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Abstract 

Animals exhibit a variety of behaviors that are adapted to their environment. Behavior is the final 

output of the nervous system and is a major factor that determines the survival of an individual. Understanding 

the generation and control processes of such diverse and important behaviors is a major goal not only for 

ethology, but also for neuroscience, ecology, evolution, and informatics, and it is a problem that has not yet 

been solved. The main goal of this research is to elucidate and reproduce the system that can generate and 

control various behaviors seen in nature.  

 

Acquisition of the behavior of freely moving Caenorhabditis elegans 

In this dissertation, the behavioral data were mainly quantified and analyzed using the nematode 

Caenorhabditis elegans (C. elegans) to confirm the validity of the method. C. elegans is a suitable 

experimental animal to test the effectiveness of this study because it shows stochastic and multiple behavioral 

patterns while the behavior is easy to measure. First, a behavioral data set was obtained to test the developed 

method, and the behavioral state was quantified by recording C. elegans freely moving in a two-dimensional 

plane. In addition, to investigate whether the stochastic behavioral responses to sensory stimuli can be 

appropriately modeled, I expressed channelrhodopsin (ChR2) in ASH neurons, which are sensory neurons to 

nociceptive stimuli, and activated them by randomly exposing them to blue light during behavioral recordings. 

From the acquired images, I quantified posture and speed as indicators of behavior using image processing.  

 

Probabilistic generative neural networks disentangle dynamics of animal behavior  

In Chapter 1, I aimed to develop a virtual animal model which can both reproduce stochastic animal 

behavior and represent various behaviors in a disentangled latent space. In order to model a phenomenon that 

takes multiple states and is stochastic, a mixture density network - recurrent neural network (MDN-RNN), is 

employed. The MDN-RNN is a simulation-based modeling method to model time series data with stochastic 
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behavior by using a probability distribution as the output part of the RNN. Using MDN-RNN, I trained a 

simulator to predict the behavior of C. elegans 0.2 seconds later based on the behavior of the past 20 seconds. 

After training the simulator using MDN-RNN, it was confirmed that the simulator generated behaviors with 

the same behavioral states and dynamics as those of the real C. elegans through analysis using t-SNE and 

time-delay embedding methods. 

In order to understand the behavior that consists of multiple stochastic states, I analyzed the internal 

representation of the model that can generate the behavior similar to that of a real C. elegans. The results 

showed that each MDN component represented different behaviors. As a result, it was found that the dynamics 

of different behavioral states were extracted and represented in each component. 

 

Behavior control via reinforcement learning 

 In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine 

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits 

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed 

to replace some of the computational mechanisms of the nervous system with a computer in order to 

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce 

behavioral strategies similar to those actually performed by animals without prior information. 

 

Disentangling animal behavior via temporal conditional-subspace VAE 

In Appendix A, I aimed to analyze the topology of the dynamics behind the behaviors of animals 

belonging to different classes by separating the behaviors that are characteristic of each class from the 

behaviors that are common regardless of the class. For example, when the behaviors of wild-type animals and 

model animals for psychiatric disorders are acquired, it is important to extract the behaviors exhibited only by 

the disease model animals and investigate the generation mechanism of the behaviors in order to clarify the 
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disease. To achieve this goal, I applied the conditional subspace - variational autoencoder (CS-VAE), which 

takes behavioral data consisting of multiple groups as input and divides them into elements characteristic of 

the group to which they belong and elements common to all groups in the middle layer of the VAE. The CS - 

VAE takes behavioral data consisting of multiple groups as input and divides it into elements characteristic of 

the group to which it belongs and elements common to all groups in the middle layer of the VAE. This is 

achieved by minimizing the amount of mutual information between the labels of the groups to which they 

belong and the features of the latent space in the middle layer. The effectiveness of this method has been 

verified using toy models, and will be verified using animal behavior in the future. 

 

Conclusion 

In this dissertation, I have succeeded in separating animal behaviors with probabilistic and multiple 

control states by using representation learning of deep generative models. I also succeeded in automatically 

learning a policy to control a virtual animal by reinforcement learning. In this study, C. elegans was used  as 

a model animal, but this model can be applied to other animal species as well. I aim to further develop these 

methods to elucidate the process of generating behavior from neural activity in an interpretable manner. 
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General Introduction 

In the 4.4 billion years since the birth of life and the 3.8 billion years since the emergence of diverse 

organisms in the Cambrian Explosion, animals have acquired diverse and complex behaviors in the course of 

evolution. Animal behavior is the ultimate output of the nervous system, serving as the interface with the 

surrounding environment. As animals survive by interacting with their surrounding environment, proper 

behavioral control is critical for survival. It is a major goal of behavioral neuroscience (and other related fields) 

to clarify the mechanisms that generate these various behaviors, as well as the control mechanisms. Conceptual 

guidelines for studying animal behavior were proposed by Tinbergen in the middle of the 20th century; these 

guidelines have since evolved, along with the surrounding fields, including neuroscience, psychiatry, 

psychology, information science, and robotics. In nature, there is a great variety of behaviors, with each 

behavior influenced by multiple factors, such as genetics, previous experiences, and surrounding environments. 

Why these behaviors occur, what mechanisms control them, and how they have been acquired during evolution 

are fascinating questions. Furthermore, the purpose, control algorithms, and implementation methods (Marr’s 

three levels 1) of these behaviors have received great attention in the fields of artificial intelligence and robotics. 

However, it is difficult to describe each behavior that arises from the diverse and complex factors found in 

nature, as well as to search for the factors that may affect it. These difficulties call for a systematic method of 

analysis. 

Until now, the main strategy has been to observe animal behavior and describe characteristic behaviors, 

and then search for factors that may influence behavior and investigate the relationship between the factors 

and the output in a hypothesis-driven manner. This approach is still important, but it is costly when dealing 

with diverse systems, and is affected by observer bias. However, with the developments in technology, 

especially measurement technology, achieved over the past few years, we are now ready to analyze animal 

behavior systematically. In the following sections, I will review the important developments in measurement 

technology, and the computational analysis methods that have emerged as a result. 
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The rise of computational ethology 

Improvement of quantification methods 

The field of ethology has recently entered a new phase due to progress in measurement technology. 

There have been two major technological breakthroughs. The first breakthrough comprises progress in 

measurement hardware; the recent development of low-cost, high-resolution cameras and widespread use of 

three-dimensional (3D) printers have facilitated the creation of behavior measurement devices. The second 

breakthrough comprises advancements in machine learning and image processing technologies, which have 

facilitated the quantification of posture and other features. I will not detail these developments; rather, I will 

briefly describe them and provide references for further reading.  

 

Developments of hardware 

The democratization of hardware development in recent years has had a profound impact on the field 

of ethology. The widespread availability of low-cost 3D printers and microcomputers (e.g., Arduino, 

Raspberry Pi, and Jetsons) has rendered it easy for laboratories to develop their own devices, tailored to the 

behaviors they wish to measure. Furthermore, high-performance cameras can be obtained at low cost; for 

example, cameras with depth sensors (e.g., Realsense) are available worldwide. In addition, field 

programmable gate arrays and graphics processing units for real-time image processing are becoming popular, 

and experimental systems such as the Etholoop (Fig. 1)2, which tracks animal behavior in 3D in real time and 

stimulates the animal's nervous system in a closed-loop manner, may also become popular. Furthermore, the 

sharing of hardware, software, and knowledge in an open-source manner is important to the continued 

development of this field and community. 
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Fig. 1 Etholoop system2. 

 

Developments of software 

Additionally, recent dramatic improvements in markerless tracking of body parts have enabled a range 

of exciting new possibilities for potential studies (Fig. 2). A typical example of a deep learning model for 

markerless tracking is deeplabcut3. See these articles and reviews3–5 for details.  

 

Fig. 2 Development of motion tracking softwares4. 

 

インターネット公表に関する同意が得られなかったため非公表 

インターネット公表に関する同意が得られなかったため非公表 
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Although the modern recording and posture estimation techniques mentioned above can generate 

large-scale measurements of multiple animal behaviors in both laboratory and naturalistic environments, 

elucidating the underlying processes that comprise behavior remains challenging. This process corresponds to 

the first and second steps in Marr's framework (computation and algorithm) 6. Furthermore, answering each 

of Tinbergen's 4 questions 7) is an important step toward the understanding of animal behavior. Several threads 

of computational works have tackled this problem from different points of view. In the following sections, I 

will introduce analytic methods useful for analyzing the obtained datasets. Additionally, in the final section, I 

will describe the current methodological challenges and possible future directions of the field. 

 

Automatic supervised behavior labeling 

Ethologists and behavioral neuroscientists have described and statistically analyzed behavioral 

patterns by focusing on behavior motifs (also known as behavioral "syllables") or behavioral “grammars” 

(which are the transition patterns of behavioral syllables), just as an unexplained language is broken into its 

grammars 8–10. For decades, the counting and statistical analysis of these motifs has been commonly performed 

not only in behavioral neuroscience, but also in human science and research. However, previous studies have 

manually annotated the behavioral motifs and it was time consuming. 

The simplest example of automation by machine learning is the automation of behavioral motifs 

labeling. This work has been conducted in both ethology and human science 11–19. Several computational 

approaches have been used for supervised clustering, including the decision-tree method (or random forest 

ensembles), Gaussian mixture models, and neural networks-based methods. 

 

Unsupervised behavioral motif classification  

The automatic classification of behavioral patterns can also be achieved using unsupervised 

classification, i.e., the experimenter provides the machine with only behavioral data, and the machine 
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automatically learns plausible classification patterns. Traditionally, ethology and behavioral neuroscience 

have relied on the summary statistics of handcrafted criteria. However, even in highly controlled conditions, 

these metrics tend to be unreliable (across animals, laboratories, and experimenters) 20–22. Furthermore, relying 

on the prior knowledge of a researcher (with inherent bias) may fail to capture complex relationships and 

patterns in higher-dimensional descriptions or higher-order temporal patterns. These limitations have 

prompted interest in developing data-driven methods. Instead of an observer finding behavioral patterns, 

machine learning calculates the similarities among the data of individuals and classifies them. This is expected 

to minimize observer bias and enable quantitative methods that are reproducible. 

 

Behavior map (clustering) 

A typical method for classifying animal behavioral patterns in an unsupervised manner from time-

series data is the behavior map (Fig 3). Since it was proposed in 2014 to visualize the behavior of D. 

Melanogaster 23, the behavior map has been widely used in various animal species, such as C. elegans24, 

zebrafish 25, and rodents. A standardized pipeline is typically used to create the behavior map. Spectral 

estimation using wavelet transformation 26 and manifold embedding techniques (such as t-stochastic neighbor 

embedding27) are applied to raw behavioral data, and embedded points are classified via Gaussian mixture 

models and k-means clustering 23. In combination with probability density functions, it is also possible to 

quantify changes in the frequency of behavioral patterns using concepts of information content, such as 

entropy 28. 

