

Doctoral Dissertation (Censored)

博士論文（要約）

Disentangling animal behavior with

probabilistic generative models
(確率的生成モデルを用いた動物行動の解析)

A Dissertation Submitted for the Degree of Doctor of Philosophy

February 2021

令和 3年 2月博士（理学）申請

Department of Biological Sciences, Graduate School of Science,

 The University of Tokyo

東京大学理学系研究科

生物科学専攻

Keita Mori

森 啓太

1

Abstract

Animals exhibit a variety of behaviors that are adapted to their environment. Behavior is the final

output of the nervous system and is a major factor that determines the survival of an individual. Understanding

the generation and control processes of such diverse and important behaviors is a major goal not only for

ethology, but also for neuroscience, ecology, evolution, and informatics, and it is a problem that has not yet

been solved. The main goal of this research is to elucidate and reproduce the system that can generate and

control various behaviors seen in nature.

Acquisition of the behavior of freely moving Caenorhabditis elegans

In this dissertation, the behavioral data were mainly quantified and analyzed using the nematode

Caenorhabditis elegans (C. elegans) to confirm the validity of the method. C. elegans is a suitable

experimental animal to test the effectiveness of this study because it shows stochastic and multiple behavioral

patterns while the behavior is easy to measure. First, a behavioral data set was obtained to test the developed

method, and the behavioral state was quantified by recording C. elegans freely moving in a two-dimensional

plane. In addition, to investigate whether the stochastic behavioral responses to sensory stimuli can be

appropriately modeled, I expressed channelrhodopsin (ChR2) in ASH neurons, which are sensory neurons to

nociceptive stimuli, and activated them by randomly exposing them to blue light during behavioral recordings.

From the acquired images, I quantified posture and speed as indicators of behavior using image processing.

Probabilistic generative neural networks disentangle dynamics of animal behavior

In Chapter 1, I aimed to develop a virtual animal model which can both reproduce stochastic animal

behavior and represent various behaviors in a disentangled latent space. In order to model a phenomenon that

takes multiple states and is stochastic, a mixture density network - recurrent neural network (MDN-RNN), is

employed. The MDN-RNN is a simulation-based modeling method to model time series data with stochastic

2

behavior by using a probability distribution as the output part of the RNN. Using MDN-RNN, I trained a

simulator to predict the behavior of C. elegans 0.2 seconds later based on the behavior of the past 20 seconds.

After training the simulator using MDN-RNN, it was confirmed that the simulator generated behaviors with

the same behavioral states and dynamics as those of the real C. elegans through analysis using t-SNE and

time-delay embedding methods.

In order to understand the behavior that consists of multiple stochastic states, I analyzed the internal

representation of the model that can generate the behavior similar to that of a real C. elegans. The results

showed that each MDN component represented different behaviors. As a result, it was found that the dynamics

of different behavioral states were extracted and represented in each component.

Behavior control via reinforcement learning

 In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed

to replace some of the computational mechanisms of the nervous system with a computer in order to

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce

behavioral strategies similar to those actually performed by animals without prior information.

Disentangling animal behavior via temporal conditional-subspace VAE

In Appendix A, I aimed to analyze the topology of the dynamics behind the behaviors of animals

belonging to different classes by separating the behaviors that are characteristic of each class from the

behaviors that are common regardless of the class. For example, when the behaviors of wild-type animals and

model animals for psychiatric disorders are acquired, it is important to extract the behaviors exhibited only by

the disease model animals and investigate the generation mechanism of the behaviors in order to clarify the

3

disease. To achieve this goal, I applied the conditional subspace - variational autoencoder (CS-VAE), which

takes behavioral data consisting of multiple groups as input and divides them into elements characteristic of

the group to which they belong and elements common to all groups in the middle layer of the VAE. The CS -

VAE takes behavioral data consisting of multiple groups as input and divides it into elements characteristic of

the group to which it belongs and elements common to all groups in the middle layer of the VAE. This is

achieved by minimizing the amount of mutual information between the labels of the groups to which they

belong and the features of the latent space in the middle layer. The effectiveness of this method has been

verified using toy models, and will be verified using animal behavior in the future.

Conclusion

In this dissertation, I have succeeded in separating animal behaviors with probabilistic and multiple

control states by using representation learning of deep generative models. I also succeeded in automatically

learning a policy to control a virtual animal by reinforcement learning. In this study, C. elegans was used as

a model animal, but this model can be applied to other animal species as well. I aim to further develop these

methods to elucidate the process of generating behavior from neural activity in an interpretable manner.

4

5

Contents
Abstract 1

Acquisition of the behavior of freely moving Caenorhabditis elegans .. 1

Probabilistic generative neural networks disentangle dynamics of animal behavior 1

Behavior control via reinforcement learning ... 2

Disentangling animal behavior via temporal conditional-subspace VAE ... 2

Conclusion... 3

General Introduction 7

The rise of computational ethology 8

Improvement of quantification methods ... 8

Developments of hardware 8

Developments of software 9

Automatic supervised behavior labeling ... 10

Unsupervised behavioral motif classification ... 10

Behavior map (clustering) 11

Interpretation of behavior .. 12

Hidden Markov model (HMM) based method 12

Ethology from a physical science standpoint 13

Representation learning via Deep generative model 14

Future direction ... 15

Linking brain activity and behavior 15

Computational method for comparative research 16

Considering probabilistic feature of behavior 16

Control of behavior and closed loop experiments 17

Aim of this study 18

Chapter 1 Probabilistic generative neural networks disentangle dynamics of animal behavior 19

1.1 Abbreviation 19

1.2 Introduction 20

1.3 Related research 22

1.3.1 Mixture density network .. 22

1.3.2 Modeling behavior with RNN .. 22

1.3.3 Modeling stochastic sequence with MDN-RNN .. 22

1.4 Materials and methods 24

1.4.1 Acquisition of the behavior of freely moving C. elegans .. 24

Multi-worm tracker assay 24

Behavioral quantification 24

1.4.2 Basic analysis of the behavior .. 25

Unsupervised behavioral classification by t-SNE 25

Dynamics analysis by time-delay embedding 25

1.4.3 Implementation of neural network models ... 27

Implementation and training of the MDN-RNN and RNN model 27

Quantification of the similarity between real behavioral data and generated behavioral data with

Kullback–Leibler Divergence 28

Analysis of disentangled representation in MDN-RNN 29

1.5 Result 30

1.5.1 Acquisition and basic quantification of C. elegans behavior ... 30

1.5.2 A generative neural network model can successfully reproduce animal behavior 31

6

Qualitative validation of behavioral model 31

Quantitative evaluation of behavioral model 32

1.5.3 MDN-RNN disentangles behavioral patterns... 33

1.6 Discussion 35

1.6.1 Disentanglement of behavioral dynamics by representation learning .. 35

1.6.2 Applicability of sequential mixture density neural network .. 35

1.6.3 Building the first complete computational model of C. elegans .. 36

1.6.4 Real world application of behavior prediction ... 37

1.7 Figures and Tables 38

Chapter 2 Behavior control via reinforcement learning 52

2.1 Abbreviation 52

2.2 Introduction 53

2.3 Background and related research 54

2.3.1 Reinforcement learning .. 54

2.3.2 Replicating animal behavior via robots .. 54

2.4 Method 55

2.4.1 Problem setting ... 55

Environment (Navigation task) 55

Agents 56

2.4.2 Agent model ... 57

Q-learning 57

Deep Q-learning (DQN) 57

2.4.3 Implementation .. 58

2.4.4 Training .. 58

2.4.5 Statistical analysis .. 59

2.5 Result 60

2.5.1 Training result .. 60

2.5.2 Computational mechanism ... 61

2.6 Discussion 62

2.6.1 Importance and future direction in ethology .. 62

2.6.3 Application to robotics ... 63

2.7 Figures 64

Appendix 71

Disentangling animal behavior via temporal conditional-subspace VAE 71

3.1 Abbreviation 71

3.2 Introduction 72

3.3 Result 74

3.3.1 Development of TCS VAE .. 74

3.3.2 Toy Data ... 74

3.4 Discussion 76

3.5 Figures 77

Conclusion 81

Original papers 83

Acknowledgement 84

References 85

7

General Introduction

In the 4.4 billion years since the birth of life and the 3.8 billion years since the emergence of diverse

organisms in the Cambrian Explosion, animals have acquired diverse and complex behaviors in the course of

evolution. Animal behavior is the ultimate output of the nervous system, serving as the interface with the

surrounding environment. As animals survive by interacting with their surrounding environment, proper

behavioral control is critical for survival. It is a major goal of behavioral neuroscience (and other related fields)

to clarify the mechanisms that generate these various behaviors, as well as the control mechanisms. Conceptual

guidelines for studying animal behavior were proposed by Tinbergen in the middle of the 20th century; these

guidelines have since evolved, along with the surrounding fields, including neuroscience, psychiatry,

psychology, information science, and robotics. In nature, there is a great variety of behaviors, with each

behavior influenced by multiple factors, such as genetics, previous experiences, and surrounding environments.

Why these behaviors occur, what mechanisms control them, and how they have been acquired during evolution

are fascinating questions. Furthermore, the purpose, control algorithms, and implementation methods (Marr’s

three levels 1) of these behaviors have received great attention in the fields of artificial intelligence and robotics.

However, it is difficult to describe each behavior that arises from the diverse and complex factors found in

nature, as well as to search for the factors that may affect it. These difficulties call for a systematic method of

analysis.

Until now, the main strategy has been to observe animal behavior and describe characteristic behaviors,

and then search for factors that may influence behavior and investigate the relationship between the factors

and the output in a hypothesis-driven manner. This approach is still important, but it is costly when dealing

with diverse systems, and is affected by observer bias. However, with the developments in technology,

especially measurement technology, achieved over the past few years, we are now ready to analyze animal

behavior systematically. In the following sections, I will review the important developments in measurement

technology, and the computational analysis methods that have emerged as a result.

8

The rise of computational ethology

Improvement of quantification methods

The field of ethology has recently entered a new phase due to progress in measurement technology.

There have been two major technological breakthroughs. The first breakthrough comprises progress in

measurement hardware; the recent development of low-cost, high-resolution cameras and widespread use of

three-dimensional (3D) printers have facilitated the creation of behavior measurement devices. The second

breakthrough comprises advancements in machine learning and image processing technologies, which have

facilitated the quantification of posture and other features. I will not detail these developments; rather, I will

briefly describe them and provide references for further reading.

Developments of hardware

The democratization of hardware development in recent years has had a profound impact on the field

of ethology. The widespread availability of low-cost 3D printers and microcomputers (e.g., Arduino,

Raspberry Pi, and Jetsons) has rendered it easy for laboratories to develop their own devices, tailored to the

behaviors they wish to measure. Furthermore, high-performance cameras can be obtained at low cost; for

example, cameras with depth sensors (e.g., Realsense) are available worldwide. In addition, field

programmable gate arrays and graphics processing units for real-time image processing are becoming popular,

and experimental systems such as the Etholoop (Fig. 1)2, which tracks animal behavior in 3D in real time and

stimulates the animal's nervous system in a closed-loop manner, may also become popular. Furthermore, the

sharing of hardware, software, and knowledge in an open-source manner is important to the continued

development of this field and community.

9

Fig. 1 Etholoop system2.

Developments of software

Additionally, recent dramatic improvements in markerless tracking of body parts have enabled a range

of exciting new possibilities for potential studies (Fig. 2). A typical example of a deep learning model for

markerless tracking is deeplabcut3. See these articles and reviews3–5 for details.

Fig. 2 Development of motion tracking softwares4.

インターネット公表に関する同意が得られなかったため非公表

インターネット公表に関する同意が得られなかったため非公表

10

Although the modern recording and posture estimation techniques mentioned above can generate

large-scale measurements of multiple animal behaviors in both laboratory and naturalistic environments,

elucidating the underlying processes that comprise behavior remains challenging. This process corresponds to

the first and second steps in Marr's framework (computation and algorithm) 6. Furthermore, answering each

of Tinbergen's 4 questions 7) is an important step toward the understanding of animal behavior. Several threads

of computational works have tackled this problem from different points of view. In the following sections, I

will introduce analytic methods useful for analyzing the obtained datasets. Additionally, in the final section, I

will describe the current methodological challenges and possible future directions of the field.

Automatic supervised behavior labeling

Ethologists and behavioral neuroscientists have described and statistically analyzed behavioral

patterns by focusing on behavior motifs (also known as behavioral "syllables") or behavioral “grammars”

(which are the transition patterns of behavioral syllables), just as an unexplained language is broken into its

grammars 8–10. For decades, the counting and statistical analysis of these motifs has been commonly performed

not only in behavioral neuroscience, but also in human science and research. However, previous studies have

manually annotated the behavioral motifs and it was time consuming.

The simplest example of automation by machine learning is the automation of behavioral motifs

labeling. This work has been conducted in both ethology and human science 11–19. Several computational

approaches have been used for supervised clustering, including the decision-tree method (or random forest

ensembles), Gaussian mixture models, and neural networks-based methods.

