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1 Introduction

The black hole information paradox is one of the most important problems
in quantum gravity. The starting point of the paradox is the entropy of a
black hole, that is, the Bekenstein-Hawking entropy [1–4],

SBH =
A

4GN

, (1.1)

where A denotes the area of the black hole horizon. The existence of such an
entropy suggests that a black hole looks like a thermal object and thus has
a temperature, which is called the Hawking temperature. This temperature
means that a black hole radiates, and such radiation is known as the Hawk-
ing radiation [1, 2]. Through Hawking radiation, a black hole evaporates.
Hawking argued that quantum information inside a black hole would be de-
stroyed during the (formation and) evaporation process of the black hole,
and thus the von Neumann entropy of the system increases without bound
under the process. Such an increase of the entropy (or loss of quantum infor-
mation) is contradicted with the unitary time evolution of quantum gravity,
and the contradiction is known as the black hole information paradox. In
other words, such an increase of the entropy implies that a quantum state
of the system evolves from a pure state to a mixed state eventually, which
cannot be achieved by unitary evolution.

Since the discovery of Hawking radiation, many people have studied the
von entropy of Hawking radiation. In the progress of the study, by using
a toy model, Page showed that the von Neumann entropy of the Hawking
radiation initially should increase and after some critical time, which is called
the Page time, the entropy should decrease [5]1. The entropy behavior is
known as the Page curve. If the entropy follows the Page curve, we do not
naively encounter the information paradox. Therefore we are interested in
how we derive the Page curve by using a semi-classical description of gravity,
not the toy model. The recent developments show that the island formula,
which we mainly focus on in this thesis, enables us to derive the Page curve
using a semi-classical description.

To introduce the island formula, we should go back to Ryu-Takayanagi/Hubeny-
Ryu-Takayanagi formula and their generalizations [6–10] in the AdS/CFT
correspondence [11]. We can calculate the entanglement entropy of a region
in a CFT living in the boundary of anti-de Sitter spacetime (AdS). The en-
tanglement entropy is defined by the von Neumann entropy of the reduced

1For some types of black holes, after the Page time the entropy should remain un-
changed. We will see this behavior in section 2.1.
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density matrix for the region and is also known as the fine-grained entropy.
In the AdS/CFT correspondence, by using the Ryu-Takayanagi formula, we
can also calculate the entropy semi-classically on anti-de Sitter spacetime.
This formula tells us that the entropy of a sub-system (subregion) on the
AdS boundary, say A, is calculated by finding the minimal extremal surface2

that extremize and minimize the generalized entropy

Sgen. =
Area(γ)

4GN

+ Seff(EA), (1.2)

and the generalized entropy evaluated by using the surface gives the von
Neumann entropy of the sub-system. Here Area(γ) denotes the area of the
surface, and Seff(EA) denotes the von Neumann entropy by using an effective
field theory on the background spacetime in the region EA bounded by the
surface γ and the sub-system A, i.e., ∂EA = γ∪A. The domain of dependence
of the region EA is called the entanglement wedge of A. See figure 1.

<latexit sha1_base64="+w5JU1idw+5pH2kz0HDXEGMV4D0="></latexit>
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Figure 1: Time slice of AdS spacetime with a boundary region A (red arc) and
its complement Ā (blue arc). The minimal extremal surface γ is represented
by the orange line. The region bounded by the boundary region A and the
extremal surface γ is EA, and its bulk complement region is EA.

In the papers [12, 13], by using such a formula, the authors obtained the
von Neumann entropy of a black hole that follows the Page curve within

2 The extremal surface must satisfy the homology constraint, which means that there
is a surface smoothly interpolating between the boundary region and the extremal surface.
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the semi-classical gravitational description. Note that the entropy is equal
to that of the Hawking radiation since the total state is pure in their se-
tups. Therefore, it turns out that such a formula can be used to calculate
the entropy of the Hawking radiation, which does not imply the black hole
information paradox and is consistent with the quantum gravity.

An essential ingredient in the calculation is contributions from inside the
black hole. In the process of Hawking radiation, entangled Hawking quanta
are created inside and outside the black hole horizon. In such a naive picture,
as the black hole evaporates, there are many Hawking quanta inside the black
hole. They are entangled with the quanta outside the horizon, leading the
entropy of the Hawking radiation beyond the Bekenstein-Hawking entropy
of the black hole. The behavior implies the black hole information paradox.
In such a case, the naive von Neumann entropy of the Hawking radiation
measures the apparent entanglement between Hawking quanta inside and
outside the black hole. However, the calculations of the entropy [12, 13]
showed that in calculating the entropy, we must include the contribution
from inside the black hole after the Page time, at which the von Neumann
entropy of the Hawking radiation is equal to that of the black hole. Such an
inclusion implies that, after the Page time, interior degrees of freedom of the
black hole, such as the Hawking quanta inside the black hole, are encoded into
the Hawking quanta outside the black hole, more precisely the early Hawking
radiation, which is the radiation before the Page time. By including such a
contribution into the calculation of the entropy, the von Neumann entropy of
the Hawking radiation does measure the true entanglement between the black
hole and the Hawking radiation, not the apparent entanglement between
Hawking quanta inside and outside the black hole.