 

Fig. 3 Schematic illustration of  behavior map creation23. 

 

インターネット公表に関する同意が得られなかったため非公表 
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Interpretation of behavior  

The next step in behavior motif quantification, towards an understanding of the behavior, is to describe 

the structure of the behavior dynamics and infer the underlying control mechanisms. In behavior classification, 

there is little interpretation of the structure underlying behavior dynamics. To assess the dynamics or control 

mechanisms behind the observed behavior, a more sophisticated approach is required to represent the behavior 

dynamics.  

In this section, I first briefly introduce the major approaches in dynamics analysis, including hidden 

Markov model (HMM)-based, physical science-based, and deep generative model-based approaches, followed 

by a detailed discussion. The HMM-based approach assumes that there is a hidden state underlying the 

behavioral raw data, and aims to understand the underlying structure by inferring the transition patterns of the 

hidden state. In the physical science-based approach, behavior is considered as a dynamical system, and the 

underlying structure is inferred by using dynamical system analytic methods. The deep generative model-

based approach aims to build a model that can generate data similar to the obtained behavioral data, and the 

underlying structure is inferred by the generative process of the model, or by disentangling the representations 

inside the model. It is important to note that although these methods have different starting points, they are 

not antithetical to each other and can be used in combination. Therefore, it is important to understand the 

nature of each method and use or combine them according to their purpose. 

 

Hidden Markov model (HMM) based method 

State-space models using a HMM have long been utilized in the analysis of time-series data. HMM-

based methods generally model the observed behavioral data by assuming discrete hidden 'states' that 

parametrize the generation process underlying the data. HMMs are highly interpretable because each 

phenomenon is modeled by a discrete state with different parameters governing the behavioral dynamics. 

HMMs also have a long history in modeling human behavior 29,30. A general explanation of HMMs is provided 

in the relevant reference 31, and specific applications to ethology are introduced below. 
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One HMM application is known as Motion Sequencing (MoSeq) 32, which can break behavioral 

sequences into a set of reused and stereotyped sub-second behavioral motifs. MoSeq combines 3D imaging 

techniques with an autoregressive-HMM and characterizes the nature of behavioral changes among behavior 

motifs. Furthermore, MoSeq effectively parses behavioral differences and captures similarities elicited by the 

pharmacological treatments or genetic factors 33. 

Another area of research in HMM-based computational modeling extends HMM to handle a 

continuous latent space. It is difficult to represent continuous time-series data, such as posture transitions and 

neural activities, with a HMM alone. This limitation prompted the development of the switching linear 

dynamical system (SLDS), which combines a HMM and linear dynamical system (LDS) 34–40, allowing 

discrete switches to depend on a continuous latent space and external input. The SLDS is a model in which 

each discrete state has different LDS parameters (corresponding to the dynamics), and the behavior of the 

system changes as the discrete state transitions according to a Markov transition matrix. Linderman and 

colleagues 41,42 developed an extension of the SLDS, known as a recurrent SLDS (rSLDS). In an rSLDS, the 

transition probability is parameterized by the position in continuous space, leading to a more natural transition. 

Additionally, models that can handle neural activity and/or animal behavior have been developed 43–45. 

Through a series of these studies, Linderman's group has applied these methods to the analysis of behavior 

and neural activity in C. elegans, mice, primates, and other animals. 

 

Ethology from a physical science standpoint 

From a physical science standpoint, animal behavior can be viewed as a time-evolving dynamical 

system in a space with a high degree of freedom, including complex posture dynamics. In this high-

dimensional space, animal behaviors are thought to move along a trajectory within a specific attractor due to 

certain constraints, and determining the type of attractor is the very essence of investigating the dynamics 

behind animal behaviors. 

One of the strongest tools used in attractor analysis is time-delay embedding, supported by the 

"embedding theorem" presented by Takens 46. This theorem serves as a bridge between the theory of dynamical 
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systems and actual measured time-series data. Time-delay embedding enables the reconstruction of the 

topological features underlying time-series data; by monitoring the geometrical features, the dynamics of the 

system can be characterized 47. Ahamed and colleagues 47 developed a reconstruction method that considers 

animal behavior as a time-evolving dynamical system, and combined it with an independent component 

analysis (ICA) to analyze the mechanisms underlying animal behavior. In this method, the obtained 

multivariate time-series data is reconstructed with time-delay embedding, and is then divided into behavioral 

elements with different dynamics (differential equations) based on the ICA results. Using this method of 

embedding and ICA, the obtained multivariate measurements can be smoothly unfolded as a combination of 

short-time posture sequences. Furthermore, Tran and Hasegawa 48 showed that the combination of a 

topological analysis and delay-variant embedding, which considers the time delay as a variable parameter, can 

successfully classify the behavior of C. elegans. These studies demonstrate that delay embedding is a powerful 

tool that can characterize dynamical systems and provide a topological analysis of the trajectories in embedded 

space, enabling insights into the geometric structure underlying behavior.  

 

Representation learning via Deep generative model  

One of the most interesting advances in the machine learning field in the 2010s arose through novel 

applications of deep learning to generative modeling tasks. Generative modeling attempts to learn the 

underlying structure of the data generation process. The ability to learn the generative mechanisms behind the 

data renders this method a good fit for science, and it is beginning to be used in the fields of animal behavior 

and neuroscience, to infer the structure behind observed events 49. The strength of deep generative models is 

that the model learns disentangled meaningful representations of observed data during the training process 

(i.e., representation learning). Typical models used in representation learning comprise encoder-decoder-based 

models, such as the variational autoencoder (VAE). VAE and its variants are mainly used in science because 

of their high interpretability 35 and extendibility of the model after learning. Several studies have been 

conducted in the context of human behavior prediction using motion capture (mocap) data 50 and in the 

ethology field, as discussed below.  
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Human motion prediction from mocap data is a classical problem in the field of computer vision. 

Learning meaningful representations of human motion plays an important role in many practical tasks, such 

as human behavior prediction, human-computer (or robot) interaction, and the production of games and 

movies 49,51–53. Recently, it has been shown that an autoencoder-type neural network can learn the manifold of 

human motion 54, and can represent different motions in a latent space, in a disentangled form55 . These 

approaches utilize the representation learning feature of autoencoders, and succeed in obtaining the manifold 

underlying the behavioral dynamics. 

In ethology, there are several reports that utilized deep generative models for understanding the 

underlying dynamics of animal behavior, including the VAE-stochastic neighbor embedding56 and 

BehaveNet57  

Representation learning using deep generative models is a very powerful tool and further 

developments are expected. The analysis of human mocap data and that of animal posture data are essentially 

similar, and it is important to share knowledge between these fields. In addition, the method of separating and 

modeling multiple generative processes is important for both neurobehavioral science and the imitation of 

behavioral control mechanisms in robotics. 

 

Future direction  

Linking brain activity and behavior 

To fully elucidate the mechanisms that generate and control animal behavior, we need to understand 

how the algorithms underlying the behavior are computed and implemented by the nervous system. This is 

the goal of many scientists in behavioral neuroscience. There has been progress in the field of neuroimaging, 

and it is now possible to simultaneously acquire behavioral and neuronal activity data from model animals 

that are freely moving. Although we have already begun to map the dynamics of numerous neural activities 

to the dynamics of behavior, further developments in computational methods are required to elucidate this link 

and to obtain a meaningful representation of the control mechanism. 
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Computational method for comparative research 

Comparison is a very powerful method in enabling humans to understand objects, and behavioral 

comparison is an important subject of analysis in ethology and related fields. In the field of genetics, behavioral 

changes caused by genetic mutations are compared, and in the study of psychiatric disorders, it is important 

to accurately describe behavioral changes in the presence and absence of disease, as well as those caused by 

pharmacological treatments. In developmental biology, it is important to understand how behavior changes 

during development, and from an evolutionary perspective, which behaviors have changed among closely 

related species. Whereas researchers previously focused only on indices handcrafted by the observer, methods 

have now been developed to express the dynamics underlying behavior in an unsupervised manner with high 

interpretability. Thus, we will be able to handle essential differences that have not been revealed as yet. For 

this purpose, it is important to have a method to measure the differences (distances) among obtained 

expressions. This may be realized by measuring the distance between probability distributions, or by using 

adversarial learning. 

 

Considering probabilistic feature of behavior  

It is not easy to model natural events, including animal behavior, as they are stochastic from the 

observer's point of view, and although HMMs and VAEs can handle stochastic elements at a high level of 

underlying abstraction, stochastic elements occurring downstream are often not considered. For example, in 

the field of human motion prediction, recurrent neural networks are often used, but they cannot fully represent 

probabilistic elements and tend to degrade into motionless states or drift away to non-human like motions. In 

order to solve this problem, I propose the use of probability distributions as the prediction target, or to treat 

the parameters of each information-processing process as probability distributions and perform Bayesian 

estimation in the framework of graphical modeling. 
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Control of behavior and closed loop experiments  

Beyond the analysis of animal behavior, it is possible to develop methods to control behavior. It is 

already possible to intervene in nervous system activity through optogenetics and electrical stimulation. In the 

future development of the brain-machine interface, the importance of methods such as augmentation, in which 

the computer and nervous system interact to control behavior and improve the processing power of the nervous 

system, will increase. After understanding the original control mechanisms in animals, an upper layer 

comprising computer control mechanisms will need to be added. It will be important to develop a method to 

seamlessly connect the meaningful representations accumulated in computational ethology with these control 

mechanisms. 
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Aim of this study 

Three key problems in computational ethology were approached in this study. 

In Chapter 1, a simulation method for reproducing stochastic behavior of animals has been developed. 

The construction of a virtual animal model that reproduces the mechanism of animal behavior is important for 

understanding animal behavior. In particular, since the connectivity of each neuron is known in C. elegans, it 

is expected that a virtual animal model will be constructed before other model animals. In this study, I 

developed a method to reproduce stochastic behavior by combining a deep generative model and a generative 

model that predicts probability distributions. By using representation learning, which is an advantage of 

generative models, it was shown that different behavioral patterns (i.e., behavioral patterns with different 

dynamics) are modeled by different components in the model. 

In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine 

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits 

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed 

to replace some of the computational mechanisms of the nervous system with a computer in order to 

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce 

behavioral strategies similar to those actually performed by animals without prior information. 

