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 General Introduction 

 

Introduction to premenstrual dysphoric disorder 

Premenstrual dysphoric disorder (PMDD) is a disease with emotional and physical 

symptoms during the luteal phase in women of childbearing age. It is a newly defined 

disease which had not been put into Diagnostic and Statistical Manual of Mental 

Disorder 5th Edition (DSM-5) until 2013 (American Psychiatric Association, 2013). 

Before this update, the terms of premenstrual tension (PMT) and premenstrual 

syndrome (PMS) were included in the WHO International Classification of Diseases 

(ICD) but with no specific diagnostic definition. Currently, while PMDD is the term 

used for the patients with severe symptoms meeting the diagnostic criteria in DSM-5, 

PMS is for the ones with rather mild symptoms (Yonkers, O’Brien, & Eriksson, 2008). 

 

Epidemiology 

It is suggested that there are up to 80% of women having one or more symptoms of 

PMDD, and the prevalence of PMDD is around 1.8-5.8% (American Psychiatric 

Association, 2013; Biggs and Demuth, 2011). Due to the high number of people 

affected and the property of recurring monthly, PMDD is a disease influencing not only 

the patients themselves but also the world economic system. In previous studies, the 

severity of the symptoms was demonstrated to have a relationship with productivity 

impairment and absenteeism. The patients had intention to reduce work hours, and were 

prone to be late or leave early (Hardy & Hunter, 2021; Heinemann, Minh, Filonenko, & 

Uhl-Hochgräber, 2010). Although the exact figure of economic loss brought by PMDD 

is not yet clear, it is a disease deserving further attention. 
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Pathophysiology 

The exact pathological mechanism of PMDD remains controversial. However, 

there are three main suggested hypotheses. The first and the most general one is that the 

chronic exposure followed by rapid withdrawal of the progesterone (P4) metabolites, 

allopregnanolone (ALLO), in the luteal phase can lead to insensitive gamma-

aminobutyric acid A receptors (GABAR), and induce anxiogenic effect. ALLO is a 

positive modulator of GABAR. It induces sedative effect but can also have paradoxical 

adverse effect to cause symptoms of PMDD (Bixo, Johansson, Timby, Michalski, & 

Bäckström, 2018). In more detail, previous studies showed that the α4, α6, δ subunits of 

GABAR are sensitive to ALLO, and GABAR with the α5 subunits play important roles 

in hippocampus mediating recognition, learning, and memory. The change of these 

subunits under stress situation may be the reason for PMDD. However, whether the 

stress situation is able to cause direct change of the subunits, or whether these changes 

are brought out by ALLO remains equivocal due to no direct evidence (Locci & Pinna, 

2017). Moreover, there are still patients with PMDD symptoms onsetting from the early 

luteal phase or even from the ovulation period, which is the period with increasing 

ALLO concentration but not withdrawal. Thus, this theory cannot explain all the 

situations in the patients, and still needs further modification (Hantsoo & Epperson, 

2020). 

The second hypothesis is that PMDD is related to the fluctuation of inflammatory 

proteins during the menstrual cycle. Chronic inflammation has been suggested in the 

etiologies of depression and other disorders with symptoms similar to PMDD, and thus 

it was also considered to be a reason for symptoms of PMDD (Brennan et al., 2009; 

Miller, Maletic, and Raison, 2010). This theory is supported by some studies. In a 
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previous work, PMS patients showed elevated high-sensitivity C-reactive protein (hs-

CRP) compared to control groups (Gold, Wells, & Rasor, 2016). In another study, 

interleukin-4 (IL-4), IL-10, IL-12, and interferon-γ (IFN-γ) were significantly higher in 

the PMDD patients. However, due to the cross-sectional property of the study, the 

temporal relationship between inflammatory factors and the symptoms of PMDD 

remains unclear (Ronnenberg et al., 2014). 

The third hypothesis is simply the combination of hypothesis one and two 

(Ziomkiewicz-wichary, 2017). There is a possibility that PMDD is a disease caused by 

the coaction of dysfunctional signaling pathway between ALLO and GABAR, and the 

fluctuation of immune system in the menstrual cycle simultaneously. 

In conclusion, until now, there is no definitive answer to the exact pathological 

mechanism of PMDD. The theories above may investigate some parts of the cause but 

not the whole picture of it. Besides, there were inconsistent experimental methods and 

results in the previous studies which also made the important pathological factors of 

PMDD yet unclear. Thus, PMDD is still a disease with no objective diagnostic method 

but ambiguous diagnostic criteria. 

 

Diagnosis 

According to DSM-5, there are seven criteria to diagnose PMDD. Here only gives 

a summary. First, there have to be at least five symptoms in the week before the onset of 

menses. One or more of them must be mood lability, irritability, depression or anxiety. 

The list of symptoms also has to contain one or more symptoms of decreased interest in 

usual activities, difficulty in concentration, lethargy, change in appetite, hypersomnia or 

insomnia, a sense of being overwhelmed, and physical symptoms such as breast 
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tenderness or muscle pain. Second, the symptoms have to start to improve within a few 

days after the onset of menses, and become minimal or absent in the week after menses. 

The situation has to be in most of the menstrual cycles in the preceding year. Third, the 

severity of symptoms during the menstrual cycle should be confirmed by daily ratings 

for at least two symptomatic cycles. 

In the narration above, there are vague expressions in the existing PMDD diagnosis 

criteria. The diagnostic process has to depend on subjective mood records from patients 

and subjective judgements from doctors. This not only makes the diagnostic process 

complicated and time-consuming, but also makes it difficult to find the proper treatment 

for each patient. 

 

Treatment 

The mainstream therapies of PMDD are selective serotonin reuptake inhibitors 

(SSRIs) and GABA-modulating drugs. SSRIs are the gold standard treatments for 

PMDD. They can provide rapid effect at low doses. In a study giving patients a 2-day 

20 mg fluoxetine treatment, nearly two-thirds of the patients had significant 

improvement in irritability, sadness, anxiety, and mood swing (Steinberg, Cardoso, 

Martinez, Rubinow, & Schmidt, 2012). This unique property suggested the therapeutic 

effect of SSRIs might not be entirely serotonergic. Some of the studies suggested that 

SSRIs could promote the conversion of P4 to ALLO or could somehow enhance ALLO 

synthesis (Devall et al., 2015; Pinna, Costa, & Guidotti, 2009). However, another study 

showed that SSRIs could increase peripheral ALLO level in patients with low baseline 

of ALLO, but had an opposite effect in the patients with high baseline ALLO level 
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(Gracia et al., 2009). There are more clinical observation and research needed for the 

effect of SSRIs on PMDD patients. 

GABA-modulating drugs are another option. Brexanolone is the first treatment 

approved by the Food and Drug Administration (FDA) for postpartum depression. It is a 

synthetic compound of ALLO, having the ability to upregulate GABAR pathway. Due 

to its ability of rapid symptom relief, brexanolone is also expected to be used for PMDD 

treatment (Meltzer-Brody et al., 2018). Another medicine is sepranolone. Sepranolone 

(UC1010) is a new medicine for PMDD, which was under Phase IIa clinical trials in 

2020. It is an isoallopregnanolone which can inhibit the effect of ALLO on GABAR. In 

the trials, it provided significant reduction of 75% in mood symptoms (Bixo et al., 

2017). However, in the Phase IIb trials, the placebo response was 33% higher than that 

in the Phase IIa study. It turned out that there was no statistical difference between the 

treatment groups, and the study results of UC1010 remained inconclusive. 

The gold standard treatment, SSRIs, can only treat two-thirds of the patients, and 

has a risk of acting conversely in different individuals. There also had a new medicine, 

sepranolone, developed for PMDD treatment in the past few years, but it failed to pass 

the clinical trials. The treatments for PMDD still need to be improved and evaluated to 

be able to cope with the symptoms and individual patients precisely. 

 

Problem statement and aim 

As described above, PMDD is a disease with unknown details in mechanism, 

having ineffective diagnosis and treatment. To break through this obstacle, the key is to 

find the important factors of PMDD symptoms and use them to build an objective 

diagnostic method. Moreover, because there are multiple symptoms and multiple 
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reported biological factors in PMDD pathology, new tools which can deal with more 

than one feature at the same time were used to achieve the goals. 

The tool chosen to investigate these critical factors was artificial intelligence (AI). 

AI has been widely used for data classification and prediction. More specifically, 

machine learning and deep learning methods in AI play important roles in achieving 

these objectives (Miotto, Wang, Wang, Jiang, & Dudley, 2017). There have already 

been applications in various biological fields in the last decade, including clinical 

medical research and animal behavior research. In the clinical field, AI has already been 

used for pathological diagnoses, surgical assistance, monitoring devices, and so on (Yu, 

Beam, & Kohane, 2018). In animal behavior research, AI has been used for applications 

such as separating different chirping patterns and detecting the appearance of specific 

species in wild grassland (Valletta, Torney, Kings, Thornton, & Madden, 2017). 

However, when it comes to experimental animals, the use of AI has only recently 

begun, and has been relatively restricted to behavior and pose estimation (Mathis & 

Mathis, 2020). Since PMDD shows contradictory experimental results in human 

patients and experimental animals, this study aimed to establish an objective diagnostic 

method utilizing hippocampal factors in rats by investigating the diagnostic factors of 

PMDD using AI tools. 

In this study, pseudopregnant rats were used to mimic the hormone environment 

during the luteal phase in humans, and then the data of them were clustered by their 

severity of PMDD-like symptoms using unsupervised machine learning implementing 

the k-means algorithm. Next, the factors, which were most related to symptom severity, 

were extracted through an original two-step feature selection by the use of RNA 

sequencing (RNA-seq) results. These selected factors were considered as a diagnostic 
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set for PMDD symptoms and were used to build predictive machine learning models as 

diagnostic systems. Another group of rats that underwent the same experimental 

procedure was then used to evaluate the feasibility of the diagnostic systems. 

There are three chapters in this thesis. Chapter 1 includes the introduction of the 

five methods and tools used for data analyses in the present study, the reasons why they 

were chosen, and the challenges occurred. Chapter 2 is the pilot study of the main 

experiment. It is referred to an attempt of using a P4 injection schedule to intimate the 

hormone environment of PMDD in rats and the behavioral tests performed. Chapter 3 is 

the main experiment. It includes the use of pseudopregnancy rats, the behavioral tests 

and their analyses, and how the target experimental group was determined by the use of 

an unsupervised machine learning algorithm. It also contains the process of choosing 

the important factors by analyzing RNA-seq results, the way to use the important 

factors to build the diagnostic systems by supervised machine learning algorithms, and 

the evaluation and prediction of the systems. 
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Chapter 1  Methodology 

 

Introduction 

In the present study, the latest techniques were attempted to be used in sections of 

data analyses. These tools were expected to help to provide efficient experimental 

operations and accurate experimental results. There were five tools. First, DeepLabCut, 

a deep learning package, was used to analyze the videos of behavioral tests. Second, k-

means, an unsupervised machine learning algorithm, was used to cluster data of 

behavioral test results. Third, Usegalaxy.org, an online computational biological 

platform, was used to processed RNA-seq results. Fourth, an original two-step feature 

selection method, composed of manual selection and cross validation algorithm, was 

used to pick up the key genes of PMDD symptoms in the RNA-seq results. Finally, six 

supervised machine learning models were built to classify data from another group of 

rats undergoing the same experiment procedure by the use of the key gene set. Whether 

the clustering results from the behavioral tests and that from the mRNA expression 

levels of the key genes were identical or not would be verified. 

Most of the tools are in the field of artificial intelligence (AI). The word “AI” 

refers to any mechanical system processing and acting rationally by mimicking human 

intelligence. The main functions include learning and problem solving (Norvig, 1995). 

