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ABSTRACT 

Substantial growth in antibody drug development in the pharmaceutical industry is 

foreseeable due to the advantage over small molecule drugs in terms of, for example, 

specificity, biodegradability, and non-toxic metabolites from degradation. Out of the 

known antibody fragments in different molecular sizes, recently the nanobody, which is 

a heavy-chain only antibody from camelid species, has drawn considerable attention in 

antibody drug research due to its superior properties over the larger antibody fragments, 

such as high thermostability and versatility in choice of expression systems for 

production.  

Until now, several experimental methods in antibody drug screening, for example, the 

classical animal immunization techniques and the more recent directed evolution 

methods (e.g. molecular displays), have been some of the standard practices in 

developing antibody drugs with good affinity and specificity to the target of interest. 

However, there are drawbacks to these experimental methods. For instance, one major 

disadvantage is the inability to rationally design antibodies to target a specific epitope of 

interest, where such control is often desirable because the functional alteration to the 

pharmaceutical targets is usually epitope-dependent. Moreover, the precise control of 

epitopes by rational antibody design minimizes off-target toxicity by avoiding binding to 

epitopes that inhibit other normal functions of the target.  

In this study, we have explored the applications of computational nanobody design, 

which is an emerging technique in rational antibody design, on two pharmaceutically 

important targets, one targeting ELMO1-RhoG interaction, which is a key protein-protein 

interaction in signaling cancer cell migration and another targeting S2 of SARS-CoV-2, 
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in an attempt to develop a broad-spectrum antibody drug effective to SARS-CoV-2 

mutant strains and SARS-related CoVs.  

In the computational nanobody design targeting ELMO1-RhoG interaction, we have 

applied the dock-and-design approach by repurposing known nanobody structures from 

the PDB to bind ELMO1 on its interface with RhoG, which could theoretically quench the 

downstream signaling of cancer cell migration through the ELMO1/DOCK180 pathway, 

which normally induces actin polymerization and cell membrane protrusion for cell 

movements. We improved the selection of initial nanobody poses by applying an in 

cerebro guided optimization of antibody mode in PatchDock that used two positions on 

the CDR loops as distance constraints in nanobody-antigen docking, which lead us to 

initial poses with improved visual resemblance to known nanobody-antigen poses. We 

have adopted a new approach in pose selection we termed "pose-selection-by-design," 

which selected poses that generated binding energy funnels with good resemblance to 

the deep, funnel-shaped binding energy landscape commonly observed in protein-

protein interactions. From our first batch of 20 designs tested for binding to ELMO1 by 

SPR binding assay, we have obtained one potential hit, nano-79, which showed weak 

binding to ELMO1. Based on nano-79 as an initial hit, we performed a second-round 

design to explore additional sequence variations that potentially improve binding affinity 

to our target. We have successfully obtained a set of designs which showed improved 

binding overall, with the best binder exhibiting a dissociation constant of 2uM to ELMO1.  

During the current COVID-19 pandemic, due to the frequent emergence of SARS-CoV-

2 mutant strains worldwide, there is a need to develop therapeutics that are tolerant to 

potential mutation escape of the SARS-CoV-2 variants. Currently, the majority of the 
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spike-targeting antibodies developed bind at the RBD or its surrounding residues on S1. 

However, in general, RBD on S1 represents a relatively variable epitope compared with 

the S2 ectodomain. An antibody drug that targets a conserved epitope on S2 that is 

functionally important to the cell fusion and entry mechanism of SARS-CoV-2 could 

deliver a promising antibody drug that possesses a broad-spectrum neutralizing effect to 

the circulating and the to-be emerged mutant strains of SARS-CoV-2. We focused on 

one conserved structural epitope on S2 of SARS-CoV-2, which contains the proteolytic 

cleavage site S2' and is proximal to HR1 in its pre-fusion state, implying the functional 

importance of this epitope to the dissociation of S1 from S2, which is essential to the S-

mediated host membrane fusion of SARS-CoV-2. We designed 21 nanobody structures 

that potentially bind to the epitope through an overall similar design approach as in the 

ELMO1-RhoG nanobody design. Preliminary result from SPR binding assay showed our 

designs did not bind SARS-CoV-2 S with dissociation constant less than 5uM, which 

needs further examination to improve their binding affinity. 

Computational antibody design is still a relatively new technique in antibody drug 

development. There is a need for further methodological optimization to increase the hit 

rate of generating a binder with a detectable affinity for further affinity maturation. In 

structure-based computational antibody design, one of the difficulties lies in the pose 

selection from a large number of alternative poses generated by antibody-antigen 

docking, which directly affects the success of subsequent design simulations. 

Conceptually, designing native-like poses should have a better chance of developing a 

binder than designing poses far from the native. Followed by the two studies of 

computation nanobody design, we have explored the application of machine learning to 

improve the pose selection of nanobodies. With the calculation of features that consisted 
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of a contact profile (e.g. CDR loop contacts) and an energy profile calculated by 

InterfaceAnalyzer from Rosetta and AnalyseComplex from FoldX, we have trained a 

binary classifier with the implementation of a gradient-boosted decision tree model, 

XGBoost, which can distinguish native-like from non-native-like poses with a given 

nanobody-antigen complex structure. To benchmark the performance of our binary 

classifier, we are currently comparing the performance of our model to ClusPro, the 

current state-of-the-art protein-protein docking algorithm, and DOVE, a competing 

method that distinguishes native and non-native protein-protein complex structures. Our 

model successfully ranked native-like nanobody poses with a significantly higher ranking 

than ClusPro, demonstrating the potential application of our nanobody pose prediction 

model to improve accuracy in native pose prediction of nanobody from protein-protein 

docking algorithms. 
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INTRODUCTION 

 

Nanobody is a single-domain antibody truncated from the variable domain of the heavy 

chain of the heavy-chain-only antibody found in camelids, or VHH as its alternative name. 

With the first nanobody drug approved by the Food and Drug Administration of the United 

States in 2019, more nanobody drugs are now under clinical trials to target diverse 

therapeutic targets from viral infections to autoimmune disorders and carcinomas 

(Jovčevska and Muyldermans 2020; Morrison 2019; Muyldermans 2020).  

The growing interest in nanobody could be explained by its several advantageous 

properties compared to conventional antibodies, for example, good solubility, unusually 

high thermal stability, readiness of recombinant production by bacterial expression and 

therefore the ease of design (Jovčevska and Muyldermans 2020; Hassanzadeh-

Ghassabeh et al. 2013; Muyldermans 2020; Chanier and Chames 2019; Olson et al. 

2019). Despite a small size of approximately 15 kDa, nanobody has non-compromised 

specificity and affinity compared with the full-length antibody, which are mediated by the 

three complementarity determining region (CDR) loops (H1, H2 and H3) that are 

anchored on its single-domain framework folded as beta-sandwich (Mitchell and Colwell 

2018b, [a] 2018; Zavrtanik et al. 2018). Correlated to the sequence and structural 

features of the nanobody, nanobody possesses four framework mutations that improves 

its solubility (Mitchell and Colwell 2018b) and two disulfide bonds, one stabilizing 

intersheet and another intraloop of CDR3, which contributed to its thermal stability (Kunz 

et al. 2018). 
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To untap these desirable properties of the nanobody for the development of new 

antibody therapeutics, the ability to design new nanobody sequences is key. In a broad 

definition, antibody design is the derivation of an antibody sequence that binds to the 

target antigen. Until now, we have established several experimental methods for 

antibody design, with two methods of notable importance in the field. Firstly, animal 

immunization with purified antigens is a common routine for antibody discovery. When 

combined with next-generation sequencing, antibody sequences can be retrieved from 

the memory B-cell. Secondly, the application of directed evolution in the format of 

molecular display, which utilizes random mutagenesis and iterative panning to enrich a 

set of binding antibody sequences, is another popular routine in experimental antibody 

discovery (Prabakaran, Rao, and Wendt 2021; Laustsen et al. 2021). With the 

robustness of generating binding antibodies using molecular display methods in short 

turnover time and the availability of stable protocols of animal immunization, the two 

experimental methods are widely adopted in antibody discovery currently (Leenaars and 

Hendriksen 2005; Lee et al. 2007).  

