

120/22 
04 September 

2010 

Landsat 5 

TM 
B5, B4, B3 

120/22 
19 August 

2016 

Landsat 8 

OLI 
B6, B5, B4 

TM, Thematic Mapper; OLI, Operational Land Imager. 

To preprocess the SRTM images, I used the TNTmips2017 Radiometric Correction, the 

most suitable parameters that provide the best images on all four dates were a scale of 1 for 

reflectance, “dark object from histogram”, and “very hazy” with a skylight fraction of 0.80 for 

correction. These parameters provided similar ranges of reflectance values between sunny and 

shadowy areas. After the reflectance images of all the full Landsat scenes were produced, they 

were extracted into regions of interest that covered the entire reserve and some areas outside 

it. 

The reference dataset used as training and validating samples to evaluate classification 

accuracies, I investigated the area inside and outside the Reserve during the summer season, 

August 2016 to 2018, and collected measurement data. I established twenty-three plots in total: 
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eleven plots (NR1–NR11) inside the reserve, six plots in the buffer zone (BZ1–BZ6), and six 

plots outside the Reserve (ONR1–ONR6), each covering approximately 100 m2 (Figure 3.1). 

In each plot, I recorded tree species, tree height, and diameter at breast height, to identify forest 

cover. The photos and evidences of burn scars and cut woods helped identify the disturbance 

type in the area. Most of the plots were dominated by L. gmelinii and Betula platyphylla, and 

the higher elevation plots were dominated by P. ajanensis. Several plots, however, had 

experienced forest fire and clearcutting in the past. 

Besides the field investigation information, other references included drawing maps, 

vegetation maps, high-resolution images, and photographs. For drawing fire maps, the reserve-

management-office specialists observed and recorded the burned area that occurred from the 

1990s to 2010 and hand-drawn the boundaries of the burned area on the Reserve map. The 

vegetation map had been published in 2016, in Russian, by Dudov (Dudov 2018), using satellite 

images as a based map. The author collected information in the field and produced the classified 

vegetation map of the reserve, consisting of 45 forest classes in total. The mountainous 

topography and inaccessibility of the northern part of the Reserve made it difficult for me to 

collect data there, so I used a high-resolution image from Digital Globe WorldView-2, taken 

on 20 September 2010, covering around 20 km2, to investigate the inaccessible area at the 

northern border of the Reserve and check whether there is any evidence of forest burning or 

clearcutting area. I also obtained photographic evidence and evidence from experts and 

scientists who previously conducted experiments inside the reserve. The high-resolution 

images from global online mapping services, such as Google Earth imageries, Bing Maps, and 

Google Maps, also allowed me to monitor the change of the landscape and used it as one of the 

references to identify of forest cover and disturbance outside of the Reserve area. 
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Figure 3.1. Overview examples of forest plots in the field: (a) plot NR1, located below the 

tundra belt, at 1305 m a.s.l., and dominated by mountain spruce forests; (b) plot NR2, located 

along the trail, at 853 m a.s.l., dominated by larch; (c) plot NR3, located at 626 m a.s.l., along 

the river valley, with the dominant species being larch and spruce in the river valley; (d) plot 

NR4, located near the road, with dominant trees including birch and larch; (e) plot BZ1 buffer 

zone plot, which experienced both massive forest fire and clearcutting in 2003 and 2007, and 

is now recovered by grass and shrub and birch; (f) plot ONR1, outside reserve plot, experienced 

with frequent annual burning from wildfires, the latest of which occurred in July. The photos 

were taken on August 8, 2016 (Khatancharoen 2016; personal observation). 
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3.2.3. Classification 

For image-classification processing (Figure 3.2), image datasets were first classified by 

object-based segmentation, a multi-scale object-oriented procedure that divides an image into 

small regions called “objects”, using eCognition v. 9.0 software (Trimble Geospatial, 

Sunnyvale, CA, USA). This study introduced a two-year overlaid image classification 

technique. In my object-based classification process, I inserted 12 layers of 6 bands (R, G, B, 

NIR, SWIR1, and SWIR2) from two Landsat dates (pre- and post- year images, e.g., 1988 and 

1999) and a layer from the SRTM data in the workspace. All 13 band images were then 

segmented into objects, using a multiresolution segmentation algorithm with a scale of 10 for 

the most appropriate scale parameter (Hirata and Takahashi 2010). I also gave image layer 

weights of 2 for NIR layer to weigh vegetation cover more. The other parameters remained 

defaults (0.1 for shape and 0.5 for compactness) (Başay and Ersan 2015). The multiresolution 

segmentation algorithm provided ability to divide the pixels with similar spectral values into 

polygons. This technique lowers the numbers of heterogeneity polygon areas (Drǎguţ, Tiede, 

and Levick 2010). 
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Figure 3.2. Flowchart for object-based classification based on Landsat images. 

Image datasets were first classified by object-based segmentation, a multi-scale object-

oriented procedure that divides pixels with a similar range of spectral reflectance into regions 

called 'objects' in eCognition v. 9.0 software (Trimble Geospatial, Sunnyvale, CA, USA). The 

reference data were used as training and validation datasets. I classified forest cover change in 

three periods, namely 1988–1999, 1999–2010, and 2010–2016. Three vegetation indices (NDVI, 

NDWI [normalized difference water index], and NBR) and band values (RED, NIR [near-

infrared], SWIR1 [short-wave infrared band 1], and SWIR2) of the Landsat images were used as 
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classification variables (Tucker 1980). The NDVI was used to detect live green vegetation(Gao 

1996) to separate forest type into different classes. It was calculated as: 

NDVI = (NIR − RED) / (NIR + RED). (3.1) 

The NDWI was used to detect surface waters in wetlands (Chu, Guo, and Takeda 2016) and 

to distinguish wetland from valley grassland. It was calculated as: 

NDWI = (NIR − SWIR1) / (NIR + SWIR1). (3.2) 

The NBR was used to estimate pre- and post-fire area (Bright et al. 2019). It was calculated 

as: 

NBR = (NIR − SWIR2) / (NIR + SWIR2). (3.3) 

I also calculated the change of the NDVI and NBR between years. The change of NBR 

between two years allowed me to locate the burn area in my study area, while the change of 

NDVI can give me a hint as to the location of deforested areas. 

For the classification process, the study employed the nearest neighbors (NNs) algorithm. 

The core concept of the non-parametric machine learning NN algorithm method was that if the 

training objects and the neighboring objects in feature space belonged to the same class, then 

the objects would be identified as that class (Franco-Lopez, Ek, and Bauer 2001). It was 

appropriated for my study because many objects had spectral values across multiple categories. 

The objects unfitted to the class would be identified as unclassified objects on the classification 

layer. I also used the interactive algorithm, such as the thresholding algorithm and assigning 

algorithm, for the post-classification to assign the unidentified and mismatch class objects to 

the proper class based on spectral values and indices. During the classification process in 

eCognition, first, I inserted the class hierarchy of 17 land-use classes. I selected training objects 

that represented each class well and assigned classes to the objects based on the criteria in Table 

1. I checked the area on the layers and selected the polygons that match the physical description 
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of each land-cover type, based on the Zeya State Nature Reserve vegetation map, field 

investigation, and high-resolution images used as training samples. After creating training 

samples for each image, NDVI and NDWI were calculated in the software, to add sufficient 

information for object features, which included 12 band values, four spectral indices, and the 

SRTM. In each period classification, I applied the standardized nearest neighbor (SNN) 

function (Sw et al. 2008) with the object features altogether with additional parameters that 

were already predefined in the software, including brightness, relative borders, shape index, 

and area index. The function allowed me to input specific characteristic information to the 

training objects, so that the classification would classify the objects based on similar 

information as the training objects. The classification function used NN algorithm and 

produced raster layer results of the 17 classes and unclassified class (Table 3.2). After 

classification, several misclassified or unclassified isolated objects may exist, so I corrected 

them by using a basic classification algorithm that includes a class-reassignment algorithm, to 

adjust misclassified objects based on elevation range, expert’s explanation, and reference data 

(Appendix 2). 

The thresholding algorithm allowed me to reassign misclassified class to the aiming class 

based on the condition I set. First, I corrected the unclassified class to WATER class, using a 

thresholding algorithm, by setting the mean NIR value to be less than 80. Due to the mislocation 

of MTV class and GRASS class, I reassigned MTV class of <1100 m a.s.l. as GASS, and 

GRASS class of > = 1100 m a.s.l., as MTV, by referring to SRTM elevation layer. Moreover, 

mislocated MSF class in the lower valley of <700 m a.s.l. was reassigned to SFRV class. These 

reassignment was executed by “assigned class” algorithm. On the other hand, a few 

unclassified objects and human-related disturbance classes misidentified inside the Reserve 

were reassigned to the proper classes by their properties and physical characteristics or 

similarity to the nearest class inside the reserve, by executing “selected object” algorithm. This 
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interactive algorithm allowed me to reassign misclassified class to the desired class to only the 

objects I selected. Two-year overlaid images were finally classified to obtain the results of one 

period of the forest-cover-change maps. I performed the same classification algorithms for 

three periods (1988–1999, 1999–2010, and 2010–2016). A total of three maps of three periods 

were generated as the final classification maps. 