As explained above, the contribution from the interior of the black hole
is significant. In calculating the entropy of the Hawking radiation, such a
contribution is incorporated in what is called the island. It was proposed that
the von Neumann entropy S[R] of the Hawking radiation R can be calculated
by the following so-called island formula [14]3

S[R] = MinI

!
ExtI

"
Area(∂I)

4G
+ Seff [R ∪ I]

#$
, (1.3)

where Area(∂I) means the area of the endpoint ∂I of the island I, Seff [R∪ I]
is the von Neumann entropy calculated semi-classically of the region R ∪ I,
Ext
I

means that we choose the regions I which extremize the functional of

the region in the square brackets, and Min
I

means that if there are some

3See also [15] for a nice review of this formula.
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candidates for the region I, then we choose the region I which gives the
minimum value of the functional between the candidates I. In later sections,
we will explain this formula in detail. For example, as explained in section
2, we can apply this formula to the AdS black hole coupled to the heat bath
(see figure 2), and get the von Neumann entropy following the Page curve.

<latexit sha1_base64="T5iMrlw2/45SKKe+rCzK1b4cDE0="></latexit>
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Figure 2: The Penrose diagram of the AdS black hole coupled to the flat
bath spacetimes with the regions R (red region) and I (blue region). Before
the Page time, the island region is empty. After the Page time, the island
region I becomes non-empty.

Let us briefly explain why we can get the von Neumann entropy following
the Page curve by using the island formula. Before the Page time, by the
extremization and minimization in the island formula, we get the empty
island region. In this case, since there is no contribution from the region I, the
island formula (1.3) becomes S[R] = Seff [R], and this implies the Hawking-
like growth of the entropy. If the story ends here, we run into the black hole
information paradox again, but that is not the case. After the Page time,
after which the island contribution becomes essential, by the extremization
and minimization in the island formula, we obtain the non-empty island
region, and the island formula (1.3) becomes Area(∂I)/4G+Seff [R∪I], where
the island region I almost covers the region behind the black hole horizon4.
In this case, because the endpoint of the island region almost coincides with
the location of the black hole horizon, we can approximate the area term
Area(∂I)/4G as the Bekenstein-Hawking entropy SBH

5. Moreover, because

4The detail properties of the island region depend on the model what we consider, but
typically the non-empty island cover the region behind the black hole horizon.

5If we consider a two-sided black hole as figure 2, the black hole entropy is given by
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the spatial region R∪I covers almost all of a Cauchy slice, the von Neumann
entropy Seff [R∪ I] becomes very small compared to the Bekenstein-Hawking
entropy; thus, we can neglect this von Neumann entropy. Therefore, after the
Page time, the island formula becomes S[R] = SBH . In summary, before the
Page time, the island region I is empty, and thus the von Neumann entropy
increases, but after the Page time, the island region is no longer empty, and
thus the von Neumann entropy does not increase, and it is given by the
Bekenstein-Hawking entropy. In later sections, we will see that the actual
calculations correspond to the description given above in specific settings.

As noted above, the black hole interior degrees of freedom are encoded
into the early Hawking radiation after the Page time. In other words, after
the Page time, we can access the interior degrees of freedom from the early
Hawking radiation. We can see this statement more explicitly by using the
entanglement wedge reconstruction (conjecture) [15–17]6. To explain entan-
glement wedge reconstruction, we consider the situation depicted in figure 1.
In this situation, the entanglement wedge states that bulk operators in the
region EA (or EA) can be expressed in terms of operators in the region A (or
A). The relation between operators in two regions would be very compli-
cated generally, but there are some proposals for the relation, e.g., the Petz
map [20,21], the modular flow [22,23]. By applying this entanglement wedge
reconstruction to a black hole setup, operators in the (bulk) island region I,
which corresponds to the region EA, can be expressed in terms of operators in
the region R, which corresponds to the region A. In the paper, [24], using a
simple gravitational model, the authors considered the entanglement wedge
reconstruction to explicitly reconstruct operators in the island region from
the Hawking radiation.

The island formula seems to have solved the black hole information para-
dox in the sense that it can derive the Page curve within a semi-classical
description, but the island formula does not reveal all of the paradox. For
example, it does not yet reveal the structure of the quantum state of a black
hole system, such as matrix elements of the density matrix of the Hawking ra-
diation. Therefore, we need to further investigate the black hole information
paradox, in addition to the island formula itself, from various perspectives.

the twice the Bekenstein-Hawking entropy 2SBH , since there are two horizons in such a
black hole.

6This conjecture is a “quantum” version of the HKLL bulk reconstruction [18, 19] in
the AdS/CFT correspondence.
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Outline of this thesis

In this thesis, we study the island formula, the entropy of Hawking radiation,
and also the entropy of a black hole from two perspectives. Below we briefly
explain them and their results.

Disjoint universe setup in Asymptotically Flat Black Hole

Firstly we focus on a disjoint setup for a black hole in asymptotically flat
two-dimensional dilaton gravity, and under the setup, we will study the von
Neumann entropy. We need to explain the disjoint setup firstly. The disjoint
setup is firstly introduced in the papers [25, 26] and the authors consider
black holes in AdS spacetime [25] and dS spacetime [26]. The disjoint setup
is thought to be an idealized version of the evaporation of a black hole by
Hawking radiation. In the setup, we consider two universes, say A and B,
and assume that the universe A is non-gravitating, B is gravitating and
contains a black hole, and the matter states on two universes A and B are
entangled with each other. The entanglement of matter states between the
two universes mimics the entanglement between a black hole and its Hawking
radiation.

