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Abstract

With the progress of urbanization, more and more people are now living in urban areas

with very high population density. The agglomeration of population and industries has

improved the cities’ production e�ciency as well as provided many conveniences for the

people living there. However, at the same time, dense urban areas have also emerged

many new challenges due to the concentration of population and industries. In order

to find possible solutions to these challenges, many di↵erent types of data sources have

been collected from cities via di↵erent sensors. We divide the collected data into two

kinds: data with the static feature, and data with the dynamic feature, according to

what kind of information they contained. For example, road networks, street maps, et

al., mainly reflect the static characteristics of the city. In contrast, surveillance videos,

GPS positioning data, et al. mainly reflect on the dynamic characteristics of the town.

These continuously collected urban data gave birth to the concept of urban computing.

In recent years, many studies use these data with the dynamic characteristics of cities

to solve di↵erent problems in cities, such as tra�c forecasting, urban planning, et al.

However, we must admit that urban sensing and data acquisition are still a significant

challenge. Given the two main problems existing in GPS trajectory data that simulate

citywide human mobility: 1) privacy protection, 2) sampling deviation and noise, we

hope to use deep learning-based methods for human mobility estimation.

In Chapter 2, we first briefly introduced the concept of generative models and the rea-

sons for using generative models for human mobility estimation. We first define the

problem of citywide human mobility estimation as a Bayesian inference problem. We

assume that no matter how complex a human mobility trajectory is, we can always find

a probability distribution in the hidden space to characterize the information contained

in this complex trajectory. Hence, the key to human mobility estimation is finding the

posterior distribution of this hypothetical hidden space distribution when the actual

trajectory is observed. We hope to solve this problem because the hidden space dis-

tribution contains the necessary information for each complex trajectory. At the same

time, we can avoid the possibility of privacy violation when using the trajectory directly.

Furthermore, suppose we can find the joint distribution of the hidden space distribu-

tion and the actually observed trajectory. In that case, we can also sample from the

hidden space distribution to reduce the sampling bias of the collected trajectory data.
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This chapter uses the framework of variational inference to solve this inference problem

and uses LSTM as Encoder and Decoder to complete the conversion between trajectory

data and hidden space distribution. The experimental results show that our method

can achieve our goal. Nevertheless, at the same time, we also discovered the limitation

that the newly generated virtual trajectory does not comply with the constraints of ge-

ographic information.

Chapter 3 considered the advantages and limitations of directly using the generative

model for human mobility estimation and considered improving two of these limita-

tions. The first limitation is that when we generate new virtual data directly using the

generative model, the newly generated trajectory data does not comply with geographic

information constraints. That is, the car could appear in an area outside the road net-

work. The second limitation is that it is di�cult for us to quantitatively measure the

authenticity of the newly generated virtual trajectory data. We naturally think that

we can use map matching to match the newly generated trajectory to the road network

regarding the first limitation. However, we have noticed that such post-processing will

change the citywide human mobility pattern. Therefore, we first used the shortest dis-

tance with the map matching method to conduct a simple experiment to measure the

change of the citywide human mobility pattern of the post-processing virtual trajectory.

The experimental results show that the citywide human mobility pattern represented by

the post-processing trajectory data has probably changed by more than 20%. Then, from

the perspective of trajectory similarity, we use the retrieval idea to construct a retrieval-

based human mobility estimation model. In this way, we can avoid the human mobility

pattern change brought by map matching as post-processing and avoid the problem of

quantifying the authenticity of the newly generated virtual trajectory. We first use the

deep learning model to convert complex trajectories into hidden space distributions. We

then use the distance between the hidden space distributions corresponding to di↵erent

trajectories to complete a quick search with the k-d tree technique. In the experiment,

we compared the deep learning model with the traditional trajectory similarity method.

We found that the deep learning model, especially based on the two-way LSTM and

VAE model, obtained the best results. The limitation of the retrieval-based model is

that we need a vast historical trajectory database, and we do not know how to estimate

the appropriate weight of each observed trajectory in citywide human mobility.

Chapter 4 proposed a di↵erentiable projection method to construct a deep learning
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model with linear constraints. This problem is worth studying because in some scenar-

ios where we can get some simple prior knowledge, constrained deep learning always

gives better results than conventional deep learning models as a pure data-driven al-

gorithm. In this chapter, we give the theoretical derivation as a piece of evidence for

the above conclusions. In our understanding, prior knowledge and constraints are syn-

onymous, so that we can treat the information provided by some heterogeneous data as

constraints. This chapter provides a theoretical basis and implementation method for

the work of the next chapter 5. As long as the information provided can be written in

a linear form, we can use the method of this chapter to model. We start from a linear

equality constraint conditions problem. We could give a projection method for solving

this linear equality constrained problem if the constrained conditions are independent.

However, there is no straightforward way to use the projection method to solve the

linear inequality constrained problems. However, fortunately, we can use a partial pro-

jection algorithm to make the projected points closer to the constrained region than the

original points. Then we propose a di↵erentiable projection method for deep learning

based on this theorem. At the same time, we also used some synthetic data to conduct

experiments to verify the e↵ectiveness of this method.

In Chapter 5, we made a simple application of the constrained network model proposed

in Chapter 4 in human mobility estimation. The framework proposed in this chapter

is an improvement to the limitations of Chapter 3. We hope to estimate the individual

human mobility trajectory while also estimating the weight of this trajectory in citywide

human mobility. To this end, we used simulated heterogeneous OD data to construct our

constraint information. First, we convert the trajectory data into a Gaussian mixture

of hidden space distribution. Then our Encoder also needs to output the weight of this

trajectory to construct citywide human mobility. Since we use constrained deep learning

as our Encoder, the weight of each output can satisfy the constraint information, which

makes our results better than the conventional deep learning model. The experimental

results show that the proposed constrained human trajectory generation model has the

best results in estimating citywide human mobility without losing the ability to express

individual trajectories.

In Chapter 6, we show the work we have done so far, summarize our contributions,

and discuss the limitations of the current work. In the future, a possible direction is to

carry out a systematic integration of all current work. Besides, it is worth trying to use

more kinds of data under the current framework for citywide human mobility estimation.
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At the same time, we believe that data fusion is also the direction that this research

can extend in the future. Because through our current work, we find that the current

method has proposed a way to solve privacy infringement when using human mobility

data directly. However, a limitation lies in that although our current work reduces the

problem of data sampling bias to a certain extent, it is still limited to the use of a sin-

gle data source, so the final performance still has much room for improvement. In the

future, we think we still need to mine more practical information from more di↵erent

data sets by fusing di↵erent data sources to complete human mobility estimation with

minor sampling bias.
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Chapter 1

Introduction

1.1 Background

With urbanization, many people spend their whole lives in some highly developed dense

urban areas, sometimes called megacities, such as Tokyo, New York, and Shanghai.

Some statistical evidence shows that the e�ciency of energy consumption in service es-

tablishments is higher than in sparse rural areas in these megacities. More precisely,

research from Morikawa [1] said that energy e�ciency increase by approximately 12%

when the density in a municipality population doubles after controlling for di↵erences

among industries quantitatively. On the one hand, those big cities create possibilities

for people to have a modernized lifestyle. On the other hand, it also engendered many

challenges, such as air pollution, increased energy consumption, and tra�c congestion,

of course. Taking tra�c congestion in big cities as an example, people waste their time

in tra�c congestion when commuting to work in rush hours. It reduces the quality

of life of every individual and limits the further development of the city. Therefore,

much research focuses on tackling those challenges in multiple city-related fields, such

as transportation, civil engineering, environment, economy et al.

Collecting information from the urban area, in reality, is the basis for tackling those

challenges mentioned above. Research in di↵erent city-related fields focuses on some

specific information of the urban area. For example, transportation research may focus

on tra�c congestion information in the road network and then advise city planning to

prevent congestion in rush hours. Here we give our understanding of essential informa-

tion in the context of urban space. We use features to denote the essential information

1
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of cities, and then the features contain static features and dynamic features. The static

features like the road network, Point of Interest (POI) change slowly in the long term.

Then, the dynamic features are mainly activities generated by people’s mobility, such

as walking in streets, driving on roads, and taking trains. The static features and the

dynamic features interact with each other. For example, people may spend more time

on a trip in the insu�cient road network, and reduce the e�ciency of the entire city.

Collecting information on static features of cities is much easier than collecting dynamic

features even now. Since the static features of cities change slowly, we can draw some

maps for cities and record the road network and POIs. In recent years, with the ad-

vancement of Remote Sensing (RS) techniques, more detailed and timeliness maps can

be drawn for extracting that static information of cities. Therefore, in many early works

of city planning, tackling challenges of the urban area is highly dependent on static

information. At that time, policymakers in rapidly developing cities often make deci-

sions about city planning using developed cities as a reference to prevent some issues

already exist before. They use the experience of those developed cities to build their

developing cities, while this is not an easy task. We give an example of the strategy

of improving the tra�c e�ciency in some cities. In some developing cities, vast roads

are built even though the number of vehicles is not significant. This kind of planning

reduces the possibility of tra�c congestion in the future. In contrast, it reduces the

accessibility of pedestrians because people may take more than 10 minutes to cross a

street. Therefore, the city is built to be convenient to drive, not to live. Besides, the

improvement can hardly be made before we get an e↵ective solution for those issues in

cities since the cost of infrastructure improvement is significantly huge for those cities

already developed. Therefore, we need more factual information about human mobility,

which is a dominant factor that forms the dynamic features of cities. Fortunately, a

wide variety of data is generated in urban spaces, and we can capture these data with

the development of sensing technologies in recent years. In the field of human behavior

tracking, there are active sensors like Radio-frequency identification (RFID) tags, WIFI,

Bluetooth sensors on mobile devices, and passive sensors like cameras, passive infrared

(PIR) motion detectors [2]. Those sensing techniques make the information acquisition

of urban spaces possible and provide opportunities for building more intelligent cities.

Much research about applications tackling challenges in big cities based on this kind

of Spatio-temporal information has been conducted in recent years. Zheng [3] gives

a more specific definition of urban computing, including data acquisition, integration,
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Figure 1.1: Data-driven applications rely on information in datasets collected from
the real world. However, collected datasets cannot reflect the real world. These datasets
are sometimes unavailable because the collected datasets are often surfer from sampling

bias and privacy violation problems.

and extensive and heterogeneous data analysis in urban spaces to tackle issues in cities.

Although there is already extensive research conducted based on existing data sources,

urban sensing and data acquisition are still among the main challenges in urban comput-

ing. It is a nontrivial issue to collect citywide data unobtrusively and continually since

we do not have enough sensors in every road segment or buildings. A direct counter

method is installing more sensors among cities, but this will dramatically increase the

cost of the infrastructure of cities. A new concept such as humans as sensors gives us a

more flexible solution to leverage what we already have in urban space more intelligently.

For example, human mobility in a city that occurs during rare events like an earthquake

was recorded. We could use this data to evaluate the situation if the earthquake hap-

pened in another city [4]. However, it still has two main challenges:

1) Privacy violation issue: There are four main approaches to protecting users from

privacy violations caused by spatial-temporal data acquisition [5]. The intuition behind

those approaches is reducing the representative power of data by suppressing the loca-

tion information of users. It means that even though enterprises or the government have

collected high-quality human mobility data, it cannot be used directly sometimes.
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2) Bias and noise: Nonuniformly distributed sensors cause bias of collected human mo-

bility data. There may be no people at some moments in some places, which inevitably

leads to data sparsity problem, while in some other places, like Tokyo station, the data

generated by users may be redundant. Besides, the human mobility data generated by

users may be very noisy, unlike data collected by some traditional sensors. To prevent

Figure 1.2: Visualization of human mobility trajectories in Tokyo to show the bias
problem.

some risks of violation of the privacy of mobile device users, although many data is

collected, the owner of the such kind of data is not willing to provide the data for re-

searchers or other research institutes, which leads to a limitation of the usage of this

kind of locational data. Despite the privacy concerns about protecting users’ privacy,

there is a bias problem caused by the low sampling rate of the collected data. Both

privacy concerns of mobile device users and the data bias issue will lead to the di�culty

to obtain the human mobility data to reflect the actual trajectory patterns in real situ-

ations. Therefore, we want to build an urban trajectory estimator that can convert the

privacy-sensitive real trajectory data to an estimated data to avoid privacy violation.

This estimated data should have a better representation of the real world.

In recent years, deep learning contributes to solving issues that have been resisted the

best attempts of the Artificial Intelligence community for many years. Generally speak-

ing, deep learning is a kind of method which usually stacks multiple simple nonlinear

transformation module as a kind of complex and multi-layer representation learning

method [6]. The key idea is that when given data with potentially complex represen-

tation, a deep learning model captures data representation at one level at each stacked

simple transformation module, which gradually forms a more abstract representation at

the top layer of the deep learning model. The critical aspect of the deep learning method,
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comparing with the conventional Machine Learning method, is that it can learn features

from data automatically using a general-purpose procedure which requires less feature

engineering and expertise of a specific domain. In recent years, it shows state-of-the-art

performance in many fields, such as computer vision, medical applications, and natural

language processing.

Furthermore, many deep learning models such as Recurrent Neural Networks (RNNs)

continue to mature. New deep learning-based methods are constantly being proposed to

solve various problems that rely on time-series data, such as weather forecasts. These

deep learning models can fully mine the critical features in the data without the need

for additional expert knowledge in many cases and have obtained state-of-the-art per-

formance. Therefore, in our research, we use deep learning methods to model human

mobility trajectories.

1.2 Related work

Research on huam mobility model Subsequently, pure random mobility models

occupied this field of research for many years until a turning point appeared in 2005.

Barabsi [7] studied various human activities, including email communication, online chat,

etc. Many human behaviors systematically deviate from the Poisson process, mimick-

ing the random distribution of human behavior over time. This groundbreaking work

demonstrated the sudden non-Poisson nature of human activities and inspired many

researchers to explore human dynamics’ intrinsic nature further. Brockmann et al. [8]

analyze the recorded data of banknotes in the United States. It is found that the dis-

persion of people follows a power law, which provides a basis for quantitative analysis of

people’s movement characteristics. After that, Gonzalez et al. [9] analyzed individual

human mobility patterns based on the trajectories of 100,000 anonymous mobile phone

users for six months. The results show that even though the historical trajectories of

individuals are highly diverse, they do not satisfy the random prediction made with levy

flight or random walk but tend to be a more reproducible and straightforward pattern.

This work provides a specific basis for the reconstruction of the human mobility model.

Their results showed firm shreds of evidence of the periodicity, boundedness, and reg-

ularity of human mobility. Initially, random models such as Random Direction (RD),

Random Way Point (RWP), and Random Walk (RW) were widely used to construct
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human mobility models. Some literature [10] referred to these models as Pure Random

Mobility Model”, which synthesizes human mobility traces through some pre-defined

specific probability distributions, which actual observations have not verified. For ex-

ample, RWP [11] is a representative pure random mobility model because this model

integrates human movement simplified into a line segment with pauses. These line seg-

ments are independently randomly sampled and synthesized. Rhee et al. [12] mentioned

that some previous human mobility models, such as random way point (RWP), did not

consider the tendency of people’s daily movement. They used a truncated Levy walk

mobility (TLW) model to illustrate that heavy-tail features can be an essential com-

ponent incorporated in human mobility models to improve the authenticity of human

mobility generated by the model. At the same time, Lee et al. [13] improved the pre-

vious human mobility model based on the statistical characteristics of human mobility

proposed by previous studies. Then they considered two more statistical features, the

destination of people and the tendency of a destination to be close to the current point,

and proposed a method called Self-similar Least-Action Walk (SLAW) to synthesize hu-

man mobility traces artificially. Ghosh et al. [14] proposed Sociological Orbit aware

Location Approximation and Routing (SOLAR) as a feature of human mobility to syn-

thesize human mobility traces in their research. Morlot [15] analyzed user clumps and

hotspots during the large-scale urban mass gathering in mobile networks and proposed

a new interaction-based mobility model to better describe user clumps’ dynamic char-

acteristics. Isaacman [16] proposed and verified ”Work and Home Extracted REgions”

(WHERE), a regional scale human mobility model. They first identify the key attributes

of human movements, such as important locations and commuting distance, and then use

the probability distributions obtained from these critical attributes to generate synthetic

Call Details Records (CDRs). Calabrese [17] proposed a new human mobility model to

predict the position of individuals changing over time. This proposed model has based

on the individual’s past historical trajectory and geographic information characteristics,

such as the collective human mobility pattern, land use, Point of Interest, and the dis-

tance of the trip. Jardosh [18] proposed an Obstacle Mobility Model to simulate human

movement patterns with the topology of the real world. The model they proposed allows

the real-world terrain to be taken into account, which is not available in the previous

studies, so their method o↵ers a more realistic human mobility model. Bai et al. [19]

proposed various independent indicators to measure whether di↵erent human mobility

models have captured important information, such as spatial and temporal information
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and geographic constraints. They used these indicators to compare various human mo-

bility models and compare di↵erent models’ performance in di↵erent scenarios. Social

context information mainly refers to the social relationships between groups of people.