Table 3.2. Classification criteria for object-based segmentation classification  

Class 

Name 
Major forest types  Physical Description 

Color in Landsat 

Images (False 

color) 

BURN Burn area*** Forest disturbance by wildfire Red and pink 

CCTA 
Clearcutting for timber or 

agricultural*** 

Forest disturbance by harvesting 

for timber and ranching 

Yellow and red in 

geometric shape 

CCE 
Clearcutting for electricity 

lines*** 

Forest disturbance by 

clearcutting to settle down 

electricity lines 

Long-straight lines 

with bright color 

MD Mixed disturbance*** 

Forest disturbance by human-

induced fire and harvesting at 

the same place 

Red and pink in 

geometric shape 

VGR Vegetation recovery*** 
Vegetation recovery after 

disturbance 

Bright pink 

patches 

GRASS 
Bogged larch forests in a 

wide valley and grassland 

Muddy, wetland, willow, 

floodplain 

light pinkish with 

smoot light green 

MF 
Mixed forests in a river 

valley 

Larch mixed with Spruce, 

willow, grass 

Sparse light and 

dark green 

OBF 
Oak - Daurian birch 

forests 

Querqus mongolica, Lespedeza 

bicolor 
Very bright green 
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BLF Birch and larch forests 
Larix gmelinii, Betula 

platyphylla 
Normal green 

SFRV 
Spruce forests in a river 

valley 

Picea ajanensis (315-700 m 

a.s.l.) sparsely dispersed near 

stream 

Dark green 

MSF Mountain spruce forests 
Picea ajanensis on steep slope 

(700-1300 m a.s.l.) 
Very dark green 

DPW Dwarf pine woodland 
Pinus pumila, Betula lanata 

(1100 - 1300 m a.s.l.) 
Smoot light green 

MTV 
Mountain tundra 

vegetation 
shrub, sedge, lichen, moss White 

TOWN Settlement Houses and airports Red to pink color 

ROAD Unpaved road 
Roads or ways for transportation 

without pavement 

Grey color in long-

straight lines 

ROCK Stream bedrocks 
River or Stream bedrocks where 

no water flows 
Very reddish color 

WATER Water Water bodies (e.g. river, lake) Dark blue 

CLOUD Cloud**** Smog, cloud and cloud shadows 
White and black 

color 

NOTE: *** Forest cover change class detected after verifying existence between the two 
year. 
****Cloud cover change class was masked out in forest cover change maps and analysis 

 

3.2.4. Accuracy Assessment 

I randomly selected new sample “objects” or polygons to assess classification accuracy 

within the study area. To avoid appearing on a similar location as a training area and cloud and 

shadow effects, the “objects” located in such area were excluded, and then the total numbers 

of “objects” for validating process were 2121 for 1988–1999, 2321 for 1999–2010, and 2541 
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for 2010–2016. Those new sample objects were treated as validating objects and selected 

independently from training sample objects. The validating objects were identified based on 

references, including ground-truth plots, drawing fire map, vegetation maps of 2016, high-

resolution image, and experts’ knowledge to evaluate the classification performance, using the 

“Accuracy Assessment” function in eCognition. I inserted the vegetation map 2016 raster layer 

and high-resolution image to eCognition. I selected validating objects based on reference layers 

and also refer to drawing a fire map. For classes outside of the Reserve which were inaccessible, 

I referred to a high-resolution image of 2010, employed from Digital Globe World View-2, 

Google Maps, and Bing Maps, along with field photographs (Figure 3.3) and staffs’ knowledge, 

to identify the ground-truth forest cover. The validating objects were then converted to the 

Training and Test Area (TTA) Mask, to compare with the classification layer. Finally, 

classification accuracy was assessed, using “Error Matrix Based on TTA”. The outputs 

included user’s accuracy, the number of correctly classified objects in that class divided by the 

total number of that class’s objects on the classified maps, producer’s accuracy, the number of 

correctly classified objects in that class divided by the total number of reference objects for 

that class, the overall accuracy, the total number of correctly classified objects divided by the 

total number of reference objects, and Kappa index of agreement (KIA) that measured the 

interrater reliability. 
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CLASS Landsat Image Classification Layer High-resolution Image  Field 
Photograph 

BURN 

   

CCTA 

    

CCE 

   

MD 

    

VGR 

    

GRASS 

   

MF 

   

OBF 

   
 
 
 

Figure 3.3. continued 
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BLF 

    

SFRV 

   

MSF 

   

DPW 

   

MTV 

   

TOWN 

   

ROAD 

    

ROCK 

   

WATER 

   
 

Figure 3.3. Examples of comparison of Landsat image data, classification result, and 
reference data (high-resolution image and field photographs) for 17 classes. 
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3.2.5. Forest-Cover Change and Disturbance Analysis 

I generated forest-cover-change maps based on the 17 classes in each of the three periods. 

Delineating three zones—inside the reserve, a buffer (an area that runs along the boundary of 

the Reserve which limited some level of human activities but not highly restricted as the 

Reserve and enhance the protection of biodiversity of the reserve), and outside the reserve— 

helped me analyze the forest-cover change and disturbance areas. The buffer zones added 

security to the reserve’s biodiversity and ecosystem. The Reserve established the buffer zone 

border to avoid heavy usage of natural resources. To understand the dynamics of forest and 

disturbance around the reserve, I separate the buffer zone area from the outside area to monitor 

the disturbance patterns and trend near the border of the reserve. The area was extracted by 

using the polygons of inside, buffer zone, and outside the Reserve for forest-cover change and 

disturbance analysis. I calculated the areas of all the classes and created a matrix of area 

changes among the three periods and the three zones. I focused on six classes (BURN, VGR, 

GRASS, MF, OBF, and BLF) for analysis. These classes represented typical forest 

successional stages after disturbance in large areas inside the reserve, buffer zone, and outside 

the reserve. I excluded four classes (SFRV, MSF, DPW, and MTV) because those vegetation 

types were at higher elevations, had small area, and were rarely disturbed. I analyzed the mean 

values of NDVI and NBR of the six successional stages to assess forest succession. The lowest 

average value of NDVI and NBR class was considered the first stage while the higher average 

value class was considered the next stage and so on. The broad-leave forests typically 

dominated the land before needle-leave forest, thus I arranged BLF as the last stage of forest 

succession. After I assessed forest succession, I created a matrix of the percentage of area 

changes of successional stages to show their directions in the three zones. 

Finally, I compared inter-annual fires to check the more precise dates of fire in the study 

region, using the MCD64A1 product (Giglio et al. 2015, 64) from Moderate Resolution 
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Imaging Spectroradiometer (MODIS) satellite (ORNL DAAC 2018) (Figure 3.4). As MODIS 

started orbiting after 2000, it was possible to compare only two periods (1999–2010 and 2010–

2016) in this research. The MODIS sensor has 36 spectral bands to monitor earth and water 

surface conditions, spatial resolutions of 250 m, 500 m, and 1 km, and temporal coverage of 1 

or 2 days (Justice et al. 1998). I selected the MCD64A1 product because it was specifically 

developed for burned area detection and has 500 m spatial and 1 month temporal resolutions 

(Roy et al. 2005). This helped me better understand how the fire cycle impacted the forest cover 

in my study area. 

 

Figure 3.4. The Reserve burned area in each date registered by the MCD64A1 product. 
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3.3. Results 

3.3.1. Classification Maps 

The object-based classification produced three changed maps from three periods (1988–

1999, 1999–2010, and 2010–2016). The maps indicated “change classes” and “stable classes” 

(Figure 3.5). “Changed classes” referred to the disturbance and recovery classes for which a 

large change was detected during classification, while “stable classes” referred to classes for 

which a large change was not detected between pre- and post-year images, during 

classification; this included, forest, rock, water, permanent road, and settlement classes. These 

classified maps were the first change maps ever produced in the study area. This is also the 

first time I detected large burned area across the river at the northern border, outside the reserve, 

during 1999–2010 and 2010–2016. Most of the burned area lay to the southern, outside the 

reserve, near grassland. I found that, in the period 1988–1999, the burned area was small and 

hardly detected, but when compared to the period 1999–2010 and 2010–2016, large burned 

areas were detected across the southern parts of the reserve. By combining sequential images, 

I found that the classification had high overall accuracy for all three periods: 91.6% for 1988–

1999, 90.9% for 1999–2010, and 94.3% for 2010–2016 (Table 3.3). For 1988–1999, the 

producer’s accuracy was low in most disturbance classes: 64.3% in mixed disturbance, 69.4% 

in burned area, 58.9% in clearcutting for timber or agriculture, and 70.0% in clearcutting for 

electricity line. The user’s accuracy for mixed disturbance class was 40.9%. This means that, 

even though 64.3% of mixed disturbance area from the ground-truth was correctly identified 

as mixed disturbance, only 40.9% of the mixed disturbance area on the classified map was 

actually mixed disturbance. For 1999–2010, the user’s accuracy was low in mixed disturbance 

(66.7%), burned area (40.9%), and vegetation recovery (57.4%). For 2010–2016, accuracy was 

very high except for clearcutting for timber or agriculture, with a user’s accuracy of only 

60.0%. 
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Figure 3.5. Object-based segmentation classification results (a) forest cover change map of 1988-1999, (b) forest cover change map of 1999-2010 
and (c) forest cover change map of 2010-2016. 
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Some of the forest areas in the southern parts experienced burning and two or more 

clearcuttings during 1988–2016. The burned area increased more than 3.48% of total area from 

the period of 1988–1999 to 1999–2010, but it decreased −2.02% from the period of 1999–2010 

to 2010–2016, covering ~137 km2 (Figure 3.6; Table 3.4). Most of the burned area lay around 

the southern region inside the Reserve during 1999–2010 (Figure 3.5; Table 3.4). The grassland 

area decreased inside and increased outside the reserve, after the first period. The total 

grassland area increased around 2.15% from the period of 1988–1999 to 1999–2010. Mixed 

disturbance was the only class that increased continuously, by about 0.20% from the period of 

1988–1999 to 1999–2010, and 1.10% from the period of 1999–2010 to 2010–2016. Birch and 

larch forests lost ~42 km2 to vegetation recovery and lost ~212 km2 to mixed forests in 1999–

2010, the largest conversion (Table 3.5). Other significant conversions of >50 km2 included 

birch and larch forests to grassland (69.35 km2), mixed forests to birch and larch forests (100.43 

km2), and spruce forests in river valley to birch and larch forests (68.56 km2). In 2010–2016, 

most of the disturbance occurred in mixed forest areas, which lost ~19 km2 to burned area, and 

~18 km2 became vegetation recovery (Table 3.6). 
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Table 3.3. Producer’s accuracy and user’s accuracy for 1988–1999, 1999–2010, and 2010–

2016.  