In this thesis, we use the setup for a black hole in asymptotically flat
two-dimensional dilaton gravity based on our paper [27]. For concreteness,
we consider the CGHS model [28] as the gravitational sector. In the setup,
we will study the von Neumann entropy of the universe A or the universe
B, which corresponds to the entropy of the Hawking radiation or that of
the black hole, respectively. The resulting von Neumann entropy follows the
Page curve as a function of the strength of the entanglement between the
two universes7.

We also investigate how the von Neumann entropy is modified when the
entanglement between the universes is changed by an operation called local
quench in the universe B. The resulting von Neumann entropy shows that
the local quench “accelerates” the evaporation of the black hole in our setup.

The Island formula and Baby Universes

Next, based on our paper [29], we reconsider an ensemble of states appearing
in a semi-classical description of a black hole by introducing new degrees

7The Page curve as a function of the strength of the entanglement is close to the original
work by Page [5].
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of freedom, which we call the baby universe, and discuss the relationship
between the island formula and the baby universe. We also discuss some
physical implications of the baby universe.

The introduction of the baby universe is related to the chaotic dynamics of
a black hole. In the semi-classical description of a system consisting of a black
hole and its Hawking radiation, the dynamics of a black hole are so chaotic
that it is natural to describe the state of the system by an ensemble of semi-
classically indistinguishable states. Indeed, such an ensemble description of
the state of the system is used to derive the Page curve for typical states in
the original Page’s paper [5].

If we accept the existence of the ensemble literally, the naive von Neumann
entropy does not follow the Page curve, and we get Hawking’s result that
implies the black hole information paradox. To get the Page curve, we need
to consider a different way of treating the ensemble when calculating the von
Neumann entropy.

We can consider such a treatment of the ensemble by introducing new
auxiliary systems, which we call the baby universe. By introducing the baby
universe, we can purify the original system consisting of the black hole and
the Hawking radiation. Then we can get the von Neumann entropy following
the Page curve by dividing the system, which includes the baby universe, into
two parts appropriately.

Besides the fact that the entropy following the Page curve can be obtained
by introducing the baby universe, there are several other implications. For
example, we can consistently consider the gravitational dressing of operators
in the island region, as explained later. In general, in the paper [30], it was
proposed that such gravitational dressing would be inconsistent with the
island formula. However, our prescription using the baby universe avoids the
paradox.

Organization of this thesis

In section 2, we briefly review the recent progress of the information paradox
and its resolution by the island formula in an AdS/CFT setup. In section 3,
we consider a black hole in asymptotically flat two-dimensional dilaton grav-
ity by using the disjoint setup, and we calculate the von Neumann entropy of
the universe A (B). We also study the von Neumann entropy of the universe
A (B) under local quench and discuss its physical interpretation. In section
4, we reconsider the treatment of an ensemble of states in a black hole plus
Hawking radiation system by introducing the baby universe, and we calcu-
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late the von Neumann entropy under the presence of the baby universe and
discuss the relationship between the baby universe and the island formula.
We also explain some physical implications. In section 5, we summarize our
results and suggest future directions.

2 The Black Hole Information Paradox and

the Island formula

In this section, we review the recent progress of the black hole information
paradox. In particular, we see that the correctly calculated entropy of Hawk-
ing radiation follows the Page curve, not the Hawking result.

For simplicity, to calculate the entropy of Hawking radiation explicitly,
in 2.1 we consider the setup discussed in the paper [31]8. We consider AdS
spacetime coupled to two external flat spacetimes in the setup.

2.1 AdS2 Black Hole coupled to Non-gravitating Baths
CFT2

The gravitational model which we consider is two dimensional Jackiw-Teitelboim
gravity, whose action is given by

IJT =
1

16πGN

%
d2x

√
−g [ΦR + 2 (Φ− φ0)] , (2.1)

where φ0 is a just constant corresponding to the extremal entropy. The
boundary conditions of the dilaton φ and the metric gµν are given by the
usual ones [35]

(Φ− φ0)|bdy =
φr

εcut

guu|bdy = − 1

ε2cut
,

(2.2)

where εcut is a cutoff, φr is a just constant corresponding to the renormalized
dilaton value, u is a physical boundary time.

A two-dimensional matter CFT lives on the gravitational system and
couples to the metric, but not the dilaton. The CFT matter plays the role of
Hawking quanta. For simplicity and convenience, we assume that the matter

8See also, e.g., [32–34] for the related discussions.
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CFT is holographic, whose central charge is large c ≫ 1 and whose CFT
spectrum is sparse [36].

The same CFT also lives in two external flat spacetimes, which are non-
gravitating and coupled to the gravitational system at the AdS boundaries
with the transparent boundary condition9. See figure 3. The two external
flat spacetimes play a role of a heat bath in equilibrium with the black hole.
The boundary condition allows the CFT matter to move freely between two
spacetimes.

Then the total action is given by

I = IJT [gµν ,Φ] + ICFT [gµν ,χ], (2.3)

where we denote the CFT field by χ. Using this setup and a semi-classical
description of gravity, we consider an eternal AdS black hole coupled to the
two external flat spacetimes. The CFT matter state on this background
spacetime is the Hartle-Hawking state. See figure 3 again. They mimic an
eternal black hole in asymptotically flat spacetime. In the combined system,
we calculate the von Neumann entropy of Hawking radiation, which is also
often called the entanglement entropy.

<latexit sha1_base64="CkZJUqcCKiD3bpfyNiKblC1URxE="></latexit>

AdS BHLeft Flat Bath Right Flat Bath

Figure 3: Penrose diagram of the AdS eternal black hole coupled to the
baths, which are half of Minkowski spacetime.

