
論 文 の 内 容 の 要 旨 

Abstract 
 

 

論文題目 

A Study on Static and Dynamic Programming Assistance for Embedded Domain-Specific Languages 

（埋込みドメイン特化言語向け静的および動的プログラミング支援に関する研究） 

 

 

 

 

 

氏名    奥田 勝己 

 

 

 

 

 

 

 

This dissertation presents our research to improve the domain-specific 

programming assistance for embedded domain-specific languages (DSLs). Using 

embedded DLSs is a promising approach to efficient software development for 

specific application domains. The designer of an embedded DSL can implement 

them with less effort compared to external DSLs. For example, the embedded DSL 

designer does not need to develop parsers for the embedded DSL since it is 

implemented as a library or framework for the host language. Moreover, the 

embedded DSL designer does not need to develop an integrated development 

environment (IDE) since the DSL user can use IDEs for the host language. However, 

using the syntax and IDEs of the host programming language limits the domain-

specific assistance for the embedded DLS since only programming assistance for 

the host language is available in the embedded DSL. To provide better 

programming assistance for the embedded DLS, the embedded DSL designers have 

to develop additional tools. This effort reduces the benefit of the embedded 

DSL. To address this problem, we categorized programming assistance into static 

one and dynamic one and developed efficient methods for implementing each 



assistance. The dissertation includes three studies: (1) proposal of lake 

symbols for island parsing, (2) proposal of interactive grammar editing for 

island grammars, and (3) design approach to embedded DSL for dynamic programming 

assistance. Study (1) and Study (2) achieve reducing the effort to implement 

static programming assistance for embedded DSLs. On the other hand, Study (3) 

proposed the importance of dynamic domain-specific assistance for embedded DSLs 

and the language design that can exploit the IDE for domains-specific assistance. 

We define static programming assistance as domain-specific abstraction 

provided in the syntax level of the language. The key to an efficient 

implementation of syntax extension is to decrease the effort for developing a 

parser. The number of rules in the grammar that the parser depends on reflects 

the effort to developing a parser. The island grammar is a promising technique 

to reduce the number of rules in the grammar by omitting the rule for the 

uninteresting part of the language. Moreover, its application to syntax 

extension has also been proposed. However, the description of practical island 

grammar is complex because it requires a complex definition of the rule to skip 

the uninteresting part of the language. 

The lake symbol proposed in Study (1) eases the description of island grammar. 

The lake symbol is a novel grammatical symbol similar to nonterminal symbols. 

The embedded DSL designer can use lake symbols as a wildcard symbol at the 

place in the grammar where she wants the parser to skip the input until it 

finds an extended programming construct of interest. The lake symbol 

automatically calculates symbols called alternative symbols that prevent lake 

symbols from skipping the interesting part of language as a wildcard. Without 

lake symbols, the embedded DSL designer must find alternative symbols manually 

and specify them in the island grammar. Previous work has been tackled the same 

problem to ease the description of island grammars. However, it calculates the 

subset of alternative symbols. This limits the place in the grammar where the 

parser can skip the uninteresting part of the language. Our lake symbols relax 

this imitation. 

While the lake symbols ease the description of island grammar, writing island 

grammar is not easy. The description of correct island grammar requires 

iterations of trial-and-error. Hence, an efficient way to editing island 

grammars is required. Based on this motivation, Study (2) propose the 

interactive editing method and tool called PEGSEED. With PEGSEED, the language 

designer can write a working island grammar in a step-by-step manner. In each 



step, she adds a rule for a new island. After adding a new rule, she can test 

the grammar on an example text by highlighting the text area recognized by the 

latest rule. A rule for a new island can be added by concatenating already 

tested islands. By incrementally refining the island grammar tested in each 

step, DSL designers can efficiently get the expected island grammar. PEGSEED 

also provides a GUI operation to add a new rule by using an example text. By 

selecting a text area and applying one of the GUI operations. The user can add 

a new rule without writing it by hand. Our case study shows that the parsers 

for syntax extension can be available only with the GUI operations provided by 

PEGSEED. 

In Study (3), we introduce the importance of domain-specific programming 

assistance for embedded DSLs. We define auto-completion and error checking 

provided by IDEs as dynamic programming assistance. Careful language design 

enables dynamic domain-specific programming assistance via an IDE for the host 

language. We demonstrate this with our practical processor description language 

called MELTRANS. Our case study shows that domain-specific assistance can be 

available by exploiting an IDE for the host programming language. Moreover, 

because our design approach does not need customizing the IDE or developing a 

specialized IDE, it does not sacrifice the benefit of embedded DSLs that the 

construction cost is low. 

 