Unsupervised behavioral motif classification

The automatic classification of behavioral patterns can also be achieved using unsupervised

classification, i.e., the experimenter provides the machine with only behavioral data, and the machine

11

automatically learns plausible classification patterns. Traditionally, ethology and behavioral neuroscience

have relied on the summary statistics of handcrafted criteria. However, even in highly controlled conditions,

these metrics tend to be unreliable (across animals, laboratories, and experimenters) 20–22. Furthermore, relying

on the prior knowledge of a researcher (with inherent bias) may fail to capture complex relationships and

patterns in higher-dimensional descriptions or higher-order temporal patterns. These limitations have

prompted interest in developing data-driven methods. Instead of an observer finding behavioral patterns,

machine learning calculates the similarities among the data of individuals and classifies them. This is expected

to minimize observer bias and enable quantitative methods that are reproducible.

Behavior map (clustering)

A typical method for classifying animal behavioral patterns in an unsupervised manner from time-

series data is the behavior map (Fig 3). Since it was proposed in 2014 to visualize the behavior of D.

Melanogaster 23, the behavior map has been widely used in various animal species, such as C. elegans24,

zebrafish 25, and rodents. A standardized pipeline is typically used to create the behavior map. Spectral

estimation using wavelet transformation 26 and manifold embedding techniques (such as t-stochastic neighbor

embedding27) are applied to raw behavioral data, and embedded points are classified via Gaussian mixture

models and k-means clustering 23. In combination with probability density functions, it is also possible to

quantify changes in the frequency of behavioral patterns using concepts of information content, such as

entropy 28.

Fig. 3 Schematic illustration of behavior map creation23.

インターネット公表に関する同意が得られなかったため非公表

12

Interpretation of behavior

The next step in behavior motif quantification, towards an understanding of the behavior, is to describe

the structure of the behavior dynamics and infer the underlying control mechanisms. In behavior classification,

there is little interpretation of the structure underlying behavior dynamics. To assess the dynamics or control

mechanisms behind the observed behavior, a more sophisticated approach is required to represent the behavior

dynamics.

In this section, I first briefly introduce the major approaches in dynamics analysis, including hidden

Markov model (HMM)-based, physical science-based, and deep generative model-based approaches, followed

by a detailed discussion. The HMM-based approach assumes that there is a hidden state underlying the

behavioral raw data, and aims to understand the underlying structure by inferring the transition patterns of the

hidden state. In the physical science-based approach, behavior is considered as a dynamical system, and the

underlying structure is inferred by using dynamical system analytic methods. The deep generative model-

based approach aims to build a model that can generate data similar to the obtained behavioral data, and the

underlying structure is inferred by the generative process of the model, or by disentangling the representations

inside the model. It is important to note that although these methods have different starting points, they are

not antithetical to each other and can be used in combination. Therefore, it is important to understand the

nature of each method and use or combine them according to their purpose.

Hidden Markov model (HMM) based method

State-space models using a HMM have long been utilized in the analysis of time-series data. HMM-

based methods generally model the observed behavioral data by assuming discrete hidden 'states' that

parametrize the generation process underlying the data. HMMs are highly interpretable because each

phenomenon is modeled by a discrete state with different parameters governing the behavioral dynamics.

HMMs also have a long history in modeling human behavior 29,30. A general explanation of HMMs is provided

in the relevant reference 31, and specific applications to ethology are introduced below.

13

One HMM application is known as Motion Sequencing (MoSeq) 32, which can break behavioral

sequences into a set of reused and stereotyped sub-second behavioral motifs. MoSeq combines 3D imaging

techniques with an autoregressive-HMM and characterizes the nature of behavioral changes among behavior

motifs. Furthermore, MoSeq effectively parses behavioral differences and captures similarities elicited by the

pharmacological treatments or genetic factors 33.

Another area of research in HMM-based computational modeling extends HMM to handle a

continuous latent space. It is difficult to represent continuous time-series data, such as posture transitions and

neural activities, with a HMM alone. This limitation prompted the development of the switching linear

dynamical system (SLDS), which combines a HMM and linear dynamical system (LDS) 34–40, allowing

discrete switches to depend on a continuous latent space and external input. The SLDS is a model in which

each discrete state has different LDS parameters (corresponding to the dynamics), and the behavior of the

system changes as the discrete state transitions according to a Markov transition matrix. Linderman and

colleagues 41,42 developed an extension of the SLDS, known as a recurrent SLDS (rSLDS). In an rSLDS, the

transition probability is parameterized by the position in continuous space, leading to a more natural transition.

Additionally, models that can handle neural activity and/or animal behavior have been developed 43–45.

Through a series of these studies, Linderman's group has applied these methods to the analysis of behavior

and neural activity in C. elegans, mice, primates, and other animals.

Ethology from a physical science standpoint

From a physical science standpoint, animal behavior can be viewed as a time-evolving dynamical

system in a space with a high degree of freedom, including complex posture dynamics. In this high-

dimensional space, animal behaviors are thought to move along a trajectory within a specific attractor due to

certain constraints, and determining the type of attractor is the very essence of investigating the dynamics

behind animal behaviors.

One of the strongest tools used in attractor analysis is time-delay embedding, supported by the

"embedding theorem" presented by Takens 46. This theorem serves as a bridge between the theory of dynamical

14

systems and actual measured time-series data. Time-delay embedding enables the reconstruction of the

topological features underlying time-series data; by monitoring the geometrical features, the dynamics of the

system can be characterized 47. Ahamed and colleagues 47 developed a reconstruction method that considers

animal behavior as a time-evolving dynamical system, and combined it with an independent component

analysis (ICA) to analyze the mechanisms underlying animal behavior. In this method, the obtained

multivariate time-series data is reconstructed with time-delay embedding, and is then divided into behavioral

elements with different dynamics (differential equations) based on the ICA results. Using this method of

embedding and ICA, the obtained multivariate measurements can be smoothly unfolded as a combination of

short-time posture sequences. Furthermore, Tran and Hasegawa 48 showed that the combination of a

topological analysis and delay-variant embedding, which considers the time delay as a variable parameter, can

successfully classify the behavior of C. elegans. These studies demonstrate that delay embedding is a powerful

tool that can characterize dynamical systems and provide a topological analysis of the trajectories in embedded

space, enabling insights into the geometric structure underlying behavior.

Representation learning via Deep generative model

One of the most interesting advances in the machine learning field in the 2010s arose through novel

applications of deep learning to generative modeling tasks. Generative modeling attempts to learn the

underlying structure of the data generation process. The ability to learn the generative mechanisms behind the

data renders this method a good fit for science, and it is beginning to be used in the fields of animal behavior

and neuroscience, to infer the structure behind observed events 49. The strength of deep generative models is

that the model learns disentangled meaningful representations of observed data during the training process

(i.e., representation learning). Typical models used in representation learning comprise encoder-decoder-based

models, such as the variational autoencoder (VAE). VAE and its variants are mainly used in science because

of their high interpretability 35 and extendibility of the model after learning. Several studies have been

conducted in the context of human behavior prediction using motion capture (mocap) data 50 and in the

ethology field, as discussed below.

15

Human motion prediction from mocap data is a classical problem in the field of computer vision.

Learning meaningful representations of human motion plays an important role in many practical tasks, such

as human behavior prediction, human-computer (or robot) interaction, and the production of games and

movies 49,51–53. Recently, it has been shown that an autoencoder-type neural network can learn the manifold of

human motion 54, and can represent different motions in a latent space, in a disentangled form55 . These

approaches utilize the representation learning feature of autoencoders, and succeed in obtaining the manifold

underlying the behavioral dynamics.

In ethology, there are several reports that utilized deep generative models for understanding the

underlying dynamics of animal behavior, including the VAE-stochastic neighbor embedding56 and

BehaveNet57

Representation learning using deep generative models is a very powerful tool and further

developments are expected. The analysis of human mocap data and that of animal posture data are essentially

similar, and it is important to share knowledge between these fields. In addition, the method of separating and

modeling multiple generative processes is important for both neurobehavioral science and the imitation of

behavioral control mechanisms in robotics.

Future direction

Linking brain activity and behavior

To fully elucidate the mechanisms that generate and control animal behavior, we need to understand

how the algorithms underlying the behavior are computed and implemented by the nervous system. This is

the goal of many scientists in behavioral neuroscience. There has been progress in the field of neuroimaging,

and it is now possible to simultaneously acquire behavioral and neuronal activity data from model animals

that are freely moving. Although we have already begun to map the dynamics of numerous neural activities

to the dynamics of behavior, further developments in computational methods are required to elucidate this link

and to obtain a meaningful representation of the control mechanism.

16

Computational method for comparative research

Comparison is a very powerful method in enabling humans to understand objects, and behavioral

comparison is an important subject of analysis in ethology and related fields. In the field of genetics, behavioral

changes caused by genetic mutations are compared, and in the study of psychiatric disorders, it is important

to accurately describe behavioral changes in the presence and absence of disease, as well as those caused by

pharmacological treatments. In developmental biology, it is important to understand how behavior changes

during development, and from an evolutionary perspective, which behaviors have changed among closely

related species. Whereas researchers previously focused only on indices handcrafted by the observer, methods

have now been developed to express the dynamics underlying behavior in an unsupervised manner with high

interpretability. Thus, we will be able to handle essential differences that have not been revealed as yet. For

this purpose, it is important to have a method to measure the differences (distances) among obtained

expressions. This may be realized by measuring the distance between probability distributions, or by using

adversarial learning.

Considering probabilistic feature of behavior

It is not easy to model natural events, including animal behavior, as they are stochastic from the

observer's point of view, and although HMMs and VAEs can handle stochastic elements at a high level of

underlying abstraction, stochastic elements occurring downstream are often not considered. For example, in

the field of human motion prediction, recurrent neural networks are often used, but they cannot fully represent

probabilistic elements and tend to degrade into motionless states or drift away to non-human like motions. In

order to solve this problem, I propose the use of probability distributions as the prediction target, or to treat

the parameters of each information-processing process as probability distributions and perform Bayesian

estimation in the framework of graphical modeling.

17

Control of behavior and closed loop experiments

Beyond the analysis of animal behavior, it is possible to develop methods to control behavior. It is

already possible to intervene in nervous system activity through optogenetics and electrical stimulation. In the

future development of the brain-machine interface, the importance of methods such as augmentation, in which

the computer and nervous system interact to control behavior and improve the processing power of the nervous

system, will increase. After understanding the original control mechanisms in animals, an upper layer

comprising computer control mechanisms will need to be added. It will be important to develop a method to

seamlessly connect the meaningful representations accumulated in computational ethology with these control

mechanisms.

18

Aim of this study

Three key problems in computational ethology were approached in this study.

In Chapter 1, a simulation method for reproducing stochastic behavior of animals has been developed.

The construction of a virtual animal model that reproduces the mechanism of animal behavior is important for

understanding animal behavior. In particular, since the connectivity of each neuron is known in C. elegans, it

is expected that a virtual animal model will be constructed before other model animals. In this study, I

developed a method to reproduce stochastic behavior by combining a deep generative model and a generative

model that predicts probability distributions. By using representation learning, which is an advantage of

generative models, it was shown that different behavioral patterns (i.e., behavioral patterns with different

dynamics) are modeled by different components in the model.

In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed

to replace some of the computational mechanisms of the nervous system with a computer in order to

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce

behavioral strategies similar to those actually performed by animals without prior information.

In appendix A, the development of a computational method for comparative behavioral studies, which

will become increasingly important in the field of behavioral studies, is proposed. By incorporating the concept

of adversarial learning, a method for separating behaviors with common dynamics from different behaviors

in a comparison group is proposed and tested using a toy model.

19

Chapter 1

Probabilistic generative neural networks disentangle

dynamics of animal behavior

1.1 Abbreviation

C. elegans Caenorharbitis elegans

HMM Hidden Markov model

ICA Independent component analysis

LSTM Long short term memory

MDN Mixture density network

MDN-RNN Mixture density network - recurrent neural network

NGM Nematode growth medium

NN Neural network

PCA Principal component analysis

RNN Recurrent neural network

t-SNE t-distributed Stochastic Neighbor Embedding

20

1.2 Introduction

Understanding animals' behavior is of great importance in various fields including but not limited to

ethology, neuroscience, and robotics 58–60. From a biological standpoint, replicating animal behavior is

important for understanding how the nervous system controls an animal’s body and how it processes sensory

information and makes decisions to generate corresponding motion. From an engineering standpoint, animal-

inspired robots are in heavy demand for various applications 60–62. In addition, understanding and predicting

human behavior is important for building human-like robots and developing human assistance systems in real

worlds. To that end, methods for modeling complex and stochastic behaviors are needed.

In general, the following steps are necessary to understand the control mechanism behind a system:

observing the behavior of the system, constructing simulation models of the behavior, and then controlling the

system ad arbitrium 63. First, it is important to quantify the behavior of the system by observation. Next, the

underlying control mechanism can be inferred by building a model that can reproduce the behavior of the

system. Finally, understanding of the behavior is deepened if we learn how to control the system. Furthermore,

by being able to control the system, we will be able to use the system in the real world. These series of methods

are applicable to understanding the underlying mechanisms of animal behavior as well as other systems.