It has several subfields, such as vision, robotics, natural language processing, machine 

learning, and decision theory (Pamela, 2004). AI is not a fancy concept which has 

already been raised for more than fifty years. However, it has not been widely used 

before the advancement of hardware in the last decade. 
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Machine learning (ML) is a subfield of AI which most of the tools in the present 

study belong with. ML is the study of computer algorithms which separates data by 

mathematical formula and has ability to improve performance by learning from 

experience (Mitchell, 2017). There are three main approaches in ML, which are 

supervised learning, unsupervised learning, and reinforcement learning. Supervised 

learning is a way of using input vectors of data to find their corresponding target 

vectors. The cases which supervised learning can handle include classification problems 

with output of discrete categories, and regression problems with output of continuous 

variables. Unsupervised learning is a way to discover groups of data with only input 

vectors but no target vectors. It can be used for clustering and density estimation. The 

last one, reinforcement learning, is a way to find the best action to take by giving 

rewards or punishments. It is used for decision making of consecutive motion, such as 

game playing and autonomous driving (Christopher, 2006). Beside these three 

approaches, there is still a popular field included in the broad family of ML, which is 

deep learning. It will be explained below in the section of analysis of behavioral test 

video. 

 

Analysis of behavioral test videos 

Analysis of behavioral test videos and the difficulties 

For analysis of behavioral test videos, human manual scoring is the unchangeable 

gold standard (Sturman et al., 2020). Most research workers are able to point out 

specific postures or actions of animals correctly after training. The analysis results will 

not have much difference among annotators when the movements of animals are simple, 

short and clear. However, human manual scoring has limits which reduces reliability. 
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First, humans make mistakes. Humans can unconsciously take down wrong records 

when being tired or absent-minded. Second, humans can have different judgments when 

encountering complex or continuous movements. For example, one of the frequently-

used behavioral parameters, rearing, is an action of an animal raising itself by hind legs. 

Although it can be described by words clearly, rearing can be an action with different 

patterns such as against a wall or not, rising high or low, by a single foreleg or both, or 

in order to explore or just to smell. Therefore, it is hard to have a common answer 

among annotators to determine whether a movement is rearing or not. At last, the 

scoring procedure by humans can be time-consuming. Since people can only analyze 

one video at a time to avoid missing details, it is easy to realize human manual scoring 

is not an efficient way if there were multiple tests or a large number of test animals. 

 

Behavior analysis using EthoVision XT 

To solve these issues, automated analysis methods with assistance of computers 

were brought out in the past two decades. EthoVision software series is probably the 

most popular one with more than 500 citations of its original paper. Here is how 

EthoVision works. First, it distinguishes the target object from the background by gray 

scale (contour-based tracking). Then, it finds the mathematical center and area of the 

object. At last, it calculates the specific measurement of behavior assigned by the users 

(Noldus, Spink, & Tegelenbosch, 2001). It has already been used in different kinds of 

experimental animals such as mice, rats, zebra fish, and in different kinds of tests such 

as open field test, elevated plus-maze test, Morris Water Maze test, and so on (Desland, 

Afzal, Warraich, & Mocco, 2014). 
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However, there are also deficiencies in EthoVision (version: XT, with no add-on 

modules). First, the principle of capturing objects by gray scale puts limitations on the 

colors of the animal and the background. It is better for the users to use animals with 

black hair in white background or vice versa. However, when the rats with white hair 

were used in the black background, the software could not separate the rats from 

reflected light only by the difference in their gray scale. The tracked points in the center 

of the rats even sometimes disappeared when the rats were resting in the corner of the 

apparatus, making the analysis results doubtful. Second, the tracked points cannot be 

customized freely. Basically, there can be only one tracked point per one object. The 

users cannot track different parts of the body of the animal for precise observation. Last 

but not least, the analytic results cannot be adjusted. There is no function to revise the 

points by the unit of frame. The users have a chance of finding their analytic works in 

vain in the very last moment. There are barely any studies focusing on the comparison 

of EthoVision XT and other tracking tools. However, a previous study comparing 

EthoVision 2.3 and an authors’ original tracking tool raised similar problems mentioned 

above: (1) there can be only one individual under one detection; (2) the luminosity 

conditions can be strict (Delcourt et al., 2006). 

Due to the reasons above, the following AI-based tool was chosen to resolve the 

difficulties. 

 

Behavior analysis using DeepLabCut 

DeepLabCut (DLC) is an analysis tool based on AI deep learning structure, 

developed by the research teams of Harvard University and the University of Tubingen 

(Nath et al., 2019). Before DLC, here is the short introduction to deep learning. Deep 
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learning is one of the ML methods. It was built with human brain structure composed of 

layers full of “neurons”. These neurons can tune the calculating parameters by 

themselves, and adjust the output results by the input from the last layer (Waldrop, 

2019) (figure 1-1). The properties make deep learning a method with high accuracy 

compared to other shallow ML algorithms, and suitable for solving complex problems 

such as high dimensional data processing or image recognition (Goodfellow, Bengio, & 

Courville, 2016). In addition, deep learning technology has also been brought into the 

latest released EthoVision in 2021 (version: XT 16) to improve the tracking system 

according to the official page of EthoVision series. 

DLC gathers the advantages of deep learning, and is now a powerful tool used for 

multiple situations in behavioral research. Since the publication in Nature Protocols in 

2019, DLC has already had citations more than 700, and has been used in humans, wild 

animals and experimental animals for pose estimation, investigation of neural science, 

and even cellular image analysis. There are the benefits of DLC as follows, 

corresponding to the drawbacks of EthoVision XT mentioned before. First, it recognizes 

animals in video directly, but not by gray scale, reducing the chance of mixing up the 

target animals and the background or reflected light. Second, the users are able to 

decide the tracked points of their interest anywhere and at any amount. For example, for 

research of hand movement, the tracked points can be all the knuckles in the forelegs of 

a mouse; for research of facial expression, the tracked points can be as many as the 

muscles in interest. Last, the analytic results of DLC can be adjusted by label 

refinements or by editing the wrong frames. Label refinements can bring out better 

analytic results by improving the training model; while the manual correction of the 

wrong frames can directly improve the results. There is a study investigating the 
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analysis abilities of DLC and other two commercial solutions, EthoVision (version: XT 

14) and TSE Multi Conditioning System (Sturman et al., 2020). The authors 

demonstrated that among the three solutions, DLC is the one bringing out results with 

the most similar accuracy to human manual scoring, especially in the results of fine 

movements such as head dips in the open arms in elevated plus-maze test. 

On the contrary, there are still some weak points in DLC. First, the technical 

requirement of using DLC is high. DLC has graphical user interface (GUI) for the users 

who are not familiar with programming languages. However, the operation is not 

intuitive. Users have to install and open the GUI by typing commands in the terminal 

application, and deal with version conflict of the built-in programming packages or 

other early-stage problems. If the users knew little about programming, a huge obstacle 

had already shown up in the first step. Second, the requirement of hardware is also high. 

It is better to have a graphics processing unit (GPU) than a central processing unit 

(CPU) to have enough processing capacity and efficiency. Last, DLC is a package 

designed to analyze recorded video, therefore it cannot track points which are invisible. 

Tracked points can disappear in some frames because of motion blur or other reasons. 

However, since DLC is a frequently updating package, the problems can be expected to 

be improved with progressive functions in the near future. 

 

Analysis of behavioral test results 

Analysis of behavioral test results and the difficulties 

Generally, the behavioral test results of the experimental group and the control 

group are compared one by one with traditional statistical methods such as student t test 

or post hoc tests followed by analysis of variance (ANOVA) test. These methods focus 
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on the relationship among observations. If the null hypothesis (H0) is rejected, then the 

alternative hypothesis (H1) is established and there exists a difference between the 

means of the groups. This is how traditional statistical methods work, being widely 

acceptable due to the rigorous inference procedure. However, they have a limitation. 

Traditional statistical methods cannot deal with plenty of features at the same time. By 

the results of traditional statistical methods, the difference among groups in every single 

test can be discovered, but the relationship of all the test results in every individual 

cannot be compared and understood. For example, a famous behavioral test, open field 

test, has several parameters such as total traveled distance, ratio of time in center zone, 

number of rearing, number of grooming, number of passing through center and 

peripheral zone, and so on. It is difficult for traditional statistical methods to know if an 

individual showed anxiety-like behavior in all the parameters related to anxiety by only 

comparing the differences of the means of the parameters among groups. Therefore, for 

a disease with multiple symptoms such as PMDD, instead of traditional statistical 

methods, unsupervised learning in AI was chosen in the present study to separate 

healthy and sick individuals. 

 

Unsupervised learning 

As mentioned in the introduction of this chapter, unsupervised learning is a way to 

discover the subgroups of data with only input vectors but no target vectors. It contains 

algorithms built by different formulas, and thus it is a notion hard to be precisely 

defined (Estivill-Castro, 2002). There are two main kinds of tasks which unsupervised 

learning can handle, clustering and density estimation. Algorithms for clustering can put 

similar data points into a specific group; while algorithms for density estimation use 
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observed data to estimate the distribution or other parameters for the density function. 

In the present study, neither the individuals which had severe PMDD symptoms, nor the 

exact border criteria to separate healthy and sick individuals by the behavioral test 

results was unknown. Thus, the algorithms for clustering were needed to help to put the 

individuals with similar severity of symptoms together by considering multiple 

parameters of the behavioral tests at the same time. 

 

Candidate algorithms in unsupervised learning 

The next step is to choose a suitable clustering algorithm. In the field of AI, there 

are countless algorithms for different tasks. Only the most popular ones, k-means and 

density-based spatial clustering of applications with noise (DBSCAN), were considered. 

K-means is a centroid-based clustering. The number of centroids is decided in the 

beginning, then each point is assigned to the cluster of the nearest centroid. DBSCAN 

belongs to density-based clustering. It connects points which meet the specific density 

threshold (Oded & Lior, 2005). The schematics of these two clustering methods and the 

comparison are shown in table 1-1 (Fabian, Gael, Alexandre, Vincent, & Bertrand, 

2011). 

 

The principals of k-means 

Although there are both advantages and disadvantages in k-means and DBSCAN, 

k-means was chosen in the present study. There are several reasons. First, k-means is 

sensitive to noise. It can serve as an outlier trimmer and remove the needless points at 

the beginning of the analysis. Second, the number of centroids can be customized. This 

makes the results can be adjusted to a certain degree after data observation. At last, k-
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means provides linear results. The goal in this section is to separate healthy and sick 

individuals by the severity of PMDD symptoms, which is corresponding to the degree 

of behavioral change in the behavioral tests. By using k-means, the clusters can be 

obtained with linear relationship by the order of degree of behavioral change, and thus 

can bring out results with higher interpretability and reliability. 

 

Processing of RNA sequencing raw data 

Processing of RNA sequencing raw data using Usegalaxy.org 

Processing of RNA sequencing (RNA-seq) data is included in the field of 

bioinformatics. It usually requires certificate programs or professional training 

beforehand, otherwise it is hard to get started by self-study. Besides, to process RNA-

seq raw data also needs the skill of programming since most of the tools are R or 

python-based packages. Researchers who are not familiar with bioinformatics often 

choose to outsource the tasks to other laboratories or private enterprises. However, 

outsourcing means there is going to be more cost but less operating flexibility. Due to 

the reasons above, there is need to be an alternative solution. 

Galaxy is an open-sourcing python-based software developed by a team gathering 

Pennsylvania State University, Johns Hopkins University, Oregon Health & Science 

University, and the Galaxy Community (Afgan et al., 2016). It is a platform collecting 

analytic methods for genomics, proteomics, and transcriptomics. The tools are turned 

into GUI form so the users without programming skills are also able to build their own 

tasks. The Galaxy team also provides tutorials on the site of Galaxy Training!: 

https://training.galaxyproject.org/. The articles include not only the step-by-step 

instructions but also the explanation of related principles, and thus it is easy for the 
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users without basic knowledge of bioinformatics to perform learning by doing. In the 

present study, the tools in Usegalaxy.org were used for reference-based RNA-seq data 

analysis to obtain the whole mRNA expression levels in hippocampus, trying to 

discover the genomic difference between healthy and sick individuals. The procedures 

include quality check by FastQC, trimming by Cutadapt, mapping by HISAT2, and 

annotation by featureCounts. 

 

Feature selection method for the important genes 

Conventional choices and the difficulties 

After processing the RNA-seq raw data, the mRNA expression levels of the genes 

in the samples were obtained. The next step is to only keep the important ones. There 

have already been tools to find the genes with significant statistical differences between 

the experimental group and the control group in Galaxy, such as DESeq and edgeR. 

However, from these tools, only the group of genes with significant differences but not 

their ranking of importance can be acquired. Thus, the tools in ML were chosen to find 

the genes whose expression levels have the closest relationship to the severity change of 

PMDD symptoms. 

