
Efficient Mutation Analysis for Industrial Software

(産業用ソフトウェアに対する効率的なミューテーション解析)

by

Susumu Tokumoto

徳本晋

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on June 5, 2020

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Shinichi Honiden 本位田真一

Professor of Computer Science

ABSTRACT

Industrial software is developed and maintained by many people with different expe-
rience and skills within a limited time and cost. It is known that the lack of experience
and skills of developers greatly affects the number of defects in the software. In addition,
because of the rapid turnover of developers in companies, there are many legacy systems
that do not have quality assurance and cannot be identified by whoever created them.
Due to the lack of experience and skills of the developers, they may make changes to the
parts of the software that are not the root cause of the bugs, and as a result, if the bugs
are not fully fixed, multiple defects may occur. Similarly, if the cause of a bug in a legacy
system is located in a place that cannot be changed, it must be dealt with by making
changes in a place that can be changed, but again, if the bug is not fully fixed, multiple
intertwined defects will occur. If these defects are not detected before the release of the
software, there is a possibility that significant social damage will occur. One of the best
known techniques for detecting complex defects is mutation analysis. It is a method
to measure the ability of a given test to detect bugs that are artificially embedded by
mutating the elements of the program (mutation). Mutation analysis is not only used to
measure the bug detectability of a test; it also has a wide range of applications, such as
high-precision fault localization and automated program repair. Higher order mutation
analysis, which mutates multiple locations simultaneously, is a technique that has greater
potential for detecting complex defects than ordinary mutation analysis. However, higher
order mutation analysis generates a large number of mutants (mutated programs), and
all of them need to be compiled and tested, which is a problem that results in a very long
execution time. Therefore, higher order mutation analysis has not been widely used in
industry, despite the fact that strong applications have been devised. We propose, imple-
ment, and evaluate a high-speed higher order mutation analysis method and a mutant
optimization technique to improve execution costs to enable the application of higher
order mutation analysis to industrial software.

For the high-speed higher order mutation analysis method, we use four techniques
to achieve improved execution time for mutation analysis: metamutation, virtual ma-
chines (VMs) for mutation, runtime mutation application, and high-order stream split
execution. First, to avoid losing the information in the source code to the intermediate
representation by, e.g., compile-time optimization, the program elements are replaced by
a function called the metamutation function, which indicates the mutation position and
type before compilation. This enables the mutation of intermediate expressions to match
the mutation to the source code. Second, by running it on a VM, we reduce the overhead
by starting a process one time instead of running it per test. Third, rather than rewrit-
ing the source code for each mutant, we use the mutant information for each execution
state to translate the instructions into mutated ones when executing the intermediate
expression. This technique can shorten the compilation time because it only needs to be
compiled once. Fourth, while preserving the execution state on the VM, at the time of
execution of each instruction, it branches into a state that executes the original instruc-
tion and a state that executes the mutated instruction. This makes it possible to shorten
the test execution time. We conducted comparative experiments, which indicate that
our method is significantly superior to an existing tool, an existing technique (mutation
schema generation), and no-split-stream execution in higher order mutation.

For the mutant optimization, we analyze the limits of the reduction of mutants with-
out loss of reliability. Existing methods remain challenged in terms of excessive mutant
reduction and errors in the mutation score after reduction. The results of evaluation
using open source software (OSS) show that the greedy mutant selection method reduces
the execution time by approximately 40%, although the reduction is inferior to that of
the existing method. To evaluate the impact of the reduction of excess mutants, we
measured the mutation score for the test in which the bug detectability was artificially
reduced, and the discrepancy in the mutation score of the proposed method was less than
that of the existing method.

Leveraging the high-speed mutation analysis foundation, we improve the efficiency
of the fault localization technique as an application of mutation analysis. Fault local-
ization is a technique to reduce the cost of debugging by ranking candidate fault causes
based on test results and test execution information. Among the several fault localiza-

tion techniques, mutation-based fault localization (MBFL) can localize faults with high
accuracy but has the problem of high execution cost. Meanwhile, in mutation analysis, it
is known that the statement deletion mutation operator has less bias in mutation points
and is as effective as using all mutation operators even when used alone. Therefore, we
implemented MBFL using only the statement deletion mutation operator (SDL-MBFL)
and evaluated the localization of the software used in the actual product and nine ac-
tual faults. As a result of the evaluation, SDL-MBFL found more faults than existing
methods in the higher ranks of 100 or more.

The overall evaluation of this study in terms of the application of mutation analysis
to bug detectability measurement is that it contributes to methods to improve speed
and accuracy, and has an advantage over state-of-the-art techniques, especially in higher
order mutation. In terms of the application of mutation analysis to fault localization, this
work is superior to the state-of-the-art in granularity and reliability. These contributions
will greatly reduce the cost of performing higher order mutation and enable the detection
of complex defects in industrial software.

論文要旨

産業用ソフトウェアは限られた時間とコストの中で経験・スキルの差のある多人数によっ

て開発・保守が行われる．開発者の経験・スキルの不足はソフトウェア内の欠陥数に大きく

影響することがわかっている．また企業では開発者の入れ替わりが激しいため，誰が作っ

たかわからなく品質の保証がないレガシーシステムが多く存在する．開発者の経験・スキ

ルの不足のために，バグの根本原因ではない箇所に変更が入り，結果的にバグが十分に修正

しきれなかった場合，複数個所が交絡した欠陥が生じてしまう．同様に，レガシーシステ

ムにおいて変更が不可能な箇所にバグの原因がある場合，変更可能な箇所での変更によっ

て対処しなければならないが，やはりバグが十分に修正しきれなければ，複数個所が交絡

した欠陥が生じてしまう．

複雑な欠陥の検出のための技術としてミューテーション解析が知られている．ミューテー

ション解析はプログラムの要素を変異（ミューテーション）させて人為的にバグを埋め込

むことで，用意されたテストがどれだけその埋め込まれたバグを検知できる能力を持って

いるか測定する手法である．また，高精度の欠陥局所化，プログラム自動修復などの幅広

い応用も考えられている．高次ミューテーション解析は複数個所を同時に変異させるもの

で，通常のミューテーション解析よりも複雑な欠陥を検出するのに大きな可能性がある技

術である．高次ミューテーション解析は大量のミュータント（変異させたプログラム）を

生成し，それらをすべてコンパイルし，テストをする必要があるため，実行時間が非常に

長くなる問題がある．そのため，高次ミューテーション解析は強力な応用分野が考案され

ているにも関わらず，産業界では広く使わていない状況にある．本研究では，産業用ソフ

トウェアへの高次ミューテーション解析の適用を可能にすべく，実行コスト改善のために

高速実行手法のアプローチとミュータント最適化のアプローチを提案，実装，評価した．

高速実行手法のアプローチでは，メタミューテーション，ミューテーション用仮想機械

（VM），実行時ミューテーション適用，高次ストリーム分割実行の 4つの技術を用いて，

ミューテーション解析の実行時間の改善を達成した．まずソースコード上の情報がコンパ

イル時の最適化などによって中間表現では失われないよう，コンパイル前にプログラム要

素をメタミューテーション関数と呼ばれるミューテーション位置と種類を表す関数に置き

換えることで，中間表現に対してもソースコードへのミューテーションと一致するミュー

テーションを可能にした．次に，VM上で実行することで．プロセスをテストごとに起動

していたのを 1回のプロセス起動で済むようにし，これによりプロセス起動によるオーバ

ヘッドを削減した．また，ソースコードを書き換えず，中間表現の命令実行時に各実行状

態のミュータント情報から命令を読み替えて実行する．これにより 1回のコンパイルで十

分となるためコンパイル時間の短縮が可能になる．さらに，VM上で実行状態を保存しな

がら実行し，各命令の実行時にミューテーションした命令を実行する状態へ分岐する．こ

れによりテスト実行時間の短縮が可能になる．これらの手法を評価するため，比較実験と

して我々の手法と既存ツール，既存手法と比較を行い，我々の手法が有為に優れているこ

とを確認した．

ミュータント最適化のアプローチでは，信頼性を損なわないミュータントの削減量の限

界を解析した．既存手法は過剰なミュータント削減と削減後のミューテーションスコアの

誤差という点で課題を残している．提案手法ではミューテーション解析中に引き起こされ

るエラーの種類を網羅するようなミュータントを選択することと，選択されたミュータン

トに重み付けをすることで過剰なミュータント削減を防ぐ高信頼なミューテーションスコ

アの計測方法を提案する．OSSを用いて評価した結果，既存手法よりも削減量は劣るもの

の，貪欲法によるミュータント選択方法により約 40%の実行時間の削減効果が得られた．

また，過剰なミュータントの削減の影響を評価するために，バグ検出力を人為的に落とし

たテストに対してミューテーションスコアを計測したところ，既存手法に比べ提案手法の

ミューテーションスコアの誤差は少なくなった．

さらにミューテーション解析の応用として，その高速ミューテーション解析基盤を活用

し欠陥局所化技術の効率化を行った．欠陥局所化技術はテスト結果やテスト実行情報など

から欠陥の原因個所の候補を順位付けすることでデバッグの作業コストを削減するための

技術である．いくつかの欠陥局所化技術の中で，ミューテーション解析に基づく欠陥局所

化技術 (MBFL)は高い精度で欠陥を局所化できるが，実行コストが高い問題がある．一方，

ミューテーション解析において，命令削除ミューテーションオペレータはミューテーショ

ン箇所の偏りが少なく，単独での利用でも全てのミューテーションオペレータを使った場

合と同等の効果があることが知られている．そこで命令削除ミューテーションオペレータ

のみを用いたMBFL(SDL-MBFL)を実装し，実際の製品で使われているソフトウェアと実

際に起こった 9件の欠陥に対して局所化の評価を行った．評価の結果として，SDL-MBFL

は 100位以上の高い順位において既存手法より多くの欠陥箇所を挙げられた．

ミューテーション解析のバグ検出力測定への応用の観点での本研究の全体の評価として

は，速度や精度を改善する手法について貢献があり，特に最先端技術に対して高次ミュー

テーションで優位性がある．また，ミューテーション解析の欠陥局所化への応用の観点で

は，本研究は最先端技術と比べ粒度と信頼度において優れている．このような貢献により

高次ミューテーションの実行コストの大きな削減を実現し，産業用ソフトウェアにおける

複雑な欠陥の検出を可能にするものと考える．

Acknowledgements

First, I would like to express my deepest gratitude to my supervisor, Profes-
sor Shinichi Honiden, for his invaluable advice, persistent support, and strong
encouragement, which helped not only my study but also my lifestyle and ways
of thinking as a researcher. In addition, he patiently mentored me during and
beyond my doctoral course, without which I would not have been able to continue
the challenge of this study.

I would also like to sincerely thank my PhD committee members—Professor
Masami Hagiya as chair, Professor Naoki Kobayashi, Professor Yusuke Miyao,
Professor Akihiko Takano, and Associate Professor Shinpei Kato—for their in-
sightful, constructive, and informative feedback, which refined the thesis.

My heartfelt gratitude extends to Dr. Hiroaki Yoshida at Fujitsu Laboratories
of America for guiding me in implementation and giving lots of technical advice.
Without his dedicated help, this study would not have been possible. I would also
like to offer my special thanks to Dr. Mukul Prasad at Fujitsu Laboratories of
America. His feedback, based on his extensive experience in software engineering
research, has contributed significantly to the quality of my study.

Additionally, I am deeply indebted to faculties and ex-faculties in the Honiden
laboratory, especially Associate Professor Kazunori Sakamoto who provided me
illuminating and important discussions, and Associate Professor Fuyuki Ishikawa,
Associate Professor Kenji Tei, Professor Yoshinori Tanabe, Assistant Profes-
sor Ryuichi Takahashi, Dr. Yuta Maezawa, and Assistant Professor Soramichi
Akiyama who provided me essential and valuable feedback.

Moreover, special thanks also go to all members and ex-members of the
Honiden laboratory, whose comments and suggestions were an enormous help
to me. They also made my life at National Institute of Informatics enjoyable.
I would like to list the members, Dr. Tsutomu Kobayashi, Kohsuke Yatoh,
Kazuya Aizawa, Dr. Ryo Shimizu, Fernando Tarin Morales, Takayuki Suzuki,
Shun Lee, Junto Nakaoka, Natsumi Asahara, Yuta Tokitake, Miki Yagita, Masaki
Katae, Moeka Tanabe, Yasuo Tsurugai, Yasuhiro Sezaki, Katsuhiko Ikeshita,
Takaya Saeki, Shinnosuke Saruwatari, Daichi Morita, Tomoya Katagi, Paul Har-
vey, Aurélien Vialon, Kazuyuki Honda, Takahiro Sugiura, Keita Tsukamoto,
Yetian Mao, Koki Kato, and Chihiro Iida.

I would like to sincerely thank the directors, managers, and fellows at Fujitsu
Laboratories Ltd., especially Dr. Rieko Yamamoto and Tadahiro Uehara for al-
lowing me to have this opportunity, and Kenichi Abiru, Hidetoshi Kurihara, Dr.
Shinji Kikuchi, Kuniharu Takayama, Kazuki Munakata, Isao Nanba and Takeshi
Yasuie for their generous support and encouragement. My sincere thanks also
go to my co-workers at Fujitsu Laboratories Ltd. who showed understanding in
my PhD study, including Atsuji Sekiguchi, Koki Kato, Yuuji Hotta, Satoshi Mu-
nakata, Masaru Ueno, Katsuhisa Nakazato, Dr. Hideo Tanida, Yusuke Nemoto,
Dr. Keisuke Hotta, Dr. Kunihiro Noda, Sho Maeda, Haruki Yokoyama, Takumi
Akazaki, and Dr. Yusuke Kimura. I would also like to genuinely thank the

executives of Fujitsu Laboratories Ltd. for their financial support.
Furthermore, I would like to tender my cordial thanks to Professor Hiroshi

Imai who was my master’s supervisor for his warm encouragement. Also, the
talented members of the Imai laboratory always stimulated my desire to challenge
myself in my PhD.

Finally and most importantly, I am sincerely grateful to my family for their
selfless support. My wife Yuki, my daughter Fuuka, and my son Souichi were
always there to encourage me.

vii

Contents

1 Introduction 1
1.1 The State of Industrial Software 1
1.2 Background of Mutation Analysis 1
1.3 Needs of Measuring Software Coverage in Industry 2
1.4 Problem and Motivation of Mutation Analysis 2
1.5 Application of Mutation Analysis: Mutation-based Fault Localiza-

tion . 3
1.6 Approach Overview . 4
1.7 Contributions . 4
1.8 Organization . 5

2 Background on Mutation Analysis 6
2.1 Terminology of Software Problems 6
2.2 Software Testing . 7
2.3 Mutation Analysis for Assessing Test Quality 9
2.4 Fundamental Hypotheses . 11
2.5 Process of Mutation Analysis . 11
2.6 Computational Cost of Mutation Analysis 12

3 A Systematic Literature Review of Code Coverage Measurement
in Industrial Testing 14
3.1 Overview . 14
3.2 Research Method . 14

3.2.1 Goal and Research Questions 15
3.2.2 Research Process . 15

3.3 Results . 19
3.3.1 RQ1: Which programming languages of SUT are popular

for coverage measurement? 19
3.3.2 RQ2: What types of coverage criteria are used? 19
3.3.3 RQ3: For what purpose is coverage used? 19
3.3.4 RQ4: What effects have resulted from the use of coverage? 20
3.3.5 RQ5: What quality characteristics are required in coverage

measurement tools? . 20
3.4 Discussion . 23

3.4.1 Context Type of Quality Characteristics 23
3.4.2 Needs for Coverage Measurement in Industry 24

3.5 Summary . 24

4 Virtual Machine for Mutation Analysis 26
4.1 Overview . 26
4.2 Preliminary . 27

4.2.1 Mutant Schemata Generation 27

viii

4.2.2 Bitcode Translation . 28
4.2.3 Split-stream Execution . 29
4.2.4 Higher Order Mutation . 30

4.3 Techniques . 30
4.3.1 Metamutation . 30
4.3.2 Mutation on Virtual Machine 32
4.3.3 Higher Order Split-stream Execution 32
4.3.4 Online Adaptation Technique 34

4.4 Design of MuVM . 34
4.4.1 Overall Structure and Behavior 34
4.4.2 Complications . 36
4.4.3 Mutation Score Calculation 37

4.5 Evaluation . 38
4.5.1 Competitive Tools . 39
4.5.2 Subject Programs . 39
4.5.3 Experimental Procedure . 39
4.5.4 Hypothesis . 40
4.5.5 Results and Discussion . 40
4.5.6 Threats to Validity . 44

4.6 Summary . 44

5 Statement Deletion Mutation-based Fault Localization 46
5.1 Overview . 46
5.2 Preliminary . 46

5.2.1 Statement Deletion Mutation 47
5.2.2 Spectrum-based Fault Localization 47
5.2.3 Mutation-based Fault Localization 48
5.2.4 Statement Deletion Mutation-based Fault Localization . . . 49
5.2.5 MBFL and SBFL Hybrid Approach 50

5.3 Evaluation Setup . 51
5.3.1 Research Questions . 51
5.3.2 Tool . 52
5.3.3 Evaluation Subjects . 52
5.3.4 Evaluation metrics . 53

5.4 Evaluation Results . 54
5.4.1 RQ1: How long does each mutation analysis run? 55
5.4.2 RQ2: What is a good formula for calculating the suspi-

ciousness of SDL-MBFL? 55
5.4.3 RQ3: Does SDL-MBFL rank high in faults compared to

other fault localization methods? 55
5.4.4 RQ4: Does the hybrid method of SDL-MBFL and SBFL

rank high in faults? . 55
5.5 Discussion . 59

5.5.1 Practical cost-effectiveness 59
5.5.2 Characteristics of the faults 59
5.5.3 How to choose a mutation operator 61

5.6 Summary . 61

ix

6 Error-Oriented Mutant Reduction and Mutant Weighting for
Reliable Mutation Analysis 63
6.1 Overview . 63
6.2 Preliminary . 64
6.3 Motivating Example . 65
6.4 Proposed Method . 66

6.4.1 Definitions . 67
6.4.2 Mutant Set Minimization Algorithm 68
6.4.3 Mutant Weighting . 69
6.4.4 Example of Mutant Set Minimization 70
6.4.5 Example of Mutant Weighting 70

6.5 Evaluation . 71
6.5.1 Research Questions . 71
6.5.2 Evaluation Method . 71
6.5.3 Subject of Evaluation . 72
6.5.4 Evaluation Results . 73

6.6 Discussion . 77
6.6.1 Ratio of Assertion Fixes to Test Code Fix Commits 77
6.6.2 Execution Time Optimization 77
6.6.3 Reducing Mutation Score Discrepancy 78
6.6.4 Reduction Per Mutation Operator 78

6.7 Summary . 79

7 Related Work 82
7.1 Speeding Up Mutation Analysis . 82
7.2 Mutants Optimization . 82
7.3 Mutation-based Fault Localization 83
7.4 Industrial Case Studies of Mutation Analysis 84
7.5 Evaluation of Debugging Techniques for Industrial Software 84
7.6 Applications of Mutation Analysis 85
7.7 Tools for Mutation Analysis . 85
7.8 Data flow Analysis for Testing and Debugging 87

8 Conclusion 90
8.1 Summary . 90
8.2 Overall Evaluation . 91

8.2.1 Overall Evaluation as Coverage Measurement Technique . . 91
8.2.2 Overall Evaluation as Fault Localization Technique 92
8.2.3 Overall Evaluation with Future Prospects 94

8.3 Future work . 94
8.3.1 Further Improvement in Performance 94
8.3.2 Other Practical Issues . 94
8.3.3 Towards Further Industrial Adoption 95

A Detailed Proof that the Ratio of Computational Cost in k-th
Order Split-stream Execution is k + 1 114

x

List of Figures

1.1 Overview of our approaches . 4

2.1 Terminology in Program failure . 7
2.2 Test suites, test cases, test data and test oracle 8
2.3 A process of mutation testing for incremental improvement of a

test suite . 12
2.4 Computational cost of mutation analysis 13

3.1 Research process used to conduct this study 14
3.2 Annual trend of publications including industrial coverage mea-

surement . 16
3.3 Number of publications by programming languages 19
3.4 Number of publications by coverage criteria 20
3.5 Number of publications by purpose 21
3.6 Number of publications by effect 21
3.7 Number of publications by quality characteristics 22
3.8 Number of quality characteristics in publications mentioned 22

4.1 Mutation schemata generation . 27
4.2 Bitcode translation . 28
4.3 Mutants omission by optimizer . 29
4.4 Split-stream execution . 30
4.5 Overview of MuVM approach . 31
4.6 Example of metamutation . 31
4.7 Higher order split-stream execution 32
4.8 HOSSE theoretical model . 33
4.9 State Transition in Offline and Online adaptation Technique 34
4.10 Structural design of MuVM . 35
4.11 Metamutation for Structural Mutation 37
4.12 Decision tree for simulating infeasible HOM 38

5.1 Statement deletion mutation . 47
5.2 Spectrum-based Fault Localization 50
5.3 Statement Deletion Mutation-based Fault Localization 51
5.4 Overview of system re-engineering project 52
5.5 Einspect@n in each of the SDL-MBFL suspiciousness calculation

formulas . 56
5.6 Einspect@n for each fault localization technique 56
5.7 Einspect@n for each hybrid fault localization technique 57

6.1 Ratio of modified assertions in commits of test code modification . 73
6.2 Distribution of increased/decreased assertions in commits of test

code modification . 74
6.3 Distribution of execution time of mutation analysis 74

xi

6.4 Absolute values of mutation score difference in reduction of assertions 75
6.5 Absolute values of mutation score error in reduction of test code’s

statements in jsoup . 76
6.6 Number of mutants per mutation operator 76
6.7 Reduction rate of mutants per mutation operator 77

7.1 Phanta: A Test Code Quality Measurement Tool 86

xii

List of Tables

2.1 A comparison of mutation operators for Fortran [112], C [3], and
Java (PIT) [44] . 10

3.1 Search keywords and number of publications 16
3.2 All relevant publications in this study and their coverage data . . . 17
3.3 All relevant publications in this study and their coverage data (cont.) 18
3.4 List of publications related to coverage measurement quality 23

4.1 Fundamental data of subject programs 39
4.2 A Total Number of Invoked Mutants 40
4.3 Execution Time . 41
4.4 The Results of t-test . 42

5.1 Overview of subject program . 53
5.2 Subject faults . 53
5.3 Example of suspiciousness ranking for calculating Einspect 54
5.4 Results of mutation analysis . 55
5.5 Results of fault localization (rank and average EXAM by Einspect) 58

6.1 Example of mutants and test . 64
6.2 Example of mutants and errors . 70
6.3 Mutation operators used for the evaluation 72
6.4 Repositories used for evaluation and their LOC 80
6.5 Numbers of test cases and assertions in jsoup, zt-zip, and jInstagram 81
6.6 Execution time of mutation analysis 81
6.7 Number of killed mutants in reduction of assertions 81
6.8 Number of killed mutants in reduction of test code’s statements in

jsoup . 81

7.1 A comparison of Mutation analysis tools for C/C++ (OO:Object-
oriented mutation operators, BM:Bitcode-level mutation, MSG:Mutant
schemata generation, HOM:Higher order mutation, SSE:Split-stream
execution) . 86

7.2 A comparison of mutation analysis tools for Java (OO:Object-
oriented mutation operators, BT:Bytecode translation, MSG:Mutant
schemata generation, HOM:Higher order mutation, Concurrency:Concurrency-
related mutation operators) . 87

xiii

Citations to Printed Publications

Parts of this thesis have appeared in the following publications. The circled
numbers mean main publications for this thesis.

Journals

①. Susumu Tokumoto and Shinichi Honiden. “Error-Oriented Mutant Re-
duction and Mutant Weighting for Reliable Mutation Testing”. In: IPSJ
Journal 61.4 (Apr. 2020), pp. 945–956

②. Susumu Tokumoto and Shinichi Honiden. “Evaluating Statement Deletion
Mutation-based Fault Localization in Industrial Software”. In: IPSJ Jour-
nal 61.10 (Oct. 2020). (in press)

Proceedings

1. Susumu Tokumoto, Kazunori Sakamoto, Kiyofumi Shimojo, Tadahiro Ue-
hara, and Hironori Washizaki. “Semi-automatic Incompatibility Localiza-
tion for Re-engineered Industrial Software”. In: Software Testing, Verifica-
tion and Validation (ICST), 2014 IEEE Seventh International Conference
on. (Industry Track). IEEE. 2014, pp. 91–94

②. Susumu Tokumoto, Hiroaki Yoshida, Kazunori Sakamoto, and Shinichi
Honiden. “MuVM: Higher order mutation analysis virtual machine for C”.
in: 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST). (Research Track). IEEE. 2016, pp. 320–329

3. 徳本 晋 and 本位田 真一. “ミュータント削減手法の高信頼化に向けて”. In:
ソフトウェアエンジニアリングシンポジウム 2019論文集. 情報処理学会.
2019, pp. 106–115

4. Susumu Tokumoto and Kuniharu Takayama. “PHANTA: Diversified Test
Code Quality Measurement for Modern Software Development”. In: 2019
34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). (Industry Showcase). IEEE. 2019, pp. 1206–1207

xiv

Chapter 1

Introduction

1.1 The State of Industrial Software

Industrial software is developed and maintained within a limited time and cost by
multiple people and teams with varying experience and skills. Differences in the
experience and skills of developers have a significant impact on the defects in the
software produced. A survey of 4067 projects in 31 companies by IPA [212] shows
that those with better testing skills tend to have lower defect density than those
with lower skills. Also, a study in commercial projects by Tsunoda et al. [191]
found that experienced developers introduced fewer defects, regardless of the work
difficulty. Compared to academia and voluntary communities, software produced
in industry is more likely to have defects due to variations in the experience and
skills of the developers, as many people are involved in the process under time
and cost constraints.

Today, software is increasingly being used in various systems in the industry.
It is also applied to mission-critical domains. This trend is reflected in the amount
of economic loss due to software bugs. Economic losses due to software bugs were
found to be $59.5 billion per year in a 2003 [173] and $312 billion per year in 2013
[27]. Thus, in just 10 years, the impact of software quality and reliability on the
economy increased more than 5-fold. According to a survey by the Information-
technology Promotion Agency [125], the number of reported information system
failures has risen to an unprecedented level in recent years—48 in 2017, 66 in
2018, and 122 in 2019. Furthermore, software developers spend 49% of their
development time detecting and fixing bugs [29]. These trends indicate that
technologies are needed to support the test and debug process.

1.2 Background of Mutation Analysis

Although there are a number of advanced technologies for testing and debugging,
they are not yet sufficient in terms of performance and functionality to be widely
used in industry. To be used in many fields and to contribute to the enhance-
ment of software quality and reliability, further advancements are still necessary.
Mutation analysis, which is a testing technique for improving the fault detection
capability of test suites, is expected to provide a powerful foundation for this.

Mutation analysis embeds an artificial fault into a program, by changing one
program element (a mutated program is called a mutant), examines how well a
given test suite can detect the fault, and repeats this until all mutants are tested.
Mutation analysis is not only used for the evaluation of test suites but also has
a variety of other technical applications. For example, there is a technique for
automating the selection of test oracles for test design. By applying mutation

1

analysis to this, i.e., measuring the impact of the embedded fault on the oracle,
it is possible to select more effective oracles for the fault.

1.3 Needs of Measuring Software Coverage in Industry

The most basic function of mutation analysis is coverage measurement. Knowing
what quality characteristics are required for coverage measurement in industrial
software will guide us in improving our testing and debugging techniques. In this
thesis, we conduct a systematic literature review on coverage measurement for
industrial software in order to understand what the quality of coverage measure-
ment essentially means in industrial software development. From 151 automati-
cally collected publications on code coverage measurement in industry, we manu-
ally extracted 62 publications and examined the coverage measurement activities
described in them, their purpose, effectiveness, and required quality characteris-
tics. The most common purpose of the coverage measurement is test evaluation,
and the most common effect was defect detection, excluding evaluation in exper-
iments. The required quality characteristics for coverage measurement include
usability, speed, accuracy, scalability, memory consumption, and reliability. In
the context of mutation analysis, there are some issues, especially in terms of
speed and associated accuracy, that need to be addressed.

1.4 Problem and Motivation of Mutation Analysis

Running mutation analysis is much more computationally intensive than conven-
tional testing. This is because each program element must be mutated, compiled,
and test run. The time-consuming nature of the analysis has been a hurdle to its
application to industrial software development. Therefore, reducing the cost of
running a mutation analysis is the key to its widespread use.

Offutt and Untch [158] split cost reduction techniques for mutation analy-
sis into three categories: do fewer, do smarter, and do faster. The “do fewer”
approaches attempt to run fewer mutants without incurring unacceptable infor-
mation loss. The “do smarter” approaches seek to distribute the computational
expense over several machines or amortize the expense over several executions by
retaining state information among the runs. The “do faster” approaches focus
on generating and running mutants as efficiently as possible.

Existing cost reduction techniques for mutation analysis include Mutant Schemata
Generation (MSG) and Bitcode Translation (do faster), Split-stream Execution
(do smarter), and selective mutation and test case-based mutant optimization
(do fewer).

The challenge of “do faster” approaches is that bitcode translation loses muta-
tion locations during compile-time optimization while MSG incurs the overhead of
process launch. The challenge of “do smarter” approaches is that Split-stream Ex-
ecution (SSE) is applicable only for interpreter-based execution methods because
näıve compiler-based methods cannot branch the execution stream. The chal-
lenge of “do fewer” approaches is that the test case-based method has too coarse
a granularity of optimization, which in some cases leads to an over-reduction of
mutants.

In this thesis, we propose a high-speed execution method for mutation analysis
as a “do faster” and “do smarter” approach and a mutant optimization technique
as a “do fewer” approach.

Our high-speed execution method consists of four techniques: metamutation,
mutation on a virtual machine, higher order split-stream execution, and online

2

adaptation. Metamutation is a technique for retaining mutation information dur-
ing bitcode translation; it replaces target program elements in the source code
with corresponding metamutation functions, which can return all possible muta-
tion results at runtime. Mutation on a virtual machine reduces compilation and
process-invocation costs by processing metamutated intermediate code on our
original virtual machine, which can interpret metamutation functions. Higher
order split-stream execution implements an efficient execution method for higher
order mutation, which create mutants by the insertion of two or more faults, by
branching an execution state into mutated states and a non-mutated state, at
the point where a metamutation function is invoked on a VM. Online adaptation
reduces the number of mutant applications by dynamically executing the feasible
mutants.

For mutant optimization, we present a technique for determining mutant re-
dundancy by the type of errors caused by mutation. We then introduce a model
that prunes away mutants with overlapping types of errors by recognizing them
as redundant. In addition, we propose a method to quantify the impact of re-
duced mutants and to score the remaining mutants. As a result, we are able to
reduce the discrepancy between the mutation score after mutant reduction and
that of the original mutant set.

1.5 Application of Mutation Analysis: Mutation-based Fault Lo-
calization

The most promising example of an application of mutation analysis in industry
is fault localization, which is a debugging technique that identifies locations in
the code that are responsible for test failures.

When developers become aware of the existence of a fault due to a test failure,
they attempt to remove the fault. However, since programs are usually large and
complex, it is challenging for developers to understand the entire structure and
behavior of the program. Therefore, diagnosing the cause of tests failures is a
skillful and time-consuming task. Specifically, the developers’ work of diagnosing
the cause of the defect entails first understanding the overall structure of the
program, comparing the passing and failing tests, narrowing down the lines that
affect the failure, and then identifying the cause of the failure. Fault localization
reduces the burden on developers by automating those tasks.

Spectrum-based fault localization (SBFL) is the most widely used method
for exploiting information from execution paths of both passed and failed tests.
Mutation-based fault localization (MBFL) has been proposed as a new way to
develop it. SBFL treats statements that execute more failed test cases as more
faulty, and conversely, statements that execute more passed test cases as less
faulty. Building on this intuition, MBFL takes a mutation that affects the output
of a failed test case to be more faulty and a mutation that affects the output of
a successful test case to be less faulty.

Similar to mutation analysis, the long execution time of MBFL is one of the
barriers to its practical use. While SBFL can obtain the relevant fault localization
information by running a test set just once, MBFL must run the test set once
for each mutant, for fault location estimation. Through this process, however,
MBFL can provide a wealth of clues about the impact of each program element
on the test results, i.e., the cause of the defect.

We implement MBFL, enabling us to predict fault locations more accurately
in a shorter time, by using a statement deletion mutation operator (SDL), in

3

addition to a fast mutation analysis tool.

1.6 Approach Overview

A complete illustration of our approaches is shown in Figure 1.1.

Fault Localization

Mutation Analysis

Efficient Mutation Analysis
Method (Chap. 3)

Mutation-based
Fault Localization (Chap. 4)

Mutant Optimization
Model (Chap. 5)

killed lived lived killed

1: stmt s1
:

k: stmt sk
:

n: stmt sn

Reduced Mutants

Result of Mutation Analysis

Source Code

Faulty statement

T
Test Code

Coverage
Measure-

ment

Oracle
Selection

Figure 1.1: Overview of our approaches

First, mutant optimization reduces the number of mutants to be run, with
minimal impact on the analysis results. Next, an efficient method of executing
mutation analysis is used to rapidly deliver the results. Finally, the results of the
mutation analysis can be applied to improve the performance of various test and
debug technologies. We present fault localization as a promising case in point.

1.7 Contributions

The main contributions of this thesis are as follows:

• A method to reduce compilation cost by integration of bitcode mutation
and metamutation.

• A method to reduce testing time by invoking a process once and splitting
execution stream for higher order mutation.

• A method to reduce the number of mutants by an online adaptation tech-
nique that omits infeasible mutants.

• An empirical comparison between MuVM and existing techniques.

• A method for determining mutant redundancy by the type of errors caused
by mutation. We then introduce a model that reduces mutants with over-
lapping types of errors by treating them as redundant.

• A method to quantify the impact of reduced mutants and score the remain-
ing mutants. As a result, we are able to reduce the discrepancy between
the mutation score after mutant reduction and that of the original mutant
set.

4

• We propose and implement a mutation-based fault localization using state-
ment deletion mutation, called SDL-MBFL.

• We compare fault localization techniques, including SDL-MBFL, using ac-
tual product software and multiple faults in an enterprise.

• In the above comparison, SDL-MBFL achieve the same number of fault de-
tections and reduce the execution time by 20.3% compared to conventional
MBFL.

1.8 Organization

The remainder of this thesis is organized as follows.

Chapter 2 We introduce background on software testing and debugging with
mutation analysis, including coverage measurement and fault localization.

Chapter 3 We present the results of a systematic literature survey on coverage
measurement in industrial software development in order to understand
what the quality of coverage measurement essentially means in industrial
software development.

Chapter 4 We present a mutation analysis tool called MuVM, which improves
execution time significantly using four techniques: metamutation, mutation
on a virtual machine, higher order split-stream execution, and online adap-
tation. Our experiments indicate that our tool is significantly superior to
an existing tool.

Chapter 5 We show a performance improvement of mutation-based fault local-
ization using a statement deletion operator implemented on MuVM, and we
evaluate it on industrial software used in actual products and nine defects
that actually occurred.

Chapter 6 We propose a technique for highly reliable mutation score measure-
ment to prevent excessive pruning of mutants by selecting mutants cover-
ing kinds of errors caused during mutation analysis and by scoring selected
mutants. As a result of evaluation using open source software (OSS), we
achieve an approximate 40% reduction in execution time and show that the
proposed technique enables a smaller difference in mutation score than the
existing technique.

Chapter 7 We survey work related to our methods in the field of efficient
mutation analysis, mutant optimization, mutation-based fault localization,
and application of mutation analysis.

Chapter 8 Finally, we conclude this thesis and discuss directions for future
work.

5

Chapter 2

Background on Mutation Analysis

This chapter reviews the fundamental concepts of mutation analysis.

2.1 Terminology of Software Problems

We clarify the definitions for terms related software defects.
According to Zeller [207], the word “bug” suggests something humans can

touch and remove. As such, it is a term that lacks precision. Applied to programs,
a bug can mean:

• An incorrect fragment of program code

• An incorrect program state

• An incorrect program execution

In order to prevent confusion, we avoid using the term ”bug” in this paper
and define the terms related to ”bug” as follows

Definition 2.1 (Fault). An incorrect step, process, or data definition in a pro-
gram code (a bug in the code).

Definition 2.2 (Infection). An incorrect program state (a bug in the state).

Definition 2.3 (Failure). An observable incorrect program behavior (a bug in
the behavior).

Figure 2.1 illustrates the relationship between these words, that is interpreted
as “The fault caused an infection, which caused a failure – and when we saw the
failure we tracked the infection, and finally found and fixed the fault.”

The definition of “fault” above conforms to the IEEE Standard 610.12 [45]
definition, while Zeller’s book defines the term “defect” in the same sense as the
term “fault” here.

The term “error” is similarly misleading, and could be used to refer to a
fault, failure, or mistake. According to the IEEE standard 610.12, one of the
semantic assignments is that the definition of “error” is “the difference between
a computed, observed, or measured value or condition and true, specified, or the-
oretically correct value or condition”, and we follow the manner. The difference
between “error” and “failure” is that “failure” focuses on the abnormal behavior
of the program itself, while “error” focuses on the gap between the abnormal
behavior of the program and the expected behavior.

Figure 2.1 illustrates the RIP (Reachability, Infection, Propagation) model
which states that three conditions must be present for a failure to be observed.

6

Program
 execution

Erroneous code
(Fault)

Program states

Infected
state
(Infection)

Sane state

Variable and input values

Observer
sees failure

Figure 2.1: Terminology in Program failure

Reachability The location or locations in the program that contain the fault
must be reached.

Infection After executing the location, the state of the program must be in-
correct.

Propagation The infected state must propagate to cause some output of the
program to be incorrect.

The RIP model implies that execution of a good test reaches a fault location,
changes the state of the program into incorrect one, and propagate the infection
to the exit of the program. The concept of the RIP model is important for the
idea of mutation analysis, that will be explained in section 2.3.