In appendix A, the development of a computational method for comparative behavioral studies, which 

will become increasingly important in the field of behavioral studies, is proposed. By incorporating the concept 

of adversarial learning, a method for separating behaviors with common dynamics from different behaviors 

in a comparison group is proposed and tested using a toy model.  
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Chapter 1 

Probabilistic generative neural networks disentangle 

dynamics of animal behavior  

 

1.1 Abbreviation 

C. elegans Caenorharbitis elegans 

HMM Hidden Markov model 

ICA Independent component analysis 

LSTM Long short term memory 

MDN Mixture density network 

MDN-RNN Mixture density network - recurrent neural network 

NGM Nematode growth medium 

NN Neural network 

PCA Principal component analysis 

RNN Recurrent neural network 

t-SNE t-distributed Stochastic Neighbor Embedding 
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1.2 Introduction 

Understanding animals' behavior is of great importance in various fields including but not limited to 

ethology, neuroscience, and robotics 58–60. From a biological standpoint, replicating animal behavior is 

important for understanding how the nervous system controls an animal’s body and how it processes sensory 

information and makes decisions to generate corresponding motion. From an engineering standpoint, animal-

inspired robots are in heavy demand for various applications 60–62. In addition, understanding and predicting 

human behavior is important for building human-like robots and developing human assistance systems in real 

worlds. To that end, methods for modeling complex and stochastic behaviors are needed. 

In general, the following steps are necessary to understand the control mechanism behind a system: 

observing the behavior of the system, constructing simulation models of the behavior, and then controlling the 

system ad arbitrium 63. First, it is important to quantify the behavior of the system by observation. Next, the 

underlying control mechanism can be inferred by building a model that can reproduce the behavior of the 

system. Finally, understanding of the behavior is deepened if we learn how to control the system. Furthermore, 

by being able to control the system, we will be able to use the system in the real world. These series of methods 

are applicable to understanding the underlying mechanisms of animal behavior as well as other systems. 

High-throughput behavioral measurement, which is the first step of computational study of behavior, 

has become pervasive across modern ethology and neuroscience thanks to the recent advancement of 

technologies including low-cost cameras, computer vision algorithms, and machine learning tracking 

techniques 3–5. However, modeling behavior, the second step of computational ethology study, remains a 

challenging problem due to the complexity, diversity, and stochasticity of behavior, and there is substantial 

room for improvement in the field. Over the past few decades, researchers have proposed several methods for 

simulating animal behavior. Hidden Markov-based models and it’s variation have been used to model the 

stochastic transition between several discrete behavioral patterns 41,43. Additionally, the point process model 

has been used for modeling stochastic time evolution 64. Neural network-based models such as recurrent neural 

networks have been used for modeling sequential and deterministic dynamics. However, simultaneous 

modeling of the continuous sequential features and stochastic features of behavior is a non-trivial task 65. 
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To overcome this difficulty of modeling stochastic behaviors, I propose an application of mixture 

density recurrent neural networks (MDN-RNNs). MDN-RNNs are recurrent neural networks (RNNs) 

combined with a mixture density network (MDN) which outputs parameters of a Gaussian mixture model 66,67. 

MDN-RNNs process sequential inputs (past behavioral states) and output parameters of the Gaussian mixture 

model (the probability distribution of future behavioral states). MDN-RNNs have been used for prediction 

and generation of sequential data in several research areas such as future prediction of handwriting 67, sketch 

drawing 68, speech synthesis 69, and music generation 70 among others 71,72. These studies showed that MDN-

RNNs are suitable for simulating stochastic sequential data. I expect RNN to capture sequential characteristics 

and MDN to capture the stochastic characteristics of the behavior. 

To investigate the effectiveness of MDN-RNNs as an animal behavior model, I used the nematode 

Caenorhabditis elegans (C. elegans), which is a widely-used model organism in the field of neuroscience and 

behavioral studies. C. elegans has ideal characteristics suitable for testing the new methods: their behavior can 

be easily recorded and described with only a few parameters, but are still quite complex and stochastic at the 

same time 73. With their simple body shape and slow moving speed, automatic posture tracking is not difficult 

74. Several studies have investigated the behavioral states of C. elegans and have shown the stochasticity of 

their behavior 24.  
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1.3 Related research 

I build this work upon several pieces of research on MDN and stochastic sequence prediction with 

MDN-RNNs. I will briefly introduce the concept of related research. 

 

1.3.1 Mixture density network 

MDNs were originally proposed by Bishop 66 for modeling a mixture of Gaussians with neural 

networks which were applied to solve the robot kinematics problem. MDN is an NN which uses probability 

distribution as its output (Fig. 1-2). It is suitable for prediction including confidence level or prediction of 

probabilistic events. 

 

1.3.2 Modeling behavior with RNN 

RNNs have been used in behavior prediction, especially in the task of human pose prediction 49,53,75,76. 

However, for relatively long-term prediction, previous methods tend to fall into a motionless state or a state 

that cannot actually happen 49. 

 

1.3.3 Modeling stochastic sequence with MDN-RNN 

MDN-RNN is an NN that processes the output of RNN by MDN and outputs probability distribution 

(Fig. 1-3). while RNN predicts the state of the next time deterministically, MDN-RNN predicts it as mixture 

probability distribution (Figure). This allows us to deal with stochastic natural phenomena in a more original 

way. 

MDN-RNNs were introduced to model handwriting 67 and sketch drawing 68. Other applications 

include music generation 70, speech synthesis 69, and simulating a 2D game environment as "World Models" 
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71. Extending the “World Models” work, Ellefsen et al.77 shed light on disentangled scene representation with 

MDN-RNNs. This work is inspired by these threads of works.  
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1.4 Materials and methods 

1.4.1 Acquisition of the behavior of freely moving C. elegans 

Multi-worm tracker assay 

In this study, the behavior of C. elegans was used to verify the effectiveness of the method 78. The 

behavior of freely moving adult hermaphrodites on the surface of an agarose plate was video recorded as 

follows. C. elegans hermaphrodites were cultured at 20 °C on NGM plates including 50 mM NaCl with E. 

coli as food source for 4 days and then the behavior was captured on assay plates with 50 mM NaCl for 30 

min. I recorded the behavior of 20 to 30 worms simultaneously. The ASH-ChR2 strain: Is[Psra-

6::ChR2::mCherry+Pges-1::EGFP]; lite-1(ce314) X was used in this study. Random impulses of blue LED 

light were given to activate ASH neurons, and the images of the worms were captured simultaneously. Image 

capture speed was 5 frames per second (fps) and 9000 frames were captured in one assay. 1 pixel in the images 

is equal to 0.01 mm. 

 

Behavioral quantification 

Captured images were analyzed and the behavioral states (shown in Table) were calculated by using 

Matlab (R2017a) and Fiji 79. The images were processed by a denoising median filter, background subtraction, 

and thresholding using automatically selected methods implemented in Fiji. Too small and too large objects 

were regarded as dusts on the assay plate and aggregations of multiple worms, respectively, and removed. The 

remaining objects were regarded as worms. The center lines of worms were obtained by skeletonizing using 

the bwmorph thinning function in Matlab. Coiled worms were detected and removed. The eigenworm 

component weights a1-a5 were obtained by projecting the center lines to the eigenworm space based on high-

resolution tracking data. The worms were tracked by linking the nearest objects in the neighboring frames. 

The speed and direction of the worms were obtained from temporal differences of the centroids of the objects. 
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The behavior of C. elegans was characterized by assessing its posture, velocity, and angular velocity. 

The posture of worms can be described by the weighted sum of five principal components called eigenworms 

73. The posture was expressed in five dimensions using the eigenworm 73. The velocity was expressed in three 

dimensions: speed of the center and direction of movement (sine and cosine). The angular velocity of the 

center was represented as a scalar. The behavior of C. elegans was quantified in a total of nine dimensions. 

For the convenience of tracking, data at times when posture and movement speed could not be calculated 

correctly were excluded, and data from worms in which behaviors could be quantified for less than 20 sec in 

a row were excluded. 

 

 

1.4.2 Basic analysis of the behavior  

Unsupervised behavioral classification by t-SNE 

A nonlinear dimensionality reduction method, t-SNE, was used to visualize behavioral states. Based 

on the time series behavioral data consisting of seven dimensions of C. elegans posture, velocity and angular 

velocity, the data were pre-processed by PCA and then embedded in a two-dimensional space by t-SNE. After 

that, probability density estimation and Gaussian filter processing were performed to create a behavioral map. 

To add simulator-generated behavioral data to the behavioral map created from the real behavior we used a 

function of the openTSNE package 80. 

 

Dynamics analysis by time-delay embedding  

One of the methods to describe the behavior of a target system in a time-evolving nonlinear dynamical 

system is the time-delay embedding method based on Takens' theorem 46.  Other authors recently proposed a 

method to describe the dynamics of animal behavior by combining the time-delay embedding and 

dimensionality reduction methods 47. In the present study, we followed the previous studies. First we denote 
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𝑥𝑡,𝑖 as 𝑖-th behavioral feature including eigenworm weights at time step 𝑡, and 𝑦𝑖 = [𝑥1,𝑖, 𝑥2,𝑖, ⋯ , 𝑥𝑇,𝑖] T as the 

time series of 𝑖 -th behavioral feature from time steps 1  to 𝑇 . The full-length behavioral data 𝑌 =

[𝑦1, 𝑦2, ⋯ , 𝑦𝑑] is 𝑇 × 𝑑 dimensional matrix where 𝑑 = 5-dimension eigenworm weights. Then we lift the 

matrix 𝑌 into (𝑇 − 𝐿 + 1) × 𝐿𝑑-dimensional space of 𝐿 contiguous delays. 

�̅�𝐿 = Φ𝐿(𝑌) = [𝑌𝐿:𝑇 𝑌L−1:𝑇−1 ⋯ 𝑌1:𝑇−𝐿+1] (1) 

(2) 

Where 𝑌𝑡1:𝑡2 denotes the behavioral data from time steps 𝑡1 to 𝑡2. We used continuous time embedding with 

L=10 steps (corresponding to 2 sec) as the embedding time. After embedding, data from all individual animals 

were concatenated and independent component analysis (ICA) was performed using the Fast ICA method 81. 

and embedded into a m-dimensional subspace 𝑍𝑚,  

𝑍𝑚 = �̅�𝐿𝛤𝑚 (3) 

where 𝛤𝑚  is the 𝐿𝑑 × 𝑚 matrix for ICA dimensional reduction. In this case, time series of postures were 

finally embedded to 𝑚 = 5-dimensional space. 

For the analysis of the virtual behavioral data generated by the MDN-RNN, the time-delayed embedding 

was compared with the real animal data. Similar to above, a continuous time embedding of 2 seconds was 

performed. For the dimensionality reduction, we used a mapping (Φ𝐿(𝑌), 𝛤𝑚) that was obtained with real 

animals. 

