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Chapter 1
Introduction |

In this thesis, we study the structure of varieties admitting a polarized endomor-
phism and the minimal model program in mixed characteristic. We will freely use
the notation and terminology in [63].

A polarized endomorphism is a non-invertible endomorphism of a projective va-
riety preserving some polarization. In Chapter 2, which is based on [98], [99],[101],
we study the structure of varieties over C admitting a non-invertible polarized en-
domorphism. Such a study has its origin in the following conjecture about a char-
acterization of projective spaces. :

Conjecture 1.0.1 (cf. [29, Question 4.3], [78, Conjecture 6.5]). Let X be a smooth
Fano variety over C of Picard number one. Then X is a projective space if and only
of X has a non-invertible endomorphism. :

Since every endomorphism of a Fano variety of Picard rank one is polarized, we
can regard Conjecture 1.0.1 as a statement on the structure of varieties admitting
a non-invertible polarized endomorphism. It was studied in [5], [51], [52], [85] and
solved in dimension three. Moreover, Conjecture 1.0.1 is generalized to the case of
toric varieties, which was solved in dimension two [82] and three [80].

Conjecture 1.0.2 (cf. [29, Question 4.4], [78, Question 6.6]). Let X be a smooth
and rationally connected variety over C. Then X is toric if and only if X has a
non-tnvertible polarized endomorphism.

- The Minimal model program (MMP, for short), which is a higher-dimensional
analog of the classification method of surfaces, is a important tool to find a “sim-
plest” variety in each birational equivalence class. In characteristic zero, this pro-
gram holds for threefolds and varieties of general type (cf. [11]). In order to study
* the structure of (not necessarily rationally connected) varieties admitting an int-
amplified endomorphism, Meng and Zhang established minimal model program that
is equivariant with respect to non-invertible polarized endomorphism (equivariant
MMP, for short). Meng [76] generalized this program for varieties admitting an
int-amplified endomorphism, which is a surjective endomorphism f: X — X of a
projective variety X such that f*L ® L~! is ample for some ample line bundle L



on X. We note that every non-invertible pdlarized endomorphism is int-amplified.
Meng and Zhang obtained the following result using the equivariant MMP.

Theorem 1.0.3 ([76], cf. [77]). Let X be a smooth projective variety over C ad-
mitting an int-amplified endomorphism. There exists an étale cover u: X — X
“such that the albanese morphism albg is a fiber space whose every fiber is rationally
connected. '

Following the above results, we propose the next conjecture, Wthh is a generalization
of Conjectures 1.0.1 and 1.0.2 and Theorem 1. 0.3.

Conjecture 1.0.4. Let X be a smooth projective variety over C admitting an int-
amplified endomorphism. After replacing X with its etale cover, every fiber of the
albanese morphism of X is toric.

In order to state the main theorem in this chapter, we recall the notion of Fano
type. Given a projective morphism Z — B of normal varieties over C, we say
that Z is of Fano type over B if there exists an effective Q-Weil divisor D on Z
such that (Z, D) is klt and —(Kz + D) is ample over B. When B is a point, we
simply say that Z is of Fano type. We note that if Z is of Fano type over B,
then a general fiber is of Fano type. For example, toric varieties are of Fano type
and projective bundles over B are of Fano type over B. Zhang [102] and Hacon-
Mckernan [41] proved that varieties of Fano type are rationally connected. On the
other hand, smooth and rationally connected varieties are not necessarily of Fano
type in general. Therefore, the following theorem strengthens Theorem 1.0.3 and
gives a partial answer to Conjecture 1.0.4.

Theorem A (Theorem 2.3.31, Remark 2.3.32). Let X be a smooth projective variety
over C admitting an int-amplified endomorphism. Then there exists an étale finite
cover p: X — X such that the albanese morphism albgz: X — A is a fiber space
and X is of Fano type over A. Furthermore, every fiber of albg is smooth and of
Fano type. In particular, if X is rationally connected, then X is of Fano type.

- Theorem A has two interesting applications. The first application is the following
characterization of toric varieties via an int-amplified endomorphism, which is an
analog of results of Thomsen [95] and Achinger [1].

Theorem B (.Theorem 2.4.6, Theorem 2.4.13). Let X be a smooth projective variety
over C admitting an int-amplified endomorphism f. Then X is toric if and only if
f+L is a direct sum of line bundles on X for every line bundle L on X.

Remark 1.0.5. If f is a multiplication map, then the “only if” part of Theorem B
essentially follows from the argument in [95]. Toric varieties, however, have other en-
domorphisms in general. For example, a projective space has many endomorphlsms
Whlch do not preserve any toric structure. :



As the second application of Theorem A, we study a connection between admit-
ting an int-amplified endomorphism and Frobenius splitting. First, we recall the
notion of global F-splitting. It is a global property of a projective variety over a
- perfect field of positive characteristic defined by the splitting of the absolute Frobe-
nius morphism. Via reduction to positive characteristic, global F-splitting makes
‘sense even in characteristic zero as well: X is said to be of dense globally F-split
type if its modulo p reduction is globally F-split for 1nﬁn1tely many primes p. The
second application is now stated as follows.

Theorem C (Theorem 2.5.7). Let X be a normal surface over C admitting an
int-amplified endomorphism. Then X is of dense globally F-split type.

It is proved in [38] that if a normal surface X is of dense globally F-split type, then
it is of Calabi- Yau type, that is, there exists an effective Q-Weil divisor A on X such
that Kx + A is Q-linearly trivial and (X, A) is log canonical. Thus, Theorem C
gives an affirmative answer to the following conjecture in the surface case, Wthh is
a generalization of [16, Conjecture 1.2] to the int-amplified case.

Conjecture 1.0.6 (cf. [16, Conjecture 1.2]). Let X be a normal projective variety of .
characteristic zero admitting an int-amplified endomorphism. Then X is of Calabi-
Yau type.

We remark that Conjecture 1.0.6 is wide open in the higher dimension except for
the case where X is-a Mori dream space or X is smooth and rationally connected.
The first follows from essentially the same argument as the proof of [16]. The latter
case follows from Theorem A. '

In Chapter 3, we study the Minimal model theory in ‘mixed characteristic. The
minimal model theory in positive characteristic has been studied intensively in recent
years, and the MMP is now known to hold for threefolds over a perfect field of
characteristic p > 3 (see [45], [19], [10], [36], [12], [42]). The MMP is also studied for
schemes not necessarily defined over a field. Such a generalization of the MMP plays
an important role to construct a nice model W over an integer ring whose generic
fiber is isomorphic to a given variety W (see [70] [66], [21], [20]). The MMP holds for
excellent surfaces ([93]) and strictly semi-stable schemes over an excellent Dedekind
scheme of relative dimension two whose each residue characteristic is neither 2 nor
3 ([56], [57]). In this chapter, we study the MMP for threefolds over an excellent
. Dedekind scheme of arbitrary residue characteristic. ‘

The first main result in Chapter 3 is a generalization of the result of Kawamata.
He used the classification of singularities, which depends on the residue characteris-
tic, to prove the existence of flips. We use a completely different approach to prove
the existence of flips without any assumption on the residue characteristic.

Theorem D. (Theorem 3.4.11) Let V' be an excellent Dedekind scheme. Let X be a
scheme which is strictly semi-stable over V' of relative dimension two. Let X — Z
~be a projective morphism to a quasi-projective scheme Z over V. Then we can
run a Kxy-MMP over Z which terminates with a minimal model or a Mori fiber
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space. Furthermore, this program preserves good conditions (see Assumption 3.4.1),
for example, the output Y of this MMP is Cohen-Macaulay and every zrreduczble
component of each closed fiber of Y — V is geometrzcally normal.

Kawamata’s result is used in several studies of reductions of varieties over an inte-
ger ring. Therefore, we also generalize such studies to the case where the residue
characteristic is 2 or 3, as follows.

Good reduction criterion for K3 surfaces ([70], [66], [21])
Let K be a henselian discrete valuation field with perfect residue field of char-
acteristic p and X a K3 surface over K. Suppose that X admits potentially
semi-stable reduction. If the Gg-representation HZ (X%, Q) is unramified for

some ¢ # p, then X admits good reduction after an unramified extension of

Abelian surfaces have potentially combinatorial reduction ([20])
Let K be a henselian discrete valuation field with perfect residue field of char-
acteristic p and X an abelian surface over K. Then X admits potentially
~ combinatorial reduction in the sense of [20, Definition 10.1]. Such a model
~ give a compactification of a Néron model, and the dual graph of the special
fiber can be classified (see Theorem 3.4.14 and Proposition 3.4.15).

The second main result in Chapter 3 is a generalization of a result of Hacon-
Witaszek [43, Theorem, 1.1] to the mixed characteristic case.

Theorem E. (Theorem 3.3.6) Let V' be an ezcellent Dedekind scheme. Let (X, A) be
a dlt pair, where X is a Q-factorial integral scheme which is flat and quasi-projective
over V' of relative dimension two. Assume that there exists a projective birational
morphism ©: X — Z to a normal Q-factorial variety Z with Exc(n) < |A]. Then
we can Tun o (Kx + A)-MMP over Z which terminates with a minimal model.

The existence of dlt modifications and the inversion of adjunction for klt pairs follow
from Theorem E as a corollary (see Corollaries 3.3.9, 3.3.10).

One of the key ingredients of the proofs of Theorems D and E is to prove the
existence of pl-flips with ample divisor in the boundary. Indeed, all flips appearing
in the proof of Theorem E are of this type, and the existence of necessary flips
for Theorem D is reduced to the existence of flips of this type by an argument
in [43]. In positive characteristic, Hacon-Witaszek [44, Theorem 1.3] proved the
existence of pl-flips with ample divisor in the boundary using global F-regularity
and the vanishing theorem up to Frobenius twist. We employ the same strategy in
mixed characteristic, replacing global F-regularity with global T-regularity and the
Frobenius morphism with alterations. The global T-regularity of a log pair (X, A)
over an excellent Dedekind scheme V' is defined by the surjectivity of the map

H (wyv([-m*(Kxyv + A)]) — H*(Ox)

induced by the Grothendieck trace map for every alteration 7: Y — X. The
vanishing theorem up to alterations is obtained as a corollary of [8, Theorem 6.28]
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- (see Corollary 3.2.5). As a consequence, we obtain the following theorem, which is
an analog of [44, Theorem 1.3]. :

Theorem F. (Theorem 3.2.29, cf. [44,' Theorem 1.3]) Let V be the spectrum of a
complete discrete valuation ring. Let (X,S + A + B) is a dit pair such that S is an
anti-ample Q-Cartier Weil divisor on X, A is an ample Q-Cartier Weil divisor on

X, B is a Weil divisor on X. Let f: X — Z be a (Kxyy + S + A + B)-flipping

contraction with p(X/Z) = 1 to an affine V-scheme Z. Assume that (SV,(1 —
€)As + Bg) is globally T-regular for all 0 < e < 1 after localizing at all points of
f(Exc(f)). Further assume that the ring

R(KSN/V + Ag + BS) = @ HO(OSN(m(KSN/V + Ag + BS)))

meZzo

is a finitely generated Oz-algebra, where Bg := Diffgn(B) and Ag := Algn. Then
the flip of f exists. . ~

Theorem F can be applied for three-dimensional pl-flips with ample divisor in the
boundary. Indeed, the finite generation of R(Kgn~y + Ag + Bs) is a consequence of
the MMP for excellent surfaces, and the global T-regularity of (SV, (1 —¢)Ag + Bs)
follows from the inversion of adjunction for global T-regularity (see Proposition
3.2.21) and an argument similar to the proof of [43, Lemma 3.3].

Remark 1.0.7. After finishing this work, Jakub Witaszek taught us that he also write
the paper about the MMP in mixed characteristic with Bhargav Bhatt, Linquan
Ma, Zsolt Patakfalvi, Karl Schwede, Kevin Tucker, Joe Waldron (see [9]). In their
article, they independently show that the MMP holds for threefolds whose each
 residue characteristic is greater than 5. They define and study the notion of global
+-regularity which is very closely related to our global T-regularity (see [9, Lemma
4.7]). We can show that Theorems E and F hold when V is a spectrum of a regular
excellent finite-dimensional domain, using [9, Proposition 3.6] instead of Theorem
3.2.3 and Cohen-Macaulayfications instead of regular alterations.

Chapter 2 is based on [99],[100], [101] and Chapter 3 is based on the joint work
with Teppei Takamatsu ([89]). ‘



Chapter 2

Structure of varieties admitting a
polarized endomorphism

2.1 Notations and Terminologies

Throughout in this chapter, we use the following notations and terminologies.

e A variety over a field k is a geometrically integral separated scheme of finite
type over k. A k-scheme X is essentially of finite type over k if X is a localiza-
tion of some scheme of finite type over k. A Q-Cartier divisor (resp. R-Cartier
divisor) on a variety X is an element of (CDivX)®zQ (resp. (CDivX)®zR),
where CDivX is the group of Cartier divisors on X. When X is normal, these
groups are embedded in Div(X)®zQ (resp. Div(X)®zR) where Div(X) is the
group of Weil divisors on X. An element of Div(X)®zQ (resp. Div(X)®zR) is
called Q-Weil divisor (resp. R-Weil divisor). Linear equivalence and Q-linear
equivalence are denoted by ~ and ~q, respectively. For Q-Weil divisors D
and E, D ~ E means D — E is a principal divisor.

e Let X be a projective variety over an algebraically closed field.

— N(X) is the groﬁp of Cartier divisors modulo numerical equivalence (a
Cartier divisor D is numerically equivalent to zero, which is denoted by
D =0,if (D-C) =0 for all irreducible curves C on X).

— N;(X) is the group of 1-cycles modulo numerical equivalence (a 1-cycle «
is numerically zero if (D-a) = 0 for all Cartier divisors D). By definition,
N'(X) and Ny(X) are dual to each other.

e A morphism f: X — X from a projective variety X to itself is called self-
morphism of X or endomorphism on X. If it is surjective, then it is a finite
morphism. ‘

e A morphism f: X — Y between varieties is called an algebraic fiber space if
f is proper and f,Ox = Oy. ’



e A morphism f: X — Y between varieties is called quasi-étale if f is étale at A
every codimension one point of X.

e Let f: X — Y be a finite separable sﬁrjective morphism between normal
varieties. The ramification divisor of f is denoted by Rf

e The Picard number of a prOJectlve variety X is denoted by p(X).
e The function field of a variety X is denoted by K(X).

o Let f: X — X be an endomorphism of a variety X. A subset S < X is
called totally invariant under f if f~(S) = S as sets.

o Consider the commutative diagram

X-TaY
fl lg
X‘;‘)Y,

where f, g are surjective morphisms and 7 is a dominant rational map. We
write this diagram as.

fCX-T+Y Oy

We say a commutative diagram is equivariant if each object is equipped with
an endomorphism and the morphisms are equivariant with respect to these
endomorphisms.

e Let X be a normal projective variety. A Kx-negative extremal ray contraction
m: X — Y is called of fiber type or a Mori fiber space if dimY < dim X.

2.2 Preliminaries

2.2.1 Varletles of Fano type and Calabi—Yau type
In this chapter, we use the followmg terminologies.

Definition 2.2.1 (cf. [63, Definition 2.34], [87, Remark 4.2]). Let X be a normal
variety over a field £ and A be an effective Q-Weil divisor on X such that Kx + A
is Q-Cartier. Let m: Y — X be a birational morphism from a normal variety Y.
Then we can write

Ky = n*(Kx + A) + > (ap(X,A) - 1)E,
E

where E runs through all prime divisors on Y. We say that the pair (X,A) is
log canonical or lc, for short (resp., Kawamata log terminal or klt, for short) if
ap(X,A) =0 (resp., ap(X, A) > 0) for every prime divisor E over X. If A = 0, we
simply say that X is log canonical (resp., kit). 4

7



Definition 2.2.2 (cf. [86, Lemma-Definition 2.6]). Let 7: X — B be a projective
morphism of normal varieties over a field k¥ and A ‘be an effective Q-Weil divisor on

X.

1. We say that (X, A) is log Fano over B if —(Kx + A) is m-ample Q-Cartier
and (X,A) is klt. We say that (X, A) is of Fano type over B if there exists
an effective Q-Weil divisor I' on X such that (X, A +T') is log Fano over B.
If B is a point, we simply say that (X, A) is of Fano type.

2. We say that (X, A) is log Calabi—Yau over B if Kx + A ~g 0 and (X, A) is
log canonical. We say that (X, A) is of Calabi-Yau type over B if there exists
an effective Q-Weil divisor I on X such that (X, A +I') is log Calabi-Yau
over B. If B is a point, we say that (X, A) is of Calabi-Yau type.

We introduce the following basic properties.

Proposition 2.2.3. Let m: X — B be a surjective projective morphism of normal
projective varieties over a field k of characteristic zero and A an effective Q-Weil
divisor on X. Then the following conditions are equivalent to each other.

1. (X,A) is of Fano type over B.

2. There ezists an effective m-big Q- Weil divisor S, that is, Q is a sum of an - ,
ample Q-Cartier divisor and an effective @ Wezl dwzsor such that (X, A+ Q)
is kit and Kx + A+ Q ~gp 0.

3. There exists an effective m-big Q-Weil divisor Q such that (X, A + Q) is kit
and Kx + A+ Q=50. '

Proof. First we assume that (X, A) is of Fano type over B. Then there exists an
effective Q-Wei divisor I' such that (X, A+T') is kit and —(Kx + A+T') is m-ample.
Then we can take an effective Q-Weil divisor £’ which is Q-linear equivalent to
—(Kx +A+T) over B such that (X, A+T'+ ') is klt. Therefore, Q =T'+ Q' ~q 5
—(Kx + A) is bigover B, Kx + A+ Q ~gp 0 and (X, A + Q) is klt.

It is clear that the second condition implies the third condition.

Next we assume that we can take () satisfying the third condition. Then there
exist a m-ample Q-Cartier divisor A and an effective Q-Weil divisor D such that Q =
A+D. Since (X, A+Q) isklt, for enough small € > 0 such that (X, A+(1 e)Q+eD)
is klt and

Kx+A+(1—-¢)Q+eD=p—cA

~ is anti-ample over B. It means that (X, A) is of Fano type over B. 0

Proposition 2.2.4. We consider the following commutative diagram

X ' .y
B,



where X,Y, B are normal projective varieties over a field k of characteristic zero,
Tx,Ty are surjective projective morphisms and p-is a birational contraction, that
48, u~t has no exceptional divisors. Let A be an effective Q- Weil divisor on X such
that (X, A) is of Fano type over B and A/ = M*A. Then (Y, A’) is also of Fano type

over B

Proof. By Proposition 2.2.3, there exists an effective mx-big Q-Weil divisor £ on X
such that (X, A + Q) is kIt and Kx + A+ Q ~gp 0. Let Q' = p,Q, then Q' is
my-big Q-Weil divisor. Indeed, since (2 is mx-big, we have Q& = A + D, where A is
an mx-ample Q-Cartier divisor and D is an effective Q-Weil divisor. Taking an 7my-
ample Cartier divisor H on Y, there exists an effective divisor A" ~g g A such that
mA’' > p;'H for some positive integer m. Hence, we have €/ ~g,B px(A"+ D) =
;H and in particular, Q" is my-big. Furthermore, Ky + A’ + Q' is Q-Cartier and
Ky + A"+ QY ~g g 0. By the negativity lemma, (Y, A+ Q) is klt. O

The reader is referred to [86, Lemma-Definition 2.6] for more details.

2.2.2 Globally F-regular and F-split varieties

In this subsection, we review the definition and basic properties of globally F-
reqularity and globally F -splitting.
A field k of prime characteristic p is called F'-finite if [k : k] < o0

Definition 2.2.5 ([87, Definition 3.1]). Let X be a normal projective variety defined
over an F -finite field of characteristic p > 0.

1. We say that X is globally F-split if the Frobenius map
OX — F *OX

splits as an Ox-module homomorphism.

2. We say that X is globally F-regular if for every effective Weil divisor D on X ,
there exists e € Z-( such that the composition map

Ox —> F¢Ox — F°Ox(D)

of the e-times iterated Frobenius map Ox — F¢Ox with a natural inclusion
F;Ox — FfOx(D) splits as an Ox-module homomorphism. '

Remark 2.2.6. Mehta-Ramanathan [74] introduced the notion of globally F _splitting
and they call it by Frobenius splitting. In this thesis, we call it by globally F-splitting
to distinguish from the local notion of F-pure (cf. Definition 2.5.3).

Now we briefly explain how to reduce things from characteristic zero to charac-
teristic p > 0. The reader is referred to [50, Chapter 2] and [75 Section 3.2] for
further details. ‘ . :



Let X be a normal variety over a field k of characteristic zero and D = > diD;
be a Q-Weil divisor on X. Choosing a suitable finitely generated Z-subalgebra A
of k, we can construct a scheme X, of finite type over A and closed subschemes
D; 4 & X4 such that there exists isomorphisms

X—=3X,4 X Spec A Opec k

li —;fDi,A XSpec A Spec k.

Note that we can enlarge A by localizing at a single nonzero element and replacing.
X4 and D; 4 with the corresponding open subschemes. Thus, applying the generic
freeness [50, (2.1.4)], we may assume that X4 and D; 4 are flat over Spec A. En-
- larging A if necessary, we may also assume that X4 is normal and D; 4 is a prime
divisor on X 4. Letting D := >, d;D; 4, we refer to (X4, D4) as a model of (X, D)
over A. Given a closed point u € Spec A, we denote by X, (resp., D;,) the fiber of
X4 (resp., D; ) over p. Then X, is a scheme of finite type over the residue field
k(p) of w, which is a finite field. Enlarging A if necessary, we may assume that
X, is a normal variety over s(u), D;, is a prime divisor on X, and consequently
=Y. d;:D;, is a Q-divisor on X, for all closed points y € Spec A

Given a morphism f : X — Y of varieties over k¥ and a model (X4,Y4) of
(X,Y) over A, after possibly enlarging A, we may assume that f is induced by a
morph1sm fa : Xa — Y4 of schemes of finite type over A. Given a closed point
1 € Spec A, we obtain a corresponding morphism fu X, — Y, of schemes of finite
- type over n(,u) If f is projective (resp. finite), after poss1bly enlargmg A, we may
assume that f, is projective (resp. finite) for all closed points p € Spec A.

We denote by X7 the base change of X, to the algebralc closure. k(1) of k().
Similarly for Dy and fz: Xz — Y. Note that (X4, D,) is globally F-regular (resp.
globally F' —split) if and only if so is (Xz, Dz).

Definition 2.2.7. Let the notation be as above. Suppose that X is a normal
projective variety over a field of characteristic zero. :

1. X is said to be of dense globally F-split type if for a model of X over a finitely
generated Z-subalgebra A of k, there exists a dense subset of closed points
W < Spec A such that X, is globally F-split for all e W.

2. X is said to be of globally F-regular type if for a model of X over a finitely
generated Z-subalgebra A of k, there exists a dense open subset of closed
points W < Spec A such that X, is globally F-regular for all e W.

This definition is independent of the choice of a modél.
The foﬂowing two theorems are very important in this chapter.

Theorem 2.2.8 ([87, Theorem 5.1]). Let X be a normal projective variety defined
over a field of characteristic zero. If X zs of Fano type, then X is of globally F'-
regular type. ’
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Theorem 2.2.9 ([38, Theorem 1.1]). Let S be a normal projective surface over an
algebraically closed field of characteristic zero. If S is of dense globally F-split type
(resp., globally F-regular type), then it is of Calabi—Yau type (resp., Fano type)

2.2.3 Canonical modules and duality

Now we briefly explain canonical modules and duality. The reader is referred to [65],
[74], [30], [75], [47], [88] for further details. Let f: Y — X be a finite surjective
morphism of normal integral schemes essentially of finite type over an F-finite field
of characteristic p > 0. In this case, X and Y have canonical modules wy and wy,
respectively (cf. [48]), satisfying

%Omx(f*OY7 WX) =~ fawy

as f,Oy-modules. We note that the natural f,Oy-module structure on S#om x (f+Oy,wx)
is induced by the multiplication of f,Oy. Since X and Y are normal schemes, there

exist Weil divisors Kx and Ky such that Ox(Kx) ~ wx and Oy(Ky) ~ wy. We

call Kx and Ky canonical divisors on X and Y, respectively, and they are uniquely
determined up to linear equivalence. By the above duality, we obtain

'Oy(Ky - f*Kx) jad %Omx(f*Oy,Ox).

In particular, if ¢: f,Oy — Ox is an OX—module homomorphism, then there
‘exists a non-zero rational section oz € K(Y) such that
Dy = Ky — f*Kx + divy(a) >0,

and regarding this as a global section of Oy (Ky — f*Kx), this is corresponding to
1 by the above isomorphism. We say that 1 is corresponding to D,,. Furthermore,
the above isomorphism induces

K(Y) ~ #omx (£, K(Y), K(X)).

Note that this depends on the choice of the canonical divisors Kx and Ky. In
particular, if ¢: f, K(Y) — K(X) is an Ox-module homomorphism, then we can
consider the corresponding divisor »
D'z,/z = Ky - f*KX + le(a)
for some a € K(Y).
Now, we obtain the following basic result.