Nevertheless, there are disadvantages to these experimental methods. As a result of a 

common property of the two experimental methods which utilizes random mutations for 

affinity maturation, both methods share a major drawback: the inability of rationally 

designing antibody interaction targeted to a specific epitope of interest. Indeed, the ability 

to design interaction to a specific epitope surface is of high importance in antibody drug 

development because functional modulation of target proteins is usually epitope-

dependent. For example, in the development of an antibody as a protein-protein 

interaction drug, it is necessary to control the binding orientation of the antibody because 

the binding epitope or the spatial overlap with either of the binding partners determines 
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the efficacy of inhibition to the protein-protein interaction. In more demanding situations, 

it is necessary to minimize clashes of the antibody with other domains of the antigen and 

prevent cross-reactivity to isoforms of the target. To achieve such specific, epitope-

oriented targeting with the control of binding orientation of antibody using the 

experimental methods in antibody discovery, one can expect the necessity of additional 

assays to multiple design candidates and structural modeling of their complex structures 

with the antigens to understand their structural-basis for further selections. Such massive 

modeling and screening is time-consuming but there is no guarantee in obtaining the 

design that binds to the desired epitope and binding orientation. 

Representing a rationale-based approach, computational antibody design is an 

emerging antibody discovery method that is complementary to the existing experimental 

approaches in terms of its ability of designing novel antibody-antigen interaction bottom-

up. As a relatively new method but offers precise control to epitope-targeting which is 

lacking in both animal immunization and molecular display techniques, we are now 

accumulating early examples and algorithms that succeed in this in silico antibody design 

approach.  

 

Previously, there were several methodological concepts in computational antibody 

design that were proven successful, which mainly included hotspot design, CDR loop 

grafting, VDJ recombination mimic and the “dock-and-design” approach, which was the 

design method used in the two nanobody design examples of current study. A notable 

example of antibody design by hotspot design is the design of scaffold proteins to target 

the stem region of influenza of hemagglutinin (Fleishman, Whitehead, et al. 2011). 

Hotspot design, in principle, designs energetically dense interactions de novo or by 
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learning from known protein-protein interaction to achieve effective increment to the 

binding affinity, followed by the redesign of residues surrounding the hotspot to 

accommodate the hotspot residues (Fleishman, Corn, et al. 2011). In the design method 

of influenza hemagglutinin antibody, de novo hotspot design was used. At the beginning, 

disembodied residue side chains were docked to the target to generate a de novo 

hotspot library. For a particular docked pose of a scaffold which showed shape 

complementarity to the target epitope, trials of hotspot grafting by looking up the hotspot 

library were iterated to obtain grafted side chains that were then filtered by hotspot 

energy and specificity to the target. The scaffold was further optimized by RosettaDesign 

and the final designs were selected by binding energy and shape complementarity. Two 

designs of binding affinity in nanomolar range were obtained after affinity maturation with 

directed evolution by yeast display. The crystal structure of one of their designs was 

almost identical according to their initial design.  

 

In another example of antibody design by hotspot design (X. Liu et al. 2017), the hotspot 

interactions from a known complex structure of Keap1-Nrf2 were borrowed, to design 

Keap1-targeting variable fragment (Fv). With hotspot grafting, an initial hit with 

micromolar affinity was obtained. The initial hit was subjected to CDR loop grafting to 

diversitize the H3 loop, followed by a final sequence design of the CDR loops and scored 

by the Rosetta binding energy score, SASA and a shape complementarity score. Four 

binders were optimized down to nanomolar binding affinity to Keap1 while one of the 

crystal structures of the designs showed good agreement to the designed pose and 

interacting side chains on the CDR loops.  
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As a strategy used in design optimization of this example of Keap1 antibody, CDR loop 

grafting is another antibody design strategy that was proven successful. Attributed to the 

modular nature of an antibody that consisted of interchangeable CDR loops and the 

framework, as its name suggests, CDR loop grafting is the grating of CDR loops to 

alternative antibody frameworks to yield diversity of designs. Apart from the application 

in antibody repurposing, CDR loop crafting was also a common technique in the 

humanization of antibodies such as the grafting of CDR loops from murine antibodies to 

human antibody frameworks (Lo 2004). Compared with hotspot grafting that concerns 

residue side chains as the unit of design, CDR loop can be regarded as the design at 

the level of secondary structure involved in interaction, and therefore both techniques 

can be used complementarily to diversify CDR loop sequence because sequence design 

usually retain a proportion of residues unmutated. With a diverse number of structurally 

characterized CDR loops (Adolf-Bryfogle et al. 2015), CDR loop grafting enables the 

sampling of diverse CDR sequences and therefore the search space is more likely to 

bracket a potential binder, as shown in the successful application in the Keap1 antibody 

design.  

 

In the RosettaAntibodyDesign (RAbD) utility of Rosetta Suite, CDR loop grafting was 

incorporated in their design algorithm that allowed the control of grafting of CDR loops 

of the light chains or the heavy chains from a library of CDR loops (Adolf-Bryfogle et al. 

2018). In the main design workflow of the RAbD algorithm, with a given antibody-antigen 

complex structure as the input, CDRs are grafted from the populated structural clusters 

recorded in PyIgClassify to diversify the CDRs and framework combinations. After 

sequence design of the CDRs, designs are docked against the epitope. After a screening 
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of the total energy score or the interface energy score according to the Metropolis Monte 

Carlo criterion, which either accept or reject the design, the algorithm returns to the initial 

CDR grafting step and iteratively runs for N cycles. Finally, top designs in terms of the 

total energy score or the interface energy score can be selected. In the retrospective 

validation of the RAbD method, the author demonstrated the successful recovery of 72% 

and 73% of contacting and non-contacting CDR residues to the interface from 60 

antibody-antigen complexes. Further experimental validation showed RAbD successfully 

enhanced the affinity of a known HIV-neutralizing antibody by a maximum of 50 folds 

and the affinity of a hyaluronidase-targeting antibody by 12 folds.  

 

Alternative to RAbD, OptMAVEn (Chowdhury, Allan, and Maranas 2018) and AbDesign 

(Lapidoth et al. 2015) were two directly competing antibody design algorithms where 

their methodological differences were compared in detail (Adolf-Bryfogle et al. 2018). For 

both OptMAVEn and AbDesign, they utilized a design strategy that mimicked natural 

V(D)J recombination to search for new constructs of antibody. In contrast to RAbD which 

starts with an antibody-antigen complex structure as the input, both versions of 

OptMAVEn (T. Li, Pantazes, and Maranas 2014; Chowdhury, Allan, and Maranas 2018) 

starts by constructing a new antibody through combining CDR3 with the variable (V) and 

joining (J) regions of heavy and light chains (lambda and kappa chains) from MAPs, a 

database of antibody parts chains (Pantazes and Maranas 2013), to generate new 

antibody constructs. This approach formed a major difference in terms of the basic unit 

of combination compared with RAbD, which takes individual CDR loops and the 

frameworks for combination. After the assembly, OptMAVEn then generates antibody 

poses by translating and rotating the assembled construct on the epitope designated for 



16 
 

design. Antibody parts in poses with minimal clashes and a minimized interface energy 

were clustered according to the generated antibody poses, to look for design sequences 

that show the lowest interface energy in each cluster. Finally, sequence optimization and 

binding affinity estimation by MD simulation can be performed to validate the final 

designs. Computational validation by sequence recovery on Zika envelope protein- and 

lysozyme-targeted variable antibody fragments showed OptMAVEn-2.0 was able to 

design good affinity binders predicted by MD simulation and recovered a general of 45-

65% native residue identity.  

