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Introduction 
Machine-learning-based design of molecules and materials is increasingly common in recent years. Despite 
progress in biological and materials informatics, machine learning often yields poor results due to shortage 
of experimental data. The problem may be solved with data augmentation by leveraging legacy datasets in 
public databases or private repositories. However, due to different properties and unknown experimental 
conditions, it is hard to integrate external datasets with current dataset straightforwardly. 

In this research, we employ preference learning models to integrate and derive valid information from 
external datasets. The learning process is based on pairwise comparison of target values in the same dataset. 
Figure 1 shows data integration with preference learning. Two datasets are related but incompatible due to 
different experimental methods. Each dataset is separately converted to pairwise preference relations. A 
Gaussian process-based preference learning model is trained from all pairs and yields probability 
distributions of latent values at all points in the descriptor space, followed with Bayesian optimization to 
search for optimum samples[1]. Neural network-based preference learning model is also used for processing 
large-scale datasets[2] . Figure 2 illustrates the process, consisting of three major steps: (i) generating 
pairwise preference, (ii) training preference learning neural network, and (iii) predicting ranking of candidate 
molecules.  

In benchmarking our method, we first search for organic molecules with longer absorption 
wavelength[3]. By integrating external dataset of HOMO-LUMO gap, we found significant acceleration in 
Bayesian optimization search process. We integrated 129 different ChEMBL datasets measuring efficacy of 
drug molecules for inhibiting factor Xa (fXa)[4]. The average prediction and extrapolation performance 
improved significantly compared to those before integration. 

 
Method 
A set of candidate materials is represented as {𝑧!}!"#,…,& , where 𝑧! ∈ ℛ'  is a vector of descriptors. The 
corresponding values of target property are represented as {𝑦!}!"#,…,& . They are initially unknown and 
revealed by observation. Let us assume that 𝑘	observations are already made 𝑍 = {(𝑧! , 𝑦!)}!"#,…,(. For any 
two observed materials .(𝑧! , 𝑦!), /𝑧) , 𝑦)01 ∈ 𝑍,	if 𝑦! > 𝑦) , we denote 𝑧! ≻ 𝑧) , i.e., 𝑧! is preferred over 𝑧) . 
For an external dataset 𝑍* = {(𝑧!*, 𝑦!*)}!"#,…,(!  , a new preference list is generated. Comparisons are 
performed with two observed materials from the same dataset. After comparing all pairs, 𝑍 and 𝑍*  are 
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Preference learning with Gaussian Process and Bayesian Optimization 
For notational simplicity, all descriptor vectors in 𝑍 ∪ 𝑍* are redefined as 𝑋 = {𝑥!}!"#,…,/.		Let 𝐷 denote 
the merged preference set, 𝐷	 = 	 {𝑣! ≻ 𝑢!}!"#,.,...,1, where 𝑣!,𝑢! are taken from 𝑋. Gaussian process is 
able to assign a latent value 𝑓(𝑥) to any vector 𝑥 ∈ ℛ'. The prior probability of 𝑓(𝑥!)	is defined as  
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where 𝒇	 = 	 [𝑓(𝑥#), 𝑓(𝑥.), . . . . , 𝑓(𝑥/)]5, and Σ is the covariance matrix defined by a radial basis function 
kernel. Using Gaussian noise variables 𝛿 ∼ 𝒩(𝛿; 0, 𝜎.), the probability of preference 𝑣( ≻ 𝑢( is described 
as 

𝑃/𝑣( ≻ 𝑢(M𝑓(𝑣(), 𝑓(𝑢()0 = NN𝑃(𝑣( ≻ 𝑢(|𝑓(𝑣() + 𝛿6 	> 	𝑓(𝑢() + 𝛿7)𝒩(𝛿6; 0,1)𝒩(𝛿7; 0,1)𝑑𝛿6𝑑𝛿7. 

By using Bayes’ theorem, we can arrive at the posterior probability, 
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The solution is obtained by maximizing a posteriori estimate (MAP). To make a prediction at a new sample 
point 𝑥∗, we infer the probability distribution of its latent value as 

𝑃(𝑓∗|𝐷) = N𝑃(𝑓∗|𝒇)𝑃(𝒇|𝐷)𝑑𝒇 ∼ 𝑁(𝑓∗; 𝐊∗5Σ,#𝒇9:;, 𝐾∗∗ − 𝐊∗5(Σ + Λ9:;,# ),#𝐊∗) 

where 𝐊∗ = [𝐾(𝑥∗, 𝑥#), 𝐾(𝑥∗, 𝑥.), . . . , 𝐾(𝑥∗, 𝑥/)]5 , 𝐾∗∗ = 𝐾(𝑥∗, 𝑥∗)  and Λ9:;  is the Hessian matrix 
<#=(𝒇)
<𝒇<𝒇%

− Σ,# at 𝒇 = 𝒇9:;. The predicted mean and variance of the latent value at 𝑥∗ are 𝜇∗ = 𝐊∗5Σ,#𝒇9:; 

and 𝜎∗. = 𝐾∗∗ − 𝐊∗5(Σ + Λ9:;,# ),#𝐊∗), respectively. 
In Bayesian optimization, the mean latent value 𝜇∗ and standard deviation 𝜎∗ are computed for all 

remaining candidates. Let 𝜇1?@  denote the maximum value observed so far. The expected improvement of 

Figure 1 Data integration with preference learning neural network. 