By applying time-delay embedding, generally we aimed at finding out 2 dimensions (forward modes) 

which activates during C. elegans forward movement, and 2 dimensions (reverse modes) which activates 

during its reverse movement. We refer to the subspace parameterized by the 2 forward modes as forward 

subspace, and similarly we define the reverse subspace. 
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1.4.3 Implementation of neural network models 

Implementation and training of the MDN-RNN and RNN model 

The output of MDN-RNN consists of parameters of each Gaussian distribution, which are centers (𝜇) and 

diagonal covariance matrix (Σ) for each Gaussian component, as well as weight (𝜋) for each Gaussian 

distribution. The mathematical representation of the outputs is shown in equation (4) – (5), where K is the 

number of Gaussian components, 𝑥𝑡 is the behavioral state at time t, ℎ𝑡 is the hidden state of the RNN at time 

t, and 𝑠𝑡 is the stimulus at time t (0 or 1). The RNN consisted of three layers and LSTM was used. Each RNN 

layer consists of 128 neurons. 

𝑝(𝑥𝑡+1|𝑥𝑡 , ℎ𝑡 , 𝑠𝑡) = ∑ 𝜋𝑘(𝑥𝑡, ℎ𝑡 , 𝑠𝑡)𝒩(𝑥𝑡+1| 𝜇(𝑥𝑡, ℎ𝑡 , 𝑠𝑡)

𝐾

𝑘=1

, Σ(𝑥𝑡 , ℎ𝑡 , 𝑠𝑡)) (4) 

∑ 𝝅𝒌(𝒙𝒕, 𝒉𝒕, 𝒔𝒕)

𝑲

𝒌=𝟏

= 𝟏 (𝟓) 

 

The model was implemented based on the Python and PyTorch 82 framework. Given the past and 

future pair (𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑋𝑟𝑒𝑎𝑙), training was carried out by minimizing the negative log-likelihood. Parameter 

optimization was carried out using RAdam 83, which was claimed to be robust to learning rate change and able 

to eliminate the necessity of learning rate warmup. 

For the inference, we sampled the next behavioral state from the mixture of Gaussians. First, the 

component was categorically sampled according to weight π, followed by sampling from the selected Gaussian 

distribution. 

MDN-RNN takes 10-dimensional inputs: a1, a2, a3, a4, a5, angular velocity, velocity, direction 

(cosine and sine) and light stimulus information. The output of the model is designed to be a Gaussian mixture 

model which consists of K components of 9-dimensional Gaussian distributions to determine the probability 
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of a1, a2, a3, a4, a5, angular velocity, speed, direction (cosine and sine). To simplify the model, the covariance 

matrices were restricted to diagonal matrices. Therefore, the output of the network was a vector of 

K+K×D+K×D dimensions where K is the number of Gaussian distributions and D is the dimension of the next 

behavioral state, which is 9. The first K output neurons define the weights of each Gaussian distribution. Next 

K×D values represent the mean of each distribution and the last K×D values define the variance in each 

dimension of the distribution.  

To test the role of MDN, we trained an RNN-based model, which only differed from the MDN-RNN 

model by the size of the MDN layer so that the output of this RNN-based model can be directly interpreted as 

behavioral state values of the next time step. We optimized the RNN-based model with MSE error until the 

same early-stopping condition with the MDN-RNN model was met. We saved the first 2000 time steps of 

prediction data and estimated the distribution that the RNN-based model gives, using various initialization 

conditions.  

 

Quantification of the similarity between real behavioral data and generated behavioral data with 

Kullback–Leibler Divergence 

Kullback-Leibler (KL) divergence measures the difference between two probability distributions. By 

treating the dataset as an i.i.d sample from the true distribution (of C. elegans behavioral states) and drawing 

random samples from the model as an i.i.d sample from the learned distribution, we utilized KL divergence to 

evaluate the likelihood of the model. 

Admittedly, KL divergence does not directly measure the difference between the real and learned 

dynamics which drives the C. elegans behavior states and generates the distribution, and it measures the 

difference of the resulted distributions instead. Despite this limitation, KL divergence should still be 

considered as a valid quantitative measurement of the model quality. 
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Analysis of disentangled representation in MDN-RNN 

To analyze the internal representation of MDN-RNN, we collected generated virtual behavioral data. 

We simulated 10 episodes and stored the behavioral states, stimulus, and parameters for mixture Gaussian 

distribution. Each episode consists of 10000 steps. The generated data were used to analyze the histogram for 

each feature of each component, to analyze the behavioral patterns by embedding them in the behavior map, 

and to analyze the dynamics in the behavioral state space created by the time-delay embedding. 

The embedding of the behavior map was made by using a function of the openTSNE package. 

OpenTSNE was also used for adding simulation results to the behavior map created with the actual C. elegans 

behavior. 

The conversion to behavioral state space was done by performing time-delay embedding under the 

same conditions as used in the actual C. elegans behavioral analysis and ICA. 
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1.5 Result 

1.5.1 Acquisition and basic quantification of C. elegans behavior 

In this study, C. elegans was selected as a target to apply the new model I proposed. First, to build a 

virtual model of C. elegans, we collected behavioral data of freely moving C. elegans using a high throughput 

behavioral assay developed in a previous study 78. We placed worms on an agar surface and video-recorded 

their behavior at 5 fps with and without random optogenetic activation via channelrhodopsin (a light-activated 

ion channel) of sensory ASH neurons. ASH neurons are major nociceptive sensory neurons that mediate 

reversal responses (backward movement) to noxious stimuli including nose touch, heavy metals, and alkaloids 

84. We optogenetically activated these neurons via illumination to obtain information of sensorimotor 

responses. 

Next, the behavioral sequence of C. elegans was quantified at each time point across 9 variables: 5 

variables (a1 ~ a5) representing posture, and 4 variables representing velocity, angular velocity, and sine and 

cosine of head direction (Fig. 1-7 and Table 1-1). Eigenworm coefficients a1 through a5 were used for 

quantifying the body shape of C. elegans by conventional methods73, while the centroid of the body was used 

for quantification of the velocity and angular velocity of each worm (see Methods and table). 

To investigate the behavioral components and sequence structure, we first aimed to categorize 

behavioral patterns. We embedded behavioral data into 2 dimensions in an unsupervised manner by using 

PCA and t-SNE (Fig. 1-5). Embedded behavioral states formed distinct groups which were found to 

correspond to different behavioral patterns; forward, reverse and pause. Based on velocity and angular velocity, 

we were able to interpret these patterns and thus create a behavior map (Fig.1-8 A). 

We also quantified and visualized the dynamics of C. elegans behavior by applying the time-delay 

embedding method which makes us able to extract dynamic properties of C. elegans behavior (Fig. 1-6; 

Ahamed et al. 47). Visualization in two dimensions confirmed that different dynamics underlie the forward and 

backward behaviors (Fig. 1-8 B and C). We used these features to test how well the virtual models of C. 

elegans could replicate actual behavior as described in the next section. 
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1.5.2 A generative neural network model can successfully reproduce animal behavior 

Training the MDN-RNN model of behavior 

To simultaneously model the sequential and stochastic characteristics of behavior, which is the first 

goal of this research, I  utilized the MDN-RNN model. This model is a RNN model combined with an MDN 

as an output layer (Fig. 1-3A). The RNN stores the information of previous inputs (behavioral dynamics), and 

this feature makes it capable of representing and predicting sequential data. The MDN transforms the values 

given by the RNN into a mixture of Gaussians (i.e. mixing the weights of each component of the mixture with 

the mean and covariance vectors). This enables the model to handle the stochastic features as probability 

distributions. MDN is an excellent way to model the data, especially for multistate and/or stochastic 

phenomena, including animal behavior (Fig. 1-3B). Since behavior is sequential and stochastic, MDN-RNNs 

is a powerful tool for modeling this type of biological phenomena.  

In practice, I designed the MDN-RNN model to be composed of a 3-layer RNN followed by a 1-layer 

MDN (Fig. 1-3C). In this model, the MDN-RNN takes the behavioral state and stimulus information of the 

sensory ASH neuron for the past 20 s as input, and predicts the probability distribution of the behavioral state 

of the next step, which is a mixture of Gaussian distributions in nine dimensions. In the MDN-RNN simulator, 

the behavioral state of the next step is sampled from the Gaussian mixture distribution. First, an index of a 

Gaussian distribution is selected, according to the weight of each distribution (categorical sampling). Next, 

the value of the behavioral state vector is selected from the Gaussian distribution for the selected index, defined 

by the mean and variance of the distribution, which provides an output of the network. Hyperparameter search 

for the number of Gaussian components K was performed by minimizing negative log-likelihood (Fig. 1-9). I 

selected K=10 because the model trained with this value effectively disentangled the dynamics underlying the 

behavior (shown in the following section). 

Qualitative validation of behavioral model 

I trained the proposed model using the behavioral data of C. elegans. The behavioral patterns 

generated by the model were very similar to those of actual C. elegans (Fig. 1-10 A and B). The trained model 

was able to accurately represent the behavioral patterns during forward and backward movement. These results 
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suggest that MDN-RNN can represent multiple behavioral states in a single model, i.e., it has multiple internal 

models. To study this, I statistically analyzed the behavior generated from MDN-RNN. The histogram of 

velocity shows that the MDN-RNN generates both forward and backward behavior in a single model (Fig. 1-

10 C). These results give support for the hypothesis that a mixed Gaussian distribution, the output of the MDN 

layer, enables the representation of multiple behavioral patterns in a single model. 

Furthermore, I analyzed the dynamics behind the behavior using the time-delay embedding method. I 

found that the represented dynamics were very similar between actual C. elegans behavior and behavior 

generated by MDN-RNN (Fig 1-10 D to G), suggesting that the MDN-RNN model successfully learned the 

dynamics of the behavior. 

Quantitative evaluation of behavioral model 

For quantitative evaluation of the performance of the MDN-RNN and RNN model, I calculated Kullback-

Leibler (KL) divergence between random samples of real C. elegans behavioral data, and between real data 

and generated data (Table 1-2). As a preparation, I split real C. elegans behavioral data into 10 parts (10 folds) 

and obtained 10 pairs by leaving one-fold out recursively. I also generated two behavioral data sets, each with 

the same size as one-fold defined above, using the MDN-RNN and RNN model respectively, and obtained 10 

pairs for each model by replacing the 1-fold real data part with the generated data. After that, I estimated the 

sampling error with KL divergence of the real data pairs. I then estimated the model error, with KL divergence 

between the generated data and the real data. Note that for all KL divergence calculations, I treated the 9-fold 

part of each pair as true distribution, and the 1-fold part as sample distribution. Also note that sine direction 

and cosine direction are considered less important than other features, since the direction of worm movement 

tends to distribute uniformly in the long term. Thus, I excluded sine direction and cosine direction from the 

data set, in all KL divergence calculations. Apart from calculations with raw features, I also applied similar 

calculations to data embedded with t-SNE, so that quantification and visualization of the model error can be 

achieved simultaneously (Table 1-2 and Fig. 1-11). From these results, it was confirmed that the distribution 

of behavioral features generated from MDN-RNN were closer to the actual behavior of C. elegans than those 
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from RNN. However, it is not the same level as that of actual behavior of C. elegans, and there is still room 

for improvement. 

