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Chapter 1

Introduction

1.1 Cellular differentiation
Most multicellular organisms start their lives with a single cell. Throughout the
developmental process, they acquire tissues consisting of various cell types with
different functions. This cellular specialization process, as is schematically shown
in Fig. 1.1, is so-called cellular differentiation. Cell differentiation is remarkable in
that it generates different cell types even though their DNA sequence, the blueprint
for life, is identical.
Cellular differentiation gradually proceeds downward in Fig. 1.1. Totipotent

stem cells (the top of Fig. 1.1) differentiate to pluipotent stem cells (the second
from top of Fig. 1.1). Then, pluripotent stem cells differentiate to multipotent
stem cells. Finally, cells lose their potential of differentiation (as shown in the bot-
tom of Fig. 1.1). Cellular differentiation sequentially proceeds hierarchically [1,2].
In addition, cell differentiation is basically irreversible, i.e., it cannot be reversed
upward in Fig. 1.1. For instance, although totipotent stem cells can differenti-
ate to pluripotent stem cells, pluripotent stem cells or further differentiated cells
cannot come back to totipotent stem cells.
Even though these properties in cellular differentiation are already remarkable,

the most remarkable properties in cellular differentiation will lie in its robustness
and its universality among multicellular organisms. As cellular differentiation pro-
ceeds via thousands of chemical reactions based on DNA sequences, noise through-
out the chemical reaction therein is inevitable. Still, the final cell types, as well as
differentiation pathway to them, are robust against such noise [3, 4].
In this thesis, we attempt to understand these universal properties in cellular

differentiation, as well as cellular reprogramming to be mentioned below.
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Totipotent cells

Pluripotent cells

Differentiated cells

Fig. 1.1: Schematic representation of Cellular differentiation.

1.2 Cellular reprogramming
As mentioned in the previous section, cellular differentiation was believed to be
basically irreversible. This common belief was then challenged by seminal studies
by Gurdon and Yamanaka.

Gurdon replaced the nuclei of fertilized egg cells of a frog with that of intestinal
cells (differentiated somatic cells) of another frog and succeeded in making devel-
opmental process from the cells [5]. Replaced nuclei of egg cells have already been
inactivated by irradiation, thus development was proceeded based on the genetic
information of differentiated, intestinal cells’ nuclei of another frog. This result
suggests that the nuclei of differentiated cells never lost the information throughout
differentiation and pluripotency can be recovered by specific manipulation (which
corresponds to transplantation of the nuclei into the cytoplasm of the egg cells).

Yamanaka succeeded in regaining pluripotent cells without the use of egg cells.
Takahashi and Yamanaka achieved regaining pluripotency by overexpressing just
a few genes (Oct4, Sox2, Klf4, and c-Myc) into mouse somatic cells [6, 7], and
called these pluripotent cells as induced pluripotent stem cells (iPS cells).

Before the invention of iPS cells, artificial pluripotent cells can be generated by
transplantation of egg cells or incubation of early-stage embryonic cells (so-called
ES cells). With these methods, application to regenerative medicine is difficult
for ethical problems or due to the need of preserving ES cells for all patients. As
mentioned above, the production of iPS cells only needs differentiated cells. This
opens up the potential of the application of iPS cells to regenerative medicine.
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1.3 Regulation of gene expression and multi-stability
Here, let us consider cellular differentiation and reprogramming from the view-
point of theoretical biology. It is well known that each of the differentiated cell
types has identical protein expressions, but distinct by cell type. Here, protein
expressions are determined by gene expressions. In this section, we review how
gene expressions are regulated.
Fig. 1.2 shows a single pair of promoter and codon sequences in DNA. The

promoter part is a starting point of a series of chemical reactions. To synthesize
protein, the promoter part responds to the transcriptional input and sends the
signal to the transcription start site of the gene. At downstream from the promoter,
RNA polymerase produces RNA using Codon sequence as a template. Then, the
corresponding protein is synthesized with the aid of the ribosome, an intracellular
organelle.

Promoter

tRNA

Protein
Input

Gene

Fig. 1.2: Flow chart of gene expression.

The molecular mechanism of gene expression has been described above. The
next problem, however, is the determination of the external input to the promoter.
Of course, the environment including cell culture is the candidate of external
signaling, but gene expression itself does not need an explicit external input from
outside of the cell. Proteins synthesized from the other genes can work as an
input. Although Fig. 1.2 shows only a single gene, the DNA sequence consists of
thousands of genes. The input for each gene is a result of other genes. Thus, the
change of protein expression levels (or concentrations), which follows activation or
inhibition among thousands of genes, is represented in terms of dynamical systems
theory.
Dynamical systems theory represents the change of state variables in the phase

space. It is generally represented by ordinal differential equations. Differenital
equations dxi/dt are introduced for the variables xi. In dynamical systems theory,
the local time evolution of differential equations is given by the flow of each point in
phase space {xi}. Then, the solution of differential equations is given by trajectory
in phase space. Attractor is a stable state to which various trajectories converge.
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The fixed point of the dynamical systems is represented by the cross point of plane
satisfies dxi/dt = 0 (this plane is so-called nullcline) and it is fixed point attractor
if the flows around this cross point are attractive.

If there are multiple attractors in phase space, the system has multi-stability.
Multi-stability is often understood by multiple valleys in a landscape. If we put
balls onto the landscape, balls are trapped to one of the bottoms of these valleys.
Then, which valleys are selected depends on the initial positions of the balls.

The simplest biological example of multi-stability is known as a toggle switch as
shown in Fig. 1.3 [8, 9]. The toggle switch consists of two genes that repress each
other through synthesized proteins as shown in 1.3a. Here, we introduce variables
x1, x2 to represent the gene expression (or protein concentration) of gene 1, 2. The
dynamics of toggle switch are often described by using Hill function FHill(z) =
zα/(zα + Kα) (for activation) or FHill(z) = 1/(zα + Kα) (for suppression)*1, or
other sigmoidal function. Here, we adopt the following equations which x1 and x2

follows as

dx1

dt
= F (−x2)− x1, (1.1)

dx2

dt
= F (−x1)− x2, (1.2)

where F (z) is a sigmoidal function F (z) = 1/(1 + exp(−βz))*2. In this represen-
tation, the toggle switch allows two attractors, State 1 and State 2, in which the
gene1, 2, is highly expressed respectively, as shown in Fig. 1.3b. Cellular states
are converged to each of the two states, depending on the initial states as shown
in Fig 1.3b. Thus, the toggle switch can be represented by a landscape with two
valleys as shown in Fig. 1.3c.

Basically, the cell consists of more genes than a toggle switch. To investigate the
multi-stability of more complex systems, gene regulatory network (GRN), with a
large number of genes with mutual activation (inhibition) regulation, is adopted.

*1 In Hill function, K is a parameter that represents the threshold where on-off type output
changes, whereas α represents the sharpness of Hill function.

*2 In sigmoidal function F (z), β plays same role as α in FHill
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(a)

Promoter 1

Promoter 2

Gene 1

Gene 2

(b)

State 1

State 2

(c)

State 1State 2

Fig. 1.3: (a) Genetic circuit of toggle switch. Toggle switch consists of two genes
that repress each other. (b) x1 − x2 phase space. x1 and x2 are the variables
which represents expression state of gene 1 and gene 2 (or protein concentration
producted from gene 1 and gene 2). Toggle switch allows two stable states in
which gene 1 or gene 2 is highly expressed. (c) A schematic of landscape with two
valleys, corresponding to the toggle switch.

Although multi-stability in gene expression dynamics gives us a hint how differ-
entiated cell types emerges from identical DNA sequence, important issues such as
hierarchy and irreversibility in cell differentiation, are still unsolved. What kind
of valley corresponds to a pluripotent state or to a differentiated state? Or how
does the cell differentiation progress, i.e., by jumping over each of the valleys?
Another approach, that goes beyond just the analogy of multi-stability, is needed
for cellular differentiation and reprogramming.
Cell-cell interaction can be a candidate to make such jumping. In cell popula-

tion, cells interact with each other via synthesized chemicals. With development,
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the number of the cells increases, and the degree of cell-cell interaction changes.
For instance, with the increase in the size of cell population, bifurcation from
homogeneous to heterogeneous population can occur [10, 11]. In these studies,
pluripotent cells are described by the oscillatory state of gene expression dynam-
ics, whereas differentiated cells by the fixed state with oscillation death. In this
situation, the population ratio of pluripotent cell and differentiated cells is well-
regulated. Besides the cell-cell interaction, however, recent studies suggest that
epigenetics which modifies DNA, which is one of the hottest topics in molecular
biology, works as another important factor for cellular differentiation and repro-
gramming.

1.4 Epigenetic landscape and epigenetics
Epigenetics is derived from the important concept of epigenetic landscape pro-
posed by Waddington [3]. Hence, let us start with the introduction of epigenetic
landscape.

In 1957, Waddington metaphored developmental process by balls falling down
a mountain, as shown in Fig. 1.4a. At the top of the mountain, a single valley
exists. Thus, balls are all trapped onto the bottom of the valley. Throughout
going down the mountain, the single valley branches to several valleys. With this
branching, balls are trapped into one of the different valleys.

Waddington metaphored cell differentiation process by introducing the change
in the landscape itself. Here, we need to consider what causes this change. Fig.
1.4b is a picture given by Waddington. Fig. 1.4b shows the backside of epigenetic
landscape. According to Waddington, the backside of the landscape is wired by
genes, which leads to the landscape change. Hence, Waddington needed to coin
the term ”epi” + ”genetics” for the landscape.

(a) (b)

Fig. 1.4: (a) The concept of epigenetic landscape proposed by Waddington. (b)
The backside of epigenetic landscape. Both of (a) and (b) are adopted from [3].

Waddington proposed this concept about 70 years ago. Since the discovery of
DNA structure by Watson and Crick in 1953, experimental techniques have greatly
advanced. Some molecular mechanisms have been identified as the candidates of
the change of landscape by Waddington. A series of molecular mechanisms for
epigenetic modification alter the feasibility of gene expressions [12–18].
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Fig. 1.5 schematically shows DNA methylation, one of the mechanisms known
as epigenetics. As shown in Fig. 1.5, the promoter part can be modified by the
methyl group. Then, the promoter part becomes insensitive to the input signals
and corresponding genes are harder to be expressed. For another example, histone
modification changes the openness of chromatin around a promoter of the gene
and changes the efficiency of transcription. Besides these numerous epigenetic
modifications, novel epigenetic modification mechanisms have been found even
now [19, 20]. These modifications change the way to use DNA sequences without
changing DNA sequences themselves. Epigenetic modification states are concerned
with developmental process; for pluripotent cells, these modification levels are
small, whereas differentiated cells have larger modification levels that depend on
each cell types [21–24].
Noteworthy, epigenetic modification also depends on the cellular state [25–29].

Thus, cellular differentiation proceeds with complex interaction between gene ex-
pression and numerous epigenetic modifications. We need to understand what
aspects of the interplay between gene expression and numerous epigenetic modifi-
cations are important for cellular differentiation (and reprogramming).

Promoter

Methyl group

Gene

Fig. 1.5: Schematic representation of DNA methylation on the promoter.

1.5 Cellular reprogramming, as climbing epigenetic

landscape?
Cellular reprogramming is also discussed with the picture of epigenetic landscape:
cellular reprogramming is described as jumping or climbing up epigenetic land-
scape as shown in Fig. 1.6) [30,31]. This, however, remains just a metaphor.
As we mentioned, cellular state, however, involves many degrees of freedom (e.g.,

gene expression levels and epigenetic modification levels, whereas reprogramming
manipulation is achieved by overexpressing just a few genes. These two facts
are hard to reconcile with each other. Then, we need to understand how few
degrees of freedom can reprogram many-dimensional state, and how climbing-up
the landscape is represented in terms of dynamical systems theory.
Recent studies reported that reprogramming by overexpression a few genes
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works well among a variety of multicellular organisms. Moreover, according to
these reports, cellular reprogramming can succeed in using various differentiated
cell types and induction sets of genes. This suggests cellular reprogramming is also
universal, as well as cellular differentiation. So far, reprogramming has gathered
much attention from regenerative medicine, whereas universal properties of cellu-
lar reprogramming are less explored. We need to understand how reprogramming
manipulation, with a few degrees of freedom, works in terms of dynamical systems
theory.

SKM

OSKM

Fig. 1.6: Schematic representation of cellular reprogramming and epigenetic land-
scape. Cellular reprogramming is metaphored as jumping from the bottom of
epigenetic landscape to the top of epigenetic landscape (black arrow) or climbing
epigenetic landscape. Each of red arrows shows different reprogramming pathway
by different induction sets of genes (each capital represents an element of 4 Ya-
manaka factors, Oct4, Sox2, Klf4, and c-Myc). Adopted from [30,31].

1.6 About this thesis
In this thesis, we attempt to understand the universal properties of cellular re-
programming and reprogramming. Our goal is to understand the remarkable
properties of cellular differentiation, and provide the simplest understanding of
epigenetics, which has broad fields and complex mechanisms.

For our goal, we take a phenomenological approach. We construct the cell
model with gene regulatory network and epigenetic modification. We introduce
epigenetic modification processes as the simplest feedback regulation. Then, we
construct dynamical systems theory of cellular differentiation and reprogramming
from the viewpoint of the interplay between fast gene expression and slow epige-
netic modification.

In chapter 2, we mainly consider a quantitative framework for explaining for
cellular differentiation using the proposed cell model. In multicellular organisms,
cells differentiate into several distinct types during early development. Determi-
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nation of each cellular state, along with the ratio of each cell type, as well as
the developmental course during cell differentiation are highly regulated processes
that are robust to noise and environmental perturbations throughout development.
Waddington metaphorically depicted this robustness as the epigenetic landscape
in which the robustness of each cellular state is represented by each valley in the
landscape. This robustness is now conceptualized as an approach toward an attrac-
tor in a gene-expression dynamical system. However, there is still an incomplete
understanding of the origin of landscape change, which is accompanied by branch-
ing of valleys that corresponds to the differentiation process. Recent progress in
developmental biology has unveiled the molecular processes involved in epigenetic
modification, which will be a key to understanding the nature of slow landscape
change. Nevertheless, the contribution of the interplay between gene expression
and epigenetic modification to robust landscape changes, known as homeorhesis,
remains elusive. We demonstrate extensive simulations of the proposed model with
dynamical-systems analysis and succeed in extracting Waddington’s epigenetic
landscape, which can help to explain how such robustness in the developmental
process, which Waddington referred to as ”homeorhesis”, is generated.
In chapter 3, we elucidate dynamical systems theory of cellular reprogramming.

In cellular reprogramming, almost all epigenetic memories of differentiated cells
are erased by the overexpression of few genes, regaining pluripotency, the potential
for differentiation. Considering the interplay between oscillatory gene expression
and slower epigenetic modifications, such reprogramming is perceived as an unin-
tuitive, global attraction to the unstable manifold of a saddle, which represents
pluripotency. The universality of this scheme is confirmed by the repressilator
model, and by gene regulatory networks randomly generated and those extracted
from embryonic stem cells.
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Chapter 2

Homeorhesis in Waddington’s

landscape by epigenetic feedback

regulation

In most multicellular organisms, cells differentiate into several types in the course
of development, which show distinct gene expression patterns that are robust to
external perturbations and internal noise. As a theoretical explanation for this
robustness, Waddington introduced the concept of the ”epigenetic landscape”
more than 60 years ago, as shown in Fig.2.1a. In this concept, a ball falling along
the landscape represents the cell differentiation process over time, and each val-
ley corresponds to a differentiated cell type [3]. Although presented visually as
a metaphor, Waddington also proposed that this differentiation process can be
understood in terms of the dynamical systems of gene expression. Following his
insight, each valley is now interpreted as an attractor of an intracellular dynamical
system for gene (protein) expression. The cellular state is represented by a set of
gene (protein) expression levels reached as a result of such dynamical system, as
represented by an attractor of such dynamical system. Then, the cellular state
remains in the vicinity of the attractor even under internal noise or external per-
turbation. In fact, several dynamical-systems models with mutual activation and
inhibition of protein expression demonstrated the coexistence of multiple attrac-
tors that correspond to distinct cell types [32–35], and supporting experiments
have been carried out [36,37].

According to this dynamical-systems approach, the X axis characterizing the
cellular state in Fig.2.1a is represented by the gene expression pattern. However,
since there are thousands of genes (or components) in a cell, the state may not
be accurately represented by a one-dimensional variable X. Nevertheless, the
cellular state can potentially be represented by only a few variables extracted
from data reduction of the expression levels of a huge number of components, such
as principal component analysis (PCA) [38].

Moreover, the height of the landscape (Z axis) represents changeability of the
state. Cellular states are attracted to the bottom of the valley, which, in terms of
dynamical systems, are fixed-point attractors at which point no more change will
occur.

Along with the dynamics falling onto the bottom of the valley, as represented by
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motion along the X axis in Fig.2.1a, the landscape itself is shaped along the other
(Y ) axis representing the developmental course, in which the valleys are shaped
successively and are deepened, in a process known as“canalization”. Therefore,
a fundamental question remains: given that the attraction to each valley along
the X axis is represented by gene-expression dynamical systems, what does the Y
axis representing (slower) landscape change represent?