2.2 Software Testing

In 1979, G. Myers defined testing as “Testing is the process of executing a program
or system with the intent of finding errors”. That means a good test should have
a high probability of finding an error. In fact, practitioners might want their tests
to find the most number of errors with a minimum amount of effort.

In figure 2.2, we illustrate our model of software testing. We define the salient
terms referenced in the figure as follows.

Definition 2.4 (Test data). Test data is input for the software under test.

Definition 2.5 (Test procedure). A test procedure is a way of initialization,
inputting test data, and checking the result, usually described as a document or
code.

Definition 2.6 (Test oracle). A test oracle is a mechanism of checking the result.

Definition 2.7 (Test case). A test case is the minimum unit of test execution,
which contains test data, a test procedure, and an expected result.

7

Definition 2.8 (Test suite). A test suite is a collection of test cases that are
usually grouped together for a specific purpose.

To test the software, each test case is executed on it. This entails inputting the
test data into the software under test, according to the test procedure, executing
the software, obtaining the output, and determining the pass or fail status of the
test by comparing the output value with the expected value.

Although our software testing model can potentially be applied to both man-
ual and automated testing, and to both unit and integrated testing, it is basically
designed for automated unit testing because this thesis aims to improve the pro-
cess of automated unit testing. For unit test code, test cases correspond to test
methods, test oracles correspond to assertions, and test suites correspond to test
classes or files of test code, etc.

Test case
Test data

x : 1 y : 2

Expected result
3

Software Under
Test

f(x, y) = x + y

Actual
result

3Check

Input

Output

Test case
Test data

Expected result

Input

Actual
result

Output

Test procedure

Test procedure
Check

Test
suite Test oracle

Figure 2.2: Test suites, test cases, test data and test oracle

To control the quality of tests it is essential to measure the fault detection
capability of test suites. A formal coverage criterion serves this important pur-
pose. For example, with a formal coverage criterion, practitioners can decide test
inputs, and devise stopping rules for the testing process. Metrics based on code
structure, such as statement coverage and branch coverage, are the most widely
used code coverage criteria.

Ammann and Offutt [9] define coverage criteria in terms of test requirements.
The basic idea is that the set of test cases are required to have a number of
properties, each of which is fulfilled by specific individual test cases.

Definition 2.9 (Test Requirement). A test requirement is a specific element of
a software artifact (e.g. source code) that a test case must satisfy or cover.

Test requirements can be described with a variety of software artifacts, in-
cluding the source code, design components, modeling elements, and the input
space. A coverage criterion is simply a recipe for generating test requirements in
a systematic way:

8

Definition 2.10 (Coverage Criterion). A coverage criterion is a rule or collection
of rules that impose test requirements on a test suite.

Using the above definitions we can define the coverage of a test suite as follows:

Definition 2.11 (Coverage). Given a set of test requirements TR for a coverage
criterion C, a test suite T satisfies C if and only if for every test requirement tr
in TR, there exists at least one test case t in T such that t satisfies tr.

Note that it is acceptable to satisfy a given test requirement with more than
one test case.

If the preparation cost of test data is too high, it may be hard to satisfy a
coverage criterion completely. We use the notion of coverage level for quantifying
the degree to which a test suite satisfies a coverage criterion.

Definition 2.12 (Coverage Level). Given a set of test requirement TR and a test
suite T , the coverage level is simply the ratio of the number of test requirements
satisfied by T to the size of TR.

Coverage criteria are traditionally used in designing test cases. Test suites
are designed to satisfy a given coverage criterion by iteratively measuring the
coverage level and finding and preparing test cases that contribute to improving
the coverage level.

2.3 Mutation Analysis for Assessing Test Quality

Structural code coverage is widely employed for evaluating the efficacy of a test
suite, by measuring the fraction of program elements, such as statements and
branches, that are covered by the execution of the test cases. However, code
coverage does not evaluate whether the tests actually catch faults through test
oracles [186], i.e., in terms of the RIP model, it only measures the reachability
of the test suite. Mutation analysis [55, 88] is an alternative method for eval-
uating the fault-revealing capability of a test suite. It seeds faults artificially
and calculates the percentage of the seeded faults the tests can detect. In other
words, mutation analysis can examine the ability of a test to ascertain not only
reachability but also infection and propagation.

Artificially inserted faults are defined as rules, called mutation operators, for
how to alter a program, specific to each programming language. For example, a
program element of C “x + 2” generates 4 altered program elements “x - 2”, “x
* 2”, “x / 2”, and “x % 2” by a mutation operator called arithmetic operator
replacement (OAAN).

A mutation operator and a mutant can be defined as follows.

Definition 2.13 (Mutation Operator). A rule that specifies syntactic variations
of a program element.

Definition 2.14 (Mutant). The program resulting after one application of (ba-
sically) one mutation operator.

The earliest experiments on mutation analysis were done in the context of For-
tran programs. The first formal definition of mutation operators for Fortran was
given by Offutt and King [112, 155]. This definition has become the cornerstone
of the mutation operators adopted by many tools. Today there are mutation
operators for a variety of languages. [3] defined a set of mutation operators for

9

C such as statement mutations, operator mutations, variable mutations and con-
stant mutations. In Java, PIT is the most widely used mutation analysis tool.
We employ it in Chapter 6 of this thesis. PIT’s mutation operators bear many
similarities to traditional mutation operators, but differ in their design. Table
2.1 shows a comparison of mutation operators for Fortran, C, Java.

Table 2.1: A comparison of mutation operators for Fortran [112], C [3], and Java
(PIT) [44]

Fortran 77
Operator Description C operator Java (PIT) operator

AAR Array reference for array
reference replacement

VLSR, VGSR —

ABS Absolute value insertion VDTR ABS
ACR Array reference for

constant replacement
VLSR, VGSR —

AOR Arithmetic operator replacement OAAN AOR, Math
ASR Array reference for scalar

variable replacement
VLSR, VGSR —

CAR Constant for array reference
replacement

CGSR, CLSR —

CNR Comparable array
name replacement

VLSR, VGSR —

CRP Constant replacement CRCR Constant Replacement
CSR Constant for scalar replacement CGSR, CLSR —
DER DO statement END replacement OTT —
DSA DATA statement alterations — —
GLR GOTO label replacement SGLR —
LCR Logical connector replacement OBBN OBBN

ROR Relational operator replacement ORRN ROR,
Conditionals Boundary,
Negate Conditionals

RSR Return statement replacement SRSR —
SAN Statement Analysis STRP —
SAR Scalar variable for array

reference replacement
VLSR, VGSR —

SCR Scalar for constant replacement VLSR, VGSR —

SDL Statment deletion SSDL Void Method Call,
Remove Conditionals,
Remove Increments

SRC Source constant replacement CRCR Constant Replacement
SVR Scalar variable replacement VLSR, VGSR —
UOI Unary operator insertion OLNG, VTWD UOI

Mutation analysis executes the test suite for each generated mutant. If one
or more of the test cases fails, the mutant is said to be “killed by the test cases
or test suite”. The more mutants, out of the generated population of mutants, a
test suite kills the better it is judged to be.

However, there are some mutants that cannot be killed by any possible test
case. These are mutants whose behavior is the same as the original program.
Such a mutant is termed an equivalent mutant. For example, if the original
program is “x = 2 + 2”, then the mutant “x = 2 * 2” is an equivalent mutant.

Recalling the definition of coverage level, we can determine a coverage level
for mutation analysis by assuming that the set of test requirements is to kill all
mutants. This coverage level is called the mutation score and is defined as follows.

Definition 2.15 (Mutation Score).

MutationScore =
of killedmutants

(# of all mutants)− (# of equivalentmutants)
(2.1)

10

However, since the detection of equivalent mutants is an undecidable problem,
proved by Budd and Angluin [31], and beyond the scope of this thesis, for the
rest of the thesis we calculate the mutation score without considering the number
of equivalent mutants (i.e., as #ofkilledmutants

#ofallmutants).

2.4 Fundamental Hypotheses

The concept of mutation analysis is based on two hypotheses.

• Competent Programmer Hypothesis (CPH)

• Coupling Effect

CPH is a hypothesis proposed by DeLilo et al. [55] in 1978, which states that a
programmer is competent enough to write almost perfect source code. In other
words, a truly correct program is only marginally different from one written by
a programmer. Therefore, introducing a slight change in the program would
simulate inserting a realistic fault. As evidence to support CPH, Gopinath et
al. [87] mined faults and their corrections in the repository and investigated the
characteristics of the faults; they found many faults with only a single token,
while typical faults contained three or four tokens.

The notion of Coupling Effect was also proposed by DeMillo et al. [55] in
1978 and states that: “Test data that distinguishes all programs differing from a
correct one by only simple errors is so sensitive that it also implicitly distinguishes
more complex errors”. This assumption was extended by Offutt [154, 156] for
mutation analysis as follows: “Complex mutants are coupled to simple mutants
in such a way that a test data set that detects all simple mutants in a program
will detect a large percentage of the complex mutants”. This means that if a test
suite can be designed to detect simple mutants, it will also have the capability
to detect a significant number of complex defects.

2.5 Process of Mutation Analysis

When a mutation analysis is used to evaluate a test suite, developers typically
use the results of that mutation analysis to improve the test suite. Figure 2.3
shows a process, a modification of the one originally described by Usaola and
Mateo [197], where developers use mutation analysis to incrementally improve
the test suite.

The inputs are a test suite, a program under test, and a mutation score thresh-
old, which is the process termination criteria. The process is broadly divided into
three phases: test execution, test evaluation, and test improvement, respectively.

In the first phase, test execution, the developer runs the test suite against the
program under test to make sure that all test cases pass. If the test case fails,
the program under test is modified so that it passes the test.

In the next phase, test evaluation, mutants are generated and executed on the
program under test. The mutants to run are either for newly added or modified
parts of the program, or for mutants that have not been killed in previous mutant
runs.

If the mutation score obtained from the results exceeds a given threshold,
this process is terminated; otherwise, in the third phase – test improvement –
the developer investigates the survived mutants from the results of the mutation
analysis and adds test cases that can kill them, i.e., improve the mutation score.
The developers test the program again with the improved test suite to catch the

11

new faults. They repeat the cycle of test execution, test evaluation, and test
improvement, and eventually obtain a sufficiently high quality test suite that the
mutation score exceeds the threshold.

Phase3: Test Improvement

Phase2: Test Evaluation

Phase1: Test Execution

Test suite (T)

Program
under test

(p)

Run T
on p

Fix pp(T)
correct?

Create
mutants P’

Run T on
each mutant

P’

Add new
test cases to
T to kill P’alive

Are there
valid

mutants?
Does MS
reach Th?

Output mutation
score and alive
mutants P’alive

Threshold
(Th)

Mutation
score (MS)

False

True

False

True True

False

Figure 2.3: A process of mutation testing for incremental improvement of a test
suite

2.6 Computational Cost of Mutation Analysis

The computational cost of mutation analysis is very high due to the large num-
ber of mutants that need to be analyzed. Mutants are generated exhaustively,
corresponding to each program element to which mutation operators can apply.
For example, as shown in Section 2.3, “x + 2” can generate 4 mutants “x - 2”,
“x * 2”, “x / 2” and “x % 2” by just one OAAN mutation operator. The to-
tal number of generated mutants increases with the number of applied mutation
operators and the size of the program. The number of mutants directly affects
the running time of mutation analysis. Fig. 2.4 illustrates the cost of traditional
mutation analysis. The runtime Ttotal of mutation analysis can be expressed as:

Ttotal =
∑
m∈M

tseed,m +
∑
m∈M

tcmpl,m +
∑
m∈M

∑
tc∈TC

ttest,m,tc

where M is the set of mutants, TC is the set of test cases, and tseed,m, tcmpl,m

and ttest,m,tc are the times for seeding (mutating), compiling, and testing respec-
tively, a combination of a mutant m and a test case tc . Generally speaking, the
compilation time and the testing time are the dominant components in the total
time of traditional mutation analysis.

According to [99], cost reduction techniques are roughly categorized into two
approaches. One is a mutant reduction technique which reduces the size of M ,
and the other is an execution cost reduction technique which reduces the seeding
time Tseed, the compiling time Tcmpl, and the testing time Ttest.

12

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 0)
return –x;

else
return x;

}

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x > 0)
return –x;

else
return x;

}

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 1)
return –x;

else
return x;

}

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 0)
return –-x;

else
return x;

}

01101010010101010
10101010101110100
10010010101010100
00101010110101011
01111110101010101
01010101010101011
01010111010111101
01011101010101010
11111101010001010
1010100101011101

CompilationMutation Testing

failed

01101010010101010
10101010101110100
10010010101010100
00101010110010101
10110010101110101
01010001110101011
01010111010111101
01011101010101010
11111101010001010
1010100101011101

pass

01101010010101010
10101010101110100
10010010101010100
00101010110101011
01111110101010101
01010101010101011
01010110101110101
01011110100111010
11111101010001010
1010100101011101

failed

Figure 2.4: Computational cost of mutation analysis

13

Chapter 3

A Systematic Literature Review of Code

Coverage Measurement in Industrial Testing

3.1 Overview

Code coverage is an indicator to check the sufficiency of the tests for the target
source code based on the defined criteria. It has a long history, and since the
first proposal by Miller and Maloney[138] in 1963 many coverage measurement
techniques including mutation analysis have been proposed, and many tools ex-
ist. In addition, coverage measurement techniques are widely used in industry.
Not only the coverage itself, but also the quality of such coverage measurement
techniques and tools is an important factor that affects the productivity of de-
velopers. Against this background, many techniques for the quality of coverage
measurement techniques and tools have been proposed. However, to the best
of our knowledge, there is no literature that investigates what kind of quality is
required for coverage measurement in industrial software development. In this
chapter, we conducted a systematic literature review on coverage measurement
in industrial software development in order to understand what the quality of
coverage measurement essentially means in industrial software development.

3.2 Research Method

In this section, we describe the method of systematic literature review (SLR).
Figure 3.1 shows the overview of our systematic literature review.

Initial search Paper screening

Initial pool
(151 publications)

Paper review and
data extraction

Final pool
(62 publications)

IEEEXplore ACM DL

Analysis results

Figure 3.1: Research process used to conduct this study

14

3.2.1 Goal and Research Questions

First, we defined the purpose of the survey and the research questions.
The major purpose of this survey is to clarify what coverage and mutation

analysis essentially mean in industrial software development. Specifically, the
following is described.

• What is the impact of coverage and mutation analysis on the quality of
industrial software?

• How does the quality of the coverage and mutation analysis tools themselves
affect the quality of industrial software?

• What kind of quality and functionality is required of the coverage and
mutation analysis tools themselves?

The following research questions were formulated for these purposes.

• RQ1: Which programming languages of software under test (SUT) are
popular for coverage measurement?

• RQ2: What types of coverage criteria are used?

• RQ3: For what purpose is coverage used?

• RQ4: What effects have resulted from the use of coverage?

• RQ5: What quality characteristics are required in coverage measurement
tools?

The purpose of RQ1 and RQ2 is to understand the language and the type of
coverage criteria used in the industry as background. The purpose of RQ3 is to
identify what coverage was used for in the testing activities (e.g. test generation,
test assessment). RQ4 clarifies what effects have occurred as a result of testing
activities using coverage (e.g., fault detection, test suites improvement). RQ5
examines what quality characteristics are required for the coverage measure itself
and what impact it has.

3.2.2 Research Process

In order to clarify the research questions defined above, we collected literature
and conducted a survey of it. The following search engines were used to collect
the literature.

1. IEEEXplore

2. ACM Digital Library

We searched the literature on coverage in industrial software testing using the
queries shown in Table 3.1 in each search engine and obtained 151 publications.

From the 151 publications obtained in the initial search, we selected docu-
ments that were appropriate for our purpose. For the selection, we manually
checked the contents and selected the references according to the following crite-
ria.

• Dealing with software developed as an activity of a company

• Dealing with coverage measurement through testing of software

15

Table 3.1: Search keywords and number of publications

Search engines Query
of

publications

IEEE Xplore

(”Document Title”:”code coverage” OR
”Abstract”:”code coverage” OR

”Author Keywords”:”code coverage”) AND

((”Document Title”:industry OR industrial) OR

(”Abstract”:industry OR industrial) OR

(”Author Keywords”:industry OR industrial))

91

ACM Digital Library

(Title:(”code coverage”) OR

Abstract:(”code coverage”) OR

Keyword:(”code coverage”)) AND

(Title:(industry OR industrial) OR

Abstract:(industry OR industrial) OR

Keyword:(industry OR industrial))

44

For example, papers in which authors affiliated with a company measure cov-
erage of in-house software are included, but papers dealing with general OSS and
experimental programs as coverage measurement targets are excluded. Note that
even OSS whose main activity is in companies is included.

After this selection process, 62 of the 151 publications met the criteria. Table
3.2 and 3.3 contain the details of all 62 publications. Some blank cells in the
table, e.g. language or application area, mean that the information is not known
from the publication. Number of the publications per year is shown in Figure
3.2. Some of the older publications are from the 1990s, but the number was not
large until 2010, and has been increasing since the beginning of the 2010s. One
possible reason for the increase in recent years is the proliferation of coverage
measurement tools in the industry.

0

5

10

15

20

25

o

f
p

u
b

lic
at

io
n

s

1

Figure 3.2: Annual trend of publications including industrial coverage measure-
ment

16

T
ab

le
3.

2:
A

ll
re

le
va

n
t

p
u

b
li

ca
ti

on
s

in
th

is
st

u
d

y
an

d
th

ei
r

co
v
er

ag
e

d
at

a

A
u
th

o
r(

s)
P

u
b
li
ca

ti
on

Y
ea

r
L

an
gu

ag
e

A
p
p
li
ca

ti
on

ar
ea

of
S
U

T
S
ca

le
of

S
U

T

S
ta

te
m

en
t/

li
n
e/

b
lo

ck
co

ve
ra

g
e

B
ra

n
ch

/
d
ec

is
io

n
co

ve
ra

g
e

M
et

h
o
d

co
ve

ra
ge

M
u
ta

ti
on

sc
o
re

M
C

/
D

C

S
p

ec
ifi

ca
ti

o
n
/

re
q
u
ir

em
en

t
co

ve
ra

ge
O

th
er

co
ve

ra
ge

ty
p

e
P

u
rp

os
e

of
co

ve
ra

ge
E

ff
ec

ts
o
f

co
v
er

a
ge

H
.

B
er

gs
tr

öm
an

d
E

.
P

.
E

n
o
iu

[2
3]

20
17

P
L

C
T

ra
in

co
n
tr

ol
m

an
ag

em
en

t
sy

st
em

0
0

0
0

0
0

ti
m

ed
b
as

e-
ch

o
ic

e
cr

it
er

ia
T

es
t

g
en

er
at

io
n

fa
u
lt

d
et

ec
ti

o
n

B
.

C
h
en

[3
8]

20
19

J
av

a

C
lo

u
d

se
rv

ic
e,

V
id

eo
st

re
am

in
g,

D
is

tr
ib

u
te

d
fi
le

sy
st

em
,

A
P

I
li
b
ra

ry
1

1
1

0
0

0
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

E
.

E
n
oi

u
et

al
.[

68
]

20
17

P
L

C
In

d
u
st

ri
al

C
o
n
tr

o
l

S
of

tw
ar

e
0

1
0

0
0

0
T

es
t

g
en

er
at

io
n

fa
u
lt

d
et

ec
ti

o
n

P
.

C
h
ar

b
a
ch

i
et

al
.[

36
]

20
17

P
L

C
T

ra
in

co
n
tr

ol
m

an
ag

em
en

t
sy

st
em

0
1

0
1

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

at
io

n

Y
.

A
d
le

r
et

al
.[
2
]

20
11

J
av

a
IB

M
p
ro

d
u
ct

s
0

0
1

0
0

0
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

R
.

C
ar

ls
on

et
al

.[
34

]
20

11
C

+
+

E
R

P
p
ac

ka
ge

0
0

1
0

0
0

T
es

t
p
ri

or
it

iz
at

io
n

fa
u
lt

d
et

ec
ti

o
n

W
.

W
a
n
g

et
al

.[
19

9
]

20
18

J
av

a
A

n
d
ro

id
ap

p
0

0
1

0
0

0
T

es
t

a
ss

es
sm

en
t

ev
a
lu

at
io

n

T
.

B
ac

h
et

a
l.
[1

7]
20

17
C

,
C

+
+

S
A

P
H

A
N

A
1

0
0

0
0

0
T

es
t

a
ss

es
sm

en
t

fa
u
lt

d
et

ec
ti

o
n

J
.

M
cD

o
n
al

d
et

al
.[
13

7
]

20
01

C
,

C
+

+
F

ir
m

w
ar

e
1

1
0

0
0

0
T

es
t

a
ss

es
sm

en
t

fa
u
lt

d
et

ec
ti

o
n

B
.

K
.

P
a
p
is

et
al

.[
16

7
]

20
20

C
#

W
eb

se
rv

ic
es

su
p
p

or
ti

n
g

ga
s

m
ar

k
et

an
d

u
n
d
er

gr
ou

n
d

ga
s

st
or

ag
e

fa
ci

li
ty

op
er

a
ti

on
s

1
0

0
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

at
io

n

W
.

E
.

W
on

g
an

d
J
.

L
i[
20

3
]

20
05

J
av

a
A

va
ya

p
ro

d
u
ct

1
1

0
0

0
0

al
l-

p
ri

m
a
ry

-n
o
d
es

,
a
ll
-s

ec
on

d
a
ry

-n
o
d
es

,
al

l-
p
ri

m
ar

y
-e

d
g
es

,
a
ll
-s

ec
on

d
a
ry

-e
d
ge

s
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

J
.

S
lo

n
im

et
al

.[
18

4
]

19
96

C
1

1
0

0
0

0
a
ll
-u

se
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

T
.

B
ac

h
et

a
l.
[1

6]
20

17
C

,
C

+
+

S
A

P
H

A
N

A
1

0
0

0
0

0
T

es
t

o
p
ti

m
iz

a
ti

o
n

te
st

re
d
u
n
d
an

cy
d
et

ec
ti

on

M
ei

-H
w

a
C

h
en

et
al

.[
41

]
19

96
C

A
u
to

m
at

ic
fl
ig

h
t

co
n
tr

ol
p
ro

je
ct

1
0

0
0

0
0

T
es

t
a
ss

es
sm

en
t

re
li
a
b
il
it

y
es

ti
m

a
ti

o
n

T
.

G
er

ge
ly

et
al

.[
79

]
20

10
F

in
an

ci
al

sy
st

em
63

1,
04

3
L

O
C

0
0

1
0

0
0

co
ve

ra
g
e

m
ea

su
re

m
en

ts
b
as

ed
o
n

p
ro

ce
d
u
re

ca
ll

a
n
d

co
n
tr

ol
tr

a
n
sf

er
T

es
t

o
p
ti

m
iz

a
ti

o
n

te
st

re
d
u
n
d
an

cy
d
et

ec
ti

on

J
.

B
lo

m
et

al
.[
2
6
]

20
16

C
,

E
rl

an
g

M
ob

il
e

N
et

w
or

k
S
y
st

em

13
0,

00
0

L
O

C
(E

rl
an

g)

+
5,

50
0

L
O

C
(C

)
1

0
0

0
0

0
m

o
d
el

-b
as

ed
co

ve
ra

g
e

T
es

t
a
ss

es
sm

en
t

fa
u
lt

d
et

ec
ti

o
n

C
.

K
la

m
m

er
et

al
.[

11
7
]

20
18

J
av

a
U

I
fr

am
ew

or
k

28
0k

L
O

C
0

0
1

0
0

0
T

es
t

a
ss

es
sm

en
t

m
o
n
it

o
ri

n
g

te
st

q
u
al

it
y

H
.

H
em

m
a
ti

et
a
l.
[9

1]
20

18
C

U
n
m

an
n
ed

A
er

ia
l

V
eh

ic
le

4,
84

3
fu

n
ct

io
n
s

an
d

66
,2

42
C

/D
s

0
0

0
0

1
0

T
es

t
a
ss

es
sm

en
t

fa
u
lt

d
et

ec
ti

o
n

X
.

Q
u

et
al

.[
17

5
]

20
12

C
,

C
+

+
re

al
-t

im
e

em
b

ed
d
ed

sy
st

em
at

A
B

B
1.

18
M

L
O

C
0

0
1

0
0

0
ch

a
n
g
ed

fu
n
ct

io
n

co
ve

ra
ge

T
es

t
a
ss

es
sm

en
t

ev
a
lu

at
io

n

G
.

P
et

ro
v
ic

an
d

M
.

Iv
an

ko
v
ic

[1
70

]
20

18

C
+

+
,

J
av

a,
P

y
th

on
,

G
o,

J
av

aS
cr

ip
t,

T
y
p

eS
cr

ip
t,

C
om

m
on

L
is

p
72

,4
25

d
iff

s
1

0
0

1
0

0
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

L
.

H
ao

et
al

.[
89

]
20

19
P

L
C

B
om

b
ar

d
ie

r
T

ra
n
sp

or
ta

ti
o
n

57
06

L
O

C
1

1
0

0
0

0
T

es
t

g
en

er
at

io
n

ev
a
lu

at
io

n

D
.

A
m

al
fi
ta

n
o

et
al

.[
7
]

20
15

J
av

a
a

ga
ra

ge
m

an
ag

em
en

t
sy

st
em

an
d

an
or

d
er

m
an

ag
em

en
t

sy
st

em
1

1
0

0
0

0
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

I.
N

ic
a

et
a
l.
[1

48
]

20
17

C
+

+
C

om
p
u
te

r
V

is
io

n
L

ib
ra

ry
10

0,
00

0
L

O
C

1
1

1
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

at
io

n

J
.

C
.

C
u
n
h
a

et
al

.[
46

]
20

12
C

S
p
ac

e
1

1
0

0
1

0
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

M
ei

-H
w

a
C

h
en

et
al

.[
42

]
19

97
C

A
u
to

m
at

ic
fl
ig

h
t

co
n
tr

ol
p
ro

je
ct

1
0

0
0

0
0

T
es

t
a
ss

es
sm

en
t

re
li
a
b
il
it

y
es

ti
m

a
ti

o
n

S
.

H
u
a
n
g

et
al

.[
96

]
20

19
A

n
d
ro

id
A

p
p

0
0

1
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

at
io

n

B
.

C
h
en

et
al

.[
39

]
20

18
J
av

a

C
lo

u
d

se
rv

ic
e,

V
id

eo
st

re
am

in
g,

D
is

tr
ib

u
te

d
fi
le

sy
st

em
,

A
P

I
li
b
ra

ry
1

1
0

1
0

0
T

es
t

a
ss

es
sm

en
t

im
p
ro

ve
te

st
su

it
es

A
.

E
ri

k
ss

on
an

d
B

.
L

in
d
st

rö
m

[6
9]

20
16

C
+

+
av

io
n
ic

s
63

7
cl

as
se

s
0

1
0

0
0

0

A
ll

N
av

ig
at

io
n

(A
N

A
V

),

A
ll

It
er

a
ti

on
(I

T
E

R
)

T
es

t
a
ss

es
sm

en
t

re
li
a
b
il
it

y
es

ti
m

a
ti

o
n

A
.

S
.

D
o
ok

h
u
n

an
d

L
.

N
ag

ow
ah

[6
6]

20
19

J
av

a
th

e
S
tr

in
g

C
al

cu
la

to
r

an
d

th
e

B
ow

li
n
g

S
co

re
K

ee
p

er
0

1
0

0
0

0
T

es
t

a
ss

es
sm

en
t

ev
a
lu

at
io

n

D
.

D
i

N
a
rd

o
et

al
.[

62
]

20
15

J
av

a
d
at

a
ac

q
u
is

it
io

n
sy

st
em

32
17

0
b
y
te

co
d
e

in
st

ru
ct

io
n
s

1
0

0
0

0
0

T
es

t
g
en

er
at

io
n

ev
a
lu

at
io

n

17

T
ab

le
3.

3:
A

ll
re

le
va

n
t

p
u

b
li

ca
ti

on
s

in
th

is
st

u
d

y
an

d
th

ei
r

co
v
er

ag
e

d
at

a
(c

on
t.

)

A
u

th
or

(s
)

P
u

b
li

ca
ti

on
Y

ea
r

L
an

gu
ag

e
A

p
p

li
ca

ti
on

ar
ea

of
S

U
T

S
ca

le
of

S
U

T

S
ta

te
m

en
t/

li
n

e/
b

lo
ck

co
ve

ra
g
e

B
ra

n
ch

/
d

ec
is

io
n

co
ve

ra
g
e

M
et

h
o
d

co
ve

ra
g
e

M
u

ta
ti

o
n

sc
o
re

M
C

/
D

C

S
p

ec
ifi

ca
ti

o
n

/
re

q
u

ir
em

en
t

co
ve

ra
g
e

O
th

er
co

ve
ra

g
e

ty
p

e
P

u
rp

o
se

o
f

co
ve

ra
g
e

E
ff

ec
ts

o
f

co
v
er

a
g
e

P
.

L
u

ch
sc

h
ei

d
er

an
d

S
.

S
ie

gl
[1

29
]

20
13

M
A

T
L

A
B

/
S

im
u

li
n

k
A

u
to

m
ot

iv
e

th
er

m
al

co
n
tr

ol
u

n
it

0
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

M
.

-.
C

h
en

et
al

.[
40

]
20

01
au

to
m

at
ic

fl
ig

h
t

co
n
tr

ol
an

d
sp

ac
e

70
00

L
O

C
a
n

d
10

0
00

L
O

C
1

0
0

0
0

0
T

es
t

a
ss

es
sm

en
t

re
li

a
b

il
it

y
es

ti
m

a
ti

o
n

J
.

L
aw

re
n

ce
et

al
.[

12
0]

20
05

C
#

10
m

et
h

o
d

s
1

0
0

0
0

0
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

S
.

B
er

n
er

et
al

.[
24

]
20

07
J
av

a
B

an
k
’s

b
ac

ke
n

d
sy

st
em

30
50

K
L

O
C

1
1

1
0

0
0

T
es

t
a
ss

es
sm

en
t

fa
u

lt
d

et
ec

ti
on

S
.

M
.

B
.

B
h

ar
ga

v
i

et
al

.[
25

]
20

16
re

ta
il

0
0

0
0

0
0

co
m

b
in

a
to

ri
a
l

co
v
er

a
ge

T
es

t
a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

H
.

N
ak

ag
aw

a
et

al
.[

14
5
]

20
17

J
av

a
W

eb
ap

p
li

ca
ti

on
fo

r
in

ve
n
to

ry
m

an
ag

em
en

t

2
63

sp
ec

ifi
ca

ti
o
n

it
em

s
an

d
2,

1
81

te
st

ca
se

d
es

cr
ip

ti
on

s
0

0
0

0
0

1
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k
R

.
G

er
li

ch
an

d
C

.
R

.
P

ra
u

se
[8

0
]

20
18

C
sp

ac
ec

ra
ft

1
1

0
0

0
0

T
es

t
g
en

er
a
ti

o
n

te
rm

in
a
ti

o
n

o
f

te
st

g
en

er
a
ti

o
n

J
.

C
ze

rw
on

ka
[4

7
]

20
13

W
in

d
ow

s
u

ti
li

ti
es

1
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

Y
.

S
u

n
et

al
.[
18

8]
20

17
C

,
A

d
a

av
io

n
ic

s
1

0
0

0
1

0
T

es
t

a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

G
.

B
u

ch
ge

h
er

et
al

.[
30

]
20

13
C

,
C

+
+

,
C

#
,

V
B

el
ec

tr
ic

al
h

ar
d

w
ar

e
d

ia
gn

os
ti

cs
2
.5

M
L

O
C

1
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

te
st

re
d

u
n

d
an

cy
d

et
ec

ti
o
n

S
.

T
ok

u
m

ot
o

an
d

K
.

T
ak

ay
am

a[
0
]

20
19

J
av

a
fa

ct
or

y
au

to
m

at
io

n
37

K
L

O
C

0
0

0
1

0
0

T
es

t
a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k
G

.
F

ra
se

r
an

d
A

.
A

rc
u

ri
[7

5]
20

13
J
av

a
8
09

L
O

C
0

1
0

0
0

0
T

es
t

g
en

er
a
ti

o
n

te
st

re
d

u
n

d
an

cy
d

et
ec

ti
o
n

A
.

A
rc

u
ri

[1
2]

20
17

J
av

a
W

eb
se

rv
ic

es
3
58

4
L

O
C

1
0

0
0

0
0

T
es

t
g
en

er
a
ti

o
n

te
st

re
d

u
n

d
an

cy
d

et
ec

ti
o
n

H
.

N
ak

ag
aw

a
et

al
.[

14
6
]

20
17

J
av

a
W

eb
ap

p
li

ca
ti

on
fo

r
in

ve
n
to

ry
m

an
ag

em
en

t

2
63

sp
ec

ifi
ca

ti
o
n

it
em

s
an

d
2,

1
81

te
st

ca
se

d
es

cr
ip

ti
on

s
0

0
0

0
0

1
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k
G

.
F

ra
se

r
an

d
A

.
A

rc
u

ri
[7

4]
20

11
J
av

a
re

al
-t

im
e

em
b

ed
d

ed
sy

st
em

0
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

te
st

re
d

u
n

d
an

cy
d

et
ec

ti
o
n

S
.

K
.

K
h

al
sa

an
d

Y
.

L
ab

ic
h

e[
10

9
]

20
16

a
m

id
d

le
w

ar
e

fu
n

ct
io

n
al

it
y

in
th

e
te

le
co

m
d

om
ai

n
(E

ri
cs

so
n

)
6
94

L
O

C
1

1
0

1
0

0

C
on

st
ra

in
ed

B
a
se

C
h

oi
ce

(C
B

C
),

E
x
te

n
d

ed
C

o
n

st
ra

in
ed

B
a
se

C
h

o
ic

e
(E

C
B

C
)

T
es

t
a
ss

es
sm

en
t

fa
u

lt
d

et
ec

ti
on

K
.

R
am

as
am

y
an

d
S

.
A

ru
l

M
ar

y
[1

76
]

20
08

V
B

,
P

H
P

50
00

L
O

C
(V

B
),

60
00

L
O

C
(P

H
P

)
0

0
0

0
0

1
T

es
t

p
ri

o
ri

ti
za

ti
o
n

fa
u

lt
d

et
ec

ti
on

H
.

H
em

m
at

i
et

al
.[

92
]

20
15

M
oz

il
la

F
ir

ef
ox

0
0

0
0

0
0

to
p

ic
co

ve
ra

g
e

T
es

t
p

ri
o
ri

ti
za

ti
o
n

fa
u

lt
d

et
ec

ti
on

S
.

S
ie

gl
et

al
.[

18
3
]

20
15

au
to

m
ot

iv
e

0
1

0
0

0
0

S
ta

te
co

ve
ra

ge
,

T
ra

n
si

ti
o
n

co
ve

ra
g
e

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

M
.

Iv
an

ko
v
ić

et
al

.[
98

]
20

19

C
+

+
,

J
av

a,
P

y
th

on
,

G
o,

J
av

aS
cr

ip
t,

D
ar

t,
T

y
p

eS
cr

ip
t

S
er

v
ic

es
in

G
o
og

le
1

b
il

li
on

L
O

C
1

1
0

0
0

0
T

es
t

a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

Y
.

W
.

K
im

[1
11

]
20

03
C

+
+

,
J
av

a
19

,8
00

K
L

O
C

1
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

C
.

M
ag

al
h

ãe
s

et
al

.[
13

3]
20

17
A

n
d

ro
id

ap
p

0
0

1
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

X
.

Z
en

g
et

al
.[

20
8
]

20
16

J
av

a
W

eC
h

at
A

n
d

ro
id

ap
p

61
0,

62
9

L
O

C
1

0
0

0
0

0
A

ct
iv

it
y

co
v
er

ag
e

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

A
.

E
ri

k
ss

on
et

al
.[
70

]
20

12
C

+
+

av
ia

ti
on

ap
p

li
ca

ti
on

s
fo

r
S

aa
b

G
ri

p
en

fi
gh

te
r

6
37

cl
as

se
s

0
0

0
0

0
0

C
la

u
se

co
ve

ra
g
e

(C
C

),

P
re

d
ic

a
te

co
ve

ra
g
e

(P
C

),
C

or
re

la
te

d
A

ct
iv

e
C

la
u

se
C

ov
er

a
g
e

(C
A

C
C

)
T

es
t

a
ss

es
sm

en
t

im
p

ro
ve

te
st

su
it

es

R
.

R
am

le
r

et
al

.[
17

7]
20

17
C

m
ec

h
at

ro
n

ic
sy

st
em

57
,3

63
L

O
C

0
0

0
1

1
0

T
es

t
a
ss

es
sm

en
t

im
p

ro
ve

te
st

su
it

es

M
.

K
es

si
s

et
al

.[
10

8
]

20
05

J
av

a
J
2E

E
se

rv
er

20
0,

00
0

L
O

C
1

0
1

0
0

0
co

n
d

it
io

n
co

ve
ra

g
e

T
es

t
a
ss

es
sm

en
t

te
st

ad
eq

u
a
cy

ch
ec

k

D
.

D
i

N
ar

d
o

et
al

.[
62

]
20

15
J
av

a
d

at
a

p
ro

ce
ss

in
g

sy
st

em
32

,1
70

b
y
te

co
d

e
in

st
ru

ct
io

n
1

0
0

0
0

0
T

es
t

a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

T
.

C
ai

et
al

.[
33

]
20

20
M

ob
il

e
A

p
p

1
0

0
0

0
0

A
ct

iv
it

y
co

v
er

ag
e

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

A
.

W
in

d
is

ch
et

al
.[

20
1
]

20
07

C
au

to
m

ot
iv

e
4
41

4
L

O
C

1
1

0
0

0
0

co
n

d
it

io
n

co
ve

ra
g
e

T
es

t
g
en

er
a
ti

o
n

ev
a
lu

a
ti

o
n

R
.

T
ay

lo
r

an
d

J
.