 

Similarly, AbDesign (Lapidoth et al. 2015) applied a similar approach through mimicking 

V(D)J recombination to assemble new antibody designs. The main workflow of the 

AbDesign algorithm starts by precomputation from natural antibodies for position-specific 

site matrices (PSSMs) and a torsion database of the V region, which consists of CDR1 

and CDR2, and the CDR3. With the sequence identity and backbone angle respectively 

constrained by PSSMs and the torsion database, the V region and CDR3 were grafted 

to a chosen scaffold. Conformational representative of every cluster of assembled 

construct is docked to the target and sequence design is performed to optimize binding 

energy and stability of the construct. Finally, designs are further filtered by shape 

complementarity, packing quality and buried surface area. AbDesign was 

computationally validated by retrospectively comparing nine antibody designs to their 

native complex structures with the targets. AbDesign was able to reproduce side chains 

and backbone conformations observed in the native structures. Although in the examples, 

CDR conformations AbDesign sampled largely followed the canonical conformations, in 

the lysozyme-targeted design, it was able to sample a more diverse backbone 
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conformation than the native structure. In another study, AbDesign was experimentally 

validated through the design of three scFVs that showed weak binding to insulin and the 

acyl-carrier protein 2 of Mycobacterium tuberculosis (Baran et al. 2017). Affinity 

maturation of the designs by directed evolution through yeast display enhanced the 

binding affinity to the lowest Kd = 30nM.  

With the above examples, computational antibody design demonstrated its unique ability 

in precisely designing antibody-antigen interactions. Yet, compared to the experimental 

methods in antibody discovery, it has relatively unpredictable hit rate potentially due to 

several weak points in the current design methodologies. For most of the previous 

examples of computational antibody design, they were structure-based methods where 

the 3D coordinates of the antibody-antigen complex structure were used for the design 

calculations to derive the design sequence.  

Structure-based simulation has several aspects that contributed to the inaccuracy of 

structure-based computational antibody design. Firstly, there is the inaccuracy in 

modeling the structure, the flexibility and structural changes upon binding to the epitope 

of the CDR loops, which forms a majority of the paratope where the design is performed 

upon. Among the CDR loops, it is well-known that CDR3 is especially difficult to model 

due to more diverse sequences and structural conformations compared with CDR1 and 

CDR2 (Weitzner and Gray 2017; Adolf-Bryfogle et al. 2015; Marks and Deane 2017; 

Weitzner, Dunbrack, and Gray 2015; Shirai et al. 1998; Nishigami, Kamiya, and 

Nakamura 2016; Fernández-Quintero et al. 2019; Kumagai and Tsumoto 2002).  

Secondly, as side chains were designed on the CDR loops, there is the need to predict 

the change in interface energy and the changes propagated to backbone angles (Davis 
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et al. 2006), where inaccuracy exist due to imperfect energy functions (Xiong et al. 2014; 

Pokala and Handel 2001; Pillardy et al. 2001; Pokala and Handel 2005; Z. Li et al. 2013; 

Huang, Boyken, and Baker 2016; Pan and Kortemme 2021) and CDR loop modeling 

respectively. Moreover, the prediction of the energy and structural changes becomes 

more difficult when the number of design mutations increases (Andersson et al. 2016; 

Dehghanpoor et al. 2018; N. Zhang et al. 2020).  

Thirdly, the decision making of picking initial poses for design is difficult. Previously, there 

were multiple prediction models developed for antibody pose prediction. In a broader 

sense, it is a sub-problem under the bigger problem of protein-protein interaction 

prediction that was addressed by protein-protein docking algorithms, with some of the 

docking algorithms dedicated an antibody-antigen mode to improve antibody pose 

prediction (van Zundert et al. 2016; Kozakov et al. 2017; Schneidman-Duhovny et al. 

2005; Garzon et al. 2009; Sircar and Gray 2010). Representing a closely related class, 

a majority of earlier prediction methods solely developed for antibody-antigen interaction 

focused on separate predictions of the epitope and the paratope, instead of determining 

the 3D coordinates of the antibody-antigen complex (Norman et al. 2020).  

More recently, a number of machine-learning prediction models for protein-protein 

interaction emerged, in which a majority of them utilized sequence, structure and 

evolutionary information as features to aid the prediction of nativeness of protein-protein 

interactions (Esmaielbeiki et al. 2016). Amongst these prediction methods, previous 

examples of computational antibody design by the “dock-and-design” approach mainly 

utilized protein-protein docking algorithms to suggest initial poses for design (Procko et 
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al. 2013; Fleishman, Whitehead, et al. 2011; Fleishman, Corn, et al. 2011; Baran et al. 

2017; Karanicolas et al. 2011; Strauch, Fleishman, and Baker 2014; Choi et al. 2014).  

Due to the difference in assumption between ordinary protein-protein docking and “dock-

and-design” for de novo antibody-antigen interface design, it is especially difficult to 

select initial poses in the latter situation because we usually assume a correct solution 

exists in usual protein-protein docking. However, it is not in the case for antibody design 

because the interaction is to-be designed. Despite the presumably non-binding nature 

between the antigen and the antibody before design, we ask protein-protein docking 

algorithms to suggest initial poses that harbors native-like qualities but in most situations 

the poses are by and large “non-native”. Therefore, as a conceptual intermediates 

between native and non-native, the decision making in selecting these initial poses 

becomes elusive because the initial poses should be not as distinguishable between 

typical native and non-native poses. Altogether, these technical weak points have 

contributed to the relatively unpredictable success rate of computational antibody design. 

Here, as the grand objective of this study, we aim at enhancing our experience in 

computational antibody design by exercising two examples of nanobody design. We 

designed nanobody to target ELMO1-RhoG, a key protein-protein interaction in the 

signaling of cell migration in cancer cells, and we designed nanobody to target the S2 

ectodomain of SARS-CoV-2 spike protein. In both designs, we have revisited the “dock-

and-design” approach with this particular subject of nanobody and suggested two 

technical optimizations in the design workflow: one on the generation of initial nanobody 

pose with the application of in cerebro learning from known nanobody-antigen complexes, 

and another on nanobody pose selection by energy landscape through design.  
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In contrast to previous studies which aid their computational design with experimental 

approach, solely with our computational design workflow, we have successfully obtained 

a set of ELMO1-binding nanobody with binding affinity in micromolar range, with the best 

binder at a dissociation constant of 2uM. Additionally, to further improve our ability in 

selecting initial poses that show native-like qualities for design, we explored the use of 

machine learning to guide the selection of native-like nanobody poses. Benchmarking of 

our nanobody pose prediction model showed the significantly better performance of our 

model compared with the current state-of-the-art protein-protein docking algorithm and 

a classifier of protein-protein complex nativeness in a similar class.  

An improved methodology on computational antibody design can be generally applied to 

the development of antibody drugs targeting various protein antigens that are involved 

in different diseases. By pushing the success rate and streamlining such a computational 

approach in antibody discovery, time could be shortened to obtain a potent antibody drug 

which has a major significance during outbreaks of unknown infectious diseases. 