To address this fundamental question, there are three basic questions to resolve
with respect to the postulates of Waddington’s landscape itself. First, there is the
issue of hierarchical branching. That is, since the valleys are successively generated
over developmental time (Fig.2.1a), many valleys (attractors) are not generated
independently, but rather the shallower valleys are generated first and are then
branched, and these branching processes are repeated [1, 2]. Second, Waddington
argued that the developmental process itself, i.e., the motion along the shaping
of valleys, is also robust to perturbation, and coined the term “homeorhesis”
to represent such path stability [3, 4]. However, the mechanism contributing to
the robustness of this shaping process, including successive branchings, remains
elusive [34]. Finally, the number ratio of each cell type is also rather robust to
perturbations or initial conditions. If we assume that a deeper valley attracts more
cells, this robustness implies overall robustness of the landscape, in particular, the
depth of each valley [10,39–44].

(a)

X

Y

Z

(b)

Fig. 2.1: (a) Waddington’s epigenetic landscape. The cell differentiation process is
conceptually explained as a motion of a ball along the landscape in which valleys
correspond to differentiated cell types. Here, the horizontal axis (X) represents a
cellular state, the height (Z axis) represents the inverse of the frequency (prob-
ability) that a cell takes state X, and the Y axis represents slow developmental
change. Adapted from [3]. (b) Shaping the landscape by genes, represented by
strings (also adapted from [3]). Waddington entitled the figure as the ”complex
system interaction underlying the epigenetic landscape”, where interactions among
genes control the landscape as metaphorically represented by strings.

Considering these three postulates of the landscape, let us now come back to the
fundamental question of the nature of the Y axis representing slow developmental
change. Waddington drew the diagram Fig. 2.1b to show schematically how genes
control the epigenetic landscape, in particular the change of valleys along the de-
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velopmental time. After 60 years since the proposal of the epigenetic landscape,
we have now possible candidates that could cause such a slow landscape change.
One candidate is the cell-cell interactions [10, 43, 44]. As development progresses
and the cell number increases, the influence of cell-cell interactions on the intra-
cellular dynamics for each cell-type is stronger. Slow modifications of intracellular
expression dynamics can lead to novel attractors or an increase in their robustness.

Another potential source for slow landscape change changes in chromatin struc-
ture with epigenetic modification which is currently one of the hottest topics in
cell and developmental biology [12–18]. Epigenetics is a field derived from the
term ”epi(above)-genetic” coined by Waddington, sixty years ago [3, 4]. At that
moment it would cover all possible changes beyond the genetic one. Now, epige-
netics are mainly studied as a variety of molecular mechanisms that affect feasi-
bility of the expression of each gene at a given time and place without change in
DNA sequences, such as the methylation or some other molecular modifications
in DNA [45–47]. These modifications change, for example, the openness of chro-
matin around a promoter of gene, which affects the flows of gene regulation, i.e.,
the efficiency of transcription binding promoter changes depending on the degree
of openness [25,48]. If the chromatin is more open around a gene, it is more feasible
to be expressed by the actions of other genes on its promoter. As for modifications
to the DNA influencing on the openness over a long time span, novel molecular
mechanisms are still being uncovered, with the ongoing development in the field
of epigenetics [19].

Note that epigenetic modification generally depends on a given cellular state,
i.e., the expression levels of proteins, whereas the epigenetic changes, e.g., the
openness of chromatin structures, influence the expression levels. In general,
the epigenetic process is slower than the expression dynamics, and the epigenetic
change lasts over the time span in the change in protein concentrations [25–29].
The epigenetic change leads to stabilization of cellular states, which can be corre-
sponded to deepening the valleys as schematically represented in Fig. 2.1b. This
stabilization may imply the existence of a positive-feedback process between the
expression and epigenetic change as suggested experimentally [48, 49], and also
theoretically [26–28,50].

Despite these suggestions and growing reports on epigenetic changes, however,
the detailed interplay between epigenetic modification and gene expression dynam-
ics has not been fully explored. In contrast to the extensive body of theoretical
and empirical literature on expression dynamics or epigenetic modifications, there
is little experimental elucidation of the underlying molecular mechanisms nor the-
oretical model for the interplay proposed to date. Therefore, at this stage, a simple
phenomenological model is needed to investigate how such slow epigenetic change
can introduce a novel expression pattern or stabilize the existing expression pat-
terns. Such a model would provide a bridge between epigenetic modification and
the epigenetic landscape as Waddington conceptualized.

To formulate the epigenetic process in terms of dynamical systems, we here
introduce an epigenetic variable for each expressed gene, represented as a threshold
level of the input needed for the gene of concern to be expressed. Using the
simplest feedback process, we elucidate the possible conditions for the epigenetic
landscape and its properties. Rather than seeking detailed models extracted from
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realistic expression dynamics, we instead consider a minimal conceptual model
that captures the interplay between the relatively faster gene expression dynamics
and slower epigenetic dynamics to address how an epigenetic landscape satisfying
the requisites of (1) hierarchical branching, (2) homeorhesis, and (3) robustness
in the cell-number ratio is generated. Instead of the simplicity in the model, we
have simulated thousands of networks, to extract a universal mechanism and draw
a general conclusion, which will hold true in a complicated system with biological
reality.

2.1 Model
We consider a cell model with a gene regulatory network (GRN) and epigenetic
modification. The cell has N genes and the cellular state is represented by the
expression level (or concentration) xi of each gene i. A schematic representation
of the cell model is shown in Fig. 2.2.

x5 θ5

x4

θ4

x1θ1

x2

θ2
x3

θ3

Gene 1
 genesN

Fig. 2.2: The schematic representation of the cell model.

Here, the GRN represents the mutual control of genes via synthesized proteins.
Gene expression typically shows an on-off-type response to the input: a gene is
expressed (suppressed) when its input value is above (below) a certain threshold,
whereas its expression level is saturated as the input value increases. By normaliz-
ing the maximal (i.e., saturated) expression level to unity, we adopt the following
gene expression dynamics for simplicity [51–55]:

dxi

dt
= F

 N∑
j

Jij√
N

xj + θi + ci

− xi, (2.1)

where Jij is the regulatory matrix. If Jij is positive (negative), gene j activates
(represses) the expression of gene i, whereas Jij is set to 0 if no regulation exists. To
represent the on-off-type expression of genes, we adopt F (z) = tanh(βz) (β = 40).
xi = 1 indicates the full expression of the i th gene and xi = −1 indicates no
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expression of the i th gene. ci is a constant input value, interpreted as an input
outside of the N genes (for example, upstream genes) or the natural trend for
expression. For most examples, however, ci is set to 0 unless otherwise noted.

Here, −θi represents the threshold for the input, beyond which the expression
is activated. As θi is increased (decreased), the i-th gene tends to be expressed
(repressed). In the standard GRN model, this threshold is fixed. By contrast,
we regard it as a variable by assuming that θi represents the epigenetic modifica-
tion level for each gene i, such as histone modification or openness of chromatin
structure.

Further, the epigenetic change depends on the expression level of gene i. In
accordance with some theoretical and experimental reports [26,27,48,49,56,57], we
adopt a positive-feedback process from gene expression to epigenetic modifications:
when a gene is expressed (repressed), it tends to be expressed (repressed), as is
consistent with the stabilization by the epigenetic changes. Thus the epigenetic
change (openness in the chromatin structure) is given by:

dθi
dt

= v (axi − θi) . (2.2)

This assumption is rather natural considering the concept of ”canalization”, i.e.,
each valley becomes deeper (or more stable) as development. In Eq. (2.2), the
parameter a(> 0) represents the strength of the positive-feedback mechanism, and
v(> 0) gives the rate of change in the epigenetic modification.

In the model, both θi that characterizes the degree of openness and
∑

j Jijxj

that represents the actions from other proteins synergetically determine the ex-
pression. In the equation, only if

∑
j Jijxj + θi is larger than the threshold ci, i.e.,

if the input is large and the chromatin is sufficiently open, xi is expressed. As the
term

∑
j Jijxj is bounded by unity, if θ decreases goes to a negative value (towards

−α), the gene is not expressed. Hence if the chromatin is closed, the gene is not
expressed. Further, because θi increases as a result of positive feedback from xi,
the gene turns to be expressed only when the chromatin is open and activators
bind to the promoter.

Remark: Here we remark on the simplification adopted in our modeling and
its limitation. Biologically plausible models often adopt the Hill function such
as FHill(z) = zα/(zα + Kα) (or FHill

s (z) = 1/(zα + Kα)) for the expression
dynamics, instead of F (z), where combination of xα

m/(xα
m +Kα

m) (for activation)
and 1/(xα

m + Kα
m) (for suppression) provides the expression dynamics [58, 59].

The qualitatively same gene-expression dynamics (e.g., on/off expression patterns,
multistability, oscillation), however, is observed both for the models with F (z)
[51–54] and the Hill-type model.

In the Hill function, the value K corresponds to the threshold for the on/off
-type expression dynamics. With the increase in K, the threshold for expression
increases. Hence, K and θ in our model play the same role. Now K’s change with
the affinity with the prompter and proteins, or in other words, with the chromatin
openness. Considering that epigenetic change to stabilize each expression pattern,
as discussed above, the feedback from x to K in the form of Eq.(2) was introduced
in a previous research [58] for a Hill-type model extracted from the real data.
Indeed, Eq.(2) is obtained by replacing K by θ.
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Here, as long as the threshold-type expression dynamics and slow positive epi-
genetic feedback process in the type of Eq.(2) is adopted, qualitatively similar
behaviors are obtained, with regards to the classes of the expression dynamics and
the fixation from oscillatory dynamics, to be discussed below *1.
Note that the two basic assumptions (i) threshold-type gene expressions via

synthesized proteins and (ii) slow epigenetic modification (chromatin openness)
that stabilizes the expression pattern by the feedback are essential to draw the
conclusion in the present paper. By our approach, however, one cannot make a
direct, quantitative prediction on the epigenetic landscape for a specific example,
as it requires quantitative information on the specific form of gene expression
dynamics and epigenetic feedback. This is a limitation in our modeling.

2.2 Fixed-point analysis
The fixed-point solutions of (2.1) and (2.2) are obtained by setting each term to
zero. From the latter, we get θi = axi and from the former we obtain

tanhβ

(
N∑
i

Jij√
N

x∗
j + ax∗

i

)
− x∗

i = 0 (2.3)

(note that the case with ci = 0 is considered here). In the large β limit, the tanh
function is approximated by the step function, so that the fixed point x∗

i is given
by a sequence of {−1, 1} that satisfies (2.3). The number of fixed points of (2.3)
then increases monotonically with the value of a (Fig. 2.3). If it is large enough
(that is, the second term in the brackets in (2.3) is sufficiently larger than the first
term), all of the 2N patterns with any combination of x∗

i = ±1 (with θ∗i = ax∗
i )

satisfy (2.3). All of these are fixed-point attractors, which are reached by choosing
initial conditions close to each {−1, 1}N state. However, for a = 0, the number of

fixed points satisfying x∗
i = tanh β(

∑
Jijx

∗
j/
√
N) is much smaller.

*1 The reason for such agreement comes from the dynamical-systems theory. As shown in the
later sections, types of attractors (which genes are expressed, multistability, oscillation) are
determined by how nullclines are crossed, whereas a consequence of the epigenetic change
is determined by how the nullclines are shifted. Indeed, our model and the Hill-type model
have common behaviors as for the crossings and shift of nullclines.
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Fig. 2.3: a dependency of the number of fixed points(N = 10). The number of
fixed points monotonically increases for a. At the limit of a → ∞, 2N fixed points
(all gene expression patterns) are allowed.

Here, we focus on a case with sufficiently strong epigenetic feedback, i.e., suf-
ficiently large a, in which all of the possible 2N states could exist if any value of
xi and θi is initially chosen. However, for studying the canalization dynamics, we
restrict the initial condition of θi as follows: At the initial stages of development,
epigenetic modification is not yet introduced [60–64], so that all of θis are set to 0.
Under this restriction, we investigate which of the 2N fixed points with x∗

i = ±1
and θ∗i = ax∗

i is reachable through developmental change of the epigenetic mod-
ification. As we limit the dynamics to the state of θi = 0, we refer to only the
final states reached from such initial conditions as attractors throughout the paper
(whereas the initial conditions of xis cover all possible {−1, 1} states).

2.3 Attractor generation and pruning
First, we set N = 10 and prepare the initial conditions for all gene expression
patterns with null epigenetic modification (i.e., 2N candidates with xi = ±1, θi =
0). In the context of the epigenetic landscape, these initial conditions correspond
to the balls on the top of the landscape, whereas the valleys are shaped with
the change in θi and the balls are trapped at the bottoms of the landscape that
correspond to the attractor. We then examine which and how many attractors are
selected depending on the parameter v.

At the limit of v → 0, i.e., the adiabatic limit in terms of physics, the time scales
of the dynamics for xi and θi are well separated. Only after the expression level
xi reaches one of the original attractors with θi originally fixed at 0, θi begins to
show gradual variation. Hence, the number of attractors will be bounded by the
expression dynamics when fixing θi = 0. At the limit of v → ∞, θi reaches θi = axi

faster, so that all of the 2N states x∗
i = tanh(βax∗

i ) are attracted depending on the
initial xi values, as long as a is sufficiently large. By considering these two extreme
limits, v generally functions as a parameter that limits the final state from all of
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the possible 2N states. Now, from naive estimation based on the above two limits,
it might be expected that the number of attractors will monotonically increase
with v. Indeed, such monotonic increase could be observed for 80% of randomly
chosen networks Jij for N = 10.
For v ∼ 0, the approach to the attractor is completed before epigenetic modi-

fication and then θi is fixed accordingly. With the introduction of v, θi increases
or decreases depending on the initial value of xi. If this process for xi is fast,
xi is fixed to ±1 depending on the initial condition; that is, before the approach
to the original attractor. Hence, the original basin of attraction is partitioned.
With the increase in v, more partitions progress; accordingly, the few attractors
that exist at v = 0 are successively partitioned toward 2N states with the increase
in v. In this case, for a given v, fixation simply occurs from the neighborhood
of each on/off-pattern attractor provided by the initial condition. There exists
no hierarchical branching to each attractor over developmental time. Moreover,
since only the attractor from the neighborhood of the initial expression state is
reached, the final state crucially depends on the initial condition, the final state
crucially depends on the initial condition. Neither homeorhesis nor robustness in
the cell-number ratio is expected, as will be confirmed later.
However, in the case of N = 10, approximately 20 % of the randomly chosen

matrix Jij shows non-monotonic dependency of the attractor number on v. Here,
different attractors are generated and pruned successively with v in the interme-
diate range of v. This implies that states separated at smaller v converge again
with the increase in v, even though the epigenetic feedback tends to separate each
xi to ±1. With mutual interference between the fast dynamics of xi and slower
dynamics of θi, both the convergence of initial states and divergence to fixed states
coexist, as will be discussed below. Further, as will be shown, such convergence
of orbits in the initial regime can allow for the creation of an epigenetic land-
scape that satisfies the three postulates of hierarchical branching, homeorhesis,
and robustness in the cell-number ratio.
In this non-monotonic case, the basin volume of each attractor, i.e., the fraction

of initial conditions from which each attractor is reached, also changes with v. In
particular, dominant attractors successively change with v as shown in Fig.2.4b.
This scenario is in stark contrast with the case of a monotonic increase in attractor
number, where each basin of attraction is simply partitioned to 2N successively
with the increase in v (Fig. 2.5).
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Fig. 2.4: (a) Dependence of the number of attractors (reached states from θi =
0) upon v. Grey dotted lines show the case with a monotonic increase of the
attractor number against v. The black and green solid lines are examples with
non-monotonic dependence on v. Attractors are pruned at 2×10−3 < v < 1×10−2.
N = 10. (b) Dependence of the basin volume of each attractor upon v, for the
example of non-monotonic dependence of attractor number shown as the black line
in (a). Basin volume is computed by taking 2N initial conditions of {xi = ±1}
and setting θi = 0 initially, and then counting the number of initial conditions
reaching each fixed-point state. Each line with a different color shows the basin
volume for each different attractor.
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Fig. 2.5: Dependence of basin volume of each attractor upon v for the example in
which the attractor number shows monotonic dependency on v.