Class 
1988–1999 1999–2010 2010–2016 

Producer User Producer User Producer User 

BURN 69.44% 89.29% 65.85% 40.91% 84.31% 93.48% 

CCTA 58.93% 86.84% 85.71% 85.71% 100.00% 60.00% 

CCE 70.00% 100.00% 86.67% 100.00% 87.50% 87.50% 

MD 64.29% 40.91% 80.00% 66.67% 84.62% 100.00% 

VGR 78.82% 78.82% 100.00% 57.39% 88.42% 95.45% 

GRASS 95.26% 95.94% 88.06% 99.76% 87.88% 80.56% 

MF 77.30% 84.56% 97.42% 72.60% 92.59% 75.76% 

OBF 100.00% 100.00% 95.00% 95.00% 100.00% 100.00% 

BLF 98.67% 90.24% 98.35% 90.99% 97.39% 95.51% 

SFRV 94.25% 98.80% 78.95% 100.00% 100.00% 76.92% 

MSF 96.26% 94.74% 94.30% 91.46% 86.71% 93.75% 

DPW 85.71% 91.14% 88.51% 89.53% 96.30% 81.25% 

MTV 92.86% 88.64% 90.91% 85.11% 77.55% 92.68% 

TOWN 87.91% 97.56% 85.96% 80.33% 80.00% 100.00% 

ROAD 93.75% 88.24% 85.71% 94.74% 100.00% 90.91% 

ROCK 91.41% 93.60% 77.97% 94.85% 76.47% 100.00% 

WATER 100.00% 100.00% 100.00% 93.52% 100.00% 100.00% 

Overall 
Accuracy 

91.61% 90.90% 94.33% 

Kappa 
index of 

agreement 
(KIA) 

90.10% 87.86% 92.68% 
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Table 3.4. Area (km2) of class covers in first (1988–1999), second (1999–2010), and third 

(2010–2016) periods. 

Class 
Area (km2) 

1988–1999 1999–2010 2010–2016 

BURN 15.4134 136.9125 67.6089 

CCTA 20.0142 8.1333 6.5934 

CCE 4.2867 3.6063 9.4788 

MD 3.1158 10.1043 49.734 

VGR 105.9642 97.9578 45.4932 

GRASS 248.5971 316.1943 340.9686 

MF 224.7192 318.0006 209.2185 

OBF 70.4358 52.1739 46.4472 

BLF 2666.847 2468.893 2598.881 

SFRV 72.0909 31.7277 65.6172 

MSF 131.1309 115.5024 126.2691 

DPW 21.1194 24.8724 23.58 

MTV 7.1253 6.7365 8.1981 

TOWN 5.2515 2.9889 4.5891 

ROAD 5.6367 4.2255 7.2792 

ROCK 41.5503 29.7927 23.7357 

WATER 114.6123 128.7387 123.948 
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Table 3.5. Area changes in different vegetation classes during 1999–2010 compared to 1988–1999. Green color gradient indicates upgrading 

process of vegetation succession. Red color gradient indicates degrading process of vegetation succession.  

 

  

CLASS BURN CCTA CCE MD VGR GRASS MF OBF BLF SFRV MSF DPW MTV TOWN ROAD ROCK WATER
BURN 0.1062 0 0.018 0.2511 2.3697 1.287 2.2455 0.0099 6.5349 0.0855 0.108 0 0 0 0.0009 0.117 0.2637
CCTA 0.8541 0.0243 0.0585 0.549 4.9005 2.4156 2.7657 0.1035 8.1018 0.0009 0 0 0 0.0207 0.0171 0.0621 0.1404
CCE 0.2529 0.0576 0.4545 0 0.369 1.7667 0.3483 0 0.8874 0 0 0 0 0 0 0.1098 0
MD 0.1224 0 0 0.3429 0.9891 0.2286 0.2754 0 1.0674 0.0216 0 0 0 0.0135 0.0549 0 0
VGR 1.3518 0.2097 0.1332 0.7785 15.9309 28.6947 22.3056 1.3779 27.0648 0.0018 0.0684 0 0 0.0018 0.1773 0.828 1.2411

GRASS 5.4918 0.6957 0.5247 0.1719 7.4547 165.535 15.6564 1.7838 27.4311 0 0.1035 0.0117 0.0162 0.009 0.0585 1.5723 0.0594
MF 9.9081 0.9963 0.3105 0.8379 12.8349 42.399 41.4657 2.3688 100.433 0.1701 3.1077 0.1791 0 0.0477 0.0504 1.5795 1.0134
OBF 2.2635 0.1098 0.1422 0 2.2104 1.9692 8.244 22.7376 36.2295 0.072 0 0 0 0 0 0.4185 3.4065
BLF 108.887 5.9805 1.3239 6.9669 41.8617 69.345 212.485 23.6709 2134.61 15.0183 25.884 1.2267 0.0234 0.1179 0.7434 8.9937 7.8048

SFRV 5.3388 0.0063 0 0.0054 0.3789 0.1611 1.1736 0.036 68.5566 14.877 1.0179 0 0 0 0.0054 0.5553 2.0421
MSF 1.6326 0 0.0009 0.1962 0.0378 0.0072 0.0216 0 49.8411 0.8802 81.4131 3.1941 0.2457 0 0 0 0.0504
DPW 0.0063 0 0 0 0 0 0 0 1.6884 0 3.0789 17.8938 1.2717 0 0 0 0
MTV 0.0513 0 0 0 0 0 0 0 0.0666 0 0.7173 2.367 5.1795 0 0 0 0

TOWN 0.045 0.0045 0.0009 0 1.5696 0.6417 0.6381 0.0027 0.1953 0 0 0 0 2.025 0.1017 0.0333 0.0018
ROAD 0.207 0 0.0756 0.0009 0.2043 0.0297 0.4527 0.0009 1.4382 0 0 0 0 0.0099 1.9512 0.2718 0.1188
ROCK 0.387 0.0486 0.5634 0.0036 6.831 1.7064 9.8712 0.0693 2.8935 0.0072 0.0027 0 0 0.7434 1.0593 14.9274 1.1826

WATER 0.0072 0 0 0 0.0153 0.0072 0.0522 0.0126 1.8558 0.5931 0.0009 0 0 0 0.0054 0.324 111.414

1988-1999 
Total Area 

(km2)

1999-2010 Total Area (km2)
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Table 3.6. Area changes in different vegetation classes during 2010–2016 compared to 1999–2010. Green color gradient indicates upgrading 

process of vegetation succession. Red color gradient indicates degrading process of vegetation succession. 

 

CLASS BURN CCTA CCE MD VGR GRASS MF OBF BLF SFRV MSF DPW MTV TOWN ROAD ROCK WATER
BURN 1.5741 3.1644 0.7056 3.1167 13.8816 40.9257 18.5418 0.2961 50.6457 0.2178 0.8946 0.0072 0.0144 0.9306 0.4734 1.3941 0.1287
CCTA 0.4293 0.0423 0.1998 0.7407 0.6291 1.6587 1.0746 0.0261 3.2418 0 0 0 0 0 0.0549 0.0351 0.0009
CCE 0.0855 0 0.6102 0.0225 0.0063 0.495 0.5301 0.0324 1.6236 0 0.0216 0 0 0 0.1611 0.018 0
MD 0.0171 0 0.063 0 5.769 1.4517 0.7101 0 1.6353 0.0063 0.4266 0 0 0.0045 0.0162 0.0045 0
VGR 1.2447 0.027 0.72 3.2652 3.6819 18.7506 17.991 1.422 49.1004 0.009 0.036 0 0 0.279 0.2727 1.0341 0.1134

GRASS 0.5427 3.0384 1.6668 2.3949 10.9485 216.296 36.4806 0.5967 41.7294 0.0027 0.0414 0 0 0.2637 0.4329 1.4157 0.2925
MF 7.8813 0.0342 1.2555 8.7705 2.5983 24.3063 37.7244 5.8869 225.44 0.1746 0.2871 0 0 0.1512 0.8577 2.3004 0.3213
OBF 3.2958 0 0.0801 0.3537 0.0027 0.6687 2.3517 15.6384 29.5704 0.0207 0 0 0 0 0.0405 0.0135 0.1377
BLF 52.7517 0.1881 3.9762 30.969 12.6198 51.0975 98.775 14.769 2130.01 27.0972 34.6779 1.1691 0.0009 0.2952 3.1635 4.5486 2.6685

SFRV 1.1511 0 0 0.0045 0.0162 0.0684 0.0072 0.0054 15.7005 13.3038 1.0008 0 0 0 0.0153 0.018 0.4365
MSF 0.486 0 0 0 0.7344 0.423 0 0 33.0786 0.8559 76.9401 2.5776 0.3474 0 0.0009 0.0585 0
DPW 0 0 0 0 0.0009 0.0288 0 0 2.3616 0 5.1831 15.7635 1.5048 0 0 0.0297 0
MTV 0 0 0 0 0.0189 0.0342 0 0 0.0027 0 0.3474 1.2429 5.0742 0 0 0.0162 0

TOWN 0 0.0153 0 0.0036 0.0882 0.4734 0.0099 0 0.2826 0 0 0 0 1.773 0.0873 0.2556 0
ROAD 0 0.0126 0.0405 0.0117 0 0.3717 0.4122 0.0036 1.287 0 0 0 0 0.0135 1.8405 0.144 0.0882
ROCK 0.0378 0.0657 0.1647 0.0306 0.2601 4.1427 1.0809 0.144 8.0064 0.045 0 0 0 0.8262 0.4779 12.8556 1.6398

WATER 0.1278 0.0045 0.0369 0.0504 0.0324 1.5831 0.1755 0.2511 5.7564 1.7397 0.0225 0 0 0.0441 0.2484 0.1728 118.429

1999-2010 
Total Area 

(km2)

2010-2016 Total Area (km2)
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Figure 3.6. Area change percentage of class covers from the period of 1988–1999 to 1999–2010 and from the period of 1999–2010 to 2010–2016. 
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Some of the burned area areas in 1999–2010 repeatedly occurred during 2010–2016 (1.57 

km2), and some converted to mixed disturbance (3.12 km2). Vegetation recovery area was 

unexpectedly low, at only 45 km2 during 2010–2016. The largest conversion was mixed forests 

to birch and larch forests (225.44 km2). The most surprising finding was the change of 51 km2 

of the burned area to birch and larch forests. Major disturbances increased from the period of 