 

Feature selection 

The method is called feature selection, a process of finding the subsets in need of 

the features. There are three types of the feature selection methods: filter, wrapper, and 

embedded (Guyon & Elisseeff, 2003). Filter method scores each feature by their 

divergence or correlation, and sets specific threshold or number to choose features. 

Wrapper method picks up or excludes some of the features in each test, and chooses 
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features by the score of predictive performance. Embedded method works like filter 

method, but chooses features in the process of training. The comparison of the three 

feature selection methods is in figure 1-2 (Mohd Rosely, Salleh, & Zain, 2019). 

After comparing the three methods, filter method was chosen for the following 

reasons. First, it is the fastest method. When there is neither computer with high 

calculating ability, nor time to wait for time-consuming calculations, the efficiency is 

always the first consideration. Second, it is the only method that is independent of 

specific ML algorithm. The results brought out by filter method are not deeply affected 

by one specific classifier, and thus different algorithms can be tried to find the most 

suitable one for the present experiment. Finally, it is the method that is less prone to 

overfitting. Overfitting is the situation when a ML model performs well in the training 

data but poorly in the test data. If a model is overfitted, it only remembers the correct 

answer by rote, but not learning the pattern from the training data and applying it to the 

test data. In the present study, since there only had a small number of samples and the 

data was easily overfitted, filter method was chosen to guarantee the accuracy of the 

results. 

 

Filter feature selection method 

At first, a filter feature selection method built by SelectKBest and Linear Support 

Vector Machine (Linear SVM) in a repeated k-fold grid search cross-validation (Grid 

Search CV) was used. SelectKBest is an algorithm for feature selection. It selects the 

best features by univariate statistical tests, and only keeps the k highest scoring features 

(Blesson, 2017). Linear SVM is one of the popular algorithms often used for data 

classification. It can find a line or hyperplane with the maximal margin to separate two 
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groups of data (Chang & Lin, 2008). Grid Search CV is a cross-validation method for 

parameter tuning. It splits data into k groups and performs multiple tests to check the 

performance of ML model. In other words, Grid Search CV can verify models under 

different sets of features to find the set of features with the best performance (Ranjan, 

Kumar Verma, & Radhika, 2019). 

Here is how this filter feature selection method worked. First, SelectKBest is used 

to make Grid Search CV able to obtain all the combinations of all the features. Then, 

Linear SVM is used to perform the classification under each combination of the 

features. At the end, Grid Search CV find the combination with the best mean model 

accuracy. In the present experiment, the mRNA expression levels of genes from the 

RNA-seq results were the features. The genes in the combination with the best mean 

model accuracy were the most important factors for PMDD symptoms. 

However, the dataset of the RNA-seq results was a small dataset with high 

dimensions. There were only 12 samples but 32,545 gene expression levels detected in 

all. After several attempts, the best accuracy remained low and the selected gene set 

remained suspicious. 

 

The original two-step feature selection method 

For this reason, a pre-processing step was added to reduce the dimensions of the 

dataset before executing the filter feature selection method. During the testing phase, 

the genes with small numbers of their expression levels were found more likely to be 

picked up, and had a relatively larger influence on the selection model. Besides, there 

were a certain number of unknown genes whose functions had not been studied yet. 

Thus, the genes which failed to meet the following three standards were manually 
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filtered out: (1) genes with mean expressions increasing/decreasing by the order of 

severities of symptoms; (2) genes without zero in their expression levels; and (3) genes 

that were not in the unknown list in Database for Annotation, Visualization and 

Integrated Discovery (DAVID) functional annotation tool. 

By adding the pre-processing step, an original two-step feature selection method 

was established. In the first step, the genes which might disturb the later analysis were 

filtered out, and the dimensions of the dataset were reduced. The number of the genes 

went from 32,545 to 5,047. In the second step, the remained genes from the last step 

were used to execute the filter feature selection method described above. After the two 

steps, the set of the most important 17 genes was found. 

 

Predictive machine learning models 

The last step in the present experiment is using the set of the most important genes 

to build supervised learning models to classify the individuals, compare the classifying 

results with the clustering results of the behavioral test results, and evaluate the 

performance of the models. Since the cluster to which each individual belongs assigned 

by k-means has already been determined, the supervised learning algorithms were then 

used to find the “rules” between the classification results and the expression levels of 

the set of the most important genes. The six supervised learning algorithms, which were 

the most popular ones with different principles were chosen. They were Linear SVM, 

Random Forest (RF), Bag SVM, Neural Network (NN), Light Gradient Boosting 

Machine (Light GBM), and Extreme Gradient Boosting (XGBoost). The illustrations of 

the operating principles of the supervised learning models are in figure 1-3. 
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Linear SVM 

The introduction of Linear SVM is also in the paragraph of feature selection. It is a 

method which can separate two groups of data by a line or hyperplane with the maximal 

margin. More specifically, the points in the margin of each group are detected, and the 

hyperplane is calculated by the use of the coordinates of the margin points (Joachims, 

1998).  

• Advantages: usually performs well in most of the problems compared to other 

algorithms, good to use in samples with number of dimensions greater than the 

number of samples, hard to have bias when there are outliers. 

• Disadvantages: need more time to process, the principle is not well known, 

cannot do well if the boundary points are noise. 

 

Random Forest (RF) 

RF is an ensemble learning method grouped by multiple decision tree (DT) 

predictors. DT is one of the earliest algorithms and it separates data by decision logic. 

The process starts from the starting point called “root node”. By the process of decision 

making, the branches and levels of the tree increase until the “leaf nodes” are reached 

(Quinlan, 1986). However, it has a risk of overfitting when a tree is extremely 

complicated with excessive levels. 

RF is a solution to the overfitting situation in DT. It gathers multiple DTs to train 

the different parts of the dataset and decide the final answer of classification by 

averaging or voting by all the DT trees (Breiman, 2001). In this way, the result will not 

depend on only one single tree, and will not be affected easily if there is a small change 

in the input data. 
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• Advantages: efficient on large dataset with even thousands of features, able to 

deal with missing data, able to deal with irrelevant features. 

• Disadvantages: can still be overfitted if the dataset is noisy, have to choose the 

number of DTs manually, difficult to interpret. 

 

Bag SVM 

Bag SVM is an ensemble learning method consisting of several SVM models in a 

bagging classifier. Similar to RF, it fits base models on random subsets of data and 

decides the final prediction by aggregation or voting from the predictions of base 

models (Breiman, 1996). Bagging classifiers are often compared with boosting 

classifiers. The comparison of these two is in table 1-2. 

 

Neural Network (NN) 

NN is a model with structure imitating the human brain. In the biological brain, 

there are neurons connected to each other. When new information comes in, the 

neuroplasticity occurs to adapt to the new situation. In NN, there are input and output 

neurons connected by hidden layers. There are also weighted synapses being able to 

adjust signal strength. It gives out results by learning from former layers, and has the 

ability to tune itself (Rumelhart & Hintont, 1982). Deep learning mentioned before is a 

classic method based on NN. 

• Advantages: able to deal with unknown situations, suitable for non-mathematical 

models, easy to build with less formal statistical knowledge. 

• Disadvantages: takes a long time to process large network, needs a large amount 

of input data, prone to be overfitted due to the complexity of model structure. 
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Light Gradient Boosting Machine (Light GBM) 

Light GBM is a gradient boosting machine based on the “leaf-wise” DT algorithm 

brought out by the Microsoft team. Compared to the traditional “level-wise” method, 

the leaf-wise algorithm can reduce more loss, give out results with better accuracy, and 

perform faster (Ke et al., 2017). 

 

Extreme Gradient Boosting (XGBoost) 

XGBoost is a model similar to Light GBM but based on the traditional “level-

wise” algorithm. It is an ensemble method of adaptive boosting algorithm. Adaptive 

boosting algorithm works by making n number of DTs, and brings out results by 

passing on the incorrect parts or the weaknesses from the last tree to the next tree to 

adjust and strengthen the whole model (Chen & Guestrin, 2016). Although XGBoost 

usually performs well and is good for optimization, the training process is rather time-

consuming. 

 

To sum up, there were five tools for the sections of data analysis in the present 

study. For the behavioral tests, DLC was used for analyzing the videos; while k-means 

was for clustering the result data. For the RNA-seq results, Usegalaxy.org was used for 

processing the raw data; while the original two-step feature selection method containing 

manual filtration, SelectKBest, Linear SVM, and Grid Search CV pipeline was for the 

extraction of the most important genes. Lastly, for testing whether the expression levels 

of the selected genes could bring out the same classifying result as the behavioral tests 

did, the six classifiers of Linear SVM, RF, Bag SVM, NN, Light GBM, and XGBoost 

were built and evaluated. 
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Figures and tables 
 

 

 

Figure 1-1. The concept of the deep learning network. 

The network recognizes the input picture or video frame by identifying it from the 

pixel level to the combination of features level. By investigating input precisely, the 

multiple-layer process brings out output answer with higher accuracy. 
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Figure 1-2. Work flow of the feature selection methods. 

The three main feature selection methods are filter, wrapper, and embedded. All of 

them go through the steps of generation of subsets of features, and evaluation of the 

performance of algorithm. The major difference among them is the degree of 

independence of the steps inside. For example, the steps in filter method are 

independent to one another, making filter method easy to be customized. 
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Figure 1-3. Principles of the six classifiers. 

The six classifiers used in the present study are the most classical and popular ones 

for AI tasks nowadays. (a) Linear SVM separates data by drawing a margin line or 

hyperplane. (b) RF decides the classes of data by concluding the results from the 

decision trees inside. (c) Bag SVM wraps up several SVM classifiers to improve the 

classification result. (d) NN mimics the structure of the human brain. (e, f) Light GBM 

and XGBoost are boosting algorithms, improving the results by loss reduction. 
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Table 1-1. Comparison of k-means and DBSCAN. 
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Table 1-2. Comparison of bagging and boosting algorithms. 
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Chapter 2  Analysis of a PMDD Rat Model with Exogenous Hormone 

Evocating Method: A Pilot Experiment 

 

Introduction 

Due to the unknown in the detail pathological mechanism, using animals with 

deficiencies of possible genes or reproducing hormone environment similar to the 

human luteal phase have been the two broad categories used in the previous PMDD 

studies. For example, there were knockout mice deficient in brain-derived neurotrophic 

factor gene or bromodomain containing 1 gene used to evaluate the degree of behavioral 

dysfunction under the specific gene deficiency (Marrocco et al., 2020; Rajkumar et al., 

2020). There were also animals produced by giving exogenous or endogenous P4 

evocation through different procedures and dosages, including capsule implants, daily 

injection, and pseudopregnancy induction (Li et al., 2012; Moran and Smith, 1998; 

Smith, Freeman, and Neill, 1975). In the present study, since the object was to 

investigate the relationship between PMDD symptoms and their related endogenous 

factors in a comprehensive way, construction of luteal phase-like environment was 

chosen instead of transgenic techniques. 

A simple review of P4 evocation methods used in previous studies is in table 2-1. 

In earlier years, ovariectomy was more prevalent to be used for sex hormones 

withdrawal in the beginning or the end of experiments. It was considered to be an 

effective measure to eliminate the effect from primary reproductive system (Ho, Olsson, 

Westberg, Melke, & Eriksson, 2001; Smith et al., 1998). On the other hand, after the 

2000s, exogenous sex hormone replacement methods without ovariectomy and 

pseudopregnancy were more prone to be performed. The former was performed by P4 
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(and/or estradiol) withdrawal with the use of injection schedule or subcutaneous 

capsule; while the latter was operated by mounting with vasectomized male, injection 

with mare serum gonadotropin, or vaginal mechanical stimuli (Löfgren, 2009). There 

was also a special case that providing P4 by subcutaneous injection 4 hours before 

experiment (Schneider & Popik, 2009). However, most of the studies followed the 

principles of a long-time exposure and rapid withdrawal of sex hormone. In 2012, Li et 

al. compared four P4 21-day withdrawal methods, and found the multiple P4 

withdrawal schedule (m-PWD method in table 2-1) was the most sufficient way to 

induce behavioral change of premenstrual dysphoria (Li et al., 2012). Therefore, in the 

present study, the m-PWD method was chosen to imitate the hormone change which 

was considered to induce PMDD symptoms. 