2.4 Trajectory separation by epigenetic modification: simplest example 19

2.4 Trajectory separation by epigenetic modification:

simplest example
To understand how mutual feedback between gene expression and epigenetic mod-
ification can lead to the generation and pruning of attractors, we first consider the
minimal case with only two genes (N = 2). In addition, c1, c2 ̸= 0, which may
be also regarded as the inputs from genes other than i = 1, 2. We consider the
case J11 = J22 = 0, J12 > 0 > J21; i.e., one gene activates the other, which then
inhibits the first, as shown in Fig.2.6a.
In this simple case, the number of attractors changes as 1 → 2 → 1 with

the increase in v over a certain range of parameters c1, c2 (Fig. 2.7). For v <
5.7×10−5, only trajectories reaching (−1, 1) are realized (Trajectory A)(Fig. 2.7b).
By increasing v further, trajectories reaching (−1,−1) then appear (Trajectory B)
where 5.7 × 10−5 < v < 7.0 × 10−4, and two attractors (−1, 1), (−1,−1) coexist
(Fig.2.6b). For larger v (7.0 × 10−4 < v < 9.1 × 10−3), the attractor (−1, 1)
disappears completely (Fig. 2.7c). The time course in the development of the two
types of trajectories and the change in the basin for each attractor is shown in
Fig. 2.8 and Fig. 2.9, respectively.
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Fig. 2.6: (a) Two-gene system with activation (red arrow) and inhibition (blue
arrow): x2 activates x1 and x1 inhibits x2. The parameter values are chosen as
J12 = 0.44, J21 = −0.33, J11 = J22 = 0, c1 = 0.16, c2 = −0.15. (b) Trajectories
in x1, x2 for v = 10−4. Trajectory A reaches the fixed point (−1, 1), whereas
Trajectory B reaches (−1,−1). These two types of trajectories coexist (two fixed
points as two black dots), depending on the initial condition, for the intermediate
value of v. Initial conditions are chosen at even intervals per 0.5 in the phase space
of (x1, x2). (c) Analyses of the two types of trajectories according to the motion
of two nullclines: blue, corresponding to dx1/dt = 0; red, dx2/dt = 0. (i) (x1, x2)
approaches the crosspoint of the nullclines if θi is fixed, whereas the change in θi
results in a shift of the nullclines. (ii) For both trajectories, x1-nullcline (blue line)
goes up and x2 nullcline (red line) goes left first, because (x1, x2) first approaches
the fixed point at θi = 0 starting from any initial condition. Upper: As x2 exceeds
0, the motion of the x1 nullcline changes its direction, and (x1, x2) reaches the fixed
point (−1, 1). This gives Trajectory A. Lower: Before x2 reaches 0, the x2 nullcline
crosses the x1 nullcline vertically in Trajectory B so that x2 remains negative and
the motion of the nullclines do not change their direction; thus, (x1, x2) reaches
(−1,−1).
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(a)

(b) (c)

Fig. 2.7: (a) v dependency of attractor number. The attractor number non-
monotonically changes as 1 → 2 → 1 for v < 10−2. (b) Trajectories realized
from several initial conditions for v = 10−5. For small v, only Trajectory A (a
type of trajectory reaching (−1, 1)) is realized. (c) Trajectories for v = 10−3. For
large v, only Trajectory B (a type of trajectory reaching (−1,−1)) is realized. The
generation of these trajectories is outlined in Fig. 2.6c.

Trajectory A Trajectory B

Fig. 2.8: Time-dependent development of Trajectory A and Trajectory B in the
minimal two-gene model.
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Fig. 2.9: The change of basin for each attractor in the two-gene model. The
orange region corresponds to the basin attracted to (−1, 1), and the blue region
corresponds to the basin attracted to (−1,−1).

The above v dependency of attractors is explained as follows. When v is small,
the dynamics are approximated by the means of ”adiabatic elimination”; i.e., xi

reaches the fixed point for a given θi, whereas θi changes slowly. For given θi, the
{xi} dynamics are analyzed by the two nullclines, given by

dx1/dt = 0 → x1 = tanh β

(
J12√
N

x2 + θ1 + c1

)
, (2.4)

dx2/dt = 0 → x2 = tanh β

(
J21√
N

x1 + θ2 + c2

)
. (2.5)

When v is small, while xi moves towards the crosspoint of the two nullclines, as
θi slowly changes according to (2.2), the nullclines are slowly shifted.

When this adiabaticity condition is satisfied, only Trajectory A is realized (Fig.
2.7b): at θi = 0 (null epigenetic modification), there is a stable fixed point as the
crosspoint of the two nullclines at x1 < 0 and x2 < 0 (Fig.2.6c(i)). Then, according
to (2.2), each nullcline is shifted as follows: the x1-nullcline (i.e., dx1/dt = 0
nullcline) goes up, whereas the x2-nullcline (i.e., dx2/dt = 0 nullcline) goes left. As
a result, the crosspoint of the two nullclines itself moves up and left, thus reaching
above x2 = 0. Consequently, the shift of the x2-nullcline changes its direction
(as the sign of dθ2/dt is approximately given by the sign of x2). Accordingly, the
crosspoint of the nullclines continues to move up, reaches (−1, 1), and then stops.

However, by increasing v, the faster movement of the nullclines generates another
trajectory, Trajectory B. First, the crosspoint of the two nullclines moves to the
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left and up, in the same way as observed for Trajectory A. However, owing to
the faster change in θ, the x2-nullcline shifts to the left so quickly that the two
nullclines cross vertically (see Fig.2.6c (ii) Trajectory B), and the crosspoint does
not go above x2 = 0. As a result, the crosspoint moves to the left and down
to (−1,−1), where (x1, x2) is fixed for some initial conditions. Here, (x1, x2) first
approaches the fixed point at θi = 0 for both Trajectories A and B, and then owing
to slight difference in the initial conditions, (x1, x2) is directed either to (−1, 1) or
(−1,−1).
By increasing v beyond 9.1 × 10−3, the shift in the nullclines is accelerated,

so that the two nullclines cross vertically for all of the initial conditions. In this
case, Trajectory A is not realized for any initial condition, and all of the initial
conditions are instead attracted to (−1,−1) (Fig. 2.7c).
Hence, the attractor number increases due to the divergence in the motion of the

nullclines depending on the initial conditions of {x(i)}. With a further increase in
v, the attractor is pruned because nullclines move faster and no longer split into
two directions of motions due to the faster change of θi.

2.5 Generation and pruning of attractors from an

oscillatory state
The two-gene minimal model described above suggests how the interplay between
fast x dynamics and a slow nullcline shift leads to divergence in trajectories,
thereby resulting in non-monotonic change in the attractor number. By contrast,
for N = 10, the non-monotonic behavior of attractor number against v mostly
adopts a limit-cycle attractor at θi = 0. The frequency of networks showing such
behavior is much larger for the limit-cycle case, along with the number of generated
and pruned attractors in the intermediate range of v (See Fig.2.10).
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(a) (b)

Fig. 2.10: (a) Fraction of the regulatory matrices Jij that exhibit attractor pruning
with the increase in v (here defined as a decrease in attractor number of more
than 4). The cases with the initial limit-cycle attractors at θi = 0 (red) and
those with fixed points (green) are sampled separately. (b) Average number of
pruned attractors, defined as the difference between the local maximum and local
minimum of attractor number against the change in v. Case with a limit cycle
(red) and fixed points (green). See Fig. 2.11 for more details.

(a) (b)

Fig. 2.11: (a) Comparison of the number of pruned attractors for the case in
which the original attractor (at θi = 0) is the limit cycle and the case in which
the original attractor is a fixed point. The number of pruned attractors is defined
as the difference between the local maximum and local minimum. If the attractor
number monotonically increases with v, the number of pruned attractors is 0. (b)
(Blue) Sampling only from the matrices in which attractor pruning occurs. The
case in which the original attractor is the limit cycle is most frequently observed.
(Orange) Sampling from randomly chosen matrices. The case in which the original
attractor is a fixed point is most frequently observed.

This relevance of the limit cycle to the generation and pruning of multiple attrac-
tors is explained as follows. First, as the limit cycle travels over a larger portion
in the phase space of {xi}, the variation in the change in {θi} is enhanced so that
more attractors can be generated with the increase in v. These attractors are
generated hierarchically by branching trajectories successively, stemming from the
original limit-cycle orbit. However, with the increase in v, the initial oscillation
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is destroyed due to the faster change in θ (shift of nullclines), so that the top of
the hierarchy in branching trajectories is destroyed, leading to a drastic decrease
in the attractor number.
This hierarchical attractor generation from limit-cycle (HAGL) is illustrated

in a simple three-gene system with a limit-cycle attractor (Fig.2.12a). In this
three-gene system, only one attractor is reached for small v where the adiabatic
condition is satisfied (Fig. 2.13a). With a further increase in v, however, three
attractors are reached (4× 10−4 < v < 9× 10−3). The trajectories reaching these
attractors initially show oscillation around the original limit cycle at θi = 0, and
then separate into two groups, as shown in Fig.2.12b): two fixed-point attractors
are generated from one group, whereas one fixed-point attractor is generated from
the other group. Thus, the attractors are generated hierarchically.

In this v region, the branching in gene expression patterns occur in accordance
with that in θi as shown in Fig.2.12(c), where the first branching occurs in θ2 at
t ∼ 25, then in θ1 at t ∼ 50 and finally at θ3 at t ∼ 100. The change in θi is
triggered by the change in xi, but it then supports and fixes each of the branching
of gene expression patterns. In this sense, the deepening of valleys is guided by θi,
as is metaphorically represented by strings underlying the Waddington’s diagram
in Fig. 2.1b.
With the increase in v, the initial limit-cycle orbit is destroyed before the sepa-

ration into two groups, so that the number of attractors is reduced from three to
one (v ∼ 9× 10−3) (see Fig. 2.13 for more details).
Most of the generation-and-pruning of multiple attractors can be understood as

HAGL. Note that for much larger N , limit-cycle attractors (or sometimes chaotic
attractors) exist more often in the model (2.1) with θi = 0, as previously inves-
tigated in neural network models [65, 66]. Therefore, the generation-and-pruning
of multiple attractors are expected to be ubiquitous. For confirmation, we sim-
ulated the model with N = 100. Although sampling all 2N initial conditions
{xi = ±1; i = 1, . . . , N} is numerically difficult, simulations with partial sampling
showed that non-monotonic change in the attractor number occurred for most of
the randomly chosen Jij matrices (Fig. 2.14) where HAGL is commonly observed.
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Fig. 2.12: (a) Three-gene system with J11 = 0.26, J12 = J13 = 0.35, J21 =
−0.4, J31 = −0.36, c1 = 0.26, c2 = c3 = 0.17. (b) Hierarchical attractor gener-
ation from limit cycle (HAGL). v = 10−3. (i) Trajectories from different initial
conditions, plotted by different colors, approach a limit-cycle attractor at θi = 0.
0 < t < 10. (ii) Trajectories are separated into two groups (green line shows one
group, and orange and purple lines show another group), depending on the initial
condition. 40 < t < 50. (iii) Further separation of the group of trajectories is
shown in orange and purple. 80 < t < 90. (iv) Three trajectories reaching distinct
fixed points. 120 < t < 150. (c) Time development of θ1(i), θ2(ii), and θ3(iii).
Each line color corresponds to trajectory in (b). HAGL in x space is supported
by θi, similarity as the strings beyond the epigenetic landscape.
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Fig. 2.13: (a) The fraction of basin volume for each attractor. For small v, only
one attractor is allowed (v < 4×10−4). For an intermediate range of v, (4×10−4 <
v < 9 × 10−3), three attractors coexist. With an increase in v, certain attractors
strongly attract initial conditions due to attractor pruning. (b) Trajectories for
v = 10−4 (same initial conditions as in Fig. 2.12a). (c) Trajectories for (v =
9× 10−3).
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Fig. 2.14: The change of attractor number with much larger N (N = 100). Numer-
ical simulation with partial sampling (sampling from randomly chosen 106 initial
conditions). Blue, orange, and red lines show the result from different matrices.
The green line shows the result using the same matrices as used for generation of
the orange line but with sampling under different initial conditions.

2.6 Epigenetic landscape and homeorhesis
Thus, HAGL satisfies the first postulate of Waddington’s landscape: hierarchical
branching. Now, we consider the other two postulates of homeorhesis and robust-
ness in the cell-number ratio. For this purpose, we first need to determine the axes
X and Z in the landscape.

As discussed above, the X axis represents the cellular state, which can be ex-
tracted from {xi} using PCA. Here, we adopt the 1st PCA mode of {xi} as X.
Each valley corresponds to an attractor stabilized by the slow epigenetic change.
To explore robustness in the developmental course and generated epigenetic land-
scape, we introduce noise in (2.1) and (2.2). We adopt the Langevin equation by
adding Gaussian white noise ηi(t) with < ηi(t)ηj(t

′) >= σδijδ(t − t′), with δij
as Kronecker delta and δ(x) as a delta function. In general, the specific attractor
that is reached depends on the initial condition and perturbation by internal noise.
By taking the number of cells under noise, each cell reaches one of the attractors
(and stays in its vicinity even under noise). Then, one can compute the number
distribution of P (X). As Z is lower, the state with X is more frequently reached.
By analogy with the relationship between free energy and probability in thermo-
dynamics, one can adopt Z = log(1/P (X)). Then, the epigenetic landscape can
be depicted using the height Z as a function of X.

To compute P (X), we first choose an initial condition of cells (or distribution
around a given initial pattern of X). For each initial value, X is computed as a
result of time evolution. By starting with a sufficient number of cells, the distribu-
tion P (X) is obtained, which may depend on the initial condition of cells. Then,
to examine the robustness of the landscape, we explore whether the time evolution
of the distribution P (X) is robust against the change in the initial condition of
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cells.
First, when v is large, any of the 2N states is approached from the vicinity of

each of the initial expression patterns {xi = ±1}. In this case, the specific state
that is attracted as well as the number distribution of cells for each state crucially
depend on the choice of initial conditions. Hence, P (X) is not robust to the change
in the initial conditions.
Next, we consider the case with monotonic dependence of attractor number upon

v. In this case, if v is not so large, the number of attractors nA is much smaller.
Nevertheless, the specific attractor the cell state reaches is still predetermined by
how close the expression state at θi = 0 is to the final expression state. The
initial xi state is partitioned into nA basins, from each of which only one attractor
(valley) is generated. Hence, P (X) crucially depends on the initial distribution of
xi’s (see Fig. 2.18, 2.19).
In contrast, for HAGL, the postulated robustness is achieved if v is in the inter-

mediate region in which multiple attractors are generated, as shown in Fig. 2.18,
2.19. The obtained P (X) is almost completely independent of the initial condi-
tions of cells(see Fig. 2.19). For most initial conditions, all of the attractors are
reached, and the fraction of cells reaching each attractor under noise is quite stable
against the change in the initial distribution of {xi} (Fig. 2.18, 2.19). In this case,
from any initial conditions, the limit-cycle attractor (at θi = 0) is first reached.
With the epigenetic feedback, the cells are then distributed to each attractor de-
pending on the phase of the oscillation. Hence, the time course of differentiation
to each attractor (cell type), as well as the fraction of each attractor (the number
ratio of each cell type) are both independent of the initial distribution of cells.
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Fig. 2.15: Epigenetic landscape generated from the temporal evolution of cellular
states for given Jij that exhibits HAGL. N = 40 and ci is set to a random value
sampled from the normal distribution with average 0, variance 0.1. We adopt 1-
mode PCA to represent a one-dimensional scalar variable X and Z = − log(P (X))
indicating the depth of valley, where P (X) is the distribution of X over cells devel-
oped under noise, and is plotted against time given by log(t). Red indicates large
(i.e., low frequency) and blue indicates small values. The amplitude of Gaussian
white noise σ = 0.1. The right figure shows a one-dimensional representation with
the horizontal axis as X and vertical axis as scaled time (from top to bottom),
whereas the color represents Z.
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Fig. 2.16: (a) Time development of the histgram of P (Θ). Each histgram shows
distribution of Θ at given (normalized) time. At t = 0, distribution of Θ is gathered
in one point (reflecting we choose initial θi value as θi = 0). As time development,
distribution of Θ is branched hierarchically, same as the epigenetic landscape in
Fig. 2.15. (b) The epigenetic landscape, drawn by Θ, value of θi in PCA 1 mode,
in Fig. 2.15. (c) Its expansion plot in 0.4 < t < 1.