1988–1999 to 2010–2016, especially outside the reserve, and both burned areas and mixed 

disturbance occupied larger areas (Figure 3.7). The burned area contained a large percentage 

increase from the period of 1988–1999 to 1999–2010 for all zones, inside (5.36%), the buffer 

zone (1.86%), and outside (2.93%) of the reserve, while it decreased in all zones, from the 

period of 1999–2010 to 2010–2016 (Figure 3.8). Clearcutting area for timber or agriculture and 

mixed disturbance only occurred in the buffer zone and outside of the reserve. Clearcutting for 

timber or agriculture increased the area by more than 0.18% in the buffer zone from the period 

of 1988–1999 to 1999–2010. For the outside of the reserve, mixed disturbance appeared to 

expand the area more than 0.31% from the period of 1988–1999 to 1999–2010, and 1.69% 

from the period of 1999–2010 to 2010–2016. 
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Figure 3.7. The area of major disturbance classes, per year, in inside, buffer zone, and 

outside of the reserve, during 1988–1999, 1999–2010, and 2010–2016. 
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Figure 3.8. Area-change percentage of major disturbances inside, buffer zone, and outside the reserve, from the period of 1988–1999 to 1999–

2010, and from the period of 1999–2010 to 2010–2016.  
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3.3.2. Determination of NDVI and NBR of Successional Stages 

Mean NDVI and NBR values were lowest in burned area in 1999 and 2016 and tended to 

decrease during the study period. Most values were lower outside the Reserve than inside and 

in the buffer zone. Higher values mean a gain in vegetation coverage. The characteristic values 

of NDVI in the growing season for this geoclimatic region ranged from 0.3 to 0.8 for NDVI of 

birch and larch forests (Tei et al. 2019; Suzuki et al. 2011; V. I. Kharuk et al. 2013). Birch and 

larch forests, oak–Daurian birch forests, mixed forests, and vegetation recovery had higher 

NDVI and NBR values than grassland and burned area (Figure 3.9). The leftward and 

downward shifts of NDVI vs. NBR lines over time indicated that vegetation coverage 

decreased owing to disturbance. Birch and larch forests dominated the landscape, with larger 

NDVI and NBR, and with means between those of mixed forests and oak–Daurian birch 

forests. Oak–Daurian birch forests had higher mean values than the other five successional 

classes. The large-scale fire in 2003 occurred in many places with different degrees of severity. 

The long period (1999–2010) created a spatial mixture of vegetation coverage, so the mean 

NDVI and NBR values of the burned area areas varied between inside and outside the reserve. 

However, based on box plots of NDVI and NBR (Figures 3.10–3.13), some of burned area and 

vegetation recovery areas had already recovered to a similar index value as grassland or higher. 

I then determined the ranking of the six successional classes after burn disturbance from first 

to last as burned area, vegetation recovery, grassland, mixed forest, oak–Daurian birch forests, 

and birch and larch forests based on the field investigation information. Thus, after a forest fire, 

areas enter the vegetation recovery stage before grassland develops. The growth of broadleaf 

and conifer seedlings creates a mixed of short grass and some trees. Broadleaf oaks or birch 

fully occupy the areas a few years later. If the areas are far from water bodies, larch will finally 

outcompete them and dominate. 
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Figure 3.9. NDVI versus NBR inside, buffer zone, and outside of the Reserve in 1999, 2010, 2016. 
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Figure 3.10. Box plot of (a) normalized difference vegetation index (NDVI) and (b) 

normalized burn ratio index (NBR) values for total area of the Reserve for each class in 2016. 

Middle line in box represents the median; lower box bounds the first quartile; upper box bounds 

the 3rd quartile. Whiskers represent the 95% confidence interval of the mean. 
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Figure 3.11. Box plot of (a) normalized difference vegetation index (NDVI) and (b) 

normalized burn ratio index (NBR) values in inside area of the Reserve for each class in 2016. 

Middle line in box represents the median; lower box bounds the first quartile; upper box bounds 

the 3rd quartile. Whiskers represent the 95% confidence interval of the mean. 
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Figure 3.12. Box plot of (a) normalized difference vegetation index (NDVI) and (b) 

normalized burn ratio index (NBR) values in buffer zone area of the Reserve for each class in 

2016. Middle line in box represents the median; lower box bounds the first quartile; upper box 

bounds the 3rd quartile. Whiskers represent the 95% confidence interval of the mean. 
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Figure 3.13. Box plot of (a) normalized difference vegetation index (NDVI) and (b) 

normalized burn ratio index (NBR) in outside area of the Reserve for each class in 2016. Middle 

line in box represents the median; lower box bounds the first quartile; upper box bounds the 

3rd quartile. Whiskers represent the 95% confidence interval of the mean. 
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3.3.3. Effectiveness of the Reserve 

The change matrices show the direction of forest successional change (Figure 3.14): upper 

right indicates higher stability, meaning forward succession, while lower left indicates lower 

stability, meaning backward succession. Green color gradient represented the forward 

successional stages and red color gradient represented the backward successional stages. The 

darker color means the higher percentages of an area moving toward that direction. Inside had 

higher ratios of each class moving forwards than the buffer, and outside of the reserve. On the 

contrast, outside had higher ratios moving backwards successional stages than inside the 

reserve. From the period 1999–2010 to 2010–2016, inside of the Reserve was well protected, 

with all the classes moving backward successional stages were less than 5%. From the period 

of 1999–2010 to 2010–2016, 40.20 km2 of mixed forests outside converted to grassland, the 

largest ratio (22%) of backwards succession, indicating significant forest area loss to fire (Table 

3.7). During the same time, 11.5% of mixed forest area in the buffer zone was converted to 

grassland while the inside of the Reserve showed the smallest area of mixed forest-grassland 

conversion. More than 10% of mixed forests, oak–Daurian birch forests and birch and larch 

forests in the buffer zone and outside of the Reserve moved at least one class backward on the 

forest successional stage from the first period to the second period. 
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Figure 3.14. Percentage of area changes of forest successional stage classes green color gradient represented the forward successional stages, red 
color gradient represented the backward successional stages. The darker color means the higher percentages of an area moving toward that 
direction. 
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Table 3.7. The change matrix of successional stages of class cover area (km2) in different periods and different zones of the Reserve. 

1988–1999 Inside 

1999–2010 Inside 2010–2016 Inside 

 BURN VGR GRASS MF OBF BLF Total 

1999–2010 Inside 

 BURN VGR GRASS MF OBF BLF Total 

BURN 0 0.6147 0.0144 0.0981 0 1.5354 2.2626 BURN 0.0153 6.8742 12.6018 7.5231 0.1062 25.4916 52.6122 

VGR 0.1521 0.8955 0.6687 1.3356 0.1341 3.3102 6.4962 VGR 0.0189 0.1836 1.1826 1.3401 0.009 7.164 9.8982 

GRASS 0.4275 0.3186 0.639 0.6264 0.1305 1.3401 3.4821 GRASS 0.0054 0.0081 2.8089 1.098 0.0639 2.106 6.0903 

MF 0.9063 1.1862 0.7506 3.2112 0.2934 11.6217 17.9694 MF 0 0.0909 1.3518 2.8458 0.6372 30.9636 35.8893 

OBF 0.9171 0.2763 0.1485 1.1376 3.9978 6.9138 13.3911 OBF 0 0 0.0396 0.3249 3.2994 4.9284 8.5923 

BLF 47.2599 6.2649 4.2039 29.3067 4.0581 648.4518 739.5453 BLF 3.9078 4.6998 6.0525 14.3442 2.4588 665.5131 696.9762 

 

1988–1999 Buffer 

1999–2010 Buffer 

1999–2010 Buffer 

2010–2016 Buffer 

 BURN VGR GRASS MF OBF BLF Total  BURN VGR GRASS MF OBF BLF Total 

BURN 0 0.0828 0 0.0027 0 0.1422 0.2277 BURN 0.0009 0.2925 1.5273 0.9981 0.0531 2.4048 5.2767 

VGR 0.1386 1.9062 1.2942 2.3553 0.0405 2.376 8.1108 VGR 0 0.0054 1.2735 1.7973 0.1692 4.4163 7.6617 

GRASS 0.1539 0.2889 3.0375 1.2042 0.0126 1.5048 6.2019 GRASS 0.0216 0.4185 4.7646 1.8234 0.0972 2.1429 9.2682 

MF 0.0882 0.9531 1.4481 3.2409 0.2961 6.5565 12.5829 MF 0.0999 0.0234 0.7029 3.852 1.5759 23.0715 29.3256 

OBF 0.2763 0.5598 0.0378 0.9828 3.1032 3.2805 8.2404 OBF 0.0216 0 0.0828 0.3942 3.4254 3.0042 6.9282 

BLF 4.6467 3.7332 3.6207 21.8178 3.5451 144.639 182.0025 BLF 0.5688 0.1251 2.5506 9.351 2.8863 146.0259 161.5077 

 

1988–1999 Outside 

1999–2010 Outside 

1999–2010 Outside 

2010–2016 Outside 

 BURN VGR GRASS MF OBF BLF Total  BURN VGR GRASS MF OBF BLF Total 

BURN 0.1062 1.6722 1.2726 2.1447 0.0099 4.8573 10.0629 BURN 1.5579 6.7149 26.7966 10.0206 0.1368 22.7493 67.9761 

VGR 1.0611 13.1292 26.7318 18.6147 1.2033 21.3786 82.1187 VGR 1.2258 3.4929 16.2945 14.8536 1.2438 37.5201 74.6307 

GRASS 4.9104 6.8472 161.8587 13.8258 1.6407 24.5862 213.669 GRASS 0.5157 10.5219 208.7226 33.5592 0.4356 37.4805 291.2355 

MF 8.9136 10.6956 40.2003 35.0136 1.7793 82.2546 178.857 MF 7.7814 2.484 22.2516 31.0266 3.6738 171.405 238.6224 

OBF 1.0701 1.3743 1.7829 6.1236 15.6366 26.0352 52.0227 OBF 3.2742 0.0027 0.5463 1.6326 8.9136 21.6378 36.0072 

BLF 56.9799 31.8636 61.5204 161.3601 16.0677 1341.517 1669.308 BLF 48.2751 7.7949 42.4944 75.0798 9.4239 1318.469 1501.537 
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3.3.4. Analysis of MODIS Data 

Figure 3.15 shows the annual distribution of the MCD64A1 product’s burned areas over 

the Reserve for a whole year and the monthly distribution of burned areas detected from 2000 

to 2016. The fire season usually occurred from March to May. These three months contained 

the largest burned areas per month. Approximately 50% of the total burned areas detected in 

my study area were aggregated in 2002, 2003, 2008, and 2015. On the contrary, 2000 and 2009 

had no registrations of burned areas. 