High-throughput behavioral measurement, which is the first step of computational study of behavior,

has become pervasive across modern ethology and neuroscience thanks to the recent advancement of

technologies including low-cost cameras, computer vision algorithms, and machine learning tracking

techniques 3–5. However, modeling behavior, the second step of computational ethology study, remains a

challenging problem due to the complexity, diversity, and stochasticity of behavior, and there is substantial

room for improvement in the field. Over the past few decades, researchers have proposed several methods for

simulating animal behavior. Hidden Markov-based models and it’s variation have been used to model the

stochastic transition between several discrete behavioral patterns 41,43. Additionally, the point process model

has been used for modeling stochastic time evolution 64. Neural network-based models such as recurrent neural

networks have been used for modeling sequential and deterministic dynamics. However, simultaneous

modeling of the continuous sequential features and stochastic features of behavior is a non-trivial task 65.

21

To overcome this difficulty of modeling stochastic behaviors, I propose an application of mixture

density recurrent neural networks (MDN-RNNs). MDN-RNNs are recurrent neural networks (RNNs)

combined with a mixture density network (MDN) which outputs parameters of a Gaussian mixture model 66,67.

MDN-RNNs process sequential inputs (past behavioral states) and output parameters of the Gaussian mixture

model (the probability distribution of future behavioral states). MDN-RNNs have been used for prediction

and generation of sequential data in several research areas such as future prediction of handwriting 67, sketch

drawing 68, speech synthesis 69, and music generation 70 among others 71,72. These studies showed that MDN-

RNNs are suitable for simulating stochastic sequential data. I expect RNN to capture sequential characteristics

and MDN to capture the stochastic characteristics of the behavior.

To investigate the effectiveness of MDN-RNNs as an animal behavior model, I used the nematode

Caenorhabditis elegans (C. elegans), which is a widely-used model organism in the field of neuroscience and

behavioral studies. C. elegans has ideal characteristics suitable for testing the new methods: their behavior can

be easily recorded and described with only a few parameters, but are still quite complex and stochastic at the

same time 73. With their simple body shape and slow moving speed, automatic posture tracking is not difficult

74. Several studies have investigated the behavioral states of C. elegans and have shown the stochasticity of

their behavior 24.

22

1.3 Related research

I build this work upon several pieces of research on MDN and stochastic sequence prediction with

MDN-RNNs. I will briefly introduce the concept of related research.

1.3.1 Mixture density network

MDNs were originally proposed by Bishop 66 for modeling a mixture of Gaussians with neural

networks which were applied to solve the robot kinematics problem. MDN is an NN which uses probability

distribution as its output (Fig. 1-2). It is suitable for prediction including confidence level or prediction of

probabilistic events.

1.3.2 Modeling behavior with RNN

RNNs have been used in behavior prediction, especially in the task of human pose prediction 49,53,75,76.

However, for relatively long-term prediction, previous methods tend to fall into a motionless state or a state

that cannot actually happen 49.

1.3.3 Modeling stochastic sequence with MDN-RNN

MDN-RNN is an NN that processes the output of RNN by MDN and outputs probability distribution

(Fig. 1-3). while RNN predicts the state of the next time deterministically, MDN-RNN predicts it as mixture

probability distribution (Figure). This allows us to deal with stochastic natural phenomena in a more original

way.

MDN-RNNs were introduced to model handwriting 67 and sketch drawing 68. Other applications

include music generation 70, speech synthesis 69, and simulating a 2D game environment as "World Models"

23

71. Extending the “World Models” work, Ellefsen et al.77 shed light on disentangled scene representation with

MDN-RNNs. This work is inspired by these threads of works.

24

1.4 Materials and methods

1.4.1 Acquisition of the behavior of freely moving C. elegans

Multi-worm tracker assay

In this study, the behavior of C. elegans was used to verify the effectiveness of the method 78. The

behavior of freely moving adult hermaphrodites on the surface of an agarose plate was video recorded as

follows. C. elegans hermaphrodites were cultured at 20 °C on NGM plates including 50 mM NaCl with E.

coli as food source for 4 days and then the behavior was captured on assay plates with 50 mM NaCl for 30

min. I recorded the behavior of 20 to 30 worms simultaneously. The ASH-ChR2 strain: Is[Psra-

6::ChR2::mCherry+Pges-1::EGFP]; lite-1(ce314) X was used in this study. Random impulses of blue LED

light were given to activate ASH neurons, and the images of the worms were captured simultaneously. Image

capture speed was 5 frames per second (fps) and 9000 frames were captured in one assay. 1 pixel in the images

is equal to 0.01 mm.

Behavioral quantification

Captured images were analyzed and the behavioral states (shown in Table) were calculated by using

Matlab (R2017a) and Fiji 79. The images were processed by a denoising median filter, background subtraction,

and thresholding using automatically selected methods implemented in Fiji. Too small and too large objects

were regarded as dusts on the assay plate and aggregations of multiple worms, respectively, and removed. The

remaining objects were regarded as worms. The center lines of worms were obtained by skeletonizing using

the bwmorph thinning function in Matlab. Coiled worms were detected and removed. The eigenworm

component weights a1-a5 were obtained by projecting the center lines to the eigenworm space based on high-

resolution tracking data. The worms were tracked by linking the nearest objects in the neighboring frames.

The speed and direction of the worms were obtained from temporal differences of the centroids of the objects.

25

The behavior of C. elegans was characterized by assessing its posture, velocity, and angular velocity.

The posture of worms can be described by the weighted sum of five principal components called eigenworms

73. The posture was expressed in five dimensions using the eigenworm 73. The velocity was expressed in three

dimensions: speed of the center and direction of movement (sine and cosine). The angular velocity of the

center was represented as a scalar. The behavior of C. elegans was quantified in a total of nine dimensions.

For the convenience of tracking, data at times when posture and movement speed could not be calculated

correctly were excluded, and data from worms in which behaviors could be quantified for less than 20 sec in

a row were excluded.

1.4.2 Basic analysis of the behavior

Unsupervised behavioral classification by t-SNE

A nonlinear dimensionality reduction method, t-SNE, was used to visualize behavioral states. Based

on the time series behavioral data consisting of seven dimensions of C. elegans posture, velocity and angular

velocity, the data were pre-processed by PCA and then embedded in a two-dimensional space by t-SNE. After

that, probability density estimation and Gaussian filter processing were performed to create a behavioral map.

To add simulator-generated behavioral data to the behavioral map created from the real behavior we used a

function of the openTSNE package 80.

Dynamics analysis by time-delay embedding

One of the methods to describe the behavior of a target system in a time-evolving nonlinear dynamical

system is the time-delay embedding method based on Takens' theorem 46. Other authors recently proposed a

method to describe the dynamics of animal behavior by combining the time-delay embedding and

dimensionality reduction methods 47. In the present study, we followed the previous studies. First we denote

26

𝑥𝑡,𝑖 as 𝑖-th behavioral feature including eigenworm weights at time step 𝑡, and 𝑦𝑖 = [𝑥1,𝑖, 𝑥2,𝑖, ⋯ , 𝑥𝑇,𝑖] T as the

time series of 𝑖 -th behavioral feature from time steps 1 to 𝑇 . The full-length behavioral data 𝑌 =

[𝑦1, 𝑦2, ⋯ , 𝑦𝑑] is 𝑇 × 𝑑 dimensional matrix where 𝑑 = 5-dimension eigenworm weights. Then we lift the

matrix 𝑌 into (𝑇 − 𝐿 + 1) × 𝐿𝑑-dimensional space of 𝐿 contiguous delays.

𝑌̅𝐿 = Φ𝐿(𝑌) = [𝑌𝐿:𝑇 𝑌L−1:𝑇−1 ⋯ 𝑌1:𝑇−𝐿+1] (1)

(2)

Where 𝑌𝑡1:𝑡2 denotes the behavioral data from time steps 𝑡1 to 𝑡2. We used continuous time embedding with

L=10 steps (corresponding to 2 sec) as the embedding time. After embedding, data from all individual animals

were concatenated and independent component analysis (ICA) was performed using the Fast ICA method 81.

and embedded into a m-dimensional subspace 𝑍𝑚,

𝑍𝑚 = 𝑌̅𝐿𝛤𝑚 (3)

where 𝛤𝑚 is the 𝐿𝑑 × 𝑚 matrix for ICA dimensional reduction. In this case, time series of postures were

finally embedded to 𝑚 = 5-dimensional space.

For the analysis of the virtual behavioral data generated by the MDN-RNN, the time-delayed embedding

was compared with the real animal data. Similar to above, a continuous time embedding of 2 seconds was

performed. For the dimensionality reduction, we used a mapping (Φ𝐿(𝑌), 𝛤𝑚) that was obtained with real

animals.

By applying time-delay embedding, generally we aimed at finding out 2 dimensions (forward modes)

which activates during C. elegans forward movement, and 2 dimensions (reverse modes) which activates

during its reverse movement. We refer to the subspace parameterized by the 2 forward modes as forward

subspace, and similarly we define the reverse subspace.

27

1.4.3 Implementation of neural network models

Implementation and training of the MDN-RNN and RNN model

The output of MDN-RNN consists of parameters of each Gaussian distribution, which are centers (𝜇) and

diagonal covariance matrix (Σ) for each Gaussian component, as well as weight (𝜋) for each Gaussian

distribution. The mathematical representation of the outputs is shown in equation (4) – (5), where K is the

number of Gaussian components, 𝑥𝑡 is the behavioral state at time t, ℎ𝑡 is the hidden state of the RNN at time

t, and 𝑠𝑡 is the stimulus at time t (0 or 1). The RNN consisted of three layers and LSTM was used. Each RNN

layer consists of 128 neurons.

𝑝(𝑥𝑡+1|𝑥𝑡 , ℎ𝑡 , 𝑠𝑡) = ∑ 𝜋𝑘(𝑥𝑡, ℎ𝑡 , 𝑠𝑡)𝒩(𝑥𝑡+1| 𝜇(𝑥𝑡, ℎ𝑡 , 𝑠𝑡)

𝐾

𝑘=1

, Σ(𝑥𝑡 , ℎ𝑡 , 𝑠𝑡)) (4)

∑ 𝝅𝒌(𝒙𝒕, 𝒉𝒕, 𝒔𝒕)

𝑲

𝒌=𝟏

= 𝟏 (𝟓)

The model was implemented based on the Python and PyTorch 82 framework. Given the past and

future pair (𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑋𝑟𝑒𝑎𝑙), training was carried out by minimizing the negative log-likelihood. Parameter

optimization was carried out using RAdam 83, which was claimed to be robust to learning rate change and able

to eliminate the necessity of learning rate warmup.

For the inference, we sampled the next behavioral state from the mixture of Gaussians. First, the

component was categorically sampled according to weight π, followed by sampling from the selected Gaussian

distribution.

MDN-RNN takes 10-dimensional inputs: a1, a2, a3, a4, a5, angular velocity, velocity, direction

(cosine and sine) and light stimulus information. The output of the model is designed to be a Gaussian mixture

model which consists of K components of 9-dimensional Gaussian distributions to determine the probability

28

of a1, a2, a3, a4, a5, angular velocity, speed, direction (cosine and sine). To simplify the model, the covariance

matrices were restricted to diagonal matrices. Therefore, the output of the network was a vector of

K+K×D+K×D dimensions where K is the number of Gaussian distributions and D is the dimension of the next

behavioral state, which is 9. The first K output neurons define the weights of each Gaussian distribution. Next

K×D values represent the mean of each distribution and the last K×D values define the variance in each

dimension of the distribution.

To test the role of MDN, we trained an RNN-based model, which only differed from the MDN-RNN

model by the size of the MDN layer so that the output of this RNN-based model can be directly interpreted as

behavioral state values of the next time step. We optimized the RNN-based model with MSE error until the

same early-stopping condition with the MDN-RNN model was met. We saved the first 2000 time steps of

prediction data and estimated the distribution that the RNN-based model gives, using various initialization

conditions.

Quantification of the similarity between real behavioral data and generated behavioral data with

Kullback–Leibler Divergence

Kullback-Leibler (KL) divergence measures the difference between two probability distributions. By

treating the dataset as an i.i.d sample from the true distribution (of C. elegans behavioral states) and drawing

random samples from the model as an i.i.d sample from the learned distribution, we utilized KL divergence to

evaluate the likelihood of the model.

Admittedly, KL divergence does not directly measure the difference between the real and learned

dynamics which drives the C. elegans behavior states and generates the distribution, and it measures the

difference of the resulted distributions instead. Despite this limitation, KL divergence should still be

considered as a valid quantitative measurement of the model quality.

29

Analysis of disentangled representation in MDN-RNN

To analyze the internal representation of MDN-RNN, we collected generated virtual behavioral data.