We can then depict the epigenetic landscape according to the time evolution
of P (X). Here, X (in Fig. 2.1) is given by the 1st PCA mode from {xi} ob-
tained from a distribution of initial conditions. The landscape is depicted by
Z = − logP (X), so that the bottom of the lower valley has a higher popula-
tion density. The landscape thus depicted is given in Fig.2.15, which shows both
the hierarchical branching and robustness to the initial expression or noise. This
landscape, as in the case of Fig. 2.12, is shaped with the change in θi. Time
development of distribution Θ (corresponding to θi in the PCA 1 space) is shown
in Fig. 2.16a), whereas the landscape thus depicted is given in Fig. 2.16b, c. The
figures represent how Θ supports the branching trajectories as in the strings in
the epigenetic landscape in Fig. 2.1b.
Finally, we quantitatively characterize the robustness of the final distributions

of cellular states reached from different initial distributions. Let us define Pµ(X)
as the distribution of X reached from a given initial condition of xi, indexed by
µ (e.g., xi(t = 0) = ηµi , where ηµi (i = 1, . . . , N) is one random sequence in [−1, 1],
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whereas ν ̸= µ denotes a different random sequence). As the measure for the
distance between two distributions Pµ(X), P ν(X) generated from different initial
distributions, we adopt the KL divergence DKL =

∑
X Pµ(X) ln{Pµ(X)/P ν(X)}

for a pair of two distributions Pµ(X), P ν(X) obtained from two samples µ and
ν starting from different initial conditions. If DKL is small, a similar distribution
P (X) (i.e., a similar landscape) is obtained, independent of the initial condition,
thereby implying robustness at the distribution level. DKL is computed by averag-
ing over the samples µ and ν, which is plotted in Fig.2.17 for the case of monotonic
attractor number dependency on v and the non-monotonic HAGL case. As shown
in Fig.2.17, the DKL value is kept small up to a large value in v (e.g., v ≤ 10−2)
for the HAGL case. This quantitatively demonstrates that differentiation from
the oscillatory state through epigenetic fixation shows higher robustness in the
distribution of cellular states.
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Fig. 2.17: DKL representing the averaged Kullback-Leibler divergence between
two distributions of cellular states developed under noise (σ = 0.1). First, P (X)
is computed from 500 cells developed from a given initial condition and Jij . The
distribution Pµ(X) is computed over µ = 1, 2, . . . , 10 starting from different initial
conditions. The Kullback-Leibler divergences are then computed over all pairs of
90 distributions and averaged to get DKL (see also Fig. 2.16 for each distribution
form). For HAGL, DKL remains low up to large v ∼ 10−3 (red lines), whereas in
the monotonic case (green lines), it takes on a large value over the full range of v.
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Fig. 2.18: Stochastic simulation. When trajectory separation from the limit cycle
is realized [i.e., attractor pruning (AP) occurs], the distribution of cell types has
reproducibility even if the initial gene expression pattern is different and gene
expression levels change under perturbation. However, when trajectory separation
from the limit cycle is not realized, the distribution of cell types strongly depends
on the initial condition or shows stochasticity.
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Fig. 2.19: Representative example of the comparison of two distributions simulated
from two different initial conditions.

2.7 Discussion
We have introduced a model involving mutual interactions between the expression
dynamics controlled by a GRN and epigenetic modification. With more efficient
execution of the epigenetic feedback regulation, more attractors with different
expression patterns, i.e., more cell types, are generated. In some networks, the
initial expression levels are simply embedded into epigenetic modifications, whereas
for other networks, mutual feedback between expression levels and modifications
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bring about hierarchically ordered attractors from an oscillatory state. In such
a case, the attractor number shows non-monotonic change against the rate of
epigenetic feedback regulation v. The mechanism of non-monotonic dependency
on v, i.e., the attractor generation and pruning, is explained in terms of dynamical
systems theory.

By using the change in expression dynamics under the slow epigenetic modifi-
cation process, Waddington’s epigenetic landscape is explicitly depicted, in which
the landscape axis (X axis in Fig.2.1) is given by the principal component of the
expression pattern; the depth, Y axis, is given by the developmental time with
slow epigenetic modification; and the height is given by − log(P (X)) with P (X)
as the cell-number distribution of X. In particular, when the original attractor
in the absence of epigenetic modification is a limit cycle, the timing of branching
to different cell types, number of differentiated cell types, and number fraction of
each cell type are all robust to perturbations during the course of development
and to the variation of initial conditions. Hence, the generated landscape satisfies
the three postulates implicitly assumed in Waddington’s landscape: (1) hierarchi-
cal branching is supported by the hierarchical attractor generation from the limit
cycle; (2) homeorhesis is supported since this branching process is independent of
initial conditions and robust to noise; and (3) the cell-number robustness is demon-
strated since P (X) is also independent of initial conditions and robust to noise.
This robustness in the path and in the cell-number distribution to perturbation is
an essential requirement for the development of multicellular organisms [42].

Our theoretical model assumes epigenetic feedback regulation. Although the
transient modification in epigenetic factors has been experimentally confirmed
[67, 68], the extent to which this modification depends on gene expression is not
yet clearly elucidated. Considering that epigenetic change stabilizes the cellular
states, it is rather natural to assume positive feedback from the expression level
to modification, i.e., if expressed (repressed), it is easier (harder) to be expressed,
whereas some molecular mechanisms for such positive feedback have been sug-
gested [26,27]. However, direct evidence, as well as quantitative estimates for the
time scale of epigenetic change, require further experimental elucidation in the
future.

The significance of oscillation in the cellular state for the differentiation pro-
cess was previously discussed [10]. Indeed, the cell state is not fixed but rather
involves several oscillatory modes, including circadian and cell-division cycles. Fur-
thermore, oscillatory expression has recently been uncovered for embryonic stem
cells [69–72], which is ultimately lost in cells committed to differentiation. Note
that the relevance of an oscillatory state to pluripotency was previously discussed
in the context of an alternative approach to the epigenetic landscape with respect
to inclusion of cell-cell interactions [58]. In this case, the initial oscillation in ex-
pression levels is lost with an increase in the cell number and resulting amplification
of cell-cell interactions accordingly. Hence, the two approaches, i.e., cell-cell inter-
actions and epigenetic modification, are compatible. Indeed, a model that includes
both approaches was previously investigated, in which epigenetic modification of
several genes such as Oct4 and Nanog leads to the commitment of cells from an
undifferentiated state, which is consistent with experimental observations [73–75].

The canalization in Waddington’s landscape is valid for the normal developmen-
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tal process. However, through certain external operations, the path of committed
cells can be reversed to an undifferentiated state in a process known as reprogram-
ming [6,76–78]. In the present model, by externally overexpressing some genes for
a given time span, the threshold −θi that was initially increased can be decreased
so that the expression level recovers, which matches the experimental procedure
used to create induced pluripotent stem cells. In the future, it will be important to
elucidate the condition required for such reprogramming by identifying the specific
genes in the network that need to be overexpressed so as to climb up to the most
upstream location in the landscape under the present theoretical framework.
The generation and pruning of attractors that depend on the epigenetic feedback

rate is itself an interesting phenomenon in terms of dynamical systems of both
fast and slow elements, which requires an analysis beyond the breadth of adiabatic
elimination [66]. That is, if the time scales are clearly separated, the change in fast
expression would be represented as an attractor change against the slow epigenetic
state as a control parameter. In contrast, mutual feedback between the two is
important, as shown in the present study with regard to the interaction between
the nullclines and the variables. Therefore, an appropriate analytical method that
is capable of capturing such feedback dynamics needs to be developed.
Homeostasis, robustness of a steady-state in biological systems has gathered

much attention over decades. This, for instance, has been discussed as the sta-
bility of the final state (attractor) against perturbations. On the other hand,
homeorhesis is concerned with the stability of the time course of a state, against
the change in the initial conditions or perturbations. So far, studies on home-
orhesis are rather limited: Few examples include relaxation dynamics in signal
transduction process independent of the initial condition [79], robust developmen-
tal process with cell-cell interaction [10, 43], and robust ecological dynamics in
an experiment consisting of algae and ciliates [80]. For homeorhesis to work, the
existence of slower time scale and buffering of initial variation will be needed. The
hierarchical attractor generation by slower epigenetic feedback after attraction to
a limit cycle will provide one general mechanism for the homeorhesis.
Finally, we assume that cellular states start from no epigenetic modification

state (that is, initial conditions with θi = 0 for all i) in this chapter. We should,
however, consider this assumption. Why does development start from these states
robustly? We propose the possible scenario in terms of dynamical systems theory
by considering cellular reprogramming in the next chapter.
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Chapter 3

Dynamical-systems theory of cellular

reprogramming

In the development of multicellular organisms, cells with identical genomes differ-
entiate into distinct cell types. This cellular differentiation process has often been
explained as balls falling down the epigenetic landscape, as originally proposed by
Waddington [3]: balls start from the top of the landscape, and as development
progresses, they fall into distinct valleys, which correspond to differentiated cell
types. In modern biology, such landscapes are believed to be formed by epige-
netic regulation, including DNA and chromatin modifications [12, 13, 15, 17]. For
pluripotent cells, these modifications are small, whereas each differentiated cell
type has a different epigenetic modification pattern [21–24]. Cells with pluripo-
tency, such as embryonic stem (ES) cells, are located in the vicinity of the first
branching point into the valleys, because they can easily differentiate into different
types of cells with just slight stimuli [81].

In 2006, a seminal study by Takahashi and Yamanaka reported that differen-
tiated cells can regain pluripotency only by overexpressing few genes (so-called
the four Yamanaka factors) without direct manipulations of epigenetic modifi-
cations. This was termed as reprogramming of induced pluripotent stem (iPS)
cells [6]. The reprogramming is often described as “climbing” the epigenetic land-
scape [30,31,82]. This hypothesis, however, has two problems that still need to be
addressed: (1) cells have many degrees of freedom, with expression and epigenetic
modifications of many genes, whereas reprogramming manipulation involves only
few degrees of freedom. How is it possible?; moreover, (2) if the initial pluripotent
state is represented by the top of the landscape, it is not a stable point. Thus,
how can reprogramming robustly make the cells head toward such an “unstable”
state?

Theoretically, these issues should be resolved based on dynamical systems the-
ory. The interplay between fast gene regulation and slow epigenetic dynamics
shapes the epigenetic landscape, and differentiated cells are represented by differ-
ent attractors [32,33,35,35]. Therefore, upon the reprogramming operation, cellu-
lar states starting from different attractors first converge into a unique pluripotent
state, which is not stable, from which states move toward various attractors after-
wards. At first glance, these requirements seem to be incompatible; an unstable
state (e.g., repeller) is not attracted from different initial conditions. Hence, to
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satisfy these requirements, the pluripotent cell is expected to be represented at
least by a saddle that is attracted from many directions and departs only along
unstable directions (manifolds), which represent the cell differentiation process,
leading to attractors of different destinations. To regain pluripotency by repro-
gramming, cellular states must be placed on the stable manifold of the saddle by
common manipulations from different attractors. Such manipulation, however,
would require fine-tuned control. In contrast, reprogramming is mediated by the
overexpression of a few common genes across a variety of differentiated cell types.
Therefore, some dynamical systems concept beyond just a saddle is needed.
A recent experiment provides some clues on this subject. Temporal oscillations

in DNA methylation and corresponding gene expression levels are observed during
cellular differentiation [67,68]. In fact, gene expression oscillations have also been
reported during somitogenesis and in embryonic stem cells [69, 72, 83], whereas
its relevance to cell differentiation has been theoretically investigated for decades
[10, 11, 34, 58, 84–86]. Recalling the possible significance of oscillatory dynamics,
it is reasonable to consider that if there is an oscillation of fast gene expression
around the saddle point of the slow epigenetic dynamics, global attraction to it
from broad initial conditions may be attained beyond its stable manifold. As the
oscillation dynamics are extended beyond the stable manifold of a saddle, global
attraction to the vicinity of the saddle may be possible by taking advantage of the
interplay between fast expression and slow modification dynamics.

3.1 Model
Herein, we verified this possibility by using a dynamical system model with a gene
regulatory network (GRN) and epigenetic modification. We consider a cell model
in which the cellular state was represented by the expression xi and epigenetic
modification level θi for each gene i, with i = 1, 2, . . . , N . Gene expression dy-
namics, with faster time scales, are governed by GRN with mutual activation or
inhibition by transcription factors [38,51–54], whereas slower epigenetic dynamics
change the feasibility of gene expression, which follows the gene expression pat-
terns. We assumed the epigenetic feedback reinforcement, meaning that as more
a gene is expressed (silences), the more feasible (harder) to express. This hy-
pothesis was based on the experimental observations on the Trithorax (TrxG) and
Polycomb (PcG) group proteins, two of the essential epigenetic factors for cellular
differentiation [87]. Specifically, we adopted:

dxi

dt
= F

∑
j

Jijxj + θi + Ii(t)

− xi, (3.1a)

dθi
dt

=
1

τ
(xi − θi). (3.1b)

In Eq. (3.1a), gene expression shows an on-off response to the input by adopting
the function F (z) = tanh(βz), whereas β = 40 *1. If Jij is positive (negative),

*1 Although we adopted a symmetric function, the result to be discussed is not changed if
asymmetry functions, including the Hill function, are introduced.
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gene j activates (inhibits) gene i, whereas Jij is set to 0 if no regulation exists.
External input Ii(t) is applied only during reprogramming manipulation to flip
the expression of the gene i. For simplicity, Ii(t) takes a constant non-zero value
when gene i is overexpressed for reprogramming manipulation and zero otherwise.

In Eq. (3.1a), −θi works as the threshold of the expression of the gene i,
which represents the epigenetic modification status (when there is no epigenetic
modification, it takes zero). Eq. (3.1b) represents the epigenetic feedback reg-
ulation. Following the experimental observation of positive epigenetic feedback
[26, 27, 48, 49, 56, 57, 87], we adopted this simple form as its specific form has not
yet been confirmed [50, 58, 88, 89]. Here, τ denotes the characteristic timescale
for epigenetic modifications, which is assumed to be sufficiently larger than 1;
the change in epigenetic modification is much slower than that of gene regulatory
dynamics [28,29,90].

3.2 3D-Repressilator
Recalling the relevance of oscillatory dynamics, we chose a GRN in which oscil-
latory dynamics were generated for appropriate θi values (specifically at θi ∼ 0).
First, we adopted a repressilator model as a minimal model (see Fig. 3.1), consist-
ing of three genes that repress the expression of the next gene in a cyclic manner [8].
Specifically, we chose J21 = J32 = J13 = −g = −0.4 in Eq. (3.1a).

Fig. 3.1: Schematic representation of the cell model, which consisted of N genes,
which state is represented by the gene expression xi and epigenetic modification
status θi. Red (blue) arrow shows the activation (inhibition) relation according to
the gene regulatory matrix Jij . (a) The Repressilator Model comprised three genes
that repress each other in a cyclic manner. J21 = J32 = J13 = −g(= −0.4). Black
arrow represents positive feedback relation between gene expression and epigenetic
modification status.
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3.2.1 Dynamics of cellular differentiation and reprogramming in repres-

silator model

The expression of xi in this model showed a limit-cycle oscillation when θi was
close to zero. Thus, for the epigenetic modification to change θi following Eq.
(3.1b), the states were differentiated into three fixed-point attractors {θ1, θ2, θ3} =
{−1, 1, 1}, {1,−1, 1}, {1, 1,−1}, after first approaching a straight line θ1 = θ2 = θ3,
as shown in Fig. 3.2a *2 (see also Fig. 3.3a). In these fixed points, dθi/dt = 0
were satisfied; that is, the differentiation of expression xi was embedded into the
epigenetic modification θi.

Now, we considered ”reprogramming.” Starting from one of the differentiated
fixed points, we added external input Ii(t) to invoke the transient oscillation again
(black dotted line in Fig. 3.2b). Later, Ii(t) was set at zero. After reprogramming
manipulation, they approached a line with θ1 = θ2 = θ3 around the origin, and
then deviated from the line to one of the three fixed points (Fig. 3.2b), in the
same manner as the differentiation process. During this reprogramming process,
memory of the differentiated states was erased. Once the oscillation in x was
recovered, the approach to the straight line and deviation from it always followed
(Fig. 3.2c).

*2 Considering positive/negative symmetry, six attractors exist in the whole space. In this
chapter we considered only the side

∑
θi > 0.
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{1,1, − 1}
{1, − 1,1}
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(a) (b)
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Fig. 3.2: (a) Cell differentiation and (b) reprogramming of the repressilator model
with τ = 103. Upper bar indicates differentiation (red), reprogramming manipu-
lation (black), and later process (blue) without it (Ii = 0). We plotted the time
development of x1, θ1 (see Fig. 3.3ab for the time series of all variables). (a) Three
trajectories are sampled from slightly different initial conditions near θi = 0. (b)
From the fixed point {−1, 1, 1}, we tested three slightly different time spans to add
external input (520, 530, 540). After reprogramming manipulation, the cellular
state first approached θ1 = θ2 = θ3, and then differentiated to three fixed points
again. (c) Trajectories through reprogramming and differentiation plotted in the
(θ1, θ2, θ3) space. Ten attempts were overlaid by considering the initial conditions
in xi ∈ [−1, 1], θi ∈ [−0.25, 0.25], which allowed oscillation. Attraction for the
straight line θ1 = θ2 = θ3 and departure from it was discernible. (d) Eigenvector

{vk} and variables {θ̂k} (see text). Three colored points represent the fixed points
{−1, 1, 1} (blue), {1,−1, 1} (orange), and {1, 1,−1} (green).
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Fig. 3.3: Time development of all variables xi and θi of the (a) cell differentia-
tion process and (b) reprogramming process in the repressilator model. (c) The
eigenvalues λk of the ∂Θi/∂θj matrix given by the fixed-point analysis of Eq. (2)
around {θ1, θ2, θ3} = {0, 0, 0}.
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3.2.2 Adiabatic elimination

Next, we studied how the attraction to the straight line first occurs, followed by
differentiation progression. For it, we considered the adiabatic limit of τ → ∞.
For fixed θi, we first obtained the attractor xi. Then, the evolution of θi was
obtained by replacing xi in Eq. (3.1b) by its time average x̄i for a given θi, as
follows:

dθi
dt

= x̄i(θi)− θi(≡ Θi). (3.2)

In the three-variable Eq. (3.2), {θ1, θ2, θ3} = {0, 0, 0} is a fixed point solution
because xi(t) showed a symmetric limit-cycle oscillation, such that x̄i = 0 for all
i therein for {θ1, θ2, θ3} = {0, 0, 0}. By slightly perturbing θi as a parameter, x̄j

changed accordingly. From ∂x̄i/∂θj , we obtained the Jacobi matrix ∂Θi/∂θj with
eigenvalues {λk} and eigenvectors {vk}.