As a final test for the accuracy of the MDN-RNN behavioral simulator, I validated the capability of 

the simulator to reproduce the behavioral response to sensory stimulation. As described above, the MDN-

RNN model also takes stimulus information as an input. I quantified the frequency of reversal behaviors by 

delivering inputs that hypothetically stimulated ASH neurons. In real C. elegans, stimulation of ASH neurons 

has been shown to increase the frequency of reversal behavior. In this model, also, the frequency of reversal 

behavior increased in response to stimulation of ASH neurons (Fig. 1-12), indicating that the model learned 

the behavioral response of C. elegans to ASH neuron stimulation. 

 

1.5.3 MDN-RNN disentangles behavioral patterns 

Next, in this section, the process of the MDN-RNN model recapitulates behavioral sequences of C. 

elegans was further examined. Representation learning is a powerful feature of deep generative models. Deep 

generative models learn a meaningful representation in the model so that the data of interest can be generated 

with accuracy. Here, I will show that the MDN-RNN performs this disentangled representation learning and 

decomposes a behavior into different behavioral patterns. For the sake of convenience, I will hereafter use the 

term component to refer to each Gaussian distribution. Namely, a Gaussian mixture distribution as the MDN-

RNN output consists of K (=10) components. As described above, this MDN-RNN simulator selects one 

component at each time point, and behavioral variables are randomly sampled according to the Gaussian 

distribution of the component. 

First, I statistically analyzed the distribution of the behavioral variables in each component using a 

generated 10000-step prediction. I successfully found apparent differences in the distribution of velocity and 

angular velocity between the 10 components: reversal behavior was represented by components 0 and 1, pause 

behavior was represented by component 2, transition from forward to reverse was represented by components 

3 and 4, and forward behavior was represented by the group of components 5 to 9 (Fig. 1-13 A and B). Among 
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the components representing forward behavior, component 9 represented mainly fast forward behavior. These 

results suggest a disentangled representation of behavioral patterns per component. 

This result is consistent with the claim of Ellefsen et al. 77 that different components can be studied to 

model different possible future sequences. To clarify the differences between each component better, I 

represented the generated behavior in the behavior map by adding data created from actual C. elegans behavior. 

The results confirmed that the behavioral states sampled from the same component are close to each other in 

the 2-dimension latent space and hence occupy continuous areas, whereas those sampled from different 

components are relatively separated (Fig. 1-13C). This result is consistent with the previous claim that 

different components represent different behavioral patterns. 

Furthermore, I mapped the dynamics of each component to the dynamics of actual behavior in the 

time-delayed embedded space, considering that each component may represent different dynamics (Fig 1-13, 

D and E). As a result, I found that the dynamics of each component corresponded nicely to a subset of 

dynamics in the time-delay embedded space. 

Finally, to determine what types of behavioral features were represented by each component, I 

observed the behavior when each component was forcibly selected in a continuous manner. The MDN-RNN 

simulator performs random sampling of components according to the probability, and then extracts a sample 

from the distribution given by the component. However, in this test I tried to constantly sample from a specific 

component of the Gaussian mixture distribution. Surprisingly, I found that each component itself can generate 

a fluent series of movements and that the patterns of motion differed between components. 

These results show that by modeling probabilistic time series data with an MDN-RNN, the dynamics 

of the system can be disentangled by the internal representation of the MDN-RNN. This means that the 

probabilistic generative model learns and internally represents the structure of the system during the training 

process of the time series prediction task. In this study, I treated the behavior of C. elegans as an example of 

probabilistic evolving time series of biological phenomena. This approach could be used for not only behavior, 

but also other types of data sets including neural activity dynamics. 
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1.6 Discussion 

1.6.1 Disentanglement of behavioral dynamics by representation learning 

An essential advantage of this approach is the automatic classification of animal behavior through 

representation learning of deep generative models. I applied a powerful feature of deep generative models, 

representation learning, to analyze animal behavior. A deep generative model is a machine learning method 

that learns the underlying structure of the data being generated, and the model learns a mechanism by which 

it can generate realistic data 85. In the process, the model casts the underlying structure of the data and organizes 

the representation into features with different properties. It is known that MDN-RNNs models learn different 

dynamics in a disentangled representation as a time-evolving Gaussian mixture 77. More precisely, it is known 

that different Gaussian components in the MDN layer have two complementary roles: to separately model the 

different events governed by different dynamics, and to separately model the different stochastic events 77. In 

this research, I successfully modeled multiple behaviors governed by stochastic elements and different 

dynamics of animal behavior using these features. I showed that the complex dynamics are unraveled and self-

organized for each of the different components in the learned model. 

 

1.6.2 Applicability of sequential mixture density neural network 

The modeling methods developed in this dissertation are not limited to C. elegans behavior. In fact, 

the model can be applied to behavior and neural activity of other animals. I showed that MDN-RNNs can be 

used to simulate C. elegans behavior with high accuracy. Technologies for behavioral quantification from 

time series images are rapidly developing 4. Accordingly, behavioral states of various animals have been 

characterized, and human motion has been captured and analyzed quantitatively. Therefore, using variables 

from continuous animal behavior or human motion as inputs, I could potentially simulate the behaviors of 

many animals, including humans, whose behavior is more complex than the worm’s behavior analyzed in this 

study. One of the important properties of any method for analyzing behavior is that it can be easily scaled to 

the analysis of other animal species. The method I adopted can handle time series data in any format. Various 
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characteristics of animal behavior have been quantified so far, and recent developments in technology have 

made it possible to easily obtain skeletal data of human and animal body postures. The methods presented in 

this study are compatible with all of these methods and could be used as the first of the post-quantification 

steps of behavioral analyses. 

Furthermore, the proposed method is not limited to behavioral data. In principle, this method can be 

applied to any stochastic sequential data in biology and can learn meaningful representation to generate those 

biological phenomena. Neural activity is one of the first targets for extension of this work as probabilistic time 

series data modeling. In our group, we have started modeling neural activity data using MDN-RNN. The 

probabilistic deep generative model is effective for both direct modeling of the phenomenon itself and 

parameter estimation of mechanistic models, and further applications are expected in the future. 

 

1.6.3 Building the first complete computational model of C. elegans 

In this study, I have succeeded in creating a "virtual nematode" that mimics the behavior and specific 

sensory responses of the nematode. By extending the results of this study, I expect to be able to create a virtual 

nematode whose neural network more closely resembles the actual neural connections of a nematode, and 

whose internal representation is more similar to that of an animal. By closing the gap between the data-driven 

generative model created in this research and the mechanistic model created based on the neural circuit 

structure and skeletal structure, it will be possible to create a generative model that is closer to the control 

mechanism of actual animal behavior. C. elegans is a particularly good model animal for this purpose. In this 

paper, I discuss the significance of creating a "virtual nematode" and ideas on how to create it. 

 

We still do not understand the mechanisms by which the complex and diverse animal behaviors found 

in nature are generated. The main challenge for neuroscience is to understand how each neural activity is 

related to behavior and how it is involved in the generation mechanism. By creating virtual animals and reverse 

engineering animal brains, ethology can benefit in many ways. Describing the process of generating behavior 
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is the goal. Moreover, if we can predict which part of the generation process is abnormal and leads to 

psychiatric disorders, we can select effective targets for treatment. Furthermore, the mechanism of embodied 

control will be highly valuable in AI research, especially in robotics.  

C. elegans is an excellent model organism for linking neural activity to behavior. The nervous system 

of C. elegans consists of 302 neurons, and all of their neural connections have been identified. With the 

technical development of high-speed microscopy and tracking systems, it is now possible to record neural 

activity during free-ranging behavior. Therefore, it is now possible to obtain both behavioral data and data on 

almost all neural activity in the head at the same time. With this background, I believe that it will be the first 

animal to be able to reproduce neural activity and behavior in silico, based on actual neural activity data and 

structural connections obtained. 

At present, RNNs are reproducing the behavior of animals and processing information in the actual 

nervous system. I believe that it is possible to construct a neural network that is more biologically similar to 

an animal. Our group has previously developed a mechanistic model of C. elegans behavior, and we have 

already begun to integrate this mechanistic model with my data-drive model to create virtual nematodes that 

correspond to virtual neural activity and locomotion. The results of this study, which proposed a data-driven 

generative model, are very important as a foundation for research on creating such virtual animals, and I look 

forward to further development. 

1.6.4 Real world application of behavior prediction 

Prediction of animal behavior, including human behavior, has a huge impact on social application. 

For example, in the field of robotics, human behavior prediction models enable robots to anticipate how 

humans may react to the robots’ actions. The same is true in the realm of automated driving. Estimating the 

probability distribution of how people behave and where they will be in a few seconds afterwards is an 

essential part of the technology to make automated driving work safely. Hence, probabilistic prediction of 

human behavior has a huge impact on the social application of robots and other applications. 
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1.7 Figures and Tables 

 

Fig. 1-1 Research paradigm. 

  



39 

 

Fig. 1-2 Schematic illustration of mixture density network. 
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Fig. 1-3 Schematic illustration of mixture density recurrent neural networks (MDN-RNN).  

(A) Schematic illustration of the MDN-RNN. The input is first processed by the RNN and then transformed 

into each parameter of the Gaussian mixture distribution by the MDN layer. (B) A conceptual diagram of the 

prediction method for time series data. The predicted values in the near future is deterministically output from 

RNN based on data of the past time points, which are shown as dots. On the other hand, MDN-RNN outputs 

the probability distribution of the next predicted values from the data of the past time steps, which is showed 

as colored ovals. (C) A detailed description of the MDN-RNN used in this study. The behavioral states of the 

past 100 steps are received as input, processed by the three-layer RNN, and then transformed by the MDN 

layer into each parameter of a Gaussian mixture distribution consisting of K Gaussian distributions, where 𝑥𝑡 

is the behavioral state at the time t, 𝑠𝑡 is the stimuli at time t, and 𝜋𝑘, μk and σ𝑘 is the parameters of the 

Gaussian mixture distribution. 
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Fig. 1-5 (A) Schematic illustration of 2D behavior embedding. (B and C) Relationship between position on 

the behavior map and angular velocity and speed.  
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Fig. 1-6 Schematic illustration of behavioral dynamics analysis by time-delay embedding and independent 

component analysis (ICA). Time delay embedding was followed by ICA to extract the behavioral modes, each 

of which is dominated by different dynamics. These analyses were performed using only the information of 

the posture of C. elegans.  
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Fig. 1-7 Acquisition of the behavioral dataset. Schematic illustration of data acquisition and quantification 

process. Freely moving animals were video-recorded by a high-throughput assay system. Behavioral states 

are expressed in nine dimensions. The behavioral states were used to create a behavioral map and to analyze 

the dynamics using time-delay embedding.  
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Figure 1-8. Quantification of the behavioral dataset. (B) Behavior map of freely moving C. elegans. Behavior 

is embedded in two dimensions and appears to be mainly affected by the value of the velocity and the value 

of the angular velocity. The value of the velocity corresponds to the forward and backward movement of the 

nematode, and when absolute value of the angular velocity is large, the animal remains in one place . (C and 

D) Visualization of the dynamics in a two-dimensional space. The dynamics changes significantly during 

forward motion (C) and reverse motion (D). Each time point is colored according to the velocity.  
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Fig. 1-9. Relationship between number of components and mixture density recurrent neural networks loss.  



