論 文 の 内 容 の 要 旨 Thesis summary

論文題目 Investigations on surface phonon-polariton thermal transport in dielectric multilayers

(誘電体多層膜における表面フォノンポラリトンの熱輸送に関する研究)

氏 名 立川 冴子

本論文では、誘電体多層膜、特にSiO₂/Si/SiO₂の3層構造における表面フォノンポラ リトン (Surface phonon-polariton: SPhP)の伝播について、理論と実験の双方から行 った分析についてまとめている。表面フォノンポラリトンとは、誘電体界面において電 磁波と光学フォノンがカップリングすることで、界面に局在する連成波である。面外方 向に指数関数的に減衰し、面内方向には伝播する。共振周波数が赤外領域にあることか ら、面内方向に熱的エネルギーを運ぶことで知られ、特にナノスケール厚さの薄膜に関 しては、数百 µmを超える伝播長を有し、フォノンによる伝導をしのぐ¹ことから、伝導、 輻射とならぶ新たな熱キャリアとして近年注目が集まっている²。

第一章では、一般的に、マクロスケールにおける伝熱機構と、ミクロ~ナノスケール におけるそれは異なることについて触れ、SPhPへの導入へ入る。第一章ではさらに、SPhP の応用技術についても紹介している。面外方向へはエネルギーが局在していることに加 え、共進周波数においてモノクロマティックなスペクトラムを有することを活かし、熱

¹ D-Z A. Chen, et al., Physical Review B 72.15 (2005): 155435.

² O-M. José, et al., Journal of Applied Physics 113.8 (2013): 084311.

光起電力発電への応用が期待されている³。また、表面に周期構造を施しSPhPを散

乱させることで、放射制御にも活用が見込まれる。第一章の最後には、本研究の目 的が示されている。表面フォノンポラリトンにおいては、理論的解明が進む中、近 年の微細加工技術の発展により、実験的検出も行われるようになってきた。特に面 外方向の熱輸送は、マイクロヒーターとマイクロセンサー間のギャップを数nmの距 離まで近づけることで、指数関数的に局在するエネルギーの検出とギャップ距離依 存性を測定した報告が数々存在する⁴⁵⁶。しかし、SPhPの面内熱輸送を観測した報 告は限定的78で、ナノスケール薄膜の作製・維持という技術的障壁や、単一薄膜の 実用性といった課題が存在する。そこで我々は、SiO2/Si/SiO2の3層構造を採用した。 中間のSi層を支持層とし、SiO2の薄膜でSi層を挟むことにより、上下のSiO2層で誘起 されたSPhPが吸収のないSi層でカップリングし、より長い伝播長を有することが見 込まれる。これにより、機械的安定性と高い熱伝導特性を実現する構造が期待され る。本研究では、この3層構造におけるSPhPの伝播を理論的に解明する。さらに、 機械的に安定であることを活かし、SPhPは面内方向に設けられたギャップを超え て熱エネルギーを輸送し得るのかについて、実験的に検証することを目的とする。 面外方向のギャップ間熱輸送とは異なり、面内方向のSPhPによるギャップ間熱輸 送が議論されたことはなく、実験的検証もない。本研究は、SPhPの面内熱輸送機 構について物理的知見をもたらす。

第二章では、Si0₂/Si/Si0₂の3層構造におけるSPhPの伝播について、理論的解析に関 する報告を記述した。表面フォノンポラリトンの波数ベクトルはMaxwell方程式を、適 切な境界条件にて解くことで得られる。本章ではまず、単一界面・単一薄膜におけるSPhP の分散関係ならびに面内・面外方向の波数ベクトルの導出から説明したのち、 Si0₂/Si/Si0₂の3層構造におけるSPhPの波数ベクトルの導出を示す。Si層厚さがマイク ロスケールのとき、複数のブランチが存在し、それぞれが異なる伝播長を有することが 分かった。さらに、Si0₂層、Si層それぞれについてSPhPの膜厚依存性についても分析を 行った。Si0₂層膜厚が薄いほど吸収が少なく、伝播長は長くなった。Siを10 µm厚さで 固定した場合、Si0₂層膜厚が150 nm以上だと、3層構造の熱伝導コンダクタンスの方が、 Si0₂の単一薄膜のそれより大きくなることが分かった。機械的に安定で、かつ熱伝導特

³ A. Fiorino, et al., Nature nanotechnology 13.9 (2018): 806-811.