Moreover, unlike experimental methods in antibody discovery that required a real sample 

of antigen for experiments, computational antibody design can still be used to develop 

antibody drugs when the sample is difficult-to-obtain. Along with the increased 

application of next-generation sequencing on pathogen identification and the improved 

accuracies in protein structure prediction, the wider application of the computational 

antibody design is anticipated in future antibody discovery. 

Here, with the two design examples and the development of the pose prediction model, 

this study has added to the early examples and suggested technical improvements 

mainly on initial pose selection for de novo antibody-antigen interface design. This study 
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accelerates our progress of technical improvement in rationale-based antibody discovery 

by computational design. 
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CHAPTER 3 NANOBODY POSE PREDICTION 
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INTRODUCTION 

 

In spite of the rising number of successful examples of computational antibody design, 

compared with the experimental approaches such as animal immunization and directed 

evolution, the hit rate of computational antibody design remained relatively unpredictable. 

The relatively low hit rate of computational antibody design can be attributed to reasons 

such as the inaccuracies in CDR loops modeling (North, Lehmann, and Dunbrack 2011; 

Nishigami, Kamiya, and Nakamura 2016; Weitzner et al. 2014) and in the prediction of 

change in binding energy upon mutations at the interface (Gromiha, Yugandhar, and 

Jemimah 2017; Seeliger 2013; Z. Li et al. 2013). To accurately determine the binding 

energy change and the conformation of mutated CDR loops, there is a pre-existing 

assumption: the accuracy of the pose of the antibody, because it is the structural context 

for the downstream modeling of the interface and therefore directly influences the 

accuracy of binding affinity prediction.  

 

In contrast to antibody pose generation for computational design, a native solution of 

pose exists for known antibody-antigen complexes. Compared with the non-native poses, 

the native poses of known antibody-antigen complexes have distinguishing 

characteristics such as the funnel-shaped binding energy landscape (Shen et al. 2008; 

Schueler-Furman et al. 2005), preference in residue propensity of the epitope (Ramaraj 

et al. 2012) and sometimes the paratope-epitope shape complementarity (Kuroda and 

Gray 2016; Yan and Huang 2019), which were useful features for antibody pose 

prediction or epitope prediction (London and Schueler-Furman 2008b; Soga et al. 2010; 

Dunbar et al. 2016). In de novo interface design of antibodies by “dock-and-design”, we 
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can assume, with a given docked pose before design, there is weak if not merely no 

binding between the antibody and the target because the antibody is docked to an 

unrelated antigen. This non-binding presumption is also supported by the fact the CDR 

generally forms specific interaction to the epitope, which should be absent between an 

antibody with an unrelated antigen. Due to the weak if not no binding in most of the 

docked poses, the typical interface characteristics of antibody-antigen complexes is 

therefore less obvious or absent in docking used for design. This highlights the 

fundamental difference between ordinary pose prediction of experimentally verified 

antibody-antigen complex and the pose generation for computational antibody design. 

Due to the less obvious or absence of distinguishing features among the many docked 

poses, docking pose selection for design is arguably more difficult than ordinary pose 

prediction.  

 

Nevertheless, although it is difficult to pick a pose for design, it is not impossible to 

generate a binder that agrees to the initial pose after design (Procko et al. 2013; 

Fleishman, Whitehead, et al. 2011; Baran et al. 2017; Karanicolas et al. 2011), meaning 

existing antibody-antigen docking methods have the ability to suggest “native-like” poses 

that are verifiable after design. Moreover, in these successful “dock-and-design” 

examples, the same design workflow that generated a majority of non-binders and a 

minority of binders implied the contribution of the initial docking to the success of design. 

In such a sense, we describe an initial pose that leads to a binding antibody through 

design as “native-like” because to a certain degree it harbors the quality that resembles 

a native pose but is still optimizable by design that strengthens the nativeness of the 

pose.  
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Here, to improve our ability of selecting native-like antibody poses for design, using 

nanobody as the subject, we have developed a gradient-boosted decision tree model 

that can distinguish native-like from non-native-like nanobody poses. Previously, there 

were many antibody pose prediction methods developed (Norman et al. 2020). In a 

broader scope, antibody pose prediction falls under the prediction of protein-protein 

interaction, which is the main question addressed by protein-protein docking algorithms. 

A number of the docking algorithms integrated functionalities dedicated to improving 

antibody-antigen docking, such as the usage of CDR loops as distant constraints (van 

Zundert et al. 2016; Kozakov et al. 2017; Schneidman-Duhovny et al. 2005; Garzon et 

al. 2009; Sircar and Gray 2010). From the latest 7th edition of Critical Assessment of 

Predicted Interactions (CAPRI), ClusPro is a top performing protein-protein docking 

algorithm which showed notable performance in the predictor group and the server group 

(Lensink et al. 2020).  

 

Apart from docking, a majority of alternative approaches to predict antibody-antigen 

interaction belong to paratope and epitope prediction methods (Norman et al. 2020). 

Most of these paratope and epitope prediction methods do not suggest or evaluate the 

3D coordinates of the predicted antibody-antigen complex, which is a major drawback 

compared to protein-protein docking methods because structural details of the interface 

are crucial to antibody design. Recently, with the increased usage of machine learning 

to study protein-protein interaction, for example, deep 3D convolution neural networks 

(Schneider et al. 2021; Wang et al. 2020), graph convolutional neural networks (Yue Cao 

and Shen 2020), tensor field neural network (Eismann et al. 2021), graph kernel (Geng 
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et al. 2020) and logistic regression classifier (Tanemura, Pei, and Merz 2020), were 

developed to evaluate nativeness of binding pose using 3D coordinates of protein-protein 

complexes. These methods, which score a protein-protein complex with its 3D 

coordinates, were previously classified as partner specific interface predictor 

(Esmaielbeiki et al. 2016).  

 

We benchmarked our decision tree model with the state-of-the-art protein-protein 

docking algorithm ClusPro and a 3D-CNN model that belongs to the specific class of 

predictor for protein-protein complex. To our best knowledge, our decision tree model is 

the first model in class that is dedicated to nanobody-antigen pose prediction, which is 

complementary to existing methods for antibody-antigen complex pose prediction due to 

the observable differences in binding modes between nanobody and conventional 

antibodies (Mitchell and Colwell 2018a, [b] 2018; Zavrtanik et al. 2018). The application 

of our decision tree model for initial pose selection aids the selection of “native-like” 

poses for nanobody design in the future. 
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MATERIALS AND METHODS 

 

Data Collection and Preprocessing 

Nanobody-antigen complex structures in a total of 371 unique PDB IDs were retrieved 

by searching VHH antibody that were with protein antigens, without constant region and 

a resolution cutoff of 3.5 Å from the SAbDab antibody structure database (Dunbar et al. 

2014) in September, 2020 (Figure 32). For oligomeric structures, a biological assembly 

was picked so that each nanobody-antigen complex structure contains the interaction 

between one nanobody chain and one antigen chain. The nanobody-antigen complex 

structures were renumbered with PyIgClassify database (Adolf-Bryfogle et al. 2015) to 

standardize the numbering of CDR loops. The complex structures with any of the three 

CDR loops not recorded in the PyIgClassify database were removed to ensure the 

presence and the structural quality of the CDR loops. Pairwise structural alignment of all 

the collected antigen structures was performed by the superpose utility in CCP4 

(Krissinel and Henrick 2004) to assess their structural redundancy. PDB IDs with similar 

antigen structures that have structural alignment quality score (Q)  higher 

than  0.95  were removed to minimize information leakage during testing. After these 

preprocessing steps, a final total of 180 unique PDB IDs were retained. 