The models in [20] and [21] simulate the social environment through an interaction ma-

trix, which quantifies the degree of attractiveness between individuals. Several famous

people attract more people to move to them. Then the matrix is used to calculate the

transformation pattern of people, which determines the possibility of a person moving

between di↵erent positions. The periodic movement model [22] simulates the frequent

movement of human movement between a set of predefined potential states (locations),

such as ”home” and ”workplace,” through independent Gaussian distribution.

Urban computing using human mobility data Techniques of data collection have

been improved rapidly, which lead to some revolutionary ideas of implementing machine

learning algorithms for solving some traditional social issues, such as zone regulation[23],

air pollution[24], disaster evacuation[25] el at., since collected big and heterogeneous data

makes tasks which are nearly impossible years ago become possible. Recently, many re-

search pieces have been conducted on human mobility data, such as mobile phone GPS

log data, taxi GPS data, and navigation GPS data. These kinds of researches are often

related to building an intelligent city system. R, Jiang[26] introduce a framework of

predicting multiple steps of future trajectories of human mobility. Their method is a

Regions-of-Interest (ROIs) based modeling, which is convinced to be an improvement of

traditional grid-based modeling. Also, they use multiple to multiple training strategies

to predict the various steps of future movement. CityMomentum[27] is another work

related to human mobility prediction. However, building the CityMomentum system

is not to predict future trajectories of human mobility using previous historical trajec-

tories but to transfer the information obtained to another city. It is also an exciting

work that answers how to use data collected in a town to guide the development of an-

other city. Detecting flawed urban planning using the GPS trajectories of taxicabs[28]

is one of the most significant examples of urban computing for city planning. Their

work can detect the regions with salient tra�c problems and the linking structure and

correlation among them. Furthermore, some other researches about simulating human

mobility when disasters occur and predict their mobility in an emergency have also
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been conducted[4, 29–32]. Their works are significant since understanding and modeling

people’s mobility is crucial for transportation planning and management.

Researches based on Variational Autoencoder In recent years, Variational Au-

toencoders (VAEs) have been widely used to approximate some complicated distribu-

tions [33]. The ability of VAEs has been proved to be promising in the works of gen-

erating many kinds of complex data in the image processing domain. However, some

researchers also use this framework in other fields such as Natural Language Processing

(NLP), which inspired its implementation to tackle issues based on sequential data. Y.

Fan el at.[34] presents a novel end-to-end partially supervised deep learning approach for

video anomaly detection and localization using standard samples. It is the first time that

A Variational Autoencoder (VAE) framework utilized for video anomaly detection. Y.

Pu et at.[35] developed a novel Variational Autoencoder to model images, as well as as-

sociated labels or captions. They use a deep Convolutional Neural Network (CNN) as an

image encoder, while A Deep Generative Deconvolutional Network (DGDN) is used as a

decoder of the latent features. The proposed model achieves high performance on image

recognition. Besides, there are many pieces of research using Variational Autoencoders

in Natural Language Processing (NLP). Jonas Muller el at.[36] implemented the Vari-

ational Autoencoder framework for revising natural language sentences. Comparison

between Variational Autoencoder and Encoder-Decoder models for short conversation is

made by Shin Asakawa and Takashi Ogata.[37] Another aspect of research based on Vari-

ational Autoencoder is improving the VAE framework itself. Sønderby, Casper Kaae,

et al. proposed a Ladder Variational Autoencoders[38] which can recursively correct

the generative distribution by a data-dependent approximate likelihood. Their model

can learn a deeper hierarchy of latent variables than other generative models based

on Variational Autoencoder. Research about Infinite Variational Autoencoder is done

recently.[39] They use a mixture model where the mixing coe�cients are modeled by a

Dirichlet process, allowing to integrate over the coe�cients when performing inference.

Their work shows the flexibility for the applications which have only a small number of

available training samples.

Generative model for human mobility simulation Various generative models

have been developed To simulate human behavior and moving patterns in recent years.
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Input-Output Hidden Markov Model (IO-HMM)[40] was proposed to enable activity-

based travel demand models which can protect the privacy of mobile phone users while

using this cellular data to simulate synthetic agent travel patterns. Their model achieves

a reasonable accuracy when conducting an agent-based microscopic tra�c simulation.

However, the limitation of the proposed model is that if travel patterns vary significantly

over the region, a single model will not capture all areas with a good performance. A

Gibbs sampling-based multiple hidden Markov model (GSMHMM)[4], designed as a part

of the city-coupling algorithm, can generate simulated trajectories in a city-wide scale

area such as Tokyo or Osaka. However, as the model is based on Gibbs Sampling, it needs

critical prior knowledge for the GSMHMM to generate new human mobility trajectories.

However, HMMs cannot wholly model the temporal dependency of states. To improve

the HMMs, Baratchi et al.[41] proposed the Hidden Semi-Markov Model(HSMM), which

including the duration of the state into the hidden variables. In general, their works are

all based on Hidden Markov Model and focus on reconstructing the trajectories of hu-

man mobility following specific probability distribution. Very recently, a non-Parametric

generative model for human trajectories has been proposed.[42] They use Generative Ad-

versarial Network (GAN) to produce data points after a simple and intuitive yet e↵ective

embedding for location traces designed. It is the first time that deep learning methods

implemented in building a generative model for human mobility in our knowledge.

1.3 Research objective

There is a trade-o↵ between the implementation of collected locational data and the

concerns about violation of users’ privacy to prevent some risks of privacy violation

of mobile device users. Despite the privacy concerns about protecting users’ privacy,

some other problems can also lead to the low sampling rate of the collected data. Both

privacy concerns of mobile device users and the lack of techniques of a collection method

in some cases will lead to the di�culty to get the human mobility data to reflect the

actual trajectory patterns in real situations. There is much research and implementation

based on the human mobility data, for instance, human mobility prediction. These

applications usually need to use previous steps of trajectories to predict human mobility

in the future. We are not talking about the accuracy or performance of such methods

in this research. Instead, we are concerned that if we cannot get the human mobility
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data that can reflect human mobility patterns in an area, it is di�cult to predict future

human mobility correctly.

It is di↵erent from previous research that we try to find a global latent estimation for

representing each trajectory using the generative model. In this case, we will improve

the diversity of generated trajectories by sampling more similar trajectories from the

estimated latent space. Also, we realize the importance of incorporating information

from other heterogeneous data sources for this task.

We summarize the novelty of this research as:

1) Find an estimated latent distribution in vector space to represent each urban human

trajectory using a generative model;

2) We propose a retrieval-based trajectory generator for trajectory dataset recovery

problem;

3) We propose a di↵erentiable projection module in conventional deep learning models

to solve the problems with equality and inequality constraints;

4) We propose a constrained trajectory generator to reduce the small trajectory dataset’s

bias by building constraints using other heterogeneous data sources.

1.4 Structure of the Thesis

The main body of this thesis is composed of the following five chapters:

Chapter 2: Generative model for human mobility introduces the theoretical

concept for finding an estimated latent distribution to represent each privacy-sensitive

human mobility trajectory by generative model. Then we analyze the advantages and

disadvantages of generating virtual human mobility trajectories using a deep generative

model directly.

Chapter 3: Retrieval-based Human mobility generation introduces the idea of

using the trajectory similarity concept to generate more virtual human mobility trajec-

tories to avoid hard defining the authenticity of virtual human mobility trajectories.

Chapter 4: Constrained deep learning model introduces a di↵erentiable projec-

tion module in conventional deep learning models for solving problems with equality
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and inequality linear constraints. This chapter gives some theoretical basis for building

linear constrained human mobility generation method in chapter 5.

Chapter 5: Linear constrained human mobility generation gives a specific

example of using constrained deep learning models for human mobility generation with

the guide information in heterogeneous demographic data. This method can estimate

the latent distribution of individual human mobility trajectory and its scaling factor

citywide simultaneously.

Chapter 6: conclusion concludes the research as well as its contributions and dis-

cusses some possible directions for future research.



Chapter 2

Generative model for human

mobility

2.1 Introduction

2.1.1 Background

Many big cities have grown thanks to the rapid urbanization progress, which have mod-

ernized many people’s lives but also engendered significant challenges [3]. Years ago,

solving this kind of challenge seems impossible because of the complex and dynamic

settings of cities. Nowadays, some impressive methods of locational datasets collection

have shown an opportunity for human mobility applications. For example, human mo-

bility in a city that occurs during some rare events like earthquakes was recorded. How

can we use this data to evaluate the situation if the earthquake happened in another

city? Although the usage of those kinds of datasets, which owned by enterprises or

government, can give us opportunities for some potential applications, they have some

limitations two-fold: 1) it has the risk of privacy violation in some cases if used directly;

2) it will contain some bias, or the sampling rate is low.

For some human mobility prediction problem which aims to predict the human mobility

in a target area, it is necessary to know the actual situation about the current human

mobility. However, in reality, the provided data cannot reflect that actual situation if

the data only contains 1% of the entire population in the real world. To tackle this kind

of problem, we can develop a scaling factor for each trajectory sample by combining

12
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some information, such as population density, from other data set.

The scaling factor can add more trajectories based on observed trajectories to approx-

imate the actual situation of human mobility in a target area. However, its limitations

are also apparent. It can only add some trajectories based on the existed observations.

Thus, it is a lack of diversity as di↵erent people are assumed to behave somehow di↵er-

ently even though they may be in a similar situation. It is more reasonable to achieve

a diversity of trajectories when reconstructing the actual human mobility patterns.

In general, a generative model is a model of the conditional probability of the observable

X, given a target y, symbolically, P (X|Y = y).[43] It can be used to generate random

outcomes, either of an observation and target (x, y), or of an observation x given a target

value y. A generative model is not designed for transportation planning and applica-

tions directly. However, we can use this kind of model to improve the existing datasets

to match the implementation of other applications. This kind of model can solve the

limitations of the aforementioned scaling factor method.

First of all, a generative model can learn a low dimensional feature space that can infer

the travelers’ pattern from the complex redundant collected locational datasets. Then,

we can utilize the learned feature space for transportation planning and applications.

Furthermore, if necessary, we can resample from the learned low dimensional feature

space to generate a fake dataset with a similar pattern to the real dataset for further

use. There are two reasons for generating fake datasets:

1) using generated fake datasets can avoid the risk of violation of customers’ privacy;

2) obtain enough data samples if the dataset is too small to be used.

Therefore, the problem of how to build a generative model that can capture the fea-

tures from accurate human mobility trajectories is a fascinating topic. Nowadays, many

deep learning methods have been investigated on image processing, natural language

processing, and human mobility prediction, et al. based on virtual neural networks.

Many di↵erent neural networks have been proposed to solve di↵erent problems in var-

ious domains. Although di↵erent deep learning frameworks were proposed for solving

the problems lying on very di↵erent implementations, we can still be inspired by those

deep learning frameworks. Variational Autoencoders (VAE)[44] are proposed initially

for image processing, and many applications using variational autoencoders achieved an

excellent performance. However, owing to the structure of variational autoencoders, it

can only be implemented in applications using non-sequential data.

To tackle problems of human mobility, which is a kind of sequential data, we need to
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use Recurrent Neural Networks (RNN) to build our model. Since vanilla RNNs have

di�culties with long length sequence training due to vanishing gradient problems, Long-

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been designed and

widely used when coming to the long length sequence problem.

2.1.2 Problem definition

We were given a citywide human mobility trajectory data set, denoted as x, which

contains complex multimodal information. That dynamic information about human

mobility patterns is usually privacy-sensitive, so we want to find its corresponding latent

space, denoted as z. The problem becomes to find the posterior distribution of p(z|x),

which can be calculated using Bayesian inference like:

p(z|x) = p(z, x)R
p(z, x)dz

(2.1)

The figure 2.1 illustrates the intuition about using the deep generative model to solve the

above problem. We are able to build the citywide human mobility trajectory estimator

if we can solve the equation. Moreover, by solving the above equation 2.1, we can know

1) the prior distribution of latent distribution of citywide human mobility p(z), 2) the

posterior distribution of latent distribution given observed human mobility p(z|x), 3)

the posterior distribution of human mobility p(x|z), which is calculated by

p(x|z) = p(z|x)p(x)
p(z)

(2.2)

Then, if we sample some noise vetor z? in latent distribution, we can recover the human

mobility trajectory x?.

Figure 2.1: Intuition of citywide human mobility estimation using generative model.
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2.1.3 Research objective

We aim to use a deep generative model to tackle this chapter’s citywide human mobility

generation problem. In the model architecture, we focus on learning the hidden space

of the posterior distribution of human mobility. Then we can resample from the learned

distribution and reconstruct the human mobility trajectories. Our objective is as follows:

1) Controlled generation. We want our proposed model architecture to allow us to

generate more trajectories that follow the distribution of the learned human mobility

pattern. Moreover, we can control the number of trajectories we want to generate.

2) Diversity. We can obtain some reasonable virtual human mobility trajectories, which

are not contained in the original data set, to achieve diversity.

3) We will use some metrics to quantitatively evaluate the performance of the proposed

model for trajectories of human mobility.

We use real navigation GPS data to experiment. The data we used is locational data

contains trajectories of human mobility of the entire Japan.

2.2 Methodology

2.2.1 Preliminary

Variational inference We will use a variational inference method to solve Eq. 2.1

since its denominator is usually intractable due to the integral. Following the variational

inference method, instead of directly find the intractable posterior distribution p(z|x),

we select some approximate distribution, denoted by q(z), from a family of variational

distributions. To measure the gap between selected approximate distribution and the

actual intractable posterior distribution, we use Kullback-Leibler Divergence between

these two distributions:

DKL(q||p) =
Z

q(z) log
q(z)

p(z|x)dz (2.3)

By minimizing the KL-divergence, we could find an approximate close distribution of

the posterior distribution. In most cases, minimizing Eq. 2.3 is di�cult, since the KL-

divergence contains the unknown posterior distribution p(z|x). We rewrite the above
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equation as:

DKL(q||p) = Eq[log
q(z)

p(z|x) ]

= Eq[log q(z)]� Eq[log p(z|x)]

= Eq[log q(z)]� Eq[log p(x, z)] + log p(x)

(2.4)

Given an observation dataset, its logarithm of distribution log p(x) should be a constant.

Therefore, we define an Evidence Lower Bound (ELBO) by:

ELBO(q) = �Eq[log q(z)] + Eq[log p(x, z)] (2.5)

The ELBO is defined according to following process:

log p(x) = log

Z
p(x, z)dz

= log

Z
p(x, z)q(z)

q(z)
dz

= logEq[
p(x, z)

q(z)
]  Eq[log

p(x, z)

q(z)
]

= Eq[log p(x, z)]� Eq[log q(z)]

(2.6)

We use Jensen’s inequality on the log probability of the observations here. Then, mini-

mizing KL-divergence is equivalent to maximizing ELBO, which means that we are able

to find an approximate posterior distribution.

Variational Autoencoder Autoencoders is widely used for the generation before.

However, its fundamental problem is that the latent space, constructed by the Autoen-

coder from learning the features of input data, may not be continuous or allow easy

interpolation. The purpose for building a generative model is that we want to randomly

sample more data from the approximate latent space or generate variations on input data

from a continuous latent space. When the latent space constructed has discontinuities,

the decoder will simply generate an unrealistic output if we sample or generate a varia-

tion from there. That is because the decoder cannot deal with that region of the latent

space since it never saw such an encoded vector from that region of latent space dur-

ing training. One fundamentally unique property of Variational Autoencoders (VAEs),

which separate them from vanilla Autoencoders, is that their latent space is designed to

be continuous, allowing easy random sampling and interpolation. It is also this property



Chapter 2. Generative model for human mobility 17

that makes Variational Autoencoders useful for generative modeling. That property is

achieved by making its encoder output two vectors of size n: a vector of means µ, and

another vector of standard deviation �, instead of just output one single encoding vector

of size n. These two encoding vectors then form the parameters of a vector of random

variables of length n, with the i-th element of µ and � being the mean and standard

deviation of the i-th random variable Xi, from which we sample to obtain the sampled

encoding which we pass onward to the decoder. This stochastic generation means that

even for the same input. In contrast, the mean and standard deviations remain the same.

The actual encoding will somewhat vary on every single pass simply due to sampling.