Proposition 2.2.10. Let f: Y — X be a finite surjective morphism of normal
integral schemes essentially of finite type over an F-finite field of characteristic
p > 0. We fix canonical divisors Kx and Ky on X and Y, respectively. Then
Ox — f+Oy splits as an Ox-module homomorphism if and only if there exists an
Ox-module homomorphism

such that (1) = 1 and ¢ is corresponding to an effective divisor.

11



Example 2.2.11. If f is a separable morphism, then the ramification divisor Ry
can be defined and Ry is linearly equivalent to Ky — f*Kx. Furthermore, we obtain
the following isomorphism ‘ '

Oy (Ry) ~ Homx(f«Oy,Ox),

and the trace map Tr is corresponding to R;. By using this isomorphism, for any
¥: fo K(Y) — K(X), there exists a non-zero rational section a € K (Y') such that
¥ = Tr(a-_), where Tr(a-_) sends z € K(Y') to Tr(ax). In particular, ¢ is contained
in #omx(f.Oy,Ox) if and only if

Ry +divy(a) = 0.
The following is a basic property of the global F-splitting.

- Proposition 2.2.12. Let p: Y — X be a quasi-étale finite surjéctive morphism of
normal varieties over a field of characteristic zero. Then X is of globally F-regular
type or dense globally F-split type if and only if so is Y.

Proof. We take models ps: Y4 —> X4 over a finitely generated Z-algebra A as in §
2.2 such that p, is quasi-étale finite surjective and deg(p,) is coprime to char(x(u))
for every p € Spec A. We fix 1 € Spec A, and it is enough to show that X, is globally
F-regular or globally F-split if and only if so is Y.

First, we prove the “if” part. Since deg(p,) is coprime to char(x(p)), Ox, —
(pu)xOy, splits by the trace map. Hence, if Y is globally F-split or globally F-
regular, then so is X. .

Next, we prove the “only if” part. Let D be a effective Weil divisor on Y and
we assume that

Ox, — F.Ox, — F;Ox,((pu)«D)

' splits for some positive integer e. Note that if D = 0 , it means that X is globally
F-split. We take a rational section o € K(X) such that

(1= 7°)Kx, +divx(a) = (pu)sD = 0

is corresponding to a splitting of the above homomorphism. Since D' = (p,)*(pu)«D =
D, it is enough to show that '
o Oy, — F,Oy, — FtOy, (D)
splits. Since pu is quasi-étale, py Kx, = Ky,. In particular, we obtain
(1-p°)Ky, +divy(a) = D' =0, !

and this is corresponding to a splitting of

Oy, — F.Oy, — F2Oy, (D).
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2.2.4 Int-amplified endomorphism

In this subsection, every variety is defined over an algebraically closed field of char-
acteristic zero. Meng and Zhang established minimal model program equivariant
with respect to endomorphisms in [79], for varieties admitting an int-amplified en-
domorphism. We summarize their results that we need later.

Definition 2.2.13. A surjective endomorphism f: X — X of normal projective

variety X is called int-amplified if there exists an ample Cartier divisor H on X
such that f*H — H is ample.

We collect basic properties of int-amplified endomorphisms in the following
lemma. ' '

Proposition 2.2.14.

1 LetX be a normal projective variety, f: X — X a surjective morphism, and
n > 0 a positive integer. Then, f is int-amplified if and only if so is f™.

2. Letm: X — Y be a surjective morphism between normal prbjective varieties.
Let f: X — X, g: Y — Y be surjective endomorphisms such that mo f =
gom. If f is int-amplified, then so is g.

3. Let m: X --»'Y be a dominant rational map between normal projective vari-
eties of same dimension. Let f: X-—> X, g: Y —= Y be surjective endo-
morphisms such that mo f = gomw. Then [ is int-amplified if and only if so is
g.

4. Let f: X — X be an int-amplified endomorphism of a normal projective
variety and D a Q-Cartier divisor on X. If f*D — D is numerically equivalent
to an effective Q-Weil divisor, then D is also numerically equivalent to an
effective Q-Weil divisor. In particular, if X is Q-Gorenstein, then —Kx is
numemcally equivalent to an effective Q-Weil divisor.

Proof. See [76, Theorem 3.3, Lemmas 3,4, 3.5, Theorem 1.5]. ‘ O

Theorem 2.2.15 (Meng—Zhang) Let X be.a Q-factorial normal projective variety
admitting an int-amplified endomorphism. Let A be an eﬁectwe Q- Weil divisor on
X such that (X, A) is kit. ‘

1. There are only finitely many (Kx + A)-negatz"ue extremal rays of NE(X).
Moreover, let f: X — X be a surjective endomorphism of X. Then every
(Kx+A)-negative extremal ray is fized by the linear map (f™)« for somen > 0.

2. Let f: X — X be a surjective endomorphism of X. Let R be a (Kx + A)-
negative extremal ray and m: X — Y its contraction. Suppose f.(R) = R.
Then, - '

(a) f induces an endomorphism g: Y — Y such that gom = 7o f;
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(b) if ™ is a flipping contraction and X* is the flip, the induced rational
self-map h: X+ --» X%t is a morphism. :

3. In particular, for any finite sequence of (Kx + A)-MMP and for any surjective
endomorphism f: X — X, there exists a positive mteger n > 0 such that the
sequence of MMPs is equivariant under f™. :

- Proof. (1) is a special case of [79, Theorem 4.6]. (2a) is true since the contraction
is determined by the ray R. (2b) follows from [77, Lemma 6.6]. O

Theorem 2.2.16 (Equivariant MMP (Meng-Zhang)). Let X be a Q-factorial kit
projective variety admitting an int-amplified endomorphism. Then for any surjective
endomorphism f: X — X, there exists a positive integer n > 0 and a sequence of
rational maps

X =Xo--3X, =4 —> X,
such that

1. X; --» Xiy1 1s either a divisorial contraction, flip, or Mori fiber space of a
Kx,-negative extremal ray,

2. there ewist. surjective endomorphisms g;: X; — X; for i = 0,...,7 such that
go = f" and the following diagram commutes '

giJv J{gi+1 |
Xi- -+ X1,

A\

3. X, is a Q-abelian variety (that is, there ezists a quasi-étale finite surjective
morphism A — X, from an abelian variety A, note that X, might be a point).
In this case, there exists a quasi-étale finite surjective morphism A — X,
from an abelian variety A and an surjective endomorphzsm h: A — A such
that the diagram

A L» A
X, —— X,
commautes. ‘
Proof. This is a part of [79, Theorem 1.2]. , o : O

Remark 2.2.17. Surjective endomorphisms of a Q-abelian variety always lift to a
certain quasi-étale cover by an abelian variety. See [18, Lemma 8.1 and Corollary
8.2], for example. The proof works over any algebraically closed field.
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2.2.5 Index one covers for pairs with standard c0efﬁ¢ients

In this subsection, we study index one covers for pairs with standard coefficients.
In this subsection, every varieties defined over an algebraically closed field k of
characteristic zero.

Definition 2.2.18. Let X be a normal variety and A an effective Q-Weil divisor on
X. We say that A has standard coefficients if for any prime divisor £ on X, there

exists a positive integer m such that ordg(A) = 2L,

Lemma 2.2.19. Let X be a normal projective variety and A an effective Q-Weil
divisor on X such that Kx + A is Q-linearly equivalent to 0. Then there exists a
finite surjective morphism p: X — X from normal projective variety such that the -
following conditions hold:

o 1*(Kx + A) is a principal divisor, that is, p*(Kx + A) ~ 0;

e ify/: X' —> X is a finite surjective morphism from a normal projective variety
such that *(Kx + A) is a principal divisor, then u' factors through p.

Furthermore if A has standard-coeﬂicients, then R, = p*(A). In particular Kg is
a principal divisor. ‘

Proof. Let mg = min{m | m(Kx + A) ~ 0} and take a non-zero rational section
a € K(X) = K such that div(a) = mo(Kx + A). Let L = K[T]/(T™ — «). Note
that L is a field. Let p: X — X be the normalization of X in L. Then we have

div(T) = ——div(a) = u*(Kx + A),
mo :

so u*(Kx+A) is a principal divisor. Moreover, let i/: X’ — X be a finite surjective
morphism from a normal projective variety such that p*(Kx + A) is a principal
divisor. Then there exists a non-zero rational function 8 € K(X') = L’ such that
div(B) = u*(Kx + A). In particular, we have modiv(8) = div(a). Since the base
field is algebraically closed, we may assume that ™ = «. It means that there exists
an injective K-algebra homomorphism from L to L, so u' factors through pu.

- Next we assume that A has standard coefficients. Let E be a prime divisor on
X, m a positive integer, a an integer such that ordg(Kx + A) = m—ﬂ;l + a. Let
(R, (w)) be the DVR associated to E and S the normalization of R in L. Then it
is enough to show that the order of w at every maximal ideal of S is equal to m.
Since the order of a along E is equal to mo(’"T‘1 + a), there exists an unit v in R
such that - -

m—1
a = uwmo(T—i-a).

Since every coefficient of div(a) is integer, there exists a positive integer b such that
mb = mg. Let p=m — 1+ ma. Then ‘

a=uw.
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Now, we have :
™, «

(&) =z =

so S contains 7. Tn particular, R < S factors through R’ = R[Y]/(Y? — u). Since
K' = K[Y]/(Y® — u) is a field and R — K’ is injective, R’ is an integral domain
and satisfies R c R’ < S. Since R’ is étale over R, w is an uniformizer of R; = R,
for every maximal ideal p; of R'. We set S; = S ®g, R, = L. Now, we have

m_ %yl
(T)—me Y 'w.

Since Y is an unit in R, R} — S; factors through R! = R[Z]/(Z™ - Y 'w). Since
K" = K'[Z]/(Z™ — Y 'w) is a field and R/ — K” is injective, R/ is an integral
domain and satisfies R, ¢ R < S;. Since we have

(@'*ez7)m = (@27 = (@Y)" =,

the quotient field of R} is L. Furthermore, since (Z) is the unique maximal ideal of
R}, we obtain R} = S; and ordg,(w) = m. Therefore we obtain the last assertion.
Furthermore, o .

K)? = uKx — R, = ,U,*(KX + A)
isa principal divisor. : g

Lemma 2.2.20. Let f: X — X be a surjective endomorphism of a normal variety
- X and ¥ a finite set of the prime divisors on X. Assume that for any E € X
and an irreducible component F of f~1(E), we have F € ©. Then for any E € %,
f~™(E) = E as sets for some positive integer m.

Proof. Let ¥ = {E\,...,En}. Since f}(E;) and f~!(E;) have no common irre-
ducible component, we have f~!(E;) is irreducible for all 7. It means that f~!
induces the one-to-one corresponding of ¥. In particular, for some positive integer
m, f~™ is identity. » O

Proposition 2.2.21 (cf. Proposition 2.3.26). Let X be a normal Q-factorial projec--
tive variety admitting an int-amplified endomorphism f and A an effective Q- Weil
divisor on X such that (X, A) is a klt pair such that

R+ (A—f*A) >0

and Kx + A ~q 0. Then there exits a finite morphism u: A — X of (X, A) from
an abelian variety A such that p*(Kx + A) is a principal divisor. Furthermore, if
p: X — X 1is a surjective endomorphism of X such that

R, + (A —¢*A) =0,

then ¢ lifts to A.
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Proof. First, we prove that A has standérd coefficients. Let be the set of all priine
divisors E on X such that ordg(A) is not standard. Since 0 is standard, ¥ is a finite
set. We take F € 3 and an irreducible component F' of f~!(E).
Suppose that F ¢ 3, then ordp(A) = =2 1 for some posﬂ:we integer m. We note
that
0< Rp = Rf+A—f*‘A~Kx+A—f*(KX+A) ~q 0

hence, we have Ra = 0. In particular, we have
f*(KX +A) ~Kx+A

and

0=ordp(R;+A—f*A)=r—-1 +—m—m:£'—r-ode(A),

where r = ordp(f*(E)). It means that
rm—1

ordE(A) = s

™rm

it is contradiction to E € X. :

Hence F is contained in ¥ and ¥ satisfies the assumption of Lemma 2.2.20. Next
suppose that there exists an element E € ¥. Then we have f~/(F) = E as sets for
some positive integer [. Therefore, we have

0=ordp(Rpt + A — (f)7A) = 7' — 1+ ordg(A) — ' ordg(A),

where (fY)*E = r'E. Since f! is int-amplified, 7’ is larger than one by [76, Theorem
3.3], so we have ordg(A) = 1 . However, it is contradiction to the fact that (X, A)
is kIt. In conclusion, we obtain ¥ = § and A has starNLdard coefficients.

Thus, we obtain a finite surjective morphism g': X — X such that p*(Kx +
A) ~ 0 and K¢ ~ 0 by Lemma 2.2.19. Furthermore, since

p*f(Kx + A) ~ p™*(Kx + A) ~ 0,

f lifts to X as an mt-émmphﬁed endomorphism by Lemma 2.2.19 and Proposition
2.2.14. Since (X, A) is klt, X is also klt. By Theorem 2.2.16, X has a cover by an
abelian variety A.

Next, let ¢: X — X be a surjective endomorphlsm such that

Ry + (A—¢*A) >0

then we have p*(Kx + A) ~ Kx + A. By a similar argument as above, ¢ lifts to
X. By Remark 2.2.17, it lifts to A. ; ‘ O

Remark 2.2.22. In subsection 1.4.3, we reformulate Proposition 2.2.21 by using the
notion of pairs with respect to an endomorphism and quasi-étale covers with respect -
to pairs.
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2.3 Proof of Theorem A

In this section, every Variety is defined over an algebraically closed field of charac-
teristic zero.

2.3.1 Pairs with respect to an endomorphism

In this section, we study equivariant Mori fiber spaces. First we introduce the
notion of the pair with respect to surjective endomorphisms. In Proposition 3.8, we
construct such a pair on base varieties of equivariant Mori fiber spaces.

Definition 2.3.1. Let f: X — X be a surjective endomorphism of a normal
variety X. Then (X, A) is called an f-pair if

1. Ais an effective Q-WEeil divisor, and .
2. Ra:= R+ A— f*A>0.

Remark 2.3.2. Let f: X — X be a surjective endomorphism of a normal Vériety
X.

e (X,0) is an f;pair.
. If (X, A) is an f-pair, then
Ra=Ri+A— f*A~Kx+A— f"(Kx+A).
Furthermore, for every positive integer hi, we have
Rams1 = Rpmir + A — (f™)*A = Ra + f*Ram-
In particular, (X, A) is an f™-pair for all m.

Example 2.3.3. Let E be an elliptic curve and [m] a multiplication by m for all
integers m. Since [m] is [~1]-equivariant, we obtain the following commutative
diagram ‘ ’

jop—

[m]L lh

E—t,p,
where u is the quotient map by [—1] and h is the endomorphism induced by [m].
~ Let Q1,...,Q4 be the 2-torsion points on F and P, = u(Q1), ..., Pa = p(Qy). Let
, L |
A=§(P1+P2+P3+P4),.'

then (P!, A) is an h-pair (see Example 2.3.10 and Example 2.3.25).
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Proposition 2.3.4. Let f: X —> X be an int-amplified endomorphism ofa normal
~ projective variety X and (X,A) an f-pair such that Kx + A is Q-Cartier. Then
—(Kx + A) is numerically equivalent to an effective Q-Weil divisor.

Proof. Tt follows from Proposition 2.2.14 and
0 < Ra NKx-l-A—f*(Kx—FA)
\ 4 .

Remark 2.3.5. Let f: X — X be an int-amplified endomorphism of a normal

projective variety X. Then an f-pair (X,A) is valuative log canonical defined in
[98], and the proof is similar to the proof of [98, Theorem 1.4]. In particular, if

Kx + A is Q-Cartier, then (X, A) is log canonical.

In order to introduce very important f-pairs, we define the following fiber spaces
of pairs.

N

Definition 2.3.6. A morphism 7: (X,A) — (Y,T') of pairs is called a Mori fiber
space of canonical bundle formula type if

1. X is a normal Q-factorial projective variety and A is an effective Q-Weil divisor
on X such that (X, A) is klt,

2. m: X —Yisa (Kx + A)-Mori fiber space, and
3. for any prime divisor ¥ on Y, I' satisfies

ordg(T) = RET 1;;;)rdF(A)7

~where F' is a prime divisor on X satisfying 7*F = mgF for some positive
integer mg.

Remark 2.3.7. ‘
e If Y is a point, the third condition is always satisfied.

e Since 7 is a (Kx + A)-Mori fiber space, we can take mg and F' as in Definition
2.3.6 (see [99, Lemma 4.10)).

Proposition 2.3.8. Let 7 (X,A) — (Y,T') be a Mori fiber space of canonical
bundle formula type. Then (Y,T') is kit.

Proof. Since —(Kx + A) is m-ample, we can take an ample Cartier divisor H on Y
such that —(Kx + A) + 7*H is ample Q-Cartier. There exists 0 < D ~g —(Kx +
A) + 7*H such that (X,A + D) is klt. By the Ambro’s canonical bundle formula
" [2, Theorem 4.1], (Y, B) is klt, where B is an effective Q-Weil divisor satisfying

ordg(B) = 1 —lct,, (X, A + D;7*E)
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for any prime divisor E with generic point ng. Let 7*E = mgF for some posmve
integer mg and prime divisor F', then we have
1-— Ol"dF(A + D) 1- OI"dF(A)

let,, (X,A+ D;7*E) < — —
E E

In particular, we have

' mg — 1+ ordp(A)
mg

It means that B > T, so (Y,T) is also klt. ‘ O

ordg(B) > = ordg(T").

~ The following proposition gives Véry important pairs.
Proposition 2.3.9. We consider the following commutative diagram
(X,A) —=—(Y,I)
: fl lg
(X,8) == (V,T),
where 7 is a Mori fiber space of canonical bundle formula type, f, g are surjective
endomorphisms and (X, A) is an f-pair. Then :
e (Y.T) is a g-pair, and )
e Rp — TRy is effective and has no vertical components of w, that is, for every
- prime divisor F on X with 7(F) # Y, we have ordg(Ra — 7*Rr) = 0. '
Proof. We take a prime divisor E on Y, then we have 7*E = mgF for some positive -
integer mg and prime divisor F' on X. If the second assertion holds, then

mg OrdE(Rr) = OI"dF(ﬂ';kRF) = OrdF(RA) =0,

so the first assertion holds. Therefore, it is enough to show the second assertion.
Let ‘

gE=aF + - +a.E,,
and

f*F=b0F1 + -+ b.F,,
where all a;, b; are positive integers and E;, F; are prime divisors with 7*E; = mg, F;
for some positive integer mg,. Since 7*g*E = f*n*E, we have mgb; = a;mg, for all
1. Therefore, we have

ordg,(Rr) = ordg,(Ry+T —g*T) _
mg, — 1+ OI"sz(A) - mg—1+ OI‘dF(A)

= a;—1 —a;
MEg,; mg
_ —1+ordg(A) +b; — bordr(A)
= p— .
. OI‘dFi (RA)
- . Mg, ’ :
it means that ordg, (Ra — 7*Rrp) = 0. v O
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Example 2.3.10. In [72, Section 7}, we give the following commutative diagram

gCY —"5EO[m]

dl J»

fCX——P'Oh,

where Y is a ruled surface over E, i is quasi-étale, 7 is a Mori fiber space, E, i,
and h are in Example 2.3.3. Then 7: (X,0) — (P!, A) is a Mori fiber space of
canonical bundle formula type, where A is in Example 2.3.3. In particular, (P!, A)
is an h-pair by Proposition 2.3.9.

2.3.2 Construction of the tower of Mori fiber spaces

In this section, we study Fano type assuming the existence of int-amplified endo-
morphisms. Corollary 2.3.13 means that if the variety has an int-amplified endo-
morphism and on the tower of Mori fiber spaces of canonical bundle formula type,
then it is of Fano type over the bottom variety. Using this corollary, we replace a
sequence of steps of MMP with a tower of Mori fiber spaces of canonical bundle
formula type (see Theorem 2.3.21).

Lemma 2.3.11. Let X be a normal Q-factorial projective variety and A an effective
Q- Weil divisor. We consider the following commutative diagram

XY
I
X —=7Y,

where 7 is a (Kx + A)-negative extremal ray contraction, f, g are int-amplified
endomorphisms and (X, A) is an f-pair. Then Ra is m-ample.

Proof. Since N'(X/Y') is 1-dimensional, there exists a positive number a such that
[*|Ivixyvy = a-idyix)y). Hence we have

Ra NKx+A—f*(Kx+A) =y (1—&)(Kx+A).

Since —(Kx + A) is m-ample, it is endﬁgh to show a > 1. By the definition of
int-amplified endomorphisms, there exists an ample Cartier divisor H on X such
that f*H — H is also ample. On the other hand, f*H — H =y (a— 1)H, so we have
a>1 ' : : O

Lemma 2.3.12. We consider the following commutative diagram

(X, 4) 5 (V,T) b—>B‘
fl J lh
(X,4) = (¥;T) 5— B,
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where m is a Mori fiber space of canonical bundle formula type, f, g, h are int-
amplified endomorphisms, b is a surjective morphism to a normal projective variety
B and (X, A) is an f-pair. Assume thatY 1is of Fano type over B and Rr contains
an effective b-ample Q-Cartier divisor H on'Y. Then

e RA contains an eﬁectwe (bom)-ample Q-Cartzer divisor, and
e (X,A) is of Fano type over B.

Proof. By Lemma 2.3.11, there exists a positive integer m such that

1 1 1
Hyx = —(RA —7T*H) +7*H = —Rp + (1 — —)’n‘*H
. m m m

is (b o m)-ample. By Proposition 2.3.9, we have
O0<m*H <7 Rr RA.

In particular, we have 0 < Hx < Rp, and we obtain the first assertion.
Next, we prove the second assertion. First, we prove the following claim.

Claim. There exists a posmve integer m such that —(Kx + A)+ (f™)*n*H is (bom)-
ample.

Proof of Claim. Since —(Kx + A) is m-ample, there exists a positive integer k such
that —(Kx + A) + k" H is (b o m)-ample. Since we have

f(Kx+A)+(fm)*ﬂ*H = (KX—l—A)-i-k?T*H-i-((fm)* *H — /C?T*H)
' = —(Kx+A)+kn*H +7*((¢™)*H — kH),

it is enough to show that there exists a positive integer m such that (¢™)*H — kH
is b-ample. Since Y is of Fano type over B, the number of the extremal rays of
NE(Y/B) is finite by the cone theorem (cf. [63, Theorem 3.7]). Let Ry, ..., Ry be
all extremal rays of NE(Y/B). Replacing g by some iterate of g, we may assume
that g, R; = R; for all 4. Let v; € R;\{0}, then g,(v;) = asv; for some positive number
a; for all i. By the definition of int-amplified endomorphisms, there exists an ample
- Cartier divisor A-on Y such that g*A — A is ample. Then we have

0< (g*A — A) Uy = (ai — 1)(14 : Ui);
so we obtain a; > 1 for all 7. In particular, for enough large m, we have
((g™)*H — kH) -vi = (a]* = k)(H - v;) > 0,

and it means that (¢™)*H — kH is b-ample.

By the above claim, we may assume that —(Kx + A) + f*7*H is (bo7)-ample,
replacing f by some iterate of f. In particular, there exists a Weil divisor D ~g g
—(Kx + A) + f*r*H such that (X, A + D) is klt. Next, we define a Q-Weil divisor
D; as ‘

Dy =d7' fu(Rf + A+ D) — A,
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where d = deg( f). Then we have

Dy =d'fu(Rp+ A+ D)= A = d'fy(Ra+ f*A+D)—A
df.(Ra + D) >0,

and
Dy +A=d'f,(Rs + A+ D).

Since this construction is the same as the construction in [35, Lemma 1.1], (X, A +
D) is kit and we have

["(Kx+A+D)=Kx+A+D=p f*n*H
by an argument similar to the proof of [35]. In particula:,‘we have
Kx +A+ D, =g 7*H. |
Next, we construct Do by the same way, that is,
Dy =d ' fu(Rf + A+ D)) — A =d ' fu(Ra + Dy).
Thén D, is effective, (X,A + Ds) is klt and
Kx + A+ Dy =g d fur*
by the same way as above. By the constructlc;r: :\Ze have
Dy >d 'f,Ra > dfor H
Let Q = Dy —d~!f,m*H, then (X, A + ) is klt and we have
Kx+A+Q=pd fur*H—d fur*H = 0.