 

Randomization of Orientation, Backbone and Side Chains 

To prepare for docking, nanobody chains and antigen chains of the 180 complex 

structures were separated into independent PDB files. Because the nanobody and 

antigen coordinates separated in this way contained highly matching structural features 

in terms of orientation, backbone angles and side chain rotamers at the interface, to 
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simulate the real-life situation of docking nanobody and antigen models that were 

modelled independently, these structural features were randomized. The orientation of 

all the nanobody and antigen chains were randomized by applying a random translation 

and rotation in the six axis of freedom. The lowest total energy structure was picked by 

sampling 1000 structures using a RosettaScript that performed backrub (Davis et al. 

2006) and side chain packing to introduce changes to the backbone angle and side chain 

orientation of all the nanobody and antigen chains.  

 

Initial Pose Generation and Refinement 

Initial poses were generated by self-docking each nanobody to its native antigen by 

submitting to the ClusPro webserver (Kozakov et al. 2017) in the default mode and the 

antibody mode. Each initial pose generated from ClusPro was further refined by 

RosettaDock with an initial low-resolution centroid mode to sample orientation around 

the initial pose and a subsequent high-resolution, full-atom mode to optimize the 

orientation and side chain packing. We have instructed the generation of 100 refined 

poses per each initial pose and obtained a grand total of 3,338,574 refined poses. 

 

Target Label Preparation 

We aimed at developing a binary classifier that can distinguish native-like from non-

native-like nanobody pose. We used DockQ (Basu and Wallner 2016), a benchmarked 

metric that estimates the quality of protein-protein complex models with reference to the 

native complex coordinates, to evaluate the quality of our docked nanobody poses. The 

DockQ score was benchmarked in the latest version of CAPRI (Lensink et al. 2020) that 

showed good resolving power to the CAPRI quality classes of protein-protein complex 
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model, which includes from the worst to the best: “incorrect” (0.00-0.23), “acceptable” 

(0.23-0.49), “medium” (0.49-0.80) and “high” (0.80-1.00) where inside brackets are the 

ranges of DockQ scores corresponding to each class. We labeled our poses as “non-

native-like” if DockQ score < 0.23 and otherwise “native-like”. This division was 

equivalent to a binary decision boundary that poses that were “non-native-like” poses in 

this study corresponded to “incorrect” solution in CAPRI while “native-like” poses in this 

study corresponded to “acceptable”, “medium” and “high” solutions in CAPRI (Table 6). 

The same decision boundary was set by our competing method DOVE, thus the same 

labeling method allowed the direct comparison of prediction performance with DOVE. 

After labeling, we have obtained a total of 106,391 native-like poses and 3,232,183 non-

native-like poses. 

 

Feature Engineering 

We used InterfaceAnalyzer from Rosetta (Stranges and Kuhlman 2013) and 

AnalyseComplex from FoldX (Delgado et al. 2019) to calculate energy and contact 

features of each refined pose. Apart from the energy features that were automatically 

calculated by the two interface analyzing programs, we have calculated the CDR contact 

profiles of each refined pose in terms of the proportion of all CDR residues in the 

paratope and the proportion of interacting residue from each CDR loop compared with 

their own full lengths. In addition, we have used the aaDescriptors from the Peptides 

package (Osorio, Rondón-Villarreal, and Torres 2015), which is a collection of 66 

descriptors that describe the physicochemical, electrostatic and topological properties of 

residues (Cruciani et al. 2004; Kidera et al. 1985; Sandberg et al. 1998; G. Liang and Li 

2007; Feifei Tian, Zhou, and Li 2007; Mei et al. 2005; van Westen et al. 2013; Yang et 
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al. 2010; Georgiev 2009; Zaliani and Gancia 1999), to describe the paratope and the 

epitope of our nanobody poses. For each individual property value, we calculated the 

summed value by adding up from all residues of the paratope, and independently 

repeated this summation for the epitope.  

 

Model Training, Testing and Hyperparameter Optimization 

We used XGBoost (T. Chen and Guestrin 2016), which is an efficient implementation of 

the gradient-boosted decision tree, to map our feature set to the binary label of pose 

nativeness (Table 7). We selected XGBoost due to its robustness in providing good 

prediction performance in various machine learning problems in the data scientist 

community Kaggle. We used k-fold cross-validation (k=5) to account for the randomness 

in the partitioning of the training set and the test set. In each round of testing, poses from 

80% (144) of the PDBs were randomly selected as the training set and the remaining 

poses belonged to the test set. This random partition step was applied to the PDB IDs 

but not the refined poses to minimize information leakage from the training set to the test 

set because refined poses derived from the same initial pose might contain considerably 

similar feature values, which causes overestimation of the prediction performance of our 

model. Before benchmarking, we have optimized the hyperparameters of our XGBoost 

model by searching from hundreds of preliminary models with different combinations of 

the hyperparameters (Table 8). Due to a high imbalance of class labels, which is in the 

approximate ratio of 30:1 for non-native-like to native-like poses, area under the 

precision-recall curve (PR-AUC), instead of the commonly used ROC-AUC, of the test 

set prediction was used as the evaluation metric to pick the best hyperparameter 

combination (Boyd, Eng, and Page 2013; J. Davis and Goadrich 2006). 
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Benchmarking 

To benchmark our model, we compared the prediction performance of the XGBoost 

model built with the optimized hyperparameter combination with the pose ranking from 

ClusPro (Kozakov et al. 2017) and DOVE (Wang et al. 2020). DOVE was chosen to 

benchmark our prediction model because it is a deep learning model that performs binary 

classification of native protein-protein interaction, which is of high similarity in terms of 

modeling method and objective to our method. Because both our model and DOVE used 

a predicted binary probability of nativeness as the output, we also compared the 

prediction performance with ClusPro, which uses ranking of pose as the output. We 

ranked the binary probability averaged from all refined pose derived from each initial 

pose in descending order as the ranking of each initial pose. Population of ranking of all 

native-like poses of all test set partitions from the 5-fold cross-validation was statistically 

compared with paired t-test. 

 

Feature Importance Calculation 

Feature importance was assigned as the SHAP value by the SHAP package (Lundberg 

and Lee 2017). SHAP package was commonly used to aid interpretation of machine 

learning models by assigning the SHAP value, which measures the directionality and the 

degree of contribution by each feature value to the predicted value in that particular 

sample. A positive SHAP value corresponds to a positive contribution of the feature value 

to the predicted value while a greater magnitude of the SHAP value corresponds to a 

higher contribution of the feature value to the predicted value. Importance of features 

were compared by ranking in descending order by their mean absolute SHAP value from 

the test set prediction. 
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RESULTS AND DISCUSSION 

Benchmarking Results with ClusPro  

To validate the performance of our nanobody pose prediction model, we have 

benchmarked the performance of our model with ClusPro (Kozakov et al. 2017), which 

is the current state-of-the-art protein-protein docking algorithm validated by the latest 

version of CAPRI (Lensink et al. 2020). For the 5-fold cross-validated prediction of the 

test set, our nanobody pose prediction model showed significantly higher ranking of 

native-like poses (p<1e-04) than ClusPro (Figure 33). For a majority of the native pose 

from the test set, they were ranked within top 10 by our nanobody pose prediction model 

while ClusPro ranked a majority of them within top 50, which showed the better 

performance in ranking native-like nanobody pose of our model. 

 

Benchmarking Results with DOVE 

To further compare the prediction performance of our nanobody pose prediction model, 

we have compared the prediction performance of our model with DOVE, a structure-

based classifier of native protein-protein interaction by 3D convolution neural network. 