Intuitively, the main di↵erence between the constructed latent spaces of a standard Au-

toencoder and a Variational Autoencoder. In the latent space of a Variational Autoen-

coder, the encoded mean vector µ and the standard deviation � initialize a probability

distribution. In contrast, the encoded vector of a standard Autoencoder is a direct en-

coding coordinate. In the case of training a Variational Autoencoder, encodings can

be generated randomly from the probability distribution. Therefore, the decoder of a

Variational Autoencoder can learn to reconstruct the output from a probability distri-

bution rather than just a group of specific points in the latent space. Kullback-Leibler

divergence[45] is a measure of how one probability distribution diverges from a second,

expected probability distribution. The most critical metric in information theory is

Entropy which is to quantify the information in data. The definition of Entropy for a

probability distribution p(x) is:

H = �
NX

i=1

p(xi)logp(xi) (2.7)

Based on the formula of entropy, the Kullback-Leibler divergence which measures the

di↵erence between a probability distribution p(x) and the approximating distribution

q(x) can be given:

DKL(p||q) =
NX

i=1

p(xi)(logp(xi)� logq(xi)) (2.8)

With Kullback-Leibler divergence, we can calculate precisely how much information is

lost when we approximate one probability distribution with another one. The encoder

of a Variational Autoencoder is designed to convert the input data point x to a hidden
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Figure 2.2: architecture of Recurrent Neural Network.

representation z, with weights and biases ✓. Therefore, the encoder is denoted to be

q✓(z|x). The noisy values of hidden representation z are sampled from this distribution

as the input of the decoder. The decoder of a Variational Autoencoder has weights and

biases �, denoted by p�(x|z). It gets the noisy values of the latent representation z as

input and reconstructs the output data x. The reconstruction log-likelihood logp�(x|z) is

used to measure the information lost in the procedure mentioned above. It also gives the

e�ciency of the decoder for reconstructing input data x given its latent representation

z. The loss function of the Variational Autoencoder is:

li(✓,�) = �Ez⇠q✓(z|xi)[logp�(xi|z)] +KL(q✓(z|xi)||p(z)) (2.9)

It contains two-part: 1) the first term is named to be reconstruction loss; 2) the second

term is a Kullback-Leibler divergence between the probability distribution of encoder

and a unit Gaussian distribution. This loss function is well designed as we can also treat

the second term to be a regularizer, just like many other loss functions. A reconstruction

loss forces the model to give the output just as similar as possible compared with input.

Meanwhile, the purpose of the second term is to make sure the latent space constructed

in the training process is not complex. When the second term is small, we can use a

simple latent space to approximate the real posterior distribution of latent space.

Long-Short Term Memory Recurrent Neural Networks (RNN) are widely used in

solving many sequential problems such as Natural Language Processing (NLP) tasks.[46–

48] The main contribution of RNNs is that they can capture sequential information for

use. For instance, it is a good idea to obtain the previous location, which a data point

located in before we predict the next location where the data point will be. A typical

RNN is shown as figure 2.2. Input data is denoted by x = (x1, ..., xt�1, xt, xt+1, ...). An

observation xt indicates the observed data in step t. Corresponding to the input data,

a hidden space is denoted by s = (s1, ..., st�1, st, st+1, ...). However, a hidden space



Chapter 2. Generative model for human mobility 19

is not only related with input data but also related with previous hidden state: st =

f(Uxt+Wst�1). The functin f(·) is nonlinear activation such as ReLU or tanh. A hidden

state st can capture the information of current observation xt and take the previous

information captured by st�1 into account. Then, the output o = (o1, ..., ot�1, ot, ot+1, ...)

can be calculated by ot = g(V st), where function g(·) is another nonlinear activation.

From figure 2.2, we notice that weights U , V , and W only be changed after a sequence

be computed completely. Therefore, the total numbder of parameters of a Recurrent

Neural Network is not so big comparing with other traditional deep neural networks.

However, there is a main di↵erence between Recurrent Neural Network and some other

traditional deep neural networks, which is that the backpropagation algorithm is used

for training a traditional neural networks while it cannot be used for training a Recurrent

Neural Network. That is because the gradient at each output depends on not only in

current step, but also previous steps. In that case, a specific backpropagation is designed

for traing a Recurrent Neural Network which is called Backpropagation Through Time

(BPTT). Long-Short-TermMemory (LSTM) was designed to combat vanishing gradients

through a gating mechanism [49]. How a LSTM calculates a hidden state st is shown as

follows:

i = �(xtU
i + st�1W

i)

f = �(xtU
f + st�1W

f )

o = �(xtU
o + st�1W

o)

g = tanh(xtU
g + st�1W

g)

ct = ct�1 � f + g � f

st = tanh(ct) � o

(2.10)

A LSTM layer, shown in figure 2.3, has three gates i, f , o. i is called input gate, f

is output gate, and o is output gate. The sigmoid function is used in thse gates which

has values between 0 and 1. For example, if the value of a gate is 1, then it means

that let all information pass towards, while if the value of a gate is 0, it means that no

information shall passed onwards. The function of di↵erent gates is di↵erent. The input

gate i determines the quantity of information of current input to be passed onwards.

The forget gate f determines the quantity of information of previous state to be passed

onwards. The output gate o determines the quality of information of internal state to be

passed onwards. Besides, g is designed to be a kind of candidate hidden state which is



Chapter 2. Generative model for human mobility 20

Figure 2.3: architecture of Long-Short-Term Memory (LSTM).

also calculated based on the current input xt and the previous output st�1 just like the

hidden state calculated in a vanill Recurrent Neural Network. However, This candidate

hidden state is not the final hidden state calculated in a Long-Short-Term Memory as it

should be selected by the aforementioned input gate. ct in a Long-short-Term Memory

unit is the internal memory. It is used to capture the information combining the previous

internal memory ct�1 with selected candidate hidden state g. Using a internal memory,

we can completely ignore the previous memory by set the value of the forget gate to be 0,

or completely ignore the new input by set the value of input gate to be 0. However, what

we really want is information between these two extremes. Finally, we can compute the

output hidden state st using the internal memory ct. Since there is a output gate which

control the quantity of information to be passed onwards, the hidden state st could

contain only part information of the internal hidden state. The ability of modeling

long-term dependencies is improved in LSTMs thanks to the gating mechanism.

2.2.2 Framework

Since urban trajectory data is a kind of sequence data, using Long Short-Term Memory

(LSTM) networks is a natural choice. LSTM network is a kind of improved Recurrent

Neural Network (RNN) which uses a gated mechanism designed to solve the vanishing

gradient problems happened in vanilla RNN networks. Here, we use two LSTMs to

handle the urban trajectory dataset. One LSTM is used as encoder which take tra-

jectory data as input then gives compressed low dimensional vectors as output, while

the other LSTM is used as decoder which take compressed vectors as input then gives
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Figure 2.4: architecture of variational generative model.

reconstructed trajectory as output. The model structure is shown as figure 2.4, which

follows a Variational Autoencoder (VAE) framework. The training process of this model

follows a semi-supervised learning scheme, which means that the input and the output

is the same. The loss function of this model is:

li(✓,�) = �Ez q✓(Z|Xi)[log p�(xi|z)] + w ⇤DKL(q✓(z|xi)||p(z)) (2.11)

Where ✓,� are parameters of decoder and encoder respectively. The first term of the

loss function is the reconstruction accuracy measurement, Euclidean distance is often

used for measure the reconstruction error. The second term is the KL-divergence of

the approximate posterior distribution with a unit Gaussian Mixture. We assume the

posterior distribution is a Gaussian distribution because we want to find a simple yet

e�cient latent space for real urban trajectories. As discussed in the above, Variational

Autoencoder can build a hidden space which follow Gaussian distribution to approximate

the real distribution of the observed trajectories. The reason for a constructing a hidden

space which follows a Gaussian distribution is that by learning the parameters of the

Gaussian distribution representing the input observed trajectories, we can sample from

the distribution and generate new samples of trajectory. The ability for constructing

hidden space following a Gaussian distribution is exactly what we want in the variational

generative model. However, the Variational Autoencoder lack the ability of tackling

sequential data, which is the main limitation.

The seq2seq model framework usually use several Recurrent Neural Networks as encoder

and decoder. Therefore, a seq2seq model can handle sequential data without di�culties,

but the hidden space C is not well constructed. We can regard the seq2seq model as

a sequential Autoencoder. By doing that, it is natural to consider that if we combine

Variational Autoencoder and seq2seq model as figure 2.4 shows, we can combine their

advantages. That means the variational generative model is well-designed generative

model for sequential data.
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Let x = (x1,x2, ...,xt) denote a high dimensional sequence, such as a trajectory of

human mobility wit t steps. We use a LSTM neural network as recurrent encoder to

capture the information of the input trajectory x. Then we will obtain a series of

hidden state st, and a series of output ot. In actual case, what we really care about is

the final output o rather than a sequence of output value ot. Since we only keep the final

output, we can obtain a intermediate non-sequential vector o to represent the information

captured from the input sequence using this recurrent encoder. After intermediate vector

o is obtained, we treat this vector as the input of the Variational Autoencoder part. Then

we can write the joint probability of the model as p(o, z) = p(o|z)p(z). p(z) is a prior

latent distribution, and p(o|z) is the likelihood. Then we need to calculate the posterior

latent distribution p(z|o) given observed data:

p(z|o) = p(o|z)p(z)
p(o)

by marginalizing out the latent distribution:

p(z|o) = p(o|z)p(z)R
p(o|z)p(z)dz

This is a exponential time-consuming process. Therefore, variational inference approx-

imates the real posterior distribution with a family of distribution q�(z|o). Usually, we

choose q to follow a Gaussian distribution, then � would be the mean and variance of

the latent distribution � = (µ,�). Kullback-Leibler divergence is used for measuring the

information lost when using q to approximate p, the optimal approximate posterior is

thus:

q⇤�(z|o) = argmin�KL(q�(z|o)||p(z|o))

In the VAE model, we parametrize approximate posterior q✓(z|o) using an inference

network, approximate likelihood p�(o|z) using a generative network. Then the loss of

the model will be:

loss = �Eq✓(z|o)[logp�(o|z)] +KL(q✓(z|o)||p(z))

Finally, we use another LSTM neural network as recurrent decoder to reconstruct the

trajectories of human mobility, x from parameters in learned latent distribution.
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Table 2.1: summary of daily statistics

Total records 6,137,308,784
Total daily user IDs 1,168,592
Total route IDs 2,507,308
Average records 197,977,703/day

Average daily user IDs 38,632/day
Average route IDs 81,791/day

2.3 Experiments

2.3.1 Description of raw data

The data we used for this research is navigation locational data, which is collected when

vehicles were using navigation application. The coordinate system of this GPS data is

WGS84, and the records of the locations cover all over Japan. However, owing to some

reasons, such as privacy protection, we can only use one month records which is from

Oct 1, 2015 to Oct 31, 2015. Besides, the ID of the users were deleted, so the privacy is

protected well. We can only get the information of the ID of each navigation route to

distinguish di↵erent trajectories. Our data contains the information of:

1) Daily user ID: a random unique ID of a vehicle in a day;

2) Route ID: the unique ID of each navigation trip;

3) Timestep: the recorded time of current location;

4) Longitude and Latitude: the value of longitude and latitude after conducted map

matching;

5) Sensor longitude and Sensor latitude: the value of raw records of longitude and

latitude.

To get an intuitive image of the data we used, a visualization of the GPS data in selected

Tokyo area is given as follows:

The figure 2.5 given is drawn using the recorded locational points. Since the records is

dense and map matched, the points can shape lines and infer the road map perfectly.

Moreover, we can imagine intuitively, more vehicles drive in major road than those drive

in a small road, thus we can see that the lines of major roads are thicker than small

roads. In summary of the human mobility trajectory in raw data set, we get a simple

table 2.1:
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Figure 2.5: Distribution of navigation GPS points of NAVITIME

2.3.2 Data preprocessing

The navigation GPS data we used in this research is a really big data and containsa

wealth of sequential information. However, it is very di�cult to handle such big data,

we must do some data preprocessing for this raw data then get a data set we want to

utilize in our experiment. The aforementioned basic statistics of the navigation GPS

data is all done by coding using python. Since the whole data is as huge as 1.2 terabyte,

divided into 938 common-separated values (csv) files, conducting statistics on such big

data is very hard time-consuming work. To improve the e�ciency of basic statistics,

we use parallel computing to make full use of central processing units of my machine.

Thus, the computing time is reduced to one sixth and save lots of time. We use the

“haversine” formula to calculate the great-circle distance between two points, which is

the shortest distance over the earth’s surface.

a = sin2(��/2) + cos�1 cos�2 sin
2(��/2)

c = 2a tan(
p
a
p
(1� a))

d = Rc
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Where � is latitude, � is longitude, R is earth’s radius (mean radius is 6,371 km). Then,

we get distance delta between each two points using above algorithm. By summarizing

the distance delta of the same navigation trip, we can finally get the traveling distance of

all trajectories in the navigation GPS data. Another processing is that we also compute

the time interval between each two points, although it is not used in aforementioned

basic statistics, but it will be useful for the experiment. As the time interval of the raw

data is not fixed, which means that it will lead to some potential di�culties to further

use. To simplify the data structure of the data which we will use in the experiment, we

conduct a linear interpolation to the navigation GPS data to make the time interval of

the records fixed. The reason for a linear interpolation is two-fold: 1) simplify the data

structure; 2) obtain trajectories in a specific length. The navigation GPS data is not

intuitive for those who are not familiar with trajectory data, so the visualization of the

navigation GPS data is necessary. The visualization tool is called mobmap developed

by Satoshi Ueyama, a researcher from our laboratory. In this paper, we use mobmap to

visualize both the raw GPS data and the output results of our proposed model to make

the data and result more intuitive.

For creating the data set used in our experiment, not all raw data is necessary as the size

of the raw navigation GPS data is too big. Instead, we choose a selected Tokyo area,

longitude from 135.5 to 139.9 and latitude from 35.5 to 35.8. Also, it is not necessary

to use the whole month GPS data since the most navigation distance is shorter than

50,000 meters and will be ended in one single day. Since most of navigation trip will

last hours, it is natural to get one hour’s data to conduct the experiment. We select the

records of from 10 am to 11 am October 1, 2015. The data set contains more than 2,000

trajectories, which has fixed time interval.

2.3.3 Experimental settings

We make a brief description about the general process of how to train the VAE model.

The first step is preparing training data. The input data we used in the experiment

is navigation GPS data which contains trip ID, longitude, latitude, and timestamp.

However, the raw data should be preprocessed before the training process. The data

preprocessing of linear interpolation is done to simplify the input data, by forcing the

trajectories have fixed timestamp. Therefore, the input only contains information about
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longitude and latitude but can still represent the dynamics of the trajectories. We then

use several LSTMs as a recurrent encoder which aims to capture the salient features of

the input sequential data. LSTMs return an output in every step, which means that the

output could also be a sequential output. However, in the VAE model, a non-sequential

output, which we make it a intermediate vector, is better. This intermediate vector

captures the salient features of the input trajectories while keeps a non-sequential data

structure. We want the intermediate vector to be non-sequential since the custom vari-

ational autoencoder has no ability to handle the sequential data. After the intermediate

vector is given by the recurrent encoder, it will be the input of the custom variational

autoencoder. This layer aims to build the latent space which can capture the features

of the input and follow a Gaussian distribution at the same time. The output of this

layer is mean and logarithm variance which are used for constructing the latent space

which follows the Gaussian distribution. The final output of this layer is sampled from

this latent space, and it will be the input of next recurrent decoder. The latent vector

should be repeated several times to match the length of the output trajectories. Then

the recurrent decoder consisted of several LSTMs will reconstruct the output trajecto-

ries using aforementioned latent vector. Reconstructed trajectories should be as similar

as possible comparing with input original trajectories by minimizing the loss function.

At the same time, the latent Gaussian distribution should also be as simple as possible

to make the VAE model robust.

We use aforementioned data to conduct experiment. Mean Distance Error (MDE) be-

tween real trajectories and generated trajectories is used for evaluating the performance

of the VAE model with di↵erent parameter settings:

(1) Short sequence and long sequence, of which length is 6 and 20 respectively, as input

of the VAE model to test the ability for tackling long sequence of the model;

(2) The dimensionality of hidden space is set to be 8, 12, 16 respectively to test the

performance of the model for di↵erent dimensionality of hidden space;

(3) Three kinds of input (values of coordinate only, grid ID only and combination input

of values of coordinate and grid ID) are tested.

The results are given in next section.
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Table 2.2: VAE Loss

Loss both input coordinate input grid ID input
6 steps, 8 latent dimension 0.017318176 0.018159691 0.017484304
20 steps, 8 latent dimension 0.027957876 0.02932067 0.027624224
6 steps, 12 latent dimension 0.017548803 0.018433879 0.01732461
20 steps, 12 latent dimension 0.027994325 0.030799899 0.029310457
6 steps, 16 latent dimension 0.017232143 0.018182858 0.017890416
20 steps, 16 latent dimension 0.029631174 0.031207314 0.03502047

2.3.4 Results and Visualization

We use two datasets as our training set of VAE model. One dataset is 2,000 trajectories

of which length is all set to be 6, and the other one is 2,000 trajectories of which length

is all set to be 20. The two data set is all chosen from the same raw dataset, but with

di↵erent length of every sequence. Respectively, we train the VAE model using these two

datasets, changing the parameters which controls the dimensionality of the constructed

latent space, and inputs.