    Furthermore, due to lack of standard experimental process of PMDD study, the 

behavioral tests were also selected by literature review. According to the studies by 

Kaplan’s group, it is better that a disease model should have same structure with human 

pathology or behavior. It should fit predictive validity (pharmacological correlation), 

face validity (behavioral isomorphism), or construct validity (similarity of underlying 

mechanism) (Kaplan, 1973). However, species differences also make the relevance of 

the three criteria questioned. The pharmacokinetics, the patterns of behavioral 

responses, and the underlying factors can all have a chance to be different between 

animal and human, especially in psychological diseases (Belzung & Griebel, 2001). 

Despite the practical difficulties mentioned above, the three validities are still the gold 

standard to follow. Therefore, for the disease with neither authorized treatment nor 

detail pathogenesis such as PMDD, reaching face validity as far as possible became the 

priority when choosing the suitable behavioral tests. 
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Although there are a large number of symptoms of PMDD described in DSM-5, 

anxiety, depression, and difficulties with social interaction were the three main focuses 

of the behavioral tests in the previous studies using rats. For anxiety, open field test 

(OFT), elevated plus maze test (EPM), and marble burying behavior test were the most 

popular ones (Islas-preciado, Lo ́pez-rubalcava, Gonza ́ lez-olvera, Gallardo-tenorio, & 

Estrada-camarena, 2016; Löfgren, Johansson, Meyerson, Turkmen, & Bäckström, 

2009). For depression / anhedonia, forced swim test (FST) and saccharin / sucrose 

preference test were the choices (Schneider & Popik, 2007). And for difficulties with 

social interaction, tube test, social preference test, food competition test, and so on were 

used (Ho et al., 2001; Li et al., 2012; Löfgren, 2009). Considering of the scale of the 

present study, three behavioral tests of OFT, EPM, and FST were selected to evaluate 

the primary locomotor function, and anxiety-like and depression-like behaviors due to 

their properties of simplicity and time-saving. 

In this chapter, whether the m-PMD method could provide high concentration of 

P4, and whether it could bring out behavioral changes of PMDD symptoms by OFT, 

EPM, and FST was investigated. 

 

Materials and methods 

Animals 

Eight- to 10-week-old female Wistar-Imamichi rats were obtained from the 

Imamichi Institute for Animal Reproduction (Tsuchiura, Japan) and acclimatized for 1 

week before the experimental schedule. Animals were maintained under a 12/12 h 

light/dark cycle (lights on at 07:00), 4 rats per cage, and given ad libitum access to food 

and water. The estrus cycle stage was accessed daily by observing vaginal smear for 
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two cycles, and only the rats with regular cycles were included in the following 

experiments. The estrous status included proestrous, estrous, metestrous, and diestrous 

(proestrous: nucleated epithelial cells, estrous: non-nucleated cornified cells, 

metestrous: cornified cells with leukocytes, diestrous: large number of leukocytes). All 

experiments were conducted in accordance with the Guidelines for the Care and Use of 

Laboratory Animals, Graduate School of Agriculture and Life Sciences, The University 

of Tokyo. 

 

P4 injection schedule 

P4 injection was performed under one, two or three injection cycles. Each cycle 

included seven days. Each rat in the experimental groups was injected intraperitoneally 

with 6 mg/rat of P4 dissolved in 0.2 ml sesame oil or the vehicle saline per day in the 

former five days followed by withdrawal in the latter two days (n=4-5 / group). The 3-

week experimental schedule of the P4 injection group is in figure 2-1. On the last day of 

each cycle, the following behavioral tests were performed. 

 

Behavioral tests 

The behavioral tests were performed during the light period in the following order 

and time: OFT at 10:00, EPM at 12:00, and FST at 14:00. Each test was followed by a 

1-h interval. The sizes and shapes of the apparatuses are in figure 2-2. The analysis of 

the behavioral test results was performed by EthoVision (version: XT) followed by the 

official manual. 
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● OFT 

The OFT apparatus consisted of four white wooden walls and a black 

polypropylene floor without a ceiling (75 ´ 75 ´ 45 cm) and was placed in a room with 

brightness of 60–80 lx. Each rat was placed in the center of the floor at first, and 

allowed to freely explore the field for 10 min. The open field was divided into a center 

zone (45 ´ 45 cm) and a peripheral zone. Avoidance of the center zone is considered as 

anxiety-like behavior. Other parameters included total distance traveled and number of 

rearing. 

 

● EPM 

The EPM apparatus was elevated to a height of 50 cm from the floor and had four 

arms (10 ´ 50 cm); two of the arms had 40-cm high walls (closed arm; east and west 

arms), while the other two had only 5-mm high ridges (open arms; north and south 

arms). The arms were merged at a central square (10 ´ 10 cm) to form a plus shape. 

Each rat was placed in the central square facing an open arm at first, and allowed to 

explore the maze freely for 10 min. The rats that fell off the apparatus were excluded 

from the later analyses. A higher percentage of time spent in closed arms was 

considered as anxiety tendency. Other parameters included total distance traveled and 

number of head dips in open arms. 

 

● FST 

The FST apparatus was a cylindrical box with a diameter of 38 cm filled with 

water to a height of 30 cm. Each rat was placed in the center of the water at first, and 
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left in the box for 6 min. A higher percentage of immobile time is considered as having 

depression tendency. Total distance traveled was also recorded. 

 

Statistics 
Two-way ANOVA test and pairwise Tukey’s post hoc test was performed by 

Python using statsmodels package. Only the results with p-value < 0.05 in the two-way 

ANOVA test were performed Tukey’s post hoc test. 

 

Results 

Serum P4 concentration on the test day of each group is in figure 2-3. Our target 

group is the experimental group in the 3rd week (E3 group). The E3 group had a 

significantly higher P4 concentration with a mean over 160 ng/ml (168 ± 32 ng/ml) 

compared to other groups. The vehicle group in the 3rd week tended to increase but with 

no statistical difference. 

The behavioral test results are in figure 2-4. There are the results of OFT (figure 2-

4 a-c) and EPM (figure 2-4 d-f). The results of FST were excluded due to the confusion 

between target animal and reflected light. The E3 group had a rather higher time ratio in 

closed arms in EPM but also a longer error bar for larger individual difference (figure 2-

4 e). It also had a smaller number of head dips in open arms (figure 2-4 f). However, 

there were no statistically significant differences among groups in all the results. 

 

Discussion 

In this chapter, m-PWD method was chosen to imitate the hormone environment 

evoking PMDD symptoms, and the anxiety- and depression-like behaviors were also 
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evaluated by three behavioral tests and EthoVision (version: XT). As a result, the E3 

group had a significant higher P4 concentration; however, there were no statistical 

differences in the behavioral test results. 

For the results of serum P4 concentration, the highest number in the P4 injection 

group was in the E3 group (168 ± 32 ng/ml). The concentration of 168 ng/ml was higher 

than the highest progesterone level in a natural pregnant period, which has been 

indicated to be about 130 ng/ml (Pepe & Rothchild, 1974). This suggested that daily 

injection might be a method inducing excessive progesterone which could have a 

problem to reflect the physiologically normal situation. 

For the behavioral test results of the P4 injection group, there were no significant 

differences among groups in the present study. The reason could be that EthoVision 

(version: XT) was not able to provide correct analytic results due to its principle of 

capturing objects. It could only distinguish the target animals and the background by 

their difference in gray scale. Moreover, when there was reflected light or immobile 

target animals, the software could not obtain the accurate location of the animal and 

brought out improper results. A previous study in 2006 indicated the similar 

disadvantages of early version of EthoVision. There were strict setting conditions and 

much background noise when detection (Delcourt et al., 2006). Thus, instead of 

EthoVision (version: XT), there was better to have a new tool to be used in the future 

analysis of behavioral tests in the present study. 

In conclusion, there were two concerns from the present study. One was that m-

PWD was a good method to evoke high P4 concentration but might not present the true 

situation under the normal physiology. The other was that EthoVision (version: XT) 

could bring out inaccurate results and might not be suitable for the present behavioral 



 36 

test analysis. These two issues should be solved in the main experiment. Thus, rats with 

endogenous P4 evocating method and an AI-based tool for the analysis of the 

behavioral tests were used in the next chapter. 
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Figures and tables 
 

 

 

Figure 2-1. Experimental schedule. 

    All the rats were divided into three groups, and operated 5-day P4 intraperitoneal 

injection followed by 2-day withdrawal cycle in 1, 2, or 3 weeks. On the last day of 

each cycle, three behavioral tests were performed to evaluate the degrees of anxiety- 

and depressive-like behaviors. 
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(a)                                  (b) 

           

 
 
(c) 

 

 

Figure 2-2. The apparatuses of the three behavioral tests. 

(a) Open field test (OFT). (b) Elevated plus maze (EPM). (c) Forced swim test 

(FST). 
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Figure 2-3. Serum P4 concentration. 

Serum progesterone concentration on the last day of each group (n=4-5). Different 

letters indicate statistical significance. The error bars represent the standard deviations. 
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Figure 2-4. Results of the behavioral tests. 

(a-c) Results of open field test. (a) Total distance traveled in the OFT. (b) Time 

ratio in the center zone in the OFT. (c) Rearing number in the OFT. (d-f) Results of 

elevated plus-maze test. (d) Total distance traveled in the EPM. (e) Time ratio in closed 

arms in the EPM. (f) Number of head dips in open arms in the EPM. 
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Research P4 evocation method 

Smith et al., 
1998) 

1. Pseudopregnancy: Pregnant mare serum gonadotropin dissolved in saline 
was injected intraperitoneally (20 IU/0.2 ml) on postnatal day 27. Human 
chorionic gonadotropin was injected (10 IU/0.2 ml) on postnatal day 29, 
which was also considered day 0 of pseudopregnancy. 

2. Progesterone withdrawal: On day 11 of pseudopregnancy, the rats were 
ovariectomized. 

Ho et al., 
2001) 

Ovariectomized rats were primed with estradiol benzoate (estradiol-3-
benzoate in oleate 5mg/ ml; diluted in sesame oil, 0.5 mg/rat in 0.1 ml, s.c.; 0 
h), estradiol (1, 3, 5 [10]-estratiene-3, 17b-diol; 0.5 mg/rat in 0.1 ml sesame 
oil, s.c.; 32 h), and progesterone (4-pregnene-3, 10-dione; 0.5 mg/rat in 0.1 
ml sesame oil s.c.; 44 h). 

Hsu and 
Smith, 2003) 

Progesterone-filled capsules of silicone tubing (10 mm per 100 grams of 
body weight) were implanted subcutaneously in the lower aspect of the 
back. 

Löfgren, 
2009) 

Progesterone 5 mg/kg + estradiol 10 μl/kg once a day (i.p. for 6 and s.c. for 
10 days), followed by a 24-hour withdrawal. 

Schneider and 
Popik, 2009) 

Progesterone 1 mg/kg, s.c. in corn oil in a volume of 0.4 ml/rat, 4 hr every 
time before testing 

Li et al., 
2012) 

 
 
Table 2-1. Progesterone evocation methods in previous studies. 
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Chapter 3  Main Experiment 

 

Introduction 

In this chapter, developing new option of experimental animal and analytic tool for 

behavioral test were the two main priorities. Exogenous P4 evocation methods 

including m-PWD elevated serum P4 concentration high but exceeded. To avoid 

exogenous effects, pseudopregnancy was chosen. Pseudopregnancy is a method 

developing sign of pregnancy without implanted embryo, and can maintain high-level 

progesterone during a long period (Chan, 2013). In fact, both external and internal ways 

are able to induce pseudopregnancy. The external way uses subcutaneous injection of 

pregnant mare serum gonadotropin followed by human chorionic gonadotropin (Bar-

Ami et al., 2006); while the internal ways is performed by vaginal mechanical stimuli 

using glass rod or vibrating probe (De Feo, 1963, 1966; Frye & Bayon, 1998). After all, 

the internal way of mechanical vaginal-cervical stimuli using glass rod was chosen. 

Another issue in the previous study was the tool of analysis for behavioral test. 

Although there have always been novel analytic tools of behavioral tests presented by 

different research teams, DLC is one of the most widely spread tools in the recent years. 