Due to a relatively large number of refined poses, the prediction of the poses by DOVE 

is still under progress. Preliminarily, a majority of native-like pose was predicted as a low 

probability of nativeness by DOVE. 

 

Prediction Performance of the Best Single Model 

We have analyzed the performance of an individual model with the best single model in 

terms of the highest PR-AUCtest from the 5-fold cross-validation. Compared with the 

training set prediction, the prediction performance on the test set was considerably worse 
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(Figure 34). Together with the fact that our nanobody pose prediction model was able to 

prioritize native-like poses with significantly higher rankings than ClusPro, it implied our 

model performed better at distinguishing native-like poses from non-native-like poses 

within a native nanobody-antigen pair but performed less well on native-like pose 

prediction by using a single decision threshold on the binary probability.  

 

Important Features Contributed to Prediction Performance 

To understand the usefulness of individual features in distinguishing native-like from non-

native-like poses in our nanobody pose prediction model, we have calculated the 

mean(|SHAP|) value of every feature in the test set prediction by the best single model, 

which was a measure of overall importance of each feature to the predicted values of 

the test set samples by the model (Figure 35). The feature that contributed most to the 

test set prediction by the model was the proportion of CDR residues in the paratope 

residues. Indeed, for a human to judge whether a nanobody-pose is native or non-naive, 

the degree of involvement of CDR residues at the interface is an important criteria to 

consider. Moreover, in the sampling of initial poses by ClusPro, a majority of the non-

native-like pose was sampled from the default mode, which did not constrain distance 

between CDR loops and the interface. Therefore, it was consistent with our expectation 

that the proportion of CDR residues in the paratope was the top contributing feature to 

the predicted nativeness of nanobody pose.  

 

The feature with second importance to the predicted nativeness of pose by our model 

was the interface energy density expressed in dG score (cross-interface) divided by 

buried surface area factored by a multiplication of 100. This interface energy density 
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feature had a higher importance than the total binding energy score expressed in dG 

(separated), which was the difference in Rosetta energy score between the separated 

and the complexed form of a nanobody-antigen pair. We found no previous reports that 

compared the statistical distribution of energy score and buried surface area (SASA) 

between native pose and non-native-pose from self-docking nanobody.  

 

To help explain the importance of energy density in distinguishing native-like and non-

naive-like nanobody poses, compared with conventional antibody, native nanobody 

binds its antigen with a higher contact density to the epitope residues and a smaller 

paratope surface area, which potential gives rise to a higher shape complementarity to 

the epitope surface compared with conventional antibody-antigen complexes (Mitchell 

and Colwell 2018b). However, the average SASA of general protein-protein interaction 

was reported to be 800 ± 200 Å2 (Chakrabarti and Janin 2002), which was not different 

by far from the estimated average SASA of nanobody paratope of 769 ± 201 Å2 (Mitchell 

and Colwell 2018b). The relatively high degree of shape complementarity observed in 

native nanobody poses suggests there is a potentially more stringent requirement of 

steric clash at the interface, which could be associated with the torsional clash of epitope 

residues being the third important feature contributed to the predicted nativeness of 

nanobody poses. 

 

In our attempt to use summed residue descriptors of paratope residues or epitope 

residues as additional features, we reason that they are helpful to the prediction of 

nativeness of nanobody pose because, expectedly, there should be detectable 

differences in the distribution of certain descriptor properties of the paratope or the 
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epitope, such as hydrophobicity, between native-like and non-native-like poses. Indeed, 

some of these summed properties were regarded by our model as important features 

that contributed to the prediction of nanobody pose nativeness, with a few of them being 

comparable to features ordinarily used to assess antibody-antigen poses.  

 

For example, the total hydrophobicity of the epitope measured in terms of kideraFactors 

(Kidera et al. 1985) was regarded as the 4th important feature, an important feature 

comparable to the ratio of interacting CDR3 residue to its length, which was ranked as 

5th important. Compared with the ratio of interacting CDR2 residue to its length (16th 

important), summed properties, such as double-bend preference of the paratope (8th 

important), H-bonding capability of the epitope (9th important) and the 4th principal 

component of the topological descriptor ST-scales (12th important) (Yang et al. 2010), 

were regarded as relatively important features that contributed to the prediction of 

nanobody pose nativeness. Additionally, it appeared that the summed residue 

descriptors, which were derived from the count of individual residue species on the 

paratope and epitope, were more important than the count of individual residue species 

themselves because, within top 20 important features, only one feature of residue 

species count (glutamate count on the epitope, 18th important) was present versus the 

presence of nine summed residue descriptors. It implied the usefulness of the description 

of epitope and paratope as a whole by summation of residue descriptors to the prediction 

of nativeness of nanobody pose.  
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DISCUSSION 

Computational protein design is one of the emerging methods to design new antibodies. 

However, the failure rate of the current methods of computational antibody design 

remained high. To improve the current practice of computational antibody design, there 

is a need to explore other variations in the methods to improve the success rate of 

generating antibodies with desired properties such as binding affinity and specificity. In 

this study, we have added another methodological variation to the field of computational 

antibody design, mainly by innovating the selection method of nanobody poses and 

designs.  

 

Niche of Nanobody Design Method of Current Study 

In this study, we have applied the “dock-and-design” approach to design nanobodies 

targeting ELMO1-RhoG interaction and S2 of SARS-CoV-2. The “dock-and-design” 

approach was previously applied in multiple examples of antibody design (Procko et al. 

2013; Fleishman, Whitehead, et al. 2011; Fleishman, Corn, et al. 2011; Baran et al. 2017; 

Karanicolas et al. 2011; Strauch, Fleishman, and Baker 2014; Choi et al. 2014; T. Liang 

et al. 2021). As its name suggests, “dock-and-design” involves an initial step of antibody-

antigen docking and a subsequent sequence design step to optimize the interface. In a 

broader sense, “dock-and-design” is the progenitor approach in de novo antibody design 

or antibody repurposing because nearly all the antibody design examples and algorithms 

discussed have incorporated “dock-and-design” as a certain part of their design 

workflows. Either preceding or following “dock-and-design”, additional design steps, 

such as CDR grafting and hotspot grafting, were added to increase the chance of 
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obtaining a binding antibody by, in the respective examples here, diversifying the design 

construct and constraining the type of interactions at the interface.  

 

Here, we refer “dock-and-design” to this primitive application of docking and sequence 

design without the addition of more design steps. There were several reasons we took 

this primitive approach of “dock-and-design” to design our nanobody under the existence 

of multiple antibody design methods and algorithms that were previously validated. 

Firstly, due to the observable differences between nanobody and the VH domain of 

conventional antibody in terms of binding mode and interface residue propensity (Mitchell 

and Colwell 2018b), we reasoned that the existing algorithms may bias towards the 

design of conventional antibody but not nanobody. For example, when we tested the 

robustness of PatchDock to generate high-quality poses of nanobody for design, we 

observed the deviation of poses from known nanobody-antigen complexes, which was 

exactly our motivation to optimize nanobody pose generation through in cerebro learning.  

 

Secondly, we wanted to maintain the framework sequence of nanobody which is more 

conserved and harbors four mutations that enhance solubility compared to VH domain 

of conventional antibody (Mitchell and Colwell 2018b), therefore it was not necessary to 

design the framework from scratch by combinatorial design. Indeed, our collaborator did 

not report severe expression or solubility problems of the several dozens of designs, 

implying the tolerance of the nanobody framework to contain the design mutations on 

CDRs.  
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Thirdly, because the “dock-and-design” steps form the core of a majority of antibody 

design methods, a similar approach of optimization should be translatable in improving 

existing and future design methods. With the simplicity of the “dock-and-design” 

approach, it is also easier for people who want to perform computational antibody design 

but with less experience in intensive scripting to learn computational antibody design.  