9Note that, in usual AdS/CFT setups, we usually impose the reflecting boundary con-
dition, by which matters on AdS spacetime are reflected back to the AdS spacetime.
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2.1.1 Black hole in Jackiw-Teitelboim gravity

To introduce the black hole solution, we need to focus on the equations of
motion for (2.3) given by

R + 2 = 0, (2.4)

∇µ∇νΦ− gµν∇2Φ+ gµν(Φ− φ0) = 8πGN〈Tµν〉, (2.5)

where we defined the expectation value of the CFT stress-energy tensor by

〈Tµν〉 =
2√
−g

δ

δgµν
logZCFT. (2.6)

The first equation (2.4) can be satisfied by taking the metric to be
Poincare coordinates

ds2 =
−dt2 + dz2

z2
,

=
4dx+dx−

(x+ + x−)2
,

(2.7)

where, in the second line, we introduced coordinates defined by x± = z ± t.
The Poincare coordinates cover a part of AdS2 spacetime, and, unlike the
usual one, the coordinate z is negative z < 0, or equivalently x+ + x− < 0.
See figure 4.

Since we are interested in an eternal black hole solution, we consider the
case that the stress-energy tensor vanishes 〈Tµν〉 = 0 for the coordinates in
AdS spacetime. In this case, we can easily solve the second equation (2.5),
and the general solution is given by [35,37]

Φ = φ0 +
A+B(x+ + x−) + Cx+x−

x+ + x− , (2.8)

where A,B,C are constants. For later convenience, by taking the constants

to be A = −2φr, B = 0, C = −2φr

&
π

β

'2

, and we consider the dilaton

profile

Φ = φ0 − 2 φr

1 +
(

π
β

)2

x+x−

x+ + x−

= φ0 − φr

1−
(

π
β

)2

(t2 − z2)

z
,

(2.9)

12



<latexit sha1_base64="V07Ki7QnWMFb4ahhZCm0lqqZpNM="></latexit>

z

z
=

0

z
=

�
1

t

x+

x�

Figure 4: The Penrose diagram of the AdS2 spacetime. The green shaded
region is covered by the Poincare patch corresponding to the Poincare coor-
dinates (2.7).

where β is a constant related the inverse temperature of the black hole. In
the limit z → 0, we can see that this dilaton profile is consistent with the
boundary condition of the dilaton (2.2).

In JT gravity, the geometry of a black hole is characterized by the cor-
responding dilaton profile. From the dilaton profile (2.9), we check that it
actually corresponds to an eternal black hole [37]. Before staring it, we note
that in JT gravity (, or more generally two-dimensional dilaton gravity), the
vector ξ = ξµ∂µ = εµν∂νΦ ∂µ is a Killing vector for the metric [38], owing to
the equation (2.5) with the vanishing stress-energy tensor.

At first, the location of the (Killing) horizon is a null surface on which
the Killing vector ξ is null,

gµνξ
µξν = 0 at the horizon, (2.10)

and the bifurcation surface is the fixed point of the Killing vector

ξ = 0 at the bifurcation surface, (2.11)

or equivalently

∂µΦ = 0 at the bifurcation surface. (2.12)
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Next, the the singularity is located at

Φ = 0 at the singularity. (2.13)

For the dilaton profile (2.9), the bifurcation surface is located at

x±
H = −β

π
⇐⇒ tH = 0, zH = −β

π
, (2.14)

the horizons at x+ = −β
π
and x− = −β

π
. The locus of the singularity is given

by
*
x+ − φ0

2φr

&
β

π

'2
+*

x− − φ0

2φr

&
β

π

'2
+

=

&
β

π

'2
*
1 +

&
βφr

2bφr

'2
+
.

(2.15)
These discussions give the Penrose diagram for the eternal black hole de-
scribed by the dilaton profile (2.9), see figure 5.

In considering the black hole, it is convenient to introduce the static
coordinates, which cover the exteriors of the black hole. They are related to
the Poincare coordinates through

x± =
β

π
tanh

πy±

β
, (2.16)

and this coordinates system covers the right exterior of the black hole10.
We note that, in the static coordinates, the inequality x+ + x− < 0 implies
y+ + y− < 0 . Using this coordinate system, the metric and the dilaton
become

ds2 =

&
2π

β

'2
dy+dy−

sinh2
(

π
β
(y+ + y−)

) , (2.18)

Φ = φ0 −
2π

β
φr

1

tanh
(

π
β
(y+ + y−)

) , (2.19)

and the horizons are at y+ = −∞ and y− = −∞. The singularity is not
covered by the static patch.

10The coordinates that cover the left exterior is given by

x± = −β

π

1

tanh πy±

β

. (2.17)

Note that in the left exterior of the black hole, y+ + y− > 0.

14
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x±
H

Figure 5: The Penrose diagram of the black hole in AdS2. The dotted lines
are the horizons, the black dot (x±

H)is the bifurcation horizon, and the wavy
lines are singularities. The Poincare patch (2.7) (green shaded region) covers
a part of the black hole. The right exterior of the black hole (red shaded
region) is covered by the static or the Schwarzschild patches (2.18) or (2.21).