3.2.3 Fixed point analysis of Eq. (3.2)

We considered the Jacobi matrix of Eq. (3.2) in the repressilator model as

∂Θi

∂θj
=

∂x̄i

∂θj
− δij(i, j = 1, 2, 3), (3.3)

and fixed-point analysis around {θ1, θ2, θ3} = {0, 0, 0}. The repressilator model
obviously has symmetry against a transformation in 1 → 2 → 3 → 1 around
{θ1, θ2, θ3} = {0, 0, 0}.

∂x̄1

∂θ1
=

∂x̄2

∂θ2
=

∂x̄3

∂θ3
(= a0), (3.4)

∂x̄2

∂θ1
=

∂x̄3

∂θ2
=

∂x̄1

∂θ3
(= a+1), (3.5)

∂x̄3

∂θ1
=

∂x̄1

∂θ2
=

∂x̄2

∂θ3
(= a−1). (3.6)

Eq. (3.3) can be written as the following circulant matrix:

∂Θ

∂θ
=

a0 − 1 a−1 a+1

a+1 a0 − 1 a−1

a−1 a+1 a0 − 1

 . (3.7)

Here, we considered the following matrix C:

C =

0 0 1
1 0 0
0 1 0

 . (3.8)

∂Θ/∂θ can be expanded as:

∂Θ

∂θ
= (a0 − 1)C0 + a+1C + a−1C

2. (3.9)
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Matrix C can be diagonalized by a following 3 × 3 discrete Fourier transform
(DFT) matrix F :

F =

(ω0)
0 (ω1)

0 (ω2)
0

(ω0)
1 (ω1)

1 (ω2)
1

(ω0)
2 (ω1)

2 (ω2)
2

 , (3.10)

where ωj = exp(2πij/3) with j = 0, 1, 2 (i, used here, is an imaginary unit). Thus,
the circulant matrix ∂Θ/∂θ can be diagonalized using the DFT matrix F .

The jth eigenvector vj is now written as:

vj = {(ωj)
0, (ωj)

1, (ωj)
2}. (3.11)

Each eigenvalue λj corresponding to the eigenvector vj is

λj = (a0 − 1) + a−1ω
1
j + a+1ω

2
j . (3.12)

Accordingly, we obtained

λ0 = (a0 − 1) + a+1 + a−1, (3.13)

λ1, λ2 = (a0 − 1)− a+1 + a−1

2
±

√
3i

2
(a−1 − a+1). (3.14)

Now, we estimated the value of a0, a+1, a−1. a0 = ∂x̄i/∂θi is given by the
change in gene expression against the change in epigenetic modification of the same
gene (see Fig. 3.1a). In our model, we adopted a positive feedback relationship
between gene expression and epigenetic modification of the gene i; a0 is positive.
In contrast, a+1 is given by the change in gene expression against the change in
epigenetic modification of the repressing gene; a+1 is negative. Similarly, a−1 is
positive. In addition, the change in gene expression was amplified throughout the
negative repressilator loop; thus, a0, a+1, a−1 should satisfy

|a0| < |a+1| < |a−1|. (3.15)

Indeed, from numerical calculations, the values of a0, a+1, a−1 followed these esti-
mations (a0 = 0.66, a+1 = −1.08, a−1 = 1.72 for g = −0.4). From these estima-
tions, we obtained the relation of eigenvalues as:

Re(λ1) = Re(λ2) < Re(λ0) (3.16)

In the present case (a0 = 0.66, a+1 = −1.08, a−1 = 1.72 for g = −0.4), λ0 is
positive, and λ1, λ2 is negative:

Re(λ1) = Re(λ2) < 0 < Re(λ0) (3.17)

Thus, θ = 0-saddle point consists of an eigenvector v0 with λ0 > 0 and eigenvectors
v0,v1 with Re(λ1) = Re(λ2) < 0. To analyze and plot in real θ space, we adopted
vu ∝ v0,vs1 ∝ (v1 + v2)/2,vs2 ∝ (v1 − v2)/2i with a normalization factor. The
symmetry of the repressilator against the transformation in 1 → 2 → 3 → 1 is
not broken as long as θ1 = θ2 = θ3 is satisfied. Therefore, the direction of the
eigenvector vu always coincides with that of the unstable manifold.
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3.2.4 Non-linear region of repressilator model

As shown in Fig. 3.2d, {θ1, θ2, θ3} = {0, 0, 0}-fixed point was a saddle, with the

eigenvector vu = {1, 1, 1}/
√
3 corresponding to λu > 0 (unstable axis), and vs1 =

{2,−1,−1}/
√
6,vs2 = {0,−1, 1}/

√
2 for Re(λs1) = Re(λs2) < 0. To investigate

θ dynamics along each eigenvectors vk (k = u, s1, s2), we then introduced the

variable θ̂k, projection of θ on vk (that is, θ̂k = θ · vk, with vk normalized).
Noteworthy, owing to the symmetry of the repressilator, the unstable manifold
was in line with the eigenvector vu.

As shown in Fig. 3.2cd, the straight line to which all trajectories converged
agreed with the unstable manifold vu (Fig. 3.4a). Of course, attraction to the vu

axis was natural if the initial conditions were restricted to the stable manifold for
{θ1, θ2, θ3} = {0, 0, 0}. However, we observed an attraction toward the unstable
axis over a wide range of initial conditions for {θi}, which supports the oscillation
of xi. Furthermore, the magnitudes of the eigenvalues for the stable and unstable
eigenvectors were of the same order (Re(λu) = 0.31,Re(λs1) = Re(λs2) = −0.66,
see Fig. 3.3c). Thus, the reprogramming dynamics shown in Fig. 3.2b could not
be explained just by the linear stability.

To elucidate whether the nonlinear effect suppresses the instability along the vu

axis, we computed dθ̂u/dt. As shown in Fig. 3.4c, dθ̂u/dt was drastically reduced

from the linear case. We also computed (dθ̂s1/dt, dθ̂s2/dt) for a certain θ̂u value

(that is, the flow structure in the (θ̂s1 , θ̂s2) plane, sliced along the θ̂u axis), which

showed that θ̂s1 = 0 changed from stable to unstable at θ̂u = θ̂thu (∼ 0.4) (see Fig.

3.4d and Fig. 3.5). Up to θ̂u < θ̂thu (∼ 0.4), θi in (θ̂s1 , θ̂s2) plane was attracted to

the θ̂u axis. By further increasing θ̂u beyond θ̂thu , θi departured from the θ̂u axis

rotating in the (θ̂s1 , θ̂s2) plane, leading to differentiation into three distinct fixed
points.
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(a) (b)

(c) (d)

Fig. 3.4: (a) Stream plot of (dθ̂u/dt, dθ̂s1/dt) in (θ̂u, θ̂s1) space according to Eq.
(3.2). Red (blue) line represents the direction of the eigenvector vu(vs1). (b)
Attractors in the x-space for each fixed θ value. For the green (blue)-colored region,
the attractor in the x space was the limit cycle (fixed point). Each trajectory shows

the dynamics in the x1 − x2 space for (θ̂u, θ̂s1) (both x1 and x2 axes for all figures

are ranged within {−1.05, 1.05}). (c) dθ̂u/dt plotted as a function of θ̂u. For

comparison, we plotted dθ̂u = λuθ̂u(red dotted line). (d) Degree of attraction to

vu. ν, in the text, is plotted as a function of θ̂u. If it is negative (positive), {θ}
was attracted to (departed from) vu. See Fig. 3.5 for more detail.
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Fig. 3.5: The flow (dθ̂s1/dt, dθ̂s2/dt) is plotted in the (θ̂s1 , θ̂s2) plane along θ̂u.

Each center point (0, 0) sits on the θ̂u-axis.

To unveil how the slow motion along θ̂u and the attraction to θ̂u occurred, we
first fixed θi and studied the change in the x attractor, as shown in Fig. 3.4b. In

the green (blue) region, the x attractor was a limit cycle (fixed point) for (θ̂u, θ̂s1).

At the line θ̂s1 = −θ̂u/
√
2 +

√
6/5 (as discussed in subsection 3.2.5), x-dynamics

exhibited bifurcation from the limit cycle to a fixed point {1,−1, 1} (see Fig. 3.9
for more details). Considering the symmetry of the repressilator, bifurcations to

three fixed points {−1, 1, 1}, {1,−1, 1}, {1, 1,−1} coexisted in the (θ̂s1 , θ̂s2) plane.

With the increase of θ̂u, the limit cycle approached the three fixed points.

Now, we discussed the mechanism of slow-motion along θ̂u. In the repressila-
tor model, we could estimate the stagnation point, which slowed down, that is,

dθ̂u/dt ≃ 0. From Eq. (3.2), movement along vu followed dθ̂u/dt = x̄u(θ̂u) − θ̂u
(we defined xk as a projection on vk). When θ̂u increased, the limit cycle orbit
moved around differentiated fixed points {−1, 1, 1}, {1,−1, 1}, {1, 1,−1} and was
close to a triangular orbit with corners {−1, 1, 1}, {1,−1, 1}, {1, 1,−1}, as shown
in Fig. 3.6. Thus, we approximated the limit cycle orbit to an equilateral triangle.
Fig. 3.7 schematically shows this orbit (x1 = x2 plane was adopted for plotting).
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(a) (b)

Fig. 3.6: (a) Change in the limit cycle x(t) (closed line) and x̄ (point)

along θ̂u. Black dotted line shows an equilateral triangle with corners

{−1, 1, 1}, {1,−1, 1}, {1, 1,−1} (see SI 1D). (b) x̄s1 as a function of θ̂s1 . The

slope of each line corresponds to ∂x̄s1/∂θ̂s1 for θ̂u. From ∂Θs1/dθ̂s1 , if the slope

is less than one, the orbits are attracted toward θ̂u. For comparison, we plotted

x̄s1 = θ̂s1 as a black dotted line. At θ̂u ∼ 0.4, ∂x̄s1/∂θ̂s1 exceeds one.

Fig. 3.7: Geometric representation for estimating stagnation point along θ̂u. x
space was sliced on the x1 = x2 plane.

Then, from the symmetry, the time average of xi(t) should be located at the red
point in Fig. 3.7. Considering geometry, the position of the red point is given by
{x1, x2, x3} = {1/3, 1/3, 1/3}. In the geometric representation shown in Fig. 3.7,

the value of θ̂u agreed with the distance from the origin to the point on the line

x1 = x2 = x3. Hence, as θ̂u approaches 1/
√
3, dθ̂u/dt was minimized, as shown in

Fig. 3.4c.

Next, we considered how attraction to the vu from the (θ̂s1 , θ̂s2) plane was

lost at the θ̂u = θ̂thu . By considering θ̂u as a parameter, the direction of flow in

the (θ̂s1 , θ̂s2) plane toward the vu was determined by the sign of ∂Θs1/∂θ̂s1 =

∂x̄s1/∂θ̂s1 − 1 ≡ νΘs1 (we defined Θs1 as a projection on vs1). As shown in Fig

3.4b, with the increase in θ̂u, the bifurcation point from the limit cycle to the fixed

point approached the θ̂u = 0 line. Hence, by slightly changing θ̂s1 , x̄ reached fixed
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points. Accordingly, ∂x̄s1/∂θ̂s1 increase beyond one, so that ∂Θs1/∂θ̂s1 became

positive at θ̂u, approaching θ̂thu ∼ 0.4, as shown in Figs. 3.4d and 3.6b.

3.2.5 Linear stability analysis for x dynamics with fixed θ

We discussed x dynamics of repressilator model with fixed θ as parameter. Full
model with fixed θ can be written as

dx1

dt
= tanh{−βg(x3 − θ1/g)} − x1(= X1) (3.18a)

dx2

dt
= tanh{−βg(x1 − θ2/g)} − x2(= X2) (3.18b)

dx3

dt
= tanh{−βg(x2 − θ3/g)} − x3(= X3). (3.18c)

Thus, Jacobi Matrix ∂Xi/∂xj can also be written as

∂X

∂x
=

 −1 0 −βg
cosh2(−βg(x3−θ1/g))

−βg
cosh2(−βg(x1−θ2/g))

−1 0

0 −βg
cosh2(−βg(x2−θ3/g))

−1

 . (3.19)

We considered the bifurcation from the limit cycle to a fixed point by changing
the parameter θ. From Eq. (3.19), the eigenvalues of the Jacobi matrix {λ} are
given by the solution of the following equation:

(−1− λ)3 +
−βg

cosh2(−βg(x3 − θ1/g)
· −βg

cosh2(−βg(x1 − θ2/g)
· −βg

cosh2(−βg(x2 − θ3/g)
= 0.

(3.20)

Here, we plotted −βg/ cosh2(−βg(x − z)) as a function of x in Fig. 3.8. The
1/ cosh2 function has a tall spike at x = z for a sufficiently large β. Considering
that we adopted the tanh function, sigmoidal function with range{−1, 1}, the value
of xi is restricted to {−1, 1}.

1 0 1
x

g

0

y
=

g
co

sh
2 {

g(
x

z)
}

z = 0
z = 0.5
z = 1

Fig. 3.8: −βg/ cosh2(βg(x−z)) as a function of x (β = 40, g = 0.4). This function
has a tall spike at x = z. Considering the range of the tanh function, this term
could be regarded as zero if |z| > 1 for a sufficiently large β.
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This suggests that if even one of θi/g(i = 1, 2, 3) in Eq. (3.20) exceeds one, and
the second term in Eq. (3.20) is close to zero, and the solution to Eq. (3.20) is
only determined by (−1−λ)3, then λ = −1, corresponding to a stable fixed point.
Considering that Eq. (3.27) gives the solution corresponding to an unstable fixed
point, the bifurcation point from the limit cycle to the fixed point was determined
as follows:

max(
θ1
g
,
θ2
g
,
θ3
g
) = 1. (3.21)

Here, we consider a set of Hopf bifurcation points in θ̂u−θ̂s1 space. Each normal-

ized eigenvector vu,vs1 is given by vu = {1, 1, 1}/
√
3 and vs1 = {2,−1,−1}/

√
6.

Hence, the full model with fixed θ̂u, θ̂s1 can be written as

dx1

dt
= tanh{−βg(x3 −

θ̂u/
√
3 + 2θ̂s1/

√
6

g
)} − x1(= X1), (3.22a)

dx2

dt
= tanh{−βg(x1 −

θ̂u/
√
3− θ̂s1/

√
6

g
)} − x2(= X2), (3.22b)

dx3

dt
= tanh{−βg(x2 −

θ̂u/
√
3− θ̂s1/

√
6

g
)} − x3(= X3). (3.22c)

From Eq. (3.21), the condition of the bifurcation from the limit cycle to the
fixed point is given by

max(
θ̂u/

√
3 + 2θ̂s1/

√
6

g
,
θ̂u/

√
3− θ̂s1/

√
6

g
,
θ̂u/

√
3− θ̂s1/

√
6

g
) = 1. (3.23)

We considered a case in which θ̂s1 > 0 in Fig. 3.4b, then Eq. (3.23) can be written
as

θ̂u/
√
3 + 2θ̂s1/

√
6

g
= 1. (3.24)

Hence, the border line for g = 0.4 is given by

θ̂s1 = − 1√
2
θ̂u +

√
6

5
. (3.25)
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Fig. 3.9: (a) Change in the x attractor in the vicinity of the bifurcation point

against the change in θ̂s1 by fixing θ̂u = 0. (b) Real part of eigenvalue in Eq. (1a)

plotted as a function of θ̂s1 for various θ̂u. Each line shows different value of θ̂u.
Bifurcation from the limit cycle to the fixed point occurs when the curve crosses
the line Re(λx) = 0.

Thus, we have unveiled how attraction to the unstable manifold is achieved by
slow epigenetic fixation of the oscillation of fast gene expression in the repressilator
model. Following this picture, reprogramming is possible by forcing the cells to
return to the oscillatory state. Then, the cell is attracted to a pluripotent state
with low epigenetic modification θi ∼ 0, from which differentiation to distinct cell
types with specific θ values follows.

3.2.6 The conditions of reprogramming dynamics for Repressilator model

As above analysis, we can impose 2 conditions of reprogramming dynamics in
repressilator model: (1) Repressilator model must have limit cycle attractor in x
dynamics (2) limit cycle attractor in x space must remain at a stagnation point in
θ space.

First, we consider the condition (1). We studied the stability of the fixed point
for {θ1, θ2, θ3} = {0, 0, 0} to elucidate the condition for oscillation in x dynamics
with no epigenetic modification. In this case, {x1, x2, x3} = {0, 0, 0} satisfies the
fixed-point condition.