DLC is a deep learning-based package for pose estimation, especially used in 

experimental animals (Nath et al., 2019). When compared to EthoVision (version: 

XT14) and another commercial tool of TSE Multi Conditioning System, DLC showed 

results with similar accuracy to human manual scoring in OFT, EPM, and FST, 

especially in the results of fine movements (Sturman et al., 2020). Besides, the 

popularity of DLC can be demonstrated by the citation number of the original journal 
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paper, which has come to 917 at the time of writing. Thus, DLC was chosen to be used 

in the present study instantly as it might be the next main current of behavioral test 

analysis. 

Moreover, besides DLC, other AI tools and algorithm were also used in the present 

study for different purposes. They were (1) unsupervised machine learning algorithm, k-

means, for data clustering; (2) original two-step feature selection method built by 

manual selection and Grid Search CV pipeline for filtering out the important genes; and 

(3) six supervised machine learning algorithms for building diagnostic system. The 

backgrounds and operating details of these methods are in chapter 1. 

In this chapter, the behavioral test results of pseudopregnant rats were clustered by 

k-means to obtain the three sub-groups of pseudopregnant rats with mild to severe 

PMDD symptoms. Then, the RNA-seq results of the three sub-groups were processed 

by the two-step feature selection method to obtain the important genes related to PMDD 

symptoms. Eventually, six supervised machine learning diagnostic systems built by the 

behavioral test results and the important genes were evaluated by a new group of rats 

undergoing the same experimental schedule as the original pseudopregnant rats. The 

feasibilities of the six systems were compared by their model and prediction accuracies. 

 

Materials and methods 

Animals 

Eight- to 10-week-old female Wistar-Imamichi rats were obtained from the 

Imamichi Institute for Animal Reproduction (Tsuchiura, Japan) and acclimatized for 1 

week before the experimental schedule. Animals were maintained under a 12/12 h 

light/dark cycle (lights on at 07:00), 3-4 rats per cage, and given ad libitum access to 
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food and water. The estrus cycle stage was accessed daily by vaginal smear for two 

cycles, and only the rats with regular cycles were included in the following experiments. 

The estrous status included proestrous, estrous, metestrous, and diestrous (proestrous: 

nucleated epithelial cells, estrous: non-nucleated cornified cells, metestrous: cornified 

cells with leukocytes, diestrous: large number of leukocytes). All experiments were 

conducted in accordance with the Guidelines for the Care and Use of Laboratory 

Animals, Graduate School of Agriculture and Life Sciences, The University of Tokyo. 

 

Pseudopregnancy 

Pseudopregnancy was induced by mechanical vaginal-cervical stimuli with a glass 

rod at 18:00 of the proestrous stage. The day of stimulation was designated as day 0 and 

pseudopregnant status was assessed daily using vaginal smear. After day 0 as proestrous 

and day 1 as estrous status, the field of microscope became similar to diestrous status 

which was filled with leukocytes until day 16-18. Only the rats with pseudopregnant 

period until day 16 were included in the following experiments. 

 

Experimental schedule on the test days 
On days 0, 8, and 16 of the pseudopregnant period, three behavioral tests of OFT, 

EPM and FST, hippocampus sampling, and serum sampling were performed (n=6–

7/day). Day 0 was chosen since some of the patients had PMDD onset in the ovulation 

period. The treatment with ovulation inhibitors could alleviate the symptoms (Ryu & 

Kim, 2015). The animals undergoing experimental schedule on day 0 were not induced 

pseudopregnancy. The operation of the three behavioral tests was identical to that in the 

previous study. The time schedule of the test days shows in figure 3-1. 
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Behavioral test result: analysis by DLC 

The analysis of behavioral test results was performed by DLC followed by 

customized codes written in Python. The thorough install and usage instructions of DLC 

is in Nath et al., 2019 and the website of Mathis Laboratory: 

http://www.mackenziemathislab.org/deeplabcut. 

 

• DLC 

DLC 2.1.9 was used to track the points of interest (figure 3-2). All training was 

operated on Google Colaboratory, and label refinements were processed through GUI. 

All training videos were randomly selected. The OFT network was trained using 40 

frames from 12 videos for 395,000 iterations, 0.00103 loss, and a 0.02 learning rate (lr). 

After label refinement, the second training ended with 650,000 iterations, 0.00088 loss, 

and a 0.002 lr. The EPM network was trained using 30 frames from 12 videos for 

220,000 iterations, 0.00121 loss, and a 0.02 lr. After label refinements, the third training 

was ended with 430,000 iterations, 0.00148 loss, and a 0.02 lr. The FST network was 

trained using 40 frames from 20 videos for 785,000 iterations, 0.00077 loss, and a 0.001 

lr. After label refinement, the second training ended with 700,000 iterations, 0.00111 

loss, and a 0.002 lr. The x, y coordinates of each frame of each rat generated by DLC 

were then calculated into parameters in later analyses. The training python script was an 

official script for Google Colaboratory Notebooks of DeepLabCut Toolbox: 

https://colab.research.google.com/github/AlexEMG/DeepLabCut/blob/master/examples

/COLAB_YOURDATA_TrainNetwork_VideoAnalysis.ipynb. Outliers were checked 

and fixed by trajectory plots generated by DLC and customized python scripts. 

 



 46 

• DLC coordinates analysis 

Customized python scripts were used to convert x, y coordinates into the required 

parameters. For the OFT, points of interest included the head center, body center, and 

tail base. The total length of the head center to body center and body center to tail base 

shorter than the body length when the rat rested was used for the calculation of rearing. 

For the EPM, points of interest included the head center and body center. Only the 

frames with the head center outside of the open arms while the body center was inside 

the open arms for over 30 frames (1 s) were counted as head dip behavior. For the FST, 

points of interest included the head center, body center, tail base, left side of the body 

center (lbc), and right side of the body center (rbc). The percentage of immobile time 

was determined by the rate of change of the polygon area formed by head center, lbc, 

tail base, and rbc. When the rate of change was below 60 px2/frame, the animal was 

considered immobile. Total distance traveled and percentage of time spent in specific 

areas were calculated using coordinates of the body center in all tests. The customized 

python scripts for the three behavioral tests were uploaded to Github: 

https://github.com/RoyKudo/PMDD/tree/main/Behavioral%20test%20analysis. 

 

Behavioral test result: clustering approach 

To separate the animals with different syndrome severities of anxiety- and 

depression-like behaviors, a clustering of the behavioral test results was performed 

using unsupervised machine learning implementing the k-means algorithm. The number 

of centroids was determined using the evaluation metrices of elbow method and 

silhouette score method. In elbow method, the number (k) which flattens the line in the 

chart is considered as the optimal number of centroids. In silhouette score method, the 
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number (k) which obtains the highest score is considered as the optimal number. 

Features for clustering were the most commonly used parameters of the three behavioral 

tests, including time spent in the center zone in the OFT, time spent in the closed arms 

in the EPM, and immobile time in the FST. Python script: 

https://github.com/RoyKudo/PMDD/blob/main/Machine%20learning/k-

means%20clustering.py. 

The statistical significance of clusters in k-means was already tested by evaluation 

metrices, and thus the results generated were not calculated p-value or other additional 

measurements of statistically significant difference. Moreover, machine learning is 

hypothesized that it operates by data in population but not by a small number of 

samples. Therefore, the hypothetical tests after machine learning algorithms are not 

usually necessary (Mehryar, Afshin, & Ameet, 2018). 

 

Hippocampus sampling 

Each rat was decapitated and right or left hippocampal sample was taken. 

Hippocampal tissues were separated from the brain immediately after cervical 

dislocation, and the RNAs were extracted using the following procedure. Hippocampal 

tissue was homogenized in 1 ml Trizol buffer with stainless beads in cell-destructive 

equipment (Shake Master) at 75 xg, 5 min, and centrifuged (13,860 xg, 3 min, 4 °C). 

Next, the supernatant was added 0.2 ml chloroform, vortexed, and centrifuged (13,860 

xg, 15 min, 4 °C). The new supernatant (0.4 ml) was added in the equivalent of 

isopropyl alcohol, vortexed, and centrifuged (13,860 xg, 15 min, 4 °C). The fluid was 

removed, 0.5 ml 70% EtOH was added, and centrifugation (13,860 xg, 10 min, 4 °C) 

was performed to wash the RNA pellets. After drying, 15 µl sterilized diethyl 
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pyrocarbonate (DEPC)-treated water was added, and the concentration and quality of 

RNA were measured by UV-Vis spectrophotometry in Thermo Scientific NanoDrop 

One instrument software. RNAs in all the samples were checked with the ratio of 

absorbance at 260 nm and 280nm around 1.9. The extracted RNAs were used for RNA-

seq. 

cDNAs were then synthesized as follows: 2 µg of RNA was added 1 µl Oligo (dT) 

primer (Invitrogen Item No. N8080128), followed by the use of SuperScript II Reverse 

Transcriptase (Invitrogen Item No. 18064071) according to the manufacturers’ 

instructions. cDNA was used to perform quantitative polymerase chain reaction (qPCR) 

to measure the mRNA expression levels of the selected factors. The cDNA from one 

sample was diluted to 10, 100, and 1000 folds to serve as standards. The cDNA from all 

the samples were diluted to 100 folds and added in 0.5 mM of forward and reverse 

primers by the following recipe: 5 μl 100-fold cDNA, 4 μl sterilized ultrapure water, 0.5 

μl forward primer, 0.5 μl reverse primer, 10 μl SYBER qPCR Mix. The total volume 

was 20 μl. The qPCR reaction condition was 95℃ 10 min. followed by 45 cycles of 

95℃ 15 sec., 60℃ 15 sec., and 72℃ 1 min. All the expression levels of the samples 

were the relative levels compared to the house keeping gene of hypoxanthine-guanine 

phosphoribosyl transferase (HPRT). 

 

• Processing of RNA-seq raw data 

Total RNA with more than 2 µg of 12 samples was used, followed by Poly(A) 

selection for rRNA removal and sequence analysis by the DNBSEQ-G400 sequencing 

platform. Raw reads were trimmed, mapped, and annotated to the rat genome (rn6). All 

procedures were performed according to an official tutorial provided by Galaxy 
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(Reference-based RNA-Seq data analysis: https://training.galaxyproject.org/training-

material/topics/transcriptomics/tutorials/ref-based/tutorial.html). Here is the brief 

summary: FastQC was used to perform the quality check. After trimming by Cutadapt, 

HISAT2 was used for mapping, and featureCounts was used for annotation. KEGG 

pathway analysis and GO term enrichment analysis were performed using DAVID. 

 

Serum sampling 

Each rat was decapitated and the blood were taken from jugular vessels close to the 

rupture surface. Serum was separated from the whole blood by centrifuge (672 xg, 15 

min, 4 °C) after 1-hour still standing at the room temperature. 

 

• Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA of serum P4, estradiol (E2), and ALLO were performed. E2 was also 

included due to its relationship with anxiogenic effect of P4 and ALLO, and chronic 

immune response during the estrous cycle (Bekhbat & Neigh, 2018; Costa, Spence, 

Smith, & Ffrench-Mullen, 1995; Laconi, Casteller, Gargiulo, Bregonzio, & Cabrera, 

2001). Serum was diluted to 800X and the P4 concentration was measured by 

Progesterone ELISA Kit (Item No.582601, Cayman), according to the manufacturers’ 

instructions. E2 was measured by 5X diluted serum and serum 17β-estradiol enzyme 

immunoassay kit (Catalog Number KB30-H1, Arbor Assays). ALLO was measured 

after extracted and by the use of allopregnanolone enzyme immunoassay kit (Catalog 

Number K061-H1, Arbor Assays). The extraction steps of serum ALLO are as follows. 

100 μl of serum sample was put into glass tube with 900 μl of sterilized ultrapure water 

and 2 ml of diethyl ether. The tube was shortly vortexed 4-5 times, and put into -80 ℃ 
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freezer for 20 – 30 min. to stratify. Then, the liquid supernatant with steroids and 

diethyl ether was put into another glass tube and the diethyl ether was evaporated by dry 

heat cabinet of 55 ℃. The steps from adding in 2 ml of diethyl ether were repeated 2 

times to improve the extraction efficiency. After the evaporation of diethyl ether, 500 μl 

of ELISA assay buffer were added to dissolve the steroids, and this solution was used as 

the sample fluid for the following ELISA. 