 

Indeed, the two main design concepts introduced in this study can be easily applied with 

minimal knowledge in scripting. Firstly, we proposed the use of the two-points constraint, 

one on CDR1 and one on CDR2, to automate the generation of high-quality nanobody 

poses that resemble known nanobody-antigen complexes with PatchDock. Without this 

optimization, PatchDock generally gave docked pose where the framework of the 

nanobody tends to lean on the epitope surface because the whole CDR3 was specified 

as the distance constraint by default. The considerable contact between the framework 

and the epitope is undesirable because framework residues, which are conserved, 

should in principle not be designed. Alternatively, if framework residues at the interface 

are not designed, the contacts are expectedly non-specific. With our optimized distance 

constraints in PatchDock, we have minimized the proportion of the undesirable poses 

and successfully generated poses which involve all CDR1, CDR2 and CDR3 in the 

interface as seen from the proportion of CDR contacts from the ELMO1-targeting 

nanobody designs.  

 

As another design concept introduced by this study,  we proposed the “pose-selection-

by-design” approach for initial pose selection. In previous design examples which used 

PatchDock for the selection of initial pose, selecting a number of initial pose from top 
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complementarity scores, typically in the range of 102-103, was a common practice 

(Procko et al. 2013; Fleishman, Whitehead, et al. 2011; Fleishman, Corn, et al. 2011; 

Baran et al. 2017; Karanicolas et al. 2011; Strauch, Fleishman, and Baker 2014; Choi et 

al. 2014). In previous design examples with docking placed at the upstream of workflow, 

additional design and selection steps, such as hotspot grafting, were applied to trim down 

the number of initial poses before a final sequence design step. Compared to selecting 

only a few poses from PatchDock, these additional pose selection steps are more 

favorable because firstly, they increase the diversity of initial poses and secondly, 

complementarity score calculated by surface shape matching from PatchDock is low 

resolution and therefore the score alone does not imply designability of the pose.  

 

Here, we regard our “pose-selection-by-design” as an alternative strategy to trim down 

the number of initial poses which took advantage of incorporating an increased pose 

diversity while simultaneously assessing their potential to develop into a binder. “Pose-

selection-by-design” was inspired by the characteristic binding energy landscape from 

protein-protein interaction, which can be viewed as the change of binding energy as two 

interacting protein partners approach to the native binding conformation. A typical 

binding energy landscape of protein-protein interaction has a deep funnel shape towards 

the native conformation (Ravikumar, Huang, and Yang 2012; Tovchigrechko and Vakser 

2001; Alsallaq and Zhou 2007; Schug and Onuchic 2010; Schueler-Furman et al. 2005; 

London and Schueler-Furman 2008a, 2007; Ruvinsky and Vakser 2008). The typical size 

of the binding energy funnel was previously estimated to be 6-8 Å, starting from where 

an obvious decrease in binding energy becomes apparent as the conformation 

approaches a lower RMSD to the native conformation (Hunjan et al. 2008). This 
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estimation of the funnel size is consistent with the previous description of the non-

overlapping nature of alternative binding modes in protein-protein interactions 

(Kundrotas and Vakser 2013). When the binding partners continue to approach the 

native conformation and surpasses approximately 2 Å, a steep drop to a local energy 

minimum was observed, which could be explained by the release of energy from side 

chain packing which is possible only with the close distance of binding partners 

(Schueler-Furman et al. 2005).  

 

FunHunt, a support vector machine model for native protein-protein interaction, included 

features from the characteristic energy landscape of protein-protein interaction to classify 

the nativeness of protein-protein complex (London and Schueler-Furman 2008b). Their 

benchmarking showed the native conformation of 50 out of 52 known protein-protein 

complexes and 12 CAPRI targets were correctly classified, demonstrating the usefulness 

of features from binding energy funnels in the prediction of native protein-protein 

interaction.  

 

In this study, however, the energy landscape used for pose selection, which was 

expressed in interface energy of designs against RMSD of the nanobody backbone 

before and after the design, was different by nature compared with the energy funnel of 

docked pose from known protein-protein interactions in two major aspects. Firstly, the 

initial pose before design was a predicted pose and therefore was not experimentally 

proven, implying the RMSD before and after design was not a measure of correctness 

of the conformation. Secondly, in the interface energy-RMSD plot, every point represents 

a different design which harbors a different CDR sequence at the interface, which is 
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different from ordinary protein-protein docking where each docked pose has a relatively 

constant residue content at the interface. Due to these major differences in nature of the 

energy landscape from “dock-and-design” and sole docking, it was projected that an 

energy landscape from “dock-and-design” can be fuzzier because it resembles an 

overlay of binding energy-RMSD plots of multiple designs harboring different CDR 

sequences and therefore when different designs were docked into exactly the same pose, 

should give a range of binding energy.  

 

Despite the differences in physical meaning of the energy landscapes in two cases, we 

explored the utility of the energy landscape from “dock-and-design” to select initial pose 

with the following arguments.  Firstly, we did observe binding energy landscapes from 

designs that closely resembled the deep funnel-shaped energy landscape observed in 

typical protein-protein interactions, which could be explained by either the design 

converged to a small number of sequence variants or the binding was tolerant to multiple 

sequence variants from design. In the case of sequence convergence, it was a good sign 

for selection because RosettaDesign has found the design solution. In the case of 

sequence tolerance by the epitope, it potentially implies a certain degree of non-specific 

binding but because getting a binder is the first goal to achieve, specificity can be further 

designed based on a non-specific binder, which is also a practice in antibody design by 

directed evolution using a minimalist residue library (Kelly et al. 2018; Xu et al. 2013; 

Birtalan et al. 2008) and in antibody affinity maturation by nature (Shehata et al. 2019).   

 

Secondly, we also observed the sampling of binding energy minima at low RMSD range 

less than 2 Å for some designs. Indeed, we were aware that a potentially binding design 
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may not necessarily have binding energy minimum at low RMSD range because the 

initial pose used for RMSD calculation may not necessarily be the native conformation. 

Therefore, by the approach of selecting funnel-shaped energy landscapes from design, 

we might have lost a portion of designs that did not show funnel-shaped energy 

landscapes. However, for the alternative poses we observed that showed binding energy 

minimum at a low RMSD, it indicated the agreement between initial pose generation by 

PatchDock and the docking during design by RosettaDock. This phenomenon was a 

positive signal for us to select the pose because there were more energy landscapes 

from other designs that were more elusive, which sampled a narrow RMSD range or a 

narrow binding energy range (Figure 11).  

 

Thirdly, we reason that our “pose-selection-by-design” method for initial pose selection 

is a heuristic approach because we used the design results from quick design to guide 

initial pose selection. “Pose-selection-by-design” minimized our assumptions in the 

selection of initial pose that will turn into a binding design compared with the practice of 

confinement of the number of initial poses in other design studies. By successfully 

obtaining nanobody designs targeted to ELMO1, we would like to confirm the sensitivity 

of the design theory above to the success rate of computational antibody design in the 

future. 

 

To further improve the success rate of our nanobody design workflow, we will incorporate 

the modeling of flexibility of CDR loops to improve the prediction of interface interaction, 

which will in turn improve the accuracy of binding affinity prediction and the segregation 

of a binding design with alternative designs. 
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Niche of Nanobody Pose Prediction Method of Current Study 

In the two examples of nanobody design of this study, we have improved the quality of 

initial pose by in cerebro learning and mimicking nanobody-antigen complexes through 

optimization of distance constraints of CDRs in docking by PatchDock. Initial pose 

selection that applied knowledge from in cerebro judgement has an obvious advantage. 