Therefore it is enough to show that —(Kx + A) is (b o 7)-big by Proposition 2.2.3.
Since R contains (bow)-ample Q-Cartier divisor, Ra is (bow)-big. Since —(K x+A)
is pseudo-effective by Proposition 2.3.4,

—f*(KX ‘I—A) ~ Ra — (KX +A) '

is also (bo m)-big. In particular, —(Kx + A) is (b o m)-big, and we obtain Lemma,
2.3.12. ) ]

Corollary 2.3.13. We consider the following sequence

Tr—1

(Xo, Do) — (X1, A1) = == (X, A) = B,
where

o it (X, Ay) — (Xig1,Aiy1) is a Mori fiber space of canonical bundle formula
type for 0 <i<r—1, ’
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e p: X, — Bisa(Kx, + AT)-negative extremal ray contraction, and
e X has an int-amplified endomorphism fo such that (Xo, Do) 1s an fo-pair.
Then (Xo, Ao) is of Fano type over B.

Proof. By Theorem 2.2.15, we may assume that the above sequence is fy-equivariant,
replacing fy by some iterate. By Proposition 2.3.9, (X;,A;) is an f;-pair, where f;
is the endomorphism of X; induced by f;. By Lemma 2.3.11, Ra, is p-ample.
Since —(Kx, + A,) is p-ample and (X, A,) is klt, (X,, A,) is of Fano type over B.
By using Lemma 2.3.12 inductively, we obtain Ra, contains an effective Q-Cartier
divisor which is ample over B and (X, A;) is of Fano type over B for all 7. In
conclusion, (Xy, Aq) is of Fano type over B. O

Lemma 2.3.14. [27, Lemma 3.3, 3.4] Let X be a normal Q-factorial projective
variety and A an effective Q- Weil divisor. Let m: X —> Y be a Mori fiber space
and p: Y — W an extremal ray contraction which is birational. Assume that
(X, A) is of Fano type over W. Then we have the following commutative diagram

such that py is a flip of p or a divisorial contraction when py = p, wx s a birational -
map obtained by a MMP over W for some divisor on X, and " is (K% + A’)-Mori
fiber space, where A" = (ux) A.

‘Remark 2.3.15. In [27], they only deal with Ky-flips and Ky-divisorial contractions.
However, Lemma 2.3.14 follows from the same argument as [27, Lemma 3.3, 3.4]
except. for 7'-ampleness of —(Kx + A’). In our case, since —(Kx + A) is big over
W, —(Kx + A’) is also big over W. Since the relative Picard rank of X’ over Y’ is
equal to one, —(Kx + A’) is ample over Y.

Definition 2.3.16. A birational map u: (Y,T) --» (Y'I") of pairs is called a bira-
tional contraction over towers of Mori fiber spaces if we have a following commutative
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diagram

where,

e 7;, m, are Mori fiber spaces of canonical bundle formula type for all 0 < ¢ <
r—1,

e pisa (K é, + Q,)-negative extremal ray contraction which is birationél,

e 4, is aflip of p ori a divisorial c'ontraétiqn when py = p,

e 1 is a birational map which is a composition of steps,,of;MMP over B, and
o I"=p,TI. |

Remark 2.3.17. Divisorial contractions and flips obtained by a (Ky + I')-negative
extremal ray contraction are birational contractions over towers of Mori fiber spaces.

Lemma 2.3.18. Let 7: (X,A) — (Y,T') be a Mori fiber space of canonical bundle
formula type and py: (Y,T) --+ (Y',T") is a birational contraction over towers of
Mori fiber spaces. Assume that X has an int-amplified endomorphism f such that
(X, A) is an f-pair. Then we obtain a following commutative diagram

(X,A) _nx 5 (X!, A

wj lﬂ,

(¥,T) - 5+ (Y, ),

where px s a birational contraction over towers of Mori fiber spaces and 7' is a
. Mori fiber space of canonical bundle formula type. Furthermore, f™ induces an
int-amplified endomorphism f' of X' such that (X', A') is an f'-pair.
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Proof. By the definition of birational contractions over towers of Mori fiber spaces,
we obtain the following diagram

as in Definition 2.3.16. Since we obtain the following sequence
(X,A) —== (Y,T) _m,, . oty (Z,,Q,) —— B,

and this seqﬁence satisfies the assumption of Corollary 2.3.13, (X, A) is of Fano type
over B. Since uy is a composition of flips and divisorial contractions, we can take
the first step of uy as follows, o ‘

where p; is an extremal ray contraction over B and uy, is a flip of p; or divisorial
contraction when p; = py,. Since p; is a morphism over B and (X, A) is of Fano

type over B, (X,A) is also of Fano type over W. By Lemma 2.3.14, we obtain the
following commutative diagram

X —————— ->X1

1k

Yool Ly,
%4

as in Lemma 2.3.14. Let A; = (ux,)«A, then (X1, A1) is of Fano type over B by
- Proposition 2.2.4. Repeating the construction, we obtain the following commutative
diagram

(X, A)-"Z5 (X', A)

1k

(V,T) - = » (Y, T"),
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such that px is a birational map which is a composition of steps of MMP over B
and (X’,A) is of Fano type over Y’ by the construction, where A’ = (ux)«A. In
particular f™ induces an int-amplified endomorphism f’ of X’ for some m.

* Finally, we prove that (X', A) is an f’-pair and 7’: (X', A’) — (Y, T") is a Mori
fiber space of canonical bundle formula type. First, since we have

Rar = (ix)aRam = (ux)s(Rpm + A = (f7)*4) > 0,

(X', A" is an f’-pair. Next, we take a prime divisor ' on Y’ and 7/*E’' = mg F’
for some mg and prime divisor F’. Since px and wpy are birational contractions,
we can consider the strict transform £ and F of E’ and F’, respectively. Since px
and py are isomorphism on the generic points of F' and E, respectively, we have
T E = mgF, ordp(A) = ordp(A’) and ordg(I') = ordg (I”). Hence 7’ is a Mori
fiber space of canonical bundle formula type, since so is . - O

Definition 2.3.19. A sequence of birational maps and morphisms of pairs

(X,A) -7 (X, A
[
(X1,A1) -2+ (X, A

Im

(X2, Ag) =2 =

o + (X1, AL)

[

| (W, Aw),
iskcalledv sequence of steps of MMP of canonical bundle formula type if

e X is a normal Q-factorial projective variety, A is an effective Q-WEeil divisor
such that (X, A) is klt, ’

o X;--» X{ — Xiy, is obtained by (Kx, + A;)-MMP for all 0 <4 <r, and

e 7; is a Mori fiber space of canonical bundle formula type for all 0 < i < 7,

where A} = (0:)+ 4.

Furthermore, the above sequence is called mazimal if Kyw + Ay is pseudo-
effective.

Remark 2.3.20. If Kw + Aw is not pseudo-effective, then we can run MMP for
(W, Aw) and we obtain a Mori fiber space. In particular, there exists a maxunal
sequence of steps of MMP of canonical bundle formula type.

If X has an int-amplified endomorphism, then for every surjective endomorphism

/> the above sequence is f™-equivariant for some positive integer m by Theorem
2.2.15. We denote the induced endomorphisms on X;, X; and W by f;, fi and g,
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respectively. If (X, A) is an f-pair, then (X;, A;), (X[, Al) and (W, Aw) are an f;-
pair, an f/-pair, a g-pair, respectively by Proposition 2.3.9 and the proof of Lemma
2.3.18. In particular, —(Kw + Ayw) is pseudo-effective by Lemma 2.2.14. If we
further assume that the sequence is maximal, then Ky + Aw ~g 0.

Theorem 2.3.21. Let (X,A) --» -+ --» (W, Aw) be a sequence of steps of MMP
of canonical bundle formula type and f be an int-amplified endomorphism of X such
that (X, A) is an f-pair. Then we obtain a sequence of birational contractions over
towers of Mori fiber spaces

e (X7 A) -2 (XI7A/)
and a sequence of Mori fiber spaces of canonical bundle formula type
(XI7AI) - (Xi AIl) — s> (X,,.,A;.) - (VV’ AW)

Furthermore, (X', A") is of Fano type over W. ’

Proof. We prove Theorem 2.3.21 by the induction on the length of the sequences of
steps of MMP of canonical bundle formula type. We take the first step 7: (X, A) --»
(Y,T) in the above sequence; in particular, 7 is a flip, a divisorial contraction or a
Mori fiber space obtained by a (Kx + A)-negative extremal ray contraction. By the

“induction hypothesis, we obtain a sequence of birational contractions over towers of
Mori fiber spaces ‘

py: (Y, T) --» (Y, TV)
and a sequence of Mori fiber spaces of canonical bundle formula type -
Y, I') — (¥, 1) — o — (Yoo, I y) — (W, Aw).

If 7 is a birational map, py o7 is also a composition over towers of canonical bundle
formula type. Hence we may assume that 7: (X, A) — (Y,T) is a Mori fiber space
of canonical bundle formula type. By repeatedly applying Lemma 2.3.18, we obtain
the following commutative diagram

(X,A) -2 5(X",A)

7{ lﬁ,

(Y,D) - &+ (Y',T),

where p is a sequence of birational contractions over towers of canonical bundle
formula type and 7’ is a Mori fiber space of canonical bundle formula type. Hence,
we obtain the following composition of Mori fiber spaces of canonical bundle formula

type
(X,7 A,) - (Y/7F,) - (Yllv Pll) — T (Y;"—lvl—‘;"—l) - (W7 AW)

By Lemma 2.2.15, p is f™-equivariant for some m, so fm induces an int-amplified
endomorphism f’ of X’ such that (X’, A’) is an f’-pair. By Corollary 2.3.13, we
obtain (X', A’) is of Fano type over W. O
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2.3.3 Maximal sequéncé of steps of MMP

In this section, we construct X and A in Theorem A by studying maximal sequences
of steps of MMP of canonical bundle formula type. First, we construct A as a
covering of the output of a sequence of steps of MMP. Lifting this covering, we
construct X. ' ‘ -

Definition 2.3.22. A morphism u: (X ,5) —> (X, A) of pairs is called a quasi-
étale cover of (X, A) if ,

TR X — X is a finite surjective morphism of normal projective varieties,
e A is an effective Q-Weil divisor on X, and
e A= p*A — R, is effective.

Remark 2.3.23. Let u: (X,A) — (X,A) be a quasi-étale cover of (X,A) and
Kx + A is Q-Cartier. Then : :

o Kg+ A= p*(Kx + A), and in particular, Kg + A is Q-Cartier,
e (X,A) is kit if and only if ()Z', A) is klt by [63, Proposition 5.20], and
e if A =0, then y is étale in codimension one. '
Proposition 2.3.24. We consider the following commutqtive diagram
R A (x,A)
i
(X,A) — (X, A),

where 1 is a quasi-étale cover of (X,A), f and ]7 are surjective endomorphisms.
Then we have

"Rz =Ry+A— [*A=p*(Rf+ A — f*A) = 4*Ra,
and in particular, (X,A) is an f-pair if and only zf ()? , ﬁ) is an f-pair.
Proof. First, since fou=po f, we have
 Rpu=Ru+u'Ry = Rj + R,
Hehce we have |
Ry = Ry+A-f*A

= Rp+p*A—R,— f*(u*A-R,)
= p*(Ry+A—f*A) = p"Ra.
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- Example 2.3.25. In Example 2.3.3, p: (E,0) — (P!, A) is a quasi-étale cover of
(P!, A). In particular. (P!, A) is an h-pair by Proposition 2.3.24. Furthermore, in
this case, Kp: + A is Q-linearly trivial, so this is also an example of the following
proposition. ’ '

The following Proposition is fhe reformulation of Proposition 2.2.21.

Proposition 2.3.26 (cf. Proposition 2.2.21, Example 2.3.25). Let X be a normal
Q-factorial projective variety admitting an int-amplified endomorphism f and A
an effective Q-Weil divisor on X such that (X,A) is a kit f-pair. Assume that
Kx + A ~g 0. Then there exits a quasi-étale cover p: (A,0) — (X, A) of (X, A)
by an abelian variety A. Furthermore, if ¢: X — X is a surjective endomorphism
of X such that (X, A) is a @-pair, then ¢ lifts to A.

Theorem 2.3.27 (cf. [73, Lemma 4.12]). Let (X,A) --» -+ --» (W,Aw) be a
mazimal sequence of steps of MMP of canonical bundle formula type and f be an
~int-amplified endomorphism of X such that (X, A) is an f-pair. Thennx: X --+ W
is a morphism and we obtain the following commutative diagram

(X,A)—"—(4,0)

N Jo

K)o Wdw),

where
e A is an abelian v‘am'ety, _
o ux,uw are quasi-étale covers of (X, A), (W, Ay ), respectively,
o X is the normqlz’zatz’on of the maz’ﬁ component of X xw A, and
. RA has no vertical components of mx.

Furthermore, if @ is a surjective endomorphism of X such that (X, A) is a p-pair,
then there ezists the following commutative diagram

for some positive integer m, where ¢ and i are surjective endomorphism.

Proof. First, we proVe the last assertion. Let ¢ be a surjective endomorphism of ‘
X such that (X,A) is a ¢-pair. By Remark 2.3.20, ¢™ induces the surjective
endomorphism 1 of W such that (W, Aw) is a ¢-pair. By Proposition 2.3.26, 4 lifts
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to A denoted by J Since X is the normalization of the main component of X xw A,
X has an endomorphism ¢ induced by ¢™, % and . This satisfies the conditions in
Theorem 2.3.27.

Next, we prove Theorem 2.3.27 by the induction on the length of the maximal
sequences of steps of MMP of canonical bundle formula type. We note that (Ku +
Aw) ~g 0 and (W, Ay) is a g-pair for some int-amplified endomorphism g ori W by
Remark 2.3.20. Hence by Proposition 2.3.26, we can construct a quasi-étale cover
of (W, Aw) by an abelian variety A. This is the proof of the case where the length
is equal to 0.

Let p: (X,A) --» (Y,T) be the first step of the above sequence. We may assume
that p is f-equivariant replacing f by some iterate. By the induction hypothe81s
we obtain the following commutative diagram

(Y ) ——(4,0)
A uyJ" PW
(Y.T) —— (W, Aw),

where

e A is an abelian variety,
o Ly, uw are quasi-étale covers of (Y, T'), (W, Ay ), respectively,
e Y is the normalization of the main component of ¥ xy A, and

e Rr has no vertical components of Ty

First, we consider the case where p is a flip. Let X be the normalization of X
in K (V). Since X --» Y is isomorphism in codimension one,

px: (X,8) — (x,4)

is a quasi-étale cover of (X,A). In particular, ()N( ,ZX) is klt, so X has at worst
rational singularities by [63, Theorem 5.22]. By [55, Lemma 8.1],

%X:X’-—+A

is a morphism. By [73, Lemma 4.13], mx is also a morphism. The other statements
follow from the smallness of p and the proof of [73, Lemma 4.12].

Next, we consider the case where p is a divisorial contraction or a Mori fiber
space. We obtain the following commutative diagram

XLy A
P:va ‘[ J'ﬂw
—— Y —=W,

where X is the normalization of the main component of X xy A.
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Claim. Ra has no vertical components.

Proof. If p is a divisorial contraction, then there exists the unique exceptional prime
divisor £ on X. It is enough to show that 7x(E) = W. It follows from the fact
that mx(FE) is totally invariant (cf. [73, Lemma 4.12]).

If p is a Mori fiber space, then

p: (X,8) — (¥.T)

is a Mori fiber space of canonical bundle formula type since p is in steps of MMP
~ of canonical bundle formula type. By Proposition 2.3.9, Ra — p* Rr has no vertical
component of p. Since Rr has no vertical components of Ty, Ra has no vertical
component of 7x. O

~ Next, we prove that A= (ux)*A — R,y is effective, that is, ux is a quam—etale
cover of (X, A). Let & be the set of all prime divisors £ on X with ordE(A) < 0.
We may assume that f lifts to X denoted by f replacing f by some iterate. Suppose
that ¥ # ¢, and take E € ¥ and an irreducible component F' of f~*(E). Then
ordg(R,,) > 0. By the construction of X (coming from base change), R, has only
vertical components of 7x. Hence F i is a vertical component, so F' is also a vertical

component. Let
: Ry = R +A- f*

By Proposition 2.3.24, we obtain (ux)*Ra = Ry, in part1cular 1t is effective and
has no vertical component of 7x. Hence, ordp(Rx) = 0 and

ordp(A) < ordr(Ry + A) = ordp(f*A) = r - ordg(A) < 0,

where r = ordp(f*(E)). By Lemma 2.2.20, we may assume that f*(E) = 7'E for
some r’ > 1 replacing f by some iterate. Then we have

ordg(A) < 7 ordg(A),

but it is contradiction to the fact that ordg(A) < 0. It means that ¥ = ¢f and A
is effective. _ O

2.3.4 Structure of Fano fibrations for pairs with respect to
an int-amplified endomorphism

In this section, we finish the proof of Theorem A.

Proposition 2.3.28 (cf. [35, Lemma 1.1]). Let p: (Y,T') — (X, A) be a quasi-
étale cover of (X,A) and b: X —> B a surjective morphism of projective varieties.
Then (X, A) s of Fano type over B if and only if (Y;T) is of Fano type over B.
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Proof. First, we assume that (X, A) is of Fano type over B. Since —(Kx + A) is
big over B, then ' o

~(Ky +T) = —p*(Kx + A)

is big over B. By Proposition 2.2.3, there exists an effective Q-Weil divisor D on X
such that (X,A+ D) isklt and Kx + A+ D = 0. Then Ky + '+ p*D =5 0 and
(Y,T' 4+ u*D) is klt. By Proposition 2.2.3, (Y,T') is of Fano type over B.

Next, we assume that (Y, T) is of Fano type over B. Then by the same argument
as above, —(Kx + A) is big over B and we can take an effective Q-Weil divisor Dy
on Y such that Ky + '+ Dy =5 0 and (Y,I' + Dy) is klt. Let

Dx = deg(u) " 'us(Ru + T + Dy) — A
Since I' = p*A — R, we have
Dyx = deg(,u)_lu*Dy.

By the proof of [35, Lemma 1.1], Kx + A + Dx =p 0 and (X, A + Dx) is klt, and
in particular, (X,A) is of Fano type over B. O

Proposition 2.3.29. We consider the following commutative diagram

FGX--—-T- - sYoDy
hG B

where
e X Y, B are normal projective varieties,
e f, g, h are int-amplified endomorphisms, and

e T is a birational map.

 Let A be an effective Q-Weil divisors on X such that (X,A) is an f-pair and each
coefficient of A is smaller that one. Assume that (Y,T') is of Fano type over B and
(Y,T) is a g-pair, where T' = m,A. Then (X,A) is also of Fano type over B.

Proof. We take W the normalization of the graph of 7 as follows,
w

‘Then f and g induce the endomorphism f’ of W such that (W, Q = (ux);*A) is an
f'-pair after iterating f’. Indeed, since (ux)«Ra = Ra is effective, it is enough to
show that ordg(Rq) = 0 for every exceptional prime divisor E. Since we have

Ro =Ry +Q— (f)*Q

33



and ordg((f)*Q) = 0, we obtain ordg(Rgq) > 0. By Proposition 2.2.4, it is enough
to show that (W, Q) is of Fano type over B. Hence, we may assume that 7 is a
morphism.

By Proposition 2.2.3, there exits an effective by-big Q-Weil divisor Dy on Y such
that Ky +T" + Dy =p 0 and (Y,I" + Dy) is klt. We define a Q-Weil divisor Dx on
X as

: Kx + A+ Dx =7*(Ky + T + Dy).

Then Kx + A + Dx = 0. Next, let
Dy; = deg(g") " (¢")+(Ryi + T + Dy) =T

~ and

Dy = deg(f') ™" (f)«(Rp: + &+ Dx) — A. |
Then by the same argument as in the proof of Lemma 2.3.12 and [35, Lemma 1. 1]
Dy is effective, (Y,T' + Dy;) is klt, Ky +T' + Dy,; =p 0 and
. Kx+A+DX’i=7T’ (Ky-l-F—f—Dy,i).

Claim. There exists a positive integer m such that Dx ., is effective.

Proof of Claim. Since m,Dx; = Dy, it is enough to show that for any exceptional
prime divisor E on X such that ordg(Dx) is effective for some m. We fix an
exceptional prime divisor E on X. We may assume that E is totally invariant under
f replacing f by some iterate. Let f*E = rE for some r > 1 since f is int-amplified.
~ Let f,F = eFE, then re = deg(f). Let o ‘

a=ag(Y,T + Dy) > 0,

where ag(Y,T + Dy) is the log discrepancy of (Y,T" + Dy) with respect to E. Then
ordg(A + Dy) = 1 — a by the definition of the log discrepancy. Then we have ’

ordg(Dx;) = ordp(deg(f)~ (f)«(Ry + A+ Dx) — A)
= deg( 7t (r' — 1 + ordg(A + Dx)) — ordg(A)

r—a

= — - A
A Ol‘dE( )

- 1—0rdE(A)—%>O

for enough large :.

By the claim, we obtain an effective Q-Weil divisor Dx ,, such that Kx + A + _
Dxm=p0and (X,A+ Dx,) is klt. It is enough to show that Dx n, is big over B.
Since we have

Rag~ Kx+ A= (f)*(Kx + A) =3 (/') Dx;m — Dxm,
it is enough to show that Ra; + Dx m is Abig over B for some [. Since we have
Rr ~ Ky +T —g*(Ky +T) =5 ¢*Dym — Dym
and Dy, =p —(Ky +7T) is big over B, Rr + Dy, is big over B. Hence it is enough

to show that the following claim.
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Claim. Rpaj+ Dx o = (Rr + Dy,,) for some posmve integer [.
Proof of Claim. Since we have

(R + DXm) = 7 (Ra + Dxm) = Rr + DY,m7

it is enough to consider the coefficients with respect to the exceptional prime divisors.
We take an exceptional prime divisor £ on X and we may assume-that E is totally
invariant under f. Let f*E = rE. Then we have

ordg(Ray+ Dxm) = ordg(Ray) =ordg(Rp + A — (fH)*A)
= rt— -1+ ordg(A) — 7! ordg(A)
(’r - 1)1 - ordE(A)) ordg(7*(Rr + Dy.m))
for large enough [, since ordg(m*(Rr + Dym)) does not depend on .
O
Theorem 2.3.30. Let X be a normal Q-factorial projective variety admitting an

int-amplified endomorphism f and A an effective Q-Weil divisor on X such that
(X,A) is a klt f-pair. Then there exist following morphisms and pairs

(X,A) 2~ (X,A) " 4,
such that
. w is a quasi-étale cover of (X, A),
o Tisa ﬁber space,
e A is an abelian variety,
e X is a normal variety, and
o (X,A) is of Fano type over A.

In particular, 7 is the albanese morphism. Moreover, if ¢ is a surjective endomor-
phism of X such that (X, A) is a @-pair, then we obtain the following diagram

1

for some m, where ¢ and w4 are endomorphisms.

><e<f*—-><:e
>><———::>



 Proof. Let (X,A) --» --- -3 (W, Aw) be a maximal sequence of steps of MMP
of canonical bundle formula type. By Theorem 2.3.27, we obtain the following
commutative diagram

(X, A) (4,0)

I

(X, A) = (W, Aw)

as in Theorem 2.3.27.

We prove that (X,A) is of Fano type over A. By Proposition 2.3.28, it is
enough to show that (X, A) is of Fano type over W. By Theorem 2.3.21, we obtain
a sequence of birational contractions over towers of Mori fiber spaces (X, A) --»
(X', A") such that (X', A’) is of Fano type over W. By the construction, replacing
f by some iterate, we obtain the following commutative diagram '

By Proposition 2.3.29, (X, A) is of Fano type over W. Moreover, a general fiber of
7 is of Fano type, in particular, it is rationally connected by [41]. Since 7 is a fiber
space, 7 is the albanese morphism. ‘ o o o0

Theorem 2.3.31 (Theorem A). Let X be a normal Q-factorial klt projective variety
‘admitting_an int-amplified endomorphism. Then there ezists a quasi-étale finite
cover fu: X —> X such that the albanese morphism alb X —Aisa fiber space
and X is of Fano type over A.

Moreover, if ¢ is a surjective endomorphism of X such that (X, A) 18 @ p-pair,
then we obtain the following commutative diagram

1.

for some m, where $ and w4 are endomorphisms.

><z<€z—><z
D><—-§J>

Proof. Applying Theorem 2.3.30 for (X, 0), we obtain Theorem 2.3.31. We note that
(X,0) is a pair with respect to all surjective endomorphisms of X and quasi-étale
cover of (X, 0) is étale in codimension one. O

- Remark 2.3.32. Let m: X — A be a equivariant albanese morphism with respect
to int-amplified endomorphisms such that X is of Fano type over A and smooth,
then every fiber of 7 is of Fano type. Indeed, the locus of A where the fiber is
not smooth is totally invariant under the int-amplified endomorphism g of A. Since
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- every int-amplified endomorphism of an abelian variety has no non-trivial totally
invariant closed subset, every fiber of 7 is smooth. Furthermore, since the locus of
A where the fiber is not of Fano type is totally invariant under g, every fiber of 7 is
of Fano type.

The following corollary gives a characterization of Fano type admitting an int-
amplified endomorphism.

Corollary 2.3.33. Let X be a normal Q-factorial kit projective variety admitting an
int-amplified endomorphism. The following conditions are equivalent to each other.