We simulated 10 episodes and stored the behavioral states, stimulus, and parameters for mixture Gaussian

distribution. Each episode consists of 10000 steps. The generated data were used to analyze the histogram for

each feature of each component, to analyze the behavioral patterns by embedding them in the behavior map,

and to analyze the dynamics in the behavioral state space created by the time-delay embedding.

The embedding of the behavior map was made by using a function of the openTSNE package.

OpenTSNE was also used for adding simulation results to the behavior map created with the actual C. elegans

behavior.

The conversion to behavioral state space was done by performing time-delay embedding under the

same conditions as used in the actual C. elegans behavioral analysis and ICA.

30

1.5 Result

1.5.1 Acquisition and basic quantification of C. elegans behavior

In this study, C. elegans was selected as a target to apply the new model I proposed. First, to build a

virtual model of C. elegans, we collected behavioral data of freely moving C. elegans using a high throughput

behavioral assay developed in a previous study 78. We placed worms on an agar surface and video-recorded

their behavior at 5 fps with and without random optogenetic activation via channelrhodopsin (a light-activated

ion channel) of sensory ASH neurons. ASH neurons are major nociceptive sensory neurons that mediate

reversal responses (backward movement) to noxious stimuli including nose touch, heavy metals, and alkaloids

84. We optogenetically activated these neurons via illumination to obtain information of sensorimotor

responses.

Next, the behavioral sequence of C. elegans was quantified at each time point across 9 variables: 5

variables (a1 ~ a5) representing posture, and 4 variables representing velocity, angular velocity, and sine and

cosine of head direction (Fig. 1-7 and Table 1-1). Eigenworm coefficients a1 through a5 were used for

quantifying the body shape of C. elegans by conventional methods73, while the centroid of the body was used

for quantification of the velocity and angular velocity of each worm (see Methods and table).

To investigate the behavioral components and sequence structure, we first aimed to categorize

behavioral patterns. We embedded behavioral data into 2 dimensions in an unsupervised manner by using

PCA and t-SNE (Fig. 1-5). Embedded behavioral states formed distinct groups which were found to

correspond to different behavioral patterns; forward, reverse and pause. Based on velocity and angular velocity,

we were able to interpret these patterns and thus create a behavior map (Fig.1-8 A).

We also quantified and visualized the dynamics of C. elegans behavior by applying the time-delay

embedding method which makes us able to extract dynamic properties of C. elegans behavior (Fig. 1-6;

Ahamed et al. 47). Visualization in two dimensions confirmed that different dynamics underlie the forward and

backward behaviors (Fig. 1-8 B and C). We used these features to test how well the virtual models of C.

elegans could replicate actual behavior as described in the next section.

31

1.5.2 A generative neural network model can successfully reproduce animal behavior

Training the MDN-RNN model of behavior

To simultaneously model the sequential and stochastic characteristics of behavior, which is the first

goal of this research, I utilized the MDN-RNN model. This model is a RNN model combined with an MDN

as an output layer (Fig. 1-3A). The RNN stores the information of previous inputs (behavioral dynamics), and

this feature makes it capable of representing and predicting sequential data. The MDN transforms the values

given by the RNN into a mixture of Gaussians (i.e. mixing the weights of each component of the mixture with

the mean and covariance vectors). This enables the model to handle the stochastic features as probability

distributions. MDN is an excellent way to model the data, especially for multistate and/or stochastic

phenomena, including animal behavior (Fig. 1-3B). Since behavior is sequential and stochastic, MDN-RNNs

is a powerful tool for modeling this type of biological phenomena.

In practice, I designed the MDN-RNN model to be composed of a 3-layer RNN followed by a 1-layer

MDN (Fig. 1-3C). In this model, the MDN-RNN takes the behavioral state and stimulus information of the

sensory ASH neuron for the past 20 s as input, and predicts the probability distribution of the behavioral state

of the next step, which is a mixture of Gaussian distributions in nine dimensions. In the MDN-RNN simulator,

the behavioral state of the next step is sampled from the Gaussian mixture distribution. First, an index of a

Gaussian distribution is selected, according to the weight of each distribution (categorical sampling). Next,

the value of the behavioral state vector is selected from the Gaussian distribution for the selected index, defined

by the mean and variance of the distribution, which provides an output of the network. Hyperparameter search

for the number of Gaussian components K was performed by minimizing negative log-likelihood (Fig. 1-9). I

selected K=10 because the model trained with this value effectively disentangled the dynamics underlying the

behavior (shown in the following section).

Qualitative validation of behavioral model

I trained the proposed model using the behavioral data of C. elegans. The behavioral patterns

generated by the model were very similar to those of actual C. elegans (Fig. 1-10 A and B). The trained model

was able to accurately represent the behavioral patterns during forward and backward movement. These results

32

suggest that MDN-RNN can represent multiple behavioral states in a single model, i.e., it has multiple internal

models. To study this, I statistically analyzed the behavior generated from MDN-RNN. The histogram of

velocity shows that the MDN-RNN generates both forward and backward behavior in a single model (Fig. 1-

10 C). These results give support for the hypothesis that a mixed Gaussian distribution, the output of the MDN

layer, enables the representation of multiple behavioral patterns in a single model.

Furthermore, I analyzed the dynamics behind the behavior using the time-delay embedding method. I

found that the represented dynamics were very similar between actual C. elegans behavior and behavior

generated by MDN-RNN (Fig 1-10 D to G), suggesting that the MDN-RNN model successfully learned the

dynamics of the behavior.

Quantitative evaluation of behavioral model

For quantitative evaluation of the performance of the MDN-RNN and RNN model, I calculated Kullback-

Leibler (KL) divergence between random samples of real C. elegans behavioral data, and between real data

and generated data (Table 1-2). As a preparation, I split real C. elegans behavioral data into 10 parts (10 folds)

and obtained 10 pairs by leaving one-fold out recursively. I also generated two behavioral data sets, each with

the same size as one-fold defined above, using the MDN-RNN and RNN model respectively, and obtained 10

pairs for each model by replacing the 1-fold real data part with the generated data. After that, I estimated the

sampling error with KL divergence of the real data pairs. I then estimated the model error, with KL divergence

between the generated data and the real data. Note that for all KL divergence calculations, I treated the 9-fold

part of each pair as true distribution, and the 1-fold part as sample distribution. Also note that sine direction

and cosine direction are considered less important than other features, since the direction of worm movement

tends to distribute uniformly in the long term. Thus, I excluded sine direction and cosine direction from the

data set, in all KL divergence calculations. Apart from calculations with raw features, I also applied similar

calculations to data embedded with t-SNE, so that quantification and visualization of the model error can be

achieved simultaneously (Table 1-2 and Fig. 1-11). From these results, it was confirmed that the distribution

of behavioral features generated from MDN-RNN were closer to the actual behavior of C. elegans than those

33

from RNN. However, it is not the same level as that of actual behavior of C. elegans, and there is still room

for improvement.

As a final test for the accuracy of the MDN-RNN behavioral simulator, I validated the capability of

the simulator to reproduce the behavioral response to sensory stimulation. As described above, the MDN-

RNN model also takes stimulus information as an input. I quantified the frequency of reversal behaviors by

delivering inputs that hypothetically stimulated ASH neurons. In real C. elegans, stimulation of ASH neurons

has been shown to increase the frequency of reversal behavior. In this model, also, the frequency of reversal

behavior increased in response to stimulation of ASH neurons (Fig. 1-12), indicating that the model learned

the behavioral response of C. elegans to ASH neuron stimulation.

1.5.3 MDN-RNN disentangles behavioral patterns

Next, in this section, the process of the MDN-RNN model recapitulates behavioral sequences of C.

elegans was further examined. Representation learning is a powerful feature of deep generative models. Deep

generative models learn a meaningful representation in the model so that the data of interest can be generated

with accuracy. Here, I will show that the MDN-RNN performs this disentangled representation learning and

decomposes a behavior into different behavioral patterns. For the sake of convenience, I will hereafter use the

term component to refer to each Gaussian distribution. Namely, a Gaussian mixture distribution as the MDN-

RNN output consists of K (=10) components. As described above, this MDN-RNN simulator selects one

component at each time point, and behavioral variables are randomly sampled according to the Gaussian

distribution of the component.

First, I statistically analyzed the distribution of the behavioral variables in each component using a

generated 10000-step prediction. I successfully found apparent differences in the distribution of velocity and

angular velocity between the 10 components: reversal behavior was represented by components 0 and 1, pause

behavior was represented by component 2, transition from forward to reverse was represented by components

3 and 4, and forward behavior was represented by the group of components 5 to 9 (Fig. 1-13 A and B). Among

34

the components representing forward behavior, component 9 represented mainly fast forward behavior. These

results suggest a disentangled representation of behavioral patterns per component.

This result is consistent with the claim of Ellefsen et al. 77 that different components can be studied to

model different possible future sequences. To clarify the differences between each component better, I

represented the generated behavior in the behavior map by adding data created from actual C. elegans behavior.

The results confirmed that the behavioral states sampled from the same component are close to each other in

the 2-dimension latent space and hence occupy continuous areas, whereas those sampled from different

components are relatively separated (Fig. 1-13C). This result is consistent with the previous claim that

different components represent different behavioral patterns.

Furthermore, I mapped the dynamics of each component to the dynamics of actual behavior in the

time-delayed embedded space, considering that each component may represent different dynamics (Fig 1-13,

D and E). As a result, I found that the dynamics of each component corresponded nicely to a subset of

dynamics in the time-delay embedded space.

Finally, to determine what types of behavioral features were represented by each component, I

observed the behavior when each component was forcibly selected in a continuous manner. The MDN-RNN

simulator performs random sampling of components according to the probability, and then extracts a sample

from the distribution given by the component. However, in this test I tried to constantly sample from a specific

component of the Gaussian mixture distribution. Surprisingly, I found that each component itself can generate

a fluent series of movements and that the patterns of motion differed between components.

These results show that by modeling probabilistic time series data with an MDN-RNN, the dynamics

of the system can be disentangled by the internal representation of the MDN-RNN. This means that the

probabilistic generative model learns and internally represents the structure of the system during the training

process of the time series prediction task. In this study, I treated the behavior of C. elegans as an example of

probabilistic evolving time series of biological phenomena. This approach could be used for not only behavior,

but also other types of data sets including neural activity dynamics.

35

1.6 Discussion

1.6.1 Disentanglement of behavioral dynamics by representation learning

An essential advantage of this approach is the automatic classification of animal behavior through

representation learning of deep generative models. I applied a powerful feature of deep generative models,

representation learning, to analyze animal behavior. A deep generative model is a machine learning method

that learns the underlying structure of the data being generated, and the model learns a mechanism by which

it can generate realistic data 85. In the process, the model casts the underlying structure of the data and organizes

the representation into features with different properties. It is known that MDN-RNNs models learn different

dynamics in a disentangled representation as a time-evolving Gaussian mixture 77. More precisely, it is known

that different Gaussian components in the MDN layer have two complementary roles: to separately model the

different events governed by different dynamics, and to separately model the different stochastic events 77. In

this research, I successfully modeled multiple behaviors governed by stochastic elements and different

dynamics of animal behavior using these features. I showed that the complex dynamics are unraveled and self-

organized for each of the different components in the learned model.

1.6.2 Applicability of sequential mixture density neural network

The modeling methods developed in this dissertation are not limited to C. elegans behavior. In fact,

the model can be applied to behavior and neural activity of other animals. I showed that MDN-RNNs can be

used to simulate C. elegans behavior with high accuracy. Technologies for behavioral quantification from

time series images are rapidly developing 4. Accordingly, behavioral states of various animals have been

characterized, and human motion has been captured and analyzed quantitatively. Therefore, using variables

from continuous animal behavior or human motion as inputs, I could potentially simulate the behaviors of

many animals, including humans, whose behavior is more complex than the worm’s behavior analyzed in this

study. One of the important properties of any method for analyzing behavior is that it can be easily scaled to

the analysis of other animal species. The method I adopted can handle time series data in any format. Various

36

characteristics of animal behavior have been quantified so far, and recent developments in technology have

made it possible to easily obtain skeletal data of human and animal body postures. The methods presented in

this study are compatible with all of these methods and could be used as the first of the post-quantification

steps of behavioral analyses.

Furthermore, the proposed method is not limited to behavioral data. In principle, this method can be

applied to any stochastic sequential data in biology and can learn meaningful representation to generate those

biological phenomena. Neural activity is one of the first targets for extension of this work as probabilistic time

series data modeling. In our group, we have started modeling neural activity data using MDN-RNN. The

probabilistic deep generative model is effective for both direct modeling of the phenomenon itself and

parameter estimation of mechanistic models, and further applications are expected in the future.

1.6.3 Building the first complete computational model of C. elegans

In this study, I have succeeded in creating a "virtual nematode" that mimics the behavior and specific

sensory responses of the nematode. By extending the results of this study, I expect to be able to create a virtual

nematode whose neural network more closely resembles the actual neural connections of a nematode, and

whose internal representation is more similar to that of an animal. By closing the gap between the data-driven

generative model created in this research and the mechanistic model created based on the neural circuit

structure and skeletal structure, it will be possible to create a generative model that is closer to the control

mechanism of actual animal behavior. C. elegans is a particularly good model animal for this purpose. In this

paper, I discuss the significance of creating a "virtual nematode" and ideas on how to create it.