We can also express the dilaton profile in terms of the so-called Schwarzschild
coordinates. The Schwarzschild coordinates r, tSch are related to the static
coordinates (2.18) by

tanh

&
2π

β
σ

'
=

β

2π
r, τ = tSch, (2.20)

where y± = σ ± τ . In the Schwarzschild coordinates, the metric and the

15



dilaton become

ds2 = −
*
r2 −

&
2π

β

'2
+
dt2Sch +

dr2

r2 −
&
2π

β

'2 (2.21)

Φ = φ0 + φr r, (2.22)

and the horizons are at r = 2π
β
, which is the Schwarzschild radius. In the

Schwarzschild coordinates, the singularity is also not covered by the patch
again.

Since, as we saw above, we determined the location of the horizons, we
can evaluate the Bekenstein-Hawking entropy of the black hole (or the black
hole entropy), which is given by the dilaton value at the horizon in JT gravity,

SBH =
Φ|Horizon

4GN

=
φ0 +

2π
β
φr

4GN

.

(2.23)

φ0

4GN
is called the extremal entropy, and

2π
β
φr

4GN
is called the near-extremal

entropy.

Dual description of the Black Hole

In the above analysis, we consider JT gravity inAdS2. Using the AdS/CFT
correspondence, more precisely NAdS2/NCFT1 [39], we can describe it holo-
graphically. The holographic dual is given in this setup by the two quantum
mechanical (QM) systems living in the two AdS2 boundaries. We do not
explain it explicitly here.

2.1.2 Coupling to the Baths

Next, we introduce the baths and couple them to the black hole explained
above. We note that the two-dimensional matter CFT lives in the bath and
black hole regions. We also note that we impose the transparent boundary
condition at the boundaries of two regions.

Since the bath we consider here is non-gravitating and flat, we fix the
metric to be

ds2 =
dy+dy−

ε2cut
, (2.24)
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where we consider the regions y+ + y− = 2σ < 0 and y+ + y− = 2σ > 0
corresponding the left and the right bath respectively, and we introduced the
cutoff εcut to glue the bath to AdS spacetime with the boundary condition
(2.2). At the present stage, these coordinates y± in the bath region are not
related to the static coordinates y± (2.18) in the black hole region. However,
as we will see, they are related.

Because we are interested in the case that the baths have a temperature
and interacts with the black hole, we take the CFT state of the bath region
to be in a thermal state in the coordinates y±, and thus the stress-energy
tensor becomes thermal one, that is,

〈Ty±y±〉 =
πc

12β2
in the bath region. (2.25)

On the other hand, when we introduced the dilaton profile (2.9) correspond-
ing to the eternal black hole in the Poincare coordinates x±, we took the
stress-energy tensor to be zero in the black hole region

〈Tx±x±〉 = 0 in the black hole region.

Now we want to find the coordinate transformation x±(y±) in the black hole
region that brings the stress-energy tensor to the thermal one, 〈Ty±y±〉 = πc

12β2 .
By using the transformation of the stress-energy tensor

&
∂x±

∂y±

'2

〈Tx±x±〉 = 〈Ty±y±〉+
c

24π

,
x±, y±

-
, (2.26)

we get the condition for the coordinate transformation

,
x±(y±), y±

-
= −2π2

β2
, (2.27)

where {f(x), x} = −1
2
f ′′2

f ′2 +
(

f ′′

f ′

)′
is a Schwarzian derivative. The coordinate

transformation (2.16) satisfies the condition (2.27)11, thus we can use the
coordinate transformation (2.16), and the coordinates y± are continued from
the bath region into the black hole region. The continued coordinates cover
the right exterior of the black hole and the bath regions (see figure 6). By
using the coordinates the metric is expressed as

ds2right =

.
////0

////1

&
2π

β

'2
dy+dy−

sinh2
(

π
β
(y+ + y−)

) for y+ + y− < 0,

dy+dy−

ε2cut
for y+ + y− > 0.

(2.28)

11 A more general solution can be obtained by using the SL(2,R) symmetry, and thus

it is given by ax±(y±)+b
cx±(y±)+d with ad− bc = 1, where x±(y±) is given by (2.16).
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By a similar arguments as above, we can get the expression for the left

<latexit sha1_base64="lOLdX2bAsRLmnYqzDuvORz7XG6I="></latexit>

Green region: x±

Red region: y±

Figure 6: The Penrose diagram of the AdS black hole coupled to the flat bath
spacetimes. The Penrose coordinates x± cover the green shaded region. The
y± coordinates (2.28) cover the right exterior of the black hole and the right
bath regions (red shaded region). The combined region (red shaded region)
is similar to the right Rindler wedge of Minkowski spacetime.

exterior of the black hole and the left bath,

ds2left =

.
////0

////1

&
2π

β

'2
dy+dy−

sinh2
(

π
β
(y+ + y−)

) for y+ + y− > 0,

dy+dy−

ε2cut
for y+ + y− < 0.

(2.29)

Although we got the coordinates that cover the right exterior of the black
hole and the right bath regions and that for left, it is more convenient to
introduce the coordinates that cover both left and right black hole plus bath
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regions in calculating the von Neumann entropy of the Hawking radiation.
By considering each black hole plus bath region as each Rindler wedge of
Minkowski space, we can get such coordinates. In particular, we can get the
coordinates w± by the coordinate transformation

w± =

.
//0

//1

exp

&
2πy±

β

'
for the right BH-Bath region,

− exp

&
−2πy±

β

'
for the left BH-Bath region.