The values of loss in di↵erent VAE models have been summarized in the table 2.2. The

values of the loss is calculated using aforementioned formula:

loss = �Eq✓(z|o)[logp�(o|z)] +KL(q✓(z|o)||p(z))

The values in the table is given by the loss of final step’s training. The smaller the value

is, the better the results of the trained VAE should give theoretically.

Owing to the lackness of exited generative model for trajectories of human mobility, we

evaluate our results just using the designed Mean Distance Error (MDE).

Ej =

PN
i=1 dis(lij, l̂ij)

N

where dis(a, b) calculate the distance of point a and point b using their coordinate values;

lij is the groundtruth, and l̂ij is the outputs of the VAE model.

In figure 2.6, we also give a visualization of four true trajectories chosen from groundtruth

and its corresponding reconstrcuted trajectory. From the figure, we can see that the

driver moves from south-east to north-west in about 20 minutes. Therefore, the locations

of true record and reconstrcuted record in every 5 minutes is given to show accuracy
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Figure 2.6: Reconstruction error of generated points (/Meter). The reconstruction
accuracy is acceptable.

of the results in a intuitive way. Instead of just giving a visualization of the single

trajectory, a quantitative measurement is given by calcaluting the distance of two points

in every step. The units of the distance error is meter. We will use this result for

explaining the limitation of the VAE model.

2.4 Conclusion

2.4.1 Discussion

Besides, it should be mentioned that training the VAE model using long sequences as

inputs is more time-consuming. Therefore, The epochs of iterations should be carefully

considered to reduce the computation. We set epochs of iterations to be 1,000, which

make sure that the model is trained fully. By adding regularizers in our neural network

layers, we can avoid overfitting. Table 2.2 indicates three points: (1) in general, the

loss values of training using both coordinate values and grid ID as input is smallest,

follows training using grid ID as input and using coordinate values as input; (2) the loss

values of higher dimensional latent space is often larger than those of lower dimensional

latent space; (3) the loss values of long sequences is larger than those of short sequences.

A reasonable explanation of aforementioned phenomenon is that the loss function of
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this VAE model is designed as the combination of reconstruction errors and Kullback-

Leibler divergence of approximated posterior distribution and unit Gaussian distribution.

Therefore, the phenomenon of that the loss value of training long sequences with a

higher dimensional latent space is larger than others can be easily explained. Since long

sequences have 20 steps, it is likely that the sum of 20 small loss is greater than the

sum of 6 small loss of short sequences, which have 6 steps. That will cause the greater

reconstruction error of loss function when training long sequences. The situation for

higher dimensional latent space is almost the same. Higher dimensional latent space is

likely to have greater values of Kullback-Leibler divergence, which is also a part of loss

when training the VAE. Since that the approximated posterior distribution constructed

in latent space of VAE model is aimed to capture as many features of input training

data as possible while in a limited capacity. When the input data is very complex, then

the capacity of the latent space should be larger to be able to learn the features. If

the dimensionality of the latent space is limited to be small, then it will lead to the

lackness of ability of learning most of the features of training data. However, when we

increase the dimensionality of latent space, the ability for learning features of the VAE

model is increased indeed. But it could not be always the right strategy to increase the

dimensionality of latent space since the information contained in training data is finite,

which means a proper VAE model can learn most of the salient information contained in

training data using a finite dimensional latent space. Therefore, when the dimensionality

of latent space is too high, the story becomes to be that part of the latent space capture

the most salient features, and rest of the latent space is used to deal with the redundant

trivial information. In that case, a higher dimensional latent space achieve a performance

just like a lower dimensional latent space or even worse.

Comparison pf foure individual trajectory and virtual generated trajectory is given by

figure 2.6. Also, we calculate the distance error in every 3 minutes, which is shown as

the bottom of figure 2.6. The tendency of the distance error is reducing with time, which

means that reconstructing a moving trajectory is harder than reconstructing a staying

object. In general, the results of evaluation using MDE shows that the reconstruction

error of VAE model is smaller than 800 meters. Considering that the selected experiment

area is about 33, 000m⇥36, 000m, we think that the accuracy of results of the VAE model

is enough to tackle the city scale problems. Actually, there is a trade-o↵ between the

accuracy of the reconstruction trajectories and the robustness of the ability to generate
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resampled trajectories. As mentioned before, the loss function of the VAE model is

consist of reconstruction error and Kullback-Leibler divergence. In practical training

process, minimizing the reconstruction error will increase the accuracy of reconstructing

input trajectories, while minimizing the Kullback-Leibler divergence will reduce the

complexity of learned latent space. The goal of training the VAE model is to minimizing

both reconstruction error and Kullback-Leibler divergence. However, there can be a

trade-o↵ between them as we usually add weight, smaller than 1, to one of them. When

we want our model achieve higher accuracy in reconstructing trajectories, we add a

small weight to Kullback-Leibler divergence to reduce the contribution of Kullback-

Leibler divergence for the whole loss. Therefore, the training process become that we

care less about the complexity of the learned latent space, just make sure the output

reconstructed trajectories are as accurate as possible. In that case, we can get a model

of which has a very good performance of reconstructing input trajectories but a very

poor performance of generate resampled trajectories. In the other hand, if we add a big

weight to Kullback-Leibler divergence, we aim to train a robust model of which latent

space is as simple as possible. Therefore, we are likely to get a robust model which has

a poor performance of reconstructing input trajectories. Both of the aforementioned

model is not the ideal model we want. In overall, as discussed above based on the

evaluation and visualization of the results, we think our model is trained in a balance

way.

2.4.2 Limitations

We also want to make a brief discussion about the limitation of the current VAE model

when handling the trajectories of human mobility. As shown in figure 2.6, a real tra-

jectory and its corresponding reconstructed trajectory is given. The real trajectory is

tortuous while the reconstrcuted trajectory is smooth. Although the reconstruction

error is small, the output reconstrcuted trajectories of the VAE model seems to be a

smooth approximation of tortuous real trajectories. A main limitation is that many

points of reconstrcuted trajectories don’t located in road network. implementing map

matching to the generated trajectories may solve the problem, but we believe a bet-

ter choice is that change the current coordinate and grid based model to a node based

model. Another idea for this problem is changing the current resampling from Gaussian

distribution strategy to resampling from historical trajectories.
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Retrieval-based Human

Trajectory generation

3.1 Introduction

3.1.1 Background

We analyzed the advantages and disadvantages of generating human mobility data

through a deep generative model directly in the previous chapter. The main limita-

tion of directly using the deep generative model for trajectory generation is that the

generated virtual human mobility trajectory data does not have geographic information

restrictions. Therefore, although the newly generated virtual human mobility trajec-

tory does not infringe on user privacy, it cannot be proven to be realistic in the real

world which the trajectory falls perfectly on the road grid. However, we have also tried

some map matching methods to generate virtual human mobility trajectories with no

geographic information constraints to the road network. As discussed in the previous

chapter, directly using map matching as a post-processing method will change the pat-

tern similarity between ground truth human mobility trajectories and newly generated

virtual trajectories. Based on the shortcomings of these previous practices, we consider

the direction of improvement from the perspective of pursuing the authenticity of the

trajectory.

31
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Another issue worth considering is how we measure the authenticity of the virtual human

mobility trajectory directly generated by the deep learning model. We realize that the

authenticity of the human mobility trajectory is a more di�cult indicator to quantify

and measure than the similarity of the human mobility trajectory. Here we are taking

the similarity of human mobility trajectories as an example. Many previous studies

have put forward some quantitative measures. Their primary purpose is to establish

whether di↵erent human mobility trajectories are similar to tackle the trajectory clus-

tering problem. However, the authenticity of the virtual human mobility trajectory

cannot be measured entirely by the trajectory similarity. It is because that even if we

assume that the virtual human mobility trajectory data generated by the deep learn-

ing model, which is similar to the ground truth human mobility trajectory, has a high

authenticity. We cannot deny that generated virtual human mobility trajectory, which

is not similar to the observed human mobility dataset, is not real. We must remember

that the human mobility trajectory data we can access is usually a low sampling rate

with sampling bias data. Therefore, we do not have enough evidence to deny that the

human mobility trajectory that is not similar to the observations we get does not exist

in this world.

Suppose we insist on taking the traditional measure of trajectory similarity to measure

the authenticity of the newly generated virtual human mobility trajectory. In that case,

an essential prerequisite is that we need to assume that the actual observed human

mobility trajectory data we can currently obtain is su�cient and can reflect the flow

of people in the real world. This assumption itself is untrue, and it is in contrast

to the purpose of our work because under this assumption. In this case, we do not

need to explore a suitable method of estimating the human mobility trajectory data to

solve human mobility trajectory data which does not fully reflect the real-world human

mobility pattern. Nevertheless, in any case, we hope that the new virtual trajectory

generated by the deep learning model is realistic enough, so we should use another idea

to solve this problem.

In order to avoid the authenticity problem of the generated virtual human mobility

trajectory data and at the same time refer to enough research on the similarity of human

mobility trajectory methods, we propose a retrieval-based human mobility trajectory

generation method. Our method is still based on the deep learning method and uses the

deep learning model to capture essential features in the human flow trajectory.



Chapter 3. Retrieval-based Human Trajectory generation 33

3.1.2 Problem definition

We refer to the traditional definition and method of similarity of human mobility trajec-

tory before and convert the problem of directly generating virtual human flow trajectory

into a problem of using a deep learning model to construct trajectory similarity. We

define it as historical human mobility trajectory data for the entire human mobility

trajectory data we can currently get. This historical human mobility trajectory data

acts as a database. In this database, we only keep the trajectory data and delete all

other information that may infringe on personal privacy. One of our assumptions here is

that although we only have a small part of the real human flow trajectory data, we can

still get a trajectory database with su�cient information if we continue to sample for a

long time. Assuming that we already have a small part of the human mobility trajectory

data observations, we need to generate more virtual human flow trajectories. We can use

some of the trajectories in this historical trajectory database as supplementary trajecto-

ries. Therefore, we turn the problem into selecting a suitable supplementary trajectory

from the historical trajectory database to make the small part of the observed human

flow trajectory data more in line with the current real human flow pattern.

3.1.3 Research objective

In this chapter, our research objectives are as follows:

1) Conduct experiments to evaluate the change of citywide human mobility pattern when

using map matching technique as postpocessing;

2) Propose a search-based method to generate human flow trajectory data to avoid the

problem of imperfect authenticity encountered when directly generating virtual human

flow trajectories;

3) We compare the human flow trajectory similarity method established by the proposed

trajectory feature extraction method based on the Encoder-Decoder deep learning frame-

work with the traditional method;

4) Carrying out numerical experiments to verify that our proposed method has obtained

better results
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3.2 Map-matching as post-processing

This section aims to evaluate the human mobility pattern change between generated

virtual trajectories and virtual trajectories after map-matching.

3.2.1 Framework

For simplification, we use a statistical method of probability of migration for virtual

trajectory generation, which can be written as the following equation: [50]

< Tij >= Ti
minj

(mi + sij)(mi + nj + sij)
(3.1)

where Ti is the total number of commuters that start their trip from location i, which

can be calculated by:

Ti = mi(
Nc

N
) (3.2)

where Nc is the totcal number of commuters and N is the total population in the city.

Besides, mi, nj , sij indicates the population of grid i, j, from grid i to j respectively.

Therefore, the first step is to convert the real human mobility trajectories to grid-based

sequences. By implementing the above equation, we got generated coarse-grained virtual

trajectories. Then, we know that the generated coarse-grained trajectories should be

processed using the Shortest path algorithm with map matching technique to produce

virtual finer-grained trajectories in the road network. The entire process of producing

those virtual trajectories is shown in the figure. Our objective in this section is that we

want to evaluate human mobility pattern changes after this process.

3.2.2 Experiments

Data description We used a month’s taxi navigation GPS track, and the data range

is a rectangular area within a city that is roughly 8kmx8km. The data collection interval

we used is 2 4s, which shows that the data was initially high-quality trajectory data. At

the same time, the original data points are all on the road network.
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Figure 3.1: Framework of using shortest path algorithm with map matching technique
as postpocessing of virtual human mobility trajectories.

Figure 3.2: The above four figures give an illustration of four metrics of human
mobility trajectory similarity.

Metrics for assessment Mean Square Error (MSE) and Mean Absolute Error (MAE)

is used in this section, which can be written as:

MSE =
1

m

mX

i=1

(yi � ŷi)
2 MAE =

1

m

mX

i=1

|yi � ŷi| (3.3)

We also use some trajectory similarity metrics proposed recently shown in the figure 3.2

[51].

3.2.3 Results

At first, we will show a visualization for comparison between ground truth trajectories

used in this experiment and finer-grained virtual trajectories after processing of shortest

path algorithm with map matching technique. We notice some di↵erences between

the two figures: 1) the trajectories distribution is di↵erent, meaning there are some

virtual trajectories in some places with no ground truth trajectories. 2) shortest path
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Figure 3.3: Visualization of ground truth trajectories and virtual trajectories after
map matching.

Figure 3.4: Average MAE (up) and MSE (bottom) at di↵erent time.

algorithm with map matching technique introduces some error in virtual finer-grained

human mobility trajectories.

Since the predicted trajectory and the real trajectory are equivalent to one hour in length,

and there are only the starting point and the endpoint, and the trajectory information in

the middle part is ignored, the trajectory is split for more detailed trajectory evaluation.
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Split the trajectory for 20min and 30min respectively (equivalent to sampling at 1/3, 1/2

of the trajectory grid list) to split the original trajectory into 2 or 3 sub-trajectories, and

then use these sub-traces trajectories to evaluate the quality of the production. (The

true value and predicted value are split in the same way

Table 3.1: Performance of Shortest Path with map matching.

mass di↵erence mass similarity inclusiveness structural similarity
60 min 1542.21237 0.61311628 0.80383485 0.78724814
30 min 4996.70296 0.57481026 0.74331417 0.76080039
20 min 7738.34139 0.54148302 0.72683068 0.73145890

In short, the conclusion is that the more refined the trajectory is split, the worse the

e↵ect displayed by the evaluation index.

3.2.4 Discussion

The data is a kind of navigation data of trips. People drive mainly to the core areas

with large numbers of people or core residential areas in cities. At the same time, the

time when the number of cars is the largest is about 7:00 16:00. According to the human

migration formula, people are more inclined to go to the grid with more people. The

probability is significantly reduced when The distance of the grid with many people is

significant. So the reflected movement trend must be related to the number of cars in

the grid (that is, the predicted trend must be A! B if the movement of people who go

to work in the morning is A! B when people drive a car to return home in the evening,

B ! A is required. The predicted value is still A! B). This causes the number of cars

to decrease, and the deviation of the predicted trajectory in the afternoon and evening

of the return journey gradually increases.

Since the current map matching is based on the shortest path, the shortest path may

not be reasonable in the actual situation. For cars, the data acquisition system will

also consider it when planning the path. Actual tra�c conditions, road conditions, and

other information, it is entirely reasonable for a car to move a long distance to pursue

the shortest time. So if the prediction is correct for the starting point and the endpoint,

the result is correct without splitting the trajectory at this time. If the trajectory is

split, it is likely to cause an error, which will result in a drop in the evaluation index.

At the same time, the greater the number of trajectories split, the greater the number
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Figure 3.5: Performance evaluated by four human mobility trajectory similarity met-
rics.
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of erroneous trajectories, which leads to a further decline in the evaluation index. That

is, if the transfer vector used for evaluation is correct when it is not split, it is possible

that if it is split into two, then two transfer vectors will be wrong, and if split into three,

three transfer vectors will be wrong, resulting in a decline in the evaluation index.

3.3 Retrieval-based model

3.3.1 Preliminary

Bidirectional Long-Short Term Memory Deep neural networks which are com-

posited mainly feedforward fully connected neural networks are powerful but not ap-

propriate for sequence data such as time-series data or natural language. They are

outstanding to map input data to discrete output or continuous variables but not se-

quence to sequence mapping. Sequence-to-sequence (seq2seq) model uses two Long

Short-Term Memory (LSTM) models. One LSTM learns vector representation from the

input sequence of fixed dimensionality, and another LSTM learns to decode from this

input vector to the target sequence. LSTM is a variant of recurrent neural networks

that solves long sequences using di↵erent gates. Seq2seq model was recently proposed

and demonstrated the excellent result of Natural Language Processing (NLP) [52–54].

This model proved to be more e↵ective than previous methods at NMT and is now used

by Google Translate.

LSTM was designed to combat vanishing gradients through a gating mechanism by

Hochreiter and Schmidhuber in 1997 [49]. The ability to model long-term dependencies

is improved in LSTM thanks to the gating mechanism. However, a single LSTM is

insu�cient to learn the context information because the hidden space is learned heav-

ily depends on the input information before while some future information is ignored.