 

Feature selection 

Feature selection was performed by an original two-step feature selection method. 

First, the annotated genes from the results of RNA-seq were identified by the following 

three criteria: (1) genes with mean expressions increasing/decreasing by the order of 

severities of symptoms; (2) genes without zero in their expression; and (3) genes that 

were not in the unknown list in DAVID. Then, a filter feature selection method 

composed of Linear SVM and SelectKBest in GridsearchCV cross-validation were 

used. Python script of the filter feature selection method: 

https://github.com/RoyKudo/PMDD/blob/main/Machine%20learning/Feature%20select

ion.py. 

 

Supervised machine learning models 

Six classifiers of different supervised machine learning algorithms were built, 

including Linear SVM, RF, Bag SVM, NN, Light GBM, and XGBoost. (1) Linear 

SVM: a linear model that creates a line or a hyperplane to separate data. (2) RF: an 

ensemble learning method grouped by multiple decision tree predictors that uses a tree-

like structure to separate the data. (3) Bag SVM: another ensemble learning method 
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consisting of SVM models in a bagging classifier, fitting base models on random 

subsets of data and making final predictions by aggregating or voting on the predictions 

of the base models. (4) NN: a model with structure imitating the human brain, having 

input and output neurons connected by hidden layers and weighted synapses and giving 

results by learning from former layers and the ability to tune itself. (5) Light GBM: a 

gradient boosting machine based on a leaf-wise decision tree algorithm that has the 

ability to reduce more loss and perform fast. (6) XGBoost: a model similar to Light 

GBM but based on a level-wise algorithm, which is good for optimization but rather 

slow. 

All classifiers were fed with the qPCR results of the identified genes from the 

feature selection step. With the ability to deal with missing values, Light BGM and 

XGBoost used raw data with 10.76% missing values. Other classifiers used the imputed 

data processed by the Multivariate Imputation by Chained Equation (MICE) imputation 

method. The model accuracies were evaluated by Leave-One-Out cross-validation, 

which runs validations across the number of samples to provide reliable and unbiased 

estimations for small datasets. 

 

Code availability 

All code files for analysis are available at: https://github.com/RoyKudo/PMDD. 

 

Results 

Serum P4 concentration of the pseudopregnancy rats. 

The serum P4 concentration during the pseudopregnant period of the is in figure 3-

3. The highest P4 concentration showed on day 8 with the number of 106 ± 20 ng/ml, 
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which was a result more comparable to the highest level in natural pregnant period of 

130 ng/ml than that of the m-PWD rats in the previous study. 

 

Clustering according to the results of the behavioral tests. 

Due to the individual variety of PMDD onset and progression, all the data from 

days 0, 8, and 16 were gathered together and subjected to clustering using the k-means 

algorithm. The number of the clustering were determined “five” since it was the elbow 

of the curve in the graph of elbow method (figure 3-4 a) and obtained the highest score 

in silhouette score method except the number of two (figure 3-4 b). The clustering result 

by k-means with five clusters is in figure 3-4 c (n=55). Cluster 1, 2 and 3 (cluster green, 

orange, and red) were the three groups showed both anxiety- and depression-like 

behaviors progressing from mild to severe. Cluster 4 and 5 (cluster blue and purple) 

were the two groups showed only anxiety-like behavior but no depression-like behavior. 

To investigate the symptoms of anxiety and depression at the same time, only cluster 1, 

2 and 3 were used for later analysis (n=32) (figure 3-5 a). The results of the main 

parameters of the three behavioral tests indicated that both anxiety- and depression-like 

behavior progressed from mild to severe in the green, orange, and red clusters (figure 3-

5 g-i). These three clusters were referred to as clusters 1, 2, and 3. Figure 3-5 b-f show 

the other ancillary parameters in the behavioral tests. Cluster 3 was relatively low in 

both total distance traveled in the FST and number of head dips in open arms in the 

EPM, and relatively high in total distance traveled in the EPM at a degree similar to that 

of cluster 2. Regarding the results of total distance traveled and number of rearing in the 

OFT, the three clusters were at about the same level. The distribution of cluster 1, 2, and 

3 on day 0, 8, and 16 is in table 3-1. For the total number of individuals in the three 
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clusters in all the three test days, cluster 3 had the fewest number of four, and cluster 2 

had the highest number of 17. The individuals of cluster 3 were showed on day 0 (n=2) 

and 8 (n=2) but not on day 16. 

 

Serum P4, E2, and ALLO concentration on the test days. 

Serum P4, E2, and ALLO concentration on day 0, 8, and 16 are in figure 3-6. In 

figure 3-6 a, although mean P4 concentration was slightly increased from cluster 1 to 3, 

there were still some individuals with higher P4 concentration in cluster 2 than those in 

cluster 3. In figure 3-6 b, serum E2 concentration showed variously especially in cluster 

2; while cluster 3 still had the highest mean P4 concentration. In figure 3-6 c, mean 

serum ALLO concentration was significantly increased from cluster 1 to 3 with the 

difference between cluster 2 and 3 was larger than that of cluster 1 and 2. 

 

Determination of PMDD diagnostic factors using the original two-step feature 

selection method. 

After separating all the individuals into three clusters, RNA-seq was performed to 

investigate the gene expression level in the hippocampus of each cluster, and 32,545 

genes were obtained by annotation. Next, to identify the genes most related to the 

change in PMDD symptoms, a feature selection model consisting of SelectKBest, 

Linear SVM, and Grid Search CV was performed. However, the result of RNA-seq was 

a small dataset with few samples (n=12) but high dimensions (n=32,545). As a result, 

no matter how the model was tuned, the accuracy remained low and the number of 

selected genes remained high. Therefore, the original two-step feature selection method 

was performed. 
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The first step in the method efficiently reduced the number of genes from 32,545 to 

5047. The KEGG PATHWAY database and the results of the GO term enrichment 

analysis of the 5047 genes are shown in figure 3-7 and 3-8. Then, in the second step, the 

5047 genes were inputted and iterations were run until only one gene remained (table 3-

2). Still, the result of the multi-class classification of clusters 1 to 3 was unsatisfying. 

Although the number of genes remaining dropped sharply (from 5043 to 6 in the second 

iteration), the low accuracy persisted (69.40% in the fourth iteration). Thus, feature 

selection for a binary classification of putting cluster 1 with cluster 2 versus cluster 3 

was also performed. This time, the number of genes remaining gradually declined, and 

the accuracy reached 100.00% in the range of 48 to 16 remaining genes. After that, the 

only gene remaining after four iterations in the multi-class classification of clusters 1 to 

3, and the 16 genes that maintained the accuracy at 100.00% with the smallest number 

of genes remaining in the binary classification of clusters 1+2 and cluster 3 were then 

identified. The list of the identified 17 genes is also shown in table 3-2. 

To confirm the RNA-seq results, qPCR was performed to verify the gene 

expression levels of the 17 identified genes (figure 3-9). Figure 3-9 a shows a scatterplot 

of the RNA-seq results for two of the identified genes, Marcks and Hhex. From this 

figure, the distribution of cluster 3 was far from those of clusters 1 and 2 could be 

verified. However, clusters 1 and 2 both had one data point for each group separated 

from the other data points, making the separation of clusters 1 and 2 difficult. A similar 

distribution can also be seen in figure 3-9 b, which shows a scatterplot of the qPCR 

results for Marcks and Hhex. Based on the scale difference of the axes, this was not 

identical to figure 3-9 a; however, it showed similar characteristics in clusters. For this 
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reason, the qPCR results of the 17 identified genes were used to perform the second 

screening of the RNA-seq results and subsequent tests. 

 

Verification and comparison of the supervised machine learning models. 

Six classification models were built using the 17 identified genes. The model 

accuracies of both multi-class (three-class) classifications of cluster 1 to 3 and the 

binary (two-class) classification of cluster 1+2 versus 3 are listed in table 3-2. As shown 

in the table, NN had the best model accuracies for both classifications (80.00% and 

100.00%), followed by Bag SVM in the three-class classification (72.73%) and as good 

as RF and Bag SVM in the two-class classification (both 100.00%). On the other hand, 

Linear SVM and XGBoost had the lowest accuracies in the three-class classification 

(both 54.55%), and considerably lower accuracy in the two-class classification 

(72.73%) compared with the others. 

 

Prediction performance of the models.  

After constructing the models, the previous pseudopregnancy process and 

behavioral tests were performed again with a new group of rats (n = 26). The behavioral 

test results were standardized and used to predict the cluster of each rat by the same k-

means model. The qPCR results of the 17 identified genes in this new group of rats 

were obtained to examine the prediction ability of the classifiers. The prediction 

accuracies are also shown in table 3-3. RF had the best accuracies (96.00% and 

100.00%) in the three- and two-class classifications, respectively, while NN (78.00%) 

had the lowest in the three-class and Light GBM (91.00%) in the two-class 

classification. Figure 3-10 shows the confusion matrices of RF and NN for the three-
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class predictive classification. RF only misclassified one cluster 2 data point to cluster 

1. However, NN seemed to be unable to distinguish the clusters by putting all the data 

points into cluster 2. The confusion matrices of the other classifiers are shown in figure 

3-11, and the outline of the methods and tools used in this study is shown in figure 3-12. 

 

Discussion 

In this chapter, pseudopregnant rats were chosen to imitate the hormone 

environment in the human luteal phase, and k-means were used to cluster the behavioral 

data to form the three groups of rats with mild to severe anxiety- and depression-like 

behaviors. Besides, DLC was successfully applied for the analysis of behavioral test 

videos. Then, the original two-step feature selection method was used to identify 17 

important genes from the hippocampus, and these 17 genes and the foregoing clustering 

result were used to build the six supervised learning classifiers. Among the classifiers, 

RF was the best classifier for the present task with the best prediction accuracy in both 

two- and three-class classifications. 

 

The method of pseudopregnancy followed by k-means is possible to differentiate 

PMDD and other premenstrual illnesses. 

In the clustering result, there were five clusters with two of them only having 

anxiety-like behavior but no depression-like behavior. It is an interesting result as it 

shows that pseudopregnancy is a method providing endogenous environment inducing 

different physiological changes in different individuals, and k-means has the potential to 

be used for the separation of different diseases. Individual difference is a huge difficulty 

for studying PMDD and other mood disorders (Eisenlohr-Moul et al., 2020). By use of 
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pseudopregnant animals and k-means, animals with different properties in syndromes 

were successfully generated and differentiated. Especially that the property of 

unsupervised learning, the number of clusters being determined by evaluation metrics or 

data-driven training, is important for investigating new facts or rules which have not 

been noticed before. From the result in the present study, it is possible to find the key 

factors which can separate the patients with anxiety-like behavior and depression-like 

behavior, and the patients only with anxiety-like behavior. K-means makes it possible to 

differentiate PMDD and Anxiety disorder. 

It is also possible to add in more parameters, such as other behavioral test results or 

environmental factors, to investigate more about the symptoms and their related factors. 

Since k-means is such a powerful tool, future studies and databases which can gather 

more information and experimental results of mood disorders sharing similar 

pathological pathways are expected. In this way, more details in these disorders can be 

recognized, and more precise diagnoses and treatments can be provided to the patients. 

 

The three sex hormones of P4, E2, and ALLO cannot be the diagnostic criteria of 

PMDD symptoms. 

In figure 3-6, the relationship among sex hormones, clusters, and the 

pseudopregnant period was revealed. Serum P4 tended to affected by the progress of the 

pseudopregnancy period but not the clusters. Serum E2 seemed to be higher in the 

beginning of the pseudopregnant period and had larger individual difference. Serum 

ALLO had a relatively clear increasing tendency along with the clusters than the other 

two. These results agree with the conclusions that it is ALLO but not P4 or E2 has the 
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closest relationship with PMDD (Timby et al., 2016). However, the great variation 

makes none of them suitable for being the diagnostic criterion of PMDD symptoms. 

 

The hippocampus was chosen due to its relationship with PMDD mechanism. 