(2.30)

In the w± coordinates, the region w+ > 0, w− > 0 corresponds to the right
black hole plus bath region, and w+ < 0, w− < 0 does to the left one. By
using the w± coordinates, the metric is given by

ds2 =

.
///0

///1

4dw+dw−

(1− w+w−)2
for the black hole region,

1

ε2cut

&
β

2π

'2
dw+dw−

w+w− for the bath region,

(2.31)

and the dilaton profile is given by

Φ = φ0 +
2π

β
φr

1 + w+w−

1− w+w− . (2.32)

We note that the horizons in the coordinates are at w+ = 0 and w− = 0. See
figure 7.

Using the relation (2.26) for w± and y±, we can see that the stress-energy
tensor in the w± coordinates vanishes

〈Tw±w±〉 = 0 in the whole region.

Thus in the w± coordinates, the CFT state is not a thermal state but a
vacuum one. In this case, on calculating the von Neumann entropy, we can
use a simple expression by using the coordinates, as we will see later.

Dual description of the coupling of the black hole with the baths

The black hole coupled to the baths is also holographically described in
terms of the quantum mechanical system and the bath CFT2, which are
coupled to each other. In the holographic description, the dual state is given
by the thermo-field double (TFD) state on the left and right QM-CFT2

systems

|TFD〉 = 12
Z(β)

3

n

e−βEn/2|En〉Left QM-Bath ⊗ |En〉∗Right QM-Bath, (2.33)
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w+

w�

Blue region: w±

Figure 7: The Penrose diagram of the AdS black hole coupled to the flat
bath spacetimes covered by the w± coordinates. The w± coordinates cover
both left and right black hole plus bath regions.

where |En〉Left QM-Bath ∈ HLeft QM-Bath, |En〉Right QM-Bath ∈ HRight QM-Bath are
the energy eigenstates of the left and right QM-CFT2 systems with the energy
En, and Z(β) is the normalization factor.

Through the AdS/CFT correspondence, the time evolution of the black
hole and the bath systems is expected to be described by the unitary time
evolution of this dual state.

2.1.3 the von Neumann entropy of the Hawking radiation

Now that we introduced the setup, we start to calculate the von Neumann
entropy of the Hawking radiation. As explained above, by using the w±

coordinates, we can simplify the calculation. In particular, after calculating
the von Neumann entropy in the w± coordinates, by using the coordinate
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transformation (2.30) we transform the result into the one in the physical
coordinate y±.

Before starting the calculation of the von Neumann entropy of the Hawk-
ing radiation, we need to specify the region where we calculate the von Neu-
mann entropy. Since we couple the black hole to the baths in thermal equi-
librium, the Hawking quanta emitted from the black hole move to the bath
region, and they are stored in the bath regions; thus, the black hole appears
to lose some energy by the Hawking radiation. However, owing to the ther-
mal equilibrium between the black hole and the baths, the baths provide the
black hole with energy which cancels the loss of the energy by the Hawk-
ing radiation. Therefore the bath and the black hole exchange the Hawking
radiation, leading to the large entanglement between the two systems.

By calculating the von Neumann entropy associated with a bath spatial
subregion R, we can study the von Neumann entropy of the Hawking radia-
tion emitted from the black hole. In particular, we take the region R to be
semi-infinite and symmetric between the left and right regions, see figure 8.
In the y± coordinates, let the endpoint of the region ∂R to be (τ, σ = −b) for
the left one and (τ, σ = b) for the right one, where b is a positive constant.
Fixing the constant b, we consider the time variation of the von Neumann en-
tropy of the Hawking radiation R. We note that since, on a full Cauchy slice,
the CFT matter state is pure, which is given by the Hartle-Hawking state
as explained at the beginning of this section 2, the von Neumann entropy of
the compliment region R̄ is equal to that of the original region R.

The above choice of the spatial subregion R on the entire Cauchy slice
corresponds to the tensor factorization of a total Hilbert space H into two
Hilbert spaces H = HR ⊗ HR̄, where R̄ is the complement of R. The von
Neumann entropy or equivalently the entanglement entropy of the Hawking
radiation R (or the complement R̄) measures the entanglement between the
two systems (regions) R and R̄. In other words, it measures the entanglement
between the black hole in the region R̄ and the Hawking quanta stored in
the one R naively.

In the holographic description, we can factorize the Hilbert space H =
HLeft QM-Bath ⊗ HRight QM-Bath into HBath Rad (R) ⊗ HQM-Bath Rad (R̄) similarly.
We note that in the holographic description, the region R̄ does not mean the
complement region of the region R on the full Cauchy slice in the black hole
plus the bath spacetime, but the region on the quantum mechanical plus the
bath spacetimes, see figure 9. The Hilbert space HBath Rad (R) corresponds
to the radiation region R, which does not include the quantum mechanical
systems, in the QM plus the bath CFT2 system, and HQM-Bath Rad (R̄) does to
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its complement region, which includes the quantum mechanical systems. We
note that since HQM-Bath Rad (R̄) includes the black hole degrees of freedom,
we can call the region associated with the Hilbert space HQM-Bath Rad (R̄) the
black hole (region) BH = R̄.
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Figure 8: The Penrose diagram of the AdS black hole coupled to the flat bath
spacetimes with the region R. The end points of the region ∂R are by the
black dots. In the y± coordinates, the left endpoint is given by (τ, σ = −b)
,and the right one is given by (τ, σ = b).
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R̄R̄

Figure 9: Schematic picture of the subregions R and R̄ on the quantum me-
chanical plus the bath spacetimes. The quantum mechanical systems are are
represented by the orange vertical lines. R̄ contains the quantum mechanical
systems, implying that the region R̄ should be regarded as the black hole
region BH = R̄