By inserting xi = 0, θi = 0 for all i in Eq. (3.19), we obtained:

∂X

∂x
=

 −1 0 −βg
−βg −1 0
0 −βg −1

 . (3.26)

From Eq. (3.26), eigenvalue λ is given by

λ = −βg − 1, (
1

2
βg − 1)±

√
3

2
βgi. (3.27)

In the repressilator model(g > 0), the first value of (3.27) is always negative. The
fixed point is unstable for

g >
2

β
, (3.28)
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where the limit-cycle attractor appeared as a result of Hopf bifurcation, to specific
g > 0.05 for β = 40.
Condition (2) can be estimated as follows. Reprogramming dynamics required

slowing down along vu. According to our analysis, oscillation in x was necessary
for this process. Thus, we imposed the parameter g, the strength of the negative
feedback loop in the repressilator, the condition that the oscillation dynamics
remained at the stagnation point {θ1, θ2, θ3} = {1/3, 1/3, 1/3}. Then, the Hopf

bifurcation should occur beyond the stagnation point with an increase in θ̂u. From
Eq. (3.21), we obtained

g >
1

3
(3.29)

As shown in Fig. 3.10 and Fig. 3.2c, the global attraction occurred for g =
0.35, 0.4, whereas for g = 0.2 and 0.3, θs went to fixed points without passing the
stagnation point. Then, reprogramming occurs for g > 1/3.
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Fig. 3.10: Trajectories in the θ space, starting from the same initial conditions as
in Fig. 3.2c, with g = 0.2, 0.3, and 0.35.

3.3 10-gene model with randomly generated GRN
To verify the generality of this reprogramming scheme, we examined several GRN
models with more degrees of freedom. As discussed in the previous section, differ-
entiation from oscillatory states is often observed in GRNs (e.g., 20% of randomly
generated GRNs show oscillatory dynamics for N = 10). An example is shown
in Fig. 3.3.1a. From a differentiated state, we overexpressed three genes to re-
gain oscillatory expression (black line in Fig. 3.3.1a). Later, global attraction to
unstable manifold also occurred as discussed above.

3.3.1 Dynamics of cellular differentiation and reprogramming in 10-gene

model

Then, the cell states branch to distinct fixed point states again (blue line in Fig.
3.3.1a). In these cases, the original pluripotent state with θ = 0 was an unsta-
ble fixed point, with one positive eigenvalue for the Jacobi matrix of θ dynamics
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(Fig. 3.3.1d), as in the repressilator model. Even though the degrees of free-
dom increased, the unstable manifold is one-dimensional, and the attraction to
the manifold occurred from a higher-dimensional state space. This implies that
reprogramming manipulation requires only partial degrees of freedom compared
with the total number of genes. In fact, overexpression of three genes is sufficient
for reprogramming in GRN models with N = 10, as far as we have investigated.
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Fig. 3.10: Random gene regulatory network model with N = 10. We randomly
generated the gene regulatory matrix Jij and selected one sample that showed
oscillation dynamics for xi(t) around θi = 0. Jij was generated according to the

normal distribution, with an average of zero and a standard deviation of 1/
√
N .

(a) Cell differentiation and reprogramming. For plotting, we adopted a principal
component analysis (PCA) of {θi}(i = 1, 2, . . . , 10) over 1,000 trajectories starting
from θi ∼ 0. The trajectory {θi(t)} was plotted by adopting the first, second, and
third PCA modes. (Red lines) Trajectories starting from θi ∼ 0, five different fixed
points are reached after transient oscillation dynamics. (Black dotted line) From
one of the differentiated cell types, we added external input Ii(t) to three genes
as reprogramming manipulation. (Blue line) After reprogramming manipulation,
the cell state was attracted to the unstable manifold and differentiated again. (b)
Time development of cell differentiation and reprogramming (Fig. 3.3.1a. The
upper bar shows the differentiation and reprogramming process, similar to Fig.
3.2ab. (c) Time development of cell differentiation (red region in Fig. 3.3.1b) for
a short time window. (d) The eigenvalues λk of ∂Θi/∂θj matrix given by fixed
point analysis of Eq. (2) around θi = 0 for all i.

3.3.2 Exploration of possible sets of overexpresssion

In N = 10 model, various sets of overexpression genes are possible. From ex-
perimental reports, which genes are expressed is deeply related to whether the
reprogramming is possible or not [30, 31]. In this section, using numerical simu-
lation, we consider the property of reprogrammable sets of overexpression. Here,
we assume the number of overexpression genes is three. In this assumption, the
number of possible sets of overexpression is 10 × 9 × 8/3 × 2 × 1 = 120. More-
over, whether reprogramming is possible or not may depend on how long genes are
overexpressed and from where cellular state is overexpressed. Here, we consider 4
time spans 100, 300, 500,and 700 and 5 differentiated cellular states to overexpress
(shown in 3.3.1). To sum up, the number of all overexpression sets is 2, 400. In
this trial, based on the previous section, we assume that the reprogramming is
successful when the oscillation is recovered.

Among 2,400 overexpression sets, we succeeded in reprogramming 108 sets. And
We count the number of overexpression of each gene, as shown in Fig. 3.11a. In
Fig. 3.11a, we found an important gene (corresponding to gene 2) even in a
randomly chosen network.

Here, we elucidate the mechanism of the appearance of important genes from
the viewpoint of dynamical systems theory. For this purpose, we consider the limit
that each θi value is independent and treated as parameter.

dxi

dt
= F (

∑
Jijxj + θi)− xi (3.30)

In this limit, we can draw a bifurcation diagram for each θi value, as in Fig. 3.11b.
As shown in Fig. 3.11b, whether x dynamics is limit cycle or fixed point strongly
depends on gene 2, most frequently overexpressed gene. Fig. 3.11b suggests that
important gene for reprogramming corresponds to the center of oscillatory dy-
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namics. We roughly check this suggestion to depict the main components of a
randomly-chosen network as shown in Fig. 3.12. As shown in Fig. 3.12, network
structure shows that some feedback loop is constructed around the gene 2.

1 2 3 4 5 6 7 8 9 10
Gene i

0

50
Fr

eq
ue

nc
y

Fig. 3.11: (a) Frequency of each genes among 108 reprogrammable overexpression
sets. (b) Bifurcation diagram of each θi value. Acconrding to Eq. (3.30), we
treat each θi as independent parameter and draw bifurcation diagram. When we
focus on the change of certain θi, the other θj(j ̸= i) set to be 0. For plotting
1-dimensional bifurcation diagram, we adopt PCA among limit cycle at θi = 0 for
all i.
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Fig. 3.12: Components of randomly-chosen network. Although network elements
Jij are generated according to the normal distribution with an average of zeros

and a standard deviation of 1/
√
N (as in the previous sub-section), Jij , satisfies

|Jij | > 0.05 are depicted for simplicity. Feedback loops are constructed around
gene 2, the important gene for reprogramming.

3.4 5-gene model extracted from realistic gene regulatory

network
The present mechanism also works in a model extracted from GRN for an ES
cell [75], as a core network with five genes (Nanog, Oct4, Gata6, Gata4, and
Klf4 ) [58] (see Fig. 3.13). Oct4, Sox2, and Klf4 are known as factors to induce re-
programming. The model involves a negative feedback loop, as in the repressilator,
in addition to positive feedback regulation.
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Fig. 3.13: Five-gene model. The θi nodes are not represented, but mutual pos-
itive feedback exists with the corresponding xi. Nanog, Oct4, Gata6, Gata4,
and Klf4 correspond to x1, x2, x3, x4, and x5 with the following parameters:
J21 = 0.21, J42 = −1.1, J34 = −1.0, J43 = 0.46, J13 = −0.93, J31 = −0.16, J51 =
0.37, J15 = 0.64, and the other Jij = 0.

In this five-gene model, xi and θi oscillate in the region near the origin, and
then differentiation to three fixed points progresses as in the repressilator case
(three lines in Fig. 3.14a), whereas θi = 0 for all i represents a saddle point with
one unstable manifold and four stable manifolds, as shown in Fig.3.15b. After
overexpression of Oct4, Nanog, and Klf4 in one of the differentiated cell types for
a certain time span (black dotted line in Fig. 3.14b)*3, the epigenetic state θi
approached the unstable manifold for the unstable fixed point θi = 0, leading to
recovery of pluripotency (blue line in Fig. 3.14b).

*3 Sox2 is reduced into Nanog in the five-gene model
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(a) (b)

Fig. 3.14: (a) Cell differentiation and (b) reprogramming in the five-gene model
(a) Three orbits starting from the vicinity of the saddle point θi = 0 for all i (black
dotted point), reached three distinct cell types. (b) From differentiated cell types
(red point), we added external input Ii(t) to Nanog, Oct4, and Klf4 for a certain
time span (black dotted line). After such reprogramming manipulation, we set
Ii(t) = 0. The cell state then spontaneously approached the saddle point, and
reinitiated the differentiation progression again (blue line). τ = 103. See Fig. 3.15
for more detail.
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Fig. 3.15: (a) Time development for each trajectory of cell differentiation (yellow,
green, and red line in Fig. 3.14a) and reprogramming (black dotted and blue lines
in Fig. 3.14b). (Yellow, green, and red) Three trajectories starting from θi ∼ 0
are plotted, which reach three different attractors. (Black) From the differentiated
state, we added an external input Ii(t) to Nanog(x1), Oct4 (x2), and Klf4 (x5)
as reprogramming manipulation. (Blue) After reprogramming manipulation, the
cellular state was first attracted to the unstable manifold, and then differentiated
again. (b) The eigenvalues λk of the ∂Θi/∂θj matrix given by the fixed-point
analysis of Eq. (2) around θi = 0 for all i. In Fig. 3.14, we adopted eigenvectors
vs1 ,vs3 with different Re(λk).

In this chapter, we have shown that oscillatory gene expression dynamics with
slow epigenetic modifications lead to cellular reprogramming by overexpression of
only few genes. The global attraction to the unstable manifold of the saddle point
explains the reprogramming process. Now, the return to the top of the landscape
by reprogramming, which is seemingly unstable, is explained by the strong attrac-
tion toward the unstable manifold of the saddle, and suppressed instability along
with the unstable manifold, owing to the approach of limit-cycle of bifurcation to
fixed points. The memory of the cellular state before reprogramming manipulation
was erased through this reprogramming process.
Moreover, regain of oscillation was found to be the main requirement for repro-

gramming, whereas elaborate manipulations to induce a cellular state into specific
states is not necessary. This explains the role of oscillations in gene expression in
pluripotent cells [69] and epigenetic modification through the differentiation pro-
cess [68], as well as it explains how reprogramming is possible by overexpressing
just a few genes among thousand of that [6,31]. The timescale separation between
fast expression dynamics and slow epigenetic modification feedback required is
also consistent with previous observations [29,90]. In future studies, experimental
support is necessary, as well as theoretical analysis of slow-fast dynamical sys-
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tems [66,91].
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Chapter 4

Summary and Discussion

4.1 Summary
Here, let us summarize the whole of this thesis. We started this thesis from setting
the goal to elucidate the universal properties of cellular differentiation and repro-
gramming. Both cellular differentiation and reprogramming are remarkable, as
well as are universal among multicellular organisms. For a phenomenological ap-
proach to achieve this goal, we have constructed a cell model with gene regulatory
network and epigenetic modification, as the simplest form. Then, we analyzed the
cell model in terms of dynamical systems theory.
In chapter 2, we considered how cellular differentiation can be represented in

a cell model with random gene regulatory matrices. Then, we also elucidated
how Waddington’s landscape emerges, with three salient properties as follows; (1)
hierarchy branching of cell types (2) robustness of differentiation process as home-
orhesis (3) robustness in the ratio of differentiated cell types. Here, the interplay
between oscillation in fast gene expression dynamics and slower epigenetic mod-
ification plays an important role. Attractor pruning, non-monotonical change of
attractor number against the rate of epigenetic feedback regulation, also emerges.
Then, we analyzed the minimal model that consists of two genes, where the change
in the epigenetic variables θ shifts the nullclines of expression levels x.
In chapter 3, we presented the mechanism of cellular reprogramming, i.e., how

low-dimensional manipulation leads the cellular state to a pluripotent state, the
top of Waddington’s landscape. Considering the result in chapter 2, we assumed
that the interplay between oscillation in fast gene expression dynamics and slower
epigenetic modification also plays important role in cellular reprogramming. First,
we constructed a minimal model with a three-genes repressilator to verify the hy-
pothesis and analyzed the in terms of dynamical systems theory. We analyzed
the dynamics in θ space by assuming adiabatic conditions. In the adiabatic limit,
dynamics in θ are determined by the time average of x, whereas the slow change in
θ influences the dynamics of x. The global attraction to a saddle point resulted by
non-linear slowing down, whereas the bifurcation leads to differentiation. More-
over, global attraction and differentiation are also confirmed by a realistic five-gene
model extracted from realistic data of embryonic cells as well as a random network
model with more genes.
Let us now come back to epigenetic landscape, as mentioned in chapter 1, in

terms of the present theory. Based on the result in chapter 2, cellular is represented
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by hierarchical branching of oscillation state by epigenetic modification. It is also
be represented by the motion along with the unstable manifold of a saddle and
the bifurcations, in chapter 3 (consistency of the result in chapter 2 and chapter
3 are discussed in the next section). The mechanism of cellular reprogramming is
explained as a global attraction to the unstable manifold of a saddle.

Based on our results, we can update epigenetic landscape as shown in Fig.
4.1. The left of Fig. 4.1 shows the landscape for the change in gene expression
dynamics x, whereas the right of Fig. 4.1 shows a pathway of slower epigenetic
modification θ. Cellular differentiation proceeds downward in Fig. 4.1. According
to our result in chapter 2, the landscape changes with the hierarchical fixation of
oscillation. Oscillation dynamics exist at the bottom of each valley, except for the
end of the change, where the fixed point state exists. Epigenetic variables support
its change from the backside of each landscape, as in the wires in Waddington’s
picture (Fig. 1.4). According to the result in chapter 3, the pathway of the cellular
development in the epigenetic variables θ is represented by the motion along the
unstable manifold and its bifurcation process. These dynamics, on the other hand,
are driven by the oscillation in fast gene expression. The interplay between fast
gene expression dynamics and slower epigenetic modification is important for the
cellular differentiation process.

In our updated picture, cellular reprogramming can be represented by the black
arrow in Fig. 4.1. First, differentiated cells move to certain points corresponding to
states with oscillatory gene expression, following the reprogramming manipulation.
Then, cellular states are strongly attracted to the pluripotent state represented by
an unstable manifold in θ space. Throughout the strong attraction, the cellular
state no longer has memories of the previous differentiated state. We note that
strong attraction to the unstable manifold is also established by the interplay be-
tween fast gene expression dynamics and slower epigenetic modification, according
to the result in chapter 3. The deletion on most epigenetic memories is completed.
Finally, the cellular state follows the developmental pathway from the pluripotent
state again. This picture of cellular reprogramming is in strong contrast to the
picture provided in Fig. 1.6 in chapter 1, where the reprogramming climbs back
again to the same valley as that adopted for the differentiation.
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Fig. 4.1: Schematic representation of updated epigenetic landscape. The left figure
shows the change in the landscape for gene expression dynamics, whereas the
right figure shows the change in epigenetic modifications. Cellular differentiation
proceeds downward in the figures. The valleys in the branch are hierarchically in
the left figure, whereas bifurcation occurs along the unstable manifold represented
by red arrows in the right figure. The blue arrows show the attraction to the
pluripotent state. As discussed in chapter 3, due to slowing down in the flow along
the unstable manifold attraction to it is stronger. The developmental pathway is
thus represented. Black arrows show the trajectory of cellular reprogramming.
By reprogramming manipulation, cellular states departed from the differentiation
state. Then, the states are attracted to the same developmental pathway as the
differentiation process.

4.2 Discussion
Here, we also discuss some points about the whole of this thesis.

4.2.1 Consitstency between the results in chapter 2 and 3

The cell models used in chapter 2 and chapter 3 are identical, although the different
notation is adoted (by comparing with Eq. (2.2) and Eq. (3.1b), v corresponds to
1/τ).
In chapter 3, we assumed the adiabatic condition, i.e., τ → ∞(v → 0), and hence

focused on the dynamics in θ space for understanding the mechanism of cellular
reprogramming. In the slow-motion in θ space, the time average of x dynamics for
given θ, rather than x dynamics itself, is important. We note the adiabatic condi-
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tion is only needed for the simplest analysis, and the result does not change as long
as sufficiently large τ (small v) (e.g., τ ∼ 103). Thus, the mechanism of cellular
reprogramming is consistent with the mechanism of differentiating to various cell
types as discussed in chapter 2 (the compatibility of cellular differentiation and
reprogramming is supported by the results as shown in Fig. 3.3.1 and Fig. 3.14).

In chapter 2, we have also adopted a different approach from that in chapter
3. Focusing on faster dynamics in x space, slower θ variables can be treated as
parameters. Then, they give nullclines’ shift as discussed in the minimal model in
chapter 2. This approach is relevant to understanding the mechanism of cellular
differentiation. Different approaches between chapter 2 and chapter 3 are only
reflected by different purposes in each chapter. We also note that actual dynam-
ics, both of x and θ, consist of 2N variables, and in general, understanding the
dynamics with the whole of 2N -dimension space is required.