46 

 

Fig. 1-10. A generative neural model can successfully reproduce the behavior of animals. (A and B) 

Comparison of the behaviors generated by the probabilistic generative models and the actual nematode 

behavior. The light blue area is the actual nematode behavior data used for initialization; the Real column 

shows the subsequent behavior of the real nematode; the MDN-RNN and RNN columns show the behavior of 

the virtual nematode generated by the trained simulator. A and B illustrate the results of initialization using 

different behaviors of real animals. (C and D) Comparison of MDN-RNN and RNN distributions on the 

behavior map. (E and F) Trajectory in a behavioral state space (E: forward and F: reversal). 
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Fig 1-11. Qualitative evaluation of the accuracy of simulated behavior 

(A) The behavior map embedding of the real C. elegans behavior. (B) - (D) Results of KL divergence 

comparison with actual C. elegans behavior shown in (A). (B) Comparison results of KL divergence with 

sampled actual C. elegans behavior. (C) Comparison results of KL divergence with the behavior generated 

from MDN-RNN. (D) Comparison results of KL divergence with the behavior generated from RNN. 
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Fig 1-12. Response of the model to stimulus input. After 1 s of stimulation (indicated by the bar) the reversal 

rate increased. This indicates that the model animal responded to the stimulus input. The dashed lines represent 

the standard deviation.  
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Fig. 1-13. Behavior dynamics is disentangled by the deep generative models. (A and B) Histogram of velocity 

(A) and angular velocity (B) for each behavioral state generated from each component. Reversal behaviors are 

mainly represented by components 1 and 2, while turn behaviors are represented by component 3. (C) 

Probability density on the behavior map for each component. (D and E) Trajectory in behavioral state space 

(D: forward, E: reversal) when each component is selected.   
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Table 1-1. Variables for the quantification of the behavioral state 

  Description Variable name in the code 

Shape Eigenworm component 1 weight a1 

  Eigenworm component 2 weight a2 

  Eigenworm component 3 weight a3 

  Eigenworm component 4 weight a4 

  Eigenworm component 5 weight a5 

Velocity Angular velocity AngularVeolcity 

  Velocity VelocityTailToHead 

Direction Sine of advance/retraction angle Direction sine 

  Cosine of advance/retraction angle Direction cosine 

Stimulus Led on (1) of off (0) led 
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Table 1-2. Quantification of sampling error and model error (average ± sem) 
 

KL divergence 

with raw features 

KL divergence 

with T-SNE 2d-embedded data 

Sampled real data 0.117±0.002 11.928±0.132  

RNN 8.229±0.001 24.440±0.043 

MDN-RNN 0.432±0.001 15.133±0.016 
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Chapter 2  

Behavior control via reinforcement learning  

 

2.1 Abbreviation 

C. elegans Caenorharbitis elegans 

DQN Deep Q Network 

MDN-RNN Mixture density network - recurrent neural network 

NN: Neural network 

RL Reinforcement learning 
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2.2 Introduction 

Understanding animals' behavior is of great importance in various fields including but not limited to 

ethology, neuroscience, and robotics 58–60. From a biological standpoint, replicating animal behavior is 

important for understanding how the nervous system controls an animal’s body and how it processes sensory 

information and makes decisions to generate corresponding motion. From an engineering standpoint, animal-

inspired robots are in heavy demand for various applications 60–62.  Although previous studies have been 

focused on extraction of behavior strategy in hypothesis-driven manner, recent advancement of behavior 

measuring and machine learning will make it possible to automatically extract the behavioral strategies. 

Therefore, the research aimed to replace the animal's behavioral strategy in a specific behavioral task with a 

machine. 

In this research, we examined the effectiveness of using reinforcement learning (RL) for automation 

of controlling animal behaviors in the simulation environment developed in Chapter 1 (Fig. 2-1). RL is a type 

of machine learning that is specialized for learning the policies for specific tasks 86. Previous studies have 

suggested that mammals adopt an RL framework to decide their behavioral strategy 86–88. By replacing animals’ 

learning systems with machine learning systems, I aimed to control virtual animal behaviors ad arbitrium. 

Because RL generates policies which achieve specific tasks, control of animals is accomplished automatically 

and systematically; without the need to specify how to manipulate animals. 
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2.3 Background and related research 

2.3.1 Reinforcement learning 

In this section, I will briefly describe the concept of reinforcement learning. Reinforcement learning 

is a type of machine learning in which machines try to learn the best policy to solve a target task automatically 

during the process of trial and error. In the reinforcement learning setting, the agent (machine) and the 

surrounding environment interact with each other (Fig. 2-2). The following three steps constitute a 

reinforcement learning trial; the environment presents the state to the agent, the agent decides the action, and 

the environment updates the state and also passes the reward to the agent depending on the action. The goal 

of the training is that agents learn the policy which can obtain rewards as much as possible from the 

environment. There are several algorithms for the update (learning) of the policy. The algorithm used in this 

study is detailed in the methods section. 

 

2.3.2 Replicating animal behavior via robots 

Replicating animal behavior and body control systems have great benefits on robotics. Several works 

have tried to replicate the animal body control system by building mechanist models61  and/or using machine 

learning methods such as reinforcement learning models 60. 

However, few works have been done on autonomous extraction of behavioral strategy and its 

application to robots. Since many animal-inspired robots have been introduced into practical use, it will 

become increasingly important to imitate and deploy behavioral control strategies which adapt to the 

surrounding environment from animals themselves. In this manner, methods for extracting autonomous 

behavioral strategies are needed. 
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2.4 Method 

2.4.1 Problem setting 

Hypothetical navigation task was designed to test the usefulness of reinforcement learning in 

controlling animal behavior and extracting behavioral strategies (Fig. 2-3, 2-4). In reinforcement learning, the 

problem setting can be divided into environment and agent. The interaction between environment and agent 

is shown below. The environment presents the current state, and the agent decides the action based on the 

current state and its own policy. The environment then receives the action from the agent and returns the next 

state and reward to the agent. The details of environment and agent are described in the next section. 

 

Environment (Navigation task) 

The environment in this task consists of the goal position and behavior state of the animal (C. elegans) 

in simulation space, and returns the rewards based on the agent's position. State is composed of the direction 

and speed of the worm and its posture as values of eigenworm (a1 and a2). Direction of the worm was 

calculated as a difference of angles between the direction of the goal point and moving direction of the worm 

in the following equation, 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛𝑔𝑜𝑎𝑙  −  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑤𝑜𝑟𝑚  

where as,  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑔𝑜𝑎𝑙  is the angle toward the goal point from the position of C. elegans and 

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑜𝑟𝑚 is the heading angle of C. elegans in the simulation environment. Speed is represented as 

velocity, and posture has values of eigenworm a1 and a2 (refer to the behavioral quantification section in the 

Chapter 1 and Table 2-1 for explanation of these variables).  
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Table 2-1 Variables for the reinforcement learning environment state 

State Name Description Variable name in the code 

Eigenworm 1 Posture variable 1 a1 

Eigenworm 2 Posture variable 2 a2 

Direction Difference between goal direction and worm direction angle 

Speed Velocity of the worm speed 

 

The simulator of the environment receives the previous state and action and returns the reward and 

next state. The simulation of behavior conducted based on the MDN-RNN model, which was created in 

Chapter 1.  

The task was designed to control the behavior of C. elegans: navigating toward the goal point (Fig. 2-

4). Reward was defined as the decrease of distance (pixels) from the goal point (if C. elegans approached the 

goal, it obtained a positive reward) and an additional bonus reward of 1000  was obtained for reaching the 

goal. The reward was calculated by the following equation. 

𝑅𝑒𝑤𝑎𝑟𝑑 = 1000 𝑖𝑓 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑔𝑜𝑎𝑙;  𝑒𝑙𝑠𝑒 (𝑑𝑖𝑠𝑡𝑡−1 − 𝑑𝑖𝑠𝑡𝑡) 

𝑑𝑖𝑠𝑡𝑡 and 𝑑𝑖𝑠𝑡𝑡−1 represent distance to the goal point from the position of the worm in time point t and t-1, 

respectively, and so indicate the change of distance toward the goal point. 

 

Agents 

In this task, the agent is the optogenetic controller, which is designed to obtain the greatest possible 

rewards through the RL scheme. The binary action of turning the lights on/off activates the ASH neurons 

optogenetically (Table 2-2). Agents decide the action based on the policy π. The objective of the training is to 

find the policy 𝜋 to maximize the sum of future rewards. 

 

Table 2-2 Variables for the reinforcement learning environment state 
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Action name Description Variable name in the code 

Stimulus Optogenetic stimulation of ASH neurons led 

 

2.4.2 Agent model 

Q-learning 

As mentioned in the previous section, the purpose of learning is to obtain the policy which makes the 

agent to obtain high reward from the environment. An effective way to learn such policy is to formulate it as 

the function of the discounted reward to each of the state-action pairs, which is called q-values,  

𝑄 𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡  |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} 

By setting 𝜋 = 𝜋∗ , I can obtain the optimal policy 𝜋∗ by learning the q-values for every state-action 

pairs. Such a learning method is called Q-learning. 

Once the q-values are learned, the optimal policy at a given state is to choose the action with highest 

value with probability (1 − ε ) where ε is the exploration factor. This method of action selection is called the 

greedy method. 

 

Deep Q-learning (DQN) 

In the case where the task has a large state and action space, learning q-values (or creating q-table) 

becomes intractable. DQN was introduced to address this problem by using a deep neural network to estimate 

the q-values from the state 89. In DQN, policy is represented as a multi-layer neural network which takes 𝑆𝑡𝑎𝑡𝑒𝑡 

as the input and outputs q-values for each possible action. I adopted Deep Q network as a model of 

reinforcement learning, in which the NN reduces temporal difference error through training with Q-learning 

to decide action in RL. NN suits for dealing with serial states because NN can represent complex nonlinear 
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functions. Since C. elegans behavioral state is in a continuous space, I considered that the NN is suitable for 

this RL framework.  