 

Figure 3.15. The burned area in the study area (March, April, May, and whole year only) 

obtained by the MCD64A1 product. 
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3.4. Discussion 

3.4.1. Forest Cover Change and Disturbance 

This study is the first to assess fire disturbance and forest-cover change in the Zeya State 

Nature Reserve at the landscape scale. I used remote-sensing data to compensate for the lack 

of data in this remote region. Although ground-truth data were insufficient for accurate 

classification, my results show a high accuracy of classification maps. To analyze forest 

dynamics from long-time interval Landsat images, I used mean NDVI and NBR values to 

extract forest successional stages. The vegetation recovered through successional stages of 

grasses, shrubs, broadleaf and conifer trees, oak–birch forest, and birch and larch forests after 

severe fires (Figure 3.16). The results of the classification maps showed that several classes 

had both low producer’s accuracy and low user’s accuracy. The low producer’s accuracy of the 

disturbance classes (burned area, clearcutting for timber or agricultural, and mixed disturbance) 

in the 1988–1999 map was due to the limited ground-truth information in the historical data. 

The low user’s accuracy for burned area, mixed disturbance, and vegetation recovery in the 

1999–2010 map was due to limitations in distinguishing spectral values due to the massive 

burned class being possibly adjacent to or including clearcutting area (Escuin, Navarro, and 

Fernández 2008). More high-resolution images are needed to monitor whether the tree canopy 

has been cut down in the disturbance classes. The sufficient data that can separate burned area 

and mixed disturbance will further improve the accuracy of classification. 
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Figure 3.16. Typical forest successional gradient after forest fire disturbance on Zeya State 

Nature Reserve. 

3.4.2. NDVI and NBR of Successional Stages 

The large-scale conversion of a mature forest to a lower successional stage is rarely 

observed in nature. Low-intensity, short-interval disturbances in the late 1980s to early 1990s 

reverted larch and birch forests to earlier ecological stages (Fernández-Nogueira and Corbelle-

Rico 2018). Clear-cut areas outside the Reserve were associated with forest fires in recent 

years, challenging the separation of types of disturbances with similar severity. Vegetation 

indices helped determine the forest and disturbance types (Escuin, Navarro, and Fernández 

2008). However, I found a similar range of mean NDVI and NBR values for grassland and 

burned area, owing to rapid understory vegetation recovery (Smith et al. 2016). Intense 

disturbances created a massive loss of the forest canopy and understory vegetation, which 

showed up as lower vegetation areas on the Landsat images (Ju and Masek 2016). The decrease 

in NBR mean values during all three periods might be linked to the long-term effects of human 

activities on the ecosystem (Fiore et al. 2020). In the future, I will research the potential of 
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using other difference satellites, such as Russian, Japanese, Chinese or Indian satellites to cover 

the gaps due to cloud coverage. my study also contained enormous diversity of land features, 

from flat terrain to steep hills. Other satellite sensors, such as, the Sentinel-1 and Sentinel-2 

data, could help me generate images with high temporal resolution for differentiating small 

agricultural areas and grassland (Kpienbaareh et al. 2021). The synthetic aperture radar (SAR) 

have been widely used to detect clearcutting in the tropical forest (Ruiz-Ramos et al. 2020), 

however, my study did not involve such a method. I will also apply SAR-based change 

detection approach to monitor clearcutting evidences in my study area in the future. 

As I assumed some forest areas can suffer repeated fires, the recovery from which varies, 

while other places might only experience fire once and recover rapidly. Some heavily disturbed 

areas can only restore to the recovery stage of grass and mixed forest (Chen and Loboda 2018) 

while others with fewer and less intense fires might have a higher possibility of recovering 

back to the original forest stage (Bright et al. 2019). For simple succession, such as recovery 

stage and grass, the whole process might finish within a year. On the other hand, the large 

severe fire area in mature forests might require longer recoveries. Birch and larch forests and 

oak forests might take years to recover. From 2010 to 2016, grassland, vegetation recovery, 

and mixed forests did not differ much in NBR compared with BLF and OBF, which had lower 

NBR values than 1999–2010. This might be due to much slower recovery than grassland (Dong 

Chen et al. 2016) or because the fire occurred near the post-year image. 

3.4.3. Effectiveness of the Reserve and MODIS Data 

MODIS showed supporting evidence that major fire damage occurred in the early years in 

the 1999–2010 period and later in the 2010–2016 period. This temporal variation in fire 

occurrence within a period can impact the recovery stage detected at the end of the period 

(Dong Chen et al. 2016; Bright et al. 2019). The years 2015 and 2016, which were the final 

years of the classified map 2010–2016, included larger recent fires than the years 2009 and 
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2010, which had small fires. A large-scale fire settled in the year 2003, so the recovery process 

of some classes in the 1999–2010 period might have had higher NBR and NDVI values than 

the 2010–2016 period. Even though this analysis did not involve forest succession process 

based on local climate (temperature and rainfall) and soil type, I recommend that future work 

consider those factors. My approach overcame the gaps inherent in long-interval image 

analysis. 

The findings of MODIS revealed that large areas of burning during 2002, 2008, 2012 and 

2015. The findings matched the recorded fire map for all years except 2008. The southwest of 

the Reserve had a fire in 2002, while the northern border of the Reserve had a fire in two areas 

in 2012. In 2015, due to extreme temperatures and high winds, Russian wildfires have caused 

large damage around the reserve. The fire was initially set to clear grass but it was out of 

control, causing vast areas of forest loss from Trans Baikal to the Far East of Russia. Historical 

documents failed to capture the burned area inside the Reserve during 2008, my approach by 

using MODIS showed that the satellite could capture forest fire in an inaccessible location. I 

also found that the burned area from the records in 2000 and 2011 was absent from the MODIS 

data and the Landsat image, the location is yet to be explored, and in the future I will look for 

further confirmation from other satellite images. The overall study period showed the effects 

of strong enforcement of the protection of the reserve. Even though forest fires occurred inside 

the reserve, from 1999 to 2010, other human-made disturbances were low. The buffer zone 

around the Reserve and the area outside the Reserve faced more deforestation and burning, 

which pose threats to the area inside the reserve. Thus, more restrictions should be established 

to avoid unpredicted consequences. The buffer zone perhaps experienced more disturbances 

due to infrequent monitoring and the difficulty of preventing large fires. Difficulties in 

assessing such terrain also restrict enforcement. Forest fires and clearcutting were concentrated 

near the Reserve boundary because of timber activities along the roads and flat terrain. 
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Even though remote-sensing data are useful in detecting burned areas, I found three 

limitations of the object-based segmentation classification. First, the Landsat surface 

reflectance’s pixel values were similar for clearcutting objects and neighboring objects that 

represented burned areas. Differentiating between mixed disturbance and burned areas on 

Landsat images is difficult (Schroeder et al. 2011). Due to the extensive cloud cover and early 

vegetation regrowth, it was also difficult to identify fire scars and clearcutting area (Cocke, 

Fulé, and Crouse 2005). Second, the time-resolution of my study was not fine enough to detect 

precise disturbance events and vegetation recovery. The early recovery of grasses and shrubs 

(secondary succession stage) after a disturbance has been overlooked during long periods and 

has instead been interpreted as grassland. Third, areas burned from 1988 to 1999 and clear-cut 

for agriculture from 2010 to 2016 were minimal (Schroeder et al. 2011). 

Our results suggest the need for more frequent observation and the incorporation of 

environmental factors. Sufficient ground-truth data of historical disturbance—not only large-

scale fires but also small fires and clearcutting—would enhance classification accuracy. 

Analyzing large areas in short time intervals is difficult, costly, and laborious. Instead, using 

long-interval Landsat images is possible if I consider the successional stage as supporting 

information. This would allow me to recognize how fast the understory vegetation has 

recovered and the effectiveness of reserves at protecting fauna and flora (Bragina et al. 2015). 

For example, mountain tundra vegetation and other alpine ecosystems are well protected from 

human disturbance, but they are vulnerable to climate change(Makoto et al. 2016). Therefore, 

knowing how forest covers change over time inside and outside protected areas, especially in 

inaccessible locations, can improve forest conservation and management [9,55,57]. 

Information on forest fires, timber harvesting, and other anthropogenic activities around 

reserves, along with the help of remote-sensing techniques, can support park protection 

(Wendland et al. 2015; Chistyakova and Leonova 2003; Degteva et al. 2015; Wade et al. 2020). 
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3.5. Conclusions 

Using open-access satellite data is essential for detecting forest disturbance and forest-

cover change. Applying object-based segmentation classification, using overlaid images from 

different years, also increased the accuracy and consistency among forest-cover-change maps. 

The analysis of successional stages based on NDVI and NBR values provided important 

insights into forest-cover-change patterns inside the Zeya State Nature Reserve, in the buffer 

zone, and outside the reserve, from the periods of 1988–1999, 1999–2010, and 2010–2016. 

Severe burning from the periods 1999–2010 and 2010–2016 revealed the critical role of fire in 

forest dynamics. Most areas burned outside the Reserve were associated with clearcutting, 

indicating that anthropogenic factors influenced forest fire and forest-cover change. Even 

though the Reserve is protected effectively, I found a reduction of both vegetation indices in 

burned areas, so there is no guarantee that forest-cover change and disturbance patterns outside 

the Reserve will not affect the forest dynamics inside it. 

The direction of forest successional stages is based on disturbance severity. Some forest 

areas did not return to their climax class. The dominant birch and larch forests were found to 

be linked with burned areas. If the consequences of disturbances are not predictable, the risk 

of losing biological diversity and ecological function is high. There is an urgent need for 

multiple-spatial-scale studies of how forest fires have behaved recently. Data on fire frequency, 

intensity, and severity can identify susceptible areas. 

This study supported the assumption that fires are becoming more frequent in boreal forest 

and have been more extensive in recent years, affecting forest-cover patterns and trends. 