4.2.2 Minimal model for each chapter 2 and 3

In each of chapter2 and 3, we mainly analyze the minimal model for understanding
in terms of dynamical systems theory. In chapter 2, we consider a minimal model
which consists of two genes, whereas we consider a minimal model which consists
of 3 genes in chapter 3. In the first place, how the minimal model is determined?

In this section, we discuss the requirements for the establishment of Fig. 4.1
(especially, aspect of dimension). For cellular reprogramming, a saddle attractor in
θ space is required as discussed in chapter 3. The saddle has two types of directions.
One is the unstable direction that corresponds to the progress for differentiation.
The other is a stable direction adopted to return from differentiated states to
the pluripotent state. The normal saddle attractor, however, can not satisfy the
attraction as in Fig. 4.1. The global attraction to the unstable manifold is needed.
In our analysis in chapter 3, oscillatory gene expression, which influences epigenetic
modification, is needed for global attraction. Oscillatory gene expression is also
for the differentiation to various cell types as also studied in chapter 2. Thus, the
second requirement is the oscillation of gene expression at the pluripotent state.

Next, let us characterize these requirements, by focusing on the eigenvalues in
each of x and θ space.

According to the above discussion, the first requirement is saddle attractor in
θ space. Here, we introduce λθ

i as the i th eigenvalue given by the fixed point
analysis in θ space. By using λθ

i , the first requirement can be written as

Re(λθ
1) < Re(λθ

2) < · · · < Re(λθ
N−1) < 0 < Re(λθ

N ). (4.1)

In fact, the number of positive eigenvalues is unknown, and could be plural. Fewer
positive eigenvalues, however, are desirable to give a deterministic and robust dif-
ferentiation process. Hence, we consider the case with only one positive eigenvalue.

Next, we introduce λx
i as the i th eigenvalue for the fixed point analysis in x

space. Then, the second requirement can be also written down as

Re(λx
1) < Re(λx

2) < · · · < 0 < Re(λx
N−1) = Re(λx

N ). (4.2)
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We note that λx
N−1 and λx

N are complex conjugate of each other. For oscillation,
at least two real parts of all eigenvalues must be positive.
To satisfy the requirements, three dimensions are at least necessary. Thus, the

following is minimum requirement to satisfy Eq. (4.1) and Eq. (4.2);

Re(λθ
1) = Re(λθ

2) < 0 < Re(λθ
3) (4.3)

Re(λx
1) < 0 < Re(λx

2) = Re(λx
3). (4.4)

Indeed, Eq. (4.4) is satisfied as in the analytic eigenvalues in Eq. (3.27). Then,
Eq. (4.3) is satisfied as the eigenvalues obtained numerically in Fig. 3.3c. Thus,
the minimal model that satisfies Fig. 4.1 consists of three genes.
We note that Eq. (4.1) and Eq. (4.2) can not be satisfied independently. As

shown in Fig. 4.1, however, the relation between x variables and θ variables is
much complex. Here, as a rough estimation, let us adopt linearized model of Eq.
(3.1a) and Eq. (3.1b) as

dx

dt
= βJx+ θ − x, (4.5)

dθ

dt
= x− θ, (4.6)

We also assume the adiabatic condition as in chapter 3, i.e., τ → ∞. It is then
obvious that x = 0 and θ = 0 satisfies the fixed point condition. Thus, we consider
the fixed-pont analysis in each of x and θ space around x = 0 and θ = 0.
For the second requirement Eq. (4.1),we consider fixed point analysis of Eq.

(4.5) under θ = 0. {λx
i } are given by the fixed point analysis of following equation

around x = 0;

dx

dt
= Ax, (4.7)

where A = βJ − I (I is an identity matrix).
On the other hand, {λθ

i } are given by fixed point analysis of Eq. (4.6). By
setting Eq. (4.5) to be 0 under the adiabatic condtion, we obtain the following
relation;

x = −A−1θ, (4.8)

where A−1 is the inverse matrix of A. Inserting this to Eq. (4.6), we also obtain

dθ

dt
= −(A−1 + I)θ. (4.9)

The eigenvalues, given by the fixed point analysis of Eq. (4.9) around θ, would
correspond to {λθ

i }. Comparing Eq. (4.7) and Eq. (4.9), we obtain the relation
between {λx

i } and {λθ
i } as

λθ
i = − 1

λx
i

− 1. (4.10)
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This estimation, however, would not be valid. Actual dynamics dθi/dt are not
given by the unstable fixed point of x∗ = 0, but by the time average of the limit-
cycle solution of x, given as Eq. 3.2. Thus, the theory, beyond the above rough
estimation, is necessary for future studies of the condition for cellular reprogram-
ming.

Based on the above discussion, we recall the minimal model in chapter 2. The
minimal model in chapter 2 needs a robust differentiation process. For this require-
ment, unstable direction (and bifurcation along with it) is only needed, without
the requirement for robust reprogramming process/ Thus, the minimal model in
chapter 2 is reduced from the minimal model in chapter 3, i.e., the total number
of genes is reduced from three to two.

4.2.3 Regaining pluripotency

Cellular reprogramming is a process to regain the capacity of differentiation by
overexpressing just a few genes and thus has been believed remarkable. Regaining
the capacity of differentiation itself, however, will be also universal. For instance,
a plant callus is given by a mass of undifferentiated cells that are produced to
recover wounds. The callus is also produced by grafting. A recent study reports
that epigenetic modification, especially histone modification, is related to pro-
ducing callus [92]. Regaining pluripotency is rather than common mechanism in
plants. In the first place, multicellular organisms repeat the developmental process
throughout generations (this universality could be metaphorically represented by
the concept ”epigenetic landscape as Klein bottle” in [93]). Repeating the devel-
opmental process, as regaining pluripotency, is also caused by a specific process,
such as sexual reproduction, as well as cellular reprogramming.

In the above, we illustrated the universality of reprogramming as the capacity
of to regain the pluripotency for differentiation. Most of these examples involve
complex procurement, and it is difficult to know how we can manipulate them.
Cellular reprogramming, on the other hand, can be induced by explicit and tun-
able manipulations. Moreover, this manipulation consists of just a few genes. The
basic studies about cellular reprogramming will be relevant to understanding the
universality of the whole class of phenomena in regaining the capacity for differ-
entiation.

4.2.4 Cellular differentiation and reprogramming

In this thesis, we have presented a coherent view for cellular differentiation and
reprogramming based on the interplay between fast oscillatory gene expression
dynamics and slower epigenetic modification. Our study suggests that cellular
differentiation and cellular reprogramming are two faces of the same coin. As
mentioned in the previous section, we suggested a possibility that cellular repro-
gramming can be a general property for regaining the capacity for differentiation.

For instance, we here consider the relationship between the hierarchy of cell
differentiation and the possibility of reprogramming. In chapter 2, we highlight
the attractor pruning as a non-monotonic dependency of attractor number with
increasing v (the time scale of epigenetic modification). The analysis in chap-



4.2 Discussion 67

ter 2 shows that this attractor pruning is caused by the collapse of hierarchically
branching of the differentiation process in slower epigenetic modification by the
increase of v, i.e., the degree of non-monotonicity indicates the degree of the hi-
erarchy of differentiation process in slower epigenetic modification. In section 2.5,
we discussed the relation of the non-monotonicity of attractor number and the
”globalness” of dynamics in x space. Here, ”globalness” means that the limit cy-
cle attractor covers a larger portion in the phase space. The larger limit cycle
that travels in x phase space exists, the more hierarchical cell differentiation pro-
cess progresses. That is, the capacity of differentiation and the ”globalness” of
oscillatory dynamics are positively correlated.
We sought the requirements for a global attraction of cellular reprogramming in

the three-gene repressilator model in chapter 3. The global attraction is necessary
for cellular reprogramming, and the global attraction itself needs stronger negative
feedback loops in the repressilator (i.e., larger value of g in the repressilator model).
Such global attraction, according to chapter 3, implies that oscillation remains
beyond the stagnation point in θ space. The strength of negative feedback, on the
other hand, is positively correlated to the size of oscillation dynamics (”globalness”
of the limit cycle attractor). Thus, the correlation between the global attraction
and the ”globalness” of oscillatory dynamics is also indicated.
According to the above discussion, the capacity of differentiation and the de-

gree of global attraction should be positively correlated. This suggests that the
more cells have the capacity of differentiation, the easier to return by specific
manipulation. This hypothesis may give some interpretation about iPS cells, the
first instance of artificial pluripotent cells for regaining pluripotency from vari-
ous differentiated cell types. So far, cellular differentiation and reprogramming
are only linked by the metaphor of Waddington’s landscape. Deep consideration
between cellular differentiation and reprogramming both from theory, as well as
from experiments, is necessary.

4.2.5 Other sources for cell differentiation and reprogramming

For simplicity, we did not consider other sources for cellular differentiation and
reprogramming, than gene expression dynamics and epigenetic modification. In
this section, we briefly discussed the possible connection consisting of our results
and other sources such as environments and cell-cell interaction.
It is well-known that cell-cultures influence the maintenance of iPS cells. Based

on our results, this can be explained as follows. According to our theory, undif-
ferentiated cellular states follow the slow-motion along the unstable manifold in
epigenetic variables. The time to maintain the undifferentiated states is deter-
mined by the inverse of the speed of the motion along the unstable manifold. The
speed in epigenetic variables is influenced by the dynamics in gene expression. It
is natural that cell culture affects gene expression. Thus, we can write down the
flow of the effect of cell culture as cell culture → gene expression dynamics →
epigenetic modification. Thus, the culture condition is also an important clue for
the improvement of the incubation of iPS cells. Note that, at present, the time to
maintain the undifferentiated states is mainly identified by the pluripotent mark-
ers. Our theory suggests that tracking dynamics of gene expression or epigenetic
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modification can be a clue for characterizing such findings.
Next, we consider the effect of cell-cell interaction. The previous study reported

the robust differentiation process with gene expression dynamics and epigenetic
modification under cell-cell interaction, whereas the detailed process for it is un-
known. Epigenetic fixation of differentiation states induced by cell-cell interaction
is discussed by [58]. Following the theory in the present thesis, we should recon-
sider this issue.

4.2.6 Low dimensionality in developmental process

In chapter 2, we tracked the trajectories of cellular differentiation by adopting
principal components analysis (PCA). It is noteworthy that we could track de-
velopmental trajectories and depict epigenetic landscape by adopting just a few
freedoms (dimensions), even though cellular states can be actually represented N
genes. Of course, cellular states can be completely represented by adopting all
of the cellular components as variables. In our result, however, most of the dif-
ferentiation process and differentiated cell types are characterized on just a few
degrees of freedom, implying the low-dimensional representation of the cellular dif-
ferentiation process is valid. Low dimensionality is also suggested by the result in
chapter 3, where cellular states through differentiation can follow on the unstable
manifold, since cellular states are strongly attracted to it. Experimental reports
also suggest that cellular states of various cell types can be mapped to just a few
dimensions (e.g., 2D plane) [2].

According to our result, low dimensionality in the cellular differentiation pro-
cess can be briefly explained as follows. Cellular differentiation is represented by
the interplay between oscillatory gene expression dynamics and slower epigenetic
modification, where transient dynamics to reach attractors are important. The
total dimension of the whole cellular differentiation process can be derived from
the pluripotent states as the oscillatory state (limit cycle attractor or chaos), and
the dimensionality would not be so much increased from it. In this thesis, we
adopted principal components analysis (PCA) to depict the developmental trajec-
tories. PCA is the simplest analysis to extract dimensions for dominant variations.
Based on the picture with oscillatory gene expression and slow epigenetic mod-
ification, we should consider the possibility for better plotting methods, such as
t-Distributed Stochastic Neighbor Embedding (t-SNE) or the viewpoint from the
oscillation phase. Moreover, we should also consider the significance of trajectories,
as well as experimental studies.

In evolutional biology, the dimensional reduction from high-dimensional phe-
notypes has recently been discussed [94]. For instance, it is suggested that the
changes in phenotypes of Escherichia coli (E.coli), as a response to environmental
changes, are strongly restricted in lower-dimensional space [95]. Of course, E.coli
originally have a thousand of proteins, and other components (as well as factors
for epigenetic gene regulation [96]). The dominant changes of phenotypes, how-
ever, are restricted in a few-dimensional space, and this evolutionary dimension
reduction is explained by the robust steady growth [97, 98]. The developmen-
tal process, however, is not necessary at a steady growth. Hence, we need to
the low-dimensional structure in the developmental, dynamical process. Evolu-
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tion and development, however, are inseparable, as discussed in genetic assimila-
tion [99, 100] and evolution-development congruence [101–103]. Thus, a compre-
hensive approach to low-dimensional structure both in development and evolution
has to be explored.

4.2.7 Epigenentic spin glass

In this thesis, we adopted the cell model consisting of the gene regulatory net-
work and epigenetic modification. Here, it should be noted that gene expression
dynamics with interaction

∑
j Jijxj has some similarity with spin-glass. Indeed,

spin-glass can provide an abstract model for such complex systems [104]. In fact,
the analysis discussed in spin-glass has been applied to gene regulation networks,
say, Kauffman’s Boolean network [105]. Here, xi comes to up/down of each spin
variable. Then, we can also introduce the epigenetic modification process to spin-
glass as an external (magnetic) field, this field, however, is influenced by spin
variables themselves.
For simplicity, in our cell model, each gene has a variable xi that represents gene

expression levels (or protein concentration), whereas θi that represents epigenetic
modification levels. According to experimental reports, however, certain epige-
netic modifications will affect gene expressions globally. For instance, chromatin
openness, i.e., compaction and expansion process of DNA, is changed by epigenetic
modification. Then, the change of compaction and expansion process affects the
efficiency of a series of genes. Thus, chromatin openness, rather than, seems to be
more global variable than local variable (field) θi. We should consider the local or
global effects of epigenetic modification. In spin-glass, the temperature or external
field is a global parameter and various studies have revealed the dependency of
thermodynamical properties upon the temperature or external field. Then, the
study of ”epigenetic spin glass”, spin-glass by external field coupled with the spin
variables, may be important for our purpose.

4.2.8 Epigenetic adaptation in unicellular organisms

In this thesis, we discussed cellular differentiation and reprogramming, remarkable
phenomena commonly observed in multicellular organisms. These are issues how
various cell types are generated and how cellular states return to the pluripotent
state. The definition of multicellular organisms itself is, however, not so simple.
They would be different from just cell aggregates of homogenous cell types. Some
organisms, however, decide to be homogeneous or heterogeneous states depending
on the environment. Thus, the definition of multicellular organisms or unicellular
organisms is generally ambiguous [106, 107] If the border of the unicellular or-
ganisms and the multicellular organisms is not so clear as mentioned above, the
next issue to be addressed concerns if and how the interplay between fast gene ex-
pression dynamics and slower epigenetic modification is significant in unicellular
organisms. It is well-known that bacteria, not only multicellular organisms, have
epigenetic regulation [96]. In this section, we discuss a simple adaptation mecha-
nism as an extension of our theory that consists of fast gene expression dynamics
and epigenetic modification.
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Adaptation via oscillatory state, as an example
To consider an adaptation mechanism with fast gene expression dynamics and
slower epigenetic modification, let us consider the following model for cellular
adaptation, as shown in Fig. 4.2

Fig. 4.2: The schematic representation of adaptation cell model. The model
consists of N genes and cellular state is represented by gene expression level
xi(i = 1, 2, . . . N) and epigenetic modification level θi for gene i. There are M tar-
get genes, a subset of N genes. In the cell model, target genes xm(m = 1, 2, . . .M)
converge to Xk

m if the cellular state is adaptable k(k = 1, 2, . . . ,K) th environ-
ment.

As in the model adopted in chapters 2 and 3, the cell model here consists
of N genes, and the cellular state is represented by gene expression levels (or
protein concentrations) xi(i = 1, 2, . . . , N), whereas epigenetic modification levels
are given by θi. The cell model follows same dynamics as in Eq. (2.1) and Eq.
(2.2), except for vk (as mentioned below),

dxi

dt
= F (

∑
j

Jij + θi)− xi, (4.11)

dθi
dt

= vk(axi − θi), (4.12)

where F (z) = tanh(βz) (β = 40), and a = 3.
We consider the adaptation to various environments by referring to the attractor

selection mechanism discussed in [88, 108, 109]. Here, the timescale of epigenetic
modification changes by cellular activities such as cell growth or metabolism, and
such activities depend on the subset of the whole of N genes, i.e., depend on
xm(m = 1, 2, . . . ,M). The timescale of epigenetic modification, vk is thus a
variable that represents the timescale of epigenetic modification and the k(k =
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1, 2, . . . ,K) th environmental condition. We adopted the following form

vk = V exp

− b√
M

√√√√ M∑
m=1

(xm −Xk
m)2

 , (4.13)

where b = 3 and V = 10−2. Xk is the k th target expression pattern that in-
dicates the environmental condition. If xm ∼ Xk

m (xm far from Xk
m), the cell

is (not) adapted to k th environment, respectively. Here, we adopt M = 5.
Then, the total number of possible M -bit patterns with −1, 1, which described
as {1, 1, 1, 1, 1}, {−1, 1, 1, 1, 1}, . . . , {−1,−1,−1,−1,−1}, is 2M = 32. We intro-
duce these M -bit patterns as the set of target gene expression patterns {Xk}. We
note that the cell model has symmetry −x ↔ x, as discussed in chapter 2 and
chapter 3. Considering this symmetry, −Xk and Xk are assumed to be identical.
Thus, we adopt 2M/2(= 16) independent M -bit patterns as target gene expression
patterns {Xk}.