Schuster and Paliwal proposed a bidirectional recurrent neural network structure to lean

the context information from both forward and backward directions in 1997 [55]. We

use bidirectional LSTM to achieve spatiotemporal feature extraction of human mobility
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trajectory. Bidirectional LSTM can be mathematically described as:
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(3.4)

We extract the intermediate vector with the fixed dimension as the input of Variational

Autoencoder to approximate the latent distribution of spatiotemporal features. Still,

the raw GPS trajectories with di↵erent lengths are di�cult for batch processing, and

the LSTM model will go down with the length of the input sequence. Bearing these two

concerns in mind, we slice the historical trajectories into a fixed length , the process of

which can be written as:

t̂r = tr[i : i+ L]|i = 0, L, ..., tr.length� L (3.5)

Where tr[i : i+L] is the subsequence of tr with the indices j ranging from i  j  i+L.

K-dimensional tree The k-dimensional tree, which is a multidimensional binary

search tree, was invented by Jon Louis Bentley in 1975 [56]. Here we give a brief

introduction of the k-d tree data structure. Let P = {p1, ..., pn} ⇢ Rd be a finite data

set with pi = (p1i , ..., p
d
i )

T 2 Rd for i = 1, ..., n. A k-d tree for P is defined recursively.

An empty tree or a tree with only one node which contains the only one data point

will be built if P is empty or contains only one data point respectively. Otherwise, it is

determined in which dimension d0 2 [d] the data set has the largest spread.

That is, d0 is chosen such that there are two points pi, pj with |pd0i �pd
0

j | � |pd00l �pd
00

m | for

all d00 2 [d], l,m 2 [n]. For any number n 2 N of ordered points, we define the median to

be the point with index [n2 ]. Now, we should find the median of the points pi according

to a sorting along this dimension, i.e. pd
0

iq  ...  pd
0

in
2

 ...  pd
0

in , denoted by q = pin
2
.

After finding the median, a hyperplane H = {x 2 Rd|xd0 = pd
0

in
2

} is introduced, which

splits the set P into two subsets:

P1 = {pi1 , ..., pin
2 �1

}

P2 = {pin
2 +1

, ..., pin}
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with P1 containing at most one point more than P2. A node is created, holding q and

H. The node is given the results of recursively processing P1 and P2 as children and

then it is returned.

3.3.2 Framework

The basic idea of building a retrieval-based trajectory generator is that we use VAE as

a feature extractor because we have shown its capability of learning the latent vector

space given human trajectories as inputs. Since directly generating new trajectories by

sampling from latent vector space causes some limitations mentioned above, we consider

the posterior distribution parameterized by vectors corresponding to human trajectories

as index. Then, this index is used for retrieving more trajectories from historical dataset

of which the distance of index is under a threshold with query trajectories.

A query trajectory dataset is arbitrary selected, which consist in all human trajectories

at current time we may be interested in. From information retrieval perspective, a

historical trajectory dataset can be regarded as a knowledge base for providing some

supportive information for a query trajectory. We define a query trajectory dataset as

trajq, and a historical trajectory dataset as trajh. It should be mentioned that some

query trajectories in trajq and some historical trajectories in trajh can be sliced from

some long original trajectories, so they have more correspondence even they are di↵erent

in some GPS points.

Given a query trajectory dataset trajq, which usually consist in only a small number

of human trajectories, can hardly reflect the movement pattern especially in some rural

area. For example, we may observe enough human trajectories in a high way to briefly

estimate some statistics to describe the tra�c situation of this high way. However, there

are lots of small streets which we cannot ignore when a more fine-grained estimation is

necessary. In such small streets, no observation can be found sometimes considering the

low sampling rate of the dataset. For instance, at 8 clocks, we observe 5 cars go through

the street, while at 9 clocks, we observe 0 car, assuming we know the low sampling rate

of our trajectory dataset is 1%, we cannot conclude that there are 500 cars go through

the street at 8 clocks, while no single car at 9 clocks. Therefore, we want a reasonable

approach to recover a bigger dataset which has more reasonable trajectories given a

small dataset.
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Figure 3.6: Framework of retrieval-based human mobility generation model.

We give a framework of our retrieval-based trajectory generator in 3.6. At first step,

we train a VAE model using a large historical trajectory dataset. Then, we regard

this large trajectory dataset as a database in which every trajectory indexed by their

corresponding latent vector. It is also known that the latent vector of each trajectory

forms a Gaussian mixture.

In next step, our goal is to recover the large trajectory dataset given a small limited

query trajectory dataset. We use the encoder in of trained VAE to get its corresponding

vector index of each query trajectory, then we use k-dimensional tree method to find

some nearest points of query index in historical dataset. Finally, we select those urban

human trajectories using these nearest points to recover a large trajectory dataset.
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3.4 Experiments

3.4.1 Data description

This study utilizes the navigation GPS dataset, a dataset of navigation route GPS

records of di↵erent types of cars with user ID intentionally deleted to preserve users’

privacy. In this dataset, we can only recognize each navigation route’s ID, so we cannot

track the specific users in the long term, although one-month data was provided. For

each trajectory of a single navigation route, the location of each coordinate point is

map matched to the road network, and its timestamp is just about 2 or 3 seconds. It

is a very high-quality navigation GPS trajectory data. However, bearing the limited

capacity of LSTMs, we decided to crop the trajectory data into a fixed 1-hour length,

with the timestamp as 1 minute, so the length of every single trajectory is 60 steps.

To quantitatively experiment, we use the 1-hour length of trajectory dataset of which

timestamp is 2015-10-31 11:00:00 as the query trajectory dataset and those trajectory

datasets before as historical trajectory dataset.

Two straightforward representations exist for the trajectory cells, the one-hot represen-

tation and the coordinates of the GPS points. For the case of raw GPS records that

contain random noise, an ingenious method of pre-training cell presentations was pro-

posed to create the context for each cell instead of using the two representations as

mentioned above. However, in our experiment, we assume the coordinates of every GPS

point are exactly correct since they were all matched to the road network. Under this

assumption, we use coordinates of GPS points for the presentations of trajectory cells to

reduce the complexity of the experiment since the coordinates of GPS points naturally

encode the spatial proximity for the cells of trajectory.

3.4.2 Baseline methods and Metrics

We compare our method with the previous t2vec method [57], which is a deep learning-

based trajectory similarity method, and other four traditional trajectory similarity meth-

ods for measuring the trajectory similarity, namely Dynamic Time Warping (DTW),

Edit Distance on Real sequences (EDR), Edit Distance with Projections (EDwP), and
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Longest Common Subsequence (LCSS). Since we use map-matched GPS records of tra-

jectories, we do not have to learn cell presentations through pre-training, so we use a

simplified version of t2vec as a baseline method. Besides, we use LSTMs and bidirec-

tional LSTMs to replace RNNs in t2vec as we need LSTMs’ capacity to handle longer

sequences. The method of t2vec is the first solution based on deep learning for cre-

ating representations of trajectories that are used as a trajectory similarity method.

This method is at least one order of magnitude faster than other traditional trajectory

similarity methods and has higher accuracy. While DTW, EDR, EDwP, and LCSS are

some very classic trajectory similarity measurements. DTW is first introduced to mea-

sure time-series data, including this method as a baseline method. Also, both LCSS

and EDR are two of the most widely used methods for analyzing spatiotemporal data.

EDwP is the state-of-the-art method for measuring the similarity of non-uniform and low

sampling rate trajectories. Moreover, we compare with the LSTMs to show bidirectional

LSTMs’ ability to learn the spatiotemporal features of trajectories.

We given three metrics for the assessment of di↵erent models for retrieving human

mobility trajectory data for reconstruct the citywide human mobility pattern. CityEMD

is defined as follows:

CityEMD(t) =
X

o

dist(p(d|o), p̂(d̂|o)) (3.6)

Where d, d̂ is ground truth, retrieved locations of subjects originated from o repectively.

Another metric called hard matrch ratio is defined as ratio of retrieved trajectories which

share the same route ID with training data:

� = P ({B|BID ⇢ AID|A,H) (3.7)

Because a complete trajectory of navigation has a unique route ID, so if a sub-trajectory

has the same route ID with another one, they are preprocessed from the same long

complete trajectory. So if we can retrieve more this kind of trajectories, we consider our

model has the better ability to reconstruct the dataset.

The other one is recover ratio.

⇠ = P (A|A�B,H +B) (3.8)
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Figure 3.7: Visualization of ground truth human mobility (left) and retrieved human
mobility (right).

We using a subset of target trajectory dataset which is A�B, and throw subset B into

historical dataset H, if we can retrieve more trajectories belongs to B from historical

dataset H+B, we consider our model has a better ability to recover the original dataset.

3.4.3 Results

Here we show some experimental result. Figure 4 shows that the query trajectories lack

some details in rural areas in Tokyo, while recovered trajectory dataset has more details

even in those area. Since all retrieved trajectories are selected in historical database,

so it is a very reasonable that these trajectories could be shared by someone else even

though they are not captured by collected dataset due the low sampling rate.

We also give some quantitative comparison with some baseline methods. The metrics

of evaluation is CityEMD, hard match ratio, and recover ratio. CityEMD is a kind

of distance proposed by previous researcher that measure the similarity of large area

human mobility pattern. Hard match ratio is the ratio of retrieved trajectories which

share the same route ID with part of known training data. Recover ratio is a probability

of recovering the known training dataset.

Figure 3.8, 3.9, and table 3.2 show that our methods outperform other traditional tra-

jectory similarity methods. It means that our retrieval-based trajectory generator has

better ability of constructing a large trajectory dataset which is more similar with real

world.
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Figure 3.8: Comparison between di↵erent methods using CityEMD.

Figure 3.9: Comparison between di↵erent methods using HardMatchRatio and Re-
coverRatio.
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Table 3.2: Comparison of di↵erent methods.

DTW EDR EDwP LCSS AE BiAE VAE BiVAE

CityEMD - 17.1728 16.4438 17.1059 16.1798 16.1771 16.0617 16.0941
HMR 0.0615 0 0.0580 0.0005 0.1115 0.1280 0.1240 0.1420
RRatio 0.0120 0 0.0020 0 0.0110 0.0170 0.0140 0.0220

3.5 Conclusion

Retrieval based trajectory generator indeed solved some limitations of a VAE genera-

tive model for generating urban trajectories. The reconstructed trajectories come from

historical dataset by latent index encoded by a trained generative model. While we also

notice some limitations of current retrieval-based trajectory generator. The first one is

that we need a large historical trajectory dataset to achieve diversity of reconstructed

trajectory dataset, which is not always possible in reality. The second one is that we

are not able to determine the scaling factor for each query trajectory by setting a dis-

tance threshold since the historical dataset itself could be biased, so the retrieved large

trajectory dataset will also be biased. Therefore, our next step is to reduce the bias of

trajectory dataset by incorporating information from other data sources such as census

data.



Chapter 4

Di↵erentiable Projection For

Constrained Deep Learning

4.1 Introduction

Deep neural network (DNN) models have been widely used to solve many tasks in

di↵erent domains and easily outperform traditional methods. The reason why people

try to use the neural network model to replace the existing traditional methods, either

because the neural network brings better accuracy, or because the neural network model

saves a lot of time for calculations. For example, there are many existing studies devoted

to solving various complex optimization problems using neural network models [58–60].

In the field of computer vision or natural language processing, it is more common to

use more specific and e�cient neural networks such as a convolutional neural network

(CNN) [61–63] or recurrent neural network (RNN) [47, 55, 64] and its variant models. It

has become a consensus for solving various complex problems, and have achieved better

and more powerful performance compared to traditional methods.

However, above mentioned models, if trained under the framework of supervised learning

or weak-supervised learning, they usually learned how to simulate the ground-truth data

through the backpropagation of error between the network output and the ground-truth

observation. In this process, the neural network as a ”black box” is often criticized that

the learning process of the network itself is a process of simulating the truth value, rather

than understanding some of the basic rules of the ground-truth value that they should

48
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Figure 4.1: Ground truth observation (green point) belongs to a constrained region
which formed by some linear constraints. Green line indicates the process of optimizing
a conventional DNN. We consider the constrained region as a kind of prior knowledge,

which should be incorporated in a conventional DNN (yellow dash line).

have learned [65]. Here we consider some application scenarios such as shown figure

4.1. In this scenario, we have ground truth observation included in constrained region,

which formed by some linear constraints. Since it is known that all inferenced output of

DNN should also belongs to the constrained region, we can consider those constraints

as a kind of prior knowledge. For a conventional DNN model, the training process is

directly minimizing the error between ground truth observation and network output, but

an additional process should be optimizing the network output by constrained region,

indicated by yellow dash line in figure 4.1. By combining these two process, the model

is expected to be able to give some outputs closer to the constrained region, that will

make the output closer to the ground truth observation as well. Neural network models

incorporating with constraints are also used in solving optimization problems [66, 67].

There are also some novel neural network model for solving variational inequalities with

linear and nonlinear constraints [68]. In addition, there are also many people who

optimize the neural network model by adjusting the internal structure of the neural

network to meet certain constraints [69, 70]. In recent years, we have observed a lot

of work on constrained neural network models in the field of computer vision, such

as a constrained convolutional layer to accomplish the problem that state-of-the-art

approaches cannot detect resampling in re-compressed images initially compressed with

high quality factor [71], and a constrained neural network (CCNN) which uses a novel

loss function to optimize for any set of linear constraints on the output space of a CNN

[72, 73]. Many of the previous studies on constrained neural network models are mostly

dedicated to solving specific problems in one particular field, and there is a lack of a

more general description of the problem. Besides, directly combing the DNN models
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with constrained optimization algorithms, such as aforementioned CCNN, is not able to

handle some more generalized constraints and is not time-e�ciency since it is necessary

to solve optimization problems for every batch network outputs. In this paper, we

try to give a more unified problem formulation and use a general framework to solve

the problem that the neural network output satisfy certain constraints. We hope that

the output of the neural network model of supervised or weakly supervised learning

is no longer a simple process of simulating the ground-truth value, but meets certain

constraints. At the same time, we believe that when the output of the neural network

always satisfies some of the constraint rules, the interpretability and transferability of

the network can be improved. So here we try to describe this problem in detail as much

as possible and show the feasibility of a general method to solve this problem.

4.2 Deep learning model with constraints

Given a dataset D that consists of input points X = {xi 2 Rn, i = 1, 2, ..., N} and its

corresponding ground truth output points Y = {yi|yi 2 Rm, fj(yi) = bj , gk(yi)  dk, i =

1, 2, ..., N, j = 1, 2, ...,M, k = 1, 2, ..., T}, in which we assume that ground truth output

Y satisfy some equality and inequality constrainst conditions. Equality constraints fj(·)

and inequality constraints gk(·) are usually given by some physical or expert knowledge,

which define a feasible set of possible inferenced outputs. In this research, we only focus

on the linear constraints, then aforementioned constraint conditions can be rewritten as

{fi(Y ) =< aj , Y >= bj , gk(Y ) =< ck, Y > dk, j = 1, 2, ...,M, k = 1, 2, ..., T}, where

aj , ck,2 Rm, bj , dk 2 R, and <,> is the Euclidean inner product.

Given a deep learning model, denoted by N✓(·), parameterized by ✓, we use Y ? = N✓(X)

denotes the output of this deep learning model. Our objective is to solve the following

equation:

min
✓

(Y? �Y)2

s.t.fi(Y) =< aj ,Y
? >= bj , j = 1, 2, ...,M

gk(Y) =< ck,Y
? > dk, k = 1, 2, ..., T

(4.1)

For a conventional neural network, the outputs of the model is usually regularized by

some nonlinear activation function. However, these widely-used activation is designed

mainly for introducing nonlinearity in the neural network to increase the capability of
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the model for approximating some complex mapping from inputs to outputs. These

activation function used in neural networks lack the ability to ensure a feasible outputs

of the model to satisfy the inequality constraints defined in Eq. 4.1. However, it is

obvious that if the error between inferenced output of the deep learning model and

the ground truth is small enough, the inferenced output should eventually satisfy the

constraint conditions. Therefore, we consider the minimization of error as the ultimate

goal, while the constraint conditions as a kind of prior knowledge, which could help us

solve the minimization problem if utilized properly. The intuition of this idea is that if

we can find a di↵erentiable map denoted by h : Y ? ! Ŷ
?
, where Ŷ

?
is closer to all points

in feasible region defined by the constraint conditions than original output Y?, then we

can obtain better inferenced output every time for sure comparing with the output of

a conventional deep learning model. Therefore, we aim to propose a more generalized

di↵erentiable map which is designed properly to help solve Eq. 4.1.

4.2.1 Preliminary

Inspired by Pathak el at [72], we can define the map function h : Y ? ! Ŷ
?
as an implicit

function because our goal is to obtain Ŷ
?
and the implicit function h can be solved by

following equations:

min
Y ?