We still do not understand the mechanisms by which the complex and diverse animal behaviors found

in nature are generated. The main challenge for neuroscience is to understand how each neural activity is

related to behavior and how it is involved in the generation mechanism. By creating virtual animals and reverse

engineering animal brains, ethology can benefit in many ways. Describing the process of generating behavior

37

is the goal. Moreover, if we can predict which part of the generation process is abnormal and leads to

psychiatric disorders, we can select effective targets for treatment. Furthermore, the mechanism of embodied

control will be highly valuable in AI research, especially in robotics.

C. elegans is an excellent model organism for linking neural activity to behavior. The nervous system

of C. elegans consists of 302 neurons, and all of their neural connections have been identified. With the

technical development of high-speed microscopy and tracking systems, it is now possible to record neural

activity during free-ranging behavior. Therefore, it is now possible to obtain both behavioral data and data on

almost all neural activity in the head at the same time. With this background, I believe that it will be the first

animal to be able to reproduce neural activity and behavior in silico, based on actual neural activity data and

structural connections obtained.

At present, RNNs are reproducing the behavior of animals and processing information in the actual

nervous system. I believe that it is possible to construct a neural network that is more biologically similar to

an animal. Our group has previously developed a mechanistic model of C. elegans behavior, and we have

already begun to integrate this mechanistic model with my data-drive model to create virtual nematodes that

correspond to virtual neural activity and locomotion. The results of this study, which proposed a data-driven

generative model, are very important as a foundation for research on creating such virtual animals, and I look

forward to further development.

1.6.4 Real world application of behavior prediction

Prediction of animal behavior, including human behavior, has a huge impact on social application.

For example, in the field of robotics, human behavior prediction models enable robots to anticipate how

humans may react to the robots’ actions. The same is true in the realm of automated driving. Estimating the

probability distribution of how people behave and where they will be in a few seconds afterwards is an

essential part of the technology to make automated driving work safely. Hence, probabilistic prediction of

human behavior has a huge impact on the social application of robots and other applications.

38

1.7 Figures and Tables

Fig. 1-1 Research paradigm.

39

Fig. 1-2 Schematic illustration of mixture density network.

40

Fig. 1-3 Schematic illustration of mixture density recurrent neural networks (MDN-RNN).

(A) Schematic illustration of the MDN-RNN. The input is first processed by the RNN and then transformed

into each parameter of the Gaussian mixture distribution by the MDN layer. (B) A conceptual diagram of the

prediction method for time series data. The predicted values in the near future is deterministically output from

RNN based on data of the past time points, which are shown as dots. On the other hand, MDN-RNN outputs

the probability distribution of the next predicted values from the data of the past time steps, which is showed

as colored ovals. (C) A detailed description of the MDN-RNN used in this study. The behavioral states of the

past 100 steps are received as input, processed by the three-layer RNN, and then transformed by the MDN

layer into each parameter of a Gaussian mixture distribution consisting of K Gaussian distributions, where 𝑥𝑡

is the behavioral state at the time t, 𝑠𝑡 is the stimuli at time t, and 𝜋𝑘, μk and σ𝑘 is the parameters of the

Gaussian mixture distribution.

41

Fig. 1-5 (A) Schematic illustration of 2D behavior embedding. (B and C) Relationship between position on

the behavior map and angular velocity and speed.

42

Fig. 1-6 Schematic illustration of behavioral dynamics analysis by time-delay embedding and independent

component analysis (ICA). Time delay embedding was followed by ICA to extract the behavioral modes, each

of which is dominated by different dynamics. These analyses were performed using only the information of

the posture of C. elegans.

43

Fig. 1-7 Acquisition of the behavioral dataset. Schematic illustration of data acquisition and quantification

process. Freely moving animals were video-recorded by a high-throughput assay system. Behavioral states

are expressed in nine dimensions. The behavioral states were used to create a behavioral map and to analyze

the dynamics using time-delay embedding.

44

Figure 1-8. Quantification of the behavioral dataset. (B) Behavior map of freely moving C. elegans. Behavior

is embedded in two dimensions and appears to be mainly affected by the value of the velocity and the value

of the angular velocity. The value of the velocity corresponds to the forward and backward movement of the

nematode, and when absolute value of the angular velocity is large, the animal remains in one place . (C and

D) Visualization of the dynamics in a two-dimensional space. The dynamics changes significantly during

forward motion (C) and reverse motion (D). Each time point is colored according to the velocity.

45

Fig. 1-9. Relationship between number of components and mixture density recurrent neural networks loss.

46

Fig. 1-10. A generative neural model can successfully reproduce the behavior of animals. (A and B)

Comparison of the behaviors generated by the probabilistic generative models and the actual nematode

behavior. The light blue area is the actual nematode behavior data used for initialization; the Real column

shows the subsequent behavior of the real nematode; the MDN-RNN and RNN columns show the behavior of

the virtual nematode generated by the trained simulator. A and B illustrate the results of initialization using

different behaviors of real animals. (C and D) Comparison of MDN-RNN and RNN distributions on the

behavior map. (E and F) Trajectory in a behavioral state space (E: forward and F: reversal).

47

Fig 1-11. Qualitative evaluation of the accuracy of simulated behavior

(A) The behavior map embedding of the real C. elegans behavior. (B) - (D) Results of KL divergence

comparison with actual C. elegans behavior shown in (A). (B) Comparison results of KL divergence with

sampled actual C. elegans behavior. (C) Comparison results of KL divergence with the behavior generated

from MDN-RNN. (D) Comparison results of KL divergence with the behavior generated from RNN.

48

Fig 1-12. Response of the model to stimulus input. After 1 s of stimulation (indicated by the bar) the reversal

rate increased. This indicates that the model animal responded to the stimulus input. The dashed lines represent

the standard deviation.

49

Fig. 1-13. Behavior dynamics is disentangled by the deep generative models. (A and B) Histogram of velocity

(A) and angular velocity (B) for each behavioral state generated from each component. Reversal behaviors are

mainly represented by components 1 and 2, while turn behaviors are represented by component 3. (C)

Probability density on the behavior map for each component. (D and E) Trajectory in behavioral state space

(D: forward, E: reversal) when each component is selected.

50

Table 1-1. Variables for the quantification of the behavioral state

 Description Variable name in the code

Shape Eigenworm component 1 weight a1

 Eigenworm component 2 weight a2

 Eigenworm component 3 weight a3

 Eigenworm component 4 weight a4

 Eigenworm component 5 weight a5

Velocity Angular velocity AngularVeolcity

 Velocity VelocityTailToHead

Direction Sine of advance/retraction angle Direction sine

 Cosine of advance/retraction angle Direction cosine

Stimulus Led on (1) of off (0) led

51

Table 1-2. Quantification of sampling error and model error (average ± sem)

KL divergence

with raw features

KL divergence

with T-SNE 2d-embedded data

Sampled real data 0.117±0.002 11.928±0.132

RNN 8.229±0.001 24.440±0.043

MDN-RNN 0.432±0.001 15.133±0.016

52

Chapter 2

Behavior control via reinforcement learning

2.1 Abbreviation

C. elegans Caenorharbitis elegans

DQN Deep Q Network

MDN-RNN Mixture density network - recurrent neural network

NN: Neural network

RL Reinforcement learning

53

2.2 Introduction

Understanding animals' behavior is of great importance in various fields including but not limited to

ethology, neuroscience, and robotics 58–60. From a biological standpoint, replicating animal behavior is

important for understanding how the nervous system controls an animal’s body and how it processes sensory

information and makes decisions to generate corresponding motion. From an engineering standpoint, animal-

inspired robots are in heavy demand for various applications 60–62. Although previous studies have been

focused on extraction of behavior strategy in hypothesis-driven manner, recent advancement of behavior

measuring and machine learning will make it possible to automatically extract the behavioral strategies.

Therefore, the research aimed to replace the animal's behavioral strategy in a specific behavioral task with a

machine.

In this research, we examined the effectiveness of using reinforcement learning (RL) for automation

of controlling animal behaviors in the simulation environment developed in Chapter 1 (Fig. 2-1). RL is a type

of machine learning that is specialized for learning the policies for specific tasks 86. Previous studies have

suggested that mammals adopt an RL framework to decide their behavioral strategy 86–88. By replacing animals’

learning systems with machine learning systems, I aimed to control virtual animal behaviors ad arbitrium.

Because RL generates policies which achieve specific tasks, control of animals is accomplished automatically

and systematically; without the need to specify how to manipulate animals.

54

2.3 Background and related research

2.3.1 Reinforcement learning

In this section, I will briefly describe the concept of reinforcement learning. Reinforcement learning

is a type of machine learning in which machines try to learn the best policy to solve a target task automatically

during the process of trial and error. In the reinforcement learning setting, the agent (machine) and the

surrounding environment interact with each other (Fig. 2-2). The following three steps constitute a

reinforcement learning trial; the environment presents the state to the agent, the agent decides the action, and

the environment updates the state and also passes the reward to the agent depending on the action. The goal

of the training is that agents learn the policy which can obtain rewards as much as possible from the

environment. There are several algorithms for the update (learning) of the policy. The algorithm used in this

study is detailed in the methods section.

2.3.2 Replicating animal behavior via robots

Replicating animal behavior and body control systems have great benefits on robotics. Several works

have tried to replicate the animal body control system by building mechanist models61 and/or using machine

learning methods such as reinforcement learning models 60.

However, few works have been done on autonomous extraction of behavioral strategy and its

application to robots. Since many animal-inspired robots have been introduced into practical use, it will

become increasingly important to imitate and deploy behavioral control strategies which adapt to the

surrounding environment from animals themselves. In this manner, methods for extracting autonomous

behavioral strategies are needed.

55

2.4 Method

2.4.1 Problem setting

Hypothetical navigation task was designed to test the usefulness of reinforcement learning in

controlling animal behavior and extracting behavioral strategies (Fig. 2-3, 2-4). In reinforcement learning, the

problem setting can be divided into environment and agent. The interaction between environment and agent

is shown below. The environment presents the current state, and the agent decides the action based on the

current state and its own policy. The environment then receives the action from the agent and returns the next

state and reward to the agent. The details of environment and agent are described in the next section.

Environment (Navigation task)

The environment in this task consists of the goal position and behavior state of the animal (C. elegans)

in simulation space, and returns the rewards based on the agent's position. State is composed of the direction

and speed of the worm and its posture as values of eigenworm (a1 and a2). Direction of the worm was

calculated as a difference of angles between the direction of the goal point and moving direction of the worm

in the following equation,

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛𝑔𝑜𝑎𝑙 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑤𝑜𝑟𝑚

where as, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑔𝑜𝑎𝑙 is the angle toward the goal point from the position of C. elegans and

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑜𝑟𝑚 is the heading angle of C. elegans in the simulation environment. Speed is represented as

velocity, and posture has values of eigenworm a1 and a2 (refer to the behavioral quantification section in the

Chapter 1 and Table 2-1 for explanation of these variables).

56

Table 2-1 Variables for the reinforcement learning environment state

State Name Description Variable name in the code

Eigenworm 1 Posture variable 1 a1

Eigenworm 2 Posture variable 2 a2

Direction Difference between goal direction and worm direction angle

Speed Velocity of the worm speed

The simulator of the environment receives the previous state and action and returns the reward and

next state. The simulation of behavior conducted based on the MDN-RNN model, which was created in

Chapter 1.

The task was designed to control the behavior of C. elegans: navigating toward the goal point (Fig. 2-

4). Reward was defined as the decrease of distance (pixels) from the goal point (if C. elegans approached the

goal, it obtained a positive reward) and an additional bonus reward of 1000 was obtained for reaching the

goal. The reward was calculated by the following equation.

𝑅𝑒𝑤𝑎𝑟𝑑 = 1000 𝑖𝑓 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑔𝑜𝑎𝑙; 𝑒𝑙𝑠𝑒 (𝑑𝑖𝑠𝑡𝑡−1 − 𝑑𝑖𝑠𝑡𝑡)

𝑑𝑖𝑠𝑡𝑡 and 𝑑𝑖𝑠𝑡𝑡−1 represent distance to the goal point from the position of the worm in time point t and t-1,

respectively, and so indicate the change of distance toward the goal point.

Agents

In this task, the agent is the optogenetic controller, which is designed to obtain the greatest possible

rewards through the RL scheme. The binary action of turning the lights on/off activates the ASH neurons

optogenetically (Table 2-2). Agents decide the action based on the policy π. The objective of the training is to

find the policy 𝜋 to maximize the sum of future rewards.