 

2.4.3 Implementation 

NN in the RL model has the input layer of 4 components, which corresponds to the number of input 

variables, 2 hidden layers, each of which have 10 components and an output layer of 2 components 

corresponding to the number of output variables. Activation functions of hidden layers were ReLU 90. Adam 

(a stochastic gradient based optimization method)91 was used as the solver for weight optimization, and 

behavior distribution was decided by ε-greedy policy. I implemented the RL model using the Python and 

machine learning library scikit-learn 92. 

 

2.4.4 Training 

To train an agent to learn a policy for achieving tasks, I set hyper-parameters. In my model, ε 

(probability of acting randomly) was 0.05 for ε-greedy policy, γ (discount factor) was 0.95, max epochs were 

1000 and, in each epoch, max steps were 400. To stabilize the training results, I used Experience Replay, in 

which action history was stored temporarily and then sampled to be used as training data. Buffer size (number 

of stored data) was 1024 and batch size (number of data used per single training) was 32. Each training session 

was conducted five times, each with a different random seed.  

Trained models were also tested to evaluate the performance of models or to reveal the policy learned 

by the trained models. When the models were tested, ε was 0.0001 and the parameters of the neural network 

were not updated. Models were tested in an environment where their start points were close (randomly chosen 

within 0.2 – 0.5 mm far) from the central point and they could end their epoch and received a bonus reward 

when they reached the goal area, and in an environment in which their start points were far (randomly chosen 

within 0.2 – 1.0 mm from the central point) and they could not end their epoch until 400 steps had passed, 
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although the rewards grew larger as they approached the center of the arena (where the goal was located). The 

former setting was used to evaluate the model ability to obtain rewards and navigate toward the goal point, 

and the latter setting was used to show how worms accumulated near the goal point when they were stimulated 

by the learned neural activation sequence. The other settings were the same as those in the training session.  

 

2.4.5 Statistical analysis 

Statistical analysis was performed in the Chapter 2 using the SciPy library in python. The Brunner-

Munzel test, a nonparametric method, was used to test for differences in obtained rewards between the two 

groups, and the chi-square test, a nonparametric method, was used to test for differences in goal rates between 

the two groups. All P values are listed in the figure legends. 
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2.5 Result 

In this chapter, I aimed to automatically extract the behavior strategy of C. elegans via machine 

learning. By automatically finding the policy to make C. elegans perform a specific behavior (e.g. make 

worm dance), I tried to extract the possible behavioral strategies. I adopted RL which is a (machine learning) 

framework suitable for automatically obtaining the best policy to manipulate animal behaviors to perform a 

predefined task automatically 86. 

In an RL framework, an agent, environment, action, state, and reward need to be defined. In this 

research, the agent is the optogenetic controller, the environment is the position, posture and internal state of 

the virtual worm, the action is optogenetic activation of the ASH neuron, and the reward is pre-defined for 

each task (Fig. 2-3). I adopted a Deep Q Network (DQN) as a model of reinforcement learning because DQNs 

can learn the appropriate policy in a series of continuous states, which are the posture and behavior of worms 

in this study93. 

I designed a task whose objective is to navigate a worm toward a goal point. This task corresponds to 

the organism’s taxis behavior. The goal point was the center point of the test arena and the start points of 

virtual worms were randomly selected to be within a certain distance of the goal point. To complete this 

objective, I designed the reward to be a decrease of distance (pixels) from the goal point (if the virtual worm 

approaches the goal, it gains a positive reward) and a bonus reward for reaching the goal (Fig. 2-4). By this 

configuration of rewards, the agent is expected to learn a stimulation sequence of ASH which shortens the 

distance of the animal to the goal point. The goal bonus reward is so much larger than the reward for change 

of distance that the total reward is mostly affected by the goal bonus reward. 

 

2.5.1 Training result 

As a result of training, I succeeded in automatically controlling the virtual worms to navigate toward 

goal points in a simulated environment. The rewards increased over the course of epochs when the simulation 
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sequence was trained in a reinforcement learning framework (Fig. 2-5A). To assess the performance of the 

trained model, I used the trained model to stimulate the nematode and compared its behavior to that caused by 

the random stimulation. Neural stimuli in a random sequence with a 50% irradiation rate were used as 

comparators because the initial condition for reinforcement learning is a 50% irradiation rate. Compared to 

the random case, the virtual worms in the learned group earned more rewards, clustered near the goal, and had 

a higher goal rate (Fig. 2-5 B and C; Fig. 2-6). 

 

2.5.2 Computational mechanism 

Furthermore, I investigated the computational mechanisms that the automatically learned policy 

developed. To do so, I studied the relationship between the angle of the C. elegans to the goal and the 

stimulation rate. As a result, I found that an agent learned the policy to stimulate the neuron when virtual 

worms were not facing the goal point (Fig. 2-7). I concluded that through this policy, virtual worms are made 

to move ahead when they are facing the goal point and to change their movement direction via a reversal and 

turn when they are not facing the goal point. To verify this assumption, I made a toy model which stimulates 

the neuron when virtual worms do not face the goal, and which does not stimulate the neuron when facing the 

goal. This toy model performed better than random activation sequences and were similar to the trained 

sequences, indicating the effectiveness of the obtained policy (Fig. 2-5A). Interestingly, actual C. elegans uses 

a similar strategy called the pirouette mechanism for chemotaxis 94. According to this mechanism, real worms 

turn more frequently when they are facing away from a chemoattractant. Other organisms and cells such as E. 

coli and sperm also use this kind of navigation strategy 95. Thus, RL gives us universal and effective navigation 

policy of organisms as well as meaningful insights for understanding animal behavior by elucidating the 

behavioral strategy of existing animals.  
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2.6 Discussion 

In this chapter the computational methods for extracting behavioral strategy from animal behavioral 

data was developed. In this task, I have succeeded in automatically extracting the pirouette strategy used by 

C. elegans during navigation by reinforcement learning. The extraction of behavioral strategies is beneficial 

not only for ethology but also for many other fields. In the following chapters, the usefulness of the method 

in ethology and its usefulness in peripheral fields such as brain machine interface and robotics are discussed. 

 

2.6.1 Importance and future direction in ethology 

Understanding the behavioral strategies of animals is an important question in ethology. In other 

words, it is important in ethology to clarify which information in the environment is used, what kind of 

computation is performed, and how the final output, behavior, is achieved. Now that behavioral measurement 

has become easier and behavioral data in large scale and naturalistic environments are available, it will be 

possible to find behavioral strategies that have not been discovered in the past by having machines 

automatically extract behavioral strategies. 

Although the setting in this study is that the Agent receives the state and outputs the action of giving 

an aversive stimulus to the animal (activating the ASH sensory neurons), it may be more appropriate to control 

the motor command neuron as the action. It is known that the stimulation of ASH sensory neurons indirectly 

induces a retreat behavior, while the stimulation of motor command neurons directly induces a specific 

behavioral component. In this study, for simplicity, only backward behavior was targeted for action, but it is 

possible to target multiple behavioral elements, and I hope to address this issue in the future. 

In this study, behavioral strategies were extracted on the virtual animal simulator created in Chapter 

1. In the future, however, it will be necessary to verify the extracted behavioral strategies using actual animals. 

However, in the future, it will be necessary to validate the extracted behavioral strategies using real animals. 

For this purpose, it is necessary to develop an experimental system in which recognition of current state and 
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stimulation of neurons are performed in a closed loop manner. Such a closed-loop experimental system has 

been developed mainly for model organisms, and in recent years, it has become possible to adapt the system 

to free roaming animals in three dimensions. Future directions may include the integration of these 

experimental systems and the reinforcement learning control system developed in this research. 

Research on neurostimulation such as neuromodulation for medical applications has been rapidly 

advancing in recent years. RL is one option for a controller of brain activity. Several studies have been carried 

out on monitoring neural activities and in turn controlling them using computational models and RL 96,97. In 

bidirectional brain machine interface, nervous systems of patients were stimulated to exert specific functions 

such as normal movement 98. However, the number of studies that aimed at controlling brain activity or 

behavior of living animals through neural stimulation patterns obtained by RL is still limiting. Future studies 

should target restoring human brain functions in patients with nerve damage or behavior of simpler animals 

in vivo by constructing a closed loop RL model. Therefore, application of the outcome of this study to real 

animals will enable us to make the neuromodulation process more accurate and systematic using the policies 

of controlling systems obtained via RL and to support behavior of patients to restore motor functions through 

generating optimal brain stimulus sequences automatically. 

 

2.6.3 Application to robotics 

One of the practical applications of this research is robotics. In recent years, robots that mimic the 

body control system of animals have begun to be proposed and used in the real world. These animal-shaped 

robots have succeeded in imitating the posture control of animals, but the behavioral strategies are still 

designed by human hands. In the future, it is expected that intelligent robots that mimic animal behavior, even 

down to the behavioral strategies, will be needed. In this context, methods for extracting behavioral strategies 

for accomplishing specific tasks, as achieved in this study, are required. I believe that the proposed method 

can serve as a foundation in this context.  
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2.7 Figures 

 

Fig. 2-1 Research paradigm. 
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Fig. 2-2 Schematic illustration of reinforcement learning. 
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Fig. 2-3 Schematic diagram of reinforcement learning control of C. elegans. 
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Fig. 2-4 Conceptual diagram of the task of navigation toward the goal point. 
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Fig. 2-5 Result of reinforcement learning. Rewards of the trained model in the task using the activation 

sequence obtained by reinforcement learning, 50% random neuronal activation sequence, and the activation 

sequence obtained by the toy model. The polygonal line graph shows a representative reward history obtained 

during training (mean rewards obtained in 300 epochs). (D)-(E) Accomplishment of the task in the test session. 

(D) Violin plot of reward distribution obtained in the test session of each model. Each dot indicates a reward 

obtained in an epoch. The rewards obtained by the RL model were significantly larger than those obtained by 

random sequence (P <0.001, Brunner-Munzel test). (E) The heat map on the left shows the trajectories of 1000 

worms using 50% random neuronal activation sequence. The heat map on the right shows the trajectories of 

1000 worms using neuronal activation sequence obtained by reinforcement learning. The color bar shows the 

number of worms/square mm in the simulation space. The goal area is on the center (0–0.2 mm from the 

center) of the figure and the start points are around the goal area (0.2–1.0 mm from the center). 
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Fig. 2-6 Training result of navigation task. (A) Rewards of the trained model in the task using the activation 

sequence obtained by reinforcement learning of five different seeds, 50% random neuronal activation 

sequence, and activation sequence obtained by the toy model. Each polygonal line shows one of five rewards 

history obtained during training designating mean rewards obtained in 300 epochs. (B)–(D) Accomplishment 

of the task in the test session. (B) Violin plot of reward distribution obtained in the test session of each model. 