D
er

ri
ck

[1
89

]
20

15
E

rl
an

g
S

A
T

¿I
P

co
m

p
on

en
t

(s
at

el
li

te
T

V
si

gn
al

to
IP

)
1

0
0

0
1

0
T

es
t

a
ss

es
sm

en
t

fa
u

lt
d

et
ec

ti
on

M
.

G
it

te
n

s
et

al
.[

81
]

20
02

C
+

+
20

1,
62

9
L

O
C

1
0

0
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

D
.

D
i

N
ar

d
o

et
al

.[
63

]
20

17
J
av

a
d

at
a

ac
q
u

is
it

io
n

sy
st

em
32

,4
69

b
y
te

co
d

e
in

st
ru

ct
io

n
s

1
1

0
0

0
0

T
es

t
a
ss

es
sm

en
t

ev
a
lu

a
ti

o
n

18

3.3 Results

In this section, we show the results of the SLR.

3.3.1 RQ1: Which programming languages of SUT are popular for
coverage measurement?

The number of selected publications per language is shown in Figure 3.3. The
largest number is for Java, but the number of publications for C and C++ com-
bined exceeds that for Java. These languages have been widely used in industry
for a long time, and there are many coverage measurement tools available. Other
languages include Python, Go, JavaScript, MATLAB/Simulink, Ada, and VB.

15

13

23

3
2

4

6

10

0

5

10

15

20

25

C C++ Java C# Erlang PLC Others Unknown

o

f
p

u
b

lic
at

io
n

s

1

Figure 3.3: Number of publications by programming languages

3.3.2 RQ2: What types of coverage criteria are used?

The number of each coverage criteria for the selected publications is shown in
Figure 3.4. Statement/line/block coverage is the most common, followed by
branch/decision Coverage. Mutation score is used in only 6 publications. This
result is considered to be due to the fact that most of the coverage criteria sup-
ported by the coverage measurement tools are statement/line/block coverage and
branch/decision coverage, which are also the coverage criteria used in companies,
while mutation score and MC/DC, which are stricter coverage criteria than other
listed ones, are used only for software that requires high reliability. The other
coverage criteria include model-based coverage, combinatorial coverage, condition
coverage, and newly proposed coverage criteria.

3.3.3 RQ3: For what purpose is coverage used?

We classified the purpose of using the coverage in each publication into test
assessment, test generation, test prioritization, and test optimization. The result
is shown in Figure 3.5. Nearly 80% of the publications are for test assessment,

19

36

26

12

6
5

3

16

0

5

10

15

20

25

30

35

40

Statement /
Line / Block
Coverage

Branch /
Decision
Coverage

Method
Coverage

Mutation
Score

MC / DC Specification /
Requirement

Coverage

Others

of

 p
ub

lic
at

io
ns

Figure 3.4: Number of publications by coverage criteria

which is considered to be the standard usage in coverage measurement tools. On
the other hand, test generation, test prioritization, and test optimization account
for about 20% of the publications, and their purpose is to process the test suite
using the measured coverage information, which often requires a separate tool
for that purpose. Most of the publications on test generation, test prioritization,
and test optimization are proposals for such test suite processing methods, and
we think that these methods are not yet in general use in industry.

3.3.4 RQ4: What effects have resulted from the use of coverage?

In the selected publications, the effects of coverage measurement were classified
into eight categories: method evaluation, fault detection, test adequacy check,
improving test suites, test redundancy detection, reliability estimation, moni-
toring test quality and termination of test generation. The largest category is
method evaluation, which accounted for 32% of the total, followed by fault de-
tection, which accounted for about 20%. The effect of method evaluation is not
the effect of engineering, but rather the effect of verifying the hypothesis about
coverage in experiments and surveys.

Regarding the confirmation of test sufficiency, coverage is considered to play
the role of a proxy metric for test sufficiency, which cannot be measured directly
as a metric. The effectiveness of coverage on defect detection has been shown
as a result of empirical studies on the relationship between coverage and defect
detection, as well as the fact that more defects can be detected by searching with
coverage as a fitness function in test generation.

3.3.5 RQ5: What quality characteristics are required in coverage
measurement tools?

We categorized what quality characteristics are required by the coverage mea-
surement tools in the coverage measurements made in the selected publications.
We counted the quality characteristics mentioned in the motivation, evaluation

20

Test Assessment, 49

Test Generation, 8

Test Prioritization, 3
Test Optimization, 2

Figure 3.5: Number of publications by
purpose

Method
Evaluation,

20

Fault
Detection, 12

Test
Adequacy
Check, 10

Improving
Test Suites, 9

Test
Redundancy
Detection, 6

Reliability
Estimation, 4

Monitoring
Test Quality, 1

Termination of Test
Generation, 1

Figure 3.6: Number of publications by
effect

and discussion within the publications.
The quality characteristics listed are speed, accuracy, usability, scalability,

reliability, and memory consumption. Here are some examples for each quality
characteristic. The example of speed is the challenge of the overhead involved in
measuring coverage compared to normal test execution. The accuracy example
is the challenge of the gap between the approximate coverage value and the true
coverage value when calculating the approximate coverage value as a tradeoff for
increasing other quality characteristics such as speed and usability. An example
of usability is the challenge of assisting the user in checking the results of cover-
age measurements and facilitating a series of actions such as improving the test
suite. An example of scalability is to complete the coverage measurement in a
time that is acceptable to the developer, regardless of the size of the software to
be measured. An example of reliability is to be able to measure coverage stably
regardless of the type of software to be measured. An example of memory con-
sumption is the issue of increasing memory consumption as more and more data
is required for coverage calculation during coverage measurement.

The number of publications with and without mention of quality characteris-
tics is shown in Figure 3.7 and the number of quality characteristics in publica-
tions with mention of quality characteristics is shown in Figure 3.8.

As a result, there is most often no mention of the quality characteristics of
coverage measurement tools. When there is a mention of quality characteristics,
most of the papers asked about usability and speed. For speed, the description
is mainly about the overhead of instrumentation for coverage measurement.

Table 3.4 shows a list of literature with mention of quality characteristics.
Chen et al. [39, 38] improved performance by estimating coverage from pro-

gram execution logs and eliminating the overhead of coverage collection. In its
evaluation, they interviewed QA Engineers about the usefulness of the tool com-
pared to existing tools.

Wong and Li (2005) [203] introduced a coverage measurement tool to an
Avaya project at a low cost. It helps programmers and testers by providing
quantitative visualization of the testing process. They also mentioned runtime
overhead and memory consumption as challenges for the tool. In addition, the

21

Not
mentioned,

52

Mentioned,
10

Figure 3.7: Number of publications by
quality characteristics

Usability, 7

Speed, 6

Accuracy, 2

Scalability, 2

Memory
Comsumption, 2

Reliabi
lity, 1

Figure 3.8: Number of quality charac-
teristics in publications mentioned

trade-off between bytecode coverage and source code coverage is also addressed.
In bytecode coverage, it is difficult to know what part of the source code is
covered. However, it does not misrepresent covered instructions as not being
covered. Source code coverage, on the other hand, allows us to know directly
where the source code is covered. However, it is necessary to measure the coverage
in bytecode first, and then map it to source code coverage. At that time, there is
no one-to-one correspondence between bytecode and source code, so there may
be a gap between the actual execution and the output source code coverage.

Slonim et al. (1996) [184] has applied a coverage tool called ATAC tool to
industrial software. The requirements for industrial use are that the tool can
be used for large-scale software, and that it must be reliable and stable. The
lessons learned from the application are that the coverage tool should help to
create additional test cases.

Gergely et al. (2010) [79] measured the completeness and redundancy of
system-level tests using coverage measurement and change impact analysis, and
used this information to redesign test cases and improve the efficiency of the test-
ing process. The reduction of test cases is achieved by measuring the redundancy
of the test cases by comparing the function call graphs between the test cases.
The impact of the reduction on the coverage was shown by comparing it to the
coverage obtained without the reduction, and the difference was small enough.

Ivanković et al. (2018) [98] investigated 5 years of coverage in Google’s auto-
mated testing platform and analyzed 512 responses from a questionnaire survey
of developers. They address the challenges of speed overhead for instrumentation,
increased memory consumption, and flakiness.

Kim (2003) [111] investigated the relationship between coverage and metrics
such as defect distribution in large scale projects. The challenges of coverage
analysis in large-scale industrial software include the CPU-intensive nature of
the analysis, the need for instrumentation, and the extra cost to testers. It
was suggested that it is undesirable and cost-prohibitive to perform a detailed
coverage analysis for all modules.

Ramler et al. (2017) [177] applied mutation testing in the C source code of
60KLOC, a safety-critical mechatronic embedded system. In their study, muta-

22

tion testing required more than 4,000 hours of execution on a PC cluster, and
apart from the cost of setting up and maintaining an automated mutation testing
process, it also required a lot of man-hours for developers to review the survived
mutants and improve the tests.

Kessis et al. (2005) [108] analyzed the results of coverage measurements
against 200KLOC of J2EE server middleware. They compared nine different
coverage analysis tools in terms of supported coverage criteria, integration into
project builds, reporting capabilities, and instrumentation approaches. They
identified integration and instrumentation as the two major issues in coverage
tools.

Taylor and Derrick (2015) [189] has developed a MC/DC measurement tool
for Erlang. The tool generates HTML coverage reports and allows developers to
interactively know the details of various levels of coverage.

Table 3.4: List of publications related to coverage measurement quality

Publication speed
accu-
racy

usab-
ility

scala-
bility

relia-
bility

memory
consum-

ption

Chen et al. (2018) [39] ✓ ✓
Chen (2019) [38] ✓ ✓

Wong and Li (2005) [203] ✓ ✓ ✓
Slonim et al. (1996) [184] ✓ ✓ ✓ ✓
Gergely et al. (2010) [79] ✓

Ivanković et al. (2018) [98] ✓ ✓
Kim (2003) [111] ✓

Ramler et al. (2017) [177] ✓ ✓
Kessis et al. (2005) [108] ✓ ✓

Taylor and Derrick (2015) [189] ✓

3.4 Discussion

3.4.1 Context Type of Quality Characteristics

In the papers we reviewed, we found relevant descriptions of quality charac-
teristics such as speed, accuracy, usability, scalability, reliability, and memory
consumption. However, the context of the descriptions is different in each paper.
There are three types of contexts for quality characteristic descriptions.

1. “Survey” type: quality characteristics that are found to be required as a
result of the survey

2. “Research question” type: quality characteristics that are addressed and
evaluated as research questions

3. “Future work” type: quality characteristics as future work that could not
be tackled in the paper

“Survey” types include the speed challenges derived as a result of Kim[111]’s
empirical study on coverage, and the speed and memory consumption challenges
identified in Ivanković et al.[98]’s survey on coverage measurement in Google.
The quality characteristics of “survey” type are statistically indicated by the
importance of the issues related to them.

23

“Research question” types include methods to improve speed and memory
consumption by Gergely et al.[79] and usability in tools by Taylor and Der-
rick[189]. The quality characteristics of “Research question” type are those that
can be improved by the proposed method or trade-off effects occur in the research.
This implies that the quality characteristics are important issues that should be
solved to the extent possible with state-of-the-art techniques.

“Future work” types include the speed and memory consumption issues raised
by Wong[203] in their introduction of a coverage measurement tool to a real
system development project, and the issues raised by Ramler et al.[177] identified
speed and usability as challenges when introducing their mutation testing tool.
Quality characteristics of the “future work” type are those whose importance is
recognized by noticing their deficiency during the evaluation.

3.4.2 Needs for Coverage Measurement in Industry

Although this study showed what coverage criteria were used in the paper, for
what purpose, and with what effect, this is just a result of a trial with industrial
software, and cannot be said to directly represent the needs of industry. However,
it is highly possible that the application of the technologies in industry means
that the needs of industry were grasped in the research plan, or the researchers
and practitioners in industry developed the technologies to meet the needs of the
company, or the seeds met the needs of industry as a result. While it is difficult
to grasp that much within a publication, we believe that we are getting closer to
the needs by investigating a certain amount.

We consider that improvement of the quality characteristics listed in this
study helps the quality of developers’ activities for the purpose of coverage mea-
surement, such as test evaluation and test generation. It may also be enhanced
by quality characteristics to the effect of coverage measurements. For example,
the higher the usability, the easier it is for developers to understand what tests
to add and the higher the defect detectability of the test suite, and the higher
the accuracy, the higher the certainty of test sufficiency.

While this is not a fully mature idea, the essential meaning of coverage mea-
surement as required by industry can be read from the survey results as follows:
a comprehensive and quick measurement of how well a test suite can find bugs
that may occur in a program (even in the future), and feedback to improve the
overall efficiency of the development process as test suite improvements, evidence
of quality assurance, etc.

3.5 Summary

In this chapter, in order to explore the essential meaning of code coverage mea-
surement in industry, we manually extracted 62 out of 151 automatically collected
publications on code coverage measurement in industry, and examined the cover-
age measurement activities, their purposes, effects, and required quality charac-
teristics described in the publications. The most popular languages for coverage
measurement were Java, C, and C++, and the most commonly used coverage cri-
teria were statement/line/block coverage. The most common purpose of coverage
was test evaluation, and the most common effect was defect detection, exclud-
ing evaluation in experiments. The quality characteristics required for coverage
measurements were usability, speed, accuracy, scalability, memory consumption,
and reliability. From these results, we concluded that coverage measurement in

24

industry is required to be comprehensive and quick, and to contribute to the
efficiency of the entire development process.

25

Chapter 4

Virtual Machine for Mutation Analysis

4.1 Overview

Although mutation analysis has been widely studied for several decades, it is
rarely used in practical software development flows. The primary reason is a lack
of scalability since the analysis generates a large number of mutants. Further-
more, higher order mutation [100], which applies mutation operators more than
once, generates an even larger number of mutants.

In this chapter we propose four techniques for high-speed higher order muta-
tion, which are metamutation, as a realization of a “do faster” approach, mutation
on virtual machine as a “do faster” approach, higher order split-stream execution
as a “do smarter” approach, and online adaptation technique as a “do smarter”
approach. Metamutation technique replaces mutatable program elements with
corresponding metamutation functions which can return all possible mutation
result in runtime. In compiling target program, metamutation function’s call is
not modified and optimized out unlike typical (redundant) program elements,
and keeps mutation information including the kind of program element and orig-
inal location of source code. Mutation on a virtual machine technique processes
metamutated intermediate code on a specialized virtual machine to interprets
metamutation function. This does not require a pile of concrete mutated pro-
grams but one metamutated intermediate code file, that archives compiling once
and invoking process once. Higher order split-stream execution branches an exe-
cution state into mutated states and a non-mutated state at a point where meta-
mutation function is called on VM, i.e. the corresponding mutatable program
element is instructed. Until the point, the mutated execution and non-mutated
execution run on a common state, thus running cost is reduced. We extend this
technique for higher order mutation. Online adaptation technique gives execution
states mutation information on the fly, which reduces the number of generated
mutants by omitting infeasible mutants.

We had implemented these techniques in our tool MuVM and evaluate it on
seven C programs by comparing the number of mutants and an execution time
of the whole mutants with an existing higher order mutation tool Milu, exist-
ing Mutant Schemata Generation (MSG) technique. Additionally, to show the
reduction of execution time obtained from applying the split-stream execution,
we compare MuVM between with and without split-stream execution. The re-
sult of evaluation indicate that MuVM is significantly superior to other tools,
such as Milu, MSG, and degraded version of MuVM which excludes split-stream
execution.

The main contributions of this chapter are:

• A method to reduce compilation cost by integration of bitcode mutation

26

and metamutation in C.

• A method to reduce testing time by invoking a process once and splitting
execution stream for higher order mutation.

• A method to reduce the number of mutants by an online adaptation tech-
nique which omits infeasible mutants.

• An empirical comparison between MuVM and existing techniques.

The rest of this chapter is organized as follows. Section 4.2 provides back-
ground on cost reduction techniques for mutation analysis. Section 4.3 introduces
our approach for efficient higher order mutation. Section 4.4 describes the design
of our tool MuVM. Section 4.5 presents and discusses the results of empirical
evaluation. Section 4.6 concludes the chapter and suggests future work.

4.2 Preliminary

4.2.1 Mutant Schemata Generation

Mutant Schemata Generation (MSG) [195] approach aims to reduce the com-
piling time. Instead of compiling each mutant individually, the mutant schema
technique generates a metaprogram which can be used to represent all possible
mutants. For example, x + 2 is modified to a metamutation function bo add(x, 2,
ID) where the bo add function performs one of the arithmetic operators and ID
is assigned to each metamutation function respectively in the program. There-
fore, to run each mutant against the test suite, only this metaprogram need be
compiled, as shown in Fig. 4.1.

The running time of MSG can be expressed as

Ttotal = tseed + tcmpl +
∑
m∈M

tinst,m +
∑
m∈M

∑
tc∈TC

ttest,m,tc

where tinst,m is the instantiation time with mutant m. Thus, as per this formula,
in an MSG approach, the seeding time and the compiling time are reduced to
1/|M |, and the instantiation time is added, compared to traditional mutation
analysis.

int main(int argc,
char} argv[]){

if(mutation_ne(argc, 2))
return -1;

return abs(argv[1]);
}
int abs(int x){
if(mutation_le(x <= 0))
return –x;

else
return x;

}

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 0)
return –x;

else
return x;

}

Metamutation

Instantiation
(give parameter)

Testing

failed

pass

failed

01101010010101010
10101010101110100
10010010101010100
00101010110101011
01111110101010101
01010101010101011
01010111010111101
01011101010101010
11111101010001010
1010100101011101

Compilation

01101010010101010
10101010101110100
10010010101010100
00101010110101011
01111110101010101
01010101010101011
01010111010111101
01011101010101010
11111101010001010
1010100101011101

01101010010101010
10101010101110100
10010010101010100
00101010110010101
10110010101110101
01010001110101011
01010111010111101
01011101010101010
11111101010001010
1010100101011101

01101010010101010
10101010101110100
10010010101010100
00101010110101011
01111110101010101
01010101010101011
01010110101110101
01011110100111010
11111101010001010
1010100101011101

(1, *→/)

(2, 0→1)

(15, ++→--)

Figure 4.1: Mutation schemata generation

27

The disadvantage of MSG is an overhead of process forking in test runtime.
Some mutants are likely to crash or enter an infinite loop by instantiating the
seeded fault thus test processes have to be isolated from the test driver process
to monitor them. Assuming the use of unit testing frameworks, the test driver
is designed to fork test process for testing mutants. Especially in MSG the test
process contains large amount of data for instantiation parameters of all mutants,
and in forking the process the data is copied to the test process, which might cause
a slowdown.

4.2.2 Bitcode Translation

Bitcode translation, also referred to as “Bytecode Translation Technique” in [130],
saves compilation cost by mutating instructions at the bitcode level instead of
the source code level. Because mutated bitcode is executed in a virtual machine
(VM) directly, we only have to compile the original source code into bitcode once,
as shown in Fig. 4.2.

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 0)
return –x;

else
return x;

}

define i32 @abs(i32 %x) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %2, align 4
%3 = load i32* %2, align 4
%4 = icmp sle i32 %3, 0
br i1 %4, label %5, label %8
%6 = load i32* %2, align 4
%7 = sub nsw i32 0, %6
store i32 %7, i32* %1
br label %10
%9 = load i32* %2, align 4

Compilation
to bitcode

Mutation Testing

failed

define i32 @abs(i32 %x) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %2, align 4
%3 = load i32* %2, align 4
%4 = icmp sle i32 %3, 0
br i1 %4, label %5, label %8
%6 = load i32* %2, align 4
%7 = sub nsw i32 0, %6
store i32 %7, i32* %1
br label %10
%9 = load i32* %2, align 4

pass

define i32 @abs(i32 %x) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %2, align 4
%3 = load i32* %2, align 4
%4 = icmp sle i32 %3, 0
br i1 %4, label %5, label %8
%6 = load i32* %2, align 4
%7 = sub nsw i32 0, %6
store i32 %7, i32* %1
br label %10
%9 = load i32* %2, align 4

failed

define i32 @abs(i32 %x) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %2, align 4
%3 = load i32* %2, align 4
%4 = icmp sle i32 %3, 0
br i1 %4, label %5, label %8
%6 = load i32* %2, align 4
%7 = sub nsw i32 0, %6
store i32 %7, i32* %1
br label %10
%9 = load i32* %2, align 4

Figure 4.2: Bitcode translation

Therefore the running time of Bytecode Translation Technique is expressed
as

Ttotal = tcmpl +
∑
m∈M

tseed,m +
∑
m∈M

∑
tc∈TC

ttest,m(tc)

which indicates the reduction of compiling time equals 1/|M |.
This technique can be adapted to only languages which have intermediate

representation. LLVM bitcode is a suitable intermediate representation for C
programs.

A drawback of this technique is the potential ambiguity in the correspondence
between a source code and its bitcode. Take the case of the following two different
representations of code

1 int func(int x){

2 x = (!x) ? x + 1 : x - 1;

3 return x;

4 }

28

and

1 int func(int x){

2 if (x == 0)

3 x++;

4 else

5 x--;

6 return x;

7 }

which are semantically equivalent and return the same value according to the
input. Applicable mutation operators differ from each other such as “!x” which
can be modified by a unary operator mutation and “x == 0” by a binary operator
mutation.

These are compiled into almost the same bitcode shown as follows:

1 define i32 @func(i32 %x) #0 {

2 %1 = icmp ne i32 %x, 0

3 %.v = select i1 %1, i32 -1, i32 1

4 %2 = add i32 %.v, %x

5 ret i32 %2

6 }

Line 2 corresponds to either a unary operation “!x” or a binary operation “x
== 0”, but it is not decidable which is the original source code. This indicates
that a bitcode-level mutant cannot always be mapped onto its corresponding
source-level representation correctly.

Another problem of bitcode translation is mutant omission by optimizer.
During compile time, compiler optimizations might delete redundant program
elements to reduce the runtime cost and the bitcode size. Thus, not all pro-
gram elements at source level correspond to bitcode-level elements, and thereby
bitcode-level mutations cannot simulate source-level mutations completely. Fig.
4.3 illustrates a case of constant-folding optimization which omits a shift opera-
tor. “1 << 7” of original source code is evaluated to 128 in bitcode compile time
rather than runtime. Therefore bitcode-level mutation cannot change the shift
operator that disappeared due to the optimizer. On the other hand, traditional
mutation tool can apply shift operator mutation to the original source code.

return 1 << 7; ret i32 128

return 1 >> 7;

Compilation

to bitcode

MutationShift operator

replacement
Mutation

Cannot apply

shift operator

replacement

ret i32 0

Original source code

Compilation

to bitcode

Figure 4.3: Mutants omission by optimizer

4.2.3 Split-stream Execution

King and Offutt [112] initially proposed split-stream execution which splits the
execution stream of the original program to begin mutant execution at the point
where the mutated statement appears.

29

This technique shortens testing time by executing common parts together
until mutation location is reached as in Fig. 4.4. Hence, if mutation locations
are uniformly distributed, the running time is cut down by about half of non
split-stream execution in total.

original mutant

common
Fork

original mutant

Non split-stream

execution
Split-stream

execution

1

Figure 4.4: Split-stream execution

The limitation of this method is that it is applicable to interpreter-based tool
but not to an compiler-based one, because compiler-based tool doesn’t manage
the execution stream to be split.

4.2.4 Higher Order Mutation

The concept of Higher Order Mutation was proposed by Offutt [156]. In tra-
ditional Mutation Testing, mutants can be classified into first order mutants
(FOMs) and higher order mutants (HOMs). FOMs are created by applying a
mutation operator only once. HOMs are generated by applying mutation oper-
ators more than once. HOM could denote subtle faults which are harder to kill
than FOM.

Because the combination of mutation operators constructs HOMs, the higher
the order of mutants is, the larger the number of feasible HOMs. For instance,
if each n mutation location is modified to p kinds of seeded faults in k-th order
mutation, the total number of HOMs is

(
n
k

)
· pk. In comparison with the number

of FOMs np, this tends to be too enormous to run.

4.3 Techniques

Fig. 4.5 shows an overview of our approach. We adopt four interdependent
techniques which compensate for the imperfections of each other. First, the tool
replaces program elements by metamutation functions in a way similar to MSG
technique. Second, metamutated source code is compiled to bitcode, and third
the bitcode is executed with each test case on our tool’s VM which splits a execu-
tion state into the original instruction and its mutated ones when a metamutation
function is called. Finally mutants represented by corresponding mutation de-
scriptors which modify an instruction in the execution state.

4.3.1 Metamutation

In metamutation phase, each mutatable program element, which can be modified
by specified mutation operators, is replaced with a metamutation function. Unlike

30

int main(int argc,
char} argv[]){

if(mutation_ne(argc, 2))
return -1;

return abs(argv[1]);
}
int abs(int x){
if(mutation_le(x <= 0))
return –x;

else
return x;

}

define i32 @abs(i32 %x) #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 %x, i32* %2, align 4
%3 = load i32* %2, align 4
%4 = icmp sle i32 %3, 0
br i1 %4, label %5, label %8
%6 = load i32* %2, align 4
%7 = sub nsw i32 0, %6
store i32 %7, i32* %1
br label %10
%9 = load i32* %2, align 4

Compilation
to bitcode Testing

failed

pass

failed

Test 3
Test 2

Test 1

(2, <= → >)

%3=2
%3=2
%4=true

%3=2

(2, 0 → 1)

%3=2
%4=false

%3=2
%4=false

%3=2
%4=false
%7=-2

%3=2
%4=false
%7=1

(3, - → --)

int main(int argc,
char} argv[]){

if(argc != 2)
return -1;

return abs(argv[1]);
}
int abs(int x){
if(x <= 0)
return –x;

else
return x;

}

Metamutation

Figure 4.5: Overview of MuVM approach

MSG, our approach does not prepare the native code implementation of the
metamutation function. Instead, metamutation functions are activated in the
virtual machine.

Fig. 4.6 exhibits an example of a seeded metamutation function. The function
signature, including the function name, its arguments and the return type, man-
ifests a type of source-level program element, e.g. “bop ne(int,int,int)” means an
integer typed not-equal (“!=”) binary operator. The last argument of the func-
tion represents the metamutation ID which is assigned to each metamutation
uniquely and is recorded with its mutation location.

if(x != (1 << 7)){
x++;

} else {
x--;

}
return x;

if(bop_ne(x,bop_shl(1,7,1),0)){
uop_postinc(&x,2);

} else {
uop_postdec(&x,3);

}
return x;

Replace operators

to metamutation

functions

%1 = alloca i32, align 4
store i32 %x, i32* %1, align 4, !tbaa !1
%2 = call i32 @bop_shl(i32 1, i32 7, i32 1) #2
%3 = call zeroext i1 @bop_ne(i32 %2, i32 %x, i32 0) #2
br i1 %3, label %4, label %6

; <label>:4
%5 = call i32 @uop_postinc(i32* %1, i32 2) #2
br label %8

; <label>:6
%7 = call i32 @uop_postdec(i32* %1, i32 3) #2
br label %8

; <label>:8
%9 = load i32* %1, align 4, !tbaa !1
ret i32 %9

Compilaition

to bitcode

No lost mutation

location

The last parameter

is metamutation ID

which indicates the

location of operator.

Figure 4.6: Example of metamutation

Metamutation technique is able to compensate for the disadvantages of bitcode-
level mutation. The implementation of a metamutation function is deployed in
the virtual machine (MuVM) like a built-in function, therefore a compiler cannot
see the definition of the metamutation function and cannot decide if this function
should be inlined or not. This is the reason that metamutation functions which
have constant parameters are preserved during optimization, and all source-level
mutants can be reflected at bitcode-level. Also, source-level program elements
can be specified at bitcode level by the signature of a metamutation function.
Furthermore, the correspondence between source-level and bitcode-level muta-
tion locations is determined by metamutation ID.

31

4.3.2 Mutation on Virtual Machine

To reduce the compiling and testing time, our tool MuVM is designed as a virtual
machine for bitcode-level mutation, which interprets bitcode with seeded meta-
mutation functions and mutates instructions of metamutation functions. If the
fetched instruction is a call of a metamutation function, it first checks whether
it can be mutated. To decide mutatable or not it checks whether the instruction
has been already included in a current trace and whether the number of seeded
faults exceeds the maximum mutation order specified by user. The former means
that mutation has occurred in only first visiting instructions in order to prevent
double counting of mutants. The latter keeps the limit of mutation order. In next
step, MuVM branches the execution state into the original state and its mutated
states. The detail procedure of branching is explained in the following section.
Finally it executes the mutated instructions and the original instruction on each
state separately.

This method requires only a one-time compilation similar to bitcode trans-
lation technique and reduces the time required to compile a mutant to 1/|M |.
Moreover invoking the tool’s process once also reduces testing time, as each test
does not create a process but starts the execution state in the tool’s process.

MuVM manages the bitcode execution as a virtual machine. Thus it can
detect mutant’s crash such as buffer overrun and null pointer dereference in run-
ning tests. It can also prevent infinite loop by detecting arithmetic overflow and
terminating a process by timing out. On these grounds MuVM need not fork the
process, this leads the computational costs to lessen.

4.3.3 Higher Order Split-stream Execution

There exist a few mutation analysis tools that adopt split-stream execution. As
far as we know, this technique is implemented only in [67] which forks new threads
on calling mutated method in Java bytecode.

Our MuVM realizes split-stream execution for higher order mutations (HOSSE).
As shown in Fig. 4.7, HOSSE branches not only the original execution states but
also their mutated ones to insert additional faults.

bop_shl(1,7,1)

%x=0
%2=128

%x=0
%2=0

%x=0

bop_ne(%x,%2,0)

%x=0
%2=128
%3=true

%x=0
%2=128
%3=false

%x=0
%2=0
%3=false

%x=0
%2=0
%3=true

bop_ne(%x,%2,0)

%x=0
%2=128
%3=true

%x=0
%2=128
%3=true

%x=0
%2=128
%3=false

%x=0
%2=128
%3=false

(1,OSSN_SHR)

(0,ORRN_EQ) (0,ORRN_LT) (0,ORRN_LE) (0,ORRN_GT) (0,ORRN_GE) (1,OSSN_SHR) (1,OSSN_SHR)

(0,ORRN_EQ)

%x=0
%2=0
%3=false
(1,OSSN_SHR)

(0,ORRN_LT)

%x=0
%2=0
%3=true
(1,OSSN_SHR)

(0,ORRN_LE)

%x=0
%2=0
%3=false
(1,OSSN_SHR)

(0,ORRN_GT)

%x=0
%2=0
%3=true
(1,OSSN_SHR)

(0,ORRN_GE)uop_postinc
(*%1,2)

uop_postdec
(*%1,3)

uop_postinc
(*%1,2)

uop_postinc
(*%1,2)

uop_postdec
(*%1,3)

uop_postdec
(*%1,3)

uop_postdec
(*%1,3)

%x=0
%2=128
%3=true
%5=1

%x=0
%2=0
%3=false
%5=-1

%x=0
%2=128
%3=true
%5=1

(2,OPPO_PREINC) (1,OSSN_SHR)

(3,OMMO_POSTINC)

Figure 4.7: Higher order split-stream execution

HOSSE can save the computational cost by sharing the common execution
path with a lower-order mutant. We show a brief proof that the computational
cost of HOSSE is approximately proportional to the mutation order k. In other
words, the higher the mutation order, the faster the HOSSE becomes compared
to naive higher order mutations. This is an advantage in considering applications

32

for higher-order mutations. In addition, to the best of our knowledge, such an
analysis has not been done in other SSE or HOM studies.

To analyze the computational cost of HOSSE, we assume an execution se-
quence as a theoretical model which has n uniformly distributed mutation loca-
tions, λ · n instructions where λ is the ratio of the number of instructions per
mutation location, and p kinds of seeded faults per mutation location in k-th
order mutation. We also assume that the execution sequence after mutation has
the same execution path as the original execution sequence. Fig. 4.8 (a)–(d)
represents the theoretical model at 0, 1, 2, and k-th order mutation, respectively.

L1

L2

Lj

Ln-2

L2
L3

L3
L4

Lj+1
Lj+2

Ln-1

Ln-1

(b) (d)

L1

L2

Lj

Ln-k

L2
L3

L3
L4

L3
L4

L4
L5

Lj+1
Lj+2

Lj+2
Lj+3

Lk

Lk+1

Lj+k-1

L1

L2

Lj

Ln-2

M
utation locations

Ln-1

𝐶𝐶𝐿𝐿𝑗𝑗,0 =
𝜆𝜆(𝑛𝑛 − 𝑗𝑗 + 1)

𝐶𝐶𝐿𝐿𝑗𝑗,1 =
𝑝𝑝𝐶𝐶𝐿𝐿𝑗𝑗+1,0 + … + 𝑝𝑝𝐶𝐶𝐿𝐿𝑛𝑛,0

= �
𝑖𝑖=𝑗𝑗

𝑛𝑛−1
𝑝𝑝𝐶𝐶𝐿𝐿𝑖𝑖+1,0 Ln-1

(c)

L1

L2

Lj

L2
L3

L3
L4

L3
L4

L4
L5

Lj+1
Lj+2

Lj+2
Lj+3

Ln-2 Ln-1

(a)

𝐶𝐶𝐿𝐿𝑗𝑗,2 =
𝑝𝑝𝐶𝐶𝐿𝐿𝑗𝑗+1,1 + … + 𝑝𝑝𝐶𝐶𝐿𝐿𝑛𝑛−1,1

= �
𝑖𝑖=𝑗𝑗

𝑛𝑛−2
𝑝𝑝𝐶𝐶𝐿𝐿𝑖𝑖+1,1

Lk+1

Lk+2

Lj+k

𝐶𝐶𝐿𝐿𝑗𝑗,𝑘𝑘 =
𝑝𝑝𝐶𝐶𝐿𝐿𝑗𝑗+1,𝑘𝑘−1 + … + 𝑝𝑝𝐶𝐶𝐿𝐿𝑛𝑛−𝑘𝑘+1,𝑘𝑘−1

= �
𝑖𝑖=𝑗𝑗

𝑛𝑛−𝑘𝑘
𝑝𝑝𝐶𝐶𝐿𝐿𝑖𝑖+1,𝑘𝑘−1

Ln

Ln

Ln
Ln

Lj+k

Lk+1
Lk+2

Lj+k+1

Lk+2
Lk+3

p seeded faults
per location

Figure 4.8: HOSSE theoretical model

A partial execution sequence which splits at j-th mutation location, repre-
sented by Lj , remains at n−j+1 mutation locations and is regarded as (k−1)-th
order mutation. Therefore total cost of k-th order mutation cLj ,k starting from
j-th mutation locations can be expressed as the following recurrence relation.

cLj ,k = p · cLj+1,k−1 + · · ·+ p · cLn−k+1,k−1 =
n−k∑
i=j

p · cLi+1,k−1 (4.1)

cLj ,0 = λ(n− j + 1) (4.2)

Note that instructions including more than (n − k)-th mutation locations (i.e.
Ln−k+1, ..., Ln) are not available for k-th order mutation. The execution cost up
to the branch is not included in Equation 4.1, but is included in the execution
cost at the previous order (i.e. cLj ,k−1), which indicates that the total cost of
HOSSE can be reduced by sharing the execution path.

These equations can be transformed to

cLj ,k = λ · pk
(
n− j + 1

k + 1

)
. (4.3)

On the other hand, as we described in 4.2.4, the total number of k-th order
mutants is pk

(
n
k

)
, so the computational cost of naive k-th order mutation is λn ·

pk
(
n
k

)
. Consequently we can get ratio of HOM sequential execution to HOSSE as

costHOM seq. exec.

cL1,k
=

λn · pk
(
n
k

)
λ · pk

(
n

k+1

) =
1

1− k
n

· (k + 1). (4.4)

This ratio asymptotically becomes k + 1 when n is very large, meaning that
HOSSE is approximately k times faster than HOM sequential execution when
there are a lot of mutation locations.

The detailed proof of the above relation is provided in AppendixA.

33

4.3.4 Online Adaptation Technique

We classify the generative techniques of mutants into the following two types:
offline and online adaptation technique. The offline adaptation technique means
each mutant is saved as source code or binary code or intermediate code in the
storage or memory, which is exhaustively (i.e. wastefully) generated correspond-
ing to mutatable program elements. These mutants also run on native processes.
Existing mutation analysis tools are designed with this technique. On the other
hand, the online adaptation technique does not generate code-based mutants but
mutation descriptors in execution states, which denotes its metamutation ID and
mutation operators derived from. These are called metamutation function and
identify the corresponding mutants.

As Fig.4.9, MuVM manages a set of execution states, and adds a mutation
descriptor to the execution state when branching the state, namely first calling
metamutation function. If the mutation descriptor’s metamutation ID is matched
with the called metamutation function, the instruction is modified by the muta-
tion operator of the descriptor. That designates no wasteful mutation descriptor
(mutant) exists in this method because this method only generates mutation
descriptors by actually invoked metamutation function with given test cases.

The online adaptation technique is effective particularly in higher order mu-
tation. In FOM, we can use the traces of the original program with test cases
to filter mutatable program elements. In HOM, the program elements which
are not in the original program’s path might be mutated because the preceding
seeded fault may change the path into a different one which includes the pro-
gram elements the original one cannot execute. That makes the identification
of meaningful mutation location difficult. By contrast, our method executes the
path switched by the preceding faults. Thus we can easily obtain feasible HOMs
and avoid infeasible HOMs.

MuVM
Native ProcessNative Process

for(i++ < 3);

%i = 1

for(i-- < 3);

%i = -1

%i = 0

for(uop_postinc(&i,0) < 3);

%i = 0

%i = 2 %i = -2

%i = -1

%i = 0

%i = -2

(0,OPPR_POSTDEC)

(0,OPPR_POSTDEC)

%i = 1

%i = 2

Add Mutation

Descriptor to

Execution State

Mutation

Offline Adaptation Technique Online Adaptation Technique

If ID is matched,

invoke mutated

instruction

i++

i++

i++

i--

i--

i--

uop_postinc(&i,0)

uop_postinc(&i,0)

uop_postinc(&i,0)

uop_postinc(&i,0)

uop_postinc(&i,0)

Figure 4.9: State Transition in Offline and Online adaptation Technique

4.4 Design of MuVM

4.4.1 Overall Structure and Behavior

Fig 4.10 shows the structural design of MuVM. MuVM takes a source code, a
list of mutation operators and a test suite, and outputs a mutation report which
includes the mutation score and mutants. We assume the test suite is written in
the format of unit testing framework (Google Test [85]). The mutation operator

34

list describes the set of mutation operators which the user wants to apply to
source code. The mutation report includes the mutation score and other related
information like unkilled mutants.