Figure 1 Data integration with preference learning.   
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a candidate 𝑥∗ is described as follows. 

EI(𝑥∗) = (𝜇ABC − 𝜇∗)𝛷 \
𝜇ABC − 𝜇∗

𝜎∗ ] + 𝜎∗𝜑\
𝜇ABC − 𝜇∗

𝜎∗ ] 

where 𝛷  and 𝜑  represent the cumulative distribution function and the probability density function of 
standard normal distribution, respectively.  
Preference Learning Neural Network with Gradient Descent 
The neural network consists of two full-connected layers. It maps feature descriptors of a molecule to its 
surrogate target value. For a molecule	𝑧! with features 𝑥! ∈ ℛ', the input dimension is 𝑑. One output node 
predicts the surrogate target value	𝑦_!. Forward propagation is performed separately for two examples in one 
pair. Pairwise probabilistic loss function is the key for learning pairwise information. Binary cross entropy 
function is used to estimate the divergence between true relations and predicted relations formulated as: 

Loss = −c 𝑝𝑙𝑜𝑔𝑃(𝑣! ≻ 𝑢!) + (1 − 𝑝)𝑙𝑜𝑔𝑃(𝑢! ≻ 𝑣!)
(6&,7&)∈E

 

True relation between 𝑣! 	and 𝑢! is represented using 𝑝 ∈ {0,0.5,1} with 0 for	𝑢! ≻ 𝑣!, 1 for 𝑣! ≻ 𝑢! 	and 0.5 
for being equal. Predicted probability 𝑃 is determined by the output {𝑦_6 , 𝑦_7} of the neural network given 
samples{𝑣! , 𝑢!}, defined as: 

𝑃(𝑣 ≻ 𝑢) =
𝑒𝑥𝑝(𝑦_6)

𝑒𝑥𝑝(𝑦_6) + 𝑒𝑥𝑝(𝑦_7)
 

For any pair {𝑣! , 𝑢!} in 𝐷, activation and gradient values are stored for updating a weight parameter 𝑤( ∈
ℛ	using gradient descent: 
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where 𝐿 denotes the loss function as previously defined and 𝛼 is learning rate. The back propagation is 
hereby accomplished. After sufficient training, the neural network is ready for predicting new samples. We 
performed pre-experiments on major dataset to determine the number of nodes in each layer. Datasets were 
divided into training, validation and test set in a ratio of 3:1:1. Hyperparameters were determined by the 
performance of validation set. Final result shows the ranking accuracy of test set.   
 
Result 
We created our own small database of 94 organic molecules with their absorption spectra and HOMO-LUMO 
gaps computed via TD-DFT. For each candidate set C, we created five types of external datasets, each 
consists of 50 molecules. For q=0, 25, 50, 75 and 100, the q%-overlap dataset consists of ⌊𝑞𝑁 100⁄ ⌋ 
molecules in C, 50 − ⌊𝑞𝑁 100⁄ ⌋ molecules not in C, and their HOMO-LUMO gaps. Molecules in C are 
divided into 80% training set and 20% test set. Normalized Discounted Cumulative Gain (NDCG) is 
calculated on test set to evaluate the ranking accuracy. In Bayesian optimization, the success rate at iteration	𝑗 
is defined as the fraction of runs where the best molecule was found within 𝑗	selections of molecules. The 
results are shown in figure 3. The overall process has been improved or accelerated indicating that an external 
dataset with a related but non-identical property can still improve our preference learning model. With more 
molecules to be observed included in external samples, the dataset would provide more information about 
experimental design. With small overlap, it may be difficult to accelerate the search. 
 ChEMBL datasets contains a total of 2959 molecules with IC50 values from 129 different sources. 
Each dataset containing 2 to 85 molecules, were labeled with a ChEMBL number according to its source. 
We chose one of them as major dataset with other 128 datasets as external datasets. Figure 4 (a) shows the 
result where training and test set were divided randomly. Since ChEMBL dataset contains data of the same 



target property, we further created a group that directly combine all the datasets using their target values. 
The lower average NDCG score indicates that even measuring the same property, a direct integration 
among different sources is unadvisable. Figure 4 (b) shows the result of extrapolation where molecules in 
test set have larger values out of the training set observed range. Lack of information in target range makes 
the prediction more difficult. The overall accuracy decreased compared to random separation group, but the 
integrated group shows higher scores than the single group.  
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Figure 3 (a) Ranking accuracy by Gaussian process with preference learning. (b) Success rate of Bayesian 
optimization with preference learning against the number of iterations. 

Figure 4 Results for ChEMBL molecules. (a) Ranking accuracy of random integration. (b) Ranking 
accuracy of extrapolation. 