Unexpected weather events, increasing demand for timber along the Russia–China border, and 

increases in legal and illegal logging activity could alter the boreal forest ecosystem. Thus, a 

better understanding of recent forest fires and forest-cover changes in remote areas is needed 

to develop better ways to preserve biological diversity and ecosystem services. My research 
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has yielded data on forest disturbances in remote areas that other researchers can use to improve 

forest management and conservation plans for large-scale protected areas. 

I encourage further studies using vegetation indices to determine ecological succession 

after disturbances to overcome the disadvantages of long-time-series analyses. Such methods 

can reduce the effort needed to monitor global forest trends. I also recommend that future 

studies focus on forest disturbances and forest-cover patterns in other protected areas, so that I 

can understand the effectiveness of forest conservation there as well. 
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Chapter IV 

Analysis of Disturbances and Environmental Factors and Climatic Data between Inside, 

Buffer, and Outside of Zeya State Nature Reserve, Russia 

Summary 

This study proposed to use patch-wise method and the maximum entropy approach to 

combat the challenges of disturbance monitoring in large area. The results suggested that patch 

analysis provided opportunity for scientists to understand the frequency and the massiveness 

of the disturbance events occurred through time. MaxEnt also provided a useful tool when 

dealing with disturbance presence-only data and allowed the researchers to understand the 

importance of environmental and climatic data that influenced the distribution of disturbances. 

The technique acquired essential information without vast field-based information gathering. 

Specifically, in a setting of environmental and climatic variables, this study provided 

vulnerable area information based on an open-source Landsat data and freely-analyzing 

software to understand the distribution of disturbances around protected area. 

Chapter 4 uncovered the importance of measuring the contribution and effects of 

environmental and climatic variables that influenced the changing of disturbance distribution. 

The Reserve needed updated information and integrative works of many protected area across 

the Russia Far East to understand the disturbances pattern. The study recommends future 

research to explore on other disturbance types and other forest ecosystems such that to improve 

world’s forest conservation and planning. The findings inspired further investigations to also 

look at the fire cycles that might be the effect of climate change across the regions.  
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Chapter V 

Effectiveness of a Protected Area, Measured by the Change in Vegetation Indices of 

Forest Covers and Disturbances in the Inside, Buffer, and Outside Zones of Zeya State 

Nature Reserve, Russia 

Summary 

Changes in human habitats, increasing infrastructure, and climate changes may 

contribute to unpredictable consequences. On the basis of dNDVI and dNBR, this study raised 

a concern that although the Reserve is effective in terms of protection and the restriction of 

human activity inside the Reserve, the outside and buffer zones were exposed to severe 

disturbances, resulting in the large loss of forest area. This study found potential uses for the 

relationship between dNDVI and dNBR, in recognizing the difference in stableness between 

forest and disturbance classes. The magnitude of change of dNDVI and dNBR could be a strong 

measurement tool to analyze spatial heterogeneity. The results demonstrated that forest classes 

were more stable than disturbance classes based on dNDVI and dNBR. Although many inside 

the Reserve classes showed a relatively lower S value than that of the buffer or outside zones, 

I found no significant difference between zones when using the ANOVA test. However, the 

results seemed to have a certain trend toward significance difference interpretation. I could 

interpret that the inside of the Reserve is generally more stable than the buffer zone and the 

outsideThe expansion of monitoring and the stronger enforcement of illegal cutting along the 

roads and mining along the river near the Reserve’s border are hence suggested, to reduce the 

risk of losing the edge forest inside the Reserve.  
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Chapter VI 

General Discussion and Conclusion 

In the Russian Far East, the remote boreal forests faced unsurprising threats from 

deforestation to degradation from human activities(Potapov et al. 2008; Chen and Loboda 

2018). The decades of clearcutting for timber and forest fire impacted the change of forest 

ecosystem and its structure. The strong demand of timber worldwide, especially high demand 

of imports by China on housing development implies illicit harvesting or bogus licenses in 

logging operations (Peterson et al. 2009). The landscape environment can only be preserved 

by the stabilization of a protected status of the Reserve and the restoration of ecosystem within 

it (Degteva et al. 2015; Chistyakova and Leonova 2003; Elbakidze et al. 2013; Wendland et al. 

2015). In order to maintain the conservation efforts of the Reserve, it demanded advancement 

of technology that can remotely observe information from the distance. The knowledge 

obtained from remote sensing data evolved sciences in remote forests in the region (Potapov et 

al. 2008; Bartalev et al. 2014; Chen and Loboda 2018; Chen et al. 2016; Chu, Guo, and Takeda 

2016). This thesis focused on how to evaluate the effectiveness of the protected area in the 

Russian Far East by giving the application of remote sensing to answer the objectives of the 

introductory chapter. 

6.1. Monitor Forest Cover Change and Disturbances and Effectiveness of Protected 

Area by Using Long-Time Interval Satellite Image Analysis 

This thesis is the first study that monitored the forest cover changes and disturbances 

occurred around the Reserve. It introduced new techniques to evaluate the forest cover changes 

and disturbances and accessing the effectiveness of the Reserve. The Reserve, Zeya State 

Nature Reserve had been used as the study area in this thesis. This is also first time producing 

both long-time interval and short time interval classification maps which helped me to 

understand more of forest dynamics around the Reserve region and how the protection status 
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helped maintain the forest ecosystem in the region. The performance of classification maps did 

not just explain the location of each forest types and disturbances, but also telling the 

importance of losing forest classes in each different zone that contain different conservational 

status. This thesis created the possibility for other researchers to utilize the information and 

develop conservation management plan to protect biodiversity and resource use in other areas. 

The adoption and application of the methodologies also expanded the scope of forestry and 

conservation studies and other disciplines. 

The chapter 3 highlighted how forest cover and disturbances in the protected area, such as 

logging and fire problems, using two-year overlaid image classification by classifying two 

long-time interval images at the same time. Because there were only four suitable satellite 

images available in the study area, I found that during master thesis, the single year image 

classification provided low accuracy results and unstable in class area. The two-overlaid-image 

classification then being considered. The classification results showed high accuracy, thus this 

method provided the solution with the long-time image available and to deal with how 

disturbance it shaped the ecosystem within the region. The outstanding results showed that 2-

year overlaid long-time interval images stabilized the class to monitor the changes. During 

1988-1999, clearcutting had the highest impact on forest around the Reserve because human 

needed the woods for house and city expansion near the reservoir (Peterson et al. 2009; Dubinin 

et al. 2010). The availability of the water resources allowed human settlement to expand and 

more infrastructure has been developed (Peterson et al. 2009). Historical forest fire had caused 

a massive die-off of larch and birch forest both outside and inside the Reserve (Chen and 

Loboda 2018; Chen et al. 2018). Several oak forest near rivers and spruce forest upon the 

mountain also had lost. Several studies found less demand for timber harvesting during the late 

1990s and early 2000s as a result of abandonment of agriculture and people moving toward 

capital city in which made the population around the Reserve to be lower than previous years 
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(Dubinin et al. 2010; Peterson et al. 2009). The trend of population moving out of town is still 

continuing (Federal State Statistic Service n.d.). The prohibition codes of large area of 

clearcutting and more restricted in forest resource uses introduced in 2000 was also another 

effect that lowered the events of clearcutting (Peterson et al. 2009). However, in the recent 

decades, the mixed disturbance areas were found to expand and caused more damage to the 

forest cover. Human-induced fire played a major role and was found to have an association 

with the clearcutting activities around the Reserve (Dudov 2018). Most of the fires outside of 

the Reserve was unnatural and usually presented adjacent to the clearcutting area, roadway and 

electricity lines. This made researchers fully aware of the potential impact on forest loss nearby 

the human transportation path and infrastructure (Peterson et al. 2009; Barber et al. 2014; 

Freitas, Hawbaker, and Metzger 2010).  

Maintenance and monitoring activities in the buffer and outside the Reserve is low. This 

could be attributed to an inability to track and detect major forest fires on a daily basis. Burned 

areas outside the reserve were found to primarily correlated with clearcutting for post-2010 

disturbance and along a road. Due to the increased accessibility and recently developed mining 

camp, clearcutting for agriculture has taken place over a more recent time (Dubinin et al. 2010; 

Bergen et al. 2020; Kondrashov 2004). The details of landscape changes and forest fire in these 

areas have not been well researched in the past because of low accessibility. I found that the 

classification results provided information about many unrecorded forest fires spreading 

outside the Reserve. The transportation routes of gold, mining materials, and logs provided 

resource movement information (Peterson et al. 2009). The tracking of such movement in this 

region needed to be paid attention and should have given a closer look to check how resource 

were used, so that the government officials and the Reserve’s staffs can improve conservation 

management plan. Knowledge on forest fire, wood cutting and other environmental factors 
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around the reserve would also be considered to determine appropriate areas to be labeled as 

protection status (Newell and Henry 2016). 

6.2. The Distribution of Disturbances around the Protected Area in Relation to 

Environmental and Climatic Factors 

The impacts of environmental factors were hardly identified and the scientific community 

still rarely understood the effects of human activities (Beck and Goetz 2011; Lasslop and 

Kloster 2017; Jacquelyn K. Shuman et al. 2017; Jacquelyn Kremper Shuman, Shugart, and 

O’halloran 2011). Chapter 4 looked for possible causes that can harm and negatively affect the 

forest structure around the protected area. The Zeya State Nature Reserve has a rich 

biodiversity and a diverse ecology in its natural climate. In recent decades, the reserve has been 

subjected to face anthropogenic dangers including forest fires and clearcuttings, along with 

selective logging and mining (Dudov 2018; Potapov et al. 2008). I found the patch size of each 

disturbance had a growing trend. The results expected an increasing forest fires in the future. 

The growing region for farmland had converted several of forest area. The findings in this 

thesis have shown that over modern years, forest fire have become more frequently disturbed 

in larger size. Road was found to be very important since most of disturbance were located 

nearby road. Burning patch that associated with clearcutting sites often overlooked by distant 

observation from satellite images. BingMap.com comprised of many several high-resolution 

image that showed dirt tracks all around valley and rivers in the northern region (Figure 6.1). 