MuVM consists of four main components: Metamutation Inserter, Instruc-
tion Mutator, Execution Engine and Mutation Reporter, which act and interact
according to the following steps:

1. Metamutation Inserter inserts metamutation functions into the source code
and compiles it.

2. MuVM takes a test case from the test suite.

3. Instruction Mutator fetches an instruction from the bitcode.

4. If the instruction is a metamutation function calling which corresponds to
a mutation operator in the mutation operator list and the instruction has
not been already covered (not in the state’s mutants), Instruction Mutator
forks the state and adds a mutant to the new state.

5. Execution Engine executes the mutated instruction if the state has a mu-
tant. If not, it executes the instruction as is.

6. MuVM repeats 3)–5) until the state terminates.

7. MuVM runs next state (repeat 3)–6)) if any remaining states exist.

8. If no states, MuVM stores the test results and inputs the next test case.

9. If all test cases are finished, Mutation Reporter outputs a mutation report.

MuVM

Execution

States

Mutation

operator

list

(metamutation ID and

mutation op. pairs)

Instruction

Mutator

Source

code

Execution

Engine

Mutant

Descriptor

1 *

Test

suite

1
*

1
*

Mutation

Reporter

Test Results

Mutation

Report

Program

(LLVM

bitcode)

Metamut

ation

Inserter

Metamutation

Information

(metamutation ID and

Source Location pairs)

Figure 4.10: Structural design of MuVM

Now we demonstrate an operational example. Suppose an input source code
is as in Fig. 4.6. The mutation operator list has relational/shift binary operator
replacement (ORRN and OSSN) and increment/decrement replacement (OPPO
and OMMO), the test inputs are x = 0, 128 and the expected outputs are 1, 127
respectively.

35

Given the test case x = 0, MuVM executes the instructions as is until bop shl(1,7,1)

is called. Then in calling bop shl(1,7,1) the current execution state forks the
original state and its mutated one which has a mutant descriptor (1, OSSN SHR)
which means a change from shift operator “<<” into “>>” at metamutation ID 1,
as Fig. 4.7 shows.

Next, when bop ne(%x, %2, 0) is called, the execution state branches into
the original state and 5 mutated ones with mutant descriptors (0, ORRN EQ), (0,
ORRN LT), (0, ORRN LE), (0, ORRN GT) and (0, ORRN GE) which replace
“!=” with “<”, “<=”, “>” and “>=” respectively. They can be made unique by
combining a metamutation ID and a mutation operator. Then uop postinc(*%1,

2) is processed similarly.
If the original state is terminated at the end of the program, a next state is

chosen from the set of derived (mutated) states. Then the execution in the state
starts at the point where it branched. Until the termination of the program,
it processes the instructions and branches in the same way the original state
did except the judgment of mutant’s kill. MuVM regards any assertion failure,
crashed and timed out mutants as “killed”, and mutants which exit normally as
“unkilled”. These status are stored in the test results.

If all states are finished in a similar manner, MuVM stores the results of each
mutant in the test case x = 0, and runs the next test case x = 128 alike. After
carrying out all test cases, the tool reports the mutation score calculated from
the test results.

4.4.2 Complications

Our approach adopts a metamutation technique like MSG. Therefore we also
faced complications of metamutation which Untch [194] pointed out such as (1)
short circuit evaluation and (2) structural mutation. Fortunately we were able
to apply his solutions to our tool almost similarly.

Short-circuit Evaluation

Short-circuit Evaluation means the semantics of logical connectors where the
second operand is not evaluated in case the first operand suffice to determine the
value of the expression. For example, the expression (D != 0 && N/D > 5) is
intended to avoid a “division by zero” error to ignore the right expression N/D if
the value of D is zero, that is, the left expression is evaluated as false. If the logical
connector of this expression would be metamutated to bop and(D!=0,N/D,id),
this evaluates N/D before entering the function even if D is zero, that might lead
to an incorrect mutation.

To evaluate metamutated logical connectors properly, we introduced the fol-
lowing macro.

#define bop_and(lhs , rhs , id) \

(bop_and_(lhs , id) ? rhs : get_lhs(id))

#define bop_or(lhs , rhs , id) \

(bop_or_(lhs , id) ? get_lhs(id) : rhs)

In the original behavior, bop and () and bop or () return lhs value. In
the mutated behavior, bop and () and bop or () return negated lhs value. Si-
multaneously bop and () and bop or () record lhs value with id in order to
get lhs value by calling get lhs(id), that avoids evaluating lhs twice in one
metamutation function call. These realize short-circuit evaluation.

36

Structural Mutation

Some mutation operators change entire statements or the structure of the pro-
gram. For example, the statement deletion (SDL) operator, which deletes each
statements systematically, is one of operators for structural mutations. To meta-
mutate such operators our tool inserts switchable replaced statements shown in
Fig. 4.11, where ssdl(id) returns true if SDL is enable in specified metamutation
ID.

while (X != Y)
if (X < Y)
Y = Y – X;

else
X = X – Y;

if (ssdl(0))
;

else
while (X != Y)

if (ssdl(1))
;

else
if (X < Y)

if (ssdl(2))
;

else
Y = Y – X;

else
if (ssdl(3))

;
else

X = X – Y;

Metamutation

Figure 4.11: Metamutation for Structural Mutation

4.4.3 Mutation Score Calculation

Mutation score without considering equivalent mutants can be expressed by the
following form.

(# of killedmutants)

(# of all mutants)

The traditional approach generates and invokes all mutants. Thus the number of
all mutants and the number of killed mutants are counted online. On the other
hands, our approach omits infeasible HOMs. This means there exists a difference
between traditional mutation score and ours. To obtain the same results, our
approach needs additional offline processes to offset the omissions to simulate
traditional counting. Counting the number of all HOMs is available in offline by
simply calculating combination of FOMs, which is referred in 4.2.4. To count the
number of killed infeasible HOMs, it is necessary to distinguish killed infeasible
HOMs from all infeasible HOMs by means of search for killed feasible HOM which
can simulate the killed infeasible HOM. , shown in Figure 4.12.

Here we use HOMs as an example, which is not feasible in MuVM. HOM1
combines the mutant that replaces the comparison operator on line 3 with the

37

Output
m1

m2

Fail

>=

－nopm3

m4
/

nop

nop

%

<=

Pass

nop

m2
－nop

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4 ∧ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4 ∧ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4

m1
>=nop

m2

Fail

－nop
m3

m4

Pass

<=

/

nop

nop

%

m1

m2m3

m4

FailPass

>=

－<=

/

nop

nopnop

nop %

m1

m3

m4

Pass

<=

/

nop

nop

nop %

m2

Fail

>=

－nop

1: int func(int x){
2: if(x < 0)
3: return x + 1;
4: else if(x > 0)
5: return x * 2;
6: else
7: return 0;
8: }

1: int func(int x){
2: if(bop_lt(1,x,0))
3: return bop_add(2,x,1);
4: else if(bop_gt(3,x,0))
5: return bop_mul(4,x,1);
6: else
7: return 0;
8: }

(3, > → <=)
(4, * → /)

(1, < → >=)
(3, > → <=)
(4, * → /)

Meta-
mutation

Test case1: func(0)==0

Test case2: func(1)==2

Test case3: func(-1)==0

Source code Under Test

⇒ Killed

⇒ Killed

HOM1

HOM2

Merge the decision trees into one

Figure 4.12: Decision tree for simulating infeasible HOM

mutant that replaces the binary operator on line 4. The third line is a return
statement, so when the third line is executed, the program terminates there and
execution does not reach the fourth line. Such a HOM cannot be generated
directly by MuVM. Therefore, we create a decision tree that represents the pass
or fail of the test for each combination of mutants, and use it to derive the results
of the infeasible HOM. First, we represent the execution result of each test case
in MuVM as a decision tree that branches according to the mutation operator
applied at each mutation location. If no change is applied, it is represented as a
nop edge. Next, the decision trees are merged into a single decision tree in the
form of a logical product. Finally, the decision tree is used to output the test
results for the desired HOM to determine if the HOM can be killed, even if it is
infeasible on MuVM. In the case of HOM1 in the example, by following nop, nop,
“<=”, we can see that it fails, that is, it can be killed.

Note that this feature has not been incorporated into the implementation of
MuVM and has not been used in the following experiments. Specifically, the
number of mutants does not include those that are infeasible.

4.5 Evaluation

We investigated the performance of MuVM to answer the following research ques-
tions:

38

Table 4.1: Fundamental data of subject programs

Subject pro-
gram

Lines of
code

of test
cases

of mu-
tation
locations

Description

rand r 23 1 12 Return random value

ascii to bin 16 7 11 Transform a character for
cryptography

cal 27 10 14 Compute number of days
between input days

tcas 137 1,608 16 Altitude separation

strtol 93 628 22 Convert string to long

space 5,905 100 845 European Space Agency
program

RQ1: How many times does our tool invoke mutants compared with fully gen-
erative method?

RQ2: How much can our tool reduce computational costs compared with other
mutation tools?

RQ3: How superior is our approach to MSG technique?

RQ4: How much does split-stream technique make mutation analysis faster?

4.5.1 Competitive Tools

According to [99] there are some available mutation analysis tools for C. However
we could not find any appropriate tool for comparison except Milu [101]. Milu
is an open source software and the only tool which can generate HOM in C.
Consequently we adopted Milu as a competitor for RQ1 and RQ2. The revision
of Milu which we used was the one checked in on Oct 15 2014.

In terms of RQ3 a tool which supports MSG technique and HOM genera-
tion does not exist. Hence we implemented MSG and HOM available tool which
utilizes the feature of parameterized test in Google Test [85] to instantiate meta-
mutant by giving sets of mutation descriptors as parameters. This tool was
employed for RQ3.

Finally RQ4 requires a degraded version of MuVM which excludes split-
stream execution. Instead of forking a state, the degraded MuVM generates a
whole new state with the mutant.

4.5.2 Subject Programs

To evaluate the performance of the tools related to RQ1 – 4 we prepared seven
programs written in C. Table 4.1 shows fundamental data of the programs.

We generated test cases for rand r and ascii to bin by using KLOVER
[122] i.e. symbolic execution tool, and employed the prepared test cases for cal

and tcas. The test cases of space are sampled in prepared 13,858 test cases. All
test cases are formatted to Google Test style in advance.

4.5.3 Experimental Procedure

All experiments except space were carried out on a 2.93GHz Intel Xeon X5670
and 4GB of memory with Ubuntu 14.04LTS and Clang compiler. We run the tools

39

Table 4.2: A Total Number of Invoked Mutants

Subject pro-
gram

Mutant or-
der

Total # of invoked mu-
tants

Ratio (B
/ A)

MuVM(A) Milu,MSG(B)

1st 48 48 1.00
rand r 1st and 2nd 1,104 1,104 1.00

1st – 3rd 15,184 15,184 1.00
1st – 4th 141,904 141,904 1.00

1st 155 350 2.26
ascii to bin 1st and 2nd 1,170 7,945 6.79

1st – 3rd 5,098 116,375 22.83
1st – 4th 14,311 1,095,360 76.54

1st 474 610 1.29
cal 1st and 2nd 10,121 17,870 1.77

1st – 3rd 131,726 318,130 2.42

tcas 1st 56,366 124,741 2.21
1st and 2nd 811,805 4,743,316 5.84

strtol 1st 56,582 59,660 1.05
1st and 2nd 2,092,150 2,756,920 1.32

space 1st 112,255 396,400 3.53
1st and 2nd 4,951,762 785,527,800 158.64

5 times on each experimental set except parts which did not finish within 100,000
sec. space’s experiment requires a huge amount of computational resources and
too long execution time to repeat 5 times, thus run once on a 3.5GHz Intel Xeon
E3-1275 v3 and 16GB memory with 14.04LTS and Clang compiler. We observed
the execution time of each running. Each tool adopts the same mutation opera-
tors on the same locations, which are OAAN (arithmetic operator replacement),
OAAA (arithmetic assignment replacement) and ORRN (relational operator re-
placement).

4.5.4 Hypothesis

To answer RQ2 – 4 explicitly we carried out statistical tests about performance
of the tools. We set up null hypothesis as

H0: there is no difference in performance (execution time) between MuVM and
other implementation.

and alternative hypothesis as

H1: there is a significant difference in performance (execution time) between
MuVM and other implementation.

We assume that the two populations have normal distribution with unequal
variances. Therefore we employed Welch’s t-test for testing H0 and calculated
the t-value and p-value at the 1% significance level. Unfortunately we cannot
apply the testing to space hence the data of running space cannot be taken
multiple times.

4.5.5 Results and Discussion

40

T
ab

le
4.

3:
E

x
ec

u
ti

on
T

im
e

S
u
b

je
ct

p
ro

-
gr

am
M

u
ta

n
t

or
-

d
er

A
v
er

a
ge

of
ex

ec
u
ti

on
ti

m
e

(s
ec

.)
S
D

of
ex

ec
u
ti

on
ti

m
e

(s
ec

.)
E

ffi
ci

en
cy

(A
v
e.

o
f

C
o
m

p
et

it
o
r

/
A

v
e.

of
M

u
V

M
)

M
u
V

M
M

il
u

M
S
G

n
on

-S
S
E

M
u
V

M
M

il
u

M
S
G

n
on

-S
S
E

M
il
u

M
S
G

n
on

-S
S
E

1s
t

2
.2

6
2
9.

7
7

2.
09

2.
29

0.
02

1.
91

0
.0

2
0.

01
1
3
.1

6
0
.9

2
1.

01
r
a
n
d
r

1s
t

an
d

2n
d

2
.9

5
59

8.
6
4

2.
65

3.
75

0.
02

13
.0

8
0
.2

0
0.

02
20

3
.2

0
0
.9

0
1.

27
1s

t
–

3r
d

10
.9

2
8,

8
45

.9
7

17
.7

4
23

.1
9

0.
09

29
9.

14
0
.1

5
0.

10
81

0
.3

7
1
.6

3
2.

12
1s

t
–

4t
h

74
.8

9
(8

2,
6
71

.1
4)

92
4.

44
19

7.
82

0.
13

N
/A

1
0.

2
6

0.
92

(1
1
0
3
.9

0)
12

.3
4

2.
64

1s
t

2
.3

5
3
2.

2
1

2.
62

2.
44

0.
03

1.
96

0
.0

7
0.

02
1
3
.6

9
1
.0

7
1.

04
a
s
c
i
i
t
o
b
i
n

1s
t

an
d

2n
d

2
.7

3
72

0.
1
1

7.
16

3.
32

0.
02

21
.5

8
0
.4

3
0.

02
26

3
.7

8
2
.6

7
1.

22
1s

t
–

3r
d

4
.1

9
10

,5
3
2.

0
5

27
0.

43
7.

04
0.

02
37

6.
10

4
.6

3
0.

03
2
,5

1
4
.8

2
64

.5
7

1.
68

1s
t

–
4t

h
7
.4

9
(9

9,
1
31

.1
4)

31
,1

62
.7

3
16

.0
8

0.
02

N
/A

1
,4

2
4.

8
5

0.
09

(1
3
23

5
.1

3
)

4
,1

5
9
.4

7
2.

15

1s
t

3
.0

7
3
6.

5
7

14
.9

2
3.

67
0.

02
0.

22
0
.0

4
0.

01
1
1
.9

1
4
.8

6
1.

19
c
a
l

1s
t

an
d

2n
d

13
.9

8
1
09

5
.3

9
37

5.
31

29
.6

6
0.

09
12

.9
5

9
.8

6
0.

18
7
8
.3

4
26

.8
4

2.
12

1s
t

–
3r

d
1
34

.0
5

20
7
50

.7
6

93
07

.5
4

35
2.

81
1.

04
10

09
.5

0
28

6.
8
3

2
0
.0

3
15

4
.7

9
69

.4
3

2.
63

t
c
a
s

1s
t

89
.9

0
61

6.
6
1

45
2.

08
23

2.
65

0.
37

4.
35

2
0.

8
1

1.
78

6
.8

6
5
.0

3
2.

59
1s

t
an

d
2n

d
1,

01
6
.6

2
46

,1
3
1.

8
2

–
3,

49
8.

83
3.

72
60

2.
88

N
/
A

3
0
.7

9
4
5
.3

8
N

/
A

3.
44

s
t
r
t
o
l

1s
t

1
52

.2
7

95
5.

3
1

25
6.

19
28

0.
93

1.
41

12
.1

3
8
.5

6
1.

75
6
.2

7
1
.6

8
1.

84
1s

t
an

d
2n

d
4,

71
4
.1

8
45

,1
8
5.

2
2

–
10

,1
92

.7
7

86
.1

5
1,

11
1.

61
N

/
A

6
1
.1

2
9
.5

8
N

/
A

2.
16

s
p
a
c
e

1s
t

8,
35

7
.6

1
5,

8
37

.6
7

–
28

,7
27

.1
0

N
/A

N
/A

N
/
A

N
/A

0
.7

0
N

/
A

3.
44

1s
t

an
d

2n
d

6
4,

3
05

.5
9

(4
,3

2
1,

4
07

.5
9)

–
–

N
/A

N
/A

N
/
A

N
/A

(6
7
.2

0
)

N
/
A

N
/
A

41

T
ab

le
4.

4:
T

h
e

R
es

u
lt

s
of

t-
te

st

S
u

b
je

ct
p

ro
-

gr
am

M
u

ta
n
t

or
-

d
er

t-
va

lu
e

p
-v

al
u

e

M
il

u
M

S
G

n
o-

S
S

E
M

il
u

M
S

G
n

o-
S

S
E

1s
t

-4
5.

51
12

.7
4

-2
.7

0
5.

98
E

-1
2

4.
25

E
-0

6
3.

54
E

-0
2

r
a
n
d
r

1s
t

an
d

2n
d

-1
01

.8
7

3.
28

-6
0.

08
5.

57
E

-0
8

3.
05

E
-0

2
9.

30
E

-1
1

1s
t

–
3r

d
-6

6.
04

-8
5.

39
-1

99
.5

2
3.

15
E

-0
7

7.
95

E
-1

2
4.

46
E

-1
6

1s
t

–
4t

h
N

/A
-1

85
.2

2
-2

96
.2

8
N

/A
5.

10
E

-0
9

7.
79

E
-1

0

1s
t

-3
4.

14
-7

.6
5

-5
.7

5
4.

39
E

-0
6

6.
06

E
-0

4
4.

28
E

-0
4

a
s
c
i
i
t
o
b
i
n

1s
t

an
d

2n
d

-7
4.

32
-2

3.
59

-4
0.

47
1.

96
E

-0
7

1.
91

E
-0

5
1.

53
E

-1
0

1s
t

–
3r

d
-6

2.
59

-4
6.

07
-1

90
.5

6
3.

90
E

-0
7

1.
33

E
-0

6
6.

44
E

-1
6

1s
t

–
4t

h
N

/A
-4

8.
89

-2
14

.8
0

N
/A

1.
05

E
-0

6
4.

15
E

-1
1

1s
t

-3
34

.2
5

-5
89

.6
6

-5
3.

70
4.

81
E

-1
0

1.
07

E
-1

7
4.

23
E

-0
8

c
a
l

1s
t

an
d

2n
d

-1
86

.6
6

-8
1.

96
-1

71
.6

1
4.

94
E

-0
9

1.
33

E
-0

7
2.

64
E

-1
2

1s
t

–
3r

d
-4

5.
67

-7
1.

51
-2

4.
39

1.
38

E
-0

6
2.

29
E

-0
7

1.
68

E
-0

5

t
c
a
s

1s
t

-2
69

.8
9

-3
8.

92
-1

75
.7

4
1.

13
E

-0
9

2.
60

E
-0

6
6.

29
E

-0
9

1s
t

an
d

2n
d

-1
67

.3
3

N
/A

-2
38

.8
7

7.
65

E
-0

9
N

/A
1.

84
E

-0
9

s
t
r
t
o
l

1s
t

-1
47

.0
8

-2
6.

78
-1

27
.7

2
1.

28
E

-0
8

1.
16

E
-0

5
1.

58
E

-1
4

1s
t

an
d

2n
d

-8
1.

17
N

/A
-1

15
.9

8
1.

38
E

-0
7

N
/A

9.
34

E
-1

3

42

RQ1: A Total Number of Invoked Mutants

Table 4.2 shows the comparison of total numbers of invoked mutants between our
tool and Milu/MSG. The results of rand r indicate no difference between the
two. The reason is that rand r has no branch, namely every program element
is feasible on any mutant and any test case. On the other hand, there are gaps
between the two at other subject programs, and the higher the order of mutants
is, the greater is the gap. This is attributed to online adaptation technique
which reduces such wasteful HOMs that include any infeasible seeded fault. An
infeasible seeded fault wastes the HOMs which consists of combination of faults
including this fault. In HOM, the more seeded faults a mutant includes, the more
the combination of faults increases, that is, the ratio of mutants which include
infeasible seeded faults increases.

RQ2: A Performance Comparison with Other Mutation Tool

Table 4.3 shows the execution times of MuVM and Milu, and Table 4.4 represents
the results of t-test for each subject program. The value enclosed in parentheses
means estimated value by the number of mutants due to long execution time
exceeding 1 day.

In all subject programs at all mutant order except space, the p-values are
less than 1%. Thus we can reject H0 and conclude that MuVM is significantly
faster than Milu in moderate size of programs.

Milu is implemented using test harness technique, which compiles each mutant
into a dynamic library and calls them through the libraries from a test harness.
In comparison with compiler-based technique, test harness technique can reduce
the test execution cost by creating a process once at every mutant. However
each mutant is straightforwardly generated at source level and need to be com-
piled separately. Based on our investigation of Milu’s profile, the compilation is
dominant bottleneck over all phase. The ratio of its time reaches over 90% in
any program we prepared. By contrast, MuVM needs compilation once and the
testing time is dominant rather than compilation time especially in HOM. That
seems to make the significant difference between MuVM and Milu in terms of
performance.

On the other hands, the result in space at 1st order mutation shows that Milu
is faster than MuVM. Our observation of space found that the space program
consists of much more loops than other programs. From that we can derive an
meaningful aspect of phenomena that the ratio of compilation time to testing
time is smaller than other cases. Thus our approach that reduces compilation
time is not highly effective in this situation.

As mentioned in section 4.5.5, MuVM tests mutants which have only feasible
faults unlike Milu. That also contributes MuVM’s faster executions than Milu.
Actually there is the correlation between the number of mutants and execution
time, where the correlation coefficients are 0.911 in Milu and 0.988 in MuVM.

Other advantage of MuVM is less storage consumption because MuVM does
not generate mutated source files to be compiled and the mutated executable files.
In space at 2nd order mutation Milu tried to occupy 1.5 TB space for 7,855,278
mutated source files, but failed. Our online adaptation approach just requires
storage space for metamutated intermediate code and the result of mutation.

43

RQ3: A Performance Comparison with MSG Technique

Table 4.3 and 4.4 show MuVM is significantly faster than MSG in the majority
of higher order mutations. However the 1st order mutation in rand r and the 1st
and 2nd order mutation in rand r by MSG are significant superior to MuVM.

By contrast, the 1st and 2nd order mutation in tcas and space by MSG
take a very long execution time and hold a vast amount of memory. Finally the
process is killed by OOM killer due to a shortage of memory after 2 days passed.

Our implementation of MSG has a problem about process forking overhead,
that is discussed in section 4.2.1. Indeed the tool instantiated enormous number
of mutants in HOM, and processes had same number of mutation descriptors.
We think that burdened the duplication of the process. This is the reason that
the execution times of HOM are extremely longer than FOM.

RQ4: The Effect of Split-Stream Technique

Table 4.3 indicates the execution times of MuVM without split-stream execution
for each subject program. Table 4.4 shows that we can reject H0 in all results
except 1st order mutation in rand r owing to the larger p-value than 1%. How-
ever, the efficiencies does not have greater gaps such as Milu and MSG. This is
the reason that the results depend on only SSE on MuVM whose other features
are same as the original version. On the other hand, the higher order the SSE
is, the higher the efficiency is. These facts correspond to our analysis of k-th
order SSE’s efficiency is about k + 1 in case of a theoretical model with uniform
distribution of seeded faults. Furthermore we should pay the penalty of k + 1
times as large as SSE, if the program inevitably needs non-split-stream execution
due to external interactions such as file I/O, networking.

4.5.6 Threats to Validity

To compare the tools fairly, we prepared a uniform experimental environment
in terms of hardware, operation system, compiler, programing language, subject
programs, test suites, and mutation operators. This implies only the difference
between the tools’ techniques affects the results, and namely that leads to reduc-
tion of threats to internal validity.

However the collection of subject programs was not randomly chosen, but we
selected them in consideration of the diversity, code size, and limitation of the
tools. The MSG tool we implemented might not be desirable design in terms
of memory usage. Moreover test suites that are not provided by the program
authors are generated by a symbolic execution tool. These facts might be threats
to internal validity and external validity.

4.6 Summary

This chapter introduced the techniques which improve the performance of higher
order mutation. Metamutation replaces mutatable program elements into meta-
mutation function to keep mutation location information in bitcode-level. To
reduce compiling time, mutation on virtual machine interprets bitcode with
seeded metamutation function and mutates instructions of metamutation func-
tion. Higher order split-stream execution branches original and mutated execu-
tion states which represent higher order mutants, and saves execution costs of
common parts between each states. Online adaptation technique appends a muta-
tion descriptor to an execution state to omit infeasible mutants. Our comparative

44

experiments demonstrated that our tool significantly is better than the existing
one, existing technique (mutation schema generation), and no-split-stream exe-
cution in higher order mutation.

Our tool has limitation about compiler optimization. Although seeding meta-
mutation function prevents mutatable program elements from elimination by the
optimizer, it gives up gaining benefits from optimization. Less optimized program
needs to pay extra execution cost than well optimized one.

MuVM is able to generate feasible HOMs exhaustively in a reasonable time.
On the other hand, the underlying motivation of HOM is to seek and find rare
but valuable mutants such as subsuming HOMs [100] which is harder to kill than
FOMs from which it is constructed. Our tool can provide only the population of
subsuming HOMs rapidly. An effective search for subsuming HOMs can be an
interesting future work.

45

Chapter 5

Statement Deletion Mutation-based Fault

Localization

5.1 Overview

In this chapter, we propose a method using the statement deletion mutation op-
erator for mutation-based fault localization (SDL-MBFL). The evaluation uses
actual source code, test cases, and faults from an enterprise system re-engineering
project. Most evaluations in existing fault localization research use OSS. Evalu-
ations using industrial software are very limited. In particular, to the best of our
knowledge, no industrial evaluation of mutation-based fault localization exists.
An intrinsic characteristic of the subject project is that it is necessary to iden-
tify multiple faults simultaneously. This is because what the term “fault” in the
present context refers to incompatibilities before and after re-engineering, and
because there are incompatibilities that should not be fixed such as specification
improvements, it is impossible to identify and fix them one by one. As a result
of the evaluation, the execution time of SDL-MBFL was reduced by 20.3% com-
pared with that of MBFL, and the identification of fault location within the 100th
place of suspiciousness was superior to that of other fault localization methods.
This suggests that SDL-MBFL may have excellent fault localization performance
for multiple faults while keeping the execution cost low.

In summary, the contributions of this study are as follows.

• We propose and implement mutation-based fault localization using state-
ment deletion mutation.

• We compare fault localization techniques, including SDL-MBFL, with real-
world software and several faults, in an enterprise context.

• Compared with conventional MBFL, SDL-MBFL has the same number of
detected faults and can reduce the execution time by 20.3%.

The structure of this chapter is as follows. As a background of this study,
fault localization based on statement deletion mutation is introduced in Section
5.2. Section 5.3 describes research questions and evaluation methods. Section
5.4 presents the results of the evaluation. Section 5.5 discusses our method and
evaluation.

5.2 Preliminary

This section introduces statement deletion mutation analysis and general fault
localization and explains fault localization based on statement deletion mutation.

46

We also introduce a hybrid approach that combines multiple fault localization
techniques.

5.2.1 Statement Deletion Mutation

The statement deletion mutation operator (SDL), as the name suggests, is a
mutation operator that corresponds to deleting one or more statements from the
program under test. An example is shown in Figure 5.1. In the example, three
statement deletion mutations are applied to the program under test, generating
mutants that delete the entire if command on lines 2-4, the return statement
on line 3, and the return statement on line 5, respectively. Deng et al. [56] and
Delamaro et al. [51] experimentally demonstrated that all operators can be used
exclusively in SDL.

1: int abs(int x){
2: if(x < 0){
3: return --x;
4: }
5: return x;
6: }

1: int abs(int x){
2:
3:
4:
5: return x;
6: }

1: int abs(int x){
2: if(x < 0){
3: ;
4: }
5: return x;
6: }

1: int abs(int x){
2: if(x < 0){
3: return --x;
4: }
5: ;
6: }

mutant1
(Delete line 2-4)

mutant2
(Delete line 3)

mutant3
(Delete line 5)

Program Under Test

Figure 5.1: Statement deletion mutation

5.2.2 Spectrum-based Fault Localization

SBFL is a technique to measure the suspiciousness of failure-causing points by
statistically treating the statement coverage information (executable statement
spectrum) in passing and failing test cases. This technique counts the number
of executed passed and failed test cases for each statement in the program, and
the statements with more executed failed test cases and fewer executed pass test
cases have higher suspiciousness. Conversely, statements with fewer failed test
cases executed and more passed test cases executed are given low suspiciousness.
Various formulae have been proposed to calculate the suspiciousness Susp(s) of
a given statement s. The following are some representative examples:

Tarantula : Susp(s) =

failed(s)
totalfailed

failed(s)
totalfailed + passed(s)

totalpassed

(5.1)

47

Ochiai : Susp(s) = failed(s)√
totalfailed·(failed(s)+passed(s))

(5.2)

Op2 : Susp(s) = failed(s)− passed(s)
totalpassed+1

(5.3)

DStar : Susp(s) = failed(s)∗
passed(s)+(totalfailed−failed(s))

(5.4)

where passed(s) is the number of passed test cases that executed statement s,
failed(s) is the number of failed test cases that executed statement s, totalpassed
is the number of all passed test cases, and totalfailed is the number of all failed
test cases. DStar’s ∗ is a variable representing a positive real number, which is
assumed to be 2 in this chapter.

5.2.3 Mutation-based Fault Localization

MBFL uses not only trace information but also the result of mutation analysis to
find the fault location, using the pass or fail status of tests, as in SBFL. In general
mutation analysis, we assume that there are no test cases that fail in the original
program and measure the fault detectability of the test suite by examining test
failures when it is run against mutants, i.e., whether it is able to detect the fault.
MBFL executes mutants with test cases that fail in the original program and
ranks the fault locations based on the reasoning that the greater the influence of
mutants on the output of the failed test case, the greater the suspiciousness at the
mutation location. Therefore, simply finding a test case that can kill a mutant,
as in general mutation analysis, is not sufficient as we require information on
whether the mutant could be killed by each test case. Note that there may be
more than one mutant per statement.

Representative techniques for MBFL are MUSE [141] and Metallaxis [165].
MUSE calculates the suspiciousness in the mutant mi using the following

formula:

Susp(mi) = failed(mi)−
f2p

p2f
· passed(mi) (5.5)

where failed(mi) is the number of failed test cases in the original program that
changed from failed to passed by mutation mi, and passed(mi) is the opposite,
i.e., the number of passed test cases in the original program that changed from
passed to failed by mutation mi. f2p is the total number of failed test cases in
the original program that changed from failed to passed by arbitrary mutation,
and p2f is the opposite, i.e., the total number of passed test cases in the original
program that changed from passed to failed by arbitrary mutation. To change
the per-mutant suspiciousness to per-statement suspiciousness, let Susp(s) =
Avgmi∈mut(s)Susp(mi), where mut(s) is the set of mutants in statement s.

Metallaxis calculates the suspiciousness in the mutant mi using the following
formula based on Ochiai’s equation:

Susp(mi) =
failed(mi)√

totalfailed · (failed(mi) + passed(mi))
(5.6)

In this study, in addition to the Ochiai-based formula 5.6, the following for-
mulas based on Tarantula, Op2, and DStar are also used:

Tarantula : Susp(mi) =

failed(mi)
totalfailed

failed(mi)
totalfailed + passed(mi)

totalpassed

(5.7)

48

Op2 : Susp(mi) = failed(mi)−
passed(mi)

totalpassed+1
(5.8)

DStar : Susp(mi) = failed(mi)
∗

passed(mi)+(totalfailed−failed(mi))
(5.9)

where failed(mi) is the number of failed test cases in the original program where
the output of the mutant mi and the original program are different, passed(mi)
is the number of passed test cases in the original program where the output of
the mutant mi and the original program are different, totalfailed is the number
of all failed test cases in the original program, and totalpassed is the number of
all passed test cases in the original program.

The difference between MUSE and Metallaxis is the extent to which they
check the impact of mutations on the output; MUSE raises the suspiciousness
of mutations that make a failing test case pass, i.e., the mutations that make
the output match the expected result. By contrast, Metallaxis raises the suspi-
ciousness of a mutation merely if the output of the failed test case is changed
by the mutation, even if this changed output does not match the expected re-
sult. Because of these differences, the general trend in comparing the two is
that MUSE has more false negatives and, conversely, Metallaxis has more false
positives. Previous evaluations comparing Metallaxis and MUSE [165, 169] have
shown Metallaxis to be superior. Therefore, we use Metallaxis as the underlying
technique to calculate suspiciousness in MBFL, for the purpose of this study.

5.2.4 Statement Deletion Mutation-based Fault Localization

SDL-MBFL is a method using only the SDL mutation in mutation-based fault
localization. In general MBFL, there can be multiple mutations in a single in-
struction, and depending on the choice of mutation operator, there can be state-
ments that do not have any mutations at all, which affects the execution cost and
fault localization performance. Therefore, by using SDL, we realized an MBFL
that always performs one mutation per statement.

Figure 5.2 and Figure 5.3 illustrate fault localization using SBML and SDL-
MBFL respectively, on the same motivating example. The function under test,
mid(), is expected to return the median value among the three arguments x, y,
and z. Statements s2 and s7 contain faults, where the correct versions m = z;

and m = x; have been mistakenly replaced with m = x; and m = y; respectively.
This results in the failure of tests (5,3,4) and (2,1,3) out of the six test cases.
In Figure 5.2, the lines executed in each test case are indicated by •. In Figure
5.3, there is a statement deletion mutant corresponding to each line, where

√

represents the mutant that changes the output to be different from the output of
the original program.

SDL-MBFL is based on Metallaxis and Tarantula’s formula for calculating
suspiciousness. In Figure 5.3, the ranks of suspicious values for the mutation
locations where s2 and s7 are deleted is 4th and 2nd, respectively, which are
higher than the rank in SBFL. This is because each statement is comprehen-
sively mutated by the SDL, and by measuring the impact of each statement as it
changes, the localization is successful even for statements that are executed by a
large number of passed test cases. This also shows that it is excellent in terms of
efficiency, as there is only one mutation per statement.

Furthermore, one of the advantages of MBFL in general, as well as SDL-MBFL
in particular, is that it can be effective when multiple faults are simultaneously
present. For SBFL, because the suspiciousness is calculated based only on the

49

aggregate number of passed/failed test cases, it is likely to be affected by test cases
that fail due to other faults. By contrast, in the case of MBFL, the suspiciousness
of a statement is less affected by other faults, since the effect on the output is
calculated independently for each mutant. Therefore, MBFL is considered better
than SBFL at localizing multiple faults [141].

Program Under Test Test cases and
the traces

#passed

#failed
SBFL
(Tara-
ntula)
susp.

rank

int mid(int x,
int y,
int z){

3,
3,
5

1,
2,
3

3,
2,
1

5,
5,
5

5,
3,
4

2,
1,
3

S1 int m; ● ● ● ● ● ● 4 2 0.500 7

S2 m = x; //m = z; ● ● ● ● ● ● 4 2 0.500 7

S3 if (y < z) ● ● ● ● ● ● 4 2 0.500 7

S4 if (x < y) ● ● ● ● 2 2 0.667 3

S5 m = y; ● 1 0 0.000 13

S6 else if (x < z) ● ● ● 1 2 0.800 1

S7 m = y; //m = x; ● ● 1 1 0.667 3

S8 else ● ● 2 0 0.000 13

S9 if (x > y) ● ● 2 0 0.000 13

S10 m = y; ● 1 0 0.000 13

S11 else if (x > z) ● 1 0 0.000 13

S12 m = x; 0 0 0.000 13

S13 return m; ● ● ● ● ● ● 4 2 0.500 7

} P P P P F F

Figure 5.2: Spectrum-based Fault Localization

5.2.5 MBFL and SBFL Hybrid Approach

Pearson et al. [169] proposed the following hybrid methods combining MBFL
and SBFL.

• Hybrid-Failover: Suspiciousness for non-mutable statements using SBFL
values

• Hybrid-Average: Average the MBFL and SBFL suspiciousness

• Hybrid-Max: The MBFL and SBFL results are compared and the larger is
adopted.

Pearson et al. found the Hybrid-Average approach to be the most effective,
in their experiments.