Table 2-2 Variables for the reinforcement learning environment state

57

Action name Description Variable name in the code

Stimulus Optogenetic stimulation of ASH neurons led

2.4.2 Agent model

Q-learning

As mentioned in the previous section, the purpose of learning is to obtain the policy which makes the

agent to obtain high reward from the environment. An effective way to learn such policy is to formulate it as

the function of the discounted reward to each of the state-action pairs, which is called q-values,

𝑄 𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

By setting 𝜋 = 𝜋∗ , I can obtain the optimal policy 𝜋∗ by learning the q-values for every state-action

pairs. Such a learning method is called Q-learning.

Once the q-values are learned, the optimal policy at a given state is to choose the action with highest

value with probability (1 − ε) where ε is the exploration factor. This method of action selection is called the

greedy method.

Deep Q-learning (DQN)

In the case where the task has a large state and action space, learning q-values (or creating q-table)

becomes intractable. DQN was introduced to address this problem by using a deep neural network to estimate

the q-values from the state 89. In DQN, policy is represented as a multi-layer neural network which takes 𝑆𝑡𝑎𝑡𝑒𝑡

as the input and outputs q-values for each possible action. I adopted Deep Q network as a model of

reinforcement learning, in which the NN reduces temporal difference error through training with Q-learning

to decide action in RL. NN suits for dealing with serial states because NN can represent complex nonlinear

58

functions. Since C. elegans behavioral state is in a continuous space, I considered that the NN is suitable for

this RL framework.

2.4.3 Implementation

NN in the RL model has the input layer of 4 components, which corresponds to the number of input

variables, 2 hidden layers, each of which have 10 components and an output layer of 2 components

corresponding to the number of output variables. Activation functions of hidden layers were ReLU 90. Adam

(a stochastic gradient based optimization method)91 was used as the solver for weight optimization, and

behavior distribution was decided by ε-greedy policy. I implemented the RL model using the Python and

machine learning library scikit-learn 92.

2.4.4 Training

To train an agent to learn a policy for achieving tasks, I set hyper-parameters. In my model, ε

(probability of acting randomly) was 0.05 for ε-greedy policy, γ (discount factor) was 0.95, max epochs were

1000 and, in each epoch, max steps were 400. To stabilize the training results, I used Experience Replay, in

which action history was stored temporarily and then sampled to be used as training data. Buffer size (number

of stored data) was 1024 and batch size (number of data used per single training) was 32. Each training session

was conducted five times, each with a different random seed.

Trained models were also tested to evaluate the performance of models or to reveal the policy learned

by the trained models. When the models were tested, ε was 0.0001 and the parameters of the neural network

were not updated. Models were tested in an environment where their start points were close (randomly chosen

within 0.2 – 0.5 mm far) from the central point and they could end their epoch and received a bonus reward

when they reached the goal area, and in an environment in which their start points were far (randomly chosen

within 0.2 – 1.0 mm from the central point) and they could not end their epoch until 400 steps had passed,

59

although the rewards grew larger as they approached the center of the arena (where the goal was located). The

former setting was used to evaluate the model ability to obtain rewards and navigate toward the goal point,

and the latter setting was used to show how worms accumulated near the goal point when they were stimulated

by the learned neural activation sequence. The other settings were the same as those in the training session.

2.4.5 Statistical analysis

Statistical analysis was performed in the Chapter 2 using the SciPy library in python. The Brunner-

Munzel test, a nonparametric method, was used to test for differences in obtained rewards between the two

groups, and the chi-square test, a nonparametric method, was used to test for differences in goal rates between

the two groups. All P values are listed in the figure legends.

60

2.5 Result

In this chapter, I aimed to automatically extract the behavior strategy of C. elegans via machine

learning. By automatically finding the policy to make C. elegans perform a specific behavior (e.g. make

worm dance), I tried to extract the possible behavioral strategies. I adopted RL which is a (machine learning)

framework suitable for automatically obtaining the best policy to manipulate animal behaviors to perform a

predefined task automatically 86.

In an RL framework, an agent, environment, action, state, and reward need to be defined. In this

research, the agent is the optogenetic controller, the environment is the position, posture and internal state of

the virtual worm, the action is optogenetic activation of the ASH neuron, and the reward is pre-defined for

each task (Fig. 2-3). I adopted a Deep Q Network (DQN) as a model of reinforcement learning because DQNs

can learn the appropriate policy in a series of continuous states, which are the posture and behavior of worms

in this study93.

I designed a task whose objective is to navigate a worm toward a goal point. This task corresponds to

the organism’s taxis behavior. The goal point was the center point of the test arena and the start points of

virtual worms were randomly selected to be within a certain distance of the goal point. To complete this

objective, I designed the reward to be a decrease of distance (pixels) from the goal point (if the virtual worm

approaches the goal, it gains a positive reward) and a bonus reward for reaching the goal (Fig. 2-4). By this

configuration of rewards, the agent is expected to learn a stimulation sequence of ASH which shortens the

distance of the animal to the goal point. The goal bonus reward is so much larger than the reward for change

of distance that the total reward is mostly affected by the goal bonus reward.

2.5.1 Training result

As a result of training, I succeeded in automatically controlling the virtual worms to navigate toward

goal points in a simulated environment. The rewards increased over the course of epochs when the simulation

61

sequence was trained in a reinforcement learning framework (Fig. 2-5A). To assess the performance of the

trained model, I used the trained model to stimulate the nematode and compared its behavior to that caused by

the random stimulation. Neural stimuli in a random sequence with a 50% irradiation rate were used as

comparators because the initial condition for reinforcement learning is a 50% irradiation rate. Compared to

the random case, the virtual worms in the learned group earned more rewards, clustered near the goal, and had

a higher goal rate (Fig. 2-5 B and C; Fig. 2-6).

2.5.2 Computational mechanism

Furthermore, I investigated the computational mechanisms that the automatically learned policy

developed. To do so, I studied the relationship between the angle of the C. elegans to the goal and the

stimulation rate. As a result, I found that an agent learned the policy to stimulate the neuron when virtual

worms were not facing the goal point (Fig. 2-7). I concluded that through this policy, virtual worms are made

to move ahead when they are facing the goal point and to change their movement direction via a reversal and

turn when they are not facing the goal point. To verify this assumption, I made a toy model which stimulates

the neuron when virtual worms do not face the goal, and which does not stimulate the neuron when facing the

goal. This toy model performed better than random activation sequences and were similar to the trained

sequences, indicating the effectiveness of the obtained policy (Fig. 2-5A). Interestingly, actual C. elegans uses

a similar strategy called the pirouette mechanism for chemotaxis 94. According to this mechanism, real worms

turn more frequently when they are facing away from a chemoattractant. Other organisms and cells such as E.

coli and sperm also use this kind of navigation strategy 95. Thus, RL gives us universal and effective navigation

policy of organisms as well as meaningful insights for understanding animal behavior by elucidating the

behavioral strategy of existing animals.

62

2.6 Discussion

In this chapter the computational methods for extracting behavioral strategy from animal behavioral

data was developed. In this task, I have succeeded in automatically extracting the pirouette strategy used by

C. elegans during navigation by reinforcement learning. The extraction of behavioral strategies is beneficial

not only for ethology but also for many other fields. In the following chapters, the usefulness of the method

in ethology and its usefulness in peripheral fields such as brain machine interface and robotics are discussed.

2.6.1 Importance and future direction in ethology

Understanding the behavioral strategies of animals is an important question in ethology. In other

words, it is important in ethology to clarify which information in the environment is used, what kind of

computation is performed, and how the final output, behavior, is achieved. Now that behavioral measurement

has become easier and behavioral data in large scale and naturalistic environments are available, it will be

possible to find behavioral strategies that have not been discovered in the past by having machines

automatically extract behavioral strategies.

Although the setting in this study is that the Agent receives the state and outputs the action of giving

an aversive stimulus to the animal (activating the ASH sensory neurons), it may be more appropriate to control

the motor command neuron as the action. It is known that the stimulation of ASH sensory neurons indirectly

induces a retreat behavior, while the stimulation of motor command neurons directly induces a specific

behavioral component. In this study, for simplicity, only backward behavior was targeted for action, but it is

possible to target multiple behavioral elements, and I hope to address this issue in the future.

In this study, behavioral strategies were extracted on the virtual animal simulator created in Chapter

1. In the future, however, it will be necessary to verify the extracted behavioral strategies using actual animals.

However, in the future, it will be necessary to validate the extracted behavioral strategies using real animals.

For this purpose, it is necessary to develop an experimental system in which recognition of current state and

63

stimulation of neurons are performed in a closed loop manner. Such a closed-loop experimental system has

been developed mainly for model organisms, and in recent years, it has become possible to adapt the system

to free roaming animals in three dimensions. Future directions may include the integration of these

experimental systems and the reinforcement learning control system developed in this research.

Research on neurostimulation such as neuromodulation for medical applications has been rapidly

advancing in recent years. RL is one option for a controller of brain activity. Several studies have been carried

out on monitoring neural activities and in turn controlling them using computational models and RL 96,97. In

bidirectional brain machine interface, nervous systems of patients were stimulated to exert specific functions

such as normal movement 98. However, the number of studies that aimed at controlling brain activity or

behavior of living animals through neural stimulation patterns obtained by RL is still limiting. Future studies

should target restoring human brain functions in patients with nerve damage or behavior of simpler animals

in vivo by constructing a closed loop RL model. Therefore, application of the outcome of this study to real

animals will enable us to make the neuromodulation process more accurate and systematic using the policies

of controlling systems obtained via RL and to support behavior of patients to restore motor functions through

generating optimal brain stimulus sequences automatically.

2.6.3 Application to robotics

One of the practical applications of this research is robotics. In recent years, robots that mimic the

body control system of animals have begun to be proposed and used in the real world. These animal-shaped

robots have succeeded in imitating the posture control of animals, but the behavioral strategies are still

designed by human hands. In the future, it is expected that intelligent robots that mimic animal behavior, even

down to the behavioral strategies, will be needed. In this context, methods for extracting behavioral strategies

for accomplishing specific tasks, as achieved in this study, are required. I believe that the proposed method

can serve as a foundation in this context.

64

2.7 Figures

Fig. 2-1 Research paradigm.

65

Fig. 2-2 Schematic illustration of reinforcement learning.

66

Fig. 2-3 Schematic diagram of reinforcement learning control of C. elegans.

67

Fig. 2-4 Conceptual diagram of the task of navigation toward the goal point.

68

Fig. 2-5 Result of reinforcement learning. Rewards of the trained model in the task using the activation

sequence obtained by reinforcement learning, 50% random neuronal activation sequence, and the activation

sequence obtained by the toy model. The polygonal line graph shows a representative reward history obtained

during training (mean rewards obtained in 300 epochs). (D)-(E) Accomplishment of the task in the test session.

(D) Violin plot of reward distribution obtained in the test session of each model. Each dot indicates a reward

obtained in an epoch. The rewards obtained by the RL model were significantly larger than those obtained by

random sequence (P <0.001, Brunner-Munzel test). (E) The heat map on the left shows the trajectories of 1000

worms using 50% random neuronal activation sequence. The heat map on the right shows the trajectories of

1000 worms using neuronal activation sequence obtained by reinforcement learning. The color bar shows the

number of worms/square mm in the simulation space. The goal area is on the center (0–0.2 mm from the

center) of the figure and the start points are around the goal area (0.2–1.0 mm from the center).

69

Fig. 2-6 Training result of navigation task. (A) Rewards of the trained model in the task using the activation

sequence obtained by reinforcement learning of five different seeds, 50% random neuronal activation

sequence, and activation sequence obtained by the toy model. Each polygonal line shows one of five rewards

history obtained during training designating mean rewards obtained in 300 epochs. (B)–(D) Accomplishment

of the task in the test session. (B) Violin plot of reward distribution obtained in the test session of each model.

P values of the statistical test between each trained model (seed 0, 1, 2, 3, 4) and random model were P <

0.001, P = 0.680, P = 0.038, P = 0.725, and P < 0.001 (Brunner-Munzel test). (C) Bar graph indicates mean

goal rates of virtual worms in the test session of each model. P values of the statistical test between each of

trained model (seed 0, 1, 2, 3, 4) and random model were P = 0.0189, P = 0.811, P = 0.334, P = 1.0 and P =

3.73 × 10−3 (Chi-square test). (D) The heat maps show the trajectories of 1000 worms using neuron activation

sequence obtained by each model. The goal area is located at the center (0–0.2 mm) of the figure, and the start

points are located around the goal area (0.2–1.0 mm).

70

Fig. 2-7 Learned policy of the trained model in the task. The line graph shows the relationship between

navigation toward the goal point relative to the virtual worm and neuronal stimulation rate using the neuronal

activation sequence obtained by reinforcement learning. The dotted lines indicate the standard deviation.

71

Appendix

Disentangling animal behavior via temporal conditional-

subspace VAE

3.1 Abbreviation

CS-VAE Conditional subspace - variational autoencoder

VAE Variational autoencoder

TCS-VAE temporal conditional subspace variational autoencoder

TCN temporal convolutional network

72

3.2 Introduction

In analyzing time series data, it is important to describe the characteristics of the time series data of

the target group compared to other groups. Extracting characteristic time series patterns in the time series data

of interest is one of the main objectives of time series analysis. The analysis of time series data handled in

biological research is no exception. Behavioral data and neural activity data is one of the best examples of this.

