
論 文 の 内 容 の 要 旨

論文題目 Efficient Mutation Analysis for Industrial Software

 （産業用ソフトウェアに対する効率的なミューテーション解析）

 氏 名 徳本 晋

Industrial software is developed and maintained by many people with different

experience and skills within a limited time and cost. It is known that the lack

of experience and skills of developers greatly affects the number of defects in

the software. In addition, because of the rapid turnover of developers in companies,

there are many legacy systems that do not have quality assurance and cannot be

identified by whoever created them. Due to the lack of experience and skills of

the developers, they may make changes to the parts of the software that are not

the root cause of the bugs, and as a result, if the bugs are not fully fixed,

multiple defects may occur. Similarly, if the cause of a bug in a legacy system

is located in a place that cannot be changed, it must be dealt with by making changes

in a place that can be changed, but again, if the bug is not fully fixed, multiple

intertwined defects will occur. If these defects are not detected before the

release of the software, there is a possibility that significant social damage

will occur. One of the best known techniques for detecting complex defects is

mutation analysis. It is a method to measure the ability of a given test to detect

bugs that are artificially embedded by mutating the elements of the program

(mutation). Mutation analysis is not only used to measure the bug detectability

of a test; it also has a wide range of applications, such as high-precision fault

localization and automated program repair. Higher order mutation analysis, which

mutates multiple locations simultaneously, is a technique that has greater

potential for detecting complex defects than ordinary mutation analysis. However,

higher order mutation analysis generates a large number of mutants (mutated

programs), and all of them need to be compiled and tested, which is a problem that

results in a very long execution time. Therefore, higher order mutation analysis

has not been widely used in industry, despite the fact that strong applications

have been devised. We propose, implement, and evaluate a high-speed higher order

mutation analysis method and a mutant optimization technique to improve execution

costs to enable the application of higher order mutation analysis to industrial

software.

For the high-speed higher order mutation analysis method, we use four techniques

to achieve improved execution time for mutation analysis: metamutation, virtual

machines (VMs) for mutation, runtime mutation application, and high-order stream

split execution. First, to avoid losing the information in the source code to the

intermediate representation by, e.g., compile-time optimization, the program

elements are replaced by a function called the metamutation function, which

indicates the mutation position and type before compilation. This enables the

mutation of intermediate expressions to match the mutation to the source code.

Second, by running it on a VM, we reduce the overhead by starting a process one

time instead of running it per test. Third, rather than rewriting the source code

for each mutant, we use the mutant information for each execution state to trans-

late the instructions into mutated ones when executing the intermediate expression.

This technique can shorten the compilation time because it only needs to be

compiled once. Fourth, while preserving the execution state on the VM, at the time

of execution of each instruction, it branches into a state that executes the

original instruction and a state that executes the mutated instruction. This makes

it possible to shorten the test execution time. We conducted comparative

experiments, which indicate that our method is significantly superior to an

existing tool, an existing technique (mutation schema generation), and

no-split-stream execution in higher order mutation.

For the mutant optimization, we analyze the limits of the reduction of mutants

with- out loss of reliability. Existing methods remain challenged in terms of

excessive mutant reduction and errors in the mutation score after reduction. The

results of evaluation using open source software (OSS) show that the greedy mutant

selection method reduces the execution time by approximately 40%, although the

reduction is inferior to that of the existing method. To evaluate the impact of

the reduction of excess mutants, we measured the mutation score for the test in

which the bug detectability was artificially reduced, and the discrepancy in the

mutation score of the proposed method was less than that of the existing method.

Leveraging the high-speed mutation analysis foundation, we improve the

efficiency of the fault localization technique as an application of mutation

analysis. Fault localization is a technique to reduce the cost of debugging by

ranking candidate fault causes based on test results and test execution

information. Among the several fault localization techniques, mutation-based

fault localization (MBFL) can localize faults with high accuracy but has the

problem of high execution cost. Meanwhile, in mutation analysis, it is known that

the statement deletion mutation operator has less bias in mutation points and is

as effective as using all mutation operators even when used alone. Therefore, we

implemented MBFL using only the statement deletion mutation operator (SDL-MBFL)

and evaluated the localization of the software used in the actual product and nine

actual faults. As a result of the evaluation, SDL-MBFL found more faults than

existing methods in the higher ranks of 100 or more.

The overall evaluation of this study in terms of the application of mutation

analysis to bug detectability measurement is that it contributes to methods to

improve speed and accuracy, and has an advantage over state-of-the-art techniques,

especially in higher order mutation. In terms of the application of mutation

analysis to fault localization, this work is superior to the state-of-the-art in

granularity and reliability. These contributions will greatly reduce the cost of

performing higher order mutation and enable the detection of complex defects in

industrial software.