DKL(Y
?||Ŷ ?)

s.t.fi(Ŷ
?) =< aj , Ŷ

? >= bj , j = 1, 2, ...,M

gk(Ŷ
?) =< ck, Ŷ

? > dk, k = 1, 2, ..., T

(4.2)

To solve Eq. 4.2, we could use Lagrange multiplier

L(Ŷ
?
,�, µ) = DKL(Y

?||Ŷ ?
) +

MX

j=1

�jfj(Ŷ
?
) +

TX

k=1

µkgk(Ŷ
?
)

�jfj(Ŷ
?
) = 0, fj(Ŷ

?
) = 0

µkgk(Ŷ
?
) = 0, gk(Ŷ

?
)  0

µk � 0, j = 1, 2, ...,M, k = 1, 2, ..., T

(4.3)
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The optimal point Ŷ ? of an analytic solutions is obtained when

@

@Ŷ ?
L(Ŷ ?,�, µ) =

@

@Ŷ ?
DKL(Y

?||Ŷ ?)+
MX

j=1

�j
@

@Ŷ ?
fj(Ŷ

?)+
TX

k=1

µk
@

@Ŷ ?
gk(Ŷ

?) = 0 (4.4)

Here we only consider the case that the output of the deep learning model Y ? doesn’t

satisfy the linear constraint conditions. It is because that all constraint will not be active

when the output Y ? satisfy the constriant conditions, then the closest point Ŷ ? is the

same with output Y ? exactly. From the definition of the point Ŷ ?, it is obvious that all

Ŷ ? should located in the feasible region of the linear constraint condition. At the same

time, since an optimal Ŷ ? should be the closest with Y ?, we know that Ŷ ? should be on

the boundary of the feasible region, and the line connected by Y ? and Ŷ ? is orthogonal

with hyperplane where Ŷ ? located on since @
@Ŷ ?

L(Ŷ ?,�, µ) = 0. Althogh we don’t know

the explicit function h, we can obtain an identical point Ŷ ? by solving aforementioned

equations.

So far, we have given the solution for solving Eq. 4.2, by solving this KKT conditions,

we are able to find the optimal results, which is the closest points of original network

outputs in the constrained region. However, directly solving this constrained optimiza-

tion problem is not a e�cient solution which requires heavy computation since it is

computed every iteration when the DNN produces some outputs. As discussed in pre-

vious section, constrained convolutional neural network [72] is a kind of method which

solves KKT conditions every time when training. We doubt this strategy could be used

in more generalized scenarios. Actually, we also think that finding the closet point Ŷ of

original network output in the constrained region is not necessary for solving Eq. 4.3.

That is because what we want to achieve is that the output of DNN should be close

to the constrained region. In the best situation, the output of DNN should satisfy the

constraint. So directly solving KKT conditions for guiding the training process of DNN

model is waste of computational resource. Therefore, we aim to find other approach to

solve the Eq. 4.3.
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4.2.2 Projection methods for linear equalities

Let us consider a specialized scenario that there is only linear equalities constraints for

the output of neural network. We can rewrite Eq. 4.2 into matrix form like:

AY ? = b (4.5)

Where A 2 Rk,m, b 2 Rk. We can easily obtain the condition for Y ? have feasible

solutions is that rank(A)  k  m. It means that there exists a feasible area when

the number of e�cient constraints aj is less than the dimensionality of the variable Y ?.

More specially, if the rank of matrix A satisfy that rank(A) = k, we have following

lemma:

Lemma 1. Given any A 2 Rm,n, and rank(A) = m  n, b 2 Rm. the closest point x?

subject to Ax = b is x? = (I � AT (AAT )�1A)x + AT (AAT )�1b. The proof of Lemma

1 is given in Appendix. Based on Lemma 1, given any network output Y ?, we can find

the closest point in feasible area Ŷ = (I � AT (AAT )�1A)Y ? + AT (AAT )�1b. Then we

define the loss function of the DNN model to be l = ↵(Y �Y ?)2+(1�↵)(Y � Ŷ )2. From

figure 4.2, we could see that if the first term of loss function is not zero, the second term

of loss function will be zero if the original output of neural network is in the normal

direction of hyperplane of ground truth point, which means the projected output will

be exact ground truth point. So we could know that the second term of loss function

encourages the neural network give some predicted points that is in the normal direction

of hyperplane of their ground truth points.

We could also know that if the original output of neural network directly satisfy the

equalities constraints, which shown by Y ? = Ŷ = (I�AT (AAT )�1A)Y ?+AT (AAT )�1b.

We could see the loss function become just the widely used mean square error in most net-

works between ground truth point and original output of neural network: l = (Y �Y ?)2.

In this condition, there will be no additional penalty of loss and the structure of the pro-

jection matrix didn’t activated, the model is a pure conventional neural network.While

for a more generalized scenario, the constraints is not always independent with each

other, but also there could exist some inequalities constraints in many applications.
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Figure 4.2: loss function contains two terms, the first term penalize the output of
neural network to be close with ground truth, while the second term will be large if the
output of neural network is not in normal direction of hyperplane of ground truth.

4.2.3 Projection methods for linear inequalities

While for a more generalized scenario, the constraints is not always independent with

each other, but also there could exist some inequalities constraints in many applications.

This section, we will give a projection method for linear inequalities constraints problems.

Without any assumption about linear independent of constraints of Eq. 4.2, we define

a partitional projection like:

hk = min {0, dk� < ck, Y ? >

ck, ck
} (4.6)

Then:

PkY
? = Y ? + hk(Y

?)ck (4.7)

Above equation defines the orthogonal projection of the point Y ? on the closed half

space:

Hk = {Y ? 2 Rm :< ck, Y
? > dk} (4.8)

Now, let us choose some real numbers satisfy:

TX

k=1

�k = 1,�k > 0 (4.9)
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Then, we can define P : Rm ! Rm by:

P =
TX

k=1

�kPk (4.10)

For any ↵ 2 R,

P↵ = I � ↵(I � P ) (4.11)

Where I is the identity matrix. with above definition, we can use Eq. 4.11 to find a

feasible solution of Ŷ which satisfy constraints of Eq. 4.2, given any output Y ? of deep

learning models. Given an output Y ? of deep learning models, define inductively

Y 0 = Y ?

Y t+1 = P↵Y
t

Y t+1 ! Ŷ .t!1

(4.12)

With 0 < ↵ < 2. The detailed proof of the convergence of above algorithm is given in

[74]. Given an initial point Y 0 2 Rm, let {Y t} be the sequence defined by Eq. 4.11.

There are two elementary properties of orthogonal projections from theorem 11.2 in [75].

For any x, y 2 Rn, 1  i  m

< Piy � Pix, x� Pix > 0 (4.13)

||Piy � Pix||  ||y � x|| (4.14)

From Eq. 4.13, we know that for any i,

< Piy � Pix, x� Pix > 0

)< Piy � Pix, x >< Piy � Pix, Pix >

)< Py � Px, x >
nX

i=1

�i < Piy � Pix, Pix >.

(4.15)
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If we substract < Py � Px, Px > from above inequality, we will have:

< Py � Px, x� Px >
nX

i=1

�i < Piy � Pix, Pix > � < Py � Px, Px >

= (
nX

j=1

�j)
nX

i=1

�i < Piy � Pix, Pix >�
nX

i=1

nX

j=1

�i�j < Piy � Pix, Pjx >

=
nX

i=1

nX

j=1

�i�j < Piy � Pix, Pix� Pjx >

=
nX

i=1

nX

j=1

�i�j(< Pix� Pjx, Piy � Pjy > �||Pix� Pjx||2)


nX

i=1

nX

j=1

�i�j(||Pix� Pjx||||Piy � Pjy||� ||Pix� Pjx||2)

(4.16)

Lemma 2. Let F = {z 2 Rm : Pz = z}, for any z 2 F, Y 2 Rm, < z�PY, Y �PY > 0.

Proof.

< z � PY, Y � PY >=< Pz � PY, Y � PY >


nX

i=1

nX

j=1

�i�j(||PiY � PjY ||||Piz � Pjz||� ||PiY � PjY ||2)
(4.17)

0 =< PY � Pz, z � Pz >


nX

i=1

nX

j=1

�i�j(||Piz � Pjz||||PiY � PjY ||� ||Piz � Pjz||2)
(4.18)

Add Eq. 4.17 and Eq. 4.18 togather:

< z � PY, Y � PY >
nX

i=1

nX

j=1

�i�j(||PiY � PjY ||� ||Piz � Pjz||)2  0 (4.19)

Lemma 3. For any z 2 F, Y 0 2 Rm, ||Y t � z|| decrease if F 6= �.
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Proof.

||Y t+1 � z||2 = ||P↵Y
t � z||2 = ||(I � ↵(I � P ))Y t � z||2

= ||Y t � z + ↵(PY t � Y 2)||2

= ||Y t � z||2 + ||↵(PY t � Y t)||2 + 2 < Y t � z,↵(PY t � Y t) >

= ||Y t � z||2 + ↵(↵� 2)||(PY t � Y t)||2 + 2 < Y t � z,↵(PY t � Y t) > +2↵||PY t � Y t||2

= ||Y t � z||2 + ↵(↵� 2)||PY t � Y t||2 + 2↵ < PY t � z, PY t � Y t >

(4.20)

The second term of Eq. 4.20 is negative since ↵ 2 (0, 2), and the third term is nonneg-

ative by Lemma 2.

||Y t+1 � z||2  ||Y t � z||2

Define the positive function f : Rm ! R:

f(Y ) =
kX

j=1

�j ||PjY � Y ||2 (4.21)

Theorem 3. For any starting point Y 0 2 Rn, the sequence {Y k} generated by Eq. 4.11

converges. If the system of Eq. 4.2 is consistent, the limit point is a feasible point for

Eq. 4.1. Otherwise, the limit point minimizes f(Y ) =
Pk

j=1 �j ||PjY � Y ||2, i.e., it is a

weighted (with the �i’s) least squares solution to Eq. 4.2.

Detailed proof of Theorem 3 is given in Appendix. Here we modify above algorithm

to get a di↵erentiable approximated projection method. We know that if we could

eventually find a projected output Ŷ in feasible region given the Network output Y ?,

but this process could be time-consuming potentially since many projection steps might

be necessary. But fortunately, there is a good property for this projection method given

by Lemma 3, which indicates that projected points at current step are always closer to

the constrained region than those projected points at last step. Therefore, only limited

steps of projection is needed, and the projected outputs are always better than original

network outputs. We give a simplified projection method as:

Ŷt = Y ? �
TX

k=1

H(CkY
?)PkY

? �
MX

j=1

PjY
? (4.22)
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Where Y ? is the original deep learning model outputs, H(x) = d
dx max (x, 0) is the

unit step function, P is the projection matrix P = AT (AAT )�1A. Eq. 4.22 forms a

di↵erentiable projection layer. Since we aim to solve Eq. 4.3 which including equality and

inequality constraints, Algorithm 1 is proposed. We notice that there is no assumption

about the linear independent of constraints, which means that the rank of A is not

always to be full row rank, so we summarize above equations in a more uniform way.

Algorithm 1: Di↵erentiable projection method for linear inequalities

Input: X = {xi 2 Rn, i = 1, 2, ..., N}, aj , bj , ck, dk, which define the equality and

inequality constraints. ↵ which is the hyperparameter for loss function. Randomly

initialize parameters �j ,�k, s.t.
PM

j=1 �j +
PT

k=1 �k = 1,�j > 0,�k > 0.;

Output: Y = {yi 2 Rm, i = 1, 2, ..., N} ;

Initialize a deep learning model with parameters ✓ denoted as

N✓(·), epoch = 1,MaxEpochs ;

while epoch MaxEpochs do

Y ? = N✓(X) ;

Ŷt = Y ? �
PT

k=1H(CkY ?)PkY ? �
PM

j=1 PjY ? ;

loss = ↵(Y � Y ?)2 + (1� ↵)(Y � Y 0)2 ;

loss.backward() ;

epoch+ = 1 ;

end

Figure 4.3: the original output of networks is projected to be a feasible point in
constrained region.

Figure 4.3 shows the process when training a neural networks with inequalities con-

straints and equalities constraints. At each time, the networks output some original

points Y ?, by using projection method defined in algorithm, there will be some con-

verged feasible points Ŷ located in constrained region. We have to clarify that the

projected feasible points Ŷ is not always the KKT points of original output Y ?, which
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means that projected feasible points is not always the closest points of original output.

By using projection method, we is just find some possible feasible solutions but not

the best solution. Fortunately, from the definition of loss function, we notice that this

method still work.

After adding an projection module, we force the final output of the model satisfy the

constraints. Then, we calculate errors using both adjusted output Ŷ and original output

Y ?, and backpropagate both errors to the neural network for training. The advantages

of this model structure are two-folds: 1) the final output Ŷ after the projection module

is forced to satisfy the constraints; 2) the model follows the direction of letting both

original prediction Y ? and adjusted prediction Ŷ to be close to the ground truth Y as

much as possible.

Figure 4.3 is given for a more detailed explanation for the advantage of adding an

projection module. It is obvious that if we want our projected output of neural network

satisfy the constraints, we should select some candidates only from the constrained

region instead of the entire RM space. While, the original output Y ? is defined in the

RM space, so we want the adjusted output Ŷ to be close to the original output of neural

network as well. When Y ? is in the feasible area, the projection module will be not

activated. Then we have Y ? = Ŷ , and the loss function become MSE which is the same

with projection method defined in linear equalities constraints.

4.3 Numerical Experiments

In this section, we present some numerical experiments to demonstrate the e↵ectiveness

of the constrained neural network. The data we used for numerical experiments are

randomly generated synthetic data. In this experiment, we use exactly same param-

eter settings and training process for a fair comparison with di↵erent methods. The

input data is generated by a 64-dimensional unit Gaussian distribution. Then we build

a nonlinear function with random parameters to convert the 64-dimensional inputs to

a 8-dimensional vectors. The linear equality constraints and inequality constraints are

all generated randomly, and we only keep the data pair which satisfy this random con-

straints. The objective of this problem is to evaluate the performance of projection DNN

using MSE as metric.
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4.3.1 e↵ectiveness of projection layer

In this experiment, we compare the projection DNN (PDNN) with a conventional DNN.

We also compare the results of conducting projection as post processing of DNN, denoted

as ”DNN+projection”. It can be found that the PDNN gives the best results, while

DNN+projection also outperform the conventional DNN. That prove our assumption

that by incorporating some linear constraints as prior information, even a simple model

could give better results.

Table 4.1: Comparison of results.

DNN DNN + Projection PDNN

MSE 0.02279 0.02268 0.02093

4.3.2 Ablation

We also evaluate the impact of the number of projection layer and the hyperparameter

↵ in the loss function. For a single iteration, from Lemma 3, we know that more

projection layers in a PDNN model, the projected outputs will be closer to the ground

truth observations. This will lead to an intuition that we should use more projection

layer in a PDNN to get a better performance. While the experimental results deny this

kind of intuition shown in Figure 4.4 (left). At least in this experiment settings, the

best performance is obtained when the PDNN consists of 3 stacked projection layer. The

number of projection layer in a PDNN to achieve the best performance could be di↵erent

in another application scenarios. Still, based on this results, it suggests that using limited

stack projection layers could be su�cient instead of stack as many projection as possible

which will lead to increased computational burden.

Since the loss function is originally defined as l = (1�↵)(Y �Y ?)2+↵(Y � Ŷ )2, we also

evaluate the impact of the hyperparameter ↵. The best performance is obtained when

↵ = 1 shown in Figure 4 (right). This result suggest that we should only use projected

outputs for calculating the loss to guide the training of the PDNN. However, we think

it depends on the di↵erent scenarios to decide the hyperparameter ↵.
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Figure 4.4: The performance when using di↵erent number of projection layer (left);
the impact of the hyperparameter ↵ in the loss function (right).

4.3.3 Impact of constraints

Experiments are also conducted for the comparison of di↵erent methods to evaluate the

performance under di↵erent constraints conditions. The loss function of “DNN+resid”

in table 4.2 is loss = (Y ? � Y )2 + max (AY ?, 0). When the network output Y ? didn’t

satisfy the constraints, AY ? will be a positive value, which is greater than 0. If the

network output satisfy the constraints, then the residual will be 0. The loss function

of “DNN+fix resid” is similar, when the network outputs didn’t satisfy the constraints,

give a fix penalty in the loss function.

Table 4.2: The performance of di↵erent methods under di↵erent constraints condi-
tions.

constraints DNN DNN+fix resid DNN+resid DNN+Proj PDNN

3 * 8 0.08979 0.05991 0.06106 0.08979 0.09090
4 * 8 0.09952 0.04378 0.04472 0.09951 0.09872
5 * 8 0.12691 0.04946 0.05587 0.09055 0.07386
6 * 8 0.18655 0.26512 0.26483 0.18655 0.18650
7 * 8 0.10872 0.13634 0.13788 0.10871 0.10817

From table 4.2, we notice that in most case, the PDNN outperforms conventional DNN

and DNN+projection. we must also figure out that the baseline methods “DNN+resid”

and “DNN+resid” sometimes give significantly better results than other 3 methods,

while they are not robust. When the constraint conditions change, the performance



Chapter 4. Di↵erentiable Projection For Constrained Deep Learning 62

of these 2 methods become worth than other 3 methods. The possible reason for this

phenomena could be that when the complexity of constraint condition increases, residual

of the outputs will increase dramatically, then the model is not able to give accurate

predictions. This might be solved by tuning the hyperparameters in the model, but it

requires more attempt e↵orts than PDNN or conventional DNN. so another advantage of

the PDNN is that we could always get better results without additional hyperparameter

tuning e↵orts.