1. X is of Fano type.

2. T8 Xom) 15 finite, where m¢%(Xyy) is the étale fimdamental group of the smooth
locus of X.

Furthermore, if we further assume that X is smooth, then the following condition is
also equivalent. A
(8) X is rationally connected.

Proof. The condition (1) implies the condition (2) by [39, Theorem 1.13]. We assume
that the condition (2). By Theorem A, we obtain the following diagram

XX Toa

as in Theorem A. Since p is quasi-étale, p(Xgn) —> Xsm is étale by the Zariski-
Nagata purity theorem [81, Theorem 41.1]. In particular, Wft()?sm) is also finite.
Hence A is a point, in particular, X is of Fano type. By Proposition 2.3.28, X is
also of Fano type.

If we further assume that X is smooth rationally connected, then 7¢*(X) is

trivial, so X is of Fano type. On the other hand, varieties of Fano type are rationally
connected by [41]. O

Corollary 2.3.33 is an affirmative answer for the following conjecture in the case
where 7¢*(X,p) is finite and X is Q-factorial klt..

- Conjecture 2.3.34 ([16, Conjecture 1.2]). Let X be a normal variety admitting a
non-invertible polarized endomorphism. Then X is of Calabi-Yau type.

2.4 Proof of Theorem B

In this section, every variety is defined over an algebraically closed field of charac-
teristic zero.
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2.4.1 Endomorphism on Cox rings

~ In this section, we recall the definition of Cox rings, and study properties of endo-
morphisms of them induced by endomorphisms of varieties. Lemma 2.4.5 gives a
characterization of toric varieties via endomorphisms. ‘

Definition 2.4.1. Let X be a normal projective variety such that Pic(X) is free.
We take line bundles Ly, ... L, which are a basis of Pic(X). We define the Coz ring
of X to be '
Cox(X) := @ H(X,L")
VELT

with the multiplication induced by the product of rational functions, where
' =L"® L

for v = (ng,...,n.). ‘The Cox ring of X is natufally graded by the Picard group
- of X and every homogeneous part is a k-algebra, so we regard Cox(X) as a graded
k-algebra. Furthermore, Cox(X) is independent on the choice of basis.

Proposition 2.4.2. Let X be a normal progectwe variety such that PIC(X ) is free
© with basis Ly,...L,.. Then

m= P HX,L
veZr\{0} .

is a graded mazimal ideal of Cox(X), it will be called the canonical maximal ideal
of Cox(X). ’

Proof. First we prove that m is a graded ideal. Taking homogeneous elements
a € Cox(X) and § €.m, then a and § are global sections of some line bundles L,
and Lg, respectively. If o€ H°(X, L, ® Lg) is not contained in m, then we have
Lo®Lg ~ Ox. If o and § are non-zero global sections, then L, and Lg are trivial,
and it contradicts to f € m. Hence m is a graded ideal of Cox(X). Furthermore, we
have

- Cox(X)/m ~ H°(X,0x) ~ k,

so m is a maximal ideal. O

Lemma 2.4.3. Let X be a normal projective variety such that Pic(X) is free. As-
sume that Cox(X) is finitely generated k-algebra. Then X is smooth toric if and
only if Cox(X)w is regular local ring, where Cox(X)w is the localization of the Cox
ring by the canonical maximal ideal.

Proof. By [58, Theorem 1.5], X is smooth toric if and only if Cox(X) is polynominal
ring over k. By [69, Theorem 2.1], the regularity of Cox(X ), implies the regularlty
of Cox(X). By [1, Lemma 5], Cox(X) is polynominal ring over k. . O
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Proposition 2.4.4. Let X be a normal projective variety such that Pic(X) is free.
Let f: X — X be a finite morphism. Then f induces the injective k-algebra
“homomorphism ¢: Cox(X) — Cox(X) satisfying the following properties:

(1) ¢ is finite if Cox(X) is finitely generated k-algebra, and

(2) ¢7t(m) =m for the canonical mazimal ideal m.

Proof. f induces an injective k-module homomorphism H®(X,L) — H°(X, f*L)
for any line bundle L. Hence it induces the injective k-algebra homomorphism
¢: Cox(X) — Cox(X) such that the restriction of ¢ to H°(X, L) coincides with
the above homomorphism.

By [84, Theorem 3.1], the submodule

@ H(X, L)

LePic(X)

is a finite Cox(X)-module. Since f*: Pic(X) — Pic(X) has the finite cokernel, we
obtain the first assertion. ‘ :

Next we prove the second assertion. Let s € H°(X,L) be a non-zero global
section of a line bundle L. Then ¢(s) is contained in m if and only if f*L is not
trivial. As L has a non-zero global section, f*L is trivial if and only if L is trivial.
Hence we have ¢~ !(m) = m. O

Lemma 2.4.5. Let X be a normal projective variety such that Plc(X ) s free, ,
Assume that Cox(X) is a ﬁmtely generated k-algebra. Let f: X — X be a fi-
nite morphism. Assume that if f*L ~ L for a line bundle L, then L is numer-
ically trivial. Then X is smooth toric if and only if the induced homomorphism

¢: Cox(X) — Cox(X) is flat.

Proof. If X is smooth toric, then Cox(X) is a polynominal ring. Since ¢: Cox(X) —>
Cox(X) is a finite morphism of regular rings, ¢ is flat.

Next, we assume that ¢ is flat. By Proposition 2.4.4, ¢ is finite and induces
“local endomorphism of Cox(X)n. By [4, Theorem 13. 3] it is enough to show that
¢ is contracting, that is, ¢®(m) < m? for some e.

We denote Cox(X) by R and the degree A part by RA for all A € Pic(X). We
take a homogeneous generator {a; € R),}i=1,.m of m. We take a homogeneous
element a € Ry = m, then we have a = h(ay, ..., a,,) for some polynominal h with
R(0,...,0) = 0. Since we have ©'(a) = h(¢'(a1),..., ¥ (an)), it is enough to show
that ¢!(a;) is contained in m? for all 4 for some . We assume that ((a;) is not
contained in Ry, for j = 1,...m. Since we have ¢(a;) = hi(as,...,an) for some
polynominal h; and ¢(a;) is homogeneous, the vanishing degree of h; is grater than
two, and in particular, ¢(a;) € m2. Hence it is enough to show that for some %, there
exists a positive integer [ such that ¢'(a;) is not contained in Ry, forall j = 1,...m.
Otherwise, for some i, (f!)*Ly, is isomorphic to Ly, for some [, where Ly, is a line
bundle corresponding to A;. By the assumption of f, L,, is numerically trivial. Since
we have 0 # a; € H(X, Ly,), Ly, is trivial, so it contradicts to A; # 0. O
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2.4.2 Proof of the “only if” part

Let X be a smooth toric projective variety. Thomsen [95] proved that for every line-
bundle L on X, F,L is a direct sum of line bundles, where F" is the absolute Frobe-
nius. In this section, we prove an analogue of this result for all finite endomorphisms
which is not necessarily a toric morphism. :

Theorem 2.4.6. (cf. [95, Theorem 1]) Let X be a smooth toric projective variety
and f: X — X 'a finite morphism. Then for every line bundle M on X, fiM is a
direct sum of line bundles.

Proof. Since X is smooth toric, R := Cox(X) is a polynominal ring with finite
variables. f induces the endomorphism ¢ of R as in Proposition 2.4.4. Since ¢ is a
finite homomorphism of regular rings, ¢ is flat. Thus ¢, R is flat and finite graded
R-module. Let M be a line bundle on X. We define a graded R-module Ejs by

Ev:= @ H'X, ML)

LePic(X)

Then we have a splitting injection

Eu=~¢. P H(X,MQfL)— p.R.

LeP1c(X)

Since ¢, R is flat, Ey is a flat graded R-module, so Ey is free R-module. Hencer
we have Ej ~ R()\l) @®---® R(\g), where \; € Pic(X) and R()\;) is the shift of R.
By [25, Proposition 6.A. 3] f+M is isomorphic to the sheaf associated to Ejy, so we.
have

f*M‘zLAI@-"(-BL)\d.

2.4.3 Proof of the “if” part

In this section, we prove an analogue of Achinger’s result for int-amplified endo-
morphisms, which are generalization of polarized endomorphisms. It is the main
difference from Achinger’s proof that Lemma 4.5 and Lemma 4.6.

Definition 2.4.7. Let X be a normal projective variety and f: X — X a finite
endomorphism. f is called by mt-amphﬁed if f*H — H is ample for some ample
Cartier divisor H on X.

Lemma 2.4.8. Let X be a normal projective variety admitting an int- ampliﬁed
endomorphism f. Let L be a line bundle with f*L ~ L. Then L is numerically
trivial.

Proof. 1t follows from [76, Theorem 3.3]. - - o
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Lemma 2.4.9. (cf. [1, Lemma2]) Let X be a normal projective variety admitting an
“endomorphism f. We assume that there ezists a subgroup A < Pic(X) containing

an ample line bundle such that for every line bundle Le A, fuL ~ L, ®---&® Ly for

some line bundles Ly, ... Lg contained in A. If a line bundle M satisfies f* M ~ Oy,

then M is trivial. '

Proof. We take a line bundle L € A. Let m(L’, L) denote the multiplicity of a line
bundle I’ as a direct summand of f,L. Let M be a line bundle with f*M ~ Oyx.
‘We prove m(L/ ® M, L) = m(L',L). We set m := m(L/, L), than L'®™ is a direct
summand of f,L. Hence, (L’ ® M)®™ is a direct summand of f,L ® M. Since we
have

HLOM = f(L® f*M) ~ f,L,

(L' ® M)®™ is a direct summand of f,L, and in particular, we have m(L'® M, L) >
m(L/, L). First we prove that M is a torsion element of Pic(X). By the assumption,
there exists a line bundle L with m(L’, L) > 1. Hence, L'® M* is a direct summand
of f.L for all k, so we have M* ~ MF*2 for some positive integers k; # ko. It means
that M is a torsion element of Pic(X). Since M is a torsion element, we obtain
m(L' ® M,L) = m(L/,L) for all line bundles L’. Let k be the minimum positive
integer of all positive integers with M* ~ Ox. Since we have x(L' ® M) = x(L'),
we have -
xX(L) = k(x(L1) + -+ - + x(Lm)),

, in particular, x(L) is divided by k. Since x(L;) is also divided by k, x(L) is divided -
" by k2. Repeating such a process, x(L) is divided by k° for all L € A and e € Z,.
Since A contains a very ample line Bundle L with x(L) s 0, we have k = 1, and in

particular, M is trivial. O

Lemma 2.4.10 means that any étale cover has the trivial Albanese variety in the
setting in the proof of the “if” part of B. Combining this lemma and [101, Theorem
1.3, 1.5], the variety is of Fano type, in particular, it has the finitely generated Cox
ring. It is a key ingredient of the proof of the “if” part.

Lemma 2.4.10. Let X be a normal projective variety admitting an int-amplified
endomorphism f. We assume that there exists a subgroup A < Pic(X) containing
an ample line bundle such that for every line bundle L € A, fuL ~ L1 ®---@® Ly for
some line bundles Ly, ... Ly contained in A. Then the Albanese variety is a point.

Proof. By [76, Theorem 1.8], we have the following commutative diagram;

X9,

s

X —A4,

where A is the albanese variety of X, a is the albanese morphism of X and g is
an int-amplified endomorphism. By Lemma 2.4.9, for f*: Pic’(X) — Pic’(X),
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the preimage of 0 is a point, so f* is an isomorphism. Since g is a composition of
a translation and the dual of f*, g is also an isomorphism. In conclusion, A is a
point. : : O

Lemma 2.4.11. Let

be a commutative diagram of finite morphisms of smooth projective varieties such
that w is étale, f and g are int-amplified endomorphisms. We assume that there
exists a subgroup A < Pic(X) containing an ample line bundle such that for every
line bundle Le A, fsL ~ L1 ®---@ L4 for some line bundles L1, . .. Lq contained in
A. Then the above diagram is a fiber product.

Proof. By the étaleness, it is enough to show that Y’ := X x x Y is connected, and in
particular, it is enough to show that A%(7* f,Ox) = 1. Weset f,Ox ~ M1 ®---® My
for line bundles M;, ... My. We note that

RO(FMY) = BO(f,0x ® M) > hO(Ox) > 1.

We may assume hO(M;) =1, then h°(f*M; ') > 1 implies that M; is trivial. Hence
we have 7* f,Ox ~ Oy @7* Mo @ - -®7* My and it is enough to show A%(7*M;) =0
foralli=2,...,d. : «
Suppose we have A°(m* M) = 1. Since h%(r* f*M,) and h(n* f*M; ') is grater
than zero, 7* f* M, is trivial, and in particular, f*M, is numerically trivial. Since_
RO(f* M5 ') is grater that zero, f*Ms is trivial. By Lemma 2.4.9, M, is also trivial,
but it contradicts to h%(Ms) = 0. » O

Lemma 2.4.12. Let X be a smooth projective variety admitting an int-amplified
endomorphism f. If for every line bundle L on X, fiL is a direct sum of line
bundles, then X is of Fano type, in particular, Pic(X) is free and Cox(X) s finitely
generated.

Proof. By [101, Theorem1.3, 1.5], we have a commutative diagram

Y Y

X —f> s

where 7 is an étale finite morphism, ¢ is an int-amplified endomorphism, and Y is
a smooth variety of Fano type over the Albanese variety of Y. By Lemma 2.4.11,

the above diagram is cartesian. Let A := 7* Pic(X) be a subgroup of Pic(Y), then
~ it contains an ample line bundle. Furthermore, for every 7*L € A, we have

g
—

9x7 L ~ 7* f L.
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By the assumption, f,L is a direct sum of line bundles. In particular, g,m*L ~
Li® - ® L, for some L; € A. By Lemma 2.4.10, the Albanese variety of ¥ is a
point, in particular, Y is of Fano type. Thus X is smooth and rationally connected,
so 7 is trivial and X is also of Fano type. By [11, Corollary 1.1.9], Cox(X ) is finitely
generated. k O

Theorem 2.4.13. Let X be a smooth projective variety admitting an int-amplified
endomorphism f. If for every line bundle L on X, f.L is a direct sum of line
bundles, then X 1s toric.

Proof. By Lemma 2.4.12, Pic(X) is free and R := Cox(X) is finitely generated. By
Lemma, 2.4.5 and Lemma 2.4.8, it is enough to show that ¢: R — R induced by f
is flat.

For p € Pic(X)/f* Pic(X), we take a representatlon W' € Pic(X) of u. Then we
have '

(P*R = C—D SD*MIL
. pePic(X)/f* Pic(X)

as an -module, where M, is defined by

M,:= P H'X,Ly®f*Ly)
AePic(X)

By the projection formula, we have

‘P*M = @ H(X, fu(Ly ®f*L>\)), (’B (X FeLlyw ®L>\)
)\ePlc(X) AePic(X)

By the assumption, we have f L, =~ Ly, @---® Ly,. Hence we have
d ‘ d
eM, =D @ HYX,Lym) ~DR.
i=1 XePic(X) i=1

It implies that ¢ is a flat finite homomorphism. _ O

| 2.5 Proof of Theorem C

2.5.1 Global F-splitting of varieties appearing in an equiv-
ariant MMP

In this section, we study the global F—splitting# of varieties appearing in a minimal
model program.
First, we consider the birational case. In this case, we obtain the following result.

Theorem 2.5.1. Consider the following commutative diagram

X.—f—>~X
| |
Tl Iz

+ +
Y—g—)Y,
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where X, Y are normal projective varieties defined over an algebraically closed field
k of characteristic 0, 7 is a birational morphism or a small birational map, f and
g are int-amplified endomorphisms. Then X is of dense globally F-split type or of
globally F-regular if and only if so is Y

Proof. First note that the “only if” part holds without the existence of int-amplified
endomorphisms by [37, Lemma 2.14]. Furthermore, when 7 is small, Theorem 2.5.1
follows from [37, Lemma 2.14]. Thus we assume 7 is a birational morphism. We
may assume that X, Y, f, g and 7 are defined over algebraically closed field of
characteristic p > 0 and Y is globally F-split and deg(g) is coprime to p. It is enough -
to show that X is globally F-split to prove the first-assertion. We fix canonical
divisors Kx and Ky on X and Y, respectively with 7, Kx = Ky. Let ¢: F,Oy —
Oy be an Oy-module homomorphism giving a splitting of the Frobenius morphism
of Y. Then there exists a non-zero rational function o € K(Y) such that ’

(1-p)Ky +divy(a) =0

is corresponding to v (see § 2.3). Note that v induces the homomorphism F, K (Y) —
K(Y) with (1) = 1. Since K(Y) = K(X), 1 is also induces the homomorphism
F.K(X) — K(X ) and it is also denoted by 1 by the abuse of notations. Then 3
corresponds to the divisor

(1 — p)KX + diVX(f*a).‘

Since 7 is a birational morphism, there exists an effective exceptional d1v1sor E on
X such that
(1 — p)KX + diVX(f*a) > —F.

By the commutative diagram in the statement of Theorem 2.5.1, every exceptional
prime divisor of 7 is totally invariant under f. Since f is an int-amplified endomor-
phism, we may assume that E < R; by replacing f Wlth some iterate of f by [76,
Theorem 3.3 (2)]. The homomorphism

Trpo fup: fuFuK(X) = Fofu K(X) — K(X)
is corresponding to
(1-p)Kx +divx(f*a) + pRf = —E + pRs > 0.

It implies that Tr 7 © f«1) defines the homomorphism F, f,Ox — Ox. Smce Tro

«¥(1) = deg(f) is an unit of Ox, X is globally F-split.

Next, we assume that Y is globally F-regular. Let D be an effective Well divisor
on-X. There exist a non-zero rational function oo € K(Y) and a positive integer e
such that

(1-p°)Ky +divy(a) — 1D =0

and corresponding homomorphism 1), gives a splitting of

Oy I F:Oy —> F:OY(W*D)Y.
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¥, induces the homomorphism F¢K(X) — K(X) and it is also denoted by ;. by
the abuse of notations. Since Ry contains all exceptlonal prime divisors, there exists
a positive integer €’ such that

(1-p*)Kx +divx(f*a) — D +pe+6/Rf =0

‘Since X is globally F-split, we can find a homomorphism 1) giving a splitting
Ox — F:’ Ox and it corresponds to a divisor

(1—p¥)Kx + divx(8) > 0

for some non-zero rational function 8 € K(X). Hence Try o fyie 0 f*Fflzpl is corre-
sponding to

(1—p*)Kx + divy(a) — D + p*(1 — p) Kx + divx(8)) + p*** Ry > 0.

Thus this homomorphism defines a homomorphism F ete! f*C’)X(D) —> Ox and it
gives a splitting. Therefore X is globally F-regular. ~ O

Corollary 2.5.2. Let X be a normal klt Q-factorial projective variety defined over
an algebraically closed field k of characteristic 0 and X admits an int-amplified
endomorphism. Assume that some MMP of X ends up with a point. Then X is of
globally F-regular type.

Proof We consider a MMP of X B

X=Xy Xy s X,
such that X, — Spec(k) is a Mori fiber space. In particular, X, is of Fano type.
By Theorem 2.2.8, X, is of globally F-regular type. Since X has an int-amplified

endomorphism f, the above MMP is f™-equivariant MMP for some n € Zsq by
Theorem 2.2.15. By Theorem 2.5.1, X is also of globally F-regular type. O

Let S be a normal surface defined over a field of characteristic zero admitting
an int-amplified endomorphism. If some MMP for S ends up with a point, to prove
the global F-splitting of S, we may assume that — K is ample by Theorem 4.1. If
S is klt, then S is globally F-regular type by Corollary 4.2. If S is log canonical, S
is of Calabi-Yau type, but global F-splitting is not clear. .

In order to prove global F-splitting of S, we discuss the local case.

Definition 2.5.3.

1. Let X be an integral scheme essentially of finite type over an F-finite field of
positive characteristic. We say that X is F-pure if F: Ox ; — F,Ox 4 splits
as Ox z-module homomorphism for every point z € X.

2. Let X be a normal integral scheme essentially of finite type over a field of
characteristic zero. We say that X is of dense F-pure type if taking a model
X 4 over a finitely generated Z-algebra A as in § 2.2, there exists a dense subset |
S of the closed points of Spec A such that X, is F-pure for every s € S.
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Lemma 2.5.4. Let (R,m) be a Noetherian local normal ring essentially of finite
type over an F-finite field of characteristic p > 0 and ¢: R — R a injective finite
local homomorphism such that p is coprime to deg(p). Assume that Spec R\{m} is
F-pure and there exists a non-zero effective Cartier divisor D on Spec R such that
D < R,. Then R is F-pure.

Proof. We consider the evaluation map Hompg(F, R, R) — R. Note that this map is
surjective if and only if R is'F-pure. Since Spec(R)\{m} is F-pure, this evaluation
map is surjective at any point of the punctured spectrum. Thus there exists a
positive integer r such that the image of the evaluation map contains m". By the
assumption, there exists an element o/ € m such that div(e/) < R,. We set a =
e al) w(a/) - /. Then we have '

div(a) = (" H*div(a/) +--- + div(a/) < Ryr

and a € m”. We replace ¢ by ¢". Since « is contained in the image of the evaluation
map, there exists a homomorphism % : FyR — R such that (1) = a. Next we
consider the homomorphism \

Try(a™t ) puK(R) — K(R)

mapping z € ¢.K(R) to Tr,(a 'z). Note that the image of a by this map is an
unit of R. Furthermore, this map is corresponding to

| R(p —div(a) = 0.

Thus Tr,(a~! - ) defines the homomorphism ¢, R — R by Example 2.2.11.
Hence !

——Tr, (et )op,h: 9 FyR — o,R— R
doz (o) pla™ )opub:p @

gives a splitting of F o ¢. In particular, R is F-pure.

Next, we prove the following global assertion by reducing to Lemma 2.5.4.

Proposition 2.5.5. Let X be a normal projective variety defined over an alge-
braically closed field k of characteristic 0 with the Picard rank one and X admits a.
non-invertible endomorphism. Assume that —Kx is ample Q-Cartier divisor and X
has at worst rational singularities. Furthermore assume that X is of dense F-pure
type. Then X is of dense globally F-split type.

Proof. Let f be a non-invertible endomorphism of X. Note that f is a polarized
endomorphism because the Picard rank of X is equal to one. There exist an ample
divisor H' on X and a positive integer g such that f*H! ~ gH’. We note that ¢ is
larger than one since ¢#™* = deg(f) by the projection formula. Since X is of dense
F-pure type and Q-Gorenstein, X is log canonical by [47, Theorem]. By Kodaira
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. ’
type vanishing theorem [34, Corollary 2.42], H}(X,0x) = 0. Let 7: Y — X be a
log resolution of X. Since X has at worst rational singularities, we have

H'(Y,Oy) = H'(X, Ox) = 0.

It implies that Pic(Y) is ﬁnitely‘genera,ted. Let U be the maximal open subset of |
X such that 7|1 is isomorphism. Thus, we have

CHl(X) CHY(U) « CHY(Y) ~ Pic(Y),

in particular, CH'(X) is finitely generated. Since R is Q-Cartier, {R | n € Zso}
is a finite set in Div(X)/CDiv(X).

It implies that there exist positive integers m > n > 0 such that Rm — R i5 0
in Div(X)/CDiv(X). Thus, it is Cartier divisor. Furthermore,

Ry — Ry = (f™™*Rs+-- (f*)R

is effective. Replacing f be some iterate, we may assume that there exists an effective
Cartier divisor A on X such that Ry > A. We define A, = (/" )*A+--- f*A+ A.
Since CH!(X) is finitely generated and f*A, — gA, is Q-linearly trivial, we have
{f*An — qA, | n € Zsy} is a finite set Thus, there exist positive integers m > n
such that
’ f*Am - qu (f*A qAn) = f*Al
is a principal divisor, where A" = ( Fm- 1)*A + f”)*A Since A < Rf, we have

A= (F7) At (P A< (F7) Ry + -+ f*Ry + By = Ry

and f*A’ ~ qA’. Hence replacing f by some iterate, we may assume that there
exists an effective ample Cartier divisor H on X such that Ry > H and f*H ~
qH. Therefore f induces the graded endomorphism ¢ of the section ring R =
@P,50 HY(X, Ox(mH)). Let D be a corresponding effective Cartier divisor of H
on R. Then D < R,, since H < Ry. Indeed, D is the pullback of H and R, is
the pullback of Ry outside of the vertex 0 of Spec(R) via the natural projection
Spec(R)\{0} — X. Next we take a model (X4, Ha, fa) of (X, H, f) over a suitable
finitely generated Z-subalgebra A of k as in § 2.2. Localizing A at a single element,
we may assume that (Ry), = Ry, for every u € Spec A. In particular, we may
-assume that H), is an effective Cartier divisor such that H, < Ry, and f*H, ~ qH,,.
It means that f, induces an endomorphism ¢, of the section ring

R, = C—B HY(X,,mH,)

mz=0
and there exists a non-zero effective Cartier divisor D on R, such that D < R,,. Since -
X is of dense F-pure type, there exists a dense subset of closed points W < Spec A
such that X, is F-pure and deg(yp,) is coprime to p for all p € W. Then R, satisfies

the assumptlon of Lemma 2.5.4, thus R,, is F-pure for all pe wW. By [87, PropOSItlon
5.3], X, is globally F-split for all u e W O
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2.5.2 Surface case

In this section, we prove Theorem C (Theorem 2.5.7). This section is an only section

~we assume that X is a surface. In the smooth case, Theorem C follows from the

classification by Nakayama and Fujimoto in [82], [32]. ‘
First, we consider ruled surfaces over an elliptic curve admitting an int-amplified -
endomorphism.