P values of the statistical test between each trained model (seed 0, 1, 2, 3, 4) and random model were P < 

0.001, P = 0.680, P = 0.038, P = 0.725, and P < 0.001 (Brunner-Munzel test). (C) Bar graph indicates mean 

goal rates of virtual worms in the test session of each model. P values of the statistical test between each of 

trained model (seed 0, 1, 2, 3, 4) and random model were P = 0.0189, P = 0.811, P = 0.334, P = 1.0 and P = 

3.73 × 10−3 (Chi-square test). (D) The heat maps show the trajectories of 1000 worms using neuron activation 

sequence obtained by each model. The goal area is located at the center (0–0.2 mm) of the figure, and the start 

points are located around the goal area (0.2–1.0 mm).  
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Fig. 2-7 Learned policy of the trained model in the task. The line graph shows the relationship between 

navigation toward the goal point relative to the virtual worm and neuronal stimulation rate using the neuronal 

activation sequence obtained by reinforcement learning. The dotted lines indicate the standard deviation. 
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Appendix 

Disentangling animal behavior via temporal conditional-

subspace VAE 

3.1 Abbreviation 

 

CS-VAE Conditional subspace - variational autoencoder 

VAE Variational autoencoder 

TCS-VAE temporal conditional subspace variational autoencoder 

TCN temporal convolutional network 
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3.2 Introduction 

In analyzing time series data, it is important to describe the characteristics of the time series data of 

the target group compared to other groups. Extracting characteristic time series patterns in the time series data 

of interest is one of the main objectives of time series analysis. The analysis of time series data handled in 

biological research is no exception. Behavioral data and neural activity data is one of the best examples of this.  

With behavioral data in hand, animal ethologists have previously described class-specific behavioral 

patterns in the animals which they focused on. Many animals show specific types of behavior which depends 

on their classes such as species, gender, and genotypes. 

Determining how class-specific behaviors arise from the nervous system is one of the major goals of 

neuroscience. In order to achieve this, it is important to elucidate class-specific neural activity patterns in the 

large-scale data that have been observed. From the perspective of psychiatric disease research, the division 

into the class of presence or absence of disease can reveal disease-specific patterns of neural activity and 

behavior. 

In this sense, the method of unsupervised extraction of class-specific time series patterns from time 

series data is very important and is useful in various fields. In previous studies, researchers set the feature of 

the interest in advance and investigated whether the features change in a class-dependent manner. However, 

in addition to the large bias of the observer's prior hypothesis, this method was not suitable for the analysis of 

recent large-scale data. With the development of observational technology, the data handled in biological 

research has also become multidimensional and larger in size. 

To deal with the problem, I propose a method for extracting time series patterns characteristic to a 

class from this multidimensional, large-scale data by applying machine learning techniques in this chapter. 

In this study, I approached the above problem by applying a deep generative model. Deep generative 

learning is a type of deep learning which tries to reveal the process of data generation. It tries to model the 

latent stochastic process of the generation of the data that I am interested in. I further applied the deep 

generation model and thought that I could solve the problem by separating the processes that depend on the 
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specified class and those that do not depend on the specified class when modeling the process of data 

generation. I confirmed this hypothesis by applying variational autoencoder (VAE)99 and its application, 

conditional subspace VAE (CSVAE)100, to the data. 

VAE is one of the successful methods for deep generative models. Autoencoders constitute a well-

known subcategory on the framework which aims at uncovering a projection of high-dimensional input data 

onto a low-dimensional manifold and to subsequently predict out- put data based on this projection. 

There are several ways to handle time series data in a neural network. The most common methods are 

recurrent neural network and time convolutional network. RNN keeps the history information in the network, 

while temporal convolutional network (TCN) performs convolutional computation in the time direction. These 

methods can also be combined with VAE, and several studies have reported 55,101,102. This study adopts TCN 

as a method to handle time series data from the viewpoint of interpretability. Temporal convolutional networks 

(TCN) has ability to compress information in the time direction103. Furthermore, some reports show that TCNs 

outperform RNNs in predicting time series 103. 

In this study, I developed a method to extract class-specific patterns from animal behavior data by 

using the property that CSVAE classifies data into class-specific and class-dependent data. This study dealt 

with animal behavioral data and neural activity data, but essentially any other time series data is acceptable. 
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3.3 Result 

3.3.1 Development of TCS VAE 

First of all, temporal convolutional block (Fig. 3-1) was added to the input part of CSVAE in order to 

be able to handle time series data. There are two ways to represent time-series data: using RNN patterns and 

using temporal convolutional blocks. temporal convolutional blocks were chosen for their interpretability and 

also because there are some research results that show temporal convolutional block performs better than RNN 

in time series prediction tasks. 

Time series data such as behaviors show different features at multiple time levels (msec~min). 

Therefore, temporal convolutional block can cope with multi-scaling by performing hierarchical handling in 

the time direction. 

A comparison of similar neural networks, autoencoder, temporal autoencoder, conditional subspace 

VAE, and temporal conditional subspace autoencoder, is shown in Fig. 3-2. The TCSVAE proposed in this 

research has two latent spaces. Z subspace is a subspace used to handle time series data chunk with common 

dynamics among classes. The latent variables in Z subspace are trained by adversarial learning in a way that 

suppresses class-specific information. On the other hand, the W subspace is a subspace that is used when 

dealing with time series data chunks that have different dynamics among classes. 

3.3.2 Toy Data 

Next, TCS-VAE was tested on a toy dataset to see if the TCSVAE method of separating class-specific 

time series patterns and class-independent time series patterns by two VAEs. The toy data set was created as 

follows. The class 1 group is a sine wave with Gaussian noise on it. The class 2 group is based on the sine 

wave of class 1, and contains different patterns of high frequency sine waves in the ratio of about 10%. This 

represents a time series data set in which the base time series pattern is common among the classes, but some 

of the dynamics are different. 
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When I trained on this dataset, it was first shown that both classes were able to reconstruct the data 

(Fig. 3-3A). In particular, in the class 2 group, the characteristic waveforms are also recovered, indicating that 

not only the network that handles the common parts but also the network that transmits information about the 

class-specific parts are functioning. 

Next, in addition to confirming that the Z and W subspace represent class-specific information and 

common dynamics among classes, I also confirmed the trajectory in each subspace (Fig. 3-3B). As a result, it 

was confirmed that in the Z subspace, only the common dynamics between class 1 and class 2 were extracted. 

On the other hand, in the W subspace, it was confirmed that the topology of the trajectory was different from 

that of class 1 in the case of characteristic time series patterns. 

This result shows that TCSVAE can successfully represent the class-specific dynamics and the 

common dynamics among classes in different latent spaces. 
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3.4 Discussion 

In this study, it was shown that class-specific behavioral dynamics can be extracted from time series 

data using a model that combines adversarial learning and deep generative learning. In the future, I would like 

to apply this model to animal behavioral time series data based on these basic results. 

It is useful in many situations to compare the generation process of animal behavior. The classes in 

this study can be applied to various cases, such as wild type and mutant, male and female, with and without 

disease, and so on. In the future, I would like to apply them to each pattern and show their effectiveness. 

In addition, I would like to investigate how much class characteristics exist in time series data based 

on the difference in information represented by Z subspace and W subspace. For this purpose, I can consider 

a model that is trained in two steps as shown in Fig. 3-4 First, I train only VAEs that handle common 

information among classes, and then I train networks that encode class-typical behaviors in step 2. Then, by 

comparing the reconstruction rate in step 1 with that in step 2, I can quantify how much class-specific 

information is included in the input time series data. I would like to develop such a quantitative analysis 

method in the future. 
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3.5 Figures 

Fig. 3-1 Schematic illustration of temporal convolution block. 
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Fig. 3-2 Comparison of related autoencoder-type models. 
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A 

 
B 

  
Fig.3-3 Training results of toy model. (A) Reconstruction succeeded in both class 1 and class 2. (B) W 

subspace handles the class specific information whereas Z subspace handles class independent information. 
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Fig. 3-4 Quantification of class specific information and class independent information. 
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Conclusion 

Three key problems in computational ethology were approached in this dissertation.  

In Chapter 1, I constructed a virtual animal using a deep generative model and showed that 

MDN~RNN can reproduce stochastic animal behavior. The results showed that the MDN~RNN can reproduce 

stochastic animal behavior. In addition, although it has been known that RNN-based behavioral simulations 

fall into a motion less state, this problem can be solved by using MDN as a probability distribution for the 

output. Furthermore, it was shown that behaviors with different dynamics were represented and learned in a 

disentangled manner depending on the component of the MDN. In the future, our group would like to further 

develop this model and build a model that matches the actual connectivity pattern of the nervous system. 

 In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine 

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits 

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed 

to replace some of the computational mechanisms of the nervous system with a computer in order to 

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce 

behavioral strategies similar to those actually performed by animals without prior information. 

In Appendix A, I aimed to analyze the topology of the dynamics behind the behaviors of animals 

belonging to different classes by separating the behaviors that are characteristic of each class from the 

behaviors that are common regardless of the class. For example, when the behaviors of animals modeled for 

psychiatric disorders and wild-type animals are acquired, it is important to extract the behaviors exhibited only 

by the disease model animals and investigate the generation mechanism of the behaviors in order to clarify 

the diseases. To achieve this goal, I applied the conditional subspace - variational autoencoder (CS-VAE), 

which takes behavioral data consisting of multiple groups as input and divides them into elements 

characteristic of the group to which they belong and elements common to all groups in the middle layer of the 

VAE. The CS - VAE takes behavioral data consisting of multiple groups as input and divides it into elements 

characteristic of the group to which it belongs and elements common to all groups in the middle layer of the 
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VAE. This is achieved by minimizing the amount of mutual information between the labels of the groups to 

which they belong and the features of the latent space in the middle layer. The effectiveness of this method 

has been verified using toy models, and will be verified using animal behavior in the future. 

Each of these three issues has value in the field of computational ethology. With the availability of 

behavioral measurements, the field of ethology can now cover behavioral data not only in a controlled 

laboratory setting, but also during free behavior. Therefore, the current challenge is to extract the structures 

that govern behavior from the obtained time series of behavioral data. Chapter 1 and the appendix present a 

solution to this problem. In Chapter 2, we proposed a method for machines to mimic animal behavioral 

strategies using reinforcement learning techniques. Although these methods have been tested on 

Caenorhabditis elegans, I would like to show that these methods can be used to analyze the behavior of various 

animal species in the future. 
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