Landsat could not detect such kind of information due to its low resolution (Bergen et al. 2020). 

This raised awareness of how much forest have been lost to human-related disturbance factors.  

Topography also indicated the possibility that attracted forest cover changes and 

disturbance (Freitas, Hawbaker, and Metzger 2010). The elevation and the Reserve’s zones 

(inside, buffer zone, and outside) were considered as important changers in landscape dynamics 

in this thesis. The improvements in infrastructure or the possibility to construct new roads in 
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the lower elevation definitely impacted the dynamic of forest change around the Reserve. 

(Wear and Bolstad 1998). Roads showed strong relation to the clearcutting and the forest fire 

in which impact forest dynamics (Freitas, Hawbaker, and Metzger 2010; Barber et al. 2014; 

Uvsh et al. 2020). 

In the first time period (1988-1999), clearcutting expanded to lower elevation area less 

than 600 m a.s.l. In the second time period (1999-2010), forest fire occurred heavily nearby 

roads and some present in the Reserve, while vegetation recovery occurred more in sites with 

steep slope and far from roads and settlements in the study area. Last period (2010-2016), 

human disturbance found to be mixed between clearcutting and burning at the same location. 

Most of these disturbances located nearby roads and electricity line and some located at the 

northern region nearby river. In these cases, the human infrastructure was an indication that 

human disturbances had an impact on forest loss in the study area. 

Roads, elevation, and slope are relatively important landscape elements (Freitas, 

Hawbaker, and Metzger 2010). Due to increase of human transportation and access, these 

factors facilitated the growth of deforestation action (Uvsh et al. 2020). The forests did not 

recover large enough because of extensive land use changes (Potapov et al. 2017). A new illegal 

logging along the roads outside of the Reserve could cause significant forest cover changes in 

future if monitoring and enforcement on illegal logging are not effective. The protection of the 

Reserve alone did not prevent side effects of human intervention around its boundary. Forest 

cover change and disturbances around the Reserve has been associated with topographic factors 

and road. Steep slope and inaccessibility generally limited the change in forest landscape, many 

changed areas were located at easy access areas, either by roads or river (Potapov, Turubanova, 

and Hansen 2011; Peterson et al. 2009; Uvsh et al. 2020). For the first time in the study area, I 

found variations among patch numbers and patch areas in different disturbance types when 

considered the distance from road and water and the topographic properties. The roads were 
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expanded in lower elevation area which had low degree of slope angle, which probably allowed 

clearcutting associated with burning to expand and thereby losing forest areas.  

The topographic properties and roads were not only drivers of forest dynamics. Climate 

change was another impact in recent years that showed forest fire to be much larger and more 

frequent (Jacquelyn Kremper Shuman, Shugart, and O’halloran 2011; Jacquelyn K. Shuman et 

al. 2017; Bonan, Pollard, and Thompson 1992; de Groot, Flannigan, and Cantin 2013; 

Randerson et al. 2006). Even though, this study did not ensure the direct causality between 

climate variation and increase of disturbance, nevertheless, the findings showed strong relation 

in term of warming temperature in the area that experienced human disturbance in the during 

historical fire year (1999-2010) and recent period (2010-2016). Remote areas in the north of 

the Reserve where large disturbance present could be used to evaluate the landscape changes 

caused by a climate change. The forest fire indicated that warmer temperature during summer 

attracted human activity and then instituted a new disturbance in the forest (Zhao, Liu, and Shu 

2020). The study found that inside the Reserve, where human disturbance was not present, had 

a large fire exhibited on the mountain slope. The disturbances were most likely side affected 

by warmer temperature and wetter years as showed in the MaxEnt model results. The 

increasing maximum temperature of warmest month and increasing of precipitation of wettest 

month predicted to be the large contribution forest fire in those mountain areas inside the 

Reserve during 1999-2010. Mixed disturbance also contributed large by increasing annual 

precipitation in the southern part of the Reserve. This study did not contain evidence of the 

cause of fire inside the Reserve due to inaccessibility on the mountain top. According to the 

study by Zhao, Liu, and Shu (2020), there was significant positive correlations of lightning 

fires and wetter precipitation to ignited the forest fire during summer and fall season.  

This thesis showed disturbance locations differed between inside and outside of the 

Reserve. The different climatic variables also played important role that establish fire in 
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different zone. In the Reserve, forest fire occurred on the top of the mountain with high 

elevation and steeper slope. These areas often face strong wind and high precipitation. While 

the outside of the Reserve, the disturbance by human occurred in the areas of lower elevation 

and flat slope, facing different temperature and precipitation. However, this study did not take 

wind direction and wind current into consideration. The aboveground fuel also was not 

considered. However, navigating the effects of wind and fuel was essential to predict the 

relationship between climatic data and disturbances (Wu et al. 2018; Jacquelyn Kremper 

Shuman, Shugart, and O’halloran 2011; Chen et al. 2018). The positive correlation between 

the occurrence of large fire and temperature variables suggested that the side effects of climate 

change can alter the forest cover and disturbance intensity (Chen and Loboda 2018).   

The future human activities around the Reserve also contributed to the fluctuation of 

climate pattern (Ryzhkova et al. 2020). And the climate pattern, such as warmer temperature 

wetter season can consequence the unpredictable amount of forest fire. Therefore, it is likely 

that feedback mechanisms increased regional fire cycle (de Groot, Flannigan, and Cantin 2013; 

Jacquelyn K. Shuman et al. 2017; Chen and Loboda 2018).  This thesis showed that forest fires 

in the late-era can be potentially of higher severity and are more difficult to control. An increase 

in human activities around the Reserve might have contributed to additional fire at the 

clearcutting edge. The study suggested the temperature and wetness in recent decades allowed 

human-induced fire to spread over the whole region.  The results also suggested that climate 

drove the increase in fire activity during 1999-2010, and human disturbances, were of 

importance to causing its even further in 2010-2016. There is still a challenge to partition 

between which forest fire is human-caused and which is natural. However, this thesis can argue 

that inside the Reserve did not contain human-related disturbance impact since the protected 

area is considered the most restricted category that prohibit recreational activity inside the 

Reserve. Thus, the investigation for historical fires along with environmental records on 
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different zone needed to be explored whether climate change in the region is human-driven or 

not (Lasslop and Kloster 2017). The outside area of the Reserve, on the other hand, showed 

promising result that during the historic fire years (1999-2010), human disturbance effects had 

been strongly linked to the climate change. 

6.3. Stableness of the Forest and Disturbance Covers around Protected Area Short-Time 

Interval Satellite Image Analysis 

The study found a way to maximize the potential of analysis by using short-time interval 

images. The newly updated images were available in the USGS in the beginning of 2019. This 

allowed me to utilize more images and understand the effect of human disturbances and forest 

cover change around the Reserve. The earliest satellite image available was dated back to 1975, 

before the Zeya dam was established. Only a small river was seen in the image, in the eastern 

side of the region. This showed that before the dam construction, the region was full of dense 

forests. Even though classification maps of frequent images (Chapter 5; Table 5.5) produced 

lower accuracies compared to long-time interval overlaid images (Chapter 3; Table 3.1), the 

results were still reliable and promising. The maps showed the change of forests after dam 

construction completed. 

 This is the first study to evaluate the change of forest before and after Zeya dam 

construction in the region. The dam construction changed forest area into lake more than 210 

km2 from 1975 to 1988. Majority of forested area included spruce forests and oak-birch forests. 

In the vicinity of the Reserve, agriculture had grown during before the year 2000 (Dubinin et 

al. 2010; Peterson et al. 2009). As a consequence of higher agricultural demands, population 

development has led to rising disturbances inside the forest (Kareiva et al. 2007). Urbanization 

of villages near water sources, coupled with enhanced transit mobility, has been noted in 

several areas of Amur region (Mishina 2015). The findings provided evidence to strengthen 

decision-making and environmental preparation for forest conservation. Clearcutting issues 
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have consequences for reducing the protected ecosystem function, loss of floodplain areas and 

rising soil degradation which allowing more burning in the later years (Jacquelyn Kremper 

Shuman, Shugart, and O’halloran 2011; Loranty et al. 2016; Bright et al. 2019). The differences 

of spectral characteristics from Landsat images were used in the classifying processes. The 

thesis used vegetation indices in order to evaluate the stableness of forest class and disturbance 

class in each zone of the Reserve. The findings of the chapter 5 looked at trend of the land 

cover classes around the Reserve that no study have been achieved. This thesis is also the first 

pioneer to navigate the differences of stableness between the forest classes and disturbances 

classes and how the spectral characteristics of NDVI and NBR changed between inside, buffer, 

and outside of the Reserve.  

The uses of Landsat indices (NDVI and NBR) produced essential parameters to distinguish 

the forest and disturbance classes (Escuin, Navarro, and Fernández 2008). Both indices 

declined substantially since 2000 in most of the classes, based on research finding. The 

variance of dNDVI and dNBR inside the Reserve was less than the variance of the outside area 

of the Reserve. The estimation of variance of the difference between pre- and post-index value 

identify regions that experience transitions and shifts in vegetation areas (Dubinin et al. 2010). 

I raised concerns that warmer temperature consequences may be buffered in the lower valley. 

Human disturbances also destroyed the natural vegetation around the Reserve, which is highly 

vulnerable to fire (Jacquelyn K. Shuman et al. 2017; Lasslop and Kloster 2017). The 

consequences might unexpectedly shift the index values in the last 20 years. The area of birch 

and larch forest and vegetation recovery area has been diminished rapidly, resulting large 

variance outside the Reserve. For resource management, it is important to define and map 

change spatial distribution (Chu, Guo, and Takeda 2016). I recommend using variances of 

dNDVI and dNBR as potential indices to monitor the trend of vegetative and disturbance areas 

between inside, buffer zone, and outside of the Reserve.  
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When the study evaluated the stableness, the research found variation of stableness 

between different zone of the Reserve. Inside the Reserve contained more stable classes. The 

buffer zone of the Reserve represented dramatically loss of grassland, oaks, birch and larch, 

and mixed forest. While outside of the Reserve found birch and larch to be most vulnerable to 

disturbances. Due to the remote and inaccessible areas, I cannot measure the intensity of 

disturbance in those places. The intensity affected the change of spectral characteristics (Chen 

and Loboda 2018). However, the prediction can be made that if large vegetation index change 

was observed with small areas of class, meaning high intensity of disturbance/recovery 

occurred in that area. And if small change of vegetation index occurred in large area of that 

class, it means low intensity of disturbance/recovery occurrence was observed. The Reserve 

management strategies will help recognize and prioritize vulnerable areas for future 

conservation efforts (Barber et al. 2014; Bragina et al. 2015; Wendland et al. 2015). The results 

also recommend further study on other vegetation indices to evaluate the stableness of forest 

and disturbance classes. This offers a wide field of knowledge on natural resources 

conservation in forest cover transition (Bragina et al. 2015). 