4.4 Conclusion

In this chapter, we aims to solve problems with linear constraints as a kind of prior

knowledge in a more generalized form. We discuss the necessity of solving this kind of

constrained problems under KKT conditions which is widely used before. Also, we show

that in linear constrained case, we could use a projection method to build a di↵erentiable

projection layer of the DNN e�ciently. We use the dot product of errors of both original

output of the DNN and projected output to train the DNN. Besides, when the original

output is in the feasible region, we show that conventional DNN is a special case of

this projection DNN. Then, we conduct numerical experiments using randomly gener-

ated synthetical dataset to evaluate the performance of the PDNN including comparison

with a convention DNN and some di↵erent simple modification. The experimental re-

sults show the e↵ectiveness and robustness of the PDNN. Currently, the projection layer

proposed is di↵erentiable while there is only fix parameters. In the future, we will inves-

tigate the improvement of this projection layer to achieve a projection layer structure

which consists of learnable parameters. Also, we will evaluate our methods for some real

world applications.



Chapter 5

Linear constrained human

trajectory generation

5.1 Introduction

The task of estimating the movement trajectory of a person can usually be divided into

two subtasks: 1) complete the model of the reconstruction of the personal trajectory; 2)

complete the estimation of the scaling factor by combining heterogeneous information

within the city. We hope to construct a constrained generative model as a constrained

trajectory generator to solve the two subtasks simultaneously.

5.1.1 Problem definition

We usually only get some relatively small and low sampling rate biased data. Here, we

first define the meaning of low sampling rate and sampling bias in this chapter:

1) The low sampling rate means that the number of unique user IDs in human mobility

data collected is usually not big enough to represent the real-world population. For

example, the obtained data set only accounts for less than 1% of the actual population.

2) The sampling bias is due to the significant di↵erences in the groups targeted by

the human mobility data obtained by di↵erent data collection techniques, resulting in

the data obtained generally focusing and showing the movement behavior patterns of

63
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a particular group of people. For example, the human mobility GPS dataset collected

by relying on the navigation system installed in the car shows the mobility pattern of

the car. This mobility pattern is quite di↵erent from the mobility of trains, bicycles,

or walking people. We define the di↵erence between the representativeness of the data

collected from a particular group of people and the human mobility pattern of all people

in the actual scene as bias.

Another issue is that we also need to consider how to prevent privacy violations when

using human mobility data. Because the human mobility GPS data we use contains a lot

of detailed user movement information, such as the user’s home address, work address,

and frequently visited Point of Interest (POI). Users usually have a strong sensitivity

to whether this type of data will infringe on their privacy. At the same time, the

service provider also needs to comply with ethical and even legal provisions to protect

privacy and even encrypt the collected data. Therefore, even the maturity of various

data-driven algorithms, such as deep learning, brings new opportunities to solve many

problems in cities based on human mobility data that were di�cult to solve before, such

as tra�c congestion, the impact of large-scale events on human mobility patterns et al.,

the privacy violation problem remains. The basis of these data-driven algorithms is to

use as much human mobility data generated in the real world as possible, so the question

becomes how to make full use of helpful information contained in human mobility data

without violating users’ privacy.

5.1.2 Research objective

Our objective for building a constrained trajectory generator is to scale up a biased

small trajectory dataset given some information from other data sources. Our expected

outputs should be a less biased large trajectory dataset. At the same time, the model

we proposed should solve the two issues mentioned above.
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5.2 Methodology

5.2.1 Preliminary

In the previous chapters, we introduced a retrieval-based approach for human mobility

generation that uses the similarity compressed to the hidden Gaussian mixture distribu-

tion as the human mobility trajectory similarity and retrieves historical human mobility

data with a higher degree of similarity to tackle the problem of the low sampling rate in

collected human mobility data. The retrieval-based human mobility generator proposed

before is mainly to solve the problem that it is di�cult for us to measure the authenticity

of the trajectory generated directly by the generative model. However, in the scenario

we anticipated, we cannot get a large amount of historical human mobility data because

this runs counter to the premise that we need to protect user privacy, which means that

we cannot use the retrieval-based human mobility generator proposed before to generate

many trajectories close to reality.

Generative model One of the reasons we use generative models is because we want

to have more diversity when generating virtual human mobility GPS trajectories. Here,

the definition of diversity is that many users have similar movement patterns, but there

are still some minor di↵erences in the detailed trajectories they generate in their daily

activities. We define this subtle di↵erence as the diversity of trajectories. Previously,

the retrieval-based human mobility generator was used based on the similarity of the

trajectory based on the individual mobility pattern represented by the compressed hid-

den vector. Then trajectories similar to the current query trajectory in the historical

GPS trajectory database were retrieved as the virtual generated GPS trajectory. The

advantage of this method is that every selected GPS trajectory has been recorded in

history, so we do not need to measure the authenticity of the generated virtual trajec-

tory. Its main limitations are in two aspects. 1) We need an extensive historical data

set to construct a rich and diverse GPS trajectory set. Otherwise, we will not be able

to guarantee that the new virtual data generated has diversity and a certain degree of

accuracy. 2) Using this method, we need a pre-calculated scaling factor for each query

GPS trajectory to generate enough virtual GPS trajectory data. This generated virtual

human mobility GPS trajectory data needs to be close to the citywide human mobility

pattern in the real world.
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Correspondingly, the disadvantage of directly using the generative model is that the

generated trajectory often does not perfectly conform to the topological structure of the

urban road network. Therefore, when we directly use the generative model to generate

GPS trajectories, post-processing such as map matching is usually required. However,

directly using the generative model to generate GPS trajectories also brings some bene-

fits, such as 1) We do not need to maintain a vast historical database, which aligns with

our goal to protect users’ privacy while generating more virtual human mobility GPS

trajectories. 2) We can directly generate diversity by controlling the Gaussian mixture

distribution generated by each GPS trajectory in the generative model. Every time a

new virtual GPS trajectory is generated, we need to perform random sampling on a

Gaussian mixture distribution. Next, we will briefly introduce how to use the generative

model to generate a new virtual GPS trajectory.

We usually use an Encoder-Decoder structure to construct our generative model. When

we follow the variational inference framework, the Encoder refers to map the GPS tra-

jectory from an input individual to a multivariate Gaussian mixture distribution. In

contrast, the decoder refers to map a random point we are sampling from a particular

multivariate Gaussian mixture distribution to a GPS track of an individual. The core of

this model is the structure of multivariate Gaussian mixture distribution, which is the

key to generating new virtual GPS trajectories. When we map our current low-sampling

rate human mobility data with certain deviations into many multivariate Gaussian mix-

ture distributions through a generative model, we only need to use specific sampling

methods to generate more virtual human mobility GPS data. We choose a proper sam-

pling method to random sampling points in obtained multivariate Gaussian mixture

distributions to generate the virtual trajectory data we finally want, which can reduce

the deviation compared with the original trajectory data.

Heterogenous data as guide information We also need to combine some hetero-

geneous data to the human mobility GPS trajectory dataset, the most typical being

statistical data. This chapter intends to use ubiquitous demographic data such as OD

distribution as heterogeneous data to supplement some census information to guide scal-

ing factors. One of our assumptions is that we down-sample the human mobility GPS

trajectory dataset and only extract the OD information of each trip as demographic

data. Then we grid this simulated OD table, and the data obtained after visualization
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is shown in the figure 5.1. We hope that this OD distribution data can guide us in esti-

mating a more reasonable scaling factor to reduce the bias generated when the virtual

human mobility GPS trajectory data set is generated.

Figure 5.1: OD distribution of one day (left (a), (c), 2019.10.31) and one hour (right
(b), (d).

In a perfect situation, if we can estimate an excellent scaling factor, denoted as w, it

should satisfy the following equation:

ODhour ⇤ w = ODestimate (5.1)
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Therefore, we know that after we have established the relationship between the infor-

mation contained in heterogeneous data and the scaling factor, our crucial question has

become how to e↵ectively use the guidance information to estimate an excellent scaling

factor.

At the same time, we have also noticed that it is not correct to rely solely on OD distri-

bution data to optimize the scaling factor. Every time we generate a new virtual human

mobility GPS trajectory through a generative model, it is not the same as the real input

GPS trajectory. Therefore, we believe that a more compact method is constructing a

method that can update weighted multivariate Gaussian mixture distribution according

to the scaling factor estimated each time. When we generate multiple multivariate Gaus-

sian mixture distributions constructed by the model, randomly sampling enough random

noise points on this complex distribution, then input these random noise points into the

generating model to reconstruct a virtual human mobility GPS trajectory. Then we can

know that the key to our construction of this model is how to construct the relationship

between the information of the OD distribution and the information of the trajectory

sampled from the estimated weighted multivariate Gaussian mixture distribution.

one-hot encoding for trajectory In machine learning, a one-hot is a group of bits

of which the legal combinations of values are only those with a single high (1) bit and all

the other low (0) [76]. We transform the original human mobility GPS trajectory data

as shown in the below. We first transform the human mobility GPS trajectory from

the original trajectory data, carrying timestamp, longitude, and latitude information,

into cities with pre-divided grids according to the latitude and longitude information

and obtain a grid composed of timestamp and grid ID. A simplified trajectory sequence

composed of grid IDs, and since the ID of each grid in each city is unique, we can

perform one-hot encoding on the grid ID at each moment and encode each grid ID into

The corresponding one-hot vector. In this chapter, since we normalized the trajectory

into a sequence with a fixed time interval, the fixed time interval is 1 minute. We

can discard the extra dimension used to represent the moment of each point in the

sequence. According to this rule, we only need to arrange the encoded one-hot vectors

in chronological order to characterize the information contained in a human mobility

trajectory completely. At this time, the trajectory is converted into a matrix composed

of multiple one-hot vectors.
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In a city with grids divided in advance, suppose we use the current number of people

in each grid to represent a kind of “population density,” denoted as b 2 Rm. Then,

our scaling factor is w, where m is the city’s grid number, n is the number of query

GPS trajectories. In the above, we have converted the human mobility GPS trajectory

into a matrix composed of one-hot vectors, and these one-hot vectors are arranged in

chronological order. Then the origin of each human mobility GPS trajectory is also a

one-hot vector. We use the following formula to express the i� th trajectory:

Ai 2 Rm,
X

Ai = 1 (5.2)

Then we know that since we want to use population density to estimate the scaling factor

of each trajectory if we write query trajectory as A 2 Rm,b, we can get the following

relationship:

Aw = b (5.3)

This formula is established because we need the statistical information of the virtual hu-

man mobility GPS trajectory data set we generated to be consistent with the statistical

data. For the destination of each trajectory, we can get a similar formula through the

same principle. Therefore, the problem becomes that how can we guarantee that the

generative model gives a w, s.t.Aw = b every time?

Projection method In previous research, Pathak [72] proposed a two-step method to

solve the training and learning of constrained deep learning networks and applied it to the

image recognition problem in the field of computer vision. Their leading ideas are shown

in the figure below. We observe that their method has two main limitations: 1) This

method cannot be implemented for heterogeneous input data. 2) This method requires

much computational cost. In order to avoid these two limitations of their method, we

propose to use the projection method to solve the training and optimization problem of

this constrained deep learning model. According to some conclusions in Chapter 4, we

can know the following information:

For A 2 Rmxn, and rank(A) = m. Given any w 2 Rn, the closest point, denoted as

Ŵ , s.t.Aŵ = b is

ŵ = (I �AT (AAT )�1A)(w � ŵ) + ŵ

= (I �AT (AAT )�1A)w +AT (AAT )�1b
(5.4)
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Figure 5.2: Two step approach for training a Deep learning model with constraints.

The above equation provides a straightforward projection method for solving a linear

constrained optimization problem if the condition that rank(A) = m, which means the

matrix A has full column rank. However, we found that we found that the one-hot

matrix composed of query human mobility GPS trajectory is not full column rank in

the real world. The reason is as follows.

Figure 5.3: A geographical explanation for the matrix rank(A) 6= m. The red dash
circle shows the sea, so there are no people lives here.

To solve the problem that rank(A) 6= m, we have two alternative solutions: 1) Padding.

2) Loosen constraints. The first solution is that we can add an additional matrix, denoted

as Â, to make sure that rank([AÂ]) = m. The limitation of this solution is that the

scaling factor w estimated by this matrix is sometimes meaningless. The second solution

is to loosen some linear constraints to make sure the loosened human mobility GPS one-

hot matrix, denoted as A�, satisfies the equation rank(A�) = rank(A). Then, we also

need to find the corresponding loosen population density, denoted as b� = b[A�.index].

There is also a limitation that some constraints are lost due to this process. In the above
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equation, A� denotes the matrix in which some columns that are not independent with

other columns in human mobility GPS trajectory one-hot matrix has been dropped,

and b� denotes that we drop the population density information corresponding to those

dropped columns in matrix A.

5.2.2 framework

At first, we will explain how to build some constraints as a proper relationship between

information from other data sources with every single trajectory. Suppose we can access

some census data, such as the OD dataset. We used simulated OD data from the

trajectory dataset in this research, but the framework of this method has no di↵erence

if we switch to a real OD dataset. The OD dataset gives us information on how many

people move from a particular origin to a specific destination. While in the trajectory

dataset, we only capture the movement trajectory of only a small number of people,

which we call a biased trajectory dataset. Using previous approaches, we could also

generate more trajectories based on existing trajectories, but these methods cannot

reduce the bias. We need the information of the OD dataset to reduce the bias of the

small trajectory dataset. In this research, we consider a simple constraint at first: the

number of generated trajectories should be the same as the number in the OD dataset.

The first step is dividing the experimental area into grids, so the trajectory is converted

from a sequence of longitude and latitude to a sequence of grid ID. Then we further

convert this sequence of grid ID to a sequence of one-hot vector, so the trajectory

becomes a matrix that each column contains only a “1” in the index of grid ID, with

other elements all to be “0”. We denote this matrix as A 2 R(m,n), where n is the

number of trajectories, and m is the number of grid IDs. For an OD dataset, we count

the aggregated number of samples in each grid using start point records to be a vector

denoted as b 2 Rm. Then, we want to find some weight w which satisfies Aw = b. The

constraint gives the relationship between the trajectory dataset and the OD dataset.

The framework of the constrained trajectory generator is shown in figure 5.4. The inputs

of this method are query trajectories, and the outputs of this method are query trajec-

tories and population density calculated using the OD dataset. The query trajectories

and population density of destination will be fed into the model for training while the

population density of origin is used to build the constraints.
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The query trajectories will be compressed as a latent vector and a weight by the encoder

of VAE. The latent vector is used to form the posterior distribution, while the weight

is used to form a weighted Gaussian mixture. We sampling points from this posterior

distribution to reconstruct the query trajectories using the decoder of VAE. At the same

time, we are also sampling points from the weighed Gaussian mixture to reconstruct a

larger trajectory dataset using the same decoder.

Figure 5.4: The framework of Constrained generator.

If we want to solve the issue that the number of reconstructed trajectories is the same

with the population density, we need make sure every output weight w of encoder in

VAE satisfy the constraint Aw = b. in this research, the constraint is built in a linear

equality way, so we use a projection method to solve this constraint in a simple yet

e�cient way. For each output weight w of encoder in VAE, we could find the closest w?

which satisfy the constraint Aw? = b by:

w? = (I �AT (AAT )�1A)w +AT (AAT )�1b (5.5)

Where I is the identity matrix. We can prove Eq. 5.5 always hold when rank(A) =

m < n.

Then the model is trained using a loss function contains three parts L = Lrecon + ↵ ⇤

LKL + � ⇤ Ldensity. The first part is the reconstruction error when this model tries

to reconstruct the query trajectory dataset. The second part is the KL-divergence

which penalize the learned latent vector to a simple unit Gaussian mixture. The third
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part is the population density error calculated by reconstructed large trajectory dataset

compared with the ground truth population density calculated by OD dataset. ↵,� are

hyperparameters which adjust how much contribution of each part of loss we want to

feed back into the model for a proper training.

The adaptive learning rate is often used to balance the convergence speed and the best

convergence e↵ect when training deep learning models. One of the most fundamental

concepts of deep learning models is the backpropagation algorithm. In the training of the

deep learning model, we usually need to first calculate the gradient of the loss function

to each parameter in the deep learning model and then assign the loss to each parameter

in the model according to the estimated gradient to achieve parameter update. When

updating parameters, we also need to define a learning rate to adjust the amplitude of

parameter updates, as shown in the figure below.

Figure 5.5: Illustration of gradient descend when training deep learning models.