⁴ K. Kim, et al., Nature 528.7582 (2015): 387-391.

⁵ B. Song, *et al.*, Nature nanotechnology 11.6 (2016): 509-514.

⁶ J. DeSutter, et al., Nature nanotechnology 14.8 (2019): 751-755.

⁷ L. Tranchant, *et al.*, Nano letters 19.10 (2019): 6924-6930.

⁸ Y. Wu, et al., Science advances 6.40 (2020): eabb4461.

性に優れた構造を見いだせたといえる。この結果は論文投稿を行った⁹。Si層膜厚依存 性については、Si層を薄くすると異なる吸収のメカニズムが存在することが分かった。 Si層が十分に厚い場合は、吸収のないSi層内を伝搬して面内方向にエネルギーを運ぶモ ードがあるため、伝搬長は長くなる。しかしSi層厚さが波長より小さくなると、上下の Si02膜間におけるカップリングの効果が大きくなるため、伝搬長が長くなることが計算 により明らかになった。Si内に伝播波が存在できなくなる1µm厚さ程度で、伝播長の最 小点が存在し、2つの吸収メカニズムを隔てている。これにより熱伝導率にも最小点が 存在することが明らかになり、多層膜構造におけるSPhPの熱輸送について新たな知見を 得ることができた。

第三章では、SPhPの面内方向におけるギャップ間熱輸送についての実験的検証につい て記述した。我々はSi02/Si/Si02構造のマイクロヒーターとマイクロセンサーを作製し、 10 µmのギャップを設けた。マイクロヒーターとマイクロセンサーは長い支持梁で支え られ、金属線を這わせ、電流を流すことで加熱と温度検出を電気的に行う。まずはこの 熱測定系についての説明から入る。伝導に比ベコンダクタンスの低い輻射を検出するた め、高感度かつ高精度な熱測定系が求められる。そこで我々は3ω法とホイートストン ブリッジを組み合わせた測定系を用いた。ヒーター側には周波数ωの交流電流を入力す ると、ジュール熱により2ωの周波数でヒーター側の温度が上昇する。そのため、ヒー ターの電気抵抗も周波数2ωで変化し、元の入力のω成分と合わせた3ωの成分が産出さ れる。この成分を差動増幅器とロックインアンプでフィルタリングすることによりヒー ター側の温度上昇が産出できる。一方、センサー側はホイートストンブリッジを組み、 直流電流を流す。ヒーター側からの熱流により、センサー温度も周波数2ωで振動する。 これによるセンサーの電気的抵抗すなわち電圧における2ω成分をブリッジ間に噛ませ たロックインアンプによりフィルタリングし、センサー側の温度上昇を算出する。本章 では次に、デバイスの作製方法・手順について記述されている。表面フォノンポラリト ンの面内方向のギャップ間熱輸送を評価するために、我々は10 µm厚さのSiのみのマイ クロヒーター・マイクロセンサー間の熱輸送を測定し、続いて同じ厚さのSiを30,70, 200 nm厚さのSi02層で挟んだSi02/Si/Si02構造のデバイスについても同様の測定を行い、 ギャップ間熱伝導コンダクタンスの比較を行った。Si層のみの場合、その熱伝導コンダ クタンスは、プランクの法則により算出される輻射熱伝導コンダクタンスとほぼ一致し た。しかしSi02/Si/Si02構造のデバイスについて、熱伝導コンダクタンスはSi層のみの 場合のそれとは比べほぼ2倍の値を示し、これはSi02層が加わったことによる輻射熱伝 導コンダクタンスの上昇では説明できない上昇であった。我々は、デバイスにおける SPhPのギャップ間熱伝導コンダクタンスを概算し、実験で見られた熱伝導コンダクタン ス上昇との、オーダーでの一致や、温度依存性の一致を確認した。

⁹ S. Tachikawa, et al., Nanomaterials 10.7 (2020): 1383.