Amygdala, prefrontal cortex, and hippocampus are the most studied brain areas 

studied the most in PMDD research. Amygdala and prefrontal cortex have been more 

studied by the use of resting-state functional magnetic resonance imaging (fMRI) scan 

in PMS/PMDD patients. One of the studies indicated that amygdala activity is related to 

anxiety proneness of PMDD (Gingnell, Morell, Bannbers, Wikström, & Poromaa, 

2012). Another study demonstrated that the volume of amygdala is greater, and the 

functional connectivity (FC) between amygdala and other brain areas are altered in the 

PMS patients. For instance, the FC increases between amygdala and prefrontal cortex, 

but decreases between amygdala and hippocampus (Deng et al., 2018). On the other 

hand, hippocampus has been more studied in its relationship with PMDD mechanism. 

The receptors of P4, E2, and GABAR in the hippocampus are related to the functional 

changes in PMDD patients. These receptors are sensitive to the fluctuation of the 

corresponding hormones, affect the structure and composition of hippocampus, and 

finally bring out PMDD-related symptoms (Wiklund, 2017). A previous study even 

indicated that the proliferation of hippocampal neuron progenitor cells can be promoted 

by ALLO, which may be one of the reasons of emotional dysfunction in PMDD (J. M. 

Wang, Johnston, Ball, & Brinton, 2005). Due to the essential role in PMDD symptoms, 

such as emotional, cognitive, learning, and memory function changes, hippocampus was 

chosen to be the research target in the present study. 
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As for the effect of the mainstream treatment of PMDD, SSRIs, in the 

hippocampus, it is still a controversial issue. There is not yet a study mainly focusing on 

the direct relationship between SSRIs and hippocampus. There were studies about 

SSRIs normalizing hippocampal output to treat mood symptoms in major depression 

disorder (Dale et al., 2016). There was also a study about low E2 state being able to 

increase hippocampal serotonin transporter activity (Bertrand et al., 2005). However, 

there was also another study showing that progesterone withdrawal (one of the 

hypothesized PMDD etiology) did not alter hippocampal serotonin level (Li et al., 

2012). Thus, further research for the effect of SSRIs in the hippocampus under PMDD 

situation is still needed. 

 

Most of the hippocampal 17 key genes are associated with PMDD symptoms. 

For the 17 selected genes, they are not closely related and do not gather in the same 

pathway. They also have a wide range of mRNA expression levels from tens to 

thousands of digits. However, some of them or their families have already been 

suggested to be involved in the development of PMDD symptoms such as anxiety and 

depression, or to be able to be used to differentiate mood disorders. For example, the 

vasopressin pathway is known to play a role in anxiety and depression (Morales-

medina, Witchey, & Caldwell, 2016). The nuclear factor-kB (NF-kB) family has been 

proven to be a mediator of depressive behavior (Koo, Russo, Ferguson, Nestler, & 

Duman, 2010). Family with sequence similarity 65, member C (Fam65c) has been 

indicated to be involved in distinguishing major depressive and anxiety disorders (Rao, 

Yin, Xiang, & So, 2020). These findings suggest that our method can identify factors 

that have actual relationships with and close to PMDD. The list of the factors and their 
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previous studies related to mood disorders is in table 3-4. Furthermore, some of the 17 

genes has also been studied their relationship with the characters in the PMDD 

hypothesized pathological pathway. The activation of chemokines and cytokines, such 

as NF-kB, can be prevented by ALLO (Balan, Beattie, O’Buckley, Aurelian, & 

Morrow, 2019). Cysteine-rich angiogenic inducer 61 (Cyr61) has been suggested as a 

progesterone down-regulated gene (Hanekamp et al., 2003). G protein-coupled receptor 

101 (Gpr101) was found expressed by a subgroup of GABAR in ventral tegmental area 

(VTA) and substania nigra pars compacta (SNC) of the limbic system (Paul, Tossell, & 

Ungless, 2019). In addition, due to the wide range of expression levels of the 17 key 

genes, the genes with low expression levels could be hard to be measured by the use of 

qPCR. Thus, a triplicate experiment is better to be operated and the primer should be 

selected carefully. The primers of the 17 genes used in qPCR are listed in table 3-5. 

 

RF is the classifier with the best performance in the present task. 

Regarding the results of the six classifiers, the model accuracies determined by 

Leave-One-Out cross-validation did not always have absolute positive relationship with 

the predictive accuracies. For instance, RF had a rather low model accuracy of 63.64%, 

but the highest prediction accuracy of 96.00% in the three-class classification. XGBoost 

had a model accuracy of 72.73%, but achieved a prediction accuracy of 96.00% in the 

two-class classification. Conversely, NN had higher model accuracies in the three-class 

classification (80.00% and 100.00%), but rather low ones (78.00% and 96.00%) in the 

two-class classification. It seems that NN could not learn patterns from the models 

correctly when there were only a small number of samples. By considering all the 

performances, RF is the best classifier with the highest prediction accuracies in both 
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classifications, and the opposite, NN, might have a problem with overfitting. Because of 

the operating complexity, NN is a remarkable classifier but considered to be prone to 

overfitting, especially when using small size dataset (Lawrence, Giles, & Tsoi, 1997). If 

there is more data inputted into the present NN model in the future, it is possible that 

NN will have better predictive performance. 

 

The operating principle of classifier is more influential to the classification result 

than the missing data imputation method. 

The way to handle missing value is an issue for classification tasks. In the present 

study, MICE was used to impute the missing values in the qPCR results. MICE is an 

imputation algorithm which imputes the blanks by referring to the values in other 

columns of features (van Buuren & Groothuis-Oudshoorn, 2011). By the use of random 

forest algorithm, it provides relatively correct result than other methods, such as 

imputation using mean, median, or constant values. Due to the ability of missing value 

tolerance, data imputed by MICE was not used in Light GBM and XGBoost in this 

study. However, these two classifiers had lower model accuracies, indicating that 

missing values actually had influence on the classification results even the rate of 

missing value was only 10.76%. At the same time, the performance of prediction of 

Light GBM and XGBoost were not that poor (91.00% and 96.00% in two-class 

classification), showing that the patterns of data still could be learned when there were 

about 10% missing values. It seems that the prediction accuracy is more about the 

operating principles of the classifiers than the missing value processing. 
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The AI diagnostic method in the present study is objective, improvable and 

promising. 

Diagnostic machine learning techniques have been studied and developed in the 

past ten years. Heart disease, diabetes, hepatic and renal disease are the main targets. By 

using different algorithms and attributes, these AI tools have already been able to 

provide diagnostic accuracies around 95% and the accuracies are still increasing 

(Fatima & Pasha, 2017; Somnay et al., 2017). On the contrast, the use of AI methods in 

psychological diseases is just started in the recent three years. The methods has been 

used for diagnosis of autism, monitor of mental health physiological indicators, or 

supplementary psychotherapies (Abbas, Garberson, Liu-Mayo, Glover, & Wall, 2020; 

Ćosić, Popović, Šarlija, Kesedžić, & Jovanovic, 2020). There is still only few of formal 

reports of AI application using biological factors in the diagnosis of psychological 

disease. However, the researchers interviewed by Harvard Business Review and The 

Verge believe that this field is a promising and exciting help for the suffering patients. 

Bringing in machines can be a new solution (Garg & Glick, 2018; Zarley, 2019). This is 

also the vision which the present study is striving for. When comparing to the existing 

diagnostic method in DSM-5, the new method in the present study is superior in the 

following two aspects. One is that it is an objective method. It provides the diagnostic 

standard by using the expression levels of measurable genetic factors but not subjective 

judgements. Another is that, it is a method which is improvable. By gathering data 

continuously, the current diagnostic system can be more useful and accurate. 

In conclusion, in the end of the present study, the expression changes of the 17 

genes in hippocampus were found being able to separate the individuals with different 

severity of PMDD symptoms, and RF can be the most suitable classifier for the current 
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task. Moreover, the original two-step feature selection method consisting of a manual 

selection followed by a filter method was presented and proved to have the ability to 

find the true factors of disease. It is expected to provide a new solution for dimension 

reduction problems in genetic studies.
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Figures and tables 
 
 

 

 

Figure 3-1. Experimental schedule of day 0, 8 ,16 in the pseudopregnant period. 

The experimental schedule started from 10:00. Between each step, there were 

approximately 1-h interval. After the last behavioral test of FST, all the rats were 

decapitalized, and the hippocampus and serum were sampled immediately. 
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Figure 3-2. The points of interest used for the animal tracking in DLC. 

    In DLC, the points of interest have to be taught to the algorithm beforehand, and 

the algorithm will know what to capture in the video. OFT: head center, body center, 

tail base. EPM: head center, body center. FST: head center, body center, tail base, left 

and right side of the body center. 
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Figure 3-3. Serum progesterone concentration during the pseudopregnant period (n=4). 

    The pseudopregnant period was around 16 days. There was a peak on day 8 with 

the concentration of 106 ± 20 ng/ml. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3-4. The plot of elbow method and silhouette score method, and the clustering 

result with five clusters. 

(a) The evaluation result of elbow method. (b) The evaluation result of silhouette 

score method. (c) The clustering result with five clusters. 

 



 
 

68 

 
 

Figure 3-5. Clustering and behavioral test results of pseudopregnancy groups. 

(a) k-means clustering result. (b-i) Behavioral test results of clusters 1–3. (b) Total 

distance traveled in the OFT. (c) Total distance traveled in the EPM. (d) Total distance 

traveled in the FST. (e) Rearing number in the OFT. (f) Number of head dips in open 

arms in the EPM. (g) Time ratio in the center zone in the OFT. (h) Time ratio in closed 

arms in the EPM. (i) Immobile time ratio in the FST. 
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(a)                                      (b) 

          
(c) 

 

 

Figure 3-6. Serum P4 (a), E2 (b), and ALLO (c) concentration of cluster 1, 2, and 3 on 

pseudopregnant day 0, 8, and 16. 

    All the three hormones tended to increase in the order of cluster 1 to 3. However, 

the individual differences made great variations. None of them could be the diagnostic 

criterion of PMDD symptoms. 
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Figure 3-7. KEGG pathway analysis result for the selected 5047 genes. 

Top 20 KEGG pathway results of (a) results of upregulated genes (3517 genes). (b) 

results of downregulated genes (1530 genes) of cluster 1 to 3. 
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Figure 3-8. GO term enrichment analysis result for the selected 5047 genes. 

Top six GO analyses of the biological process, cellular component, and molecular 

function of (a) results of upregulated genes (3517 genes). (b) results of downregulated 

genes (1530 genes) of cluster 1 to 3. 
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(a) 

 
(b) 

 

 

Figure 3-9. Scatterplots of Marcks and Hhex. 

(a) Plot by results of RNA-sequencing. (b) Plot by results of qPCR. The 

scatterplots were used to compare whether the result of RNA-seq and qPCR were 

identical or not, and to observe the distribution of data. In the plots, cluster 3 could be 

separated easily. On the contrast, the separation of cluster 1 and 2 could be difficult. 
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(a)                                   

 

 
(b) 

 

 

Figure 3-10. Confusion matrices of predicted data in C1 vs. C2 vs. C3 multi-class 

classifications. 

(a) Results of RF. (b) Results of NN. RF only misclassified one cluster 2 data point 

to cluster 1. However, probably duo to the issue of overfitting, NN was unable to 

distinguish the clusters and put all the data into cluster 2. 
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Figure 3-11. Confusion matrices for the predicted data in C1 vs. C2 vs. C3 multi-class 

classifications. 

(a) Results of Linear SVM. (b) Results of Bag SVM. (c) Results of Light GBM. (d) 

Results of XGBoost. The algorithms other than RF and NN also struggled with the 

differentiation between cluster 1 and 2 mostly. 
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Figure 3-12. Outline of the methods and tools used in the present study. 
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Table 3-1. The distribution of cluster 1, 2, and 3 on pseudopregnancy day 0, 8, and 16. 

    There were more individuals of cluster 2 and 3 in day 0 and 8 than in day 16. Due 

to the fact of alleviation of PMDD symptoms before menstrual period, the results in the 

present study could be thought comparable to the real situation in the human patients. 
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Table 3-2. Feature selection processes and results of C1 vs. C2 vs. C3 multi-class 

classifications and C1+C2 vs. C3 binary classifications. 

Due to the low accuracy in C1 vs. C2 vs. C3 multi-class classification, only one of 

the last gene of Gemin7l1 was selected. In total, 17 genes were identified as the most 

important gene set for PMDD according to cross-validation model accuracy. 
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Table 3-3. Cross-validation model accuracy and prediction accuracy of C1 vs. C2 vs. 