Lemma 2.5.6. Let X be a minimal ruled surface over an elliptic curve defined over
an algebraically closed field of characteristic zero and X admits an int-amplified
endomorphism. Then X is of dense globally F'-split type.

Proof. By [3, Theorem 1.2] and Proposition 2.2.12, we may assume that the vector
bundle defining X is decomposable. Then X is of dense globally F-split type since
every elliptic curve is of dense globally F-split type by [28, Theorem 1.2, Theorem
7.1]. ‘ (|

Theorem 2.5.7 (Theorem C). Let X be a normal projective surface defined over

an algebraically closed field of characteristic zero and X admits an int-amplified

endomorphism. Then X is of dense globally F-split type. In particular, X is of
Calabi-Yau type.

Proof. Let f be an int-amplified endomorphism of X. By [98, Theorem 1.4] or [17,
Theorem 1.4], X is Q-Gorenstein and log canonical. By [76, Theorem 1.5], —Kx is
pseudo-effective. If K is pseudo-effective;~X is Q-abelian surface by [18; Lemma
9.3]. On the other hand, abelian surfaces are of dense globally F-split type by [83].
By Proposition 2.2.12, Q-abelian surfaces are of dense globally F-split type.

Thus we may assume that' Kx is not pseudo-effective. Replacing f by some
iterate, we may run an f-equivariant MMP: :

X=X1—>X2—>"'—>Xr——>Y,

where X; — X1 is a birational contraction forall 1 <i<r—-1and X, — Y
is a Mori fiber space. By Theorem 2.5.1, it is enough to show that X, is of dense
globally F-split type. In particular, we may assume that X = X,.

We obtain the following diagram:

>< B

7,

<=‘_;><
(—
3

).<

C ey
g

=

where 7 is a Mori fiber space and Y is an elliptic curve, a projective line or a point,

- f and g are int-amplified endomorphisms. If Y is a point, thén —Kx is an ample
- Q-Cartier divisor and the Picard rank of X is equal to one: By the proof of [16,-

Theorem 5.1], X is a projective cone over an elliptic curve or X has at worst rational
singularities. In the first case, X is of dense globally F-split type, and in the second
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case, Propos1t10n 2.5.5 implies that X is of dense globally F—spht type because log
canonical surfaces are of dense F-pure type by [75] and [46].

Next, we assume that Y is not a point. Then by [72, Theorem 1.2], X is kit
Q-factorial. By the proof of Theorem 2.3.31 and the quasi-étale decent of being of
dense globally F-split type (Proposition 2.2.12), we may assume that X is of Fano
over the albanese variety A. If A is a point, then X is of Fano type, thus X is
globally F-regular type by Theorem 2.2.8. Otherwise, A is an elliptic curve. In this
case, X is a ruled surface over A by Theorem [72]. By Lemma 2.5.6, X is of dense
globally F-split type. o
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Chapter 3

‘Minimal model theory in mixed
characteristic

3.1 Preliminaries

'3.1.1 Notations

In this subsection, we summarize notations used in this chapter.

We will freely use the notation and terminology in [63] and [61].

A morphism of schemes is alteration if it is projective, surjective, and generl—

- cally finite.

A Noetherian scheme X is locally irreducible if every connected component of
X is irreducible. '

A scheme V is a Dedekind scheme if V is a Noetherian excellent 1-dimensional
regular scheme.

For a Dedekind scheme V', we say X is a variety over V or a V-variety if X

is an integral scheme that is separated and of finite type over V. We say X is

a curve over V or a V-curve (respectively a surface over V or a V-surface) if
X is a V-variety of (absolute) dimension one (respectively two).

Let V be a Dedekind scheme. Let a: X —> V be a quasi-projective V-variety.
The dualizing compler wi v is defined by o'Oy, where o' is defined as in
[48, Ch. III, Theorem 8.7]. The canonical sheaf wxv is defined by (—d)-th
cohomology h™%(w sv) of the dualizing complex, where d is the integer such
that (—d)-th cohomology is the lowest non-zero cohomology of w¥ ,, thus
there exists a natural map wxv[d] — w%,,. We note that if « is flat, then
d coincides with the relative dimension of X over V. If X is normal, there is
a Weil divisor Kx v, called a canonical divisor, such that wx ~ Ox(Kx W)
Note that Kxy is uniquely determined up to linear equivalence. We note that
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wx v satisfies the condition (S2) by [49, Lemma 1.3]. If the image of « is a
closed point, then we denote the induced morphisms by

X—>Speck—>V.

Since 6'Oy[1] ~ k, we have wiv[1] =~ wk - In particular, we have wxy =~
wx k- In this case, we denote w;(/v[l] s wx v, Kx v by wk,wx, Kx, respectively,
for simplicity. '

e Let V be a Dedekind scheme. We say that (X, A) is a log pair over V' if X is
a quasi-projective normal V-variety and A is an effective Q-Weil divisor on X
such that Kx, + A is Q-Cartier. We will use the singularities of the MMP
defined in [61, Definition 2.8]. Let S be a reduced divisor on X such that
A’ := A— S and S have no common component. Then we denote the different
of the pair (X,A) by Diffgn(A’) defined by [61, Definition 4.2], where S is
the normalization of S. We will freely use the adjunction results in [61, Section
4].

e Let V be a Dedekind scheme. Let 7: Y — X be a proper morphism of
V-schemes. The trace map Rm.wiy , — wi v 18 defined as the following.
Applying R om( _ ,w¥ /V) to the natural map Ox — Rw,.Oy, we have

RA om (R Oy,wk ) —> R om(Ox,wy ) = Wiy
The left hand side is isomorphic to ] : k
Rry R om(Oy,wy ) = Rruwy p,

by the Grothendieck duality, thus we obtain the trace map Rm,ws, v Wy
If X is of relative dimension d and 7 is an alteration, taking the (—d)-th
cohomology and the composition with the natural map, we obtain the map
TaWyy — wx, v is also called the trace map by abuse of notations. Let D
be a Q-Cartier Q-Weil divisor on X and we further assume that X and Y
are normal. Then we can extend the map 7wy v ([7*D])|lv — wx v ([D])|v
on the regular locus U of X to the map mwy v ([7*D]) — wxv([D]) on X
because wx v (| D]) satisfies the condition (Ss).

e Let R be a discrete valuation ring and V' = Spec R. R is of characteristic
(0,p) if the fractional field K is of characteristic zero and the residue field
k is of characteristic p > 0. Let X be a V-variety. The closed fiber of X is
X xy Spec k denoted by X, and the generic fiber of X is X xy Spec K denoted
by X,.

3.1.2 Negativity lemma and finite generation of the Picard
rank ' '

In this subsection, we remark that the negativity lemma holds for the general set-
ting. Originally, the negativity lemma follows from the Bertini’s theorem and the
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negativity lemma for surfaces. However, in general setting, the Bertini type theérem
is much harder. Thus, we use the alternative proof by [15]. '

Proposition 3.1.1. (Negativity lemma) Let 7: Y — X be a projective morphism
of Noetherian normal schemes. Let D be an R-Cartier R-Weil m-nef divisor on'Y .
If mD <0, then D < 0. '

Proof. The proof of [15, Proposition 2.12] also works in our setting. Thus, we obtain
an analogous statement of [15, Proposition 2.12]. The negativity lemma follows from
this statement. O

Proposition 3.1.2. Let X — Y be a proper morphism of Noetherian schemes.
Then, the relative Picard number rankg N1(X/Y) is finite, where N*(X/Y) is de-
. fined by ' o 4
(Pic(X)/numerical equivalence over Y') ®z R.

Pfoof. The proof of [60, IV, §4] also works in our setting. : : O

3.1.3 Base change

In the proof of the existence of flips, we reduce to the case where V is the spectrum
of a complete discrete valuation ring with an infinite residue field. To do this, we
observe properties preserved under the base change via strictly henselization and
completion. We note that Q-factoriality is not preserved under the above base
change.

Lemma 3.1.3. Let V be an excellent Dedekind scheme. Let (X,A) be a dlt pair.
Then every component D of |A] is normal up to universal homeomorphism if D is

Q-Cartier.

Proof. We may assume that D = [A|. The assertion follows from the same argument
as in the proof of [44, Lemma 2.1]. ’ O

. Lemma 3.1.4. Let V be the spectrum of an excellent discrete valuation ring. Let
L: V' — V be the completion of the strict henselization of V. Let (X,A) be a dlt
pair over V. Let S be a component of |A| such that S is Q-Cartier. Let (X', A') and

- S" be the base change of (X, A) and S via v, respectively. Then (X', A}) s dlt and S’
is locally irreducible. In particular, every irreducible component of S’ is Q-Cartier.

Proof. We note that ¢ is the composition of formally étale morphism and completion.
Via both base change, being dlt and normality are preserved, we note that a strict
henselization of an excellent local ring is also excellent [40, Crollary 5.6]. By Lemma
'3.1.3, the normalization S¥ — S is a universal homeomorphism. By the base
change via ¢, we have (SV) — S, then (SV) is also normal and this map is a
universal homeomorphism. Since normal schemes are locally irreducible and locally
~ irreducible is preserved by homeomorphisms. Thus, S’ is also locally irreducible.
Since S is Q-Cartier, S’ is also Q-Cartier. Being Q-Cartier is a local property and
S’ is locally irreducible, every irreducible component is also Q-Cartier. o -
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3.1.4 Alterations

Proposition 3.1.5. Let V be an excellent Dedekind scheme. Let X be a V -variety
and x € X be a point of X. Let f,: U —> U := Spec Ox, be an alteration from an
integral scheme. Then there exists an alteration f: X' — X of V-varieties such
~ that we have the following Cartesian diagram:

U——U

e

X —X.

Proof. Since f, is projective, U’ is embedded in some projective space P¥. It extends
to some open subset of X, thus we may assume that U is an open subset of X. We
denote the closure of U’ in P¥ by X’. Then the natural morphism X' — P§¥ — X
is projective. Since U’ is integral and dim U’ = dim X, the morphism X’ — X is
also an alteration. By the construction, this satisfies the desire conditions. O

- Proposition 3.1.6. Let V' be an excellent Dedekind scheme. Let X be a V—variety. V
Let f;: Y; — X be alterations of V -varieties fori =1,...,7. Then there exists an
alteration f:Y — X of V-varieties which factors through f; for all .

Proof. By the induction on i, we may assume that ¢ = 2. We denote the fiber
~product of ¥; and Y3 over X by Y’ :=Y; xx Y,. Take an irreducible component Y’
of Y’ which dominates X, then f:Y —> X is an alteration of V=varieties and -f -
factors through f;. . : O

Proposition 3.1.7. Let V be an excellent Dedekind scheme. Let X be a V -variety
and Sy,..., S, be closed sub-V -varieties of X. Let f;: Ty — S; be an alteration of
V -varieties. Then there exists an alteration g: Y — X of V-varieties and a closed
sub-V -varieties Sy1,...,Sy,r of Y with g(Sy;) = S; for all i such that the induced
morphism gs,;: Sy; — Si factors through f;.

Proof. By Proposition 3.1.6, we may assume that i = 1. We set f := f;, S := 57,
and T := T;. We denote the generic point of S by z, then Ox, is a local domain
with residue field K(S). Since K(S) < K(T) is a finite extension of fields, it is a
finite sequence of simple extensions. Thus we have a finite extension of domains
Ox — A such that the residue field of some maximal ideal of A coincides with
- K(T). It extends to a finite surjective morphism 7: X’ — X such that it factors
through Ox , — A after localizing at = by taking the normalization of X in K(A).
In particular, there exists a closed sub-V-variety S’ in X’ such that 7(S") = S
and there exists a rational dominant map S’ --» T over S. Replacing f into an
elimination of indeterminacy S’ --» T and (X,S) into (X', S’), we may assume
that f is birational. Since f is projective, it is blowing up with respect to some
ideal sheaf .Zg of Og. There exists an ideal sheaf .# of Ox such that .# contains a
defining ideal of S and .# - Og = 5. Then the strict transform Sy of the blowing
“up g: Y — X with respect to # of X coincides with T . O
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Proposition 3.1.8. Let V' be an excellent Dedekind scheme. Let X be a V-variety
and S = X be a closed V-variety. Let D be a Cartier divisor on S. Then for
every positive integer n, there exists an alteration f:Y — X from a V-variety
and closed sub-V -variety Sy of Y with f(Sy) = S such that f§$D = nD’ for some
Cartier divisor D' on Sy, where fs: Sy — S is the induced morphism.

Proof. Combining Proposition 3.1.5 and Proposition 3.1.6, we may assume that
D = div(y) for some non-zero section 0 # ¢ € K(S) and X is affine by shrinking X.
Let g: T —> S be the normalization of S in K(S)[¢'/"], then ¢g*D = ndiv (/™).
The assertion follows from Proposition 3.1.7. : )

Theorem 3.1.9. ([26, Thorem 6.5]) Let V be the spectrum of a complete discrete
valuation ring. Let X be a flat V-variety, and let Z < X be a proper closed subset.
Then there exists a finite surjective morphism V' — V and an alteration ¢: X' —>
X from a V'-variety such that the pair (X', ¢ (Z)rwea) is a strictly semi-stable pair
by means of [26, 6.8], and in particular, (X', © N Z)rea) is a simple normal crossing
pair.-

Remark 3.1.10. If X is not flat over V, then X is defined over a field. Thus, in this
case, the last assertion of Theorem 3.1.9 follows from [26, Theorem 4.1]. :

3.1.5 Adjunction and Bertini type theorem

For the proof of the existence of flips, we discuss the adjunction of singularities

related to local irreducibility. The reader is referred to [61, Section 4] for more
details.

Proposition 3.1.11. Let V be an excellent Dedekind scheme. Let (X,S+ A+ B) is
a dlt pair over V such that S and A are locally irreducible Weil divisors and |B] =0.
Then (SN, Diffgn (A + B)) 1s plt.

Proof. Let m: SN — X be the composition of the normalization of S and the closed
immersion S —> X. Let E be an exceptional prime divisor over SV centered at
z € SN. If the log discrepancy ag(SY,Diffgn (A + B)) is equal to 0, then 7(z) is
the generic point of a stratum of |S + A|. Since E is exceptional, m(z) is contained
in at least three component of S + A. Since S and A are locally irreducible, it
contradicts. , ; 7 O

Lemma 3.1.12. Let V be the spectrum of a discrete valuation ring with an infinite
residue field. Let (X,A) be a plt surface over V. Let H be an ample Q-Cartier
divisor. Then there exists an effective divisor D ~g H such that (X, A + D) is also
plt. . : V

Proof. First, we note that if X is not flat over V, then X is a surface over the residue
field k of V. Then the assertion is well-known. Thus, we may assume that X is flat
over V. We take a positive integer m > 2 such that mH is very ample. If there
exists an effective divisor D’ ~ mH such that (X, A + D’) is dlt, then %D’ is what
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we want. Let B; be the sum of the components of A contained in the closed fiber
X, and we write By := A — B;. Then B; and X, have no common components.
Let 5 be the union of By n X .4 and the non-regular locus of X, ,.q. We note
that X, is a finite set as X, is one-dimensional. Thus, for a general member D of -
|m(H|x,,.4)|, D has no intersection with X, the pair (X sxed; D) is a simple normal
crossing pair and D has no common components with B; by [31, Corollary 3.4.14].
By the same argument, for a general member D of |[mH|x,, D has no intersection
with the non-regular locus of X, and Bs|x,. By the proof of [53, Theorem 0], we
find an effective divisor D’ such that D’ ~ mH and D'|x, and D'|x, ., satisfy the

conditions as above. Thus (X, A + D’) is dlt. Indeed, around the support of D, the
pair (X, A + D) is a simple normal crossing pair. O

3.1.6 Rational singularities

In this subsection, we study properties of rational singularities. We will use Propo-
sition 3.1.14 in Section 3.4 to prove the Cohen-Macaulayness of ﬂlps The reader is
referred to [64] for more details.

Definition 3.1.13. ([64]) Let X be a Noetherian excellent scheme. X has rational
singularities if X is normal and Cohen-Macaulay, and for every birational projective

‘morphism f:Y — X from a Cohén-Macaulay scheme Y, the natural morphism

Ox — Rf,Oy is an isomorphism.

Proposition 3.1.14. Let ¢: X — Z be a projective birational morphism from a
normal klt scheme X to an excellent normal Cohen- Macaulay scheme Z admitting
a normalized dualizing complex wy.

(i) If X has rational singularities and Oy ~ Rr,Ox,.then Z has rational singu-
larities.

(#) If dimExc(y) < 1, X has rational singularities except for finite closed points
and Z has rational singularities, then X has rational singularities.

Proof. Take a projective birational morphism g: Y — Z from a Cohen-Macaulay
scheme Y. We prove that the map Oz — Rg,Oy is an isomorphism. By [64,
Lemma 7.4] and [64, Theorem 8.6], we may assume that g factors through . We
denote the induced morphism by f: Y — X. We note that f.Oy = Ox and
m+Ox = Oz. First we assume that X has rational singularities and Oz ~ Rm,Ox,
then we have Ox ~ Rf,Oy. By the spectral sequence, we have Oz ~ Rr,Ox ~
Rg.Oy, so Z has rational singularities.
Next, we assume the conditions in (i7) and consider the spectral sequence

E;,j = Riﬂ'*ij*OY — EH_j = Ri+jg*oy'

Since Z has rational singularities, we have E* = 0 for ¢ > 0. We have E’ = 0 for
i > 1, since dlmExc( ).< 1, and in particular, we obtain E,° ~ Ey' ~ E? = 0.
Thus, we have By’ ~ EJ = O for all 5 > 0, so we have
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for all 4 > 0. Since X has rational singularities except for finite closed points, the
support of R!f,Oy is isolated, so we have Rif,Oy = 0 for every 4 > 0. Thus, it
is enough to show that X is Cohen-Macaulay. To do this, we prove the natural
map Rf,wy — wyx is an isomorphism. Since X has rational singularities except
for finite closed points, R!f,wy has the isolated support for i > 0 by [64, Theorem
1.4]. Since X is klt, we have f,wy =~ wx. Thus, by replacing the structure sheaves
into canonical sheaves in the above argument, we have the natural isomorphism
Rf.wy ~ wx. By the Grothendieck duality

Rf.Rs¥om(Oy,wy) ~ Rs# om(RfOy,w),

we have
Rfwy ~ wk.

Since Y is Cohen-Macaulay and f is birational, w{, is locally isomorphic to the shift
of wy over X, so wf is locally isomorphic to the shift of wx. Thus X is Cohen-
Macaulay. O

3.2 Existence of pl-flip with ample divisor in the
boundary

In this section, we prove the,e)gi,sten}ce’ of pl-flips with ample divisor in the boundary
(cf. Theorem 3.2.29 and Corollary 3.2.33). In the first subsection, we study the
vanishing theorem up to alterations. Next, we introduce the notion of global T-
regularity and study properties of it, for example, the adjunction and the inversion
of adjunction. Combining such arguments, we obtain the existence of flips in the
special setting (cf. Theorem 3.2.29).

In this section, we basically work over a scheme V/, satlsfymg the followmg prop—
erties.

Assumption 3.2.1. V is the spectrum of a complete discrete valuation ring of char-
acteristic (0, p). :

"Remark 3.2.2. Let V be a scheme satisfying Assumption 3.2.1. Let X be a V-variety.
Then it is possible that X is a variety over a field, and in such a case, X = X, and
Xp=0,or X =X, and Xy = .

3.2.1 Kodaira type vanishing up to alterations

Bhatt [8] proved the killing of a local cohomology up to finite covers in mixed
" characteristic. Using this theorem, we obtain the Kodaira type vanishing up to
alterations for semiample and big divisors (Corollary 3.2.5). This theorem plays an
* essential role to prove the existence of flips. "

Theorem 3.2.3. ([8, Theorem 6.28], cf.[6, Proposition 5.5. 3]) Let V' be a scheme
satisfying Assumption 3.2.1. Let f: X —> Z be a projective surjective morphism of
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V -varieties to an affine scheme Z. Let L be a semiample and f-big line bundle on
X. Let x € Z be a closed point with residue characteristic p > 0. Then there exists
a finite surjective morphism w: Y — X from a V -variety such that

RT.RT(X,, L") —> RT,RT(Y,, x*L™Y),

is zero on R for all i < dim(X,), where X, and Y, are closed subscheme ofX and
Y defined by p = 0.

Proof. If X is flat over V, it is [8, Theorem 6.28]. Otherwise, it follows from a
similar argument to the argument in the proof of [6, Proposition 5.5.3]. O

Proposition 3.2.4. Let V be a scheme satisfying Assumption 3.2.1. Let f: X —
Z be a projective surjective morphism from a flat V-variety X to an affine flat V-
variety Z. Let L be a semiample and f-big line bundle on X. Then, for every
positive integer m, there exists a finite surjective morphzsm m:Y — X from a
V -variety such that the image of the following map :

Ty R (wyy (L)) — R (wiv(L),

is contained in w™ R (wh (L)) for all i > 0, where d is the relative dimension
of X over Z and w is a uniformizer of V. ‘

Proof. We take a closed point = € Z; of the closed fiber Z, it is enough to show
that the assertion holds at z.for some finite cover 7 from a V-variety, because any
finitely many finite covers from V-varieties are factored by some finite cover from
a V-variety. We set A := Oz, ,. Let E be the injective hull of the residue field of
A. By Theorem 3.2.3, there exists a finite surjective morphlsm w:Y — X from a
V-variety such that

h*RT,RL(Xp, L™Y) — h'RT,RL(Yp, 7*L7)

is zero for all 7 < d. It is enough to show that 7 satisfied the desired condition
around z, because any finitely many finite covers from V-varieties are factored by
some finite cover from a V-variety. We take base changes via Spec Oz, — Z and
we use the same notations by abuse of notations. By the local duality and the
- Grothendieck duahty, we have

RHom(RT, RT(X,, L), E)) ~ RTw v (L)[1],

where the right hand side is the completion of the 1-shift of RI'w} /V(L). By the
same equivalent holds for Y}, we have the following diagram;

RHomy(RT, RT(Y,, 7* L"), E) —— R Homu(RT.RT(X,, L), E)

.| B )

RTw}, (7 D)[1] » RTwy, p (L)[1].
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Taking the (7 — d)-th cohomology, we obtain that the trace map
T, : R0, (n° ) — RIS, v (1)),
is zero for all 7 > 0. Next, we consider the exact sequence
O—>OX'-90X—)OXPHO7

and applying RFRg%”om(—,w;; /V(L)) and taking (¢ — d)-th cohomology, we have
the exact sequence

R™T(wkyv (L)) — R T(wiv (L)) — R T (wk, v (L).
- Thus, we have the commutative diagram of exact sequences '

R (w (L) —— R (w (L) —— Ri“'l—dl‘(w;{p/v(L))

T

Ri_df(w§/V(W*L)) N R (wy py (7*L)) — Ri+1_dI‘(w{,p/V(7r*L)).

Therefore, Im(Tr}) is contained in pR™“I'(w ,(L)). By the same argument for Y,

there exists a finite surJectlve morphism g: W — Y such that Im(Tr’) is contained
in pR ~4T(wy, v (m*L)), thus we have

7 Im(Trﬂ'og) - szz dF(wX/V(L))

Repeating such a process, we obtain a finite surjective morphism of V-varieties such
that the image of the trace map is contained in p™R'~I'(w% wv(L)). Since p is a
multiple of @, we have the assertion. O

Corollary 3.2.5. (cf. [13, Theorem 5.5]) Let V' be a scheme satisfying Assumption
3.2.1. Let f: X — Z be a projective surjective morphism from a normal flat V-
variety X to an affine flat V -variety Z. Let D be a semiample m-big Cartier divisor
on X. Then there exists an alteration w: Y — X such that the trace map

Tip: R™T(wyy (1 D)) — R™T(wkv (D))

is zero for all i > 0, where d := dim(X;). Furthermore, if X is Cohen-Macaulay,
there exists an alteration w: Y — X such that the trace map

Trh: H'(wyyv(n* D)) — H'(wxv(D))
1s zero for all © > 0.

Proof. We may assume that X is regular by takingk an alteration by Theorem 3.1.9.
Then the generic fiber X, is a variety over a ﬁeld of characteristic zero and D, is
semlample and big over Z thus we have

R™T(wxy(D))y =0
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by the KawamataQViehweg vénishing, and in pérticular, RT(ws, /V(D)) is a w-
torsion finite Oz-module. Thus, for some positive integer m, we have

w™RT (wi v (D)) = 0.