Under the above factorization HBath Rad (R) ⊗HQM-Bath Rad (BH), we focus
on the von Neumann entropy of the reduced density matrix associated with
the Hilbert space HBath Rad (R) (or HQM-Bath Rad (BH)). The von Neumann
entropy of the Hawking radiation R is given by

S(ρR) = −trHBath Rad (R)
[ρR log ρR], (2.34)
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where ρR is defined for the state (2.33) by tracing out the remaining degrees
of freedom

ρR = trHQM-Bath Rad (BH)

4
U |TFD〉 〈TFD|U †5 . (2.35)

Here U is a unitary time evolution operator on the QM plus the bath CFT2

system. This von Neumann entropy is also called the fine-grained entropy.
We note that this von Neumann entropy S(ρR) is equal to that of the black
hole S(ρBH), where ρBH is defined by tracing out the Hawking radiation
degrees of freedom.

We evaluate the above von Neumann entropy S(ρR)(= S(ρBH)) on the
gravity side, i.e., by using a semi-classical description of gravity on the AdS
plus bath system. We will see that a naive computation of the entropy
leads us to a Hawking-like result inconsistent with quantum gravity. As we
will see later, we need to introduce the island formula to get the entropy
consistent with quantum gravity. Using it, we will check that the entropy of
the Hawking radiation is consistent with quantum gravity, i.e., it follows the
Page curve.

At first, we calculate the von Neumann entropy of the Hawking radiation
R naively for the matter CFT. As noted above, the von Neumann entropy
of the region R is equal to that of the complement region consisting of the
interval between two points (τ, σ = −b) and (τ, σ = −b). In the w± coor-
dinates with the general metric ds2 = Ω−2dw+dw−, the CFT von Neumann
entropy on the interval [w1, w2] is given by

SCFT[w1, w2] =
c

6
log

6
|w12|2

ε2UVΩ(w
+
1 , w

−
1 )Ω(w

+
2 , w

−
2 )

7
, (2.36)

where εUV is a UV cutoff different from one in the JT gravity boundary
conditions (2.2), and |w12|2 is defined by |w12|2 =

88(w+
1 − w+

2 )(w
−
1 − w−

2 )
88.

Note that the CFT von Neumann entropy here means the von Neumann
entropy of the matter CFT calculated semi-classically. In appendix A.1, we
give the derivation of (2.36). See also, e.g., [13] for another derivation. By
using the coordinate transformation (2.30) and the metric (2.31), we can
calculate the CFT von Neumann entropy of the Hawking radiation R. For
the interval between two points (τ, σ = −b) and (τ, σ = −b), the factors
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w1, w2, Ω1, Ω2 are given by

w±
1 = − exp

&
−2π

β
(−b± τ)

'
, w±

2 = exp

&
2π

β
(b± τ)

'
(2.37)

Ω(w+
1 , w

−
1 ) = εcut

2π

β

9
w+

1 w
−
1 = εcut

2π

β
exp

&
2π

β
b

'
, (2.38)

Ω(w+
2 , w

−
2 ) = εcut

2π

β

9
w+

2 w
−
2 = εcut

2π

β
exp

&
2π

β
b

'
, (2.39)

and thus we obtain

SCFT[R] =
c

6
log

*
1

ε2UV ε
2
cut

&
β

π

'2

cosh2

&
2π

β
τ

'+
. (2.40)

Naively we expect that this von Neumann entropy SCFT[R] is equal to the
entropy S(ρR), but this is not correct as we will see below.

We can see that, for late times τ ≫ β, the CFT von Neumann entropy
on the Hawking radiation R linearly growths

SCFT[R] =
c

6
log

*
1

ε2UV ε
2
cut

&
β

π

'2

cosh2

&
2π

β
τ

'+
−→ 2π

3
c
τ

β
+· · · for τ ≫ β

(2.41)
where · · · are constants which are not depend on time. This linear growth
is consistent with the physical intuition that the baths and the black hole
exchange the Hawking radiation, and thus the exchange gives the entangle-
ment between the Hawking quanta stored in the baths and the black hole,
leading us to the linear growth.

However, the linear growth for sufficiently late times is problematic and
implies the black hole information paradox. This is because the correct en-
tropy of the complement region BH(= R̄), which is equal to that of the
Hawking radiation R, must be bounded by the Bekenstein-Hawking entropy
of the black hole, SBH.

To put it another way, if the entropy is not bounded by the Bekenstein-
Hawking entropy, but it linearly grows, then it implies that the initial pure
state, which is given by the state (2.33) holographically, becomes a mixed
state or a thermal state at a sufficiently late time, leading to linear growth
of the von Neumann entropy. Such a time evolution is not unitary, and it is
inconsistent with the unitarity of quantum gravity.

Island formula
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We need to consider the island formula to get a correct entropy, bounded
by the Bekenstein-Hawking entropy. The island formula is given by

S(ρR) = Min
I

!
Ext
I

"
Area(∂I)

4GN

+ SCFT[R ∪ I]

#$
, (2.42)

where Area(∂I) means the area of the endpoint ∂I of a new region I called
the island, SCFT[R∪I] is the CFT von Neumann entropy associated with the
region R ∪ I, Ext

I
means that we choose the regions I which extremize the

functional of the region in the square brackets, and Min
I

means that if there

are some candidates for the region I, then we choose the region I which gives
the minimum value of the functional among the candidates I. In JT gravity,
the area of the endpoint ∂I is given by the dilaton value at the points.