C3 multi-class and C1+C2 vs. C3 binary classifications by 6 classifiers. 

Linear SVM, Random Forest, Bag SVM, Neural Network used data after 

imputation. Light GBM and XGBoost used data with missing values (missing value 

percentage: 10.76%). Due to the difficulty of separating cluster 1 and 2, the model 

accuracies were relatively low in all the classifiers. However, all the prediction 

accuracies were higher than 75%. The prediction accuracies of Linear SVM, RF, and 

Bag SVM even reached 100% in the binary classification. The results demonstrated that 

it is possible to use supervised machine learning algorithms to build diagnostic systems 

for difficult diseases such as PMDD. 
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Gene name Functions related to mood disorders Research 

Avpr2 
The vasopressin pathway potentially 
contributes to stress-related disorders, 
including anxiety and depression. 

Morales-medina, Witchey, 
and Caldwell, 2016) 

Cyr61 
Related to acute immobilization stress 
(anxiety and depression) 

Kurumaji et al., 2008) 

Klhl41 
Related to chronic unpredictable mild stress 
(CUMS) induced depression 

Sun et al., 2018) 

Nfkbil1 
Related to stress induced anhedonia 
(depression) 

Koo et al., 2010) 

Fam65c 
Can be used to separate Major Depression 
Disorder and Anxiety Disorder 

Rao et al., 2020) 

Marcks Related to depressed suicide Pandey et al., 2003) 

Cfap44 
Related to cognitive impairment in 
hippocampus 

Song et al., 2019) 

Hhex 
Related to chronic restraint stress (anxiety 
and depression) 

Gray et al., 2014) 

Cd22 Related to Major Depression Disorder Mellon et al., 2016) 

Spc24 

Related to disturbances in circadian 
rhythm, and indirectly related to multiple 
mood disorders including Major 
Depression Disorder and Anxiety Disorder 

Polo et al., 2017) 

Efcc1 
Related to sexual differences in brain 
regions of Alzheimer’s disease 

Sun et al., 2019) 

Lrrc74b 
One of the schizophrenia-associated copy 
number variants 

Campbell and Granato, 
2020) 

Nlrc4 
One of the inflammasome subtype of 
Nlrp3, involved in stress, depression, and 
comorbid illnesses 

Iwata, Ota, and Duman, 
2013) 

Gpr101 
Related to higher immobile time in FST 
(depression) 

Mantas et al., 2021) 

LOC108352928 Uncharacterized gene - 

Ppp1r42 Little-known gene - 

Gemin7l1 
(Gemin7) 

Related to sexual-biased psychopathology Phillips et al., 2019) 

 

Table 3-4. The list of the 17 key factors and their previous studies related to mood 
disorders. 
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Gene name Primer Up or down 
regulated 

Avpr2 
NM_019136.1 

F: ACCCTTCTTCCTCGTGCAG 
R: AGCAGCATGAGCAACACAAA 

Down 

Cyr61 
NM_031327.2 

F: GGATCTGTGAAGTGCGTCCT 
R: CTGCATTTCTTGCCCTTTTT 

Up 

Klhl41 
NM_057191.1 

F: CACTGAAGTCAATGACATATGGAAG 
R: CCCGAAGCATATCGAATCTC 

Down 

Nfkbil1 
NM_212509.2 

F: TCAAGGAGAAGGAACTGTGTGA 
R: GGTCCCCTTGAGCCTCTT 

Up 

Fam65c 
ENSRNOT00000035463.5 

F: ATCACAGAGTTGGGCACCAT 
R: TCAGAGTCCAAGGGGTTCC 

Down 

Marcks 
NM_001271090.2 

F: GTCGCCTTCCAAAGCAAAT 
R: AAAGTTGGCGTGCAGCTC 

Up 

Cfap44 
ENSRNOT00000059680.4 

F: GAGAGGAGCAAGACATGCAA 
R: CCGACTGGAAGCCAGAGTAG 

Down 

Hhex 
NM_024385.1 

F: AATCGCAGAGCTAAATGGAGA 
R: TCCAAACTGTCCAACTCATCC 

Up 

Cd22 
NM_001107503.1 

F: TGTGGCCGTGGAGATAGATA 
R: ACACATGATGGCTTGTCTGG 

Down 

Spc24 
ENSRNOT00000045384.5 

F: GACTGCTGGAGATGCAGGAC 
R: TCCTTCAGTTCAAGAAGGCTCT 

Up 

Efcc1 
NM_001163921.1 

F: GAAGTTGGTGGATGTGCTACAA 
R: CTTCCCCAGTGCTCTTTTTG 

Down 

Lrrc74b 
ENSRNOT00000002557.7 

F: CAGGGTCAACAATGTGTTAGAAGA 
R: GAAGACCCAACCCCAACTTC 

Down 

Nlrc4 
NM_001309432.1 

F: CTTGAAAACTGGAACTATCCTGTG 
R: TCTTCCAAGTTCTGATGAAAAAGA 

Down 

Gpr101 
NM_001108258.1 

F: GAAAGGTGGCCAGACAGC 
R: CAGCTCAATGTCTGCCCTAGTA 

Down 

LOC108352928 
ENSRNOT00000082495.1 

F: GTACCAGTCGGTGAGCAAAGT 
R: CTTCACAGCGAAGGGAAACT 

Down 

Ppp1r42 
NM_001127569.1 

F: TCTTAAACCCAGAAAAGAAGAAACC 
R: GTTTTTACAAAGAGAGAGGTCATCAA 

Up 

Gemin7l1 (Gemin7) 
XM_003749742.3 

F: GGGCGTAAGAGCAGAGCTT 
R: CACCGGCACAGGAATGAT 

Up 

 

Table 3-5. The 17 key genes, their primers used in qPCR, and the direction of 
regulation. 
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General discussion 

In the present study, a diagnostic method for PMDD symptoms using AI tools and 

hippocampal factors in rats was successfully established. DLC was used for analyzing 

the behavioral test videos, and k-means for clustering the individuals by their severity of 

symptoms. Also, Usegalaxy.org was used to process RNA-seq raw data, and an original 

two-step feature selection method was established to find the set of the most important 

factor genes. The clustering result and the expression of the selected genes were then 

used to build supervised learning algorithms to form the new diagnostic system for 

PMDD symptoms (figure 4-1). In this chapter, issues of PMS/PMDD and the 

benefits/limitations of the diagnostic method in the present study would be discussed. 

 

The possible evolutionary advantages of PMDD syndromes. 

    The emotional change in PMDD is now generally considered pathological and 

detrimental since it has been added into DSM-5 in 2013. On the contrast, there were 

also researchers approving that the occurrence of PMDD symptoms has evolutionary 

advantages. They conjectured that the anxiety or depression status in the luteal phase in 

women might be able to break down the infertile pair bonds of couples unsuitable for 

each other and be beneficial to reproduction (Morriss and Keverne, 1974; Wilson, 

1992). There was also another assumption that the lower sexual desire and irritable 

mood might protect women from the increased vulnerability to infection during the 

luteal phase (Kinney & Tanaka, 2009). However, these hypotheses were criticized for 

either their unreplicable methodological flow or lack of direct evidence, making them 

failing to be widely accepted (Gillings, 2014; Ziomkiewicz-wichary, 2017). 
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The association among PMS/PMDD, postpartum depression (PD), and menopausal 

symptoms (MS) is still unclear. 

    PMS/PMDD, PD, and MS are the three female-specific mood disorders. Due to the 

difficulties in investigating the detail mechanism, PD and MS are also the diseases with 

limited understanding and treatment on a similar note with PMS/PMDD (Freeman, 

2002). The comparative studies are still rare, making the only clear experimental 

conclusion at this time is that the hormone-related etiology is shared in the three 

diseases (Lee et al., 2015; Parry & Newton, 2001). As for the question that whether 

there is direct relationship between the onset of PMS/PMDD and MS, the answer is still 

controversial (Freeman, Sammel, Rinaudo, & Sheng, 2004; Richards, Rubinow, Daly, 

& Schmidt, 2006). 

 

The clustering method in the present study can be used to separate not only the 

healthy/sick but also PMS/PMDD individuals. 

The method for separating healthy and sick animals by using unsupervised 

machine learning algorithm was established in the present study. In the clustering 

results, there were three clusters with different symptom severities corresponding to 

healthy, premenstrual syndrome (PMS), and PMDD. In the clinical setting, the 

differentiation of PMS and PMDD is also subjective and ineffective (Biggs & Demuth, 

2011). The present clustering result with three clusters showed that when diagnosing 

PMDD, it is also possible to separate PMS from PMDD at the same time. Collection of 

more data from experimental animals and human patients can enable the specific 

borders regarding the behaviors and key factors between PMS and PMDD to be 

identified, allowing these two terms to be distinguished more easily in the future. 
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The original two-step feature selection method can be a new option for RNA-seq 

data analysis. 

The original two-step feature selection method for RNA-seq small dataset analysis, 

which consists of a step of manual extraction and a subsequent step of machine learning 

feature selection, was employed in the present study. Due to the complexity and high 

dimensionality, RNA-seq data have been considered to be hard to handle and the proper 

tools have been lacking (Jabeen, Ahmad, & Raza, 2018). Other studies have already 

tried to analyze RNA-seq data using different types of classifiers or normalization 

methods (Evans, Hardin, & Stoebel, 2018; L. Wang, Xi, Sung, & Qiao, 2018). In the 

present study, there was only a small dataset containing few samples. Some of the 

features, such as the ones with several zeros and the ones with relatively small numbers, 

could easily affect the feature selection model and the selected list. Therefore, the data 

was preprocessed by reducing the feature dimensions of 84.49% to make it simpler and 

clearer, and this step also made the result more interpretable. Moreover, by this feature 

selection procedure, a set of diagnostic genes for PMDD symptoms instead of finding 

only one key gene was provided. By taking this procedure, the factors whose expression 

changes were the most relevant to the definition of the severity order of clusters 1 to 3 

could be discovered, and therefore separating the degrees of disease severity could be 

performed in a more secure and dependable way. The concept of this method is similar 

to Gene Set Enrichment Analysis (GSEA) presented by Subramanian et al. in 2005. 

Since the genes with low expression levels can also have downstream effects, focusing 

on a set of gene instead of one single gene can be expected to make the result more 

reproducible and more interpretable (Subramanian et al., 2005). 
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There are also limitations in the present study. 

The present study still had some limitations. First, PMDD symptoms could not be 

induced in all rats, and thus it might not reflect the true level of difference among 

clusters. Second, the used factors are in the hippocampus, and they cannot be practiced 

directly in clinical settings. A further study on PMDD diagnostic sets in serum or 

cerebrospinal fluid is therefore required. Finally, the use of rat as test subject may 

involve some divergence from humans on the species level. In fact, there were also very 

few research teams using experimental primates to study PMS/PMDD and possible 

treatments (Qiao, Zhao, Wei, Zhang, & Wang, 2013; Rapkin, Pollack, Raleigh, Stone, 

& McGuire, 1995). However, there were similar problems of inconsistent experimental 

animal species and methods bringing out the results with less conviction. The 

establishment of official experimental process and the unification of disease models in 

different species are the urgent challenges in PMDD research. 

 

In conclusion, a methodology using machine learning to construct efficient 

diagnostic procedures for pluricausal diseases, including PMDD, was established in the 

present study. This is the first study applying machine learning to syndrome 

classification in experimental animal. The procedures and tools developed in the present 

study are expected to be applied to other mood disorders and complex diseases in the 

future. They can be used to perform differential diagnoses between two or more 

different but similar diseases and contribute to tailored treatment. The data from the 

future studies can be used to build disease database that includes data from both 

experimental animals and human patients, which is expected to make the comparison of 

pathological change among species more diligently. 
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Figures and tables 
 

 
 

Figure 4-1. Overview of the present study. 

In the establishing stage of the diagnostic algorithm, the clusters with different severity 

of PMDD syndromes were obtained from the three behavioral tests, open field test, 

elevated plus maze test, and forced swim test, and then were used to identify the most 

related 17 key genes. In the applying stage, the expression levels of the 17 key genes 

from the new group of rats were used as the input to the diagnostic algorithm, and 

successfully produced the output of the clusters for this group of rats. 
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