By Proposition 3.2.4, there exists a finite surjective morphism 7: ¥ — X from a
V-variety such that the image of the following map

Tr: : T (wy v (7 D)) — R (wk (D)),

is contained in @w™RI (w (D)) = 0 for all i > 0. Thus, we obtain the first
assertion.

Next, we assume that X is Cohen-Macaulay. By the first assertion, there exists
an alteration 7: Y — X such that the trace map '

T Ry (D) — BTy (D)

s zero for all ¢ > 0. Since X is Cohen-Macaulay, we have R™T'(wy (D)) =
Hi(wxv(D)). Thus, the trace map

Hi(wy v (7*D)) — RT"™%(w} )y (7* D)) — H'(wxv(D))
is zero for all 7 > 0. O
" Remark 3.2.6. In positive characteristic, an analogous statement of Corollary 3.2.5
holds and we can take Y in Corollary 3.2.5 as a finite cover by [13, Theorem 5.5]."

3.2.2 Global | T-regularity

In positive characteristic, global F-regularity is important in the proof of the exis-
tence of flips (see [45], [43], [44]). In mixed characteristic, we use global T -regularity

“instead of it.
Definition 3.2.7. Let 7r:> Y _» X be an alteration of normal schemes.

e For a prime divisor F on X, a prime divisor Ey is called a strict transform of
Eif r(Ey)=E.

e For an R-Weil divisor D = Y, a;E; , where E; is a prime divisor, an R-Weil
divisor Dy is called a strict transform of D if Dy is denoted by Dy = >, a;Ey;
such that each Ey; is a strict transform of E;.

Remark 3.2.8.
e Since 7 is an alteration, 7|, is also an alteration.
o If D is Q-Weil or Z-Weil, then so is D

e If D is a locally irreducible reduced divisor, then so is Dy.
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o If 7is blratlonal then Dy is the strict transform of D in the usual sense

Deﬁnltlon 3.2.9. (Globally T-regular, Purely globally T-regular) Let V be an
excellent Dedekind scheme. Let (X, A) be a log pair, or a localization of a log pair
over V.

e Let L be a Q-Cartier Q-Weil divisor on X. Then the submodule 7°(X, A; L)
of H(Ox([L)])) is defined by

N W(H wy (7 (L = Kxpy — A)) — H(Ox([L])),

T Y—X

where the map is a composition of a trace map and the natural injection and
7 runs over all alterations from a normal V-variety.

e The pair (X, A) is globally T-regular (globally Trace-regular) if for every al-
teration : Y — X from a normal V-variety, the trace map

H(wy v ([-7*(Kxv + A)])) — H*(Ox) R
is surjective, that i‘s,‘ T°(X,A) :=T°(X,A;0) = H(Ox).

e Weset |A| =S. Then (X, A) is purely globally T-regular if for every alteration
m: Y — X from a normal V-variety and every strict transform Sy of S via
e 7, the trace map.

oy (S + [~ (Kxpy + A))) — H(Ox) (32)

is surjective. We note that the map in (3.2) is well-defined, indeed, by Sy <
7*S on the regular locus of X, the left hand side is contained in H®(wy ([—7*(Kx/v+
A"]), where A' =A-S.

o If X is affine, we say that (X, A) is T- regular (resp. purely T- regular) if it is
globally T-regular (resp. purely globally T-regular). .

o Let f: X —Z be a quasi-projective morphism of V-varieties. (X , A) is
globally T-regular (resp. purely globally T-regular) over z € Z if (X,A) is
globally T-regular (resp. purely globally T-regular) after localizing at z.

Proposition 3.2.10. ([13, Theorem 6.7]) Let X be a quasi-projective variety over
an F-finite field. Let (X,A) is a log pair and L a Q-Cartier Q- Weil divisor on X.
Then

T°(X,AL) = ﬂIm (L — Kx — A)])) — H(Ox([L]))),

where 7 runs over all alterations from a normal V -variety.
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Remark 3.2.11. In [13], T° is defined as in Proposition 3.2.10, and they proved the
equivalence of the definitions in positive characteristic. However, in mixed charac-
teristic or in characteristic zero, it does not hold in general. Indeed by Proposition
3.2.13, globally T-regular implies being klt.

Proposition 3.2.12. Let V be a scheme satisfying Assumption 3.2.1. Let f: X —

_Z bea projective surjective morphism of V-varieties. Let (X, A) is log pair over V.
If (X,A) is globally T- regular then so is (X', A’), where (X', A') is one of the
following.

o A restriction of (X, A) over on some open subset X' of X, or
o A localization of (X,A) at some point of Z.
Furthermore, the same assertion holds for purely globally T-regular log pairs.

Proof. We can extend every alteration of X’ to it of X by Proposition 3.1.5, and
the surjectivity is equivalent to the property that image of the trace map contains
1€ H%Ox). It does not change after localization or restriction. O

Proposition 3.2.13. Let V be an excellent Dedekind scheme. Let (X,A) be a log
pair over V. If (X, A) is globally T-regular, then it is kit, and in particular, [A] = 0.
If (X, A) is purely globally T-reqular, then it is plt, and in particular, |A| is reduced.

Proof. By Proposition 3.2.12, we may assume that X is affine. We take a birational
_ projective morphism 7: ¥ — X from a normal V-variety. If (X,A) is globally
. T-regular, then we have m,wy v ([—7*(Kxv + A)]) = Ox, as trace map is injective
in the birational case. Thus, (X, A) is klt. If (X, A) is purely globally T-regular,

we denote S := [A|, then we have wy v (Sy + [-7*(Kxv + A)]) = Ox, where Sy
is the strict transform of S. Thus, (X, A) is plt. O

~ Proposition 3.2.14. Let V be an excellent Dedekind scheme. Let (X,S + A) be a
log pair with |S + A| = S. Assume that (X, S + A) is purely globally T-regular and
S is Q-Cartier. Then (X, (1 —¢)S + A) is globally T-regular for all 0 <e < 1.

Proof. We fix a 0 < € < 1 and a positive integer m with me > 1. We take an
alteration 7: Y — X from a normal V-variety and a strict transform Sy of S such
that 7*S > mSy and 7*(Kx + A) is Cartier, the existence follows from Proposition
3.1.8. It is enough to show that the trace map

H(wyv([-7*(Kx/v + (1 —€)S + D)])) — H°(Ox)

is surjective. Since 7*(1—¢)S < 7*S—emSy < 7*S5— Sy, the left hand side is larger
than the left hand side of the map (3.2) . Thus, if (X,S + A) is purely globally
T-regular, then (X, (1 —€)Sy + A) is globally T-regular. : O

Proposition 3.2.15. Let V' be a scheme satisfying Assumption 3.2.1. Let f: X —
Z be a projective surjective morphism from a normal V-variety X to an affine V-
variety Z. Let (X,A) is a globally T- regular log pair over V. Then the following
conditions hold. .
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1. For every alteration m: Y — X from a normal V -variety, the trace map
Ty v ([—7*(Kxyv + A)]) — Ox
s a splitting surjection.

2. For every finite surjective morphism T: Y — X from a normal V vamety,
“the canonical map

OX — W*Oy([Tr*AJ)
splits.

Proof. By the equation (3.1), there exists a global section
ae H(wy ([-m*(Exy + A))))
mapped to 1 € H°(Ox). The section « defines a morphism
Ox — musoy ([~ (Kxpy + A)])
mapping 1 to o, thus it gives a splitting an‘d we obtain (1). Applying #om(Ox, _)

for the trace map in (1), we obtain the canonical map in (2) when = is finite surjec-
tive, thus we have (2). O

.~ Lemma 3.2.16. Let V be a scheme satisfying Assumptzon 3.2.1. Let (X,A) be a

globally T-reqular log pair over V. Let D be a Weil Q-Cartier divisor on X. Let
f: Y — X be a finite surjective morphism from a normal V -variety such that f*D
is Cartier. Then Ox (D) — f.Oy(f*D) splits.

Proof. By Proposition 3.2.15 (2), Ox —> f.Oy splits. Thus, Ox(D) — f.Oy(f*D)
splits on the regular locus of X. Since Ox (D) is reflexive, the splitting extends to
the splitting on X. ‘ O

Proposition 3.2.17. Let V' be a scheme satisfying Assumption 8.2.1. Let f: X —
Z be a projective surjective morphism from a normal V-variety X to an affine V-
variety Z. Let (X,A) is a globally T-regqular log pair over V. Let D be a Weil
Q-Cartier dim'sor. Then the following hold.

1. If D 1s semzample then H'(Ox(D)) = 0 around the closed fiber Z, for all
1> 0.

2. Ox(D) is mazimal Cohen-Macaulay.
3. If D is semiample and f-big, then H'(wx v (D)) =0 for alli > 0.

Proof. By [8, Theorem 6.28], there exists a finite surjective morphism 7: ¥ — X
such that 7*D is Cartier and ‘

H(Ox(D)lx,) — H'(Oy, (x*D))
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is zero for all 4 > 0. Indeed, the assertion is reduced to the case where D is Cartier.
By Lemma 3.2.16, we have H*(Ox(D)|x,) = 0. Thus, we have the map

Hi{(Ox(D)) —L»H?(Ox(D))

is surjective for all 4 > 0. Thus, By the Nakayama’s Lemma, H*(Ox (D)) = 0 around
Zs. C .
Next, we consider (2) and (3). Since the assertion (2) is a local question, we
may assume that D is semiample and f-big. By [8, Theorem 6.28], for a closed
point z € Z, there exists a finite surjective morphism m: Y — X such that 7*D is
Cartier and the map

RT,RT(Ox(~D)|x,) — R'T,RT(Oy,(—7*D))

is zero for all i < dim X,. By Lemma 3.2.16, we have R'T,RI'(Ox(—D)|x,) = 0.
If X is affine and f is the identity map, then Ox(D) is maximal Cohen-Macaulay
around X,. Since (X, A) is klt, Ox(D) is maximal Cohen-Macaulay on the generic
fiber, thus we obtain the assertion (2). By the argument of the proof of Proposition
3.2.4, we have : ‘ '
H’(%om(@x(—D)]Xp,pr/v)) =0

for all 4 > 0. Thus, we have that

Hi(wx (D)) =2 Hi(wxv(D))

is surjective for all 7 > 0. Thus, H*(wx (D)) = 0 around Zs. By Kawamata-
Viehweg vanishing for the generic fiber X, the Vamshmg holds on Z,. Thus we
obtain the assertion (3). O

Proposition 3.2.18. Let V be an excellent Dedekind scheme. Let g: Y — X be
a projective birational morphism of mormal V -varieties. Let (X, A) and (Y,T') be
log pairs such that g*(Kxy + A) = Kyyy +T. Then (X, A) is globally T-regular if
and only if (Y,T) is globally T-regular. The same assertion holds for purely globally
T-regular case if |T'| is the strict transform of |A].

“Proof. First, we consider the globally T-regulér case. We note that (X, A) is kit if

and only if (V,T)-is klt. By Proposition 3.2.13, we may assume that (X, A) and
(Y,T) are klt, and in particular, [I'] = 0. Thus, the trace map coincides with the
following isomorphism : :

HO(wy v ([~g*(Kxyv + A)]) = H(Oy) = H*(Ox).
Take an alteration 7: W — Y. Then the composition of trace maps
H (ww v ([-7*(Kyv + T)])) — H®(Oy) ~ H*(Ox)

is the trace map with respect to go. Then the surjectivities of two trace maps are
equivalent to each other. »
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Next, we consider the purely globally T-regular case. We denote |A] and |[']
by S and T, respectively. Then the corresponding trace map coincides with natural
isomorphic H%(Oy) — H%(Ox). Indeed, [Kyy +T—g*(Kxyy+A)] = [T-T=0.
Thus, by the same argument as above, we obtain the equivalence. O

Lemma 3.2.19. Let V be a scheme satisfying Assumption 3.2.1. Let (X,S + B)
be a log pair over V' such that S is a reduced divisor and S and B have no common
components. Let m: X' — X be an alteration of normal V-varieties and S’ be a
strict transform of S on X'. Then there exists an alteration f: Y — X from a
normal V -variety and a strict transform Sy of S such that the following hold.

e f factors through = and Sy is a strict transform of S,

Sy s locally irreducible,

(Y, Sy) is a simple normal crossing pair,

[*(Kxy + S+ B) and f&(Kgv v + Bs) are Cartier, and

the following diagram commutes.

fewy v (Sy — f*(Kxyv + S+ B)) —— Ox

|

 Jafspwsyv(=fE(Ksnyy + Bs)) —— §xOgn,

where Bg is the different of (X,S + B), fs: Sy — SV is the induced morphism
and j: SN — X is the composition of the normalization and the inclusion.

Proof. By the definition of different, we have (Kx,v + S + B)|sv ~g Ksv v + Bg.
By Theorem 3.1.9, there exists an alteration f: Y — X and a strict transform
Sy of S such that (Y, Sy) is a simple normal crossing pair and f factors through
7w. By taking blowing up along the stratum of Sy, we may assume that Sy is
locally irreducible, thus Sy is regular. In particular, Sy — S factors through the
normalization SN — S denoted by fs: Sy — SN. By Proposition 3.1.8, we may
assume that f*(Kx,vy + S + B) and f*(Kgn~ v + Bg) is Cartier and

- f(BExpy + S+ B)lsy ~ f5(Kxyv + S+ B)lsv) ~ f5(Ksnv + Bs).
Thus, we define the morphism wy v (Sy — f*(Kxyy+S+B)) — wsy v (= f5(Ksn v+
Bgs)) induced by the adjunction formula wy v (Sy)|s, =~ ws,,v. Then it is enough
to show that the diagram
Fewyv(Sy — fF*(Kxpyv + 8 + B)) —— Of{
Jxfsswsy v (—f&(Kgv v + Bs)) — jxOgn
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commutes. Since Som(fuwy v (Sy — f*(Kxyv + S + B)), j«Ogn) is torsion-free as -
Og-module, it is enough to show that the above diagram commutes at every generic
point of S. Thus, we may assume that (X, S) is a simple normal crossing pair and
B = 0. By the construction of the residue map wx,v(S) — wg/v and the trace
map, we have the commutative diagram

frwy v (Sy) — wx v (S)
fS,*CQSY/V ——Wsyv.

Applying ®Ox (—(Kx/v + S)), we have the assertion. O

Proposition 3.2.20. (Adjunction for global T-regularity) Let V' be a scheme sat-
isfying Assumption 8.2.1. Let f: X — Z be a projective surjective morphism
from a normal V -variety X to an affine V-variety Z and (X, S + B) a purely glob-
ally T-reqular pair with |S + B] = S. Then (SV, BS) is globally T'-regular, where
Bg = lefSN(B) is the different of (X, S + B).

Proof. We take an alteration g: T — SV. Combining Proposition 3.1.7 and Lemma
3.2.19, there exists an alteration f: Y — X and a strict transform Sy of S as in
Lemma 3.2.19 and fg: Sy — S¥ factors through 9- Then we have the commutative
- diagram :

Ho(wy v (Sy — f*(Kxv + S + B))) —» H(Ox)

l l

HO(wsy v (—f&(Ksn v + Bs))) ——— H°(Ogn).

~ Thus, the image of the bottom map contains 1 € H%(Ogn), and in particular, it is
surjective. , O

Proposition 3.2.21. (Inversion of Adjunction for global T-regularity) Let V' be
a scheme satisfying Assumption 3.2.1. Let f: X — Z be a projective surjective
morphism from a normal V-variety X to an affine V-variety Z and (X,S+A) a log
pair such that |S+ A| = S is reduced and S has no common component with A. Let
X — 7' —s Z be the Stein factorization and we denote the induced morphisms
by f': X — Z' and ¢: Z' —> Z. Let z € Z be a point with p*(z) < f'(S). We
assume that —(Kxyy + S + A) is semiample and f-big. If (SN, D) is globally T-
reqular over z, then (X, S + A) is purely globally T-regular over z and S is normal,
where SV is the normalization of S and D = lef v (A) is the different of the pair
(X, S+A4).

Proof. We denote H := —(Kxv +S+ A) and Hg := —(Kgny + D). We take base
changes-via Spec Oz, — Z and we use the same notations by abuse of notations.
By the assumption ¢~ 1(z) < f(S), the ideal H*(Ox(—S)) of H'(Ox) = H°(Oz) is
contained in all maximal ideals of H%(Ox). We take an alteration g: Y — X and

65



a strict transform Sy of S as in Lemma 3.2.19. In order to show that (X, S + A) is
purely globally T-regular, it is enough to show that the image I, = H°(Ox) of the
map , ' ‘
7 Ho(wy/v(Sy-i-g*H)) —ﬁHO(Ox)

is H(Ox). Since H(Ox) is Noetherian and H°(Ox(—S)) is contained in all maxi-
mal ideals, it is enough to show 9(I,) = H°(Ogn), where ¢: H°(Ox) — H°(Ogn).
We take an element o € H°(Ogn). Since g*H is semiample and big over Z, there
exists an alteration h: W — Y and a strict transform Sy of S as in Lemma 3.2.19
and the trace map '

H'(wwv(h*g*H)) — H'(wyv(9*H))

is zero by Corollary 3.2.5 and Remark 3.2.6. Since (S¥, D) is globally T-regular,
there exists a section

aw € H(wsy, v (hsgéHs))
mapped to o € H%(Ogn) by the trace map. Let ay € H°(ws, v (g5Hs)) be the
image of aw via the trace map. By the exact sequence '

0 — wyv(g*H) — wyw(Sy + g*H) — ws, v (gsHs) — 0,
we have the exact sequence

H(wy v (Sy + g*H)) — H°(wsyv(95Hs)) — H' (wy v (9" H)).

Thus we have the followmg commutative dlagram
Hwsy, v — hg5Hs)) — H' (wwv(h*g*H))

| e

H(wsy v (95Hs)) ——— H'(wyv(9*H))

by Lemma 3.2.19. Thus the image of oy via the connection map is zero, so ay
extends to a section v € H%(wy,v(Sy + ¢g*H)) and its image is & in H%(Ogn). Thus
we have o € ¥(I,), and the equation ¥(I;) = H°(Ogn) holds. :
Next, we prove the normality of S. We take an open affine covering {U;} of
X. By Proposition 3.2.12, each (Ui|s~, Dl ) is globally T-regular. This is a
local problem, we may assume that X is affine by Proposition 3.2.12. By the above
argument, we have ¢(Ox) = Ogw, in particular, S is normal. O

Corollary 3.2.22. Let V' be a scheme satisfying Assumption 3.2.1. Let X be a
normal affine V-variety and (X,S + A) be a log pair such that |S + A| = S is
reduced. Then (X,S + A) is purely T-regular if and only if (SN, Diffgn (A)) is T-
reqular. Furthermore, in both cases, S is mormal, and in particular, S is locally
irreducible.

Proof. 1t follows from Propositioh 3.2.20 and Proposition 3.2.21 for the case f =
id. - ‘ O
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Corollary 3.2.23. Let V be a scheme satisfying Assumption 3.2.1. Let (X, A) be
a simple normal crossing pair with |A| = 0, where X is an affine V-variety. Then
(X, A) is T-regular.

Proof. We prove Corollary 3.2.23 by the induction on d := dim X. We take an
alteration 7: Y — X from a normal V-variety Y. It is enough to show that the
trace map is surjective at each closed point z € X. First, we consider the case where
z is not contained in Supp(A). By [7, Theorem 1.2],

OX — R’iT*Oy

splits. By the Grothendieck duality, the map m.wy,y — wx/ v is surjective. Smce
X is Gorenstein, the trace map

mewy v (=7 Kx ) — Ox -

is also surjective. Next, we assume that z is contained in a component S of Supp(A).
We take a positive rational number a with ordg(A+aS) = 1. By Proposition 3.2.14,
it is enough to show that (X, A + aS) is purely T-regular at . By Corollary 3.2.22,
it is enough to show that (S, (A — (1 — a)S)|s) is T-regular at z. Since this pair is
a simple normal crossing pair, this pair is 7-regular by the induction hypothesis on
d. In conclusion, (X, A) is T-regular. O

regular at z after Completlon then (X A) is T—regular ét z. Thus, Corollary 3.2.23
also follows from [68, Theorem 4.1].

Proposition 3.2.25. Let V be a scheme satisfying Assumption 8.2.1. Let f: X —
Z be a projective surjective morphism from a normal V-variety X to an affine V-

wvariety Z and (X, S + A) a log pair such that |S + A| = S is a reduced divisor and

S has no common component with A. Let L be a Q-Cartier Weil divisor such that
L— (Kxy + S+ A) is semiample and f-big and L is Cartier at all codimension
two points of X contained in S. Let g: Y — X be an alteration from a normal
V-variety Y and Sy a strict transform of S. Then we have

| (5™, D; Lls) < Lsn, |
where D := Diffgn (A) is the different, I, is the image of the trace map
Iy := T (H (wy v (Sy + [g"(L = (Kxyv + S + A))]) — H(Ox(L)))
and the right hand side is the image ‘of I, via the natural map |
H*(Ox(L)) — H"(Ogn (Llsn)).

Proof. We denote H := L — (Kx)y + S+ A) and Hg := Lgn — (Kgnyy + D). We
may assume that (Y, Sy) is as in Lemma 3.2.19. By the proof of Proposition 3.2.21,
we can contract an alteration A: W — Y and a strict transform Sy of S as in
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Lemma 3.2.19 such that the trace map on the ﬁrst cohomology is zero. We obtain
the commutative diagram

HO(ww v (Sw + h*g “H)) — H° (wSW/v(hsgsHs))——*Hl(WW/V(h* *H)))

| =

Hwy v (Sy + g*H)) ——— H%(wsy v (95Hs)) —— H' (wyv(9*H))

| |

HY(Ox(L)) ————— H%(Ogn (L|sw))-
Thus the proof is same as the proof of Proposition 3.2.21. O

Proposition 3.2.26. Let k be an F-finite field of positive characteristic. Let f: X —
Z be a projective surjective morphism from a normal k-variety X to an affine k-
variety Z Let (X, B) be a log pair. Assume that (X, B) is globally F-regular. Let
m:Y — X be an alteration from a normal variety Y. If the trace map

H(wy ([-7"(Kx + B)]) — H(Ox)

is non-zero, then it is surjective. In particular, if we further assume that the generic
fiber of (X, B) — Z is globally T- regular then (X, B) is globally T - regulafr

Proof. Let H be an ample Cartier divisor on X such that Ox(Kx + B + H ) is
globally generated. We take an effective divisor B’ which is linearly equivalent to
Kx + B+ H. Then for d1v131ble enough e, ( pe£1B7) is globally F-regular,
the Cartier index of : :

o —1)(KX+B+—1—13) p°(Kx +B)+ H

is prime to p, and [—7*( N = [-7*(Kx + B)]. Thus, we may
assume that the Cartier index of Kx'+ B is prime to p. We take an element o €
H%wy ([-7*(Kx + B)])) such that 8 := Tr(a) € H°(Ox) is non-zero. Since (X, B)
is globally F-regular, there exists a positive integer e such that (p® — 1)(Kx + B) is
Cartier and the| natural map '

Ox — FEOx(|(p — 1)B) + div(B))

splits. We take a section v € H°(Ox((1 — p®)(Kx + B))) corresponding to the
splitting. Then the trace map '

H°(Ox((1 - p*)(Kx + B)) — H°(Ox)
maps 78 to 1. Then the composition of morphisms
H(wy ([—p°n*(Kx + B)]) ~— H*(Ox((1 - p°)(Kx + B))) — H’(Ox)
maps a7y to 1. Thus, the map
HO(wy ([~n*(Kx + B)]) — H*(Ox)

is surjective. , O
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3.2.3 Restriction theorem

The goal of this subsection is to prove the existence of three-dimensional pl-flips
with ample divisor in the boundary (Corollary 3.2.33). First, we prove the existence
by assuming the global T-regularity of the boundary even in the higher-dimensional -
case (Theorem 3.2.29). It follows from the restriction theorem (Proposition 3.2.28)
and Shokurov’s reduction to pl-flips. Next, we show this condition in the three-
dimensional case.

Lemma 3.2.27. (cf.[44, Lemma 3.2]) Let V be a scheme satisfying Assumption
3.2.1. Let f: X — Z be a projective birational morphism from a normal V -variety
- to an affine V-variety. Let (X, B) be a log pair which is globally T-regular over a
point z of Z. Let L be a Weil Q-Cartier divisor on X and T an effective Q-Cartier
Q- Weil divisor on X. If g € H°(X,Ox(L)) corresponds to a divisor G € |L| such
that G = T, then g is contained in T°(X, B + T; L) after localizing at z.