In contrast to structure-based small molecule design which usually put visual judgment 

as the last stage of design, due to a relatively small number of initial poses in antibody 

design, it is relatively feasible to perform visual judgment at the initial stage. An initial 

trimming of the number of poses by visual judgment enriches a number of high-quality 

poses. Such initial trimming ensures the efficient use of computation power for designing 

poses that delivers good design results and therefore less computation power is wasted 

on designing poses that will not be picked at the final stage of visual judgement.  

 

However, any kind of visual judgment has several major drawbacks. Firstly, there is 

subjectivity in visual judgement. Therefore, visual judgement by different individuals will 

lead to inconsistent evaluation outcomes. Secondly, there is difficulty in communicating 

the desirable and undesirable visual features learned in cerebro. Due to this 

communication difficulty, thirdly, it is difficult to popularize the knowledge from visual 

learning and thus limited the scale of the application on antibody design by other people. 

Indeed, rather than plainly describing our observation on how nanobodies usually bind 

their antigens, which was also described in previous reviews of nanobody binding modes 

(Mitchell and Colwell 2018b, [a] 2018; Zavrtanik et al. 2018), we have translated our 

visual learning to executable instructions to the PatchDock program. Therefore, firstly, 
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the regeneration of the high-quality poses was automated and secondly, people can 

directly apply the same instruction without the need of understanding verbally from our 

description.  

 

Despite our attempt to bridge the gap between communication and application, because 

the PatchDock optimization was ultimately based on our visual learning, there are biases 

in the predicted binding mode of poses generated from the optimization. This was the 

motivation of developing our nanobody pose prediction model, which was trained and 

vigorously tested upon a dataset derived from self-docking a majority currently known 

nanobody to their native antigens with ClusPro, the current state-of-the-art docking 

algorithm verified by the latest version of CAPRI (Lensink et al. 2020), and benchmarked 

against the performance of a classifier of similar class. Recently, there were several 

classifiers developed to distinguish native from non-native protein-protein complex 

structures (Schneider et al. 2021; Wang et al. 2020; Yue Cao and Shen 2020; Eismann 

et al. 2021; Geng et al. 2020; Tanemura, Pei, and Merz 2020). To our best knowledge, 

our model is the first model in class that is dedicated to the prediction of native nanobody 

pose, which is of special niche because there are distinctive features nanobody-antigen 

interaction in terms of binding mode, interface residue propensity, shape of epitope 

surface, residue conservation of the framework and structural diversity of CDR loops 

compared with conventional antibody-antigen interaction (Mitchell and Colwell 2018b, [a] 

2018; Zavrtanik et al. 2018).  

 

Although it was pointed out that nanobody-antigen interaction resembles more to general 

protein-protein interaction than to antibody-antigen interaction (Zavrtanik et al. 2018), a 
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specialist model that is solely trained with examples of a specific type of protein-protein 

interaction should give better prediction performance compared with a generalist model 

that learned from examples with diverse patterns of feature distribution. Compared with 

the classifiers that were trained by automatic feature learning, such as by 3D convolution 

in DOVE, our model took the conventional feature engineering approach that utilized 

energy terms from previously validated energy functions of Rosetta and FoldX and 

calculated the contact profile which consisted of proportions of CDR loops contacts and 

residue count.  

 

Indeed, CDR contact features, which were generally not incorporated to aid prediction in 

other classifiers of general protein-protein interaction, were important features that 

contributed substantially to the prediction of our model, which could be a potential source 

of the difference in prediction performance. However, although ClusPro used CDR 

information in its antibody mode, our model performed significantly better than ClusPro 

in ranking the native-like poses. It could be explained by either our model has captured 

more accurately the distinctive pattern of usage of CDR loops in nanobodies compared 

with conventional antibodies, or the contribution from other features that were not used 

pose ranking in ClusPro antibody docking.  

 

Additionally, we have explored the use of sum of aaDescriptors of all residues in 

paratope or epitope as features to our model, to see if the properties described by the 

aaDescriptors by treating the paratope or the epitope as a whole could be the 

distinguishing features to native-like and non-native-like poses. Comparison of SHAP 

value showed several summation of aaDescriptors of epitope or paratope, such as the 
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summed hydrophobicity of epitope residues and the summed double-bend preference of 

the paratope residues, had comparable importance compared with interface energy and 

CDR contact features. Features important to the prediction of native-like nanobody pose 

learned by model interpretation in this study enriched our understanding of nanobody-

antigen interaction and could guide future improvement in nanobody pose prediction. 

The application of our nanobody pose prediction model will aid the selection of initial 

poses that show native-like properties for further design. 
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CONCLUSION 

In this study, we have exercised the structure-based computational nanobody designs 

on two therapeutic targets. In the design workflow, we have introduced two optimizations 

to initial pose selection of nanobody. We have automated the generation of nanobody 

poses which resemble native nanobody poses through in cerebro visual learning. We 

have attempted a new pose selection strategy called “pose-selection-by-design” which 

uses design results to guide initial pose selection. In the design of ELMO1-targeting 

nanobody, we have successfully designed a set of binding nanobodies with the best 

binding affinity verified in the micromolar range. In the design of S2-targeting nanobody 

for SARS-CoV-2, we attempted the design of a broad-spectrum antibody drug by 

targeting the conserved ectodomain of SARS-CoV-2 S. We continue to examine the 

potential cause of undetectable binding between our S-targeting nanobody designs to 

enable the future development of a broad-spectrum therapeutics to SARS-related CoVs. 

To improve our ability to select nanobody poses for design, we have developed a 

nanobody pose prediction method which outperformed the current state-of-the-art 

method of protein-protein docking algorithm and a deep learning method of a similar 

class. This study represented one of the early examples in the field of computational 

antibody design and contributed to increasing our knowledge in this emerging 

methodology for antibody discovery. 
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Figure 33: Prediction performance comparison between the nanobody pose prediction 

model (NbX) and ClusPro on the 5-fold validated prediction of (A) training set and (B) test 

set. 
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Figure 34: Precision-recall curve of the best single model on the prediction of (A) training 

set and (B) test set. 
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Figure 35: Features with top importance contributed to the prediction of test set of the best 

single model. (A) Summary plot showing SHAP values of individual predictions with the 

annotation of feature values. (B) Summary plot showing the mean(|SHAP|) of the features. 
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Table 1: Distribution of the three CDR loops of the 164 nanobody chains in PyIgClassify 

clusters. The number after hyphen of cluster names represents the length of CDR. The total 

number do not add up to 164 because there were unclassified CDR loops with unique 

structural conformations. 
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Table 2: The combinatorial selection scheme used for selection of the 16 final ELMO1-targeting 

nanobody designs of the first-round design.  
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Table 3: The combinatorial selection scheme used for selection of the 20 designs from the 

second-round design. An additional of three designs were selected by PCA analysis of sequence 

space with the unselected designs, which sum up to a final number of 23 designs from second-

round design. 
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Table 4: Examples of SARS-CoV-2 S-targeting antibody currently developed.  
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Table 5: Selection scheme of the S2-targeting nanobody. 
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Table 6: Binary labeling of “native-like” and “non-native-like” and their corresponding CAPRI label 

and DockQ score ranges. 
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Table 7: Settings in modeling and benchmarking the nanobody pose prediction model. 
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Table 8: Searching ranges of hyperparameters for optimization of model performance. 


