
論 文 の 内 容 の 要 旨

論文題目 Automation of Building Malicious Script Analysis

Systems for Diverse Execution Environments

 （悪性スクリプト解析における多環境対応のための

システム自動構築に関する研究）

 氏 名 碓井 利宣

This thesis consists of seven chapters, as summarized above.

In Chapter 1, we introduce the background of this thesis and clarify the

problems addressed in this thesis. We first introduce that recent malware

(malicious software) used by attackers has not only a form of an executable

binary but also diverse forms such as various files with exploit code (exploit

files) and scripts with malicious behavior (malicious scripts). This diversity

in forms forces malware analysts to build protection systems for each of them

respectively, which is almost unrealistic from the perspective of the required

human effort. We then show that the existing techniques that analyze and detect

these malicious files cannot solve this problem. In the following chapters, we

address this problem by introducing analysis and detection techniques

applicable to diverse forms of exploit files and diverse languages of malicious

scripts.

In Chapter 2, we propose a method for statically detecting ROP chains in

malicious data, including malicious files, by learning the target libraries

(i.e., the libraries used for ROP gadgets). Our method accelerates inspection

by exhaustively collecting feasible ROP gadgets in the target libraries and

learning them separated from the inspection step. In addition, we reduce false

positives inevitable for existing static inspection by statically verifying

whether a suspicious byte sequence can properly link when executed as a ROP

chain. Experimental results on our prototype system called ROPminer showed that

our method had achieved millisecond-order ROP chain detection with high

precision. Because ROP chains are almost essentially embedded in exploit files,

static detection of them, which does not have requirements to deploy, can

protect the various endpoints against the diverse form of exploit files.

In Chapters 3-5, the main part of this thesis, we introduce approaches that

build malicious script analysis tools of script API tracers, multi-path

explorers, and taint analysis frameworks, respectively. The script API tracers

log the called script APIs during the execution of the target script. The

multi-path explorers execute exhaustive paths in the target script. The taint

analysis frameworks enable us to track the data flow in the target script. By

automating to build these analysis tools, this thesis provides protection

against malicious scripts written in diverse script languages.

In Chapter 3, we propose an approach for detecting the hook and tap points

in a script engine binary essential for building a script API tracer. Our

approach allows us to reduce the cost of reverse engineering on a script engine

binary, which is the largest portion of the development of a script API tracer,

and build a script API tracer for a script language with minimum manual

intervention. We implemented a prototype system with our approach called STAGER.

The experimental results showed that our approach built the script API tracers

for the three script languages popular among attackers (VBA, VBScript, and

PowerShell). The results also demonstrated that these script API tracers

successfully analyzed real-world malicious scripts.

In Chapter 4, we propose an approach that builds multi-path explorers based

on vanilla script engines by dynamically analyzing them to obtain architecture

information of their VMs required for multi-path exploration. Our approach

executes multiple test scripts to obtain execution traces of the target script

engine and differentiates them for extracting architecture information of its

VM. We implemented a prototype system with our approach called STAGER M and

evaluated it with Lua and VBScript. The experimental results showed that our

approach could correctly extract the architecture information within a

realistic time frame. Using the information, we built multi-path explorers and

confirmed that they could effectively analyze real-world evasive malicious

scripts.

In Chapter 5, we propose an approach that builds taint analysis frameworks

for scripts on top of the framework designed for native binaries. We first

conducted experiments to reveal that the semantic gaps in data types between

binaries and scripts disturb our approach by causing under-tainting. To address

this problem, our approach detects such gaps and bridges them by generating

force propagation rules, which can eliminate the under-tainting. We implemented

a prototype system with our approach called STAGER T and evaluated it with

Python and VBScript. We built taint analysis frameworks for Python and VBScript

with STAGER T and confirmed that they could effectively analyze the data flow

of real-world malicious scripts.

In Chapter 6, we provide overall discussion involved in multiple chapters

(especially in Chapters 3-5). We first discuss how we can effectively combine

the approaches proposed in the chapters and then describe how practical the

malicious script analysis systems built by combining them would be. From a

different perspective, we also discuss what can be proposed for future script

engines with the insight obtained in the chapters. More concretely, we propose

to future script engines that they have an interface that provides information

helpful for building malicious script analysis systems by extending the design

of an existing interface provided by the script engines of Microsoft Corporation.

In Chapter 7, we conclude this thesis by summarizing our contributions and

describing the future prospects of the research field newly developed in this

thesis.