Proof. We take base changes via Spec Oz, — Z and we use the same notations by
abuse of notations. It is enough to consider alterations h: ¥ — X from a normal
V-variety such that h*(Kx,v + B), h*L, h*G and h*T" are Cartier. We consider the
commutative diagram

HO(wy v (*(L = Kxv = B —T))) ——— HO(Ox(L))

ey (W(L = Ky — B = §))) — HY(Ox(L - G)

ZTQ 4.9

H(wy (—h*(Kxv + B))) ————» H°(Ox),

where the horizontal maps are trace maps and the surjectivity of the bottom map fol-
lows from the global T-regularity of (X, B). Thus, we have a section of H®(wy v (h*(L—
Kxyy — B —T))) mapped to g. O

Proposition 3.2.28. (cf. [44, Proposition 3.1]) Let V' be a scheme satisfying As-
sumption 8.2.1. Let f: X — Z be a projective morphism from a normal V -variety
X to an affine V-variety Z. Let (X,S + A+ B) be a.dlt pair such that S and A
are Q-Cartier Weil divisors. Assume that A is ample and |B| = 0. Let z € Z be
a point. If S is normal and (S, (1 — €)Ag + Bg) is globally T-regular over z for all
0 <e <1, then for every k = 1 such that k(Kxy + S+ A+ B) is Cartier, we have

lk(KX/V +S+A+ B)|S = |k(KS/V + As + Bg)]
“after localization at z, where Bg := Diffg(B) and Ag := A|S

Proof. We take base changes via Spec Oz — Z and we use the same notations
by abuse of notations. We note that since (X,S + A + B) is dlt-and S and A are
Q-Cartier, (X,S + A + B) is a simple normal crossing pair around S n A, and in
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particular, A is Cartier at all codimension two points on X contained in S. We take
F e |k(Kxv + S+ A+ B)|. By the descending induction, we prove that there exists
divisors Gy, € |k(Kxv + S+ A+ B) + mA| such that Gp,|s = F +mAg. First, since
A is ample, such G,, exists for large enough m by Serre vanishing. We assume that
such G,,41 exists. We set

L = k(Kxw+S+A+B)+mA
= KX/V+S+B+(k—1)(KX/V'+S+A+B)+(TTL+1)A
k-1 1
~Q Kx/v‘-}' S+ B+ TGm.H + %A
We write H := L—(Kx/y+S+B+ k:k;le+]_), then it is ample. Since (S, %ASA—BS)
is globally T-regular and :

k-1
k

E—1 k—1
F+mAg > T(F + mAs) = TGm+1‘S - As,

a section gbe HO(L|s) corresponding to F + mAg is contained in

k—1
TO(S> Bs + TGm+1|S§L|S)

by Lemma 3.2.27. By Proposition 3.2.25, g is contained in the image of H*(Ox(L)).
- p— ) - L - B - - - — - - - - I - - D .

The following theorem is the existence of pl-flips with ample divisor in the bound-
ary in the special setting. The proof is-an analog of the proof of [44, Theorem 1.3].

Theorem 3.2.29. (cf. [44, Theorem 1.3]) Let V' be a scheme satisfying Assumption
3.2.1. Let (X,S + A+ B) be a dlt pair such that S is an anti-ample Q-Cartier
Weil divisor and A is an ample Q-Cartier Weil divisor. Let f: X — Z be a
(Kx;v + S+ A+ B)-flipping contraction with p(X/Z) = 1 to an affine V-variety.
Furthermore, we assume that (SY,(1 — €)As + Bs) is globally T-regular for all
0 < e < 1 over all points of f(Exc(f)) and R(Kgn s+ As+ Bs) is finitely generated,
~where Bg := Diffgn(B) and Ag := Al|s. Then the flip of f exists.

Proof. Take a point z € Z contained in f(Exc(f)). Since A is ample, we have
z € f(A). We take base changes via Spec Oz, —> Z and we use the same notations
by abuse of notations. We may assume that |B| = 0. By Proposition 3.2.21, the
scheme S is normal. By Proposition 3.2.28, the restriction algebra

Rs(k(Kx)v +S+A+B)) := Im(R(k(Kxv +S+A+B)) — R(k(Ksy +As+Bs)))

coincides with R(k(Ks/v + As + Bs)) for some positive integer k, and in particular,
Rs(Kxyv + S+ A+ B) is finitely generated. By Shokurov’s reductlon to pl-flips
(see [22 Lemma 2.3.6]), the ﬂlp of f exists. O
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Remark 3.2.30. If (SN, (1 — €)Ag + Bg) is globally F-regular over Z, then it is
globally T-regular over Z by Proposition 3.2.26. Thus, applying Theorem 3.2.29 for
the case X = X, we obtain [44, Theorem 1.3].

In order to use Theorem 3.2.29 for threefolds, we will show the pure global T-
regularity of (SV, Ag + Bg).

Lemma 3.2.31. (cf.[43, Lemma 3.3]) Let V' be a scheme satisfying Assumption
3.2.1. We assume that the residue field of V is infinite. Let f: S — T be a
projective birational morphism from a normal V -surface S to an affine V-surface T'.
Let (S,C + B) is plt pair with |C + B| = C. Assume that —(Kgyy + C + B) and C
are ample. Further assume that f has connected fibers. Then (S,C + B) is purely
globally T-regular over all points of f(Exc(f)).

Proof. Since f has connected fibers, the Stein factorization of f induces a home-
omorphism ¢: 7" —> T. Thus we have ¢ (f(Exc(f)) = f'(Exc(f’)), so we may
assume that T is normal and f,Ox = O by replacing T into 7", where f': X — T’
is the induced morphism. We take a point ¢ € f(Exc(f)). First, we prove that C
is irreducible after shrinking 7" around ¢. By shrinking 7" around ¢, the image of
every irreducible component of C' contains ¢. Since S is surface and (S,C + B) is
plt; then C is locally irreducible. By [93, Theorem 5.2], the intersection C n f~*(t)
is connected, and in particular, the scheme C' is irreducible. Furthermore, as C' is
ample, C is not an exceptional divisor of f. Since —(Kg/+C+ B) is ample and S is
a V-surface, there exists an effective Q-Weil divisor-D-on-S-such-that (S;C+B+ D)
is plt and Kgv + C + B + D is Q-linearly trivial by Lemma 3.1.12. We take base
changes via Spec Or; — T and we use the same notations by abuse of notations.
We set f,.C =C', fsB =B, and f,D = D'. Since Kg)v + C + B + D is Q-linearly
trivial, we have f*(Kry +C'+ B'+D’) = Kgyy +C+ B+ D, thus (T,C' + B' + D)
is plt as C is not an exceptional divisor. By the adjunction, (C’, Diff:(B’ + D'))
is a normal klt one-dimensional pair, thus this is a simple normal crossing pair and
|Diffc/(B’ + D')| = 0. By Corollary 3.2.23, (C',Diff (B’ + D')) is T-regular. By
Proposition 3.2.21, the pair (T7”,C" + B’ + D') is purely T-regular. By Proposition
3.2.18, the pair (S,C + B + D) is purely globally T-regular. We note that C is the
strict transform of C. O

Lemma 3.2.32. Let V be a scheme satisfying Assumption 3.2.1. Assume that
the residue field of V is infinite. Let f: X — Z be a small projective birational
morphism from a normal V-variety X of dimension three to an affine V-variety Z.
Let (X,S + A+ B) is a dit pair such that —(Kxv + S + A+ B) is ample, S and
A are locally irreducible Q-Cartier Weil divisors and | B| = 0. Assume that —S and
A are ample. Then (SN, Diffgn (A + B)) is purely globally T-regular over all points
of f(Exc(f)). In particular, S is normal over a neighborhood of f(Exc(f)).

Proof. Since Kx;y + S + B is Q-Cartier, Diffgv (A + B) = D+ Algn, where D :=
Diffgv (B). We note that A is Cartier on the codimension two points of X contained
~in S. Since f is small, f|gv: S — T is birational, where T := f(S). Since —S5
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is ample, all exceptional curves of f are contained in S, thus f|s: S — T has
connected fibers. Since SV — S is a universal homeomorphism by Lemma, 3.1.3,
~ flgnv also has connected fibers. By Proposition 3.1.11, the pair (SV,D + Algn) is -
plt. By Lemma 3.2.31, (SV, D + A|gn) is purely globally T-regular over all points
of f(Exc(f)). In particular, S is normal over a neighborhood of f(Exc(f)) by
Proposition 3.2.21. ' O

Corollary 3.2.33. (cf. [43, Proposition 3.4]) Let V be an excellent Dedekind scheme.
Let (X,S + A+ B) is a three-dimensional dlt pair over V. Let f: X — Z be a
(Kxv + S+ A+ B)-flipping contraction with p(X/Z) = 1. Assume that S and A
are locally irreducible Weil divisors such that —S and A are ample Q-Cartier. Then
the flip of f emists.

Proof. We may assume that V' is the spectrum of an excellent discrete valuation
- ring. We may assume |B] = 0. By Shokurov’s reduction to pl-flip (see [22, Lemma
2.3.6]), it is enough to show that Rgs(k(Kx + S + A+ B)/Z) is finitely generated.
This statement can be reduced to the case where V is complete and the residue
field is infinite taking a strict henselization and completion. By Lemma 3.1.4, the
assumption is preserved except for the condition that the relative Picard rank is
one. By Lemma 3.2.32, S is normal and (S, Ag + Bg) is purely globally T-regular
over all points of f(Exc(f)), where Bg = Diffs(B) and Ag = Alg. By Proposition
3.2.28, it is enough to show that R(Kgs + Ag + Bg) is finitely generated. We take
_an effective divisor A’ on S with Ag ~g A’ such-that Ags and A’-have no common
component. Since (S, Ag + Bg) is plt, (S, (1 — ¢)As + Bg + €A’) is kit for small
- enough positive rational number €. By [93, Theorem 1.1, Theorem 4.2, Corollary
4.11], the canonical ring R(Kgv + (1 — €)Ag + Bg + €A’/ Z) is finitely generated.
. Since

Ks/v + (1 — €)A5 + Bg + A’ ~Q KS/V + Ag + Bg,

R(Ksyy + As + Bs/Z) is also finitely generated. ' O

Remark 3.2.34. The existence of necessary flips for [62, Theorem 6] follows from
Corollary 3.2.33 over an excellent Dedekind scheme.

3.3 Proof of Theorem E and its applications

The goal of this section is to prove Theorem E and its applications. Proposition
3.3.12 is one of the applications and it will be used to prove Theorem D. To
prove theorems, we establish the cone theorem for pseudo-effective pairs (Propo-
sition 3.3.2), by following the method given by [59] [92]. We also prove the cone
theorem for more general settings (Proposition 3.3.4) by using the method given by
[56]. If every relative curve is contained in the special fiber, then the cone theorem
is easily reduced to the case of surfaces, but in the relative setting, relative curves
contained in the generic fiber may exist. Therefore, we should treat such cases
carefully.
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Proposition 3.3.1. Let V be an ezcellent Dedekind scheme. Let (X,S + B) be -
a three-dimensional dlt pair over V such that S is a Q-Cartier Weil divisor. Let
p: X — U be a projective morphism over V. Let ¥ be a (Kx ;v + S + B)-negative
extremal ray contracted by p. Let L be a p-nef Cartier divisor on X with Lt = R[X].
Assume that S is a prime divisor and S - X < 0. Then L is semiample over U.

Proof. 1t follows from a similar argument to the argufnent in the proof of [HW,
Proposition 4.4] by replacing [HW, Lemma 2.1] with Lemma 3.1.3 and using [96,
Theorem 1.2]. O

Proposition 3.3.2. Let V' be an excellent Dedekind scheme. Let w: X — U be a
projective V -morphism from a normal Q-factorial quasi-projective V -threefold X to
a quasi-projective V-variety U. Let B be an effective R-Weil divisor on X satisfying
the following.

o cevery coefficients c of B satisfy 0 < c < 1, and

e Kx,v + B is pseudo-effective.

Let A be a m-ample R-Cartier R-divisor on X. Then there e:mst finitely many -
relative curves C1,...,C. on X such that

NE(X/U) = N—E—(X‘/U)KX/V+B+A>O + iRzo[C]

i=1
- Proof. The assertion is proved by'fhe'same‘ method as in [92, Theorem 7.6]. Here, |
- we use [93, Theorem 2.14] after the reduction to the case of surfaces. O

In the proof of Proposition 3.3.12, we run an MMP with scaling. In order to do
this, we prepare the following corollary.

Corollary 3.3.3. Let V be an excellent Dedekind scheme. Let (X,A) be a dit Q-
factorial pair over V' satisfying that |A] = X, as sets. Let m: X — U be a projective
birational morphism over V from X to a quasi-projective V-variety U. Let H be a
Q-Cartier Q-Weil divisor such that Kxy + A + H is m-nef. We put

Mg o= inf{A € Rso | Kx v + A + AH is mnef}.
Then there exists a (Kx v +A)-negative extremal ray R < NE(X /U) satisfying that
(Kx/v + A+ )\HH) -R=0.

Proof. Take a rational number a € Q. with A —aX, > 0. Since Kx v + A is 7-big,
we have ‘
KX/V+A~Q7TA+E

for a m-ample Q-Cartier divisor A and an effective Q-Cartier divisor F. Take a
rational number € € Q with 0 < e << 1 satlsfylng that (X, A — aX + eE) is klt.
Note that

KX/V +A—-aX;+eE+ 6A ~R7 (1 + 8)(KX/V + A)

Therefore, by using Proposition 3.3.2 for B = A—aX,+¢F, it finishes the proof. O
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On the other hand, if the base scheme is local, then we can prove the cone
theorem in a more general situation by reducing the problem to the special fiber. In
relative setting, since relative curve is not necessarily contained in the special fiber
(eg. X := A%p X IP’%p — A%p), we have to give an additional argument.

Proposition 3.3.4. Let V be an excellent Dedekind scheme. Let m: X — U be a
' projective V -morphism from a normal Q-factorial quasi-projective flat V -variety X
of relative dimension two to a quasi-projective V-variety U. Let B be an effective
R-divisor on X such that every coefficient ¢ of B satisfies 0 < ¢ < 1. Let A be a
w-ample R-Cartier R-divisor on X. We suppose the one of the following.

1. The scheme V 1is the spectrum of a discrete valuation ring.

2. The scheme X is smooth over every generic point n of V, and B has no
horizontal components.

Then there exist finitely many w-relative curves C1,...,C, on X such that

W(X/U) = W(X/U)KX/V+B+A>0 + ZR;O[CJ.

i=1

Proof. We may assume that V is connected. Moreover, replacing 7 by its Stein
‘factorization, we may assume that 7,(Ox) = Opy. Therefore we may assume U is
normal and flat over V. First, we prove the assertion in the case (1). If U — V is not
" surjective, then X — U is normal surface over a field, so the assertion follows from
the cone theorem for surfaces (cf.[93, Theorem 2.14]). Therefore we may assume
U — V is surjective. We denote the closed point of V by s. Let S;,...,S5, be
irreducible components of X,. Let v;: S¥ — S; be the normalization. By [61,
Proposition 4.5], there exists an effective R-divisor D; such that

KS{V + D; ~p (KX/V + B)lS{"

Here, we put D; as Diffgv (B — S; + aX;) for suitable o € R > 0. By [93, Theorem
2.14], there exists finitely many 7 o y;-relative curves I'; ; such that

NE(S)/U) = W(SiN/U)KSN +Di+Algn 20 T ZRz(J[Fi,j]-
! o J

Now we will divide the case by the dimension of U. First, consider the case where
U is of relative dimension 0 over V. In this case, a closed curve in X maps to a
closed point in U, which maps to the closed point in V. Therefore, any m-relative
curves are contained in X,. Therefore we have

NE(X/U) = SINEESY /)

i=1

= W(X/U)KX/V+B+A>0 + ZR%O[Fi’j]'

i’j
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Next, we consider the case where U is of relative dimension 1 over V. Let Ty
X, — U, be the restriction of 7 to the generic fiber. Then the generic fiber of m,
is geometrically irreducible (cf.[92, Lemma 2.2]). Take an open subset Uy < U,
where 7, have geometrically irreducible fibers over Uy. Take a closed point P; € Uy
which is also closed in U if exists. Let P,,... P, € U,\Up be all the closed points
which are also closed in U. Let Cs; be the irreducible components of 7, 1(Ps). Then
any 7-relative curve which is contained in X,, is generated by [Cs.] = NE(X/U).
Therefore, we have .

_E(X/»U) (X/U)KX/V+B+A>0 + ZR>0 U + ZR>0[Cs ¢]-

)

Finally, we consider the case where U is of relative dimension 2 over V. In this case,
7 is birational morphism. Let Ci,...,C; be all the exceptional divisors of 7 which
are contained in the generic fiber X,,. Then C; are 7-relative curves on X. Then we
have

NE(X/U) (X,/U) Z Ro[C,

= NE(X/ U)KX/V.+B+A>O + Z Rso[Ti ] + ) Rso[Cl]
: 1,7 s

It finishes the proof of (1). The assertion in the case (2) follows from the argument
in (1) and the lifting method in the proof of [56, Theorem 1.3]." O

Proposition 3.3.5. (cf. [33, Theorem 4.2.1]) Let V' be an excellent Dedekind scheme.
Let (X, B) be a Q-factorial three-dimensional dit pair over V. Consider a sequence
of log flips starting from (X, B) = (Xo, BO)

(-X0>BO)_—-)(Xl,Bl)———)(XQ,BZ)—_.)... )

where ;: X; — Z; is a flipping contraction associated to an extremal ray and
ot X" = X1 — Z; is the log flip: Then, after finitely many flips, the flipping
locus is disjoint from | B].

Proof. It follows from a similar argument to the argument in the proof of [33, The-
orem 4.2.1]. - 7 O

Theorem 3.3.6. (Theorem E, cf. [43, Theorem 1.1]) Let V' be an excellent Dedekind
scheme. Let (X, A) be a three-dimensional Q-factorial dlt pair over V. Assume that
there exists a projective birational morphism n: X — Z to a normal Q-factorial
variety Z with Exc(n) < |A]. Then we can run a (Kx v + A)-MMP over Z which
terminates with a minimal model '

Proof. Tt follows from the same argument as in the proof of [43, Theorem 1.1] using
The cone theorem (Proposition 3.3.2), the contraction theorem (Proposition 3.3.1),
the existence of flips (Corollary 3.2.33), and the termination of flips (Proposition
3.3.5). O
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Lemma 3.3.7. Let f: Y — X be a projective birational morphism of three di-
mensional separated excellent integral schemes. Let W be a closed subscheme of Y.
If the singular locus of X is contained in some affine open subset of X, then there
exists a projective birational morphism v:Y' — Y such that Y’ is regular and
Exc(v) u v™Y(W) has simple normal crossing support. '

Proof. By [24, Theorem 1.1], the scheme X admits a projective resolution Xj. By
[24, Theorem 4.4] and [23], an analog of [44, Conjecture 5.4] holds for regular three
dimensional separated excellent integral schemes and its closed subschemes. By an
analogous argument of the proof of [44, Proposition 5.5] for Xy --+ Y, we obtain the
assertion. ‘We note that we can take an elimination of Xy --+ Y which is projective
over Xo and Y. / O

Remark 3.3.8. Let U be a regular open subset of Y such that f|y is an isomorphism
and Exc(v) u v~}(W) has simple normal crossing support on U. We can take a
morphism v in Lemma 3.3.7 as a morphism whose isomorphic locus contains U.
Indeed, there exists an elimination of Xy --+ Y whose isomorphic locus contains U.

Corollary 3.3.9. ([43, Corollary 1.4]) Let V be an excellent Dedekind separated
scheme. Let (X, A) be a Q-factorial three-dimensional log pair over V' such that any
coefficient of A is at most one. Assume that X s projective birational over an affine
V -variety. Then there exits a projective birational morphism w: Y —> X such that
the pair (Y, Ay := ;' A + Exc(n)) satisfies the following conditions.

1. (Y, Ay) is a Q-factorial dlt pair over V, and
2. Ky + Ay is nef over X.

Proof. By Lemma 3.3.7, we have a log resolution f: W — X of (X,A). We
write Aw = m,'A + Exc(r), then (W,Aw) is dlt. By Theorem E, we can runm
a (Kw)v + Aw)-MMP over X, and we get a minimal model 7: ¥ — X. Then
(Y, Ay := 77! + Exc(m)) is dlt and Ky,v + Ay is nef over X. O

Corollary 3.3.10. (cf. [43, Corollary 1.5]) Let V' be an excellent Dedekind separated
scheme. Let (X, S+ B) be a Q-factorial three-dimensional log pair over V such that
S is a locally irreducible Weil divisor. -Assume that X is projective birational over
an affine V-variety. Then (X, S + B) is plt on a neighborhood of S if and only if
(SN, Bg) is kit, where SN is the normalization of S and Bg := Diffgn(B) is the
different. ' :

Proof. 1t follows from the same argument as in the proof of [43, Corollary 1.5]
replacing [43, Corollary 1.4] into Corollary 3.3.9. O

Lemma 3.3.11. Let V be an excellent Dedekind scheme. Let (X,A) be a three-
dimensional dlt pair over V with |A| = S+5', where S and S’ are locally irreducible
Q-Cartier divisors. Let f: X — Z be a projective morphism over V' such that f(S)
is two-dimensional. Let C' be an irreducible component of S S'. If f(C) is a point,
then (S’ - C) is negative. ‘
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Proof. We set D := Diffgn (A — &), then (SV, D) is plt by Proposition 3.1.11. As
S¥ is two-dimensional, | D| is normal, and in particular, | D] is locally irreducible.
Since (X, A) is a simple normal crossing pair on the generic point of S n.S’, we have
|D] = §'|gv. By Lemma 3.1.3, S¥ — S is a universal homeomorphism, thus Sn S’
is also locally irreducible. In particular, C|s is Q-Cartier and (C|sn - D) = (Cl3w).
Thus, we have

(-8 = (Cls - §']s) = (Clsw - D) = (Clw) <0,

because C|gv is a contracted curve of SV via generically finite morphism f|gv: S¥ —
f(S). : ‘ O

Proposition 3.3.12. (cf. [43, Proposition 4.1]) Let V' be the spectrum of an excellent
discrete valuation ring. Let X be a flat V-variety of relative dimension two. Let
(X,A) be a dit Q-factorial log pair over V . Let f: X — Z be a (Kxyv + A)-
flipping contraction with p(X/Z) = 1. Suppose that X, is contained in |A| as sets
and every irreducible component of X is numerically trivial over Z. Then the flip
of f exists.

Proof. We may assume that |A] = X,.q. We take a point z € f(Exc(f)). By
shrinking Z, we may assume that Z is affine. First, we prove that f~!(z) intersects
with only one irreducible component of X. Otherwise, there exist two irreducible
components S and S’ intersecting f~'(z). By the connectedness of f~'(z), there
exists a flipping curve C intersecting with S and S’. By the assumption, S and 5’
~ are numerically trivial over Z. Since (S-C) =0 and (S’ C) = 0, C is contained in
S and S’. Tt contradicts Lemma 3.3.11.

Thus, we may assume that X is irreducible by shrinking Z around z, and in
particular, (X,A) is plt. We take a reduced Q-Cartier divisor H on X as in [44,
Lemma 5.3], then H =z 0 and it satisfies the conditions in the proof of [44, Theorem
1.2]. We note that as X, is a surface and the quotient field of V is infinite, a
general hyperplane preserves dlt singularities on the generic fiber. We take a dlt
modification Y — X of (X, A + H) by Corollary 3.3.9. We note that f: X — Z
is an isomorphism over the generic point of V', we may assume that ¥ — X is an
isomorphism over the geéneric point by Remark 3.3.8. We run a (Ky v + Ay + Hy)-
MMP by the same argument as in [44, Theorem 1.2]. Replacing (Y, Ay + Hy) into
a minimal model, we may assume that Ky, + A + Hy is nef over Z. By Corollary
3.3.3 and the same argument as in the proof of [44, Theorem 1.2], we can run a
(Kyyv + A)-MMP over Z with scaling of Hy. Replacing (Y, Ay) into a minimal
model, we may assume that Ky, + Ay is nef over Z. We denote the map ¥ — Z
by h. Since (X, A) is plt, h is small by the negativity lemma (Proposition 3.1.1).
Since the relative Picard rank of X over Z is one, Y is the flip of f. . O

3.4 Proof of Theorem D and its applications

Our goal of this section is to prove Theorem D, which is a generalization of the
result of Kawamata ([56], [57]). In this section, we deal with schemes satisfying
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the following conditions (Assumption 3.4.1), which are preserved under MMP-steps
(cf. Proposition 3.4.8, 3.4.10). Kawamata proved this fact by the construction of
flips, but it does not follow from our construction. Therefore, to prove the preser- -
vation, we precisely observe extremal ray contractions (cf. Proposition 3.4.7).

Assumption 3.4.1. Let V be an excellent Dedekind scheme. X is a V-variety satis-
fying the following conditions.

1. X is flat over V of relative dimension two.
2. Every generic fiber X, is smooth.

3. The fibers X, for the closed points s € V are geometrically reduced and satisfy
the condition (Sz).

4. Each irreducible component S of every fiber X is geometrically irreducible,
geometrically normal and a Q-Cartier divisor on X.

5. (X, X;) is dlt for all closed points s € V.