50

Program Under Test Test cases and mutants
which change the output

Deleted
stateme
nt

#passed

#failed

SDL-
MBFL
susp.

rank
int mid(int x,

int y,
int z){

3,
3,
5

1,
2,
3

3,
2,
1

5,
5,
5

5,
3,
4

2,
1,
3

S1 int m; ― 0 0 0.000 13

S2 m = x; //m = z; ✔✔ S2 1 1 0.667 4

S3 if (y < z) ✔✔ ✔ S3-S12 2 1 0.500 6

S4 if (x < y) ✔ ✔ S4-S7 1 1 0.667 4

S5 m = y; ✔ S5 1 0 0.000 13

S6 else if (x < z) ✔ S6-S7 0 1 1.000 2

S7 m = y; //m = x; ✔ S7 0 1 1.000 2

S8 else ✔ S8-S12 0 0 0.000 13

S9 if (x > y) ✔ S9-S12 1 0 0.000 13

S10 m = y; ✔ S10 1 0 0.000 13

S11 else if (x > z) S11-S12 0 0 0.000 13

S12 m = x; S12 0 0 0.000 13

S13 return m; ✔✔✔✔✔✔ S13 4 2 0.500 6

} P P P P F F

Figure 5.3: Statement Deletion Mutation-based Fault Localization

5.3 Evaluation Setup

This section describes how we evaluate the fault localization techniques.

5.3.1 Research Questions

The following research questions were addressed in this study:

• RQ1: How long does each mutation analysis run?

• RQ2: What is a good formula for calculating the suspiciousness of SDL-
MBFL?

• RQ3: Does SDL-MBFL rank high in faults compared to other fault local-
ization methods?

• RQ4: Does the hybrid method of SDL-MBFL and SBFL rank high in faults?

For RQ1, we investigate how fast the execution speed of SDL-MBFL is com-
pared to that of other MBFLs. For RQ2, we investigate which of the formulas
shown in 5.6 - 5.9 can rank the real faults high when using SDL-MBFL. For RQ3,
we measure the fault localization performances of SBFL, MBFL, and MBFL with-
out SDL and investigate whether SDL-MBFL ranks higher in real faults than
other fault localization techniques. For RQ4, we measure the fault localization
performance of the hybrid method of SDL-MBFL and SBFL and explore the best
way to combine them.

51

5.3.2 Tool

Based on MuVM shown in Chapter 4, we implemented a mutation-based fault
localization tool in the C programming language. As described in Chapter 4,
MuVM is a tool that realizes high-speed mutation analysis by the following fea-
tures.

• Metamutation

• Mutation on Virtual Machine

• Higher Order Split-stream Execution

• Online Adaptation

5.3.3 Evaluation Subjects

Fujitsu, a Japanese multinational company providing IT systems and services, has
developed a hardware monitoring system for server products and storage systems,
which flags hardware malfunctions through e-mail alerts. The programs of the
monitor are individually developed. Consequently they are different source codes
and their SMTP libraries have never been the same. However the SMTP libraries
have similar features such as sending mails on SMTP, SMTP AUTH, POP before
SMTP, S/MIME and mail fragmentation. So Fujitsu decided to re-engineer the
SMTP library to unify the server products and the storage systems shown in
Figure 5.4. They aim to reduce maintenance costs and add new features. During
this process we run into the problem of comprehensively testing the compatibility
of the old and new systems.

To check for incompatibilities introduced by the system re-engineering, we ap-
ply the symbolic execution tool KLEE to the server program before the migration
and then run the generated test cases against the version after the migration.

Linux VxWorks

SMTP Library
for Server Product

SMTP Library
for Storage Product

HW Monitor Library HW Monitor Library

HW Monitor Agent HW Monitor Agent

Linux VxWorks

Common SMTP Library

HW Monitor Library HW Monitor Library

HW Monitor Agent HW Monitor Agent

Compatibility Layer

Server Products Storage Systems

Storage Systems Server Products
AsIs ToBe

Product Specific Layer

Figure 5.4: Overview of system re-engineering project

A summary of the post-migration programs and tests is given in Table 5.1.
Testing is done on the entire library through a single API, not on a per-function
or per-file basis.

Table 5.2 lists the subject faults to be identified by the fault localization
technique. Although we use the expression “fault” here for convenience, it is
actually an incompatibility before and after the migration, and not all of the
incompatibilities can be corrected because there are acceptable incompatibilities.
Moreover, while these faults have been validated by the developers of the subject
system, it is possible that they are not all the faults present because how they
can be fixed has not been disclosed.

52

Table 5.1: Overview of subject program

Usage SMTP Library for Server Monitors

Languages C

Size 13 KLOC

Executable 5496 LOC

Total Test Cases 10876

of Failed Test Cases 4003

Statement Coverage 86.3%

Faults 9

Table 5.2: Subject faults

Fault ID File Line No. Error type

1 dir c/src01.c 524-535 condition error
2 dir c/src01.c 443,445 omitted statements
3 dir c/src01.c 507-508 redundancy statements
4 dir r/src07.c 292 condition error
5 dir r/src03.c 309,311,312 processing sequence error
6 dir r/src06.c 216 omitted statements
7 dir r/src06.c 183,184 logic error
8 dir r/src07.c 216-234 redundancy statements
9 dir r/src10.c 266 macro error

5.3.4 Evaluation metrics

Fault localization techniques can rank all statements by ordering them in descend-
ing order of suspiciousness. However, evaluating the performance of a fault local-
izaton method across programs of different sizes, in a uniform manner, presents
a particular challenge. Metrics such as EXAM score [202], LIL [141], T-Score
[35], and Expense [104] have been proposed for this purpose. The widely used
EXAM score is obtained by n

N , where n is the rank of suspicious statements and
N is the total number of statements. This metric tries to capture the percentage
of the total statements that would need to be examined by the user, to find the
faulty one, when going down the ranked list of suspicious statements provided by
fault localization, one statement at a time. These evaluation metrics fall short in
two scenarios, namely when multiple statements receive the same suspiciousness
score, and in the case of multi-statement faults.

Multiple statements with the same score

If an element has the same suspiciousness score as another candidate element,
the ranking is the same. In this case, we use another evaluation metric Einspect

[211], although we often use the average of the rankings. Einspect is designed to
solve the problem of rank averaging. For example, if all the elements with the
same score are faults, the average rank is unreasonably low even though the user
can check any of them early.

Assuming that the number of elements having the same score is n, the number

53

of faulty elements having the same score is nf , and the starting position of the
elements having the same score is Pstart, Einspect, which is defined as follows:

Einspect = Pstart +

n−nf∑
k=1

k

(
n−k−1
nf−1

)(
n
nf

)
This formula calculates the probability of the first element appearing in the

kth location starting from Pstart, the numerator part of the which
(
n−k−1
nf−1

)
is the

number of all combinations where the first faulty element is at k, and denominator
part

(
n
nf

)
is the number of all combinations.

Table 5.3 shows an example of suspiciousness ranking to further understand
difference between Einspect and the average of the rank. The elements in the
table are sorted in descending order of suspiciousness score. The element IDs B,
C, D and E have the same suspicious score, so they should be ranked the same,
although the written rank is different. The average ranking becomes (2 + 3 + 4 +
5)/4 = 3.5, while for Einspect it becomes 2 + 1 ·

(
2
2

)
/
(
4
3

)
= 2.25. Assuming that

we check whether the elements are faulty or not in order from top to bottom, the
expectations of the rank in which faulty elements can be found are higher than
the average rank since the number of faulty elements in the same rank is greater
than the number of all elements in the same rank. In this kind of case, Einspect

is considered to be more consistent with the actual debugging behavior.

Table 5.3: Example of suspiciousness ranking for calculating Einspect

Rank Element ID Susp. Faulty?

1 A 1.0 No
2 B 0.8 Yes
3 C 0.8 Yes
4 D 0.8 No
5 E 0.8 Yes

Note that Einspect@n represents the number of faults in the top n when ranked
by Einspect. For example, Einspect@3 in Table 5.3 is 3 because top 3 elements
include elements ID B, C and E with Einspect of 2.25.

Multi-statement faults

Multiple statements of faults may have different ranks on each statement. [169]
proposed an evaluation method for the following three scenarios:

1. Best-case: one of the faulty statements needs to be identified

2. Worst-Case: All faulty statements need to be identified

3. Average-Case: 50% of faulty statements need to be identified

Note that all three scenarios simplify to the same identical case when there is
only one faulty statement. In this thesis, we adopt the best-case scenario unless
otherwise stated.

5.4 Evaluation Results

We show the results of evaluation of each RQ based on the methods presented in
Section 5.3.

54

Table 5.4: Results of mutation analysis

SDL-MBFL MBFL
MBFL

w/o SDL

Duration (hours) 150.8 189.3 38.5
of mutants 2,734 4,172 1,438

Total number of test cases executed 5,016,143 8,089,454 3,073,311
Mutation score 22.17% 26.01% 33.31%

Mutation
operators SSDL

OAAN, OBBN,
ORRN, OSSN,
OAAA, OBBA,
OSSA, SSDL

OAAN, OBBN,
ORRN, OSSN,
OAAA, OBBA,

OSSA

5.4.1 RQ1: How long does each mutation analysis run?

Table 5.4 shows the results of MBFL using only SDL (SDL-MBFL), MBFL using
common mutation operators including SDL, and MBFL using mutation operators
excluding SDL (MBFL w/o SDL). In the table, we describe the statement deletion
mutation operator as “SSDL,’’ not “SDL,’’ in accordance with the notation
in [3].

The execution time of SDL-MBFL is 20.3% less than that of MBFL. This
is because the number of executed mutants is as high as 65.5% of the number
of mutants in MBFL, although only one type of mutation operator is used by
SDL-MBFL.

5.4.2 RQ2: What is a good formula for calculating the suspiciousness
of SDL-MBFL?

Figure 5.5 and Table 5.5 show the results of SDL-MBFL for each suspiciousness
formula.

Among them, Tarantula was the best in both Einspect and EXAM scores.
There was almost no difference in Einspect and EXAM scores between Ochiai and
DStar, and Op2 was the worst.

5.4.3 RQ3: Does SDL-MBFL rank high in faults compared to other
fault localization methods?

A comparison of SDL-MBFL with other fault localization techniques is shown in
Figures 5.6 and 5.4.

SDL-MBFL found more faults in the 100th position than SBFL or MBFL
without SDL. However, MBFL is equal to or slightly inferior to SDL-MBFL,
indicating that the inclusion of SDL in the mutation operator has a dominant
influence on the fault localization performance. EXAM scores are better for SBFL
and MBFL without SDL.

5.4.4 RQ4: Does the hybrid method of SDL-MBFL and SBFL rank
high in faults?

The results of comparing the hybrid method of SDL-MBFL and SBFL are shown
in Figure 5.7 and Table 5.4.

For Einspect@20, we found that SDL-MBFL is superior to other hybrid meth-
ods. However, Hybrid-Average and Hybrid-Max are superior in terms of Einspect@100
and EXAM scores. Overall, Hybrid-Max is better than the other hybrid ap-
proaches.

55

0

1

2

3

4

5

Tarantula Ochiai Op2 Dstar

of
 d
et
ec
te
d
fa
ul
ts

@5 @10 @20 @30 @50 @100

Figure 5.5: Einspect@n in each of the SDL-MBFL suspiciousness calculation for-
mulas

0

1

2

3

4

5

SDL‐MBFL SBFL MBFL MBFL w/o SDL

of
 d
et
ec
te
d
fa
ul
ts

@5 @10 @20 @30 @50 @100

Figure 5.6: Einspect@n for each fault localization technique

56

0

1

2

3

4

5

SDL‐MBFL Hybrid‐Failover Hybrid‐Average Hybrid‐Max

of
 d
et
ec
te
d
fa
ul
ts

@5 @10 @20 @30 @50 @100

Figure 5.7: Einspect@n for each hybrid fault localization technique

57

T
ab

le
5.

5:
R

es
u

lt
s

of
fa

u
lt

lo
ca

li
za

ti
on

(r
an

k
an

d
av

er
ag

e
E

X
A

M
b
y
E

in
sp

ec
t)

F
au

lt
ID

S
D

L
-M

B
F

L
(T

ar
an

tu
la

)
S
D

L
-M

B
F

L
(O

ch
ia

i)
S
D

L
-M

B
F

L
(O

p
2)

S
D

L
-M

B
F

L
(D

S
ta

r)
S
B

F
L

M
B

F
L

M
B

F
L

-
w

/o
-S

D
L

H
y
b
ri

d
-

F
a
il
ov

er
H

y
b
ri

d
-

A
v
er

ag
e

H
y
b
ri

d
-

M
ax

1
13

.0
3.

3
10

.2
3.

3
9.

0
19

.0
63

4
.2

2
3.

2
7.

0
2
5
.2

2
1.

3
63

4.
0

66
3.

0
66

3.
0

18
1.

0
1.

9
63

4
.2

2.
2

48
.0

2.
4

3
1.

3
3.

3
10

.2
3.

3
10

2.
0

1.
9

28
4
.0

2.
2

29
.0

2.
4

4
64

3.
5

64
5.

5
65

8.
5

65
8.

5
60

4.
0

78
8.

5
30

1
.0

15
35

.5
90

4.
0

8
66

.0
5

16
45

.0
16

45
.0

22
30

.0
16

45
.0

10
8.

0
26

2.
0

81
.0

25
62

.2
62

0.
0

3
12

.0
6

51
5.

5
25

4.
0

18
3.

5
23

7.
8

70
.0

61
7.

7
63

4
.2

12
48

.8
30

2.
5

2
83

.0
7

51
5.

5
25

4.
0

18
3.

5
23

7.
8

13
.5

36
3.

0
13

3
.0

12
48

.8
80

.5
87

.5
8

1.
3

44
7.

0
42

8.
0

42
8.

0
2.

2
1.

9
4.

0
2.

2
1.

8
2
.4

9
16

45
.0

16
45

.0
22

30
.0

16
45

.0
15

37
.0

19
91

.5
63

4
.2

15
09

.0
2
28

1.
5

22
7
4.

0

E
X

A
M

0.
10

1
0.

11
2

0.
13

3
0.

11
2

0.
05

3
0.

08
2

0.
06

8
0.

16
4

0.
08

6
0.

0
7
8

58

5.5 Discussion

5.5.1 Practical cost-effectiveness

The execution time of a fault localization technique is an important considera-
tion in its practical use. In this study, by limiting the mutation operator to SDL
only, the execution time was reduced by approximately 20% while maintaining
the same fault localization performance as that of a general MBFL. Meanwhile,
SBFL differs from MBFL in that it can compute suspiciousness values in only
one test run; therefore, the run is completed in a few seconds, and its fault lo-
calization performance is inferior to SDL-MBFL in Einspect@100, which indicates
the number of faults in the 100th position, but it outperforms the other methods
in EXAM score, which indicates the average. In this section, we discuss how
the fault localization technique should be utilized in practical applications by
considering these characteristics.

Because mutation analysis is generally time consuming, the effect of MBFL on
the execution cost has been discussed in past studies [211, 169, 126]. According
to [118], less than 9% of practitioners are willing wait more than 1 hour to obtain
the results of fault localization, and conversely, more than 90% would be satisfied
with less 1 minute of execution time.

One of the ideas to alleviate the problem of execution time in practical use, is
to incorporate it into automated testing as part of a continuous integration (CI)
loop and to execute fault localization by using test failures as a trigger. In this
work flow, fault localization is processed in the background without interfering
with the developer’s work, and the user can obtain the result of fault localization
by notification from the CI when fault localization is completed. As reported in
[118], such an approach received positive comments from several practitioners. A
similar approach has been proposed for automated program repair [196].

We also believe that techniques for reducing execution time, such as omitting
mutants on statements that are only executed by passed test cases, as well as
test case selection and mutant reduction, are necessary for further scalability.
However, if the reduction of testing and mutants results in compromising the fault
localization performance, it may be necessary to determine what is acceptable in
practice. In the experiment in this chapter, not only a single statement, such as a
function call, but also a multi-line statement, such as an if command, are subject
to SDL mutation, so it takes more time to finish. The difficulty in reducing these
mutants is due to the large impact on the defect localization performance; as
discussed in Subsection 5.5.3, searching for mutation operators that can replace
them and reduce the number of mutants even more is future work.

5.5.2 Characteristics of the faults

In this thesis, we evaluate localization of nine faults at one time. It is known that
SBFL for multiple faults is more difficult than SBFL for a single location [50,
64]. The main reason is that each fault affects each of the others and complicates
the relationship between the test result and the fault. For example, if one fault
causes an error in the data stored in the memory, another fault may overwrite
and conceal the error in the data during propagation to the output. In addition,
as described in Section 5.3.3, the faults under evaluation in this chapter imply
incompatibilities before and after system re-engineering. Because there are some
incompatibilities that do not require correction, and because the developers of
the subject system do not disclose how to fix them, it is not possible to consider
a scenario in which the faults are fixed one-by-one. For such scenarios, to debug

59

multiple faults in parallel, a clustering method [103] and an integer programming
method [93] have been proposed.

In the paper that proposed the MUSE [141] MBFL technique, it is experi-
mentally shown that the localization succeeded even in the case where multiple
faults exist. The reason for the success is that the effect of mutation location on
the output can be examined independently for each statement.

Fault IDs 2 and 3 are not ranked high in SBFL but are ranked high in MBFL.
Including the fault ID1, they exist in the same function, and there is a fault
ID3 in the part after the fault ID2 and a fault ID1 after part of the fault ID3.
Listing5.1 and Listing5.2 present the source code parts of fault ID2 and fault
ID3, respectively, after migration, with minor changes (such as variable names)
that do not interfere with understanding.

Listing 5.1 Fault ID2

442 switch (isPart) {

443 case 0:

444 /* no partial size check */

445 break;

446 case 1:

447 if (! ((Partial_size == 0) ||

448 (Partial_size >= PART_SIZE_MIN &&

449 Partial_size <= PART_SIZE_MAX))) {

450 return -1;

451 }

452 break;

Listing 5.2 Fault ID3

507 if (! (port >= 0 &&

508 port <= 65535)) {

509 return -1;

510 }

With regard to fault ID2, the pre-migration program processed lines 447 to
451 regardless of the value of isPart; thus, it was incompatible to not process
lines 447 to 451 when isPart is 0 in the post-migration program. By considering
the test, we determined passed or failed by the value of Partial size when
isPart was 0, but localization was difficult in the SBFL because the passed test
cases were more numerous than the failed test cases. In SDL-MBFL, deleting
the statement break by statement deletion mutation results in a fall through,
and when isPart is 0, the behavior is the same as when isPart is 1. In other
words, this is the same behavior as before the migration, so SDL-MBFL can be
appropriately localized.

Fault ID3 was improved to be checked by the post-migration program, but it
was incompatible because the pre-migration program did not check the value of
port. Faults in the conditional branches are less likely to be localized in SBFL
because both passed and failed test cases run through them. In SDL-MBFL, the
mutation that deletes the entire if statement from line 507 makes the behavior
equivalent to that of the pre-migration program, so the localization is successful.

However, for fault IDs 5, 6, and 7, the fault localization performance of SDL-
MBFL is significantly inferior to that of SBFL. Among them, ID7’s Einspect has

60

high performance with SBFL at 13.5, while SDL-MBFL’s performance is inferior
at 515.5. This can be regarded as a fault that most expresses the characteristics
of their strengths and weaknesses. The source code of fault ID7 is shown in
Listing5.3, with minor changes that do not interfere with understanding. In the
pre-migration program, the error code when smtp data() fails was returned as-is
regardless of the result of smtp auth(), whereas in the post-migration program,
if smtp auth() fails and smtp data() also fails, the error code in smtp auth()

is returned, thus creating an incompatibility. SDL-MBFL measures the effect of
the test result when the statement at line 184 is deleted, but because the value
of error is already set to auth error at line 180, the output does not change
even when the statement is deleted, which makes it difficult to localize.

Listing 5.3 Fault ID7

179 if ((rc = smtp_auth()) < 0) {

180 auth_error = error = rc;

181 }

182 if ((rc = smtp_data()) < 0) {

183 if(auth_error != 0){ /* authentication error */

184 error = auth_error;

185 }else{

186 error = rc;

187 }

188 return error;

189 }

In this experiment, we implemented SDL-MBFL based on Metallaxis, which is
one of the most prominent methods, partly because it is not intuitive to change
a failed test case to a passed test case by statement deletion mutation alone,
and we believe that MUSE, the other most prominent method, is not suitable
for this purpose. However, the failure IDs 2 and 3 may also be ranked by the
MUSE-based SDL-MBFL because the failed test cases become passed ones.

5.5.3 How to choose a mutation operator

The observation of the localization of fault ID7 shows that it is necessary to de-
vise the selection of mutation operators. Rather than deleting for all types of
statements, as in the SSDL in [3], we suppose that deleting one-line statements,
such as fault IDs 2 and 3, and deleting the condition of an if statement, such
as fault ID7 (i.e., always true), would be more effective. This idea is similar
to the combination of the Void Method Call Mutator and the Remove Condi-
tionals Mutator in Pit [44]. SSDL also deletes for compound statements, such
as if and for statements, but such deletes have a large scope of influence and
may be difficult to localize. Furthermore, such deletions can be disadvantageous
in localization because their effect on the conditions in the if statement can-
not be measured. However, there are not yet many observed cases, so further
investigation of generality is needed.

5.6 Summary

In this chapter, a mutation-based fault localization using a statement deletion
mutation operator was proposed and evaluated using nine faults in real indus-
trial software. As a result of this evaluation, SDL-MBFL had the highest fault

61

localization performance in Tarantula’s formula, and the number of detected
faults with higher rankings was higher than that of SBFL and MBFL without
SDL. In the hybrid method with SBFL, Hybrid-Max, a method that selects the
maximum value of the suspiciousness, performed better overall. Although the
execution time was reduced by 20.3 % compared to MBFL, it is still a long time,
so we concluded that it is necessary to incorporate it into continuous integration
to make it practical.

Future works include quantitative comparisons with MBFLs using other mu-
tation operators and execution time reductions through combinations with other
mutation reduction methods and test case reduction methods. We also need to
work on further evaluation of software within enterprises.

62

Chapter 6

Error-Oriented Mutant Reduction and

Mutant Weighting for Reliable Mutation

Analysis

6.1 Overview

Because the näıve mutation analysis requires running a test suite for each mutant,
the execution time is determined by the product of the test execution time and
the number of mutants. It is important to know how to reduce the number of
mutants to scale the mutation analysis.An important aspect of the approach to
reducing the number of mutants is that the measurement of fault detectability
after mutant reduction is almost the same as before mutant reduction, that is,
the mutation score for fault detectability is almost unchanged. For example, if
6 out of 10 mutants were able to kill in the test before the mutant reduction
(i.e., the mutation score is 60%) but 5 out of 5 mutants are able to kill in the
test after the mutant reduction (i.e., the mutation score is 100%), the mutation
score will be far from the original 60%. This means that mutant reductions will
make it impossible to measure fault detectability accurately. A person who is
informed of an inaccurate fault detection result may mistakenly perceive that the
testing has been done sufficiently well even though the testing has not sufficiently
squashed the potential faults in the program, or vice versa, potential faults may
be squashed by testing but misidentified as poorly tested.

In the mutant reduction model of Ammann et al. [8], mutants killed by the
same test case combination are considered redundant because they do not con-
tribute to the measurement of fault detectability, leaving one behind and deleting
it. However, as a unit of measurement of mutant redundancy, the classification of
a test case-by-test case basis might be coarsely grained. When considering that
one test method is equivalent to one test case in unit testing, there are many
cases in which various properties are tested in one test case by calling multi-
ple test target methods in one test method and checking the results by multiple
assertions. It would be more natural not to view the set of mutants killed in
such a test case as homogeneous. In addition, test code refactoring [61], which
was proposed in the early 2000s, has been recognized in recent years, and it is
recommended to refactor test code to avoid anti-patterns that contain multiple
assertions in one test case, which is called assertion roulette, because it has a bad
influence on program understanding at the time of maintenance [20, 21]. This
is illustrated by the experimental results that 45.7% of the assertions in the test
code do not contribute to the detection of faults, indicating the need to organize
the assertions in the test code [213]. Against this background, it is important to
keep mutants that can be used to check whether the modification of statements in

63

the test method, such as the deletion of assertions, does not result in overlooking
future faults.

In this chapter, we present a method for determining mutant redundancy by
the type of errors caused by mutation. We then introduce a model that reduces
mutants with overlapping types of errors by treating them as redundant. In
addition, we propose a way to calculate the impact of reduced mutants and weight
the remaining mutants. Consequently, we were able to reduce the discrepancy
between mutation score after mutant reduction and that of the original mutant
set, which means that our weighted mutant reduction technique can measure the
mutation score more accurately.

These techniques allow us to measure the same fault detectability in the re-
duced mutant set as in the original mutant set, even if the statements in the
test code are modified or deleted by refactoring or other means. We also tried to
reduce the number of mutants for 53 projects in OSS and evaluated the number
of mutants and execution time. Furthermore, for three of those projects, we eval-
uated how well the proposed model and existing model could measure the correct
fault detectability close to that before the mutant reduction when the assertions
in the test code were removed at a certain rate to reduce the fault detectability.

The structure of this chapter is as follows. In Section 6.2, we introduce the
preliminary background materials. In Section 6.3, we give an example of our
motivation. In Section 6.4, we explain the proposed method. In Section 6.5, we
present the evaluation method and results, and in Section 6.6, we discuss the
results.

6.2 Preliminary

The test case-based mutant reduction model by Ammann et al. [8] defines the
minimal test set that can maintain a mutation score as follows.

Definition 6.1. Let M be a finite set of mutants and T be a finite test set on
some program P . A test set T̂M is minimal if and only if for any test tci ∈ T̂M ,
T̂M −{tci} does not maintain the mutation score with respect to original M and
T . Let T̄M = {T̂1, T̂2, ...} denote the set of all possible minimal test set with
respect to M .

This means that tests that do not contribute to improving the mutation score
are regarded as redundant.

Table6.1 shows an example with five test and four mutants: T = {tc1, tc2, tc3, tc4}
and M = {m1,m2,m3,m4}. The ”t”s in the table mean that the corresponding
test can kill the corresponding mutant, i.e., tc1 can kill three mutants, m1, m2,
and m4. The test set T is capable of killing all mutants in M , and there are three
minimal test sets T̄M = {{tc4}, {tc1, tc2}, {tc1, tc3}}, that can kill all mutants,
but if any of the included tests are lacking, not all mutants can be killed.

Table 6.1: Example of mutants and test

m1 m2 m3 m4

tc1 t t t
tc2 t t
tc3 t t
tc4 t t t t
tc5 t t

64

Using the concept of a minimal test set, we define a redundant mutant as
follows.

Definition 6.2. Let Mj = M − {mj} for some mutant mj ∈ M . We say that
mj is redundant with respect to mutant set M and test set T if and only if
T̄M = T̄Mj .

This means that mutants that do not affect the minimization of the test set
will be considered redundant. In other words, if a mutant is removed and the
corresponding test is no longer minimal, we can consider that mutant as non-
redundant.

Here is a running example using Table 6.1. Computing TM first for full mutant
set M , and then TMi for M excluding each mutant mi, we get the following.

T̄M = {{tc4}, {tc1, tc2}, {tc1, tc3}}
T̄M1 = {{tc4}, {tc1, tc2}, {tc1, tc3}}
T̄M2 = {{tc4}, {tc1, tc2}, {tc1, tc3}}
T̄M3 = {{tc1}, {tc4}}
T̄M4 = {{tc4}, {tc1, tc2}, {tc1, tc3}, {tc2, tc5}, {tc3, tc5}}

Note that T̄M , T̄M1 , and T̄M2 are identical, that means both m1 and m2 are
redundant with respect to M .

We further define a minimal mutant set as follows.

Definition 6.3. A mutant set M is minimal if it contains no redundant mutants.

In Table 6.1, the minimal mutant set is {m3,m4}.

6.3 Motivating Example

To introduce our mutant reduction model, we present an example of a problem
with the existing method and demonstrate the need to invent a new method. We
now consider testing the isEmpty method of Apache Commons Lang.

In the test target method isEmpty() shown in the following listing 6.1, there
are four mutants in total: two mutation operators that invert the comparison
operator and two mutation operators that replace the left and right sides of the
logical sum with false. m1 in listing 6.2 and m2 in listing 6.3 become mutants on
the left side of the logical sum, and similarly, m3 in listing 6.4 and m4 in listing
6.5 become mutants on the right side of the logical sum.

Listing 6.1 Example of original source code (StringUtils.java)

1 public static boolean isEmpty(CharSequence cs) {

2 return cs == null || cs.length() == 0;

3 }

Listing 6.2 Example of mutant m1

1 public static boolean isEmpty(CharSequence cs) {

2 return cs != null || cs.length() == 0;

3 }

65

Listing 6.3 Example of mutant m2

1 public static boolean isEmpty(CharSequence cs) {

2 return false || cs.length() == 0;

3 }

Listing 6.4 Example of mutant m3

1 public static boolean isEmpty(CharSequence cs) {

2 return cs == null || cs.length() != 0;

3 }

Then, all mutants can be killed by the test method given by the listing 6.6.
However, the statements that cause the test failure are lines 2-4 in the test code,
and if we remove all statement other than line 2, we cannot kill all the mutants.

Since one test method corresponds to one test case, in case of test case-based
mutant reduction model, a single test method in listing 6.6 can kill all mutants,
so the single test method becomes the minimum test set. That is, if all four
mutants can be killed by the single test method, all but one mutant of the four
will be considered redundant and reduced.

Now, consider the mutation score for a test method (listing 6.7) that weakens
fault detectability by leaving only the second line of the test method statement
in listing 6.6.

The test method with weakened fault detectability can only kill two of the
four mutants: m1 and m2, which means that the mutation score is reduced to
50%. Here, if the test case-based reduction model leaves only m1 out of the four
mutants reduced, this mutant can be killed even by a test method with weakened
fault detectability, so the mutation score remains at 100%, a difference from the
true mutation score before the mutation reduction.

Thus, it may not be possible to accurately measure the fault detectability
without considering the effect of each statement in the test method instead of
each test case. In particular, the mutant reduction on a per-test-case basis may
not be able to detect a decrease in fault detectability, especially if test code
refactoring causes modifications on a statement-wise basis in the test code.

6.4 Proposed Method

As shown in Section 6.3, the purpose of our method is to find the minimal amount
of mutants that can detect a change in the mutation score, that is, the fault
detectability due to modification when a statement-wise modification occurs in
the test method.

Errors caused by mutations occur during the execution of the test target
method called in the test method or by assertions after the execution of the test
target method. The stack trace in the error records the call hierarchy from the
statement in the test method to the point where the error occurred. That is,

Listing 6.5 Example of mutant m4

1 public static boolean isEmpty(CharSequence cs) {

2 return cs == null || false;

3 }

66

Listing 6.6 Example of test code (StringUtilsTest.java)

1 @Test public void testIsEmpty() {

2 assertTrue(StringUtils.isEmpty(null));

3 assertTrue(StringUtils.isEmpty(""));

4 assertFalse(StringUtils.isEmpty(" "));

5 assertFalse(StringUtils.isEmpty("foo"));

6 assertFalse(StringUtils.isEmpty(" foo "));

7 }

Listing 6.7 Example of test code with weakened fault detectability

1 @Test public void testIsEmpty() {

2 assertTrue(StringUtils.isEmpty(null));

3 }

we can tell which mutants are affecting the statements in the test method by
observing the errors caused by the mutants.

The method proposed in this chapter minimizes the number of mutants by
defining the redundancy for errors that occur in mutation analysis and eliminating
the redundant mutants. Furthermore, we aim to reduce the discrepancy from the
original mutation score by weighting mutants that are close in nature to those
that are reduced.

Note that all mutants treated by our method are killed by the test set T .
Mutants that are not killed by the test set T are out of the reduction because
they do not have information, such as “which test killed them’’ or “what errors
occurred,’’ and it is not possible to examine the relationship between mutants
and tests or errors. In terms of knowing the trend of the reduction model, it is
critical to have a sufficient number of mutants killed in a statistical manner, and
we prepare a test set T that can kill such a sufficient number of mutants.

6.4.1 Definitions

For the new method, we define a “redundant mutant” that differs from the defi-
nition given in Section 6.2. First, for this purpose, we define an error.

Definition 6.4. An error consists of a combination of exception type ex and
stack trace st.

The type of exception gives information to determine what kind of event has
occurred when an error occurs, for example, NullPointerException in Java. The
stack trace is a record of the method call hierarchy from the place where the error
occurred.

We define an “identical error” as one whose exception type and stack trace
are identical as follows.

Definition 6.5. Let erri = errj if the type of exception exi of error erri and
stack trace sti and the type of exception exj of error errj and stack trace stj are
equivalent. Note that the stack traces are equivalent if the call method name, file
name, and its line number in each layer of the stack trace are equivalent.

We further define “error distinguishable’’ in relation to the mutant of the
error cause as follows.

67

Definition 6.6. Let EM,T be the set of errors that occur during executions of
test T on mutant set M . We say that erri and errj be distinguishable if error
erri ∈ EM,T and error errj ∈ EM,T is not equivalent and if mutant set M ′ ⊆ M
raising erri and mutant set M ′′ ⊆M raising errj are not equivalent. If any two
different errors erri and errj in error set Ê ⊆ EM,T are distinguishable, the error

set Ê is called distinguishable.

We define a function to delete redundant errors that are not distinguishable.

Definition 6.7. If Ê∪{err} is not distinguishable for some distinguishable error
set Ê ⊆ EM,T and another error err ∈ EM,T \ Ê not included in the set, then err
is called a redundant error. Let D(EM,T) be a set of errors without redundant
errors from error set EM,T .

Suppose we remove mutants while keeping the redundancy-free error set dis-
tinguishable. If the error set is distinguishable, it is possible to determine which
mutants affect the statements in the test method.

Based on the concept of Definition 6.2, we define redundant mutants for error
set EM,T as follows.

Definition 6.8. If D(EM,T), where redundant errors are removed from the
error set EM,T of the mutant set M , and D(EMj ,T), where redundant errors
are removed from the error set EMj ,T of the mutant set Mj , are equal, i.e.,
D(EM,T) = D(EMj ,T), then mj is called redundant in the error set EM,T .

In Definition 6.3 for the minimal mutant set, the set of mutants that contains
no redundant mutants is regarded as the minimal, so the model of the minimal
mutant set for the error set EM,T can be obtained by deleting the redundant
mutants defined in Definition 6.8.

6.4.2 Mutant Set Minimization Algorithm

In this chapter, we optimize the execution time of the entire mutation analysis
by selecting the mutants with short execution times when obtaining the minimal
mutant set. Concretely, we first execute each mutant m and measure the test
execution time timem,T for each mutant m ∈ M and obtain the raised error
set E{m},T . Then, by solving the following optimization problem, we obtain the

mutant set M̂ with the shortest execution time that covers all errors.

• Input: set of killed mutants Mkilled, test set T , total error set EMkilled,T

• Output: mutant set M̂

• Constraints: ei ̸= ej(∀ei, ej ∈ EM̂,T)

• Objective function:
∑

m∈M̂ timem,T

• Goal: minimization

The combination of errors satisfying the constraint is
|EM̂,T |·(|EM̂,T |−1)

2 , and

the combination of the mutant set M̂ in the output is 2|M̂ |. Finding the optimal
solution requires exponential order computation, so we find the minimal set of
mutants by using a greedy method that selects the one with the shortest execution
time among the mutants that generate the least errors. The details are given in
Algorithm 1.

68

Algorithm 1 Mutant Minimization by Greedy Algorithm

Input: M : Mutant set, T : Test set, EM,T : Error set

Output: M̂ : Minimized mutant set
M̂ ← ϕ
Ecover ← ϕ ▷ A set of selected errors
while Ecover ̸= EM,T do
Mminerr ← arg min

m∈M\M̂
|E{m},T \ Ecover| ▷ The set of mutants with the fewest

unselected errors
m′ ← arg min

m∈Mminerr

timem,T ▷ Select the mutant with the shortest execution

time
M ←M \ {m′}
if Em′,T \ Ecover ̸= ϕ then

M̂ ← M̂ ∪ {m′}
Ecover ← Ecover ∪ E{m′},T

end if
end while
return M̂

6.4.3 Mutant Weighting

Because the mutant set minimized by the method presented in the previous sec-
tion will be smaller than the original mutant set, the existing calculation method
will result in erroneous mutation scores due to differences in population. There-
fore, we propose a method to reduce the difference in mutation score. This
method weights the impact of the removed mutants on the remaining mutants
to simulate the scoring in the original mutant set, thereby calculating a more
accurate mutation score. The weighting method is shown in Algorithm 2.

Algorithm 2 Mutant Weighting

Input: M : Mutant set, M̂ : Minimized mutant set
Output: wm1 , ..., wmn : A set of mutant weights

wm1 , ..., wmn ← {1, ..., 1} ▷ Initialization of weights
for mremoved ∈M \ M̂ do ▷ mremoved: A removed mutant
mnearest ← arg min

m̄∈M̂
|E{mremoved},T ⊕ E{m̄},T | ▷ Mutants with the smallest

symmetric difference in the error set
wmnearest ← wmnearest + wmremoved

wmremoved
← 0

end for
return wm1 , ..., wmn

The algorithm is designed to give more weight to the remaining mutants
that have a closer impact on the statements in the test method to the removed
mutants. For this purpose, we select a mutant that make symmetric difference
between the error set of the remaining mutant and the error set of the removed
mutant minimal, that is, the error set of the remaining mutant is similar to
the error set of the removed mutant. Because the total output weights are the
same as the number of mutants in the original mutant set, we can compute a
more accurate mutation score by reducing the difference due to differences in
the population. Let M̂killed be the set of mutants killed by test set T ′ out of

69

the minimized mutant set M̂ , where the mutation score can be expressed by the
following equation:

MutationScore(M̂, T ′) =

∑
m∈M̂killed

wm∑
m∈M̂ wm

(6.1)

6.4.4 Example of Mutant Set Minimization

Here, we minimize for a mutant, as shown in Table 6.2. Let all mutants m1, ...,m4

be killed, and let the errors that occur in those mutants be err1, ..., err4. The
relationship between a mutant and the error caused by it is represented by t.
Moreover, the bottom row of Table 6.2 shows the execution times of all tests for
each mutant.

Table 6.2: Example of mutants and errors

m1 m2 m3 m4

err1 t t
err2 t t t
err3 t t
err4 t t

execution time 1 3 2 2

To obtain a distinguishable set of errors, we first explain the removal of re-
dundant errors. Because err3 and err4 are caused by the same mutant, they can
be seen as indistinguishable. Therefore, either err3 or err4 can be removed. In
this case, err4 is removed as redundant.