With behavioral data in hand, animal ethologists have previously described class-specific behavioral

patterns in the animals which they focused on. Many animals show specific types of behavior which depends

on their classes such as species, gender, and genotypes.

Determining how class-specific behaviors arise from the nervous system is one of the major goals of

neuroscience. In order to achieve this, it is important to elucidate class-specific neural activity patterns in the

large-scale data that have been observed. From the perspective of psychiatric disease research, the division

into the class of presence or absence of disease can reveal disease-specific patterns of neural activity and

behavior.

In this sense, the method of unsupervised extraction of class-specific time series patterns from time

series data is very important and is useful in various fields. In previous studies, researchers set the feature of

the interest in advance and investigated whether the features change in a class-dependent manner. However,

in addition to the large bias of the observer's prior hypothesis, this method was not suitable for the analysis of

recent large-scale data. With the development of observational technology, the data handled in biological

research has also become multidimensional and larger in size.

To deal with the problem, I propose a method for extracting time series patterns characteristic to a

class from this multidimensional, large-scale data by applying machine learning techniques in this chapter.

In this study, I approached the above problem by applying a deep generative model. Deep generative

learning is a type of deep learning which tries to reveal the process of data generation. It tries to model the

latent stochastic process of the generation of the data that I am interested in. I further applied the deep

generation model and thought that I could solve the problem by separating the processes that depend on the

73

specified class and those that do not depend on the specified class when modeling the process of data

generation. I confirmed this hypothesis by applying variational autoencoder (VAE)99 and its application,

conditional subspace VAE (CSVAE)100, to the data.

VAE is one of the successful methods for deep generative models. Autoencoders constitute a well-

known subcategory on the framework which aims at uncovering a projection of high-dimensional input data

onto a low-dimensional manifold and to subsequently predict out- put data based on this projection.

There are several ways to handle time series data in a neural network. The most common methods are

recurrent neural network and time convolutional network. RNN keeps the history information in the network,

while temporal convolutional network (TCN) performs convolutional computation in the time direction. These

methods can also be combined with VAE, and several studies have reported 55,101,102. This study adopts TCN

as a method to handle time series data from the viewpoint of interpretability. Temporal convolutional networks

(TCN) has ability to compress information in the time direction103. Furthermore, some reports show that TCNs

outperform RNNs in predicting time series 103.

In this study, I developed a method to extract class-specific patterns from animal behavior data by

using the property that CSVAE classifies data into class-specific and class-dependent data. This study dealt

with animal behavioral data and neural activity data, but essentially any other time series data is acceptable.

74

3.3 Result

3.3.1 Development of TCS VAE

First of all, temporal convolutional block (Fig. 3-1) was added to the input part of CSVAE in order to

be able to handle time series data. There are two ways to represent time-series data: using RNN patterns and

using temporal convolutional blocks. temporal convolutional blocks were chosen for their interpretability and

also because there are some research results that show temporal convolutional block performs better than RNN

in time series prediction tasks.

Time series data such as behaviors show different features at multiple time levels (msec~min).

Therefore, temporal convolutional block can cope with multi-scaling by performing hierarchical handling in

the time direction.

A comparison of similar neural networks, autoencoder, temporal autoencoder, conditional subspace

VAE, and temporal conditional subspace autoencoder, is shown in Fig. 3-2. The TCSVAE proposed in this

research has two latent spaces. Z subspace is a subspace used to handle time series data chunk with common

dynamics among classes. The latent variables in Z subspace are trained by adversarial learning in a way that

suppresses class-specific information. On the other hand, the W subspace is a subspace that is used when

dealing with time series data chunks that have different dynamics among classes.

3.3.2 Toy Data

Next, TCS-VAE was tested on a toy dataset to see if the TCSVAE method of separating class-specific

time series patterns and class-independent time series patterns by two VAEs. The toy data set was created as

follows. The class 1 group is a sine wave with Gaussian noise on it. The class 2 group is based on the sine

wave of class 1, and contains different patterns of high frequency sine waves in the ratio of about 10%. This

represents a time series data set in which the base time series pattern is common among the classes, but some

of the dynamics are different.

75

When I trained on this dataset, it was first shown that both classes were able to reconstruct the data

(Fig. 3-3A). In particular, in the class 2 group, the characteristic waveforms are also recovered, indicating that

not only the network that handles the common parts but also the network that transmits information about the

class-specific parts are functioning.

Next, in addition to confirming that the Z and W subspace represent class-specific information and

common dynamics among classes, I also confirmed the trajectory in each subspace (Fig. 3-3B). As a result, it

was confirmed that in the Z subspace, only the common dynamics between class 1 and class 2 were extracted.

On the other hand, in the W subspace, it was confirmed that the topology of the trajectory was different from

that of class 1 in the case of characteristic time series patterns.

This result shows that TCSVAE can successfully represent the class-specific dynamics and the

common dynamics among classes in different latent spaces.

76

3.4 Discussion

In this study, it was shown that class-specific behavioral dynamics can be extracted from time series

data using a model that combines adversarial learning and deep generative learning. In the future, I would like

to apply this model to animal behavioral time series data based on these basic results.

It is useful in many situations to compare the generation process of animal behavior. The classes in

this study can be applied to various cases, such as wild type and mutant, male and female, with and without

disease, and so on. In the future, I would like to apply them to each pattern and show their effectiveness.

In addition, I would like to investigate how much class characteristics exist in time series data based

on the difference in information represented by Z subspace and W subspace. For this purpose, I can consider

a model that is trained in two steps as shown in Fig. 3-4 First, I train only VAEs that handle common

information among classes, and then I train networks that encode class-typical behaviors in step 2. Then, by

comparing the reconstruction rate in step 1 with that in step 2, I can quantify how much class-specific

information is included in the input time series data. I would like to develop such a quantitative analysis

method in the future.

77

3.5 Figures

Fig. 3-1 Schematic illustration of temporal convolution block.

78

Fig. 3-2 Comparison of related autoencoder-type models.

79

A

B

Fig.3-3 Training results of toy model. (A) Reconstruction succeeded in both class 1 and class 2. (B) W

subspace handles the class specific information whereas Z subspace handles class independent information.

80

Fig. 3-4 Quantification of class specific information and class independent information.

81

Conclusion

Three key problems in computational ethology were approached in this dissertation.

In Chapter 1, I constructed a virtual animal using a deep generative model and showed that

MDN~RNN can reproduce stochastic animal behavior. The results showed that the MDN~RNN can reproduce

stochastic animal behavior. In addition, although it has been known that RNN-based behavioral simulations

fall into a motion less state, this problem can be solved by using MDN as a probability distribution for the

output. Furthermore, it was shown that behaviors with different dynamics were represented and learned in a

disentangled manner depending on the component of the MDN. In the future, our group would like to further

develop this model and build a model that matches the actual connectivity pattern of the nervous system.

 In Chapter 2, I developed a computational control mechanism for behavior, and showed that a machine

can extract behavioral strategies found in nature by automatically searching for a control mechanism that suits

the desired task. In order to achieve this, I applied reinforcement learning as a control algorithm, and aimed

to replace some of the computational mechanisms of the nervous system with a computer in order to

accomplish the tasks that animals perform in nature. It was shown that the computer can acquire and reproduce

behavioral strategies similar to those actually performed by animals without prior information.

In Appendix A, I aimed to analyze the topology of the dynamics behind the behaviors of animals

belonging to different classes by separating the behaviors that are characteristic of each class from the

behaviors that are common regardless of the class. For example, when the behaviors of animals modeled for

psychiatric disorders and wild-type animals are acquired, it is important to extract the behaviors exhibited only

by the disease model animals and investigate the generation mechanism of the behaviors in order to clarify

the diseases. To achieve this goal, I applied the conditional subspace - variational autoencoder (CS-VAE),

which takes behavioral data consisting of multiple groups as input and divides them into elements

characteristic of the group to which they belong and elements common to all groups in the middle layer of the

VAE. The CS - VAE takes behavioral data consisting of multiple groups as input and divides it into elements

characteristic of the group to which it belongs and elements common to all groups in the middle layer of the

82

VAE. This is achieved by minimizing the amount of mutual information between the labels of the groups to

which they belong and the features of the latent space in the middle layer. The effectiveness of this method

has been verified using toy models, and will be verified using animal behavior in the future.

Each of these three issues has value in the field of computational ethology. With the availability of

behavioral measurements, the field of ethology can now cover behavioral data not only in a controlled

laboratory setting, but also during free behavior. Therefore, the current challenge is to extract the structures

that govern behavior from the obtained time series of behavioral data. Chapter 1 and the appendix present a

solution to this problem. In Chapter 2, we proposed a method for machines to mimic animal behavioral

strategies using reinforcement learning techniques. Although these methods have been tested on

Caenorhabditis elegans, I would like to show that these methods can be used to analyze the behavior of various

animal species in the future.

83

Original papers

1) Keita Mori, Haoyu Wang, Naohiro Yamauchi, Yu Toyoshima and Yuichi Iino “Disentangling

behavioral dynamics with MDN-RNN” Proceeding of NeurIPS LMRL worksop (2020)

2) Keita Mori, Naohiro Yamauchi , Haoyu Wang, Ken Sato, Yu Toyoshima and Yuichi Iino

“Probabilistic generative modeling and reinforcement learning extract the intrinsic features of animal

behavior” Neural Networks, 2022 Jan;145:107-120. doi: 10.1016/j.neunet.2021.10.002.

84

Acknowledgement

First and foremost, I would like to express my deepest appreciation to my supervisor Dr. Yuichi Iino

for his guidance and mentorship throughout the years. Thank you for giving me the opportunity to conduct

this study. I would also like to thank Prof. Atsu Aiba who mentored me since undergraduate students.

Furthermore, I am grateful for invaluable experience and advice that I received from Prof. Ramdya Pavan.

I am grateful to talented undergrad students Mr. Naohiro Yamauchi and Mr. Haoyu Wang, who

conducted the research in Chapter 1 and Chapter 2 together. I also thank Dr. Yu Toyoshima and Mr. Ken Sato,

who discussed and developed the experimental paradigm of the research together. Many thanks go to my

colleagues who always supported me and discussed the scientific topics.

This research was funded by JSPS KAKENHI and Grant-in-Aid for JSPS Research Fellows. I am also

supported by the Graduate Program for Leaders in Life Innovation (GPLLI).

Finally, I would like to express my sincere gratitude to my wife Zhou Jingfang for her warm support

and encouragement.

85

References

1. Marr, D. Vision: A Computational Approach (San Fr. (1982).

2. Nourizonoz, A. et al. EthoLoop: automated closed-loop neuroethology in naturalistic environments. Nat.

Methods 17, 1052–1059 (2020).

3. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.

Nat. Neurosci. 21, 1281–1289 (2018).

4. Mathis, A., Schneider, S., Lauer, J. & Mathis, M. W. A Primer on Motion Capture with Deep Learning:

Principles, Pitfalls, and Perspectives. Neuron 108, 44–65 (2020).

5. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125

(2019).

6. Marr, D. Vision: A computational investigation into the human representation and processing of visual

information. (MIT press, 2010).

7. Tinbergen, N. On aims and methods of Ethology. Z. Tierpsychol. 20, 410–433 (2010).

8. Berridge, K. C., Fentress, J. C. & Parr, H. Natural syntax rules control action sequence of rats. Behav.

Brain Res. 23, 59–68 (1987).

9. Dawkins, R. Hierarchical organisation: A candidate principle for ethology. Growing points in ethology

7, 54 (1976).

10. Fentress, J. C. & Stilwell, F. P. Letter: Grammar of a movement sequence in inbred mice. Nature 244,

52–53 (1973).

11. Burgos-Artizzu, X. P., Dollár, P., Lin, D., Anderson, D. J. & Perona, P. Social behavior recognition in

continuous video. in 2012 IEEE Conference on Computer Vision and Pattern Recognition 1322–1329

(2012).

86

12. de Chaumont, F. et al. Real-time analysis of the behaviour of groups of mice via a depth-sensing camera

and machine learning. Nat Biomed Eng 3, 930–942 (2019).

13. Giancardo, L. et al. Automatic visual tracking and social behaviour analysis with multiple mice. PLoS

One 8, e74557 (2013).

14. Hong, W. et al. Automated measurement of mouse social behaviors using depth sensing, video tracking,

and machine learning. Proc. Natl. Acad. Sci. U. S. A. 112, E5351-60 (2015).

15. Jhuang, H. et al. Automated home-cage behavioural phenotyping of mice. Nat. Commun. 1, 68 (2010).

16. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: interactive machine

learning for automatic annotation of animal behavior. Nat. Methods 10, 64–67 (2013).