By using the cell model mentioned above, let us first study the adaptation with
a random gene regulatory network with oscillatory dynamics. For simplicity, we
start adaptation from initial conditions where xi is randomly chosen, whereas θi
is set to be 0. This setting is similar to that in chapter 2. We generate 500
random gene regulatory networks that show oscillatory gene expression dynamics
at θi = 0. Then, we counted the number of adaptable environments for each
network. Fig. 4.3 shows the distribution of the number of environments that
the cell has adapted. As shown in Fig. 4.3, most networks can adapt to various
environments, even though the networks are randomly generated. In contrast, the
distribution of the number of adapted environments for networks with fixed-point
attractor is also plotted in Fig. 4.3. The number is peaked at 2. This shows the
relevance of oscillation dynamics.
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The # of adaptatable environments
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Fig. 4.3: Distribution of the number of adaptable environments. (Blue) The dis-
tribution of networks with oscillation dynamics. We generate 500 random gene
regulatory networks that show oscillation with θi = 0 and count the number of
adaptable environments for each network. (Orange) The distribution of networks
with fixed-point attractors. We generate 287 networks, as well as networks with
oscillation dynamics. The number of all environments is 2M/2 = 16.
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Fig. 4.4 shows an example of adaptation dynamics. First, the cellular state
converges to the oscillatory state, and then oscillation is replaced by a fixed point
by epigenetic modification, in which, the cellular state has reached the desired gene
expression pattern through the transient oscillatory dynamics. These adaptation
dynamics are similar to the dynamics in chapters 2 and 3. We also plotted the
oscillatory dynamics at θi = 0, as shown in Fig. 4.5. In Fig. 4.5ab, chaotic
attractor exists at θi = 0. We also plotted the trajectory of xm in M dimensional
subspace by using the PC space as shown in Fig. 4.5c. In the xm space, the
target gene expression patterns {Xk} are also plotted as shown in Fig. 4.5c.
In Fig. 4.5c, oscilaltion dynamics travels various taret gene expression patterns.
Thus, the ”globalness”, which is discussed in the previous sections, may be also
important for adaptation mechanisms.

We also carried out an evolution simulation to select the networks that can
adapt to more environments. Then, fitness is defined as the number of success
trials among the multiple adaptations to each environment. Throughout mutation
and selection of the network Jij , the fitness increase as shown in Fig. 4.6, and an
individual with oscillation dynamics is selected.
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Fig. 4.4: Time series of adaptation dynamics of (a) gene expression xi (b) epige-
netic modification θi (c) the distance between cellular state xm and target gene
expression Xk
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Fig. 4.5: An example of oscillatory gene expression dynamics at θi = 0 that can
adapt to various environments. Here, we choose one network which can adapt to
eight environmental conditions. (a) Time series of all xi. (b) Dynamics of xi in
PCA space. We adopt PCA obtained from the dynamics {xi}. (c) Dynamics in
the target xm in the subspace of the PCA space. Red points represent the target
gene expression patterns {Xk}.
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Fig. 4.6: (a) Example of time series of fitness in evolutionary simulation. We
defined fitness as the number of success trials among the multiple adaptations to
each environment. We adopted that the time for trials in each environment is
set at four. Thus, the max fitness is 16 × 4 = 64. Different lines show different
realizations of evolutionary simulation. As the result of evolutionary simulation,
the cell is achieved to adapt to most of the environments. (b) Dynamics of evoled
network at θi = 0, in subspace xm in PCA space. Red points represent the target
gene expression patterns {Xk}, as in Fig. 4.5c.

These results suggest that our picture of cellular differentiation and reprogram-
ming by the interplay between oscillation in fast gene expression and slower epi-
genetic modification, can be applied to unicellular adaptation mechanisms. Ac-
cording to the results in chapter 3, we can expect that the interplay between fast
oscillation and slower epigenetic modification in this adaptation model also has
the global attraction to the unstable manifold of the saddle in the θ space. Thus,
we can depict this adaptation mechanism on the epigenetic landscape as shown
in Fig. 4.7. The adaptation in the epigenetic landscape occurs by returning to
the oscillatory, ”pluripotent” state. The normal adaptation process, on the other
hand, is often depicted as the jumping of the cellular state from one valley to
another valley. Comparing with these two pictures, we expect that adaptation on
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the epigenetic landscape is superior upon the change in the environment to the
jumping mechanism over the valleys. We also expect that these two pictures will
be distinguishable by considering a gradient of the epigenetic landscape.

Moreover, we confirmed here that the ”globalness” in oscillatory dynamics, dis-
cussed in the previous sections, is also related to the adaptation mechanism. The
larger portion of phase space {xi} ({xm} in the subspace) travels over, the more
environments can be adapted, whereas for cell differentiation more cell types are
generated. Our result can be a candidate to bridge a gap between multicellular
organisms and unicellular organisms. We need further study of this adaptation
mechanism.

(a) (b)

Fig. 4.7: the schematic representations of two types of adaptation dynamics. (a)
Adaptation through the epigenetic landscape in our adaptation model with epi-
genetic change. For adaptation to different environments, the cellular state once
returns to the top of the epigenetic landscape, and then a desired cellular state
is selected throughout climbing down the epigenetic landscape. (b) The normal
adaptation picture. Transition to the desired state is represented by jumping from
one valley to another.



77

Bibliography

[1] Daniel E Wagner, Caleb Weinreb, Zach M Collins, James A Briggs, Sean G
Megason, and Allon M Klein. Single-cell mapping of gene expression land-
scapes and lineage in the zebrafish embryo. Science, Vol. 360, No. 6392, pp.
981–987, 2018.

[2] James A Briggs, Caleb Weinreb, Daniel E Wagner, Sean Megason, Leonid
Peshkin, Marc W Kirschner, and Allon M Klein. The dynamics of gene
expression in vertebrate embryogenesis at single-cell resolution. Science,
Vol. 360, No. 6392, p. eaar5780, 2018.

[3] CH Waddington. The Strategy of the Genes. George Allen & Unwin, 1957.
[4] Conrad H Waddington. The epigenotype. Endeavour, Vol. 1, pp. 18–20,

1942.
[5] John B Gurdon. The developmental capacity of nuclei taken from intestinal

epithelium cells of feeding tadpoles. 1962.
[6] Kazutoshi Takahashi and Shinya Yamanaka. Induction of pluripotent stem

cells from mouse embryonic and adult fibroblast cultures by defined factors.
cell, Vol. 126, No. 4, pp. 663–676, 2006.

[7] Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko
Ichisaka, Kiichiro Tomoda, and Shinya Yamanaka. Induction of pluripotent
stem cells from adult human fibroblasts by defined factors. cell, Vol. 131,
No. 5, pp. 861–872, 2007.

[8] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of
transcriptional regulators. Nature, Vol. 403, No. 6767, pp. 335–338, 2000.

[9] Timothy S Gardner, Charles R Cantor, and James J Collins. Construction
of a genetic toggle switch in escherichia coli. Nature, Vol. 403, No. 6767, pp.
339–342, 2000.

[10] Narito Suzuki, Chikara Furusawa, and Kunihiko Kaneko. Oscillatory protein
expression dynamics endows stem cells with robust differentiation potential.
PloS one, Vol. 6, No. 11, p. e27232, 2011.

[11] Yusuke Goto and Kunihiko Kaneko. Minimal model for stem-cell differenti-
ation. Physical Review E, Vol. 88, No. 3, p. 032718, 2013.

[12] Adrian Bird. Perceptions of epigenetics. Nature, Vol. 447, No. 7143, p. 396,
2007.

[13] Aaron D Goldberg, C David Allis, and Emily Bernstein. Epigenetics: a
landscape takes shape. Cell, Vol. 128, No. 4, pp. 635–638, 2007.

[14] Rudolf Jaenisch and Adrian Bird. Epigenetic regulation of gene expression:
how the genome integrates intrinsic and environmental signals. Nature ge-
netics, Vol. 33, No. 3, pp. 245–254, 2003.

[15] M Azim Surani, Katsuhiko Hayashi, and Petra Hajkova. Genetic and epige-



78 Bibliography

netic regulators of pluripotency. Cell, Vol. 128, No. 4, pp. 747–762, 2007.
[16] Sui Huang. Non-genetic heterogeneity of cells in development: more than

just noise. Development, Vol. 136, No. 23, pp. 3853–3862, 2009.
[17] Ruggero Cortini, Maria Barbi, Bertrand R Caré, Christophe Lavelle, Annick
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transitions in model genetic networks i. emergence of patterns and genotype-
phenotype relationships. Evol. Dev., Vol. 3, No. 2, pp. 84–94, 2001.

[54] Kunihiko Kaneko. Evolution of robustness to noise and mutation in gene
expression dynamics. PLoS one, Vol. 2, No. 5, p. e434, 2007.

[55] Wen Jia, Abhijeet Deshmukh, Sendurai A Mani, Mohit Kumar Jolly, and
Herbert Levine. A possible role for epigenetic feedback regulation in the
dynamics of the epithelial–mesenchymal transition (EMT). Physical Biology,
Vol. 16, No. 6, p. 066004, sep 2019.

[56] Stuart L Schreiber and Bradley E Bernstein. Signaling network model of
chromatin. Cell, Vol. 111, No. 6, pp. 771–778, 2002.

[57] John CG Spainhour, Hong Seo Lim, Soojin V Yi, and Peng Qiu. Correlation
patterns between dna methylation and gene expression in the cancer genome
atlas. Cancer Inform., Vol. 18, p. 1176935119828776, 2019.

[58] Tadashi Miyamoto, Chikara Furusawa, and Kunihiko Kaneko. Pluripotency,
differentiation, and reprogramming: a gene expression dynamics model with
epigenetic feedback regulation. PLoS computational biology, Vol. 11, No. 8,
p. e1004476, 2015.

[59] Koichi Fujimoto, Shuji Ishihara, and Kunihiko Kaneko. Network evolution



81

of body plans. PLoS One, Vol. 3, No. 7, 2008.
[60] Nirit Feldman, Ariela Gerson, Jia Fang, En Li, Yi Zhang, Yoichi Shinkai,

Howard Cedar, and Yehudit Bergman. G9a-mediated irreversible epige-
netic inactivation of oct-3/4 during early embryogenesis. Nature cell biology,
Vol. 8, No. 2, p. 188, 2006.

[61] Grant A Challen, Deqiang Sun, Mira Jeong, Min Luo, Jaroslav Jelinek,
Jonathan S Berg, Christoph Bock, Aparna Vasanthakumar, Hongcang Gu,
Yuanxin Xi, et al. Dnmt3a is essential for hematopoietic stem cell differen-
tiation. Nature genetics, Vol. 44, No. 1, p. 23, 2012.

[62] Wolf Reik, Wendy Dean, and Jörn Walter. Epigenetic reprogramming in
mammalian development. Science, Vol. 293, No. 5532, pp. 1089–1093, 2001.

[63] R David Hawkins, Gary C Hon, Leonard K Lee, QueMinh Ngo, Ryan Lister,
Mattia Pelizzola, Lee E Edsall, Samantha Kuan, Ying Luu, Sarit Klugman,
et al. Distinct epigenomic landscapes of pluripotent and lineage-committed
human cells. Cell stem cell, Vol. 6, No. 5, pp. 479–491, 2010.

[64] Kamal Tripathi and Gautam I. Menon. Chromatin compaction, auxeticity,
and the epigenetic landscape of stem cells. Phys. Rev. X, Vol. 9, p. 041020,
Oct 2019.

[65] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in
random neural networks. Physical review letters, Vol. 61, No. 3, p. 259, 1988.

[66] Hidetoshi Aoki and Kunihiko Kaneko. Slow stochastic switching by collective
chaos of fast elements. Phys. Rev. Lett., Vol. 111, No. 14, p. 144102, 2013.

[67] Sara Kangaspeska, Brenda Stride, Raphaël Métivier, Maria Polycarpou-
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Sébastien A Smallwood, Felix Krueger, Hisham Mohammed, Wendy Dean,
Jennifer Nichols, Peter Rugg-Gunn, et al. Genome-scale oscillations in dna
methylation during exit from pluripotency. Cell Sys., Vol. 7, No. 1, pp.
63–76, 2018.

[69] Taeko Kobayashi, Hiroaki Mizuno, Itaru Imayoshi, Chikara Furusawa, Kat-
suhiko Shirahige, and Ryoichiro Kageyama. The cyclic gene hes1 contributes
to diverse differentiation responses of embryonic stem cells. Genes Dev.,
Vol. 23, No. 16, pp. 1870–1875, 2009.

[70] Itaru Imayoshi, Akihiro Isomura, Yukiko Harima, Kyogo Kawaguchi, Hiroshi
Kori, Hitoshi Miyachi, Takahiro Fujiwara, Fumiyoshi Ishidate, and Ryoichiro
Kageyama. Oscillatory control of factors determining multipotency and fate
in mouse neural progenitors. Science, Vol. 342, No. 6163, pp. 1203–1208,
2013.

[71] Alexander Aulehla and Olivier Pourquie. Oscillating signaling pathways
during embryonic development. Current opinion in cell biology, Vol. 20,
No. 6, pp. 632–637, 2008.

[72] Maurice A Canham, Alexei A Sharov, Minoru SH Ko, and Joshua M Brick-
man. Functional heterogeneity of embryonic stem cells revealed through
translational amplification of an early endodermal transcript. PLoS Biol.,
Vol. 8, No. 5, p. e1000379, 2010.



82 Bibliography

[73] Hitoshi Niwa, Jun-ichi Miyazaki, and Austin G Smith. Quantitative expres-
sion of oct-3/4 defines differentiation, dedifferentiation or self-renewal of es
cells. Nature genetics, Vol. 24, No. 4, p. 372, 2000.

[74] Laurie A Boyer, Tong Ihn Lee, Megan F Cole, Sarah E Johnstone, Stuart S
Levine, Jacob P Zucker, Matthew G Guenther, Roshan M Kumar, Heather L
Murray, Richard G Jenner, et al. Core transcriptional regulatory circuitry
in human embryonic stem cells. cell, Vol. 122, No. 6, pp. 947–956, 2005.

[75] S-J Dunn, Graziano Martello, Boyan Yordanov, Stephen Emmott, and
AG Smith. Defining an essential transcription factor program for naive
pluripotency. Science, Vol. 344, No. 6188, pp. 1156–1160, 2014.

[76] Konrad Hochedlinger and Kathrin Plath. Epigenetic reprogramming and
induced pluripotency. Development, Vol. 136, No. 4, pp. 509–523, 2009.

[77] Petra Hajkova, Katia Ancelin, Tanja Waldmann, Nicolas Lacoste, Ulrike C
Lange, Francesca Cesari, Caroline Lee, Genevieve Almouzni, Robert Schnei-
der, and M Azim Surani. Chromatin dynamics during epigenetic reprogram-
ming in the mouse germ line. Nature, Vol. 452, No. 7189, p. 877, 2008.

[78] Sui Huang. Reprogramming cell fates: reconciling rarity with robustness.
Bioessays, Vol. 31, No. 5, pp. 546–560, 2009.

[79] Jonathan T Young, Tetsuhiro S Hatakeyama, and Kunihiko Kaneko. Dy-
namics robustness of cascading systems. PLoS computational biology, Vol. 13,
No. 3, p. e1005434, 2017.

[80] John S Chuang, Zak Frentz, and Stanislas Leibler. Homeorhesis and ecolog-
ical succession quantified in synthetic microbial ecosystems. Proceedings of
the National Academy of Sciences, Vol. 116, No. 30, pp. 14852–14861, 2019.

[81] Shulamit Levenberg, Justin S Golub, Michal Amit, Joseph Itskovitz-Eldor,
and Robert Langer. Endothelial cells derived from human embryonic stem
cells. Proc. Natl. Acad. Sci. USA, Vol. 99, No. 7, pp. 4391–4396, 2002.

[82] Konrad Hochedlinger and Kathrin Plath. Epigenetic reprogramming and
induced pluripotency. Development, Vol. 136, No. 4, pp. 509–523, 02 2009.

[83] Isabel Palmeirim, Domingos Henrique, David Ish-Horowicz, and Olivier
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Kantz, and Jordi Garćıa-Ojalvo. Multistability of synthetic genetic networks
with repressive cell-to-cell communication. Phys. Rev. E, Vol. 78, No. 3, p.
031904, 2008.

[85] Aneta Koseska, Ekkehard Ullner, Evgenii Volkov, Jürgen Kurths, and Jordi
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