The next step is to select a mutant. In the greedy method shown in Algorithm
1, we choose the mutants with the fewest errors to cause, so here, m2 and m4

are the candidates to be left. Comparing the execution times of m2 and m4, m4

is smaller, so m4 is chosen first. Next, m2 is chosen in order of the number of
errors to be made, followed by m3. At this point, because all errors are covered,
the algorithm is finished and outputs the selected m2,m3,m4.

From the perspective of optimization, it can be seen that the solution output
by this algorithm is non-optimal because the execution time is less for deleting
m2 than for deleting m1.

6.4.5 Example of Mutant Weighting

We illustrate the weighting of mutants using the example used in the previous
section. We first give each mutant a weight of wm1 , wm2 , wm3 , wm4 = 1, 1, 1, 1 as
the initial state. We then add weights to the mutants whose error set has the
smallest symmetric difference with the error set of the removed mutant. Con-
sidering the removed mutant, m1, it has the error set {err1, err2, err3, err4},
which is the nearest to the error set {err2, err3, err4} of the remaining mutant
m3, i.e., the smallest symmetric difference, so m3 is selected as the weighting
target. Actually, the size of the symmetry difference between Em1 and Em3 is
|Em1 ⊕Em3 | = |{err1}| = 1, which is smaller than the symmetry difference with
the error sets of other remaining mutants, as |Em1⊕Em2 | = |{err2, err3, err4}| =
3 and |Em1 ⊕Em4 | = |{err1, err3, err4}| = 3. Therefore, by adding the weight of
m1 to the weight of m3, we get wm1 , wm2 , wm3 , wm4 = 0, 1, 2, 1. If the test suite is
updated and as a result mutants m1 and m3 are not killed, but m1 is removed and
cannot be found alive, the mutation score using weighting is

wm2+wm4
wm2+wm3+wm4

= 0.5,

70

which can be calculated without m1. This can be rephrased as predicting whether
m1 is killed through m3, which is nearest to m1. If weighting was not used, the
mutation score would be |(m2,m4)|

|(m2,m3,m4)| = 0.66..., which would result in a difference

from the previous mutation score before minimization |(m2,m4)|
|(m1,m2,m3,m4)| = 0.5. We

can see that the difference can be reduced by using weighting.

6.5 Evaluation

6.5.1 Research Questions

To check the effectiveness of the proposed method, we investigated the following
four research questions.

• RQ1: How much statement-wise modification actually occurs in the test
method?

• RQ2: How much is execution time reduced?

• RQ3: How much less of a difference in mutation score can we achieve?

• RQ4: Which mutation operators are reduced most?

The purpose of each research question is explained below. RQ1 aims to show
the importance of the problem solved by the proposed method by showing how
real the problem of statement-wise modification in the test method is. The pur-
pose of RQ2 is to show the practicality of the proposed method by investigat-
ing the performance difference between the proposed method and the existing
method, even though the proposed method may not reduce many mutants com-
pared to the existing method. The purpose of RQ3 is to show the advantage of
the proposed method by investigating the difference in mutant score between the
proposed method and existing method because the proposed method is expected
to be able to measure the mutant score close to the one without mutant reduc-
tion. RQ4 aims to determine whether mutation operators can be used as a guide
for making reductions on an unknown set of mutants by examining the tendency
of mutation operators in selecting the best mutants.

6.5.2 Evaluation Method

To realize the proposed method presented in Section 6.4, the following features
are implemented in the mutation analysis tool PIT [44].

• Record exceptions and stack traces associated with mutants when tests on
mutants fail.

• Continue to run other tests even if the test fails on mutants.

• Record each mutant’s execution time.

• Replay the recorded mutant set.

The mutation operators used in the PIT are listed in Table 6.3.
Using the exceptions, stack traces, and execution times for each mutant

recorded by these features, we find the minimal mutant set from the set of killed
mutants.

As a comparison, we also obtained the test case-based minimal mutant sets
and measured the execution time and mutation score for each minimal mutant set

71

Table 6.3: Mutation operators used for the evaluation

Type Name Acronym

Conditionals Boundary Mutator CBM
Increments Mutator IM

Invert Negatives Mutator INM
Default Math Mutator MM

Negate Conditionals Mutator NCM
Return Values Mutator RVM

Void Method Calls Mutator VMCM

Constructor Calls Mutator CCM
Inline Constant Mutator ICM

Member Variable Mutator MVM
Non Void Method Calls Mutator NVMCM

Non-Default Remove Conditionals Mutator RCM
Remove Increments Mutator RIM

Switch Mutator SM
Argument Propagation Mutator APM

Naked Receiver Mutator NRM
Remove Switch Mutator RSM

from mutation analysis. The mutation score is measured by dropping a specified
percentage of assertions in the test code to confirm whether the mutation score
of the minimal mutant set is equal to that of the original mutant set even if the
fault detectability of the test code is reduced. To avoid side-effects, the method
call that is an argument in the assertion is not removed from the assertion so
that the test code other than the assertion behaves the same as the original test
code.

6.5.3 Subject of Evaluation

To evaluate the proposed method, we extract the subject code using the data of
TravisTorrent [22], which is collected from the build data of Travis CI, as follows.

1. From the TravisTorrent data, select code from the master branch of a repos-
itory with Java language, Maven build tool, successful test code, and more
than 1,000 lines of source code.

2. Leave the above code that terminates normally at the time of PIT execution.

3. Leave the above code that successfully terminates the execution of the
recorded mutant.

The 53 repositories extracted in the above manner are listed in Table 6.4.
For these codes, the minimal mutant set is calculated. In addition, we measure

the mutation scores during assertion reduction for three of these repositories:
jsoup, zt-zip, and jInstagram. Table6.5 lists the numbers of test cases, numbers
of assertions, and the average numbers of assertions per test case.

As a comparison, Gopinath et al.’s [86] test case-based mutant reduction
method is used to obtain the minimal mutant set, and the mutation score during
assertion reduction is measured in the same way. Then, we added weights to the
mutants that have the smallest symmetric difference with respect to the test case
set instead of the error set.

72

6.5.4 Evaluation Results

RQ1: How much statement-wise modification actually occurs in the
test method?

It is important to show the significance of the problem solved by the proposed
method in terms of how realistic the statement-wise modification in the test
method, as shown in Section 6.3, is. To understand this perspective, we investi-
gated whether the number of assertions changed or not and whether the number
of test cases changed out of 11,080 commits, including modifications to the test
code, in the 202 TravisTorrent projects collected in (1) of Section 6.5.3.

The results are shown in Figure 6.1. The left bar represents the number of
commits that reduced the number of assertions, the middle bar represents the
number of commits that increased the number of assertions, and the right bar
represents the number of commits that did not change the number of assertions.
Also, the red part of each bar is the number of commits that increased/reduced
the number of test cases, and the blue part is the number of commits with no
change in the number of test cases.

374

1489

3888

329

3863

1137

0

1000

2000

3000

4000

5000

6000

decrease increase no change

Yes

No

Changes in the number of assertions

Changes
in # of
test cases

of
 c
om

m
its

Figure 6.1: Ratio of modified assertions in commits of test code modification

The largest numbers of commits are those with an increasing number of as-
sertions, followed by commits with no change in the number of assertions. The
number of commits with decreasing assertions accounts for approximately 6%
of the total, which is quite small compared to the other cases. The number of
commits with statement-wise modifications on assertions in the test method, i.e.,
commits with no change in the number of test cases but with an increase or de-
crease in the number of assertions, is more than one quarter of the number of
commits with an increase in the number of assertions, and more than half of the
number of commits with a decrease in the number of assertions.

Furthermore, Figure 6.2 shows the distribution of the increase or decrease in
the number of assertions in the test code modification commit, with and without
the change in the number of test cases. For visibility, the upper limit of the y-axis
is set to 1000, and the range of the x-axis is set to -50 to 50.

73

−40 −20 0 20 40
Difference in # of assertions

0

200

400

600

800

1000

#
 o

f
co

m
m

its

change in # of test cases
no change in # of test cases

Figure 6.2: Distribution of increased/decreased assertions in commits of test code
modification

The side of the x-axis greater than 0 indicates an increase in the number
of assertions, and the side less than 0 indicates a decrease in the number of
assertions; the case of 0 indicates no change in the number of assertions. In this
figure, it can be seen that there is a small number of commits that reduce the
number of assertions but also that the amount of assertions that are reduced is
not as large as the increase.

RQ2: How much is execution time reduced?

First, the total execution times for all projects of the mutation analysis for
the proposed method (error-oriented optimization), the existing method (test-
oriented optimization), and the non-optimized case are listed in Table 6.6. Figure
6.3 shows the distribution of execution time ratios for each project compared to
those without optimization. The left side of Figure 6.3 shows the distribution of
error-oriented optimization and the right side is the distribution of test-oriented
optimization.

ratio_error_all ratio_test_all

0%

20%

40%

60%

80%

100%

D
ur

at
io

n
R
at

io
 w

ith
 O

ri
gi

na
l

Figure 6.3: Distribution of execution time of mutation analysis

74

From these results, it can be seen that the error-oriented optimization of the
proposed method reduces the execution time by approximately 60% compared
to the non-optimized method, while the test-oriented optimization reduces the
execution time by approximately 25%. This means that the proposed method
does not reduce the execution time as much as the existing method of test-oriented
optimization, but it allows mutation analysis to be executed in a shorter time
than without any optimization.

RQ3: How much less of a difference in mutation score can we achieve?

Among the 53 repositories selected in Section 6.5.3, we measured the mutation
scores of three repositories (jsoup, zt-zip, and jInstagram) when the statements
in the test code were reduced by a certain percentage (80%), and we examined
how little the difference from the original mutation score could be measured.

Table 6.7 shows the number of killed mutants, and Figure 6.4 shows the
absolute value of the difference in mutation scores between the non-optimized
and each reduction method.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Without
weighting

With weighting Without
weighting

With weighting Without
weighting

With weighting

jsoup zt‐zip jInstagram

TH
E
AB

SO
LU

TE
 V
AL
U
E
O
F
TH

E
M
U
TA
TI
O
N
 S
CO

RE

DI
FF
ER

EN
CE

Error‐oriented optimization Test‐oriented optimization

Figure 6.4: Absolute values of mutation score difference in reduction of assertions

As shown in Figure 6.4, the absolute value of the difference was greatly re-
duced in all three cases by weighting. Especially for the error-oriented optimiza-
tion, the weighting resulted in the absolute value of the difference being less than
0.002 in both cases, which was better than the test-oriented optimization.

We also measured how the weighted mutation scores changed with varying
rates of statement reduction in the test code of jsoup.

Table 6.8 lists the numbers of killed mutants, and Figure 6.5 shows the abso-
lute value of the difference in mutation scores between the no-optimization and
each reduction method.

Figure 6.5 shows that the error-oriented optimization makes less difference
than the test-oriented optimization in the reduction rate of test code statements.
This is especially evident when the test code statement reduction rate is 80%.

75

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

20% 40% 60% 80%

TH
E
AB

SO
LU

TE
 V
AL
U
E
O
F
TH

E
M
U
TA
TI
O
N
 S
CO

RE

DI
FF
ER

EN
CE

REDUCTION RATE OF TEST CODE STATEMENT

Error‐oriented optimization Test‐oriented optimization

Figure 6.5: Absolute values of mutation score error in reduction of test code’s
statements in jsoup

RQ4: Which mutation operators are reduced more?

Knowing the trends of mutation operators reduced by the proposed method is
important because it can guide the reduction for a mutant set that is unknown to
be killed, such as when we perform mutation analysis on another new program.
The results of our investigation into which mutation operators are reduced in
large numbers by the proposed method are shown in Figure 6.6. The blue bars
in Figure 6.6 represent the original mutant set, and the red bars represent the
numbers of mutants in the reduced mutant set. Furthermore, the reduction rate
(# of mutants targeted for reduction / total mutants) for each mutation operator
is shown in Figure 6.7.

CBM IM INM MM NCM RVM VMCM CCM ICM MVM NVMCM RCM RIM SM APM NRM RSM
operators

0

20000

40000

60000

80000

100000

120000

140000

160000

#
o
f
M
u
t
a
n
t
s

type

all

greedy

Figure 6.6: Number of mutants per mutation operator

It can be seen that the Non Void Method Calls Mutator has the highest num-
ber of mutants per mutation operator, unchanged before and after the reduction.
Meanwhile, the mutant reduction rate by mutation operator was the lowest for

76

CBM IM INM MM NCM RVM VMCM CCM ICM MVM NVMCM RCM RIM SM APM NRM RSM
operators

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r
e
d
u
c
e
d
R
a
t
i
o

Figure 6.7: Reduction rate of mutants per mutation operator

the Increments Mutator and the highest for the Remove Switch Mutator, but
overall, there was not much variance in the reduction rate, and none of the re-
duction rates could be said to be characteristic.

6.6 Discussion

6.6.1 Ratio of Assertion Fixes to Test Code Fix Commits

It is found that there is a small percentage of commits that reduce the number of
assertions without increasing or decreasing the number of test cases. We sampled
and observed several commits that reduced assertions, some of which had prob-
lems with previous commits and were reverted, while others were refactored to
bring the assertions together. In addition, even if the assertions are not increased
or decreased, there are commits that change to more readable assertion descrip-
tions or rewrite to new assertion APIs, and it was found that modifying only
assertions in a test method is a use case that exists well in real-world software
development.

Meanwhile, there is a large proportion of commits for increasing the number
of assertions. However, unlike in the case of assertion reduction, it is not known
what kind of assertions will increase at the time of mutant reduction, so exist-
ing techniques, including the proposed method, cannot select the mutants to be
reduced according to their impact.

6.6.2 Execution Time Optimization

In the evaluation of the proposed method, it is found that the execution time
can be reduced to approximately 60%. In other words, when making choices
for a mutant set that is unknown to be killed, we believe that making choices of
that magnitude when the emphasis is on reliability is also important in preventing
excessive reductions. Meanwhile, the algorithm for mutant selection was designed
using the greedy method, so it is not an optimal solution that minimizes the
execution time. It is necessary to consider the use of solvers that can handle
constraints that make the error set distinguishable, thereby reducing the problem
of exponential-order computational complexity and finding the optimal solution.

77

In terms of the execution time of the optimization itself, the execution time
of error-oriented optimization is longer than that of test-oriented optimization
because the number of errors is generally much higher than the number of test
cases, while as an algorithm, the execution time is almost the same for the greedy
method. In this experiment, the optimization time for all 53 repositories was ap-
proximately 4 hours and 16 minutes for error-oriented optimization and 1 minute
and 46 seconds for test-oriented optimization, which is a significant difference.
However, the mutant optimization in this study is intended to find a model to
reduce the execution time of the mutation analysis, and it is done in advance of
the mutation analysis, i. e., basically, the mutant optimization and the execution
of the mutation analysis are done in different phases. Therefore, the execution
time shown in Subsection 6.5.4 does not include the time required to execute the
optimization. In both cases, most of the time taken was for mutant minimiza-
tion by the greedy method, and there was little computational cost for mutant
weighting.

6.6.3 Reducing Mutation Score Discrepancy

It is found that the proposed method reduces the discrepancy of the mutation
score compared to the existing method. Our experiments show that the weighting
to reduce discrepancy is an effective method not only for error-oriented optimiza-
tion but also for test-oriented optimization. It can also be observed that there
is a large difference between the proposed method and the existing method in
the descending order of the average number of assertions per test case shown in
Table 6.5.

While the 53 repositories used in the evaluation of execution time were system-
atically selected, it is possible that the three repositories used in the subsequent
evaluation of errors contained bias. This is because we selected three cases based
on the applicability of the tool we created for test code statement reduction and
the fact that there are not many modifications before the build is passed after
statement reduction. In addition, because the evaluation with varying statement
reduction rates is limited to jsoup, it is necessary to evaluate the differences for
more repositories in the future. In addition, it may be necessary to evaluate
by using commits where the number of assertions is reduced in the project used
in Subsection 6.5.4. However, in typical commits, modifications are often made
to the source code in addition to assertions, which means that mutation score
changes due to factors other than assertions, making it difficult to simply com-
pare differences in mutation scores, so in this paper, we used artificial assertion
reduction for evaluation.

6.6.4 Reduction Per Mutation Operator

The number of mutants per mutation operator was confirmed experimentally, and
there was no significant difference in distribution between before and after the
mutant reduction. We also examined the rate of reduction per mutation operator,
but none of the mutation operators had distinctive reduction rates. In other
words, we consider that our reduction model does not significantly reduce the
mutants of a particular mutation operator, but rather it shows that it is difficult to
reduce from the tendency of the mutation operator if we are considering reducing
for a mutant set that is unknown to be killed. It is possible that investigating
other trends in mutants in the current reduction model may contribute to the
reduction of the mutant set that is unknown to be killed, and further investigation

78

is needed.

6.7 Summary

In this chapter, we addressed the need for a mutant reduction model that can
measure the same fault detectability as the original set of mutants, even when
there is a change of statements in the test code. We then proposed a new mutant
reduction model, where we select mutants whose errors during test execution re-
main distinguishable and consider other mutants to be redundant. Furthermore,
to reduce the difference in the mutation score calculation due to mutant reduc-
tion, a method was proposed to calculate the mutation score by adding the impact
of the reduced mutants to the selected mutants as weights. The speed evaluation
of the OSS for 53 projects reduced the execution time to approximately 40%, and
the invariance of the fault detectability for three projects was evaluated with less
difference than the existing test case-based mutant reduction model.

Further project investigations and reduction of the mutant set that is unknown
to be killed, using the measurement information are required.

79

Table 6.4: Repositories used for evaluation and their LOC

Repository Lines of Source Code Lines of Test Code

msgpack-java 13,598 28,243
vertx-jersey 1,936 1,854
samoa 16,841 249
owner 2,866 5,520
redline-smalltalk 5,648 451
geometry-api-java 57,497 18,619
vectorz 39,793 8,439
webcam-capture 13,659 745
scribe-java 2,794 2,549
gson-fire 1,535 1,312
jsr354-api 2,319 3,487
p2-maven-plugin 1,690 153
jackson-annotations 1,471 331
auto 8,710 11,808
rxjava-jdbc 3,735 3,081
okio 3,998 4,499
jInstagram 4,015 6,748
javapoet 2,994 4,450
gwtbootstrap3 13,560 406
jphp 43,717 4,441
javaparser 13,588 3,379
JsonPath 3,765 2,714
minimal-json 1,715 4,589
jackson-core 21,451 11,131
rest-driver 3,194 5,108
retrofit 5,046 8,361
zt-zip 4,064 2,220
maven-git-commit-id-plugin 2,883 2,015
linq4j 14,307 3,979
RoaringBitmap 9,267 7,092
Ektorp 11,079 5,876
jsoup 10,696 5,188
moshi 4,136 5,515
http-request 1,391 2,721
slf4j 8,184 4,288
twilio-java 12,835 4,230
graphhopper 22,544 7,549
cassandra-reaper 5,663 1,711
LittleProxy 4,094 4,550
hbc 3,588 1,829
jsprit 20,486 16,607
wire 8,462 27,743
HikariCP 4,135 5,155
java-object-diff 5,817 1,913
docker-maven-plugin 6,085 1,924
stream-lib 4,689 3,619
jsondoc 3,841 3,543
metadata-extractor 18,731 2,344
jOOQ 130,053 1,464
pebble 6,324 4,725
alf.io 7,226 499
zxing 35,164 7,582
Algorithms 1,016 1,356

80

Table 6.5: Numbers of test cases and assertions in jsoup, zt-zip, and jInstagram

of test cases # of assertions
average # of assertions

per test case

jsoup 538 1585 2.946

zt-zip 6 243 40.5

jInstagram 547 748 1.367

Table 6.6: Execution time of mutation analysis

Total execution time
(msec)

Ratio to total
execution time

without optimization

No optimization 814,090,026 100%
Error-oriented optimization 333,001,232 40.9%
Test-oriented optimization 182,450,441 22.4%

Table 6.7: Number of killed mutants in reduction of assertions

All mutants
Without
weighting

With
weighting

No optimization 9,096 3,032 3,032
jsoup Error-oriented opt. 5,915 2,265 3,054

Test-oriented opt. 2,316 1,039 3,181

No optimization 2,173 1,696 1,696
zt-zip Error-oriented opt. 1,196 1,110 1,700

Test-oriented opt. 296 258 1,845

No optimization 1,080 92 92
jInstagram Error-oriented opt. 795 56 92

Test-oriented opt. 446 48 90

Table 6.8: Number of killed mutants in reduction of test code’s statements in
jsoup

All mutants 20% 40% 60% 80%

No optimization 9,096 8,807 7,747 6,274 3,032
Error-oriented opt. 5,915 8,819 7,745 6,262 3,054
Test-oriented opt. 2,316 8,865 7,808 6,327 3,181

81

Chapter 7

Related Work

7.1 Speeding Up Mutation Analysis

As mentioned in Chapter 1, the techniques to reduce the computational cost of
mutation analysis are classified into “do fewer,” “do smarter” and “do faster.”
In this section, we introduce the related studies of execution cost reduction (“do
smarter” and “do faster”).

Originally proposed by Howden [95], Weak mutation is one of “do smarter” ap-
proaches, which is an approximation technique that compares the internal states
of the mutant and the original program immediately after execution of the mu-
tated position of the program. Split-stream execution is another “do smarter”
approach, which is introduced in Section 4.2.3 and is adopted in our research.
Durelli et al. [67] implemented split-stream execution and compares program
states for weak mutation. It splits the execution by methods unlike our approach
which splits by instruction. Papadakis and Malevris [162]’s approach is quite sim-
ilar to split-stream execution in the point of view of state branching at mutation
location. They utilized Dynamic Symbolic Execution (DSE) and MSG to run mu-
tation analysis and generate test data based on the mutants. The technique by
Just et al. [105] is also “do smarter” approach. The technique avoids unnecessary
infected states and reduces mutation analysis time by 40% on average.

As “do faster” approach, Ma et al. [130] adopts MSG for generating behav-
ioral mutants that change the behavior of the program, e.g., overriding method
calling, overloading method, and bytecode translation for generating structural
mutants that change the structure of the program, e.g., inherited variables, ac-
cess modifier. These techniques are showed in Section 4.2.1 and 4.2.2 respectively.
Our metamutation approach is originally derived to MSG in order to identify
source-level program elements for analyzing bitcode-level representation.

7.2 Mutants Optimization

Various mutant reduction methods (called “do fewer” approach) have been pro-
posed in the past.

Some papers compare mutant reduction methods due to selection of mutation
operators with those due to random sampling. Budd [32] and Acree [1] showed
that sampling 10% of mutants can approximate the original mutation score with
99% accuracy. Wong et al. [205] compared leaving a certain percentage of mu-
tants for each mutation operator versus using only two mutation operators and
achieved comparable mutation scores and comparable accuracy in both. Zhang
et al. [209] compared operator-based reduction methods with random sampling
and showed that random sampling was superior.

82

There are a number of studies that examine a sufficient set of mutation oper-
ators. Offutt et al. [157] showed that mutation scores can be measured with six
different mutation operators with an accuracy of 99.5% of the original. Barbosa
et al. [19] gave insight into mutation operator selection, achieving a mutation
score of 99.6% of the original accuracy by mutants reduced to 65.02%.

Deng et al. [56] demonstrated the effectiveness of statement deletion mutation
operators for test evaluation in Java. Delamaro et al. [51] found that a single
statement deletion mutation operator had a similar effect as when all operators
were used. They measure the effect of the statement deletion mutation operator
on mutation analysis, but not on fault localization.

Another “do fewer” approach is detecting equivalent mutants and duplicated
mutants. Papadakis et al. [163, 114] propose Trivial Compiler Equivalence tech-
nique that declares equivalences only for those mutants which their compiled
object code is identical to the compiled object code of the original program. Kin-
tis and Malevris [115, 113, 116] devised a method to detect a large portion of
equivalent mutants by using data flow patterns through static analysis.

These mutant reduction methods are heuristics for mutants that are not
known to be killed, and do not represent a limit on the amount of mutant reduc-
tion.

There is a test case-based reduction model of Gopinath et al. [86] for the limits
of mutant reduction. Gopinath et al. presented a theoretical and an experimental
upper bound on the mutant reduction with random sampling. The theoretical
upper limit of the reduction is 58.2% under simplifying assumptions of uniform
redundancy of faults in mutants, while the experimental upper limit is 13.078%
on average.

To the best of our knowledge, the mutation score for a set of mutants after
the reduction has not been mentioned in any existing studies.

7.3 Mutation-based Fault Localization

In Section 5.2.3, we introduced MUSE and Metallaxis as major methods of
MBFL, but there are some more improved methods based on them.

Li and Zhang [124] proposed TraPT, a method that utilizes the impact infor-
mation of each mutant on each assertion to compute more precise fault localiza-
tion information. In experiments with Defects4J, TraPT showed a higher fault
localization performance compared to the existing MBFL.

Gong et al. [84] proposed a method called Dynamic Mutation Execution
Strategy (DMES), which dynamically select mutants and test cases to reduce
the execution cost of MBFL. Initially, the upper limit suspicion value for each
mutant is calculated for the failure test case only, and only mutants whose value
is above a certain value are selected. Furthermore, during the execution of a
mutant’s successful test cases, if the number of successful test cases that can be
killed exceeds a certain percentage, the execution of the remaining successful test
cases in that mutant is skipped.

Lôbo de Oliveira et al. [127] proposed a method, FTMES, which generates
only mutants in the places where the failed test case executes, noting that the
successful test case does not contribute significantly to fault localization. The
evaluation using Defects4J shows that it is faster and more accurate than existing
methods such as DMES.

The method described here can be adopted even when mutation operators are
limited, so it may be used to improve SDL-MBFL.

83

7.4 Industrial Case Studies of Mutation Analysis

While there are still many obstacles to practical use of mutation analysis, several
case studies of industrial applications have been published.

As a first case study of mutation analysis, Daran [49] analyzed the error trends
of 12 faults and 24 mutants in a nearly 1,000-line C program created by students
from specifications in the nuclear industry. The results showed that 85% of the
errors made by the mutants were the same as the actual errors.

Baker and Habli [18] applied mutation analysis to two safety-critical software
systems on aircraft, written in C and Ada. In their experiments, they were able
to find a subset of effective mutation operators and detected shortfalls that could
not be detected by the test suites built with processes and coverage criteria that
meet the requirements of existing standards.

Možucha and Rossi [143] conducted an experimental evaluation of a mutation
analysis tool for Java and concluded that what is practically necessary is to change
the settings that affect performance from the default settings.

Ramler et al. [177] carried out a mutation analysis on about 60,000 LOCs
of embedded software for safety-critical machine control. The results of their
mutation analysis suggest a deficiency of test cases that satisfy 100% MC/DC
coverage and provide a valuable guide to improvement. The execution time was
over 4,000 hours and all the effort took about half a person-year.

Petrovic et al. [171, 170] obtained three lessons learned through the imple-
mentation case of large-scale mutation analysis at Google. The first lesson is that
besides equivalent mutants and redundant mutants, “unproductive mutants” that
are practically useless force developers to waste their time. Another lesson is that
while it is typical that mutation scores are calculated at the method or file level,
developers want to measure test sufficiency at the commit level. The last lesson
is that developers only need to make their test suites better, and contrary to
researchers’ beliefs, mutation adequacy is not cost-worthy.

Delgado et al. [53] presented a case study of applying mutation analysis to
15 functions of C in the mission-critical domain, nuclear industry. They report
that selective mutation allowed them to find mutants that could not be killed by
existing branch-covered test cases, and that trivial compiler equivalence (TCE)
significantly reduced the number of equivalent mutants.

7.5 Evaluation of Debugging Techniques for Industrial Software

Siemens suite is the most frequently used industrial software for the evaluation
of fault localization and has been used in more than 90 papers according to [204].
However, it is not so large in scale and employs artificially inserted defects, rather
than actual defects, as the evaluation target.

There are several studies on the application of automatic program repair
techniques to industrial software. Naitou et al. [144] reported that one out of nine
faults could be fixed automatically by applying jGenProg, an automated program
repair technique, to enterprise-developed Java programs and faults. Ikeda et al.
[214] tried using Prophet, an automatic program repair technology, against actual
C programs and faults in a company, and reported that one patch was obtained
out of two. Noda et al. [152] improved 2 out of 20 successful patch generation
with Elixir, an automated program repair technology, in Java software that has
been developed and operated in the enterprise for more than 13 years, resulting
in 8 out of 20 successful patch generation. In these studies, the fault localization

84

used in the automatic program repair is SBFL by Ochiai, and the evaluation of
the fault localization itself is not described.

7.6 Applications of Mutation Analysis

The results of the mutation analysis allow for the generation and selection of test
oracles. Fraser and Zeller [76, 77] check each output of the program to produce an
assertion of the output that distinguishes the mutant from the original program.
Staats et al. [185, 78] rank the variables with high efficiency in finding embedded
faults in mutation analysis and generate their assertions.

Test data generation is another powerful application of mutation analysis.
Constraint-based test generation is a method first proposed by Offutt [159] to
generate killable test data for each mutant by giving the solver the conditions of
the test data to kill the mutant as constraints. A similar approach, combining
symbolic execution and mutation analysis, was originally proposed by Papadakis
et al [166, 162]. The idea is to generate a test by symbolic execution to get the
mutant infection condition in the mutant schema function.

Our another tool, called Phanta, is test code quality measurement tool lever-
aging mutation analysis. Figure 7.1 shows Phanta’s GUI. It can monitor the
three metrics, fault detectability, maintainability, and speed. It leverages mu-
tation analysis in terms of fault detectability and maintainability. For fault de-
tectability, Phanta simply uses mutation analysis for measuring mutation score.
For maintainability of test code, Phanta incorporates two analyses. The first
is active assertion analysis that flags assertions which don’t kill any mutants
as essentially redundant, and hence candidates for removal, in order to improve
test code readability. Multiple assertions could adversely influence maintainabil-
ity [20]. Phanta is applied to an actual development project related to factory
automation. Through the application, the following lessons are derived.

• Make the report understandable for developers to lead them to the next
action

• Make the tool flexible and customizable for selecting the target to be mea-
sured

• Automated test code refactoring could be helpful to get more maintainable
test code

7.7 Tools for Mutation Analysis

Although there are implementations of mutation analysis in various languages
not only for programming but also specification and modeling, the most common
ones are for C/C++ and Java. [164] introduces 76 mutation analysis tools in
various languages, 27 of which are for C/C++ or Java, while at most 3 of them
are for each of the other languages.

Table 7.1 shows a comparison of Mutation analysis tools for C/C++. No
particular checkmark indicates that only source-level mutations, method-level
mutation operators, and first-order mutations are supported.

Implementations of the muntant schemata generation have been around for a
long time, TUMS and Plextest being examples. On the other hand, bitcode-level
mutation has been implemented more and more in recent years with the spread

85

Figure 7.1: Phanta: A Test Code Quality Measurement Tool

Table 7.1: A comparison of Mutation analysis tools for C/C++
(OO:Object-oriented mutation operators, BM:Bitcode-level mutation,
MSG:Mutant schemata generation, HOM:Higher order mutation,
SSE:Split-stream execution)

Name Year OO BM MSG HOM SSE
Publicly
available

Open
sourced

TUMS [193, 195, 194] 1995 ✓
Proteum [52] 2001 ✓ ✓
Plextest [97] 2005 ✓
MutGen [11, 10] 2003
ESTP [71] 2008
Milu [101] 2008 ✓ ✓ ✓
SMT-C [48] 2012
CCMutator [119] 2013 ✓ ✓ ✓
llvm-mutate [182] 2013 ✓ ✓ ✓
MuVM 2016 ✓ ✓ ✓ ✓
Mutate++ [128] 2017 ✓ ✓
MuCPP [54] 2017 ✓ ✓ ✓
AccMut [198] 2017 ✓ ✓ ✓ ✓ ✓
Mull [57] 2018 ✓ ✓ ✓
MUSIC [172] 2018 ✓ ✓
Dextool [28] 2018 ✓ ✓
SRCIROR [90] 2018 ✓ ✓ ✓
Mart [37] 2019 ✓ ✓ ✓

of LLVM, such as Mull [57], SRCIROR [90] and Mart [37]. MuCPP [54] is the
only tool that supports object-oriented mutation operators.

Table 7.2 also shows a comparison of Mutation analysis tools for Java. Again,
no particular checkmark means that it only supports source-level mutations,
method-level mutation operators, and first-order mutations.

There are many tools for other languages as well. For C#, ILMutator [60] and
Stryker.NET [150] can perform mutation analysis on programs running on the
.NET CLI. For JavaScript, Mutandis [139, 140], AjaxMutator [151] and Stryker
[149] supports JavaScript-specific mutant operators. For Python, MutPy [59]

86

Table 7.2: A comparison of mutation analysis tools for Java
(OO:Object-oriented mutation operators, BT:Bytecode translation,
MSG:Mutant schemata generation, HOM:Higher order mutation,
Concurrency:Concurrency-related mutation operators)

Name Year OO BT MSG HOM
Concu-
rrency

Publicly
available

Open
sourced

Jester [142] 2001 ✓ ✓
JavaMut [43] 2002 ✓
MuJava [130] 2004 ✓ ✓ ✓ ✓
ByteMe [65] 2006 ✓
Jumble [192] 2007 ✓ ✓ ✓
Javalanche [181] 2009 ✓ ✓ ✓ ✓
PIT [44] 2010 ✓ ✓ ✓
MuTMuT [82] 2010 ✓
Judy [131] 2010 ✓ ✓ ✓
Bacterio [135] 2010 ✓ ✓ ✓
MAJOR [106] 2011 ✓
Paraµ [132] 2011 ✓ ✓
Comutation [83] 2013 ✓
HOMAJ [160] 2014 ✓
LittleDarwin [168] 2017 ✓ ✓ ✓

supports higher order mutation and objected-oriented mutation operators, while
Cosmic Ray [14] and Mutmut [94] are focused on practical use. For Ruby, a tool
named mutant [123] is the only one available.

7.8 Data flow Analysis for Testing and Debugging

Mutation analysis, as described in Chapter 2, checks whether the execution of
the test case reaches the mutation point, whether the execution state is infected
with an abnormality due to the injected artificial fault, whether the abnormal
state is propagated through the execution after the mutation location, and finally
whether the test oracle can detect the abnormality of the state. In other words,
we artificially change the data and check whether the effect of the change is
propagated to the output as test oracle.

Measuring the impact of certain program elements is also done in the field
of program analysis, such as data flow analysis, information flow analysis, taint
analysis, and so on. Data flow analysis [6] has been studied as a program op-
timization technique in compilers. By analyzing the data dependencies between
the definition and use of variables, it is used to optimize the program by removing
useless assignment instructions.

Information flow analysis [58, 179] is a method to analyze the dependency
between input and output using to determine the leakage of information that
should be kept secret. While data flow analysis analyzes all data dependencies,
information flow analysis is sufficient to analyze only the dependencies from the
input of the information to be kept secret.

Taint analysis [147] is a method of highlighting security risks by marking
data that may have been given by a malicious user as tainted data and tracking
which variables propagate during program execution. This technique has many
similarities with information flow analysis, although the application is different,

87

and only analyzes the dependence from the input.
A method of using data flow analysis for test design, called data flow testing

[72, 161], was proposed. This is a method to design or generate tests using
the coverage criterion of how well the test can cover the data definition and
use pairs. There are several empirical studies that have compared data flow
testing and mutation testing. Mathur and Wong [136] concluded that mutation-
based criteria are more difficult to satisfy than all-use criteria. The experimental
results of Offutt et al. [153] showed that while both methods were effective, the
mutation-adequate test set was closer to satisfying the dataflow criterion and was
able to detect more defects. The experiment by Frankl et al. [73] summarized
that the mutation testing was more effective in five out of nine subjects, the all-
use criterion was effective in two subjects, and there was no clear winner in two
subjects. Kakarla et al. [107] conducted a meta-analysis of these comparative
studies of mutation testing and data flow testing and concluded that mutation
testing is at least two times more effective than data flow testing, but three times
less efficient.

Some works use data flow testing for fault localization. A method proposed
by Agrawal et al. [5] is based on the assumption that the fault lies in the slice of
the test case that fails at runtime, rather than succeeding at runtime. As a result,
developers can focus the statements on the failed slices. Santelices et al. [180]
proposed a lightweight fault localization technique that uses coverage criteria
such as statements, branches, and def-use pairs to detect suspicious statements
in a program.

Program slicing is a technique that focuses on the dependencies between state-
ments in a program, such as data flow and control flow, and extracts a statement
set that have dependencies with a specified statement, called program slice. Al-
though program slicing has a variety of applications, it can be used to improve
debugging efficiency by narrowing it down to only the part related to the state-
ment in which the error was caught, such as an assertion. Slicing techniques
can be roughly classified into two categories: static slicing and dynamic slic-
ing. Static slicing proposed by Weiser [200] creates a program dependency graph
that combines control dependency and data dependency for the target program,
and extracts dependent statements by tracing the graph backwards from the
target statement. Dynamic slicing, proposed by Agrawal et al. [4], builds a pro-
gram dependency graph by recording dependencies when actually feeding input
to the program and executing it, and extracts dependent statements by tracing
the graph backwards from the target statement as in static slicing. Since static
slicing does not require any input data, it is generally low overhead. However,
the slice size tends to be large, and in extreme cases, the entire source code is
extracted as a slice.

Both mutation analysis and data flow analysis can be used to examine how
a given program location impacts the output, but the biggest difference is how
the impact on the output is measured. Mutation analysis introduces changes
to program elements and examines whether those changes affect the output of
the program. Data flow analysis, on the other hand, records dependencies and
extracts statements that have dependencies on the output.

Missing impact chains in the analysis such as dependencies and propagation
of abnormal state can be present in both. In the case of mutation analysis, even
if a change is made to a statement that has dependencies in the output, the
change may not necessarily show up in the output depending on the test data
and mutation operator. In data flow analysis, dependencies on the output will
not be missed if only the source code is traced, but if native code or database

88

access is in the middle of the analysis, dependencies may not be tracked.
Also, the execution cost of both methods is CPU intensive. Data flow analysis

records and analyzes all dependencies for each statement. Mutation analysis, on
the other hand, requires running as many tests as there are variations in the
changes.