The figure shows the visualization of gradient descends. The backpropagation algorithm

can ensure that the model parameters move to a minor gradient direction with a high

probability after each update. If the problem learned by deep learning is a simple single

extreme value problem, then theoretically, the parameters of deep learning can always

converge to that single extreme value. However, if the problem learned by the deep

learning model is a relatively complex multi-extreme problem, then the model may not

always converge to the global optimum in the end. In the figure, we have given a local

optimum (orange dash circle) and a global optimum (green dash circle) and also given

the two possible convergence directions of the deep learning models (black line). People

have thought of many ways to make the deep learning model converge to the global

optimum with a high probability.
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There are many advantages to using an adaptive learning rate to adjust the learning

rate during model training. Usually, we use a larger learning rate in the early stage of

deep learning model training to quickly reach an optimal value. Nevertheless, since this

best point is not always the global best, we usually still let the model jump around this

best point with a larger learning rate. When the current optimal point is not the global

optimal, a larger learning rate helps make the model jump out of the local optimal and

move toward a smaller gradient. However, when we use a larger learning rate for a

while, the training model still does not reach a direction with a smaller gradient. We

start to reduce the learning rate because a lower learning rate helps us make fine-tuning

nearby to speed up convergence. At the same time, the adaptive learning rate also

helps prevent underfitting because we always give the model more opportunities to try

di↵erent gradient directions.

5.3 Experiments

5.3.1 Data description

The primary data we used is navigation GPS data of human mobility of entire Japan.

This dataset consists of extensive individual navigation GPS trajectories that contain

information such as a Trip ID, timestamp, longitude, and latitude. We define the exper-

imental area in this chapter as a rectangle of longitude from 139.5 to 139.9, latitude from

35.5 to 35.8, respectively, which can be seen as the center area of Tokyo. The following

figure is a simple visualization to show the experimental area with human mobility GPS

trajectories. Then this dataset is also used to simulate a heterogeneous OD dataset,

which is shown in the figure 5.1.

5.3.2 Metrics

The metrics used for assessment are the most commonly used Mean Square Error (MSE),

Earth Mover’s Distance (EMD), and CityEMD. MSE is a most commonly used metrics

for evaluate the Euclidean distance between two distributions.

MSE =
1

N

NX

1

(Ŷ 2 � Y )2 (5.6)
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Figure 5.6: Visualization of the experimental area with human mobility GPS trajec-
tory.

EMD is also known as the Wasserstein metric, which measures the distance of two

probability distributions. Informally, we can consider the EMD as the minimum cost of

turning one pile into the other.

dw(⇡,�) =
nX

r=1

d0w(⇡(r),�(r))

d0w(u, v) =

8
>>>>><

>>>>>:

Pv�1
t=u wt if u < v

d0w(u, v) if u > v

0 Otherwise

(5.7)

CityEMD is proposed to measure the distance between two citywide human mobility

pattern [27].

CityEMD(t) =
X

o

dist(p(d|t+�t, Uo
t ), p̂(d̂|t+�t, Uo

t )) (5.8)



Chapter 5. Linear constrained human trajectory generation 76

5.3.3 Results

Training log is given in Figure 5.7, 5.8, 5.9.

Figure 5.7: Reconstruction loss and OD distribution loss when training.

Figure 5.8: KL divergence loss and OD distribution loss when training.
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Figure 5.9: Reconstruction loss and KL divergence loss when training.

From training log from above figures, we know that 1) Better reconstruction accuracy

leads to better bias reduction; 2) Better diversity leads to better bias reduction; 3)

Better reconstruction accuracy leads to worse diversity.

Figure 5.10: Visualization of ground truth and reconstruction results of AE, VAE,
and CVAE.

Table 5.1: E↵ectiveness of a constrained model.

Bias Constrained VAE Non-constrained VAE

MSE 11.993 13.6187 16.8160
EMD-1D 4.6312 3.4965 5.0104
EMD-2D 5.8085E4 6.1821E4 6.5668E4
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Figure 5.11: Visualization of population density of ground truth data (upper left),
estimated data (bottom left), and comparison fo EMD.

We give some experimental results to show the e↵ectiveness of constrained trajectory

generator. From figure 8,9, we can see the comparison of AE, VAE, and CVAE use

the metrics of MSE and CityEMD. The reconstruction MSE is used for measuring the

ability of the model for reconstructing urban trajectories from points sampled in latent

vector space.

Figure 5.12: CityEMD comparison between results of AE, VAE, and CVAE.

We see that all models give acceptable accuracy when generating new trajectories. The

bottom figure is the CityEMD of these three methods. CVAE gives the best performance

which means that the global pattern of reconstructed large trajectory dataset is most

similar with the ground truth data. In table 2, we show the e↵ectiveness of a constrained

model comparing with the non-constrained model. The bias is defined as the error of

population density when evenly scaling up query trajectories. The constrained trajectory

generator always performs better than a non-constrained model in all metrics. We also

notice that the constrained trajectory generator gives worth performance than bias in
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MSE and EMD-2D. This is caused by the reconstruction error introduced when we

generating trajectories from latent vector space while evenly scaling up query trajectory

dataset doesn’t introduce any reconstruction error.

5.3.4 More evaluation

Evalution of di↵erent scenarios including: The number of query trajectories from 500

to maximum number (30,000) of trajectory dataset (from left to right direction). The

number of target trajectories from 2,000 to maximum number (30,000) of trajectory

dataset (from up to down direction). Di↵erent sampling rate from 3 hours to 6 hours.

Every row in each figures gives a set of experiment: for example, in figure 5.13, (1) is the

visualization of OD distribution of 2,000 ground truth trajectories. Meanwhile, (1.a),

(1.b), and (1.c) shows the OD distribution of 2,000 generated virtual trajectories using

500, 1,000, and 2,000 trajectories as query trajectories respectively.

Comparison with metrics including: Reconstruction error (Recon), Relative distribution

error (Relative dist), Absolute distribution error (Absolute dist), Reconstructed distri-

bution error (Recon dist), Relative distribution error without boundary (Relative dist

(no boundary)).

5.4 Conclusion

Constrained trajectory generator is shown to be e↵ective comparing with previous meth-

ods. The current problem in this part is that we only conduct experiments with only

some linear equality constraints, but there are many more complex and di�cult con-

straints if we want utilize more heterogenous data sources to enrich the information

learning by the model. The next step for this method is a generalized projection module

for constrained trajectory generator.
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Chapter 6

Conclusion and Future work

6.1 Concluding Remarks

We discussed and analyzed the two main issues: privacy protection and reduction of

sampling bias and noise in the existing human mobility data existing in the city. At the

same time, we also try to solve the above two problems from di↵erent angles and fully

use the advantages of deep learning.

In the beginning, we tried to use Bayesian inference to understand the problem of hu-

man mobility estimation. We assume that any human mobility trajectory can find the

corresponding hidden space distribution to represent the critical time-series information

contained in the trajectory data. Under this assumption, as long as we know the joint

probability distribution of the observed trajectory data and the hidden layer spatial dis-

tribution, we can estimate the human mobility within the city without directly using the

observed trajectory data. We use LSTM to process the conversion between observation

trajectory data and hidden space distribution in practical applications. Then, we use a

variational generative model to generate more virtual trajectory data. The experimental

results show that the generative model used has indeed achieved our goal. The virtual

trajectory data sampled from the hidden space distribution has a certain degree of recon-

struction accuracy and some diversity di↵erent from the observed trajectory. However,

one limitation of this method is that no geographic information input is given. Hence,

the newly generated virtual trajectory data also lack geographic information constraints.

The trajectory points are sometimes located outside the road network.

86
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In order to solve the limitations of the generative model mentioned above, the most

intuitive way is to conduct a map matching to the newly generated trajectory data.

However, we believe that using map matching as post-processing will change the origi-

nal pattern of the virtual trajectory data. In order to verify our ideas, we did a simple

experiment and used various trajectory similarity indicators to quantify the di↵erences

in patterns after post-processing. The experimental results show that the trajectory

after this post-processing has changed by more than 20% compared with the original

trajectory. Therefore, we want to avoid this simple use of map matching as a post-

processing method to solve the above problems. At the same time, we also realize that

it is di�cult for us to find suitable indicators to quantify the authenticity of the newly

generated virtual trajectory data. Because our observation trajectory data itself has

sampling bias, even if we newly generate a di↵erent trajectory from the observation tra-

jectory, we cannot directly think that this newly generated trajectory is unreal. In order

to solve the above two problems, we refer to the work of traditional trajectory similarity

and propose a retrieval-based method to generate new trajectories. We still use the deep

learning model to encode the observation trajectory data to get a hidden space distri-

bution. Then we use the same encoder to encode the entire trajectory database and

then use the k-d tree to quickly search for historical trajectories similar to the observed

trajectory to generate new virtual trajectory data. Under a similar framework, we com-

pared the deep learning model with some traditional trajectory similarity methods. The

experimental results show that the deep learning encoder is more capable of mining the

time series characteristics of the trajectory itself and can distinguish di↵erent trajec-

tories more e�ciently. However, this method still has some limitations. For example,

under this framework, we cannot know the weight of each observation trajectory in the

entire citywide human mobility, so it is di�cult for us to make better use of the limited

observation trajectory data to reduce sampling bias.

Then we did not immediately propose a new framework to improve the above limitations

but first introduced a di↵erentiable projection method to construct a constrained deep

learning model. Deep learning itself is a pure data-driven algorithm. Its advantage

is that we can use a general algorithm framework to solve various problems without

additional expert knowledge. However, in actual application scenarios, we sometimes

know some expert knowledge in advance, and we want the deep learning model to learn

within the constraints of this expert knowledge. That is, we want to implement a
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constrained deep learning model. Inspired by some research in the field of constrained

optimization, we found a di↵erentiable projection method. Although this method cannot

directly solve the linear constraint optimization problem, the point after the projection is

closer to the entire feasible solution domain than the initial point. Then the constrained

deep learning model can make full use of some expert knowledge without data-driven

learning. Moreover, we use synthetic data to verify the proposed model, which provides a

theoretical basis and application method for constructing a constrained human mobility

estimation model later.

Finally, we give a straightforward application of the constrained deep learning in human

mobility estimation. In this application, our purpose is to solve the problem that the

retrieval-based model cannot directly give the weight of each observation trajectory. We

believe it is necessary to introduce new data to solve this problem. Due to data limi-

tations in actual implementation, we used simulated OD data, which is heterogeneous

with human mobility trajectory data. However, it provides some additional information

not in the trajectory data, such as population density. We carefully convert the trajec-

tory data and establish a constraint relationship with the simulated OD data, and then

apply the constrained deep learning proposed above for training. The experimental re-

sults show the e↵ectiveness of constrained deep learning in human mobility estimation.

It can maintain a sure accuracy of individual trajectory reconstruction and e↵ectively

reduce the sampling deviation of trajectory data by about 20% compared with the usual

deep learning model. So far, we have completed the work from reconstructing individual

trajectories to the estimation of citywide human mobility.

6.2 Future Work

We notice some limitations of methods proposed in current research, and we consider

some improvements for some of them. However, there are still many possible directions

for improvement. We have currently tried some frameworks for urban trajectory gener-

ators and show their performance compared with other methods. In the future, we will

try to conduct more applications based on these proposed urban trajectory generators

since we think each method has their strength and weakness. For example, a possible

future work will build a latent semantic space of given urban trajectory data under the

retrieval-based trajectory generator framework. We could use this latent semantic space
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to retrieve trajectories that we need more specific and accurate. Besides, another future

work will be building a more generalized constrained urban trajectory generator which

subjects to some complex linear inequality constraints. It is worth building an integrated

system of the current framework of human mobility estimation.

At the same time, we believe that data fusion is also a critical direction for human

estimation. Because although we find that the current method has proposed a way

to solve privacy infringement when using data, there is still a significant limitation for

reducing the sampling bias and noise issue. The performance of our proposed methods

to reduce the sampling bias of human mobility data is limited, owing to the use of a

single data source. Therefore, we think there still has much room for improvement of

this issue. In the future, we think a robust data fusion method is helpful to mine the

information from di↵erent data sources to complete human mobility estimation with less

sampling bias.
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Appendix

Lemma 1. Given any x 2 Rn, A 2 Rm,n, and rank(A) = m  n, b 2 Rm. The closest

point x? subject to Ax = b is

x? = (I �AT (AAT )�1A)x+AT (AAT )�1b

Proof. Suppose a subspace

S = {x|Ax = b} (A.1)

For any x 2 Rn, we have

x = projS(x)LprojS?(x) (A.2)

Since S is the null space of A, S? is the orthogonal subspace of S:

S = N(A)

S? = N(A)? = C(AT )
(A.3)

Where C(AT ) is the column space of the AT . Suppose x̂ 2 Rm is a vector in the column

space of the AT , so we have:

p = AT x̂ (A.4)

Given any x 2 Rm, a column vector c = ATx should be projected into columns space

of the AT , which means that the error vector e = c � p should be perpendicular with

column space of the AT :

Ae = 0 (A.5)
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So we have:

A(c�ATx) = 0

AAT x̂ = Ac

x̂ = (AAT )�1Ac

p = AT x̂ = AT (AAT )�1Ac = projS?(c)

(A.6)

Therefore:

projS? = AT (AAT )�1A

projS = I �AT (AAT )�1A
(A.7)

Since rank(A) = m, we have rank(AAT ) = m, which is full rank, so AAT is invertible.

Since x? is the projection of x onto the subspace S:

projS(x� x?) = 0 (A.8)

We have:

(I �AT (AAT )�1A)(x� x?) = 0 (A.9)

Then:

x? = (I �AT (AAT )�1A)x+AT (AAT )�1b (A.10)

Conbergence of projection method for linear inequality constraints

Lemma 4. For any x 2 Rn,

f(P↵x)  f(x)� (
2

↵
� 1)||P↵x� x||2 (A.11)

Proof. Since Pix is the closest point to x in Ci,

||PiP↵x� P↵x||2  ||Pix� P↵x||2 = ||Pix� x||2 + ||x� P↵x||2 � 2 < Pix� x, P↵x� x >

(A.12)
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Therefore,

f(P↵x) =
kX

j=1

�j ||PjP↵Y � P↵Y ||2


kX

j=1

�j ||Pjx� x||2 + ||x� P↵x||2 � 2 < Px� x, P↵x� x >

= f(x)� (
2

↵
� 1)||P↵x� x||2

(A.13)

Define g↵ : Rn ! R�0 as g↵(x) = ||P↵x�x||2. Let G be the set of minimizers of f . It is

clear that f is a convex function since it is a positive combination of distances to closed

convex sets. Theorem 1. F = G.

Proof. (1) G ⇢ F .

Take x 2 G, so

f(x)� f(Px)  0

From Lemma 4,

0  g1(x)  f(x)� f(Px)

(2) F ⇢ G.

Take z 2 F, x 2 Rn.

Assume, by negation,

f(x) < f(z)

Consider the level set

A = {y 2 Rn : f(y)  f(x)}

A is closed and convex, because of the continuity and convexity of f .

Let y0 be the closest point to z in A. By Lemma 4,

f(Py0)  f(y0)

The definition of y0 implies now

||Py0 � z|| � ||y0 � z||
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from Eq. 4.12,

||Py0 � z|| = ||Py0 � Pz||  ||y0 � z||

So

||Py0 � z|| = ||y0 � z||

Thus

Py0 = y0

Therefore

||y0 � z|| = ||Py0 � Pz|| 
rX

i=1

�i||Piy
0 � Piz||  ||y0 � z||

Then

||Piy
0 � Piz|| = ||y0 � z||

for any i.

We can get

Piz � z = Piy
0 � y0

So

f(z) = f(y0)  f(x)

a contradiction.

So f(z)  f(x) for any x 2 Rn, that is to say z 2 G.

Let F↵ be the set of fixed points of P↵.

From the definition of P↵ that F↵ = F for any ↵ > 0.

We define a feasible points by

C = \ri=1Ci 6= �

We will show that F = C.

(1) Take z 2 F, x 2 C.

Since x 2 C,Pix = x and ||Pix� Pjx|| = 0 for any i, j.

As in Lemma 3,

0 =< x� Pz, z � Pz >=< Px� Pz, z � Pz > �
rX

i=1

rX

j=1

�i�j ||Piz � Pjz||2

So

Piz = Pjz
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for all i, j

Then

z =
rX

i=1

�iPiz = Piz

for any j, implying z 2 C.

(2) Obviously, C ⇢ F .

Theorem 2. If {xk} defined by (11) is bounded, then it converges for any x0 2 Rn, and

F 6= �.

Proof. If {xk} is bounded there exists a convergent subsequence

xkj ! x, j !1 (A.14)

So

g↵(x
kj )! g↵(x), j !1 (A.15)

Using Lemma 4, we have

g↵(x
kj )  ↵

2� ↵
[f(xkj )� f(xkj+1)] (A.16)

Since f(xk) is decreasing and bounded below by 0, f(xk)� f(xk+1) tends to 0.

So

g↵(x) = 0) P↵x = x) x 2 F

So

F 6= �

Given a small real number ✏ > 0, let

||xkj � x|| < ✏

For any m > kj , we have

||xm � x||  ||xkj � x|| < ✏

So we get

xk ! x (A.17)
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