17. Lorbach, M., Poppe, R., van Dam, E. A., Noldus, L. P. J. J. & Veltkamp, R. C. Automated Recognition

of Social Behavior in Rats: The Role of Feature Quality. in Image Analysis and Processing — ICIAP

2015 565–574 (Springer International Publishing, 2015).

18. Rousseau, J. B., Van Lochem, P. B., Gispen, W. H. & Spruijt, B. M. Classification of rat behavior with

an image-processing method and a neural network. Behav. Res. Methods Instrum. Comput. 32, 63–71

(2000).

19. van Dam, E. A. et al. An automated system for the recognition of various specific rat behaviours. J.

Neurosci. Methods 218, 214–224 (2013).

20. Levitis, D. A., Lidicker, W. Z. & Freund, G. Behavioural biologists don’t agree on what constitutes

behaviour. Anim. Behav. 78, 103–110 (2009).

21. Szigeti, B., Stone, T. & Webb, B. Inconsistencies in C. elegans behavioural annotation. Cold Spring

Harbor Laboratory 066787 (2016) doi:10.1101/066787.

22. Wahlsten, D. et al. Different data from different labs: lessons from studies of gene-environment

interaction. J. Neurobiol. 54, 283–311 (2003).

87

23. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of freely

moving fruit flies. J. R. Soc. Interface 11, (2014).

24. Liu, M., Sharma, A. K., Shaevitz, J. W. & Leifer, A. M. Temporal processing and context dependency in

Caenorhabditis elegans response to mechanosensation. eLife vol. 7 (2018).

25. Marques, J. C., Lackner, S., Félix, R. & Orger, M. B. Structure of the Zebrafish Locomotor Repertoire

Revealed with Unsupervised Behavioral Clustering. Curr. Biol. 28, 181-195.e5 (2018).

26. Goupillaud, P., Grossmann, A. & Morlet, J. Cycle-octave and related transforms in seismic signal

analysis. Geoexploration 23, 85–102 (1984).

27. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605

(2008).

28. Cande, J. et al. Optogenetic dissection of descending behavioral control in Drosophila. Elife 7, (2018).

29. Meng, X., Lee, K. K. & Xu, Y. Human Driving Behavior Recognition Based on Hidden Markov Models.

in 2006 IEEE International Conference on Robotics and Biomimetics 274–279 (ieeexplore.ieee.org,

2006).

30. Nguyen, N. T., Phung, D. Q., Venkatesh, S. & Bui, H. Learning and detecting activities from movement

trajectories using the hierarchical hidden Markov model. in 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) vol. 2 955–960 vol. 2 (ieeexplore.ieee.org, 2005).

31. Bishop, C. M. Pattern recognition and machine learning. (Springer, 2006).

32. Wiltschko, A. B. et al. Mapping Sub-Second Structure in Mouse Behavior. Neuron 88, 1121–1135 (2015).

33. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion sequencing.

Nat. Neurosci. 23, 1433–1443 (2020).

34. Ackerson, G. & Fu, K. On state estimation in switching environments. IEEE Trans. Automat. Contr. 15,

10–17 (1970).

88

35. Ainsworth, S., Foti, N., Lee, A. K. C. & Fox, E. Interpretable VAEs for nonlinear group factor analysis.

arXiv [cs.LG] (2018).

36. Chang, C. B. & Athans, M. State Estimation for Discrete Systems with Switching Parameters. IEEE

Trans. Aerosp. Electron. Syst. AES-14, 418–425 (1978).

37. Fox, E. B., Sudderth, E. B., Jordan, M. I. & Willsky, A. S. Nonparametric Bayesian Learning of

Switching Linear Dynamical Systems. IFAC Proceedings Volumes 42, 1591 (2009).

38. Ghahramani, Z., Hinton, G. E. & Others. The EM algorithm for mixtures of factor analyzers.

http://www.cs.utoronto.ca/~hinton/absps/tr-96-1.pdf (1996).

39. Hamilton, J. D. Analysis of time series subject to changes in regime. J. Econom. 45, 39–70 (1990).

40. Murphy, K. P. Switching kalman filters. (1998).

41. Linderman, S. W. et al. Recurrent switching linear dynamical systems. arXiv [stat.ML] (2016).

42. Linderman, S., Johnson, M. & Miller, A. Bayesian learning and inference in recurrent switching linear

dynamical systems. Artif. Intell. (2017).

43. Glaser, J. I., Whiteway, M., Cunningham, J. P., Paninski, L. & Linderman, S. W. Recurrent switching

dynamical systems models for multiple interacting neural populations. bioRxiv (2020)

doi:10.1101/2020.10.21.349282.

44. Linderman, S., Nichols, A., Blei, D., Zimmer, M. & Paninski, L. Hierarchical recurrent state space

models reveal discrete and continuous dynamics of neural activity in C. elegans. bioRxiv (2019).

45. Zoltowski, D. & Pillow, J. A general recurrent state space framework for modeling neural dynamics

during decision-making. Conference on Machine … (2020).

46. Takens, F. Detecting strange attractors in turbulence. in Dynamical Systems and Turbulence, Warwick

1980 366–381 (Springer Berlin Heidelberg, 1981).

89

47. Ahamed, T., Costa, A. C. & Stephens, G. J. Capturing the continuous complexity of behaviour in

Caenorhabditis elegans. Nat. Phys. (2020) doi:10.1038/s41567-020-01036-8.

48. Tran, Q. H. & Hasegawa, Y. Topological time-series analysis with delay-variant embedding. Phys Rev E

99, 032209 (2019).

49. Liu, Z. et al. Towards natural and accurate future motion prediction of humans and animals. in 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2019).

doi:10.1109/cvpr.2019.01024.

50. Ionescu, C., Papava, D., Olaru, V. & Sminchisescu, C. Human3.6M: Large Scale Datasets and Predictive

Methods for 3D Human Sensing in Natural Environments. IEEE Trans. Pattern Anal. Mach. Intell. 36,

1325–1339 (2014).

51. Bütepage, J. & Kragic, D. Human-Robot Collaboration: From Psychology to Social Robotics. arXiv

[cs.RO] (2017).

52. Gui, L.-Y. et al. Teaching robots to predict human motion. in 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (IEEE, 2018). doi:10.1109/iros.2018.8594452.

53. Tang, Y., Ma, L., Liu, W. & Zheng, W. Long-Term Human Motion Prediction by Modeling Motion

Context and Enhancing Motion Dynamic. arXiv [cs.CV] (2018).

54. Holden, D., Saito, J., Komura, T. & Joyce, T. Learning motion manifolds with convolutional

autoencoders. in SIGGRAPH Asia 2015 Technical Briefs (ACM, 2015). doi:10.1145/2820903.2820918.

55. Bütepage, J., Black, M. J., Kragic, D. & Kjellstrom, H. Deep representation learning for human motion

prediction and classification. in Proceedings of the IEEE conference on computer vision and pattern

recognition 6158–6166 (2017).

56. Graving, J. M. & Couzin, I. D. VAE-SNE: a deep generative model for simultaneous dimensionality

reduction and clustering. BioRxiv (2020).

90

57. Batty, E., Whiteway, M. R., Saxena, S., Biderman, D. & Abe, T. BehaveNet: nonlinear embedding and

Bayesian neural decoding of behavioral videos.

https://papers.nips.cc/paper/2019/file/a10463df69e52e78372b724471434ec9-Paper.pdf.

58. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience Needs

Behavior: Correcting a Reductionist Bias. Neuron 93, 480–490 (2017).

59. Niv, Y. The primacy of behavioral research for understanding the brain. (2020)

doi:10.31234/osf.io/y8mxe.

60. Bin Peng, X. et al. Learning agile robotic locomotion skills by imitating animals. in Robotics: Science

and Systems XVI (Robotics: Science and Systems Foundation, 2020). doi:10.15607/rss.2020.xvi.064.

61. Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a salamander

robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

62. Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: a review. Neural

Netw. 21, 642–653 (2008).

63. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

64. Sharma, A., Johnson, R., Engert, F. & Linderman, S. Point process latent variable models of larval

zebrafish behavior. in Advances in Neural Information Processing Systems (eds. Bengio, S. et al.) vol.

31 10919–10930 (Curran Associates, Inc., 2018).

65. Pereira, T. D., Shaevitz, J. W. & Murthy, M. Quantifying behavior to understand the brain. Nat. Neurosci.

1–13 (2020).

66. Bishop, C. M. Mixture density networks. (1994).

67. Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv [cs.NE] (2013).

68. Ha, D. & Eck, D. A neural representation of sketch drawings. arXiv [cs.NE] (2017).

91

69. Wang, X., Takaki, S. & Yamagishi, J. An autoregressive recurrent mixture density network for parametric

speech synthesis. in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) 4895–4899 (2017).

70. Martin, C. P. & Torresen, J. RoboJam: A Musical Mixture Density Network for Collaborative

Touchscreen Interaction. in Computational Intelligence in Music, Sound, Art and Design 161–176

(Springer International Publishing, 2018).

71. Ha, D. & Schmidhuber, J. World Models. arXiv [cs.LG] (2018).

72. Zhao, Y., Yang, R., Chevalier, G., Shah, R. & Romijnders, R. Applying Deep Bidirectional LSTM and

Mixture Density Network for Basketball Trajectory Prediction. arXiv [cs.AI] (2017).

73. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality and dynamics in the

behavior of C. elegans. PLoS Comput. Biol. 4, e1000028 (2008).

74. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W. R. A database of Caenorhabditis

elegans behavioral phenotypes. Nat. Methods 10, 877–879 (2013).

75. Martinez, J., Black, M. J. & Romero, J. On human motion prediction using recurrent neural networks.

arXiv [cs.CV] (2017).

76. Guo, X. & Choi, J. Human motion prediction via learning local structure representations and temporal

dependencies. Proc. Conf. AAAI Artif. Intell. 33, 2580–2587 (2019).

77. Ellefsen, K. O., Martin, C. P. & Torresen, J. How do mixture density RNNs predict the future? arXiv

[cs.LG] (2019).

78. Yoshida, K. et al. Odour concentration-dependent olfactory preference change in C. elegans. Nat.

Commun. 3, 739 (2012).

79. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–

682 (2012).

92

80. Poličar, P. G., Stražar, M. & Zupan, B. openTSNE: a modular Python library for t-SNE dimensionality

reduction and embedding. Cold Spring Harbor Laboratory 731877 (2019) doi:10.1101/731877.

81. Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans.

Neural Netw. 10, 626–634 (1999).

82. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. in Advances

in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 8026–8037 (Curran Associates,

Inc., 2019).

83. Liu, L. et al. On the Variance of the Adaptive Learning Rate and Beyond. arXiv [cs.LG] (2019).

84. Chatzigeorgiou, M., Bang, S., Hwang, S. W. & Schafer, W. R. tmc-1 encodes a sodium-sensitive channel

required for salt chemosensation in C. elegans. Nature 494, 95–99 (2013).

85. Foster, D. Generative Deep Learning. (O’Reilly Media, Inc., 2020).

86. Sutton, R. S. & Barto, A. G. Reinforcement Learning, second edition: An Introduction. (MIT Press, 2018).

87. Niv, Y. Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 (2009).

88. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275,

1593–1599 (1997).

89. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

90. Glorot, X., Bordes, A. & Bengio, Y. Deep Sparse Rectifier Neural Networks. in (eds. Gordon, G., Dunson,

D. & Dudík, M.) vol. 15 315–323 (JMLR Workshop and Conference Proceedings, 2011).

91. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014).

92. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research

12, 2825–2830 (2011).

93. Mnih, V. et al. Playing Atari with Deep Reinforcement Learning. arXiv [cs.LG] (2013).

93

94. Kunitomo, H. et al. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt

concentration chemotaxis in Caenorhabditis elegans. Nat. Commun. 4, 2210 (2013).

95. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking.

Nature 239, 500–504 (1972).

96. Krylov, D., Tachet, R., Laroche, R., Rosenblum, M. & Dylov, D. V. Reinforcement Learning Framework

for Deep Brain Stimulation Study. arXiv [q-bio.NC] (2020).

97. Pineau, J., Guez, A., Vincent, R., Panuccio, G. & Avoli, M. Treating epilepsy via adaptive

neurostimulation: a reinforcement learning approach. Int. J. Neural Syst. 19, 227–240 (2009).

98. Rao, R. P. Towards neural co-processors for the brain: combining decoding and encoding in brain-

computer interfaces. Curr. Opin. Neurobiol. 55, 142–151 (2019).

99. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv [stat.ML] (2013).

100. Klys, J., Snell, J. & Zemel, R. Learning Latent Subspaces in Variational Autoencoders. arXiv [cs.LG]

(2018).

101. Chung, J. et al. A Recurrent Latent Variable Model for Sequential Data. arXiv [cs.LG] (2015).

102. Lu, Y., Kumar, K. M., s. Nabavi, S. & Wang, Y. Future Frame Prediction Using Convolutional VRNN

for Anomaly Detection. in 2019 16th IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS) 1–8 (2019).

103. Bai, S., Zico Kolter, J. & Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent

Networks for Sequence Modeling. arXiv [cs.LG] (2018).