This difference in nature leads to a difference in usage. Mutation analysis
is suitable when you want to analyze the entire system, including external en-
vironment and libraries, while data flow analysis is suitable for module and file
analysis.

89

Chapter 8

Conclusion

8.1 Summary

In industrial software, the impact of economic losses due to faults on the world
is significant, and this trend has been increasing in recent years. Detecting and
fixing faults is a highly time-consuming process, and testing and debugging tech-
niques are demanded to support it. Mutation analysis is expected to be a powerful
foundation for test and debug.

In this thesis, we addressed the challenges of computational cost in mutation
analysis with three approaches: “do fewer”, “do faster”, and “do smarter”. For
the challenge of “do faster”, the mutation location in bitcode translation is lost by
compile optimization. For the challenge of “do smarter”, SSE is not applicable for
naive compiler-based execution methods due to branching the execution stream.
For the challenge of “do fewer”, a test case-based mutant reduction model may
over-reduce mutants and fail to measure accurate fault detectability.

First, we presented MuVM as a “do faster”, and “do smarter” approach, a
tool for fast higher-order mutation analysis using four techniques (Chapter 4).
Metamutation prevents the loss of mutation locations in bitcode-level at com-
pile time by replacing the program elements to be mutated with metamutation
functions. Mutation on virtual machine interprets bitcode containing metamu-
tation functions and performs mutation analysis on the VM. Higher order split-
stream execution splits the execution state into mutated and unmutated states
at the mutation location during execution, saving the common execution cost
to the mutation location. Online adaptation technique reduces the cost of run-
ning unwanted mutants by dynamically creating a mutant running state. The
experiments showed that the execution time was significantly shorter in MuVM
compared to the existing methods.

Second, we proposed and evaluated a mutation-based fault localization us-
ing statement deletion mutation as an application of MuVM (Chapter 5). The
subject of the evaluation was a system reengineering project in an enterprise,
where incompatibilities before and after the renewal were treated as faults, and
nine actual faults were localized at a time. In a comparative experiment of the
formulas for each suspiciousness, Tarantula showed the best fault localization per-
formance. In a comparative experiment of mutation operators, it was found that
the fault localization performance was significantly different with and without
SDL (statement deletion).

Finally, as a “do fewer” approach, we proposed a new mutant reduction model
that focuses on the errors caused by mutation (Chapter 6). We also proposed a
method of weighting the remaining mutants according to the reduced mutants
with the same error. Our experiments revealed that this mutation reduction

90

model and weighting allows us to measure accurate mutation scores compared to
an existing method, the test case-oriented mutation reduction model. In addition,
we show that our mutation reduction method can reduce the execution time of
mutation analysis by about 40% in 53 OSS projects.

This thesis showed that these techniques can assist in efficient mutation anal-
ysis for real-world software, including industrial use.

8.2 Overall Evaluation

This section presents an overall evaluation of this thesis in terms of coverage
measurement and fault localization.

8.2.1 Overall Evaluation as Coverage Measurement Technique

To conclude this thesis as a coverage measurement technique, we compare it
with the state-of-the-art (SoTA) technology using the quality characteristics of
coverage measurement required by industry from the results of the systematic
literature review presented in Chapter 3.

Speed

Our method Our techniques accelerates high order mutation analysis
by 10 to 10,000 times by reducing the number of compilation and
execution instructions. In addition, we proposed a model that can
reduce mutants by 60% while enabling measurement of accurate fault
detectability. Note that this mutant reduction model does not directly
contribute to the actual mutant reduction, and the speedup effect of
combining these techniques is unknown.

SoTA methods There is no one that combines the same techniques as
ours; AccMut [198] is a later technique than MuVM but closest to
it, and AccMut is more than 10 times faster than MuVM for “tcas”
program.

Usability

Our method Although not the subject of this paper, we developed Phanta,
a platform for analyzing code from multiple perspectives. The report
of the mutation analysis results needed to be easy to understand so
that the developer’s next action would be clear.

SoTA methods Although the state of the art in usability efforts as re-
search is not clear, PIT is preferred by many practical users.

Accuracy

Our method Our optimization model retains almost 100% accuracy com-
pared to the original mutation score, but the accuracy in actual mutant
reduction is unknown because it has not been measured for a mutant
set that is unknown to be killed.

SoTA methods There is a model that can reduce mutants by about
13% while maintaining accuracy, but it determines redundancy at the
test case level, which is more coarse-grained than our method at the
statement level.

Scalability

91

Our method We tried higher order mutation analysis on a program with
about 6,000 lines. Further evaluation on a larger program is needed.

SoTA methods AccMut [198] performs mutation analysis on a large
scale software with 42KLOC and over 5,000 test cases. In an industrial
case, Ramler et al. [177] applied a mutation analysis to about 60,000
LOCs of embedded software in safety-critical areas.

Memory consumption

Our method SSE, which is incorporated in our method, requires a lot of
memory to maintain the execution state. Higher order mutations are
even more so.

SoTA methods The memory consumption of individual tools is unknown,
but those that use internal state, such as SSE, have the same issues.

Reliability

Our method Since our software is not yet mature, we cannot say that it
is highly reliable. We expect to improve its reliability through future
experience.

SoTA methods As a tool, PIT is the most widely used and reliable tool.

This thesis has contributions on methods to improve speed and accuracy, and
especially has advantages in higher order mutation against state-of-the-art tech-
nology. However, we believe that improvements are needed in terms of scalability
and memory consumption.

8.2.2 Overall Evaluation as Fault Localization Technique

As shown in Chapter 5, Kochhar et al. [118] surveyed 386 practitioners about
their expectations of defect localization and then examined the state-of-the-art
for seven factors they considered important. From the seven factors including
“availability of debugging data”, “granularity level”, “minimum success crite-
rion”, “Scalability”, “Efficiency”, “Rationale”, and “IDE Integration”, we list the
perspectives required by industry in fault localization and compare our method
with the state-of-the-art. “Availability of debugging data” means which is as-
sumed to be available by prior fault localization studies. “Granularity level” is
the level of granularity used to pinpoint defects such as classes, methods, and
statements. “Trustworthiness” refers to how high the actual fault ranks among
the ranked program elements. The indicator here is the percentage of faults
included in the top 5, which are the most preferred in the survey results. “Scala-
bility” refers to the size of the target program, and “efficiency” refers to how long
it takes to complete fault localization. “Rationale” is why some program loca-
tions are marked as suspicious. “IDE Integration” means that fault localization
is integrated into the IDE.

Availability of debugging data

Our method We only use test data as our debug data, which is the most
commonly available data.

SoTA methods Most of the existing techniques use test cases as debug-
ging data, followed by bug reports.

Granularity level

92

Our method Our method supports fault localization at the statement
level of granularity, which is the finest granularity.

SoTA methods Only two papers [121, 206] work at method level gran-
ularity which is the most preferred option, and most papers work at
statement level granularity which is second most preferred option.

Trustworthiness

Our method Applying our tool to a real-world program that contains
multiple faults across multiple lines at the same time, we found that
the percentage of faults in the top-5 of the suspiciousness rank is 33%.

SoTA methods None of the papers can satisfy 75% of success rate in the
top-5 position, while 5 papers (e.g. [102, 110, 178]) can satisfy 50% of
the success rate. Unfortunately, those papers work at a coarser level
of granularity (e.g. class level) that is not preferred in the survey.

Scalability

Our method We performed fault localization on the 13KLOC source
code in real server monitoring.

SoTA methods Techniques in 6 papers (e.g. [134, 121, 206, 102]) sup-
port at least 100KLOC and 7 [13, 15, 174] support at least 10KLOC,
that can satisfy at least 75% and 50% of the survey respondents, re-
spectively.

Efficiency

Our method Since our method is based on mutation analysis, it is less
efficient than the usual spectral-based fault localization and took about
150 hours.

SoTA methods 5 papers (e.g. [13, 121, 178]) shows their techniques
produce output in less than a minute, that satisfy 90% of the survey
respondents.

Rationale

Our method Our method, like many other methods, only highlights
faulty program elements.

SoTA methods 2 papers [134, 187] provide a graph-based structure that
a practitioner can inspect to better understand why the elements are
highly ranked as faults.

IDE Integration

Our method Our fault localization tool doesn’t support IDE integration.

SoTA methods There is no work that is integrated into IDE. The clos-
est is the work by Zhou et al. [210], which has been integrated into
Bugzilla, however, Bugzilla is not an IDE.

This thesis showed that our fault localization method is superior in terms of
granularity and trustworthiness, but there are some issues in terms of efficiency, so
it is necessary to incorporate the method into continuous integration for practical
use.

93

8.2.3 Overall Evaluation with Future Prospects

To the best of our knowledge, AccMut and other accelerators in SoTA do not
support higher order mutation. If we apply the state reduction technique in Ac-
cMut to higher order mutation, we need to consider handling multiple mutation
descriptions in the state, one of which is our other technique [190]. Although
the issue of execution cost still remains for higher order mutation, in the future,
new techniques such as state reduction and more lightweight and optimized im-
plementations of virtual machines may enable higher order mutation to be used
in larger scale software. If further speed-up of higher order mutation can be ex-
pected, it may be effective in automated program repair and fault localization
for multiple locations. Existing study [152] has shown that there is a need for
correction of multiple faults rather than a single fault in industry. higher order
mutation can be expected to be used in the automation of testing and debugging
for complex faults, as actually required in industry.

8.3 Future work

8.3.1 Further Improvement in Performance

Reduction of the Unknown Set of Mutants

While this thesis presents a novel mutant reduction model, there is a future
challenge for reduction of mutant set that is unknown to be killed, such as those
in new programs that have not yet been analyzed. One direction of reduction is
the selection of mutation operators. However, we did not find the trend in our
experiment. As powerful machine learning approaches have become more readily
available in recent years, one idea is to automatically reduce mutants from the
large amount of various data generated by past mutation analysis.

Test Case Selection

While this thesis focuses on reducing the time spent in compiling and testing
during mutation analysis, it does not incorporate methods to reduce the number
of test cases to run. Whereas there is a method to select only the test cases
that cover the mutation locations of each mutant, one of MuVM’s techniques,
Online adaptation, dynamically selects only the necessary mutation locations at
the time of execution of each test case, so the effect is practically the same.
However, in the mutation-based fault localization technique, it is not necessary
to run many passed test cases because the information in the failed test cases is
more important. It is expected to shorten execution time by identifying necessary
passed test cases and reducing unnecessary ones.

8.3.2 Other Practical Issues

Elimination of Equivalent mutants

Although equivalent mutants were considered out of scope in this thesis, they
are important issues in practical terms. Equivalent mutants not only prevent
accurate measurement of fault detectability by mutation analysis, but they can
also result in wasted execution time and wasteful work by developers that cannot
be used to improve the test suite. The detection of equivalent mutants is difficult
as it has proven to be an undecidable problem, but we expect that the various
methods that have been proposed in academia will help to solve it in industry.

94

Finding Subtle Higher Order Mutants

Our tool MuVM can generate HOMs, but not all of them are considered useful,
and finding subtle HOMs, which are harder to kill and more valuable for finding
faults, will help us to build a more powerful test suite. The detection of subtle
HOMs is very computationally expensive and needs to be solved by utilizing
various search methods proposed in the academic community.

8.3.3 Towards Further Industrial Adoption

Other Applications of Mutation Analysis

In this study, we implemented and evaluated mutation-based fault localization
as an application of mutation analysis. There are other applications that use
mutation analysis as a basis. Test case generation, combined with techniques
such as symbolic execution, generates test cases that can kill more mutants. In
automated program repair, the mutation operators that do the transformation of
a program element into a faulty one are regarded as operations that remove a fault
from a faulty program element, and find mutants that make all test cases pass,
including those that had failed due to the fault. Test oracle selection considers
test oracles that can kill many mutants in mutation analysis to be useful and
reduces unnecessary test oracles to increase the maintainability of the test suite.
The implementation of these applications is a future challenge.

Further Experiments with Industrial Software

In this thesis, we have evaluated industrial software in C, but we have not eval-
uated industrial software in other languages such as Java. We expect that more
diverse and realistic evaluations in industrial software will contribute to the fur-
ther development of mutation analysis techniques.

95

References

[1] Allen Troy Acree Jr. “On Mutation”. PhD thesis. Atlanta, GA, USA, 1980.

[2] Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadav Steindler,
Shmuel Ur, and Aviad Zlotnick. “Code coverage analysis in practice for
large systems”. In: 2011 33rd International Conference on Software Engi-
neering (ICSE). IEEE. 2011, pp. 736–745.

[3] Hiralal Agrawal, Richard A. DeMillo, Bob Hathaway, William Hsu, Wynne
Hsu, E. W. Krauser, R. J. Martin, Aditya P. Mathur, and Eugene Spafford.
Design of Mutant Operators for the C Programming Language. Tech. rep.
SERC-TR-41-P. West Lafayette, Indiana: Purdue University, Mar. 1989.

[4] Hiralal Agrawal and Joseph R Horgan. “Dynamic program slicing”. In:
ACM SIGPlan Notices 25.6 (1990), pp. 246–256.

[5] Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. “Fault
localization using execution slices and dataflow tests”. In: Proceedings of
Sixth International Symposium on Software Reliability Engineering. IS-
SRE’95. IEEE. 1995, pp. 143–151.

[6] Frances E. Allen and John Cocke. “A program data flow analysis proce-
dure”. In: Communications of the ACM 19.3 (1976), p. 137.

[7] Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino, and Vin-
cenzo Riccio. “Comparing model coverage and code coverage in model
driven testing: an exploratory study”. In: 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering Workshop (ASEW).
IEEE. 2015, pp. 70–73.

[8] P. Ammann, M. E. Delamaro, and J. Offutt. “Establishing Theoretical
Minimal Sets of Mutants”. In: 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Validation. Mar. 2014, pp. 21–
30. doi: 10.1109/ICST.2014.13.

[9] Paul Ammann and Jeff Offutt. Introduction to Software Testing. 2nd.
USA: Cambridge University Press, 2016. isbn: 1107172012.

[10] J. H. Andrews, L. C. Briand, and Y. Labiche. “Is Mutation an Appropriate
Tool for Testing Experiments?” In: Proceedings of the 27th International
Conference on Software Engineering. ICSE’05. St. Louis, MO, USA: As-
sociation for Computing Machinery, 2005, pp. 402–411. isbn: 1581139632.
doi: 10.1145/1062455.1062530. url: https://doi.org/10.1145/
1062455.1062530.

[11] J. H. Andrews and Yingjun Zhang. “General test result checking with log
file analysis”. In: IEEE Transactions on Software Engineering 29.7 (2003),
pp. 634–648.

96

https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530

[12] Andrea Arcuri. “RESTful API automated test case generation”. In: 2017
IEEE International Conference on Software Quality, Reliability and Secu-
rity (QRS). IEEE. 2017, pp. 9–20.

[13] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. “Fault localiza-
tion for dynamic web applications”. In: IEEE Transactions on Software
Engineering 38.2 (2011), pp. 314–335.

[14] Sixty North AS. Cosmic Ray: mutation testing for Python. https://

cosmic-ray.readthedocs.io/. 2017.

[15] George K Baah, Andy Podgurski, and Mary Jean Harrold. “Mitigating
the confounding effects of program dependences for effective fault local-
ization”. In: Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. 2011,
pp. 146–156.

[16] Thomas Bach, Artur Andrzejak, and Ralf Pannemans. “Coverage-based
reduction of test execution time: Lessons from a very large industrial
project”. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE. 2017, pp. 3–12.

[17] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. “The
impact of coverage on bug density in a large industrial software project”.
In: 2017 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM). IEEE. 2017, pp. 307–313.

[18] Richard Baker and Ibrahim Habli. “An empirical evaluation of mutation
testing for improving the test quality of safety-critical software”. In: IEEE
Transactions on Software Engineering 39.6 (2012), pp. 787–805.

[19] Ellen Francine Barbosa, José Carlos Maldonado, and Auri Marcelo Rizzo
Vincenzi. “Toward the determination of sufficient mutant operators for C
†”. In: Software Testing, Verification and Reliability 11.2 (2001), pp. 113–
136. doi: 10.1002/stvr.226. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/stvr.226.

[20] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. “An em-
pirical analysis of the distribution of unit test smells and their impact
on software maintenance”. In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM). Sept. 2012, pp. 56–65. doi: 10.1109/
ICSM.2012.6405253.

[21] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and
Dave Binkley. “Are test smells really harmful? An empirical study”. In:
Empirical Software Engineering 20.4 (Aug. 2015), pp. 1052–1094. issn:
1573-7616. doi: 10.1007/s10664-014-9313-0. url: https://doi.org/
10.1007/s10664-014-9313-0.

[22] Moritz Beller, Georgios Gousios, and Andy Zaidman. “TravisTorrent: Syn-
thesizing Travis CI and GitHub for Full-stack Research on Continuous In-
tegration”. In: Proceedings of the 14th International Conference on Min-
ing Software Repositories. MSR ’17. Buenos Aires, Argentina: IEEE Press,
2017, pp. 447–450. isbn: 978-1-5386-1544-7. doi: 10.1109/MSR.2017.24.
url: https://doi.org/10.1109/MSR.2017.24.

[23] Henning Bergström and Eduard Paul Enoiu. “Using timed base-choice
coverage criterion for testing industrial control software”. In: 2017 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE. 2017, pp. 216–219.

97

https://cosmic-ray.readthedocs.io/
https://cosmic-ray.readthedocs.io/
https://doi.org/10.1002/stvr.226
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.226
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.226
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1109/MSR.2017.24
https://doi.org/10.1109/MSR.2017.24

[24] Stefan Berner, Roland Weber, and Rudolf K Keller. “Enhancing soft-
ware testing by judicious use of code coverage information”. In: 29th In-
ternational Conference on Software Engineering (ICSE’07). IEEE. 2007,
pp. 612–620.

[25] SM Bindu Bhargavi, SB Nandeeswar, V Suma, and Jawahar J Rao. “Con-
ventional testing and combinatorial testing: A comparative analysis”. In:
2016 International Conference on Inventive Computation Technologies
(ICICT). Vol. 1. IEEE. 2016, pp. 1–5.

[26] Johan Blom, Bengt Jonsson, and Sven-Olof Nyström. “Industrial evalua-
tion of test suite generation strategies for model-based testing”. In: 2016
IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE. 2016, pp. 209–218.

[27] Fiorenza Brady. Cambridge University Study States Software Bugs Cost
Economy $312 Billion Per Year. http://www.prweb.com/releases/
2013/1/prweb10298185.htm. 2013.

[28] Joakim Brännström. dextool. http://joakim-brannstrom.github.io/
dextool/. 2018.

[29] Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. “Reversible
Debugging Software “Quantify the time and cost saved using reversible
debuggers””. In: ().

[30] Georg Buchgeher, Christian Ernstbrunner, Rudolf Ramler, and Michael
Lusser. “Towards tool-support for test case selection in manual regres-
sion testing”. In: 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops. IEEE. 2013, pp. 74–79.

[31] Timothy A Budd and Dana Angluin. “Two notions of correctness and
their relation to testing”. In: Acta informatica 18.1 (1982), pp. 31–45.

[32] Timothy Alan Budd. “Mutation Analysis of Program Test Data”. PhD
thesis. New Haven, CT, USA, 1980.

[33] Tianqin Cai, Zhao Zhang, and Ping Yang. “Fastbot: A Multi-Agent Model-
Based Test Generation System Beijing Bytedance Network Technology
Co., Ltd.” In: Proceedings of the IEEE/ACM 1st International Conference
on Automation of Software Test. 2020, pp. 93–96.

[34] Ryan Carlson, Hyunsook Do, and Anne Denton. “A clustering approach
to improving test case prioritization: An industrial case study”. In: 2011
27th IEEE International Conference on Software Maintenance (ICSM).
IEEE. 2011, pp. 382–391.

[35] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S. P. Midkiff. “Statisti-
cal Debugging: A Hypothesis Testing-Based Approach”. In: IEEE Trans-
actions on Software Engineering 32.10 (Oct. 2006), pp. 831–848. issn:
2326-3881. doi: 10.1109/TSE.2006.105.

[36] Peter Charbachi, Linus Eklund, and Eduard Enoiu. “Can pairwise test-
ing perform comparably to manually handcrafted testing carried out by
industrial engineers?” In: 2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C). IEEE. 2017,
pp. 92–99.

98

http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://joakim-brannstrom.github.io/dextool/
http://joakim-brannstrom.github.io/dextool/
https://doi.org/10.1109/TSE.2006.105

[37] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. “Mart:
A Mutant Generation Tool for LLVM”. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2019.
Tallinn, Estonia: Association for Computing Machinery, 2019, pp. 1080–
1084. isbn: 9781450355728. doi: 10.1145/3338906.3341180. url: https:
//doi.org/10.1145/3338906.3341180.

[38] Boyuan Chen. “Improving the software logging practices in DevOps”. In:
2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE. 2019, pp. 194–197.

[39] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jiang. “An
automated approach to estimating code coverage measures via execution
logs”. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 2018, pp. 305–316.

[40] M-H Chen, Michael R Lyu, and W Eric Wong. “Effect of code coverage
on software reliability measurement”. In: IEEE Transactions on reliability
50.2 (2001), pp. 165–170.

[41] Mei-Hwa Chen, Michael R Lyu, and W Eric Wong. “An empirical study
of the correlation between code coverage and reliability estimation”. In:
Proceedings of the 3rd International Software Metrics Symposium. IEEE.
1996, pp. 133–141.

[42] Mei-Hwa Chen, Michael R Lyu, and W Eric Wong. “Incorporating code
coverage in the reliability estimation for fault-tolerant software”. In: Pro-
ceedings of SRDS’97: 16th IEEE Symposium on Reliable Distributed Sys-
tems. IEEE. 1997, pp. 45–52.

[43] Philippe Chevalley and Pascale Thevenod-Fosse. “A mutation analysis
tool for Java programs”. In: International journal on software tools for
technology transfer 5.1 (2003), pp. 90–103.

[44] Henry Coles. PIT. http://pitest.org.

[45] IEEE Standards Committee et al. “Ieee std 610.12-1990 ieee standard glos-
sary of software engineering terminology”. In: online] http://st-dards. ieee.
org/reading/ieee/stdpublic/description/se/610.12-1990 desc. html (1990).

[46] Joao Carlos Cunha, Ricardo Barbosa, and Gilberto Rodrigues. “On the use
of boundary scan for code coverage of critical embedded software”. In: 2012
IEEE 23rd International Symposium on Software Reliability Engineering.
IEEE. 2012, pp. 341–350.

[47] Jacek Czerwonka. “On use of coverage metrics in assessing effectiveness of
combinatorial test designs”. In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops. IEEE. 2013,
pp. 257–266.

[48] H. Dan and R. M. Hierons. “SMT-C: A Semantic Mutation Testing Tools
for C”. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. 2012, pp. 654–663.

[49] Muriel Daran. “Software Error Analysis: A Real Case Study Involving Real
Faults and Mutations”. In: In Proceedings of the 1996 ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM Press,
1996, pp. 158–171.

99

https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/3338906.3341180
http://pitest.org

[50] V. Debroy and W. E. Wong. “Insights on Fault Interference for Programs
with Multiple Bugs”. In: 2009 20th International Symposium on Software
Reliability Engineering. Nov. 2009, pp. 165–174. doi: 10.1109/ISSRE.
2009.14.

[51] M. E. Delamaro, L. Deng, V. H. S. Durelli, N. Li, and J. Offutt. “Exper-
imental Evaluation of SDL and One-Op Mutation for C”. In: 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation. Mar. 2014, pp. 203–212. doi: 10.1109/ICST.2014.33.

[52] Márcio Eduardo Delamaro and José Carlos Maldonado. “Mutation Test-
ing for the New Century”. In: ed. by W. Eric Wong. Norwell, MA, USA:
Kluwer Academic Publishers, 2001. Chap. Proteum/IM 2.0: An Integrated
Mutation Testing Environment, pp. 91–101. isbn: 0-7923-7323-5. url:
http://dl.acm.org/citation.cfm?id=571305.571326.

[53] Pedro Delgado-Pérez, Ibrahim Habli, Steve Gregory, Rob Alexander, John
Clark, and Inmaculada Medina-Bulo. “Evaluation of Mutation Testing in
a Nuclear Industry Case Study”. In: IEEE Transactions on Reliability 67.4
(2018), pp. 1406–1419.

[54] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-Lozano,
Antonio Garćıa-Domı́nguez, and Juan José Domı́nguez-Jiménez. “Assess-
ment of class mutation operators for C++ with the MuCPP mutation
system”. In: Inf. Softw. Technol. 81 (2017), pp. 169–184.

[55] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints on Test Data
Selection: Help for the Practicing Programmer”. In: Computer 11.4 (Apr.
1978), pp. 34–41. issn: 0018-9162. doi: 10.1109/C-M.1978.218136. url:
http://dx.doi.org/10.1109/C-M.1978.218136.

[56] L. Deng, J. Offutt, and N. Li. “Empirical Evaluation of the Statement
Deletion Mutation Operator”. In: 2013 IEEE Sixth International Confer-
ence on Software Testing, Verification and Validation. Mar. 2013, pp. 84–
93. doi: 10.1109/ICST.2013.20.

[57] A. Denisov and S. Pankevich. “Mull It Over: Mutation Testing Based
on LLVM”. In: 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). Apr. 2018, pp. 25–31.
doi: 10.1109/ICSTW.2018.00024.

[58] Dorothy E Denning. “A lattice model of secure information flow”. In:
Communications of the ACM 19.5 (1976), pp. 236–243.

[59] Anna Derezińska and Konrad Ha las. “Analysis of Mutation Operators for
the Python Language”. In: Proceedings of the Ninth International Confer-
ence on Dependability and Complex Systems DepCoS-RELCOMEX. June
30 – July 4, 2014, Brunów, Poland. Ed. by Wojciech Zamojski, Jacek
Mazurkiewicz, Jaros law Sugier, Tomasz Walkowiak, and Janusz Kacprzyk.
Cham: Springer International Publishing, 2014, pp. 155–164.

[60] Anna Derezinska and Karol Kowalski. “Object-Oriented Mutation Applied
in Common Intermediate Language Programs Originated from C#”. In:
Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Work-
shop Proceedings. 2011, pp. 342–350.

[61] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. Refactoring
Test Code. Tech. rep. Amsterdam, The Netherlands, The Netherlands,
2001.

100

https://doi.org/10.1109/ISSRE.2009.14
https://doi.org/10.1109/ISSRE.2009.14
https://doi.org/10.1109/ICST.2014.33
http://dl.acm.org/citation.cfm?id=571305.571326
https://doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICST.2013.20
https://doi.org/10.1109/ICSTW.2018.00024

[62] Daniel Di Nardo, Fabrizio Pastore, Andrea Arcuri, and Lionel Briand.
“Evolutionary robustness testing of data processing systems using models
and data mutation (T)”. In: 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE. 2015, pp. 126–
137.

[63] Daniel Di Nardo, Fabrizio Pastore, and Lionel Briand. “Augmenting field
data for testing systems subject to incremental requirements changes”. In:
ACM Transactions on Software Engineering and Methodology (TOSEM)
26.1 (2017), pp. 1–40.

[64] Nicholas DiGiuseppe and James A. Jones. “On the Influence of Multiple
Faults on Coverage-Based Fault Localization”. In: Proceedings of the 2011
International Symposium on Software Testing and Analysis. ISSTA ’11.
Toronto, Ontario, Canada: Association for Computing Machinery, 2011,
pp. 210–220. isbn: 9781450305624. doi: 10.1145/2001420.2001446. url:
https://doi.org/10.1145/2001420.2001446.

[65] Hyunsook Do and Gregg Rothermel. “On the use of mutation faults in em-
pirical assessments of test case prioritization techniques”. In: IEEE Trans-
actions on Software Engineering 32.9 (2006), pp. 733–752.

[66] Avishek Sharma Dookhun and Leckraj Nagowah. “Assessing The Effec-
tiveness Of Test-Driven Development and Behavior-Driven Development
in an Industry Setting”. In: 2019 International Conference on Compu-
tational Intelligence and Knowledge Economy (ICCIKE). IEEE. 2019,
pp. 365–370.

[67] V.H.S. Durelli, J. Offutt, and M.E. Delamaro. “Toward Harnessing High-
Level Language Virtual Machines for Further Speeding Up Weak Mutation
Testing”. In: Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. Apr. 2012, pp. 681–690. doi:
10.1109/ICST.2012.158.

[68] Eduard Enoiu, Daniel Sundmark, Adnan Čaušević, and Paul Pettersson.
“A comparative study of manual and automated testing for industrial
control software”. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE. 2017, pp. 412–417.

[69] Anders Eriksson and Birgitta Lindström. “UML Associations: Reducing
the gap in test coverage between model and code”. In: 2016 4th Inter-
national Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD). IEEE. 2016, pp. 589–599.

[70] Anders Eriksson, Birgitta Lindström, Sten F Andler, and Jeff Offutt.
“Model transformation impact on test artifacts: An empirical study”. In:
Proceedings of the Workshop on Model-Driven Engineering, Verification
and Validation. 2012, pp. 5–10.

[71] X. Feng, S. Marr, and T. O’Callaghan. “ESTP: An Experimental Software
Testing Platform”. In: Testing: Academic Industrial Conference - Practice
and Research Techniques (taic part 2008). 2008, pp. 59–63.

[72] Lloyd D Fosdick and Leon J Osterweil. “Data flow analysis in software
reliability”. In: ACM Computing Surveys (CSUR) 8.3 (1976), pp. 305–
330.

[73] Phyllis G Frankl, Stewart N Weiss, and Cang Hu. “All-uses vs mutation
testing: an experimental comparison of effectiveness”. In: Journal of Sys-
tems and Software 38.3 (1997), pp. 235–253.

101

https://doi.org/10.1145/2001420.2001446
https://doi.org/10.1145/2001420.2001446
https://doi.org/10.1109/ICST.2012.158

[74] Gordon Fraser and Andrea Arcuri. “It is not the length that matters, it
is how you control it”. In: 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation. IEEE. 2011, pp. 150–159.

[75] Gordon Fraser and Andrea Arcuri. “Whole test suite generation”. In:
IEEE Transactions on Software Engineering 39.2 (2012), pp. 276–291.

[76] Gordon Fraser and Andreas Zeller. “Mutation-Driven Generation of Unit
Tests and Oracles”. In: Proceedings of the 19th International Symposium
on Software Testing and Analysis. ISSTA ’10. Trento, Italy: Association
for Computing Machinery, 2010, pp. 147–158. isbn: 9781605588230. doi:
10.1145/1831708.1831728. url: https://doi.org/10.1145/1831708.
1831728.

[77] Gordon Fraser and Andreas Zeller. “Mutation-driven generation of unit
tests and oracles”. In: IEEE Transactions on Software Engineering 38.2
(2011), pp. 278–292.

[78] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl. “Automated
Oracle Data Selection Support”. In: IEEE Transactions on Software En-
gineering 41.11 (2015), pp. 1119–1137.

[79] Tamás Gergely, Árpád Beszédes, Tibor Gyimóthy, and Milán Imre Gyalai.
“Effect of test completeness and redundancy measurement on post release
failures―An industrial experience report”. In: 2010 IEEE International
Conference on Software Maintenance. IEEE. 2010, pp. 1–10.

[80] Ralf Gerlich and Christian R Prause. “Evaluating test data generation
for untyped data structures using genetic algorithms”. In: 2018 IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE. 2018, pp. 126–129.

[81] Mechelle Gittens, Hanan Lutfiyya, Michael Bauer, David Godwin, Yong
Woo Kim, and Pramod Gupta. “An empirical evaluation of system and
regression testing”. In: Proceedings of the 2002 conference of the Centre
for Advanced Studies on Collaborative research. 2002, p. 3.

[82] M. Gligoric, V. Jagannath, and D. Marinov. “MuTMuT: Efficient Explo-
ration for Mutation Testing of Multithreaded Code”. In: 2010 Third In-
ternational Conference on Software Testing, Verification and Validation.
2010, pp. 55–64.

[83] Milos Gligoric, Lingming Zhang, Cristiano Pereira, and Gilles Pokam. “Se-
lective mutation testing for concurrent code”. In: International Symposium
on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July
15-20, 2013. 2013, pp. 224–234.

[84] P. Gong, R. Zhao, and Z. Li. “Faster mutation-based fault localization with
a novel mutation execution strategy”. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). Apr. 2015, pp. 1–10. doi: 10.1109/ICSTW.2015.7107448.

[85] Google. Google C++ Testing Framework. May 2015.

[86] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce. “On The
Limits of Mutation Reduction Strategies”. In: 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering (ICSE). May 2016, pp. 511–
522.

102

https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1109/ICSTW.2015.7107448

[87] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Mutations: How close
are they to real faults?” In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE. 2014, pp. 189–200.

[88] R.G. Hamlet. “Testing Programs with the Aid of a Compiler”. In: Software
Engineering, IEEE Transactions on SE-3.4 (July 1977), pp. 279–290. issn:
0098-5589. doi: 10.1109/TSE.1977.231145.

[89] Li Hao, Jianqi Shi, Ting Su, and Yanhong Huang. “Automated Test Gen-
eration for IEC 61131-3 ST Programs via Dynamic Symbolic Execution”.
In: 2019 International Symposium on Theoretical Aspects of Software En-
gineering (TASE). IEEE. 2019, pp. 200–207.

[90] F. Hariri and A. Shi. “SRCIROR: A Toolset for Mutation Testing of
C Source Code and LLVM Intermediate Representation”. In: 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 2018, pp. 860–863.

[91] Hadi Hemmati, Syed S Arefin, and Howard W Loewen. “Evaluating specification-
level MC/DC criterion in model-based testing of safety critical systems”.
In: 2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP). IEEE. 2018,
pp. 256–265.

[92] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. “Prioritizing manual
test cases in traditional and rapid release environments”. In: 2015 IEEE
8th International Conference on Software Testing, Verification and Vali-
dation (ICST). IEEE. 2015, pp. 1–10.

[93] W. Högerle, F. Steimann, and M. Frenkel. “More Debugging in Paral-
lel”. In: 2014 IEEE 25th International Symposium on Software Reliability
Engineering. Nov. 2014, pp. 133–143. doi: 10.1109/ISSRE.2014.29.

[94] Anders Hovmöller. Mutmut: a Python mutation testing system. https:
//hackernoon.com/mutmut-a-python-mutation-testing-system-

9b9639356c78. 2016.

[95] W.E. Howden. “Weak Mutation Testing and Completeness of Test Sets”.
In: Software Engineering, IEEE Transactions on SE-8.4 (July 1982), pp. 371–
379. issn: 0098-5589. doi: 10.1109/TSE.1982.235571.

[96] Song Huang, Sen Yang, Zhanwei Hui, Yongming Yao, Lele Chen, Jialuo
Liu, and Qiang Chen. “Runtime-environment testing method for android
applications”. In: 2019 IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C). IEEE. 2019, pp. 534–
535.

[97] Itregister. Plextest. http://www.itregister.com.au/products/plextest.
2007.

[98] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. “Code
coverage at Google”. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019, pp. 955–963.

[99] Yue Jia and M. Harman. “An Analysis and Survey of the Development of
Mutation Testing”. In: Software Engineering, IEEE Transactions on 37.5
(Sept. 2011), pp. 649–678. issn: 0098-5589. doi: 10.1109/TSE.2010.62.

103

https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/ISSRE.2014.29
https://hackernoon.com/mutmut-a-python-mutation-testing-system-9b9639356c78
https://hackernoon.com/mutmut-a-python-mutation-testing-system-9b9639356c78
https://hackernoon.com/mutmut-a-python-mutation-testing-system-9b9639356c78
https://doi.org/10.1109/TSE.1982.235571
http://www.itregister.com.au/products/plextest
https://doi.org/10.1109/TSE.2010.62

[100] Yue Jia and M. Harman. “Constructing Subtle Faults Using Higher Or-
der Mutation Testing”. In: Source Code Analysis and Manipulation, 2008
Eighth IEEE International Working Conference on. Sept. 2008, pp. 249–
258. doi: 10.1109/SCAM.2008.36.

[101] Yue Jia and M. Harman. “MILU: A Customizable, Runtime-Optimized
Higher Order Mutation Testing Tool for the Full C Language”. In: Prac-
tice and Research Techniques, 2008. TAIC PART ’08. Testing: Academic
Industrial Conference. Aug. 2008, pp. 94–98. doi: 10.1109/TAIC-PART.
2008.18.

[102] Wei Jin and Alessandro Orso. “Automated support for reproducing and
debugging field failures”. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 24.4 (2015), pp. 1–35.

[103] James A. Jones, James F. Bowring, and Mary Jean Harrold. “Debugging
in Parallel”. In: Proceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis. ISSTA ’07. London, United Kingdom: Asso-
ciation for Computing Machinery, 2007, pp. 16–26. isbn: 9781595937346.
doi: 10.1145/1273463.1273468. url: https://doi.org/10.1145/
1273463.1273468.

[104] James A. Jones and Mary Jean Harrold. “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique”. In: Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering. ASE’05. Long Beach, CA, USA: Association for Computing
Machinery, 2005, pp. 273–282. isbn: 1581139934. doi: 10.1145/1101908.
1101949. url: https://doi.org/10.1145/1101908.1101949.

[105] René Just, Michael D. Ernst, and Gordon Fraser. “Efficient Mutation
Analysis by Propagating and Partitioning Infected Execution States”. In:
Proceedings of the 2014 International Symposium on Software Testing and
Analysis. ISSTA 2014. San Jose, CA, USA: ACM, 2014, pp. 315–326.
isbn: 978-1-4503-2645-2. doi: 10.1145/2610384.2610388. url: http:
//doi.acm.org/10.1145/2610384.2610388.

[106] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. “MAJOR:
An efficient and extensible tool for mutation analysis in a Java compiler”.
In: Proceedings of the International Conference on Automated Software
Engineering (ASE). Nov. 2011, pp. 612–615.