High-resolution could enhance the ability to detect small areas of disturbance (Hansen et 

al. 2013). A long-term forest conservation plan could be built to mitigate forest declines 

(Wendland et al. 2015; Newell and Henry 2016; Degteva et al. 2015). The protection of forest 

cover of inside, buffer, and outside of protected area in the Russian Far East is needed. The 

forest restoration inside of the Reserve reflected the key factors and impacts of environmental 

support and biodiversity (Anderson-Teixeira 2018; Biswal et al. 2013; Marcot et al. 1997). 

Hence, expanding to the buffer zone, and outside region may contribute to the healthy forest 

ecosystem and prevent the risk of future fires (Biswal et al. 2013). I recommend the scientists 

to use two-year-overlaid image classification method if a few Landsat images were available 

throughout the long time period. 
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The future works carry out using this dissertation will benefit from an examination of 

forest cover around protected area that affected by human disturbances in long-term studies. 

The impact of human disturbances will have a long-term effect (Lasslop and Kloster 2017). 

Thus, forests are in danger to various changes. In the past decades, forest fire and human 

disturbances have been identified around the Reserve (Dudov 2018). Several study suggested 

that a compromise was important between forestry sector that worked on fire safety activity 

and local citizens to create the fire protection plan to maintain biodiversity in the areas (Newell 

and Henry 2016; Wendland et al. 2015; Degteva et al. 2015; Fiorino and Ostergren 2011). The 

outside area, where mixed disturbance that associated with fire is the main area of forest loss. 

Even though, the findings demonstrated that fires were an important factor affecting the forests 

across the region, however, human disturbances were still leading causes of forest loss outside 

the Reserve. Conservation management of the Reserve and similar protected areas in the 

Russian Far East should, therefore, acknowledge the role of fire and human disturbances that 

affecting the forest of inside, buffer, and outside of the Reserve (Wade et al. 2020; Newell and 

Henry 2016). Most of forest is more likely, however to be preserved and regenerated away than 

other landscape types. It would be good to look at how human activities will change and how 

future climate change and human disturbance could influence future forest dynamics and how 

effective conservation efforts and restorations strategies are inside, buffer, and outside of the 

Reserve (Biswal et al. 2013; Wendland et al. 2015). I suggested that human activities outside 

of the Reserve near the border should be prohibited to preserve the forest around the edge of 

the Reserve. Fire suppression activities are also needed to preserve fire as a driver of forest 

dynamics in the Reserve ecosystem since boreal forest ecosystem depend on the fire cycle 

(Matsypura, Prokopyev, and Zahar 2018). To maintain fire-depended ecosystem, the forestry 

sectors can collaborate with scientists to use prescribed burning technique near the human 

activity areas to help forest regeneration (Matsypura, Prokopyev, and Zahar 2018). Burning 
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will also reduce the dangers of large-scale fire-replacement by reducing the volume and 

continuity of fuel (Chen and Loboda 2018; Matsypura, Prokopyev, and Zahar 2018). 

6.4. General Conclusion 

Remote boreal forests in the Russian Far East have experienced unsurprising challenges 

from erosion to destruction from human action. Changes in vegetation distribution and 

ecosystem function often influence forest cover changes in the area. However, there were 

difficulties and limitation to study and observe forest cover changes and disturbances around 

the Reserve. Most forests occur in isolated locations that are vulnerable to alternation. The 

remote forests of the Reserve have become a challenging topic due to their large scale and due 

to the reality that clearcutting is taking place in far places. There is now technology to be able 

to view the remote forest from the distance. 

This research monitor forest cover changes and disturbances that have arisen across the 

Reserve. The implementation of the technique from this work allowed other disciplines to 

broaden the goal of their study. The thesis provided new knowledge that encouraged other 

researchers to use the data to establish conservation management strategies for other regions. 

There are 3 primarily aims of this thesis – 1. using long-time interval classification maps to 

evaluate forest dynamics inside, buffer zone and outside the reserve, also with limited Landsat 

data, 2. analysis of the relationship between the change of forest and disturbance classes and 

environmental variables, such as distance from road, distance from water, elevation and slope, 

and climatic factors like temperature and precipitation, 3. using vegetation indices from short-

time interval classification maps to track stableness of the forest inside, buffer zone, and outside 

of the Reserve to help monitor efficacy of the Reserve in terms of avoiding drastic alteration 

of the landscape. 

Based on long-time classification maps, the maps demonstrated overall high accuracy in 

all three periods. The maps were really helpful to the future where the field investigation cannot 
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be completely done and also cost-effective. The aim was to work with minimal accessible 

images and an economical manner. The clearcutting had the greatest effect on the forest during 

the period 1988-1999. Forest fire triggered a major loss of larch and birch forests both outside 

and inside the Reserve between 1999-2010. And in the last decades of 2010-2016, mixed 

disturbance areas have been observed to damage the most to the forest cover. Human-induced 

fire has played a significant role and has been shown to be correlated with clearcutting around 

the Reserve. The analysis showed that, based on two-year overlays technique, this can improve 

the forest and disturbance monitoring around the Reserve. The forest inside the Reserve are 

found to be more stable than the forest area outside the Reserve. Furthermore, outside the 

Reserve, there were more disturbed areas than inside and buffer zone of the Reserve. 

Since no research have been undertaken to clarify the interaction between environmental 

factors and forest change and disturbance across the Reserve. This study demonstrated how 

classes in different zone of the Reserve differed and what factors were important. Elevation 

and the Reserve’s zones (inside, buffer zone, and outside) played a very important role in the 

allocation of forest and disturbance classes. The high altitude inside the Reserve comprises of 

few disturbances and more areas of dwarf-pine, spruce and mountain tundra vegetation’s, while 

the low altitude, grassland, birch and larch trees, along with different types of disturbances, in 

particular human-related disturbances, were present. Focusing on disturbance classes, burned 

areas outside the Reserve were mainly associated with clear-cutting after 2010 and they found 

to occur near by the road. There was also an increasing area in the disturbance. In recent years, 

forest fire has been more widely disturbed on a broader of the Reserve and is situated near the 

road. It is anticipated that this study would continue to strengthen the conservation management 

strategy at the boundary of the protected area. Current illegal logging along roads outside the 

Reserve could trigger major forest cover changes in the future if surveillance and enforcement 

of illegal logging are not successful. For the first time, the study observed specific pattern 
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between patch numbers and patch areas in three disturbance classes. The larger disturbance 

patch size occurred few number of patch, while the smaller disturbance patch size occurred 

many. For environmental factors, roads were found to locate at a lower elevation area with a 

narrow slope, which would presumably encourage disturbances to occurred and thereby 

destroy forest cover. The analysis showed that inside the Reserve, where there was no human 

disturbance present, there was a still a big fire on the hillside. Various climatic factors are 

predicted to play an important part in setting fire inside the Reserve. The positive association 

between the distribution of major fire and temperature variable indicated that the side effects 

of climate change may modify the forest cover and propose disturbance events. The research 

did not take into account wind direction and wind current. The aboveground fuel was also not 

considered. However, navigating the impact of wind and fuel was necessary to forecast the 

relationship between climate data and major disturbance inside the Reserve. The results 

revealed a clear association in terms of temperature warming in the region where human 

disturbance happened during the historical fire year (1999-2010) and the recent period (2010-

2016). The study indicated that temperature and humidity in recent decades may potentially 

cause fires to spread inside the Reserve from the outside. Results have indicated that 

temperature contributed to a rise in fire frequency between 1999-2010, and that human 

disturbance were of interest to further trigger in 2010-2016. 

This thesis assessed forest cover change in short-time interval images including image 

before and after Zeya Dam construction in the study area. Dam building has turned the forest 

region into a lake of more than 210 km2 from 1975 to 1988. The bulk of affected forested areas 

contained spruce trees and oak-birch forests. The analysis also used Landsat indices to 

differentiate between forest and disturbance groups. Both indices have decreased dramatically 

since 2000 in most of the forest groups, based on study results. The areas of birch and larch 

forests and the vegetation recovery area were quickly decreased, resulting in a broad variation 
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of stableness for the outside of the Reserve. As the analysis measured the stableness, the report 

noticed the inside of the Reserve is the most stable for most of forest classes, which implies 

that the Reserve is very well shielded from disturbance and unexpected change. As a 

consequence, assessing the resilience of landscape transition through stableness from 

vegetation indices help to identify and target endangered areas for potential forest loss. 

It has been vividly shown that the stableness of the forest inside and outside the Reserve 

could be measured on the basis of these advanced technology, which could aid in the decision-

making phase involving surveillance, policy initiatives and numerous other planning aspects. 

The aid of short-term classification maps could be extremely captured by how the forest was 

modified after disturbance on a finer time scale, which could be extremely cost-effective if not 

required in labor-intensive field work. The technique may be used in other rural or remote 

areas. Such a method may be very useful in the primary sector for tracking natural resources 

such as tundra ecosystems, pine trees, spruce forests, birch and larch forests, grasslands, rivers 

and other water bodies, etc., and also for monitoring urbanization, logging, etc. Adverse 

disturbance impacts could be easily monitored by the stableness of the class from remote 

sensing data. Effective policy initiatives should be objectively designed for growing future 

activities such as mining, clearcutting, and road building.  
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Appendices 

Appendix 1. Overview images of each class in the field.  
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Appendix 2. Post-classification algorithms for a) 1988–1999, b) 1999–2010, and c) 2010–2016 scripted in eCognition software by Culabush 

Khatancharoen (2020, unpublished) 
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