6. For each closed point s € V and dominant morphism ¢: V/ = SpecA — V
with reduced fiber such that A is a complete discrete valuation ring with
algebraically closed residue field k and s is contained in the image of ¢, the
base change X' := X xy V' satisfies the condltlon (5).

" Remark 3.4.2. e The ex1stence of an extension as in Assumptlon 3.4.1 ( 6) follows
from [71, Theorem 29.1}.-

e Assumption 3.4.1 is preserved by taking a base change as in Assumption 3.4.1
(6). |

Remark 3.4.3. In [56], it is additionally assumed that Ox(mKx,v) is maximal
Cohen-Macaulay in order to prove the existence of flips. Kawamata proved that
the condition is preserved under MMP-steps if each residue characteristic is larger
than 3. However, in this chapter, we do not need this assumption. We note that
if each residue characteristic is larger than 5, then such a condition is induced by
Assumption 3.4.1. Indeed, we take a closed point z € X contained in an irreducible
component S of some closed fiber X,. Then by Assumption 3.4.1 (4) and (5), (X, S)
is plt. Thus, by the adjunction, S is a klt surface. Since the characteristic of S is
larger than 5, S is strongly F-regular. By Proposition 3.3.10, X is T-regular at
z. In conclusion, X is T-regular. By Prop031t10n 3.2.17, OX(mK x/v) is maximal
Cohen—Macaulay :

Definition 3.4.4. (strictly semi-stable)

1. Let V be the spectrum of a discrete valuation ring R. Let w be a uniformizer
of R. A flat V-variety X of relative dimension n is called strictly semi- stable
if the following hold.
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e The generic fiber X, is smooth, where 1 € V is the generic point.

e For any closed point z in the special fiber X, there exists an open neigh--
borhood U of z such that U is étale over the scheme

Spec R[Xo, ..., Xn]/(Xo -+ Xon — @)
for some m < n.

Asin [2‘6,.2.16] if R has a perfect residue field, the above definition is equivalent
to that (X, X) is a simple normal crossing pair.

2. Let V be a Dedekind scheme. An integral flat quasi-projective V-variety X
of relative dimension n is called strictly semi-stable if X¢,, — Spec Oy is
strictly semi-stable for any closed point s € V. :

We note that a strictly semi-stable scheme over an excellent Dedekind scheme of
relative dimension 2 satisfies Assumption 3.4.1.

Lemma 3.4.5. Let V be an excellent Dedekind scheme and X be a V -variety satis-
 fying Assumption 3.4.1. Let s € V be a closed point. Let Sy, . .. , S, be the irreducible
components of Xs;. We set X; := S1u---US; with reduced structure and the scheme-
theoretic intersection C; := X;_1n S; for 1 <t < r. Then X, is reduced and satisfies
the condition (82) and C 18 reduced and pure one- dimensional for every i.

Proof Smce X is reduced and X, = X, as sets, we have X, = X,. In particular,
X, satisfies the condition (S). Since X;_; and S; are Q-Cartier divisors on X, the
scheme-theoretic intersection C; = X;_1 N S; is pure one-dimensional. In particular,
each generic point of C; is codimension two point in X. Since (X, X;) is a simple
normal crossing pair at each generic point of C;, the scheme ' C; satisfies the condition
(Rp). Thus, in order to prove C; is reduced, it is enough to show that C; satisfies
the condition (5)).

We take a closed point P of C;. Then P is contamed in at least two components
S; and S for some j < 4. If P is contained in three components, then (X, X) is a
simple normal crossing pair at P, and in particular, C; is reduced at P. Thus, we
may assume that P is contained in only two components, so X; = S; n S; around
P and we obtain the exact sequence

0 — Ox, — O, ® Og, —> Og, — 0

around P. Since X, S; and S; satisfy the condition (S2), C; satisfies the condition
(S1), so C; is reduced for all 7. The exact sequence ~

0—>OX — Ox,_, ®0s, — Og, — 0
implies that if Xi_l satisfies the condition (Ss), then so is X; by the reducedness of
Ci. , O
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Proposition 3.4.6. Let 7: S —> Z be a projective morphism from a surface to a
variety over an algebraically closed field k. Let (S, D) be a dlt pair and L be a m-nef
Cartier divisor such that L — (Ks + D) is m-ample and C be a reduced Weil divisor
with C < D. Then the following hold.

(i) mOs(mL) — m,O¢(mL) is surjectibve for all i and divisible enough m.

(i1) RimeOg(mL) = Rim,Oc(mL) =0 for vevery i > 0 and divisible enough m.

(i12) L is semiample over Z.

Proof. We note that the semiampleness follows from the abundance, since L — (Kg+
D) is ample over 7 and k is infinite. By [94, Theorem 1.1], L is semiample over
Z, thus we may assume that L is a pullback of an ample Cartier divisor on Z’,
where 7': § — Z’ is the morphism defined by L over Z. In particular, we may
assume that L is trivial by replacing 7 into #n’. First, we consider the case where the
dimension of 7(S) is at least one. By a perturbation of coefficients of D and [56,
Lemma 2.1], we have , :
‘ R'm,0g = R'7,05(—C) =0

for all i+ > 0, thus we obtain the assertion. Next, we assume that 7(S) is a point.
By [56, Lemma 2.2], we have H*(Og) = 0 for all 7 > 0. By [93, Theorem 5.2], the
scheme C is connected, so we have H°(Og) =~ k. Since we have H°(Og(—C)) =
0 and H°(Og) ~ k, the map H°(Os) — H°(Og¢) is surjective. Thus we have
"HYOg(—C)) = 0. Since —=(Kg + C) is big, we have H>(Og(—C)) = 0, so we have
HY(O¢) = 0. o O

The following theorem is discussed in [56, Theorem 2.3]. However, we need more
detailed observation of contractions, thus we use a bit different method form the
method of [56, Theorem 2.3]. '

Proposition 3.4.7. (cf. [56, Theorem 2.3]) Let V' be an ezcellent Dedekind scheme
and X is a V-variety satisfying Assumption 8.4.1. Let p: X — U be a projec-
tive morphism to a V-variety. Let s € V be a closed point. Let Si,...S, are the
irreducible components of Xs. Let L be a p-nef Cartier divisor with L — Kxy 1s
p-ample. Then L is semiample. Furthermore, the map f: X — Z defined by L
satisfies the following conditions. ’

1. Rif,Ox =0 for all j > 0.
2. mOs; = Oy(s,), where the images are equipped with the reduced structure.
3. Z is Cohen-Macaulay. |

Proof. Taking a base change via ¢: V' — V as in Assumption 3.4.1 (6), we may as-
sume that V' is the spectrum of a complete discrete valuation ring with algebraically
closed residue field. We set X; :=S;u---uS;and C; := X;_1n S; for 1 <7 <r.
We may assume that the conditions (), (4¢) in Proposition 3.4.6 for S; are satisfied
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for m = 1 and R'7,Ox, (L) = 0 by replacing L into some power of L. We note
that X; is a pushout of X;_; and S; with C;, and C; is reduced and X; satisfies (S)
for all 4 by Lemma 3.4.5. Thus, we have the surjection 7, Ox,(L) — m.Ox,_,(L)
and the isomorphism Rim,Oyx, (L) ~ R/m.Ox, (L) by Proposition 3.4.6. By the
induction on 4 and changing the order of Si,...,S,, we have RIm,Ox, (L) = 0 for
all 5 > 0 and the surjection 7,Ox, (L) — m.Og,(L) for all . By the sujectivity of
1.0x,(L) — m,0g,(L) and 7,0x,(L) — m.Ox,_,(L), if L|s, and L|x, , is glob-
ally generated over U, then so is L|x,. By the induction on i, we may assume that
L|x, is globally generated.

By the exact sequence

0 — Ox(L) — Ox(L) — Ox, (L) — 0,
where the first map is the multiplication by a uniformizer w, we have the surjection
Rin,Ox(L) —=- Rim,Ox(L)

for all j > 0. Thus, this vanishes around the closed fiber and the generic fiber, we
have R/m,Ox(L) = 0 for all j > 0. Since L|x, and L|x, is semiample and we have
* the surjection 1,0x (L) — 7,Ox,(L), L is semiample over U.

Next, we prove the assertions (1) and (2), so we may assume that L is trivial.
By the above argument, we have R’ f,Ox. = 0 for all j > 0 and f* x — f*(’)g is
_surjective for all i. By the commutative diagram -

f*OX = Oz

||

[+0s,~— Of(s,,

we have f*(’)g = Oj(s,)- By the same argument as above, we have f,Ox, = Osx,
and f,Oc, = Oy, for all i. By the Vamshlng R'f,Ox, = 0 for all ¢, we have the
exact sequence

0 — Ofx) — Ops) @ Opx,y) — Os(ci) — 0

By the induction and the condition (S;) on f(C;), the scheme f(X;) satisfies the
condition (S3). In particular, Z satisfies the condition (S3), thus Z is Cohen-
Macaulay. ‘ : » O

Proposition 3.4.8. Let V be an excellent Dedekind scheme and X is a Q-factorial
V -variety satisfying Assumption 8.4.1. Let f: X — Z be a K x-negative extremal
ray contraction which is a dwzsorzal contraction. Then Z also satisfies Assumption

3.4.1.

Proof. By Proposition 3.4.7, Z'is Cohen—Macauléy, thus Z satisfies Assumption 3.4.1
(3). The other conditions follow from the standard argument. |
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Proposition 3.4.9. Let V' be the spectrum of an excellent discrete valuation ring
and X is a Q-factorial V -variety satisfying Assumption 3.4.1. Let

X,z y

be a Kx-flip with p(X/Z) = 1. Assume that there exists irreducible components
S and A of the closed fiber X such that —S and A are ample. Then the strict
transforms S’ and A" of S and A on'Y, respectively, are geometrically normal.

Proof. Taking a base change via V! — V in Assumption 3.4.1, we may assume
that V is the spectrum of a complete discrete valuation ring with algebraically
~ closed residue field. Since A and S are geometrically irreducible, the irreducibility is
preserved. We take a point z € ¢(Exc(p)), by shrinking Z around z, we may assume
- that p(Exc(p)) = {2z} and Z is affine. We denote the image of S and A via ¢ by T'
and B, respectively. By Proposition 3.4.7, 9,Ogs = Or and 9,04 = Op, so T and
B are normal. By the proof of Lemma 3.2.31, we may assume that the intersection
C := A~ S is irreducible and not contracted by shrinking Z around z. By the
perturbation of coefficients, there exists a dlt pair (X, A) such that |[A] = A+ S
and —(Kxv + A) is ample. The strict transform of A on Y is denoted by Ay.
Since X and Y have isolated singularities, the different coincides with Alg and
Algw. In particular, (p|s)sAls = (@fn)+Algn, it is denoted by Az. Then by the
same argument in the proof of Lemma 3.2.31, (T, A7) is globally T-regular. Since
Kgn + Al|gn is ample, (SN, A|gn) is globally T-regular, in particular, S’ is normal.

Next, we consider the normality of A’. By the above argument, S|, is not
exceptional, irreducible and anti-ample over B. Thus, ¢|4 is finite, and in particular,
©|a is an isomorphism because of ¢,O4 = Op. By the same argument as above,
(AN AN 4v) is globally T-regular, thus A’ is normal. _ O

Proposition 3.4.10. Let V be an excellent Dedekind scheme and X is a Q-factorial
V -variety satisfying Assumption 3.4.1. Let

X425z AL Y
be a Kx-flip with p(X/Z) =1. ThenY is a scheme satkisfyz'ng Assumption 3.4.1.

Proof. It is obvious that Y satisfies Assumption 3.4.1 except for the condition (S>)
for closed fibers in (3) and the geometric normality of irreducible components of
closed fibers in (4). First, we prove that the (S,) condition of closed fibers, it is
enough to show that Y is Cohen-Macaulay. We take a point z € ¢(Exc(yp)), by
shrinking Z around z, we may assume that ¢(Exc(¢)) = {z} and Z is affine. In
particular, we may assume that V is a discrete valuation ring by localizing at the
image s of z. By Proposition 3.4.7, we have R'p,Ox = 0 and Z is Cohen-Macaulay.
Thus Z has rational singularities by Proposition 3.1.14. Since X is terminal, so is
Y, and in particular, Y has isolated singularities. Since ¢ is small, Y has also
rational singularities by Proposition 3.1.14. Thus, Y is Cohen-Macaulay.
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Next, we prove the geometric normality of irreducible components of X,. First,
we consider the case where f~1(z) is contained in only one irreducible component
-of X,. Then, we may assume that X, is irreducible. Thus, X, is geometrically
irreducible, and so is Y;. After taking base change V/ — V as in Assumption 3.4.1
(6), the pair (Y,Y;) is dlt and Y is irreducible. Thus, Y; is normal in codimension .
one. Since Y is Cohen-Macaulay, so is'Y;, thus Y, is normal. In conclusion, Yj is
geometrically normal. ‘
Next, we consider the other case. The extremal ray contracted by ¢ is denoted
by X. We take an irreducible component R of Y, such that (p+ (R) contains z. We
write T := ¢F R and S := ¢;!T. Suppose (S-X) = 0, then f~1(z) is contained in S.
By Lemma 3.3.11, every flipping curve is not contained in any other components.
By the assumption, f~!(z) intersects another component S’ of X,. If (S’ - %) < 0,
then S’ contains flipping curves, so we have a contradiction. If (S’ - X) is positive,
then replacing S’, we have (S’ - X) is negative because of X, ~ 0. In conclusion,
we obtain (S - X) # 0. First, we consider the case where (S - C) is positive. Then
there exists an irreducible component S’ of X such that (S’ - C) is negative. In
particular, the divisors S and —S’ are ample. By Proposition 3.4.9, the scheme R
is geometrically normal. On the other hand, if (S- C) is negative, then there exists
an irreducible component which is ample. Thus, by Proposition 3.4.9, the scheme
R is geometrically normal. . O

Theorem 3.4.11. (Theorem D, cf.[56]) Let V' be an excellent Dedekind scheme.

- Let X be a V-variety satisfying Assumption 3.-4-1.- Then-we can run o Kxyy-MMP

over Z preserving Assumptwn 3. 4 1 which terminates wzth a mzmmal model or a
. Mori fiber space.

Proof We note that (Kxv + Xs)-MMP is also Kx,y-MMP because X, is lin-
early trivial. By the cone theorem (Proposition 3.3.4) and the contraction the-
orem (Proposition 3.4.7), we can contract any Kx, -negative extremal ray. Let
f: X — Z be a Kx-negative extremal ray contraction. If f is divisorial con-
traction, Z also satisfies Assumption 3.4.1 by Proposition 3.4.8. If f is flipping
contraction, the extremal ray contracted by f is denoted by ¥. In order to prove
the existence of the flip, we may assume that V' has the unique closed point s. If
(S - %) = 0 for every irreducible component S of X, then the flip of f exists by
Proposition 3.3.12. Otherwise, as X is linearly trivial, there exists irreducible com-
ponents S and A of X, such that (S ¥Y) <0and (A-X) > 0. By Corollary 3.2.33,
the flip of f exists.

Then the flip X --» Y of f existsand Y’ satlsﬁes Assumption 3.4.1 by Proposition
3.4.10. Since X has terminal singularities, a sequence of flip terminates by the
argument in [63, Theorem 6.17]. Thus, Ky -MMP terminates with a minimal
model or a Mori fiber space. O

1In the following, we review apphcatlons of Theorem D which are discussed in ,
[20].
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Definition 3.4.12 (cf. [20, Definition 5.1]). Let Ok be a Henselian discrete valu-
ation ring with perfect residue field k. Let K be the fraction field of Ox. Let X be
a K3 surface over K or an abelian surface over K. Here, we note that an abelian
surface does not necessarily admit a section. Then a minimal strictly semi-stable
model of X is a proper algebraic space X over Ok satisfying the following.

1. The generic fiber Xk is isomorphic to X.

9. The special fiber X} is a scheme whose irreducible coinponents are smooth over

k.

3. There exists an étale surjection U — X such that U is a strictly semi-stable
scheme in the sense of Definition 3.4.4.

4. The relative dualizing sheaf wy /o, is trivial. Here, see [20, Section 5] for the
definition of the relative dualizing sheaf.

" Theorem 3.4.13. Let Ok, K, k and X be as in Definition 8.4.12. Suppose one of
the following.

1. The scheme X is an abelian surface over K.

2. The scheme X is a K3 surface over K satisfying that X .admits a projective
strictly semi-stable scheme model over Og.

Then there exists a finite separable extension K'/K such that there exists a minimal
strictly semi-stable model over O of Xk.

Proof. By Theorem D, this theorem follows from the proof of [20, Theorem 10.3]
and the proof of [66, Proposition 2.1]. d

The dual graph of the special fiber of a‘ minimal strictly semi-stable model is .
classified in [20] in the case where char k # 2. We will verify that their result holds
even in chark = 2. :

Theorem 3.4.14. Let Ok, K, k, and X be as in Definition 3412 Let X be a min-
imal strictly semi-stable model over Ok. Then the special fiber Xy is combinatorial
in the sense of [20, Definition 5.4, Definition 5.6]. :

Proof. If X is a K3 surface, it follows from the same argument as in the proof
of [20, Proposition 5.3, Theorem 6.1]. Therefore, we will treat the case where X
is an abelian surface. We note that the case where chark # 2 follows from the
proof of [20, Proposition 5.3, Theorem 8.1]. In Chiarellotto and Lazda’s argument,
the assumption chark # 2 is used only in the case where (2) (b) in [20, p.2253]
holds for some irreducible component of the special fiber X;. We will review their
arguments in this case. They show that the dual graph I' of the special fiber &} is
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a triangulation of a compact real surface M without border. The spectral sequence
of coherent cohomologies shows that

1 ifi=0,2
dimy, HY, (sz)={ REEDS

sing 2 otherwise.

It implies that M is a torus if chark # 2 since the left hand side is equal to C- -
Betti number by the classification .of real surfaces. On the other hand, in the weight
spectral sequence as in the proof of [20, Theorem 8.3], we have an isomorphism
E_12 ~ Elo. Here, we take a prime number £ € R*. Moreover, we have E?’l =
0 by [20 Lemma 4.2]. Since this spectral sequence degenerates at E,, we have
dimg, By° = 2. Since Er° = = H},. (T, Q) as in the proof of [20, Theorem 8.3], we

have dimg, H}, (T, Q¢) = 2. Therefore, the surface M is a torus even in chark =
2. . O

In the case where X is an abelian surface, it is well-known that there exists a
Néron model of X (cf. [14]), which is a smooth model satisfying a useful extension
property (see [14, Section 1.2, Definition 1] for the precise definition). The following
proposition, which is proved in [54, Theorem 1.4] in the case where X is a scheme,
shows that a minimal strictly semi-stable model gives a compactification of a Néron
model.

Proposition 3.4.15. Let Ok, K, and k be as in Deﬁnztzon 3.4.12. -Let X be an
abelian surface over K. Let X be a minimal strictly semi-stable model of X over
Ok, and X the smooth locus ofX Then Xsm 15 a scheme and a Néron model of
X over Ok.

Proof. Let Y be a Néron model of X over Ok. By the descent argument, one can
show that the Néron mapping property holds for algebraic spaces. Therefore, we
have a morphism f : X*® — ) which extends an identity on X. It is enough to
show that f is an isomorphism. We note that we have X(O%) # & by Hensel'’s
Lemma, where OF is the strict henselization of Ok. By [14, Section 7.2, Theorem
1], we may assume that X admits a section. First, we will show that f is an étale
morphism. It suffices to show that fou is étale for any étale morphism u : U — A'5™.
By [14, Section 2.2, Corollary 10], we want to show that ® : (f o u)*Q%,/SpeCOK —
QF /Spec Oy 1S an isomorphism. »Since X is a scheme in codimension 1, ‘by using
[14, Section 4.3, Lemma 1], we have ® is an isomorphism in codimension 1, so ® is
an isomorphism. Now we have f is étale. By Zariski’s main theorem, the morphism
[ is an open immersion. Let Z be a complement \X*™®. Suppose that Z # .
Take a valued point z € Z(k). By Hensel’s lemma, the valued point z lifts to
Ze Y(0%) = X(K™) = X(K*?) = X(0%), but it contradicts to the choice of z (cf.
the proof of [54, Theorem 1.4]). Therefore, f is an isomorphism. O
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3.5 More general relative MMP

The goal of this section is to prove the relative MMP in more general setting (Theo-
rem 3.5.2) and the finite generation of relative canonical ring (Theorem 3.5.3). The
first one is an analog of [43, Theorem 1.6] in mixed characteristic.

Proposition 3.5.1. Let V be the spectrum of an excellent discrete valuation ring.
Let X be a flat V -variety of relative dimension two. Let (X,A) be a Q-factorial dit
log pair with X; < |A| as sets, where X is flat V -variety of relative dimension two.
Let p: X — U be a projective morphism to a quasi-projective V -variety U. Let L
be a p-nef Cartier divisor on X with L' = R[Z], where T is a (Kx + A)-negative
extremal ray over p. Then L is semiample.

Proof. Replacing L with mL for large enough m, we may assume that L—(Kx,y+A)
is ample over U. Let Sy, ..., S, be the irreducible components of X,. We denote the
different Diffgv (A — S;) by D;, then (S}, D;) is dlt and L — (Kgy + D;) is ample
over U. We note that the normalization S¥ — S; is a universal homeomorphism
by Lemma 3.1.3. By [94, Theorem 1.1] and the proof of [59, Lemma 1.4], Lls, is
semiample for all 5. We denote the map induced by L|g, by ¢;: S; — T;. Since
—(Kgn + D;) is ample over T;, the morphism ¢;s,....s,_, has connected fibers by
[93, Theorem 5.2]. By [59, Corollary 2.9] x, 1s semiample.
Furthermore, L|x, is semiample by the base point free theorem Thus by [97,
Theorem 1. 2] L is also semiample. O

Theorem 3.5.2. (cf. [43, Theorem 1.6]) Let V be the spectrum of an excellent dis-
crete valuation ring. Let (X, A) be a Q-factorial dlt pair over V, where X is a flat
V-variety of relative dimension two. Let X — Z be a projective morphism over V
to a quasi-projective V-variety Z. Assume that |A| contains the closed fiber X, as
sets. Then we can run a (Kxv + A)-MMP over Z which terminates with a minimal
model or a Mori fiber space.

Proof. By the cone theorem (Proposition 3.3.4) and the contraction theorem (Propo-
sition 3.5.1), we can contract any (Kx + A)-negative extremal ray. If the contraction
is a flipping contraction, then the flip exists by the argument in the proof of Theorem
3.4.11. The termination of flips follows from the. special termination (Proposition

3.3.5). | | O

Theorem 3.5.3. Let V be an excellent Dedekind scheme whose each residue field
is perfect. Let X be a flat V-variety of relative dimension two. Let (X,A) be a dit
‘pair over V such that for each closed point s € V, the pair (X, A + Xs) is dlt or X,
is contained in |A| as sets. Let p: X — U be a projective morphism to a projective
V -variety. Then ‘

R(Kx/v-i-A/U @p*OX Kx/v-I-A))
is a finitely generated OU-'algebm.
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Proof. We may assume that V' is the spectrum of an excellent discrete valuation ring
and |A] contains the closed fiber X, as sets. If Kx,v + A is not pseudo-effective,
the theorem is trivial, thus, we may assume that Kx,y + A is pseudo-effective. By
Theorem 3.5.2, we can run a (Kx/v + A)-MMP over U, thus, we may assume that
L = Kx + A is nef over U. By [97, Theorem 1.2], it is enough to show that
L|x, is semiample over U. We take an ample divisor H on U such that p*H + L is
nef over V. By the argument of the proof of [43, Theorem 1.6], the pair (W, Aw)
is a sdlt surface and 7 is a universal homeomorphism, where 7: W — X, is the
So-fication and Ly := Kw + Aw = 7*((Kx + A)|x,), thus it is enough to show
that Ly is semiample over U. We set Hy := 7n*p*H. Then Ly + Hy is nef and it
is enough to show that Lw + Hw is semiample. By the proof of [91, Theorem 1],
there exists an effective Q-Weil divisor D which is Q-linearly equivalent to Hy such
- that (W, Aw + D) is also sdlt. By [90, Theorem 0.1], it is semiample. O

Remark 3.5.4. In our proof,  we need the projectivity of V' to use [90, Theorem
0.1]. If we assume the existence of projective log resolutions, then we generalize the
existence of dlt modifications to the general setting. Then, we can take a Q-factorial
dlt compactification for a pair (X, A) with X, < |A] as sets and generahze Theorem
3.5.3 to the quasi-projective case.

Corollary 3.5.5. Let V be an excellent Dedekind scheme. Let X be a 'V - vaﬁety sat-
isfying Assumption 3.4.1. Let p: X — U be a projective morphzsm to a pm]ectwe
V- vamety U. Then

R(Kxyv/U) = @p*(?x mKX/v)
18 a finitely generated Oy -algebra.

Proof. By Assumption 3.4.1 (6), we may assume that V is the spectrum of a dis-
crete valuation ring with perfect residue field. Thus, Theorem 3.5.5 follows from
Proposition 3.5.3. . ; O
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