[107] Sahitya Kakarla, Selina Momotaz, and Akbar Siami Namin. “An evalua-
tion of mutation and data-flow testing: A meta-analysis”. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and
Validation Workshops. IEEE. 2011, pp. 366–375.

[108] Mehdi Kessis, Yves Ledru, and Gérard Vandome. “Experiences in coverage
testing of a Java middleware”. In: Proceedings of the 5th international
workshop on Software engineering and middleware. 2005, pp. 39–45.

[109] Sunint Kaur Khalsa and Yvan Labiche. “An extension of category par-
tition testing for highly constrained systems”. In: 2016 IEEE 17th In-
ternational Symposium on High Assurance Systems Engineering (HASE).
IEEE. 2016, pp. 47–54.

[110] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. “Where
should we fix this bug? a two-phase recommendation model”. In: IEEE
transactions on software Engineering 39.11 (2013), pp. 1597–1610.

104

https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2610384.2610388
http://doi.acm.org/10.1145/2610384.2610388
http://doi.acm.org/10.1145/2610384.2610388

[111] Yong Woo Kim. “Efficient use of code coverage in large-scale software
development”. In: Proceedings of the 2003 conference of the Centre for
Advanced Studies on Collaborative research. 2003, pp. 145–155.

[112] K. N. King and A. Jefferson Offutt. “A Fortran Language System for
Mutation-based Software Testing”. In: Softw. Pract. Exper. 21.7 (June
1991), pp. 685–718. issn: 0038-0644. doi: 10.1002/spe.4380210704.
url: http://dx.doi.org/10.1002/spe.4380210704.

[113] M. Kintis and N. Malevris. “Using Data Flow Patterns for Equivalent
Mutant Detection”. In: 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. 2014, pp. 196–
205.

[114] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M. Har-
man. “Detecting Trivial Mutant Equivalences via Compiler Optimisa-
tions”. In: IEEE Transactions on Software Engineering 44.4 (2018), pp. 308–
333.

[115] Marinos Kintis. “Effective methods to tackle the equivalent mutant prob-
lem when testing software with mutation”. PhD thesis. PhD thesis, De-
partment of Informatics, Athens University of Economics and …, 2016.

[116] Marinos Kintis and Nicos Malevris. “MEDIC: A static analysis framework
for equivalent mutant identification”. In: Information and Software Tech-
nology 68 (2015), pp. 1–17. issn: 0950-5849. doi: https://doi.org/10.
1016/j.infsof.2015.07.009. url: http://www.sciencedirect.com/
science/article/pii/S0950584915001329.

[117] Claus Klammer, Georg Buchgeher, and Albin Kern. “A retrospective of
production and test code co-evolution in an industrial project”. In: 2018
IEEE Workshop on Validation, Analysis and Evolution of Software Tests
(VST). IEEE. 2018, pp. 16–20.

[118] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. “Practition-
ers’ Expectations on Automated Fault Localization”. In: Proceedings of
the 25th International Symposium on Software Testing and Analysis. IS-
STA 2016. Saarbrücken, Germany: Association for Computing Machinery,
2016, pp. 165–176. isbn: 9781450343909. doi: 10.1145/2931037.2931051.
url: https://doi.org/10.1145/2931037.2931051.

[119] Markus Kusano and Chao Wang. “CCmutator: A Mutation Generator
for Concurrency Constructs in Multithreaded C/C++ Applications”. In:
Proc. ASE. IEEE, 2013, pp. 722–725.

[120] J Lawrence, Steven Clarke, Margaret Burnett, and Gregg Rothermel.
“How well do professional developers test with code coverage visualiza-
tions? an empirical study”. In: 2005 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’05). IEEE. 2005, pp. 53–
60.

[121] Tien-Duy B Le, Richard J Oentaryo, and David Lo. “Information retrieval
and spectrum based bug localization: Better together”. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering.
2015, pp. 579–590.

105

https://doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1002/spe.4380210704
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/https://doi.org/10.1016/j.infsof.2015.07.009
http://www.sciencedirect.com/science/article/pii/S0950584915001329
http://www.sciencedirect.com/science/article/pii/S0950584915001329
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1145/2931037.2931051

[122] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. “KLOVER: A
Symbolic Execution and Automatic Test Generation Tool for C++ Pro-
grams”. In: Proceedings of the 23rd International Conference on Com-
puter Aided Verification. CAV’11. Snowbird, UT: Springer-Verlag, 2011,
pp. 609–615. isbn: 978-3-642-22109-5. url: http://dl.acm.org/citation.
cfm?id=2032305.2032354.

[123] Nan Li, Michael West, Anthony Escalona, and Vinicius H. S. Durelli.
“Mutation testing in practice using Ruby”. In: Eighth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2015
Workshops, Graz, Austria, April 13-17, 2015. 2015, pp. 1–6.

[124] Xia Li and Lingming Zhang. “Transforming Programs and Tests in Tan-
dem for Fault Localization”. In: Proc. ACM Program. Lang. 1.OOPSLA
(Oct. 2017). doi: 10.1145/3133916. url: https://doi.org/10.1145/
3133916.

[125] List of information system failures. https://www.ipa.go.jp/sec/

system/system_fault.html. 2020.

[126] Yong Liu, Zheng Li, Ruilian Zhao, and Pei Gong. “An Optimal Mutation
Execution Strategy for Cost Reduction of Mutation-Based Fault Localiza-
tion”. In: Inf. Sci. 422.C (Jan. 2018), pp. 572–596. issn: 0020-0255. doi:
10.1016/j.ins.2017.09.006. url: https://doi.org/10.1016/j.ins.
2017.09.006.

[127] A. A. Lôbo de Oliveira, C. Gonçalves Camilo-Junior, E. Noronha de An-
drade Freitas, and A. M. Rizzo Vincenzi. “FTMES: A Failed-Test-Oriented
Mutant Execution Strategy for Mutation-Based Fault Localization”. In:
2018 IEEE 29th International Symposium on Software Reliability Engi-
neering (ISSRE). Oct. 2018, pp. 155–165. doi: 10.1109/ISSRE.2018.
00026.

[128] Niels Lohmann. Mutate++. https://github.com/nlohmann/mutate_
cpp. 2017.

[129] Philipp Luchscheider and Sebastian Siegl. “Test profiling for usage models
by deriving metrics from component-dependency-models”. In: 2013 8th
IEEE International Symposium on Industrial Embedded Systems (SIES).
IEEE. 2013, pp. 196–204.

[130] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. “MuJava: An Automated
Class Mutation System: Research Articles”. In: Softw. Test. Verif. Reliab.
15.2 (June 2005), pp. 97–133. issn: 0960-0833. doi: 10.1002/stvr.v15:2.
url: http://dx.doi.org/10.1002/stvr.v15:2.

[131] L. Madeyski and N. Radyk. “Judy - a mutation testing tool for java”. In:
IET Software 4.1 (2010), pp. 32–42.

[132] Pratyusha Madiraju and Akbar Siami Namin. “Paraµ - A Partial and
Higher-Order Mutation Tool with Concurrency Operators”. In: Fourth
IEEE International Conference on Software Testing, Verification and Val-
idation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Pro-
ceedings. 2011, pp. 351–356.

[133] Claudio Magalhães, João Andrade, Lucas Perrusi, and Alexandre Mota.
“Evaluating an automatic text-based test case selection using a non-instrumented
code coverage analysis”. In: Proceedings of the 2nd Brazilian Symposium
on Systematic and Automated Software Testing. 2017, pp. 1–9.

106

http://dl.acm.org/citation.cfm?id=2032305.2032354
http://dl.acm.org/citation.cfm?id=2032305.2032354
https://doi.org/10.1145/3133916
https://doi.org/10.1145/3133916
https://doi.org/10.1145/3133916
https://www.ipa.go.jp/sec/system/system_fault.html
https://www.ipa.go.jp/sec/system/system_fault.html
https://doi.org/10.1016/j.ins.2017.09.006
https://doi.org/10.1016/j.ins.2017.09.006
https://doi.org/10.1016/j.ins.2017.09.006
https://doi.org/10.1109/ISSRE.2018.00026
https://doi.org/10.1109/ISSRE.2018.00026
https://github.com/nlohmann/mutate_cpp
https://github.com/nlohmann/mutate_cpp
https://doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1002/stvr.v15:2

[134] Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. “Dynamic analy-
sis for diagnosing integration faults”. In: IEEE Transactions on Software
Engineering 37.4 (2010), pp. 486–508.

[135] P.R. Mateo and M.P. Usaola. “Bacterio: Java mutation testing tool: A
framework to evaluate quality of tests cases”. In: Software Maintenance
(ICSM), 2012 28th IEEE International Conference on. Sept. 2012, pp. 646–
649. doi: 10.1109/ICSM.2012.6405344.

[136] Aditya P Mathur and W Eric Wong. “An empirical comparison of data
flow and mutation-based test adequacy criteria”. In: Software Testing,
Verification and Reliability 4.1 (1994), pp. 9–31.

[137] Jason McDonald, Leesa Murray, Peter Lindsay, and Paul Strooper. “Mod-
ule testing embedded software-an industrial pilot project”. In: Proceedings
Seventh IEEE International Conference on Engineering of Complex Com-
puter Systems. IEEE. 2001, pp. 233–238.

[138] Joan C Miller and Clifford J Maloney. “Systematic mistake analysis of
digital computer programs”. In: Communications of the ACM 6.2 (1963),
pp. 58–63.

[139] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. “Efficient
JavaScript Mutation Testing”. In: Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. 2013, pp. 74–83.

[140] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. “Guided
Mutation Testing for JavaScript Web Applications”. In: IEEE Trans. Soft-
ware Eng. 41.5 (2015), pp. 429–444.

[141] S. Moon, Y. Kim, M. Kim, and S. Yoo. “Ask the Mutants: Mutating Faulty
Programs for Fault Localization”. In: 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation. Mar. 2014,
pp. 153–162. doi: 10.1109/ICST.2014.28.

[142] Ivan Moore. Jester. http://jester.sourceforge.net/. 2001.

[143] Jakub Možucha and Bruno Rossi. “Is mutation testing ready to be adopted
industry-wide?” In: International Conference on Product-Focused Software
Process Improvement. Springer. 2016, pp. 217–232.

[144] Keigo Naitou, Akito Tanikado, Shinsuke Matsumoto, Yoshiki Higo, Shinji
Kusumoto, Hiroyuki Kirinuki, Toshiyuki Kurabayashi, and Haruto Tanno.
“Toward Introducing Automated Program Repair Techniques to Indus-
trial Software Development”. In: Proceedings of the 26th Conference on
Program Comprehension. ICPC ’18. Gothenburg, Sweden: Association
for Computing Machinery, 2018, pp. 332–335. isbn: 9781450357142. doi:
10.1145/3196321.3196358. url: https://doi.org/10.1145/3196321.
3196358.

[145] Hiroyuki Nakagawa, Toshinobu Hasegawa, Shori Matsui, and Tatsuhiro
Tsuchiya. “Visualization of Specification Coverage: A Case Study of a
Web Application Development in Industry”. In: 2017 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE. 2017, pp. 77–80.

107

https://doi.org/10.1109/ICSM.2012.6405344
https://doi.org/10.1109/ICST.2014.28
http://jester.sourceforge.net/
https://doi.org/10.1145/3196321.3196358
https://doi.org/10.1145/3196321.3196358
https://doi.org/10.1145/3196321.3196358

[146] Hiroyuki Nakagawa, Shori Matsui, and Tatsuhiro Tsuchiya. “A visual-
ization of specification coverage based on document similarity”. In: 2017
IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C). IEEE. 2017, pp. 136–138.

[147] James Newsome and Dawn Xiaodong Song. “Dynamic Taint Analysis for
Automatic Detection, Analysis, and SignatureGeneration of Exploits on
Commodity Software.” In: NDSS. Vol. 5. Citeseer. 2005, pp. 3–4.

[148] Iulia Nica, Gerhard Jakob, Kathrin Juhart, and Franz Wotawa. “Results
of a comparative study of code coverage tools in computer vision”. In:
2017 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE. 2017, pp. 36–37.

[149] Simon de Lang Nico Jansen and Alex van Assem. Stryker. https://

stryker-mutator.io/stryker/. 2016.

[150] Simon de Lang Nico Jansen and Alex van Assem. Stryker.NET. https:
//stryker-mutator.io/stryker-net/. 2019.

[151] Kazuki Nishiura, Yuta Maezawa, Hironori Washizaki, and Shinichi Honiden.
“Mutation Analysis for JavaScript Web Applications Testing”. In: vol. 2013.
Jan. 2013.

[152] Kunihiro Noda, Yusuke Nemoto, Keisuke Hotta, Hideo Tanida, and Shinji
Kikuchi. “Experience Report: How Effective Is Automated Program Re-
pair for Industrial Software?” In: 2020 IEEE 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE.
2020.

[153] A Jefferson Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang. “An
experimental evaluation of data flow and mutation testing”. In: Software:
Practice and Experience 26.2 (1996), pp. 165–176.

[154] A. Offutt. “The Coupling Effect: Fact or Fiction”. In: Proceedings of the
ACM SIGSOFT’89 Third Symposium on Software Testing, Analysis, and
Verification. TAV3. Key West, Florida, USA: Association for Computing
Machinery, 1989, pp. 131–140. isbn: 0897913426. doi: 10.1145/75308.
75324. url: https://doi.org/10.1145/75308.75324.

[155] A. J. Offutt and K. N. King. “A Fortran 77 Interpreter for Mutation
Analysis”. In: Papers of the Symposium on Interpreters and Interpretive
Techniques. SIGPLAN ’87. St. Paul, Minnesota, USA: Association for
Computing Machinery, 1987, pp. 177–188. isbn: 0897912357. doi: 10.

1145/29650.29669. url: https://doi.org/10.1145/29650.29669.

[156] A. Jefferson Offutt. “Investigations of the Software Testing Coupling Ef-
fect”. In: ACM Trans. Softw. Eng. Methodol. 1.1 (Jan. 1992), pp. 5–20.
issn: 1049-331X. doi: 10.1145/125489.125473. url: http://doi.acm.
org/10.1145/125489.125473.

[157] A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. “An Exper-
imental Evaluation of Selective Mutation”. In: Proceedings of the 15th
International Conference on Software Engineering. ICSE ’93. Baltimore,
Maryland, USA: IEEE Computer Society Press, 1993, pp. 100–107. isbn:
0-89791-588-7. url: http://dl.acm.org/citation.cfm?id=257572.
257597.

108

https://stryker-mutator.io/stryker/
https://stryker-mutator.io/stryker/
https://stryker-mutator.io/stryker-net/
https://stryker-mutator.io/stryker-net/
https://doi.org/10.1145/75308.75324
https://doi.org/10.1145/75308.75324
https://doi.org/10.1145/75308.75324
https://doi.org/10.1145/29650.29669
https://doi.org/10.1145/29650.29669
https://doi.org/10.1145/29650.29669
https://doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
http://dl.acm.org/citation.cfm?id=257572.257597
http://dl.acm.org/citation.cfm?id=257572.257597

[158] A. Jefferson Offutt and Ronald H. Untch. “Mutation Testing for the New
Century”. In: ed. by W. Eric Wong. Norwell, MA, USA: Kluwer Academic
Publishers, 2001. Chap. Mutation 2000: Uniting the Orthogonal, pp. 34–
44. isbn: 0-7923-7323-5. url: http://dl.acm.org/citation.cfm?id=
571305.571314.

[159] Andrew Jefferson Offutt et al. “Automatic test data generation”. PhD
thesis. Georgia Institute of Technology, 1988.

[160] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. “HOMAJ: A Tool for
Higher Order Mutation Testing in AspectJ and Java”. In: Seventh IEEE
International Conference on Software Testing, Verification and Validation,
ICST 2014 Workshops Proceedings, March 31 - April 4, 2014, Cleveland,
Ohio, USA. 2014, pp. 165–170.

[161] Leon J Osterweil. “Data Flow Analysis as an Aid in Documentation, As-
sertion, Generation, Validation, and Error Detection; CU-CS-055-74”. In:
(1974).

[162] M. Papadakis and N. Malevris. “Automatic Mutation Test Case Genera-
tion via Dynamic Symbolic Execution”. In: Software Reliability Engineer-
ing (ISSRE), 2010 IEEE 21st International Symposium on. Nov. 2010,
pp. 121–130. doi: 10.1109/ISSRE.2010.38.

[163] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. “Trivial
Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast
and Effective Equivalent Mutant Detection Technique”. In: Proceedings
of the 37th International Conference on Software Engineering - Volume
1. ICSE ’15. Florence, Italy: IEEE Press, 2015, pp. 936–946. isbn: 978-
1-4799-1934-5. url: http://dl.acm.org/citation.cfm?id=2818754.
2818867.

[164] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. “Mutation testing advances: an analysis and survey”. In:
Advances in Computers. Vol. 112. Elsevier, 2019, pp. 275–378.

[165] Mike Papadakis and Yves Le Traon. “Metallaxis-FL: mutation-based fault
localization”. In: Software Testing, Verification and Reliability 25.5-7 (2015),
pp. 605–628.

[166] Mike Papadakis and Nicos Malevris. “Automatically Performing Weak
Mutation with the Aid of Symbolic Execution, Concolic Testing and Search-
based Testing”. In: Software Quality Journal 19.4 (Dec. 2011), pp. 691–
723. issn: 0963-9314. doi: 10.1007/s11219-011-9142-y. url: http:
//dx.doi.org/10.1007/s11219-011-9142-y.

[167] Bartosz Kazimierz Papis, Konrad Grochowski, Kamil Subzda, and Kamil
Sijko. “Experimental evaluation of test-driven development with interns
working on a real industrial project”. In: IEEE Transactions on Software
Engineering (2020).

[168] Ali Parsai, Alessandro Murgia, and Serge Demeyer. “LittleDarwin: A
Feature-Rich and Extensible Mutation Testing Framework for Large and
Complex Java Systems”. In: Fundamentals of Software Engineering. Ed.
by Mehdi Dastani and Marjan Sirjani. Cham: Springer International Pub-
lishing, 2017, pp. 148–163. isbn: 978-3-319-68972-2.

109

http://dl.acm.org/citation.cfm?id=571305.571314
http://dl.acm.org/citation.cfm?id=571305.571314
https://doi.org/10.1109/ISSRE.2010.38
http://dl.acm.org/citation.cfm?id=2818754.2818867
http://dl.acm.org/citation.cfm?id=2818754.2818867
https://doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y

[169] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D.
Pang, and B. Keller. “Evaluating and Improving Fault Localization”. In:
2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). May 2017, pp. 609–620. doi: 10.1109/ICSE.2017.62.

[170] Goran Petrović and Marko Ivanković. “State of mutation testing at google”.
In: Proceedings of the 40th international conference on software engineer-
ing: Software engineering in practice. 2018, pp. 163–171.

[171] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René
Just. “An industrial application of mutation testing: Lessons, challenges,
and research directions”. In: 2018 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). IEEE.
2018, pp. 47–53.

[172] D. L. Phan, Y. Kim, and M. Kim. “MUSIC: Mutation Analysis Tool
with High Configurability and Extensibility”. In: 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 2018, pp. 40–46.

[173] Strategic Planning. “The economic impacts of inadequate infrastructure
for software testing”. In: National Institute of Standards and Technology
(2002).

[174] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. “Dar-
win: An approach to debugging evolving programs”. In: ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 21.3 (2012),
pp. 1–29.

[175] Xiao Qu, Mithun Acharya, and Brian Robinson. “Configuration selection
using code change impact analysis for regression testing”. In: 2012 28th
IEEE International Conference on Software Maintenance (ICSM). IEEE.
2012, pp. 129–138.

[176] Krishnamoorthi Ramasamy and Sahaaya Arul Mary. “Incorporating vary-
ing requirement priorities and costs in test case prioritization for new
and regression testing”. In: 2008 International Conference on Computing,
Communication and Networking. IEEE. 2008, pp. 1–9.

[177] Rudolf Ramler, Thomas Wetzlmaier, and Claus Klammer. “An Empirical
Study on the Application of Mutation Testing for a Safety-Critical In-
dustrial Software System”. In: Proceedings of the Symposium on Applied
Computing. SAC ’17. Marrakech, Morocco: Association for Computing
Machinery, 2017, pp. 1401–1408. isbn: 9781450344869. doi: 10.1145/

3019612.3019830. url: https://doi.org/10.1145/3019612.3019830.

[178] Jeremias Röβler, Gordon Fraser, Andreas Zeller, and Alessandro Orso.
“Isolating failure causes through test case generation”. In: Proceedings of
the 2012 international symposium on software testing and analysis. 2012,
pp. 309–319.

[179] Andrei Sabelfeld and Andrew C Myers. “Language-based information-
flow security”. In: IEEE Journal on selected areas in communications 21.1
(2003), pp. 5–19.

[180] Raul Santelices, James A Jones, Yanbing Yu, and Mary Jean Harrold.
“Lightweight fault-localization using multiple coverage types”. In: 2009
IEEE 31st International Conference on Software Engineering. IEEE. 2009,
pp. 56–66.

110

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3019612.3019830
https://doi.org/10.1145/3019612.3019830
https://doi.org/10.1145/3019612.3019830

[181] David Schuler and Andreas Zeller. “Javalanche: Efficient mutation test-
ing for Java”. In: ESEC/FSE ’09: Proceedings of the 7th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Am-
sterdam, Aug. 2009, pp. 297–298. isbn: 9781605580012. doi: 10.1145/
1595696.1595750.

[182] Eric Schulte. llvm-mutate – mutate LLVM IR. https://eschulte.github.
io/llvm-mutate/. 2013.

[183] Sebastian Siegl, Martin Russer, and Kai-Steffen Hielscher. “Partitioning
the requirements of embedded systems by input/output dependency anal-
ysis for compositional creation of parallel test models”. In: 2015 Annual
IEEE Systems Conference (SysCon) Proceedings. IEEE. 2015, pp. 96–102.

[184] Jacob Slonim, Michael Bauer, and Jillian Ye. “Software reliability assur-
ance in early development phases: a case study in an industrial setting”.
In: 1996 IEEE Aerospace Applications Conference. Proceedings. Vol. 4.
IEEE. 1996, pp. 279–295.

[185] Matt Staats, Gregory Gay, and Mats PE Heimdahl. “Automated oracle
creation support, or: How I learned to stop worrying about fault propaga-
tion and love mutation testing”. In: 2012 34th International Conference
on Software Engineering (ICSE). IEEE. 2012, pp. 870–880.

[186] Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. “Programs,
Tests, and Oracles: The Foundations of Testing Revisited”. In: Proceedings
of the 33rd International Conference on Software Engineering. ICSE ’11.
Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 391–400. isbn: 978-1-4503-
0445-0. doi: 10.1145/1985793.1985847. url: http://doi.acm.org/10.
1145/1985793.1985847.

[187] Chengnian Sun and Siau-Cheng Khoo. “Mining succinct predicated bug
signatures”. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. 2013, pp. 576–586.

[188] Youcheng Sun, Martin Brain, Daniel Kroening, Andrew Hawthorn, Thomas
Wilson, Florian Schanda, Francisco Javier Guzman Jimenez, Simon Daniel,
Chris Bryan, and Ian Broster. “Functional requirements-based automated
testing for avionics”. In: 2017 22nd international conference on engineer-
ing of complex computer systems (ICECCS). IEEE. 2017, pp. 170–173.

[189] Ramsay Taylor and John Derrick. “Smother: an MC/DC analysis tool for
Erlang”. In: Proceedings of the 14th ACM SIGPLAN Workshop on Erlang.
2015, pp. 13–18.

[190] Susumu Tokumoto and Hiroaki Yoshida. Analytic method and analyzing
apparatus. US Patent App. 15/009,268. Aug. 2017.

[191] Taketo Tsunoda, Hironori Washizaki, Yosiaki Fukazawa, Sakae Inoue, Yoshi-
iku Hanai, and Masanobu Kanazawa. “Evaluating the work of experienced
and inexperienced developers considering work difficulty in sotware devel-
opment”. In: 2017 18th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). IEEE. 2017, pp. 161–166.

[192] Reel Two. Jumble. http://jumble.sourceforge.net/. 2007.

111

https://doi.org/10.1145/1595696.1595750
https://doi.org/10.1145/1595696.1595750
https://eschulte.github.io/llvm-mutate/
https://eschulte.github.io/llvm-mutate/
https://doi.org/10.1145/1985793.1985847
http://doi.acm.org/10.1145/1985793.1985847
http://doi.acm.org/10.1145/1985793.1985847
http://jumble.sourceforge.net/

[193] Roland H. Untch. “Mutation-Based Software Testing Using Program Schemata”.
In: Proceedings of the 30th Annual Southeast Regional Conference. ACM-
SE 30. Raleigh, North Carolina: Association for Computing Machinery,
1992, pp. 285–291. isbn: 0897915062. doi: 10 . 1145 / 503720 . 503749.
url: https://doi.org/10.1145/503720.503749.

[194] Roland H. Untch. “Schema-based Mutation Analysis: A New Test Data
Adequacy Assessment Method”. AAI9703410. PhD thesis. Clemson, SC,
USA, 1995. isbn: 0-591-09880-6.

[195] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. “Mutation
Analysis Using Mutant Schemata”. In: Proceedings of the 1993 ACM SIG-
SOFT International Symposium on Software Testing and Analysis. ISSTA
’93. Cambridge, Massachusetts, USA: ACM, 1993, pp. 139–148. isbn: 0-
89791-608-5. doi: 10.1145/154183.154265. url: http://doi.acm.org/
10.1145/154183.154265.

[196] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. “How to Design a Program
Repair Bot? Insights from the Repairnator Project”. In: 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). May 2018, pp. 95–104.

[197] M. P. Usaola and P. R. Mateo. “Mutation Testing Cost Reduction Tech-
niques: A Survey”. In: IEEE Software 27.3 (2010), pp. 80–86.

[198] Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao.
“Faster Mutation Analysis via Equivalence modulo States”. In: Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2017. Santa Barbara, CA, USA: Association
for Computing Machinery, 2017, pp. 295–306. isbn: 9781450350761. doi:
10.1145/3092703.3092714. url: https://doi.org/10.1145/3092703.
3092714.

[199] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yue-
tang Deng, and Tao Xie. “An empirical study of android test generation
tools in industrial cases”. In: 2018 33rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE. 2018, pp. 738–
748.

[200] Mark Weiser. “Program slicing”. In: IEEE Transactions on software en-
gineering 4 (1984), pp. 352–357.

[201] Andreas Windisch, Stefan Wappler, and Joachim Wegener. “Applying
particle swarm optimization to software testing”. In: Proceedings of the
9th annual conference on Genetic and evolutionary computation. 2007,
pp. 1121–1128.

[202] E. Wong, T. Wei, Y. Qi, and L. Zhao. “A Crosstab-based Statistical
Method for Effective Fault Localization”. In: 2008 1st International Con-
ference on Software Testing, Verification, and Validation. Apr. 2008, pp. 42–
51. doi: 10.1109/ICST.2008.65.

[203] W Eric Wong and Jenny Li. “An integrated solution for testing and an-
alyzing Java applications in an industrial setting”. In: 12th Asia-Pacific
Software Engineering Conference (APSEC’05). IEEE. 2005, 8–pp.

[204] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. “A Survey on Soft-
ware Fault Localization”. In: IEEE Transactions on Software Engineering
42.8 (Aug. 2016), pp. 707–740. issn: 2326-3881. doi: 10.1109/TSE.2016.
2521368.

112

https://doi.org/10.1145/503720.503749
https://doi.org/10.1145/503720.503749
https://doi.org/10.1145/154183.154265
http://doi.acm.org/10.1145/154183.154265
http://doi.acm.org/10.1145/154183.154265
https://doi.org/10.1145/3092703.3092714
https://doi.org/10.1145/3092703.3092714
https://doi.org/10.1145/3092703.3092714
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

[205] W. Eric Wong and Aditya P. Mathur. “Reducing the Cost of Muta-
tion Testing: An Empirical Study”. In: J. Syst. Softw. 31.3 (Dec. 1995),
pp. 185–196. issn: 0164-1212. doi: 10.1016/0164-1212(94)00098-0.
url: http://dx.doi.org/10.1016/0164-1212(94)00098-0.

[206] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. “Crashlo-
cator: Locating crashing faults based on crash stacks”. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. 2014,
pp. 204–214.

[207] Andreas Zeller. Why programs fail: a guide to systematic debugging. Else-
vier, 2009.

[208] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam,
Wei Yang, and Tao Xie. “Automated test input generation for android:
Are we really there yet in an industrial case?” In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. 2016, pp. 987–992.

[209] Lu Zhang, Shan-Shan Hou, Jun-Jue Hu, Tao Xie, and Hong Mei. “Is
Operator-based Mutant Selection Superior to Random Mutant Selection?”
In: Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1. ICSE ’10. Cape Town, South Africa: ACM,
2010, pp. 435–444. isbn: 978-1-60558-719-6. doi: 10 . 1145 / 1806799 .

1806863. url: http://doi.acm.org/10.1145/1806799.1806863.

[210] Jian Zhou, Hongyu Zhang, and David Lo. “Where should the bugs be
fixed? more accurate information retrieval-based bug localization based
on bug reports”. In: 2012 34th International Conference on Software En-
gineering (ICSE). IEEE. 2012, pp. 14–24.

[211] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. “An Empirical
Study of Fault Localization Families and Their Combinations”. In: IEEE
Transactions on Software Engineering (2019), pp. 1–1. issn: 2326-3881.
doi: 10.1109/TSE.2019.2892102.

[212] 独立行政法人情報処理推進機構（IPA）技術本部 ソフトウェア高信頼化セ
ンター（SEC）. ソフトウェア開発データ白書 2016-2017. 2020.

[213] 徳本 晋 and 石井 康嗣. “ミューテーション解析における非利用アサーショ
ンの実証評価”. In: ウィンターワークショップ 2018・イン・宮島 論文集.
Vol. 2018. 情報処理学会. Jan. 2018, pp. 20–21.

[214] 池田 翔, 中野 大扉, 亀井 靖高, 佐藤 亮介, 鵜林 尚靖, 吉武 浩, and 矢川 博
文. “企業内ソースコードに対する自動バグ修正技術適用の試み”. In: 信学
技報 118.471 (Mar. 2019), pp. 193–198.

113

https://doi.org/10.1016/0164-1212(94)00098-0
http://dx.doi.org/10.1016/0164-1212(94)00098-0
https://doi.org/10.1145/1806799.1806863
https://doi.org/10.1145/1806799.1806863
http://doi.acm.org/10.1145/1806799.1806863
https://doi.org/10.1109/TSE.2019.2892102

Appendix A

Detailed Proof that the Ratio of

Computational Cost in k-th Order

Split-stream Execution is k + 1

In Section 4.3.3, we presented a technique to reduce execution costs by splitting
the state at runtime, higher order split-stream execution (HOSSE), and gave a
brief proof that the cost reduction ratio is approximately k+1. Here we illustrate
the detail proof.

The following is the definition of each variable.

• k : the order of mutation

• n : the number of mutation locations

• λ : the number of instructions per mutation location

• p : the number of seeded faults per mutation location

• Lj : the j-th mutation location

• cLj ,k : total computational cost of k-th order SSE started from mutation
location Lj .

In our model, mutation locations are assumed to be uniformly distributed,
so we can find that program under test has λn instructions. The higher order
split stream execution (HOSSE) shares the execution of instructions up to each
mutation location by branching the execution states. This mechanism allows k-th
order mutations to reuse the execution states in (k − 1)-th order mutations, i.e.,
the k-th order mutations costs only the branched execution stream. In Fig. 4.8,
the branched execution streams that affect the cost of k-th order mutations are
colored in red.

From the theoretical HOSSE model we can obtain the following recurrence
relation.

cLj ,k = p · cLj+1,k−1 + · · ·+ p · cLn−k+1,k−1

= p ·
n−k∑
i=j

cLi+1,k−1 (A.1)

cLj ,0 = λ(n− j + 1) (A.2)

Now we prove the following relation by induction of the recurrence relation.

cLj ,k = λ · pk
(
n− j + 1

k + 1

)
(A.3)

114

Proof. Base case: k = 0.

cLj ,0 = λ(n− j + 1) = λ · p0
(
n− j + 1

1

)
Inductive hypothesis: Assume

cLj ,k′−1 = λ · pk′−1

(
n− j + 1

k′

)
is true for some k′ − 1 ≥ 0.

Inductive step:

cLj ,k′ = p ·
n−k′∑
i=j

cLi+1,k′−1

= λ · pk′
{(

n− j

k′

)
+

(
n− j + 1

k′

)
+ · · ·+

(
k′ + 1

k′

)
+

(
k′

k′

)}
(∵ Inductive hypothesis)

= λ · pk′
{((

n− j + 1

k′ + 1

)
−
(
n− j

k′ + 1

))
+

((
n− j

k′ + 1

)
−
(
n− j − 1

k′ + 1

))
+ · · ·

+

((
k′ + 2

k′ + 1

)
−
(
k′ + 1

k′ + 1

))
+

(
k′

k′

)}
(∵

(
n

k

)
=

(
n + 1

k + 1

)
−
(

n

k + 1

)
)

= λ · pk′
(
n− j + 1

k′ + 1

)
which prove the case for k = k′.

For comparison, we calculate the computational cost of the näıve method.
Since the mutation locations of k-th order mutants are selected from k out of n,
the total number of k-th order mutants is

(
n
k

)
· pk. The execution cost of each

mutants in näıve method is λn that means the execution takes all instructions.
Then we can obtain that the computational cost of näıve k-th order mutation is

cnäıve = λn ·
(
n

k

)
· pk (A.4)

The computational cost of k-th order SSE starting from L1 is

cL1,k = λ · pk
(

n

k + 1

)
. (A.5)

The ratio of the computational cost of the proposed method to the näıve method
is

cnäıve
cL1,k

=
λn ·

(
n
k

)
· pk

λ · pk
(

n
k+1

)
=

n · n·(n−1)···(n−k+1)
k·(k−1)···1

n·(n−1)···(n−k+1)·(n−k)
(k+1)·k·(k−1)···1

=
n · (k + 1)

n− k

=
1

1− k
n

· (k + 1) . (A.6)

115

In general, the number of mutation locations n is sufficiently large with respect
to k, so we can find the following relation.

cnäıve
cL1,k

≃ k + 1 (A.7)

116

	Introduction
	The State of Industrial Software
	Background of Mutation Analysis
	Needs of Measuring Software Coverage in Industry
	Problem and Motivation of Mutation Analysis
	Application of Mutation Analysis: Mutation-based Fault Localization
	Approach Overview
	Contributions
	Organization

	Background on Mutation Analysis
	Terminology of Software Problems
	Software Testing
	Mutation Analysis for Assessing Test Quality
	Fundamental Hypotheses
	Process of Mutation Analysis
	Computational Cost of Mutation Analysis

	A Systematic Literature Review of Code Coverage Measurement in Industrial Testing
	Overview
	Research Method
	Goal and Research Questions
	Research Process

	Results
	RQ1: Which programming languages of SUT are popular for coverage measurement?
	RQ2: What types of coverage criteria are used?
	RQ3: For what purpose is coverage used?
	RQ4: What effects have resulted from the use of coverage?
	RQ5: What quality characteristics are required in coverage measurement tools?

	Discussion
	Context Type of Quality Characteristics
	Needs for Coverage Measurement in Industry

	Summary

	Virtual Machine for Mutation Analysis
	Overview
	Preliminary
	Mutant Schemata Generation
	Bitcode Translation
	Split-stream Execution
	Higher Order Mutation

	Techniques
	Metamutation
	Mutation on Virtual Machine
	Higher Order Split-stream Execution
	Online Adaptation Technique

	Design of MuVM
	Overall Structure and Behavior
	Complications
	Mutation Score Calculation

	Evaluation
	Competitive Tools
	Subject Programs
	Experimental Procedure
	Hypothesis
	Results and Discussion
	Threats to Validity

	Summary

	Statement Deletion Mutation-based Fault Localization
	Overview
	Preliminary
	Statement Deletion Mutation
	Spectrum-based Fault Localization
	Mutation-based Fault Localization
	Statement Deletion Mutation-based Fault Localization
	MBFL and SBFL Hybrid Approach

	Evaluation Setup
	Research Questions
	Tool
	Evaluation Subjects
	Evaluation metrics

	Evaluation Results
	RQ1: How long does each mutation analysis run?
	RQ2: What is a good formula for calculating the suspiciousness of SDL-MBFL?
	RQ3: Does SDL-MBFL rank high in faults compared to other fault localization methods?
	RQ4: Does the hybrid method of SDL-MBFL and SBFL rank high in faults?

	Discussion
	Practical cost-effectiveness
	Characteristics of the faults
	How to choose a mutation operator

	Summary

	Error-Oriented Mutant Reduction and Mutant Weighting for Reliable Mutation Analysis
	Overview
	Preliminary
	Motivating Example
	Proposed Method
	Definitions
	Mutant Set Minimization Algorithm
	Mutant Weighting
	Example of Mutant Set Minimization
	Example of Mutant Weighting

	Evaluation
	Research Questions
	Evaluation Method
	Subject of Evaluation
	Evaluation Results

	Discussion
	Ratio of Assertion Fixes to Test Code Fix Commits
	Execution Time Optimization
	Reducing Mutation Score Discrepancy
	Reduction Per Mutation Operator

	Summary

	Related Work
	Speeding Up Mutation Analysis
	Mutants Optimization
	Mutation-based Fault Localization
	Industrial Case Studies of Mutation Analysis
	Evaluation of Debugging Techniques for Industrial Software
	Applications of Mutation Analysis
	Tools for Mutation Analysis
	Data flow Analysis for Testing and Debugging

	Conclusion
	Summary
	Overall Evaluation
	Overall Evaluation as Coverage Measurement Technique
	Overall Evaluation as Fault Localization Technique
	Overall Evaluation with Future Prospects

	Future work
	Further Improvement in Performance
	Other Practical Issues
	Towards Further Industrial Adoption

	Detailed Proof that the Ratio of Computational Cost in k-th Order Split-stream Execution is k+1