We note that for the complement region of the radiation region, i.e., BH,
we have the quantum extremal surface (QES) formula12

S(ρBH) = Min
γ

!
Ext
γ

"
Area(γ)

4GN

+ SCFT[EBH ]

#$
, (2.43)

where Area(γ) means the area of a codimension two surface γ called the
quantum extremal surface (QES), which is homologous to the black hole
region BH on the QM plus CFT system, SCFT[EBH ] means that the CFT
von Neumann entropy of the region EBH bounded by the QES surface γ
and the black hole region BH on the QM plus CFT system, and Min

γ
Ext
γ

means that we choose the QES surface which extremizes the functional in
the square brackets and gives the minimal value between some candidates.
This entropy is similar to the generalized entropy of the black hole, which
is defined by the sum of the Bekenstein-Hawking entropy and the (CFT)
matter von Neumann entropy of the region outside the black hole horizon.
We note that if the total state is pure, then after the extremalization and the
minimization, the resulting island region and the QES surface have properties
that γ = ∂I and (R ∪ I) = EBH , which ensure that the entropies derived from
the island formula and the QES formula coincide. We use either the island
formula (2.42) or the QES formula (2.43) as necessary, which gives the same
result in the current setup.

Since if the island region is empty (no island phase), then the island
formula is equal to the CFT von Neumann entropy of the regionR, Sno-island =

12We note that if we focus only on a similar formula which includes only the area
part, not the CFT von Neumann entropy part, the QES reduced to the so-called classical
extremal surface (CES).
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SCFT[R], (see figure 10), we consider the case that the island is non-empty
(island phase). Although there is a possibility that the island region consists
of multiple regions, because in such cases, the area contribution becomes
large, we simply consider a region consisting of a single interval. We assume
that the endpoints ∂I are symmetric between the left and right regions since
the radiation region is symmetric between the left and right ones. See figure
11. In the y± coordinates, let the endpoint of the region ∂I to be (τa, σ = a)
for the left one and (τa, σ = −a) for the right one, where a is a positive
constant, which is determined by the extremalization and the minimization
in the island (or QES) formula.
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Figure 10: The Penrose diagram of the AdS black hole coupled to the flat
bath spacetimes with the regions R (red region), BH (green region) in the
empty island case.

Since we need to consider two intervals R ∪ I or equivalently BH (see
figure 11) by the appearance of the non-empty island region, we can no
longer use the expression (2.36). In this case we need to consider the CFT
von Neumann entropy on two intervals, whose expression depends on the
CFT we consider and is non-universal (see, e.g., [40]). For simplicity we
consider the c free Dirac fermions theory, and in the w± coordinates with the
general metric ds2 = Ω−2dw+dw−, the CFT von Neumann entropy on the
two intervals [w1, w2] ∪ [w3, w4] is given by [41]

SFermi.[w1, w2;w3, w4] =
c

6
log

6
|w12w23w34w14|2

ε4UV |w13w24|2 Ω(w+
1 , w

−
1 )Ω(w

+
2 , w

−
2 )Ω(w

+
3 , w

−
3 )Ω(w

+
4 , w

−
4 )

7
.

(2.44)
In the w coordinates, the endpoints of two intervals R ∪ I (or equivalently
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Figure 11: The Penrose diagram of the AdS black hole coupled to the flat
bath spacetimes with the regions R (red region), BH (green region), and I
(blue region). In the y± coordinates, the left endpoint of the island is given
by (τa, σ = −a) ,and the right one is given by (τa, σ = a).

BH), are given by

w±
1 = − exp

&
−2π

β
(−b± τ)

'
, w±

2 = − exp

&
−2π

β
(a± τa)

'
(2.45)

w±
3 = exp

&
2π

β
(−a± τa)

'
, w±

4 = exp

&
2π

β
(b± τ)

'
, (2.46)

where w1, w2 are at the left bath region and the left black hole region respec-
tively, and w3, w4 are at the right black hole region and the right bath region
respectively. By using the expression (2.44), (2.46) and the metric (2.31),
we can calculate the CFT von Neumann entropy on the region R ∪ I (or
BH) 13, and by using the result, we can evaluate the island formula (2.42).
However, at late times τ ≫ β when the CFT von Neumann entropy SCFT[R]
exceeds the Bekenstein-Hawking entropy, and the island phase is expected to
dominate, the cross-ratio |w23w14|/|w13w24| approaches to one, and the CFT

13The CFT von Neumann entropy on the region R ∪ I is explicitly given by

SFermi.[I∪R] =
c

3
log

!

"
2 cosh

#
2π
β τa

$
cosh

#
2π
β τ

$ %%%cosh
#

2π
β (τa − τ)

$
− cosh

#
2π
β (a+ b)

$%%%

sinh
#

2π
β a

$
cosh

#
2π
β

&
a+b−τa−τ

2

'$
cosh

#
2π
β

&
a+b+τa+τ

2

'$

(

)+· · · ,

where · · · are constant independent of the parameters τ, b, τa, a.
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entropy for the two intervals reduces to twice the single interval expression

SFermi. [R ∪ I] ≈ SCFT [w1, w2] + SCFT [w3, w4]

= 2SCFT [w3, w4] ,
at late times (2.47)

where in the second line we used the fact that the two intervals are symmetric
between the left and right regions. This simplification is expected to occur in
general CFTs, thus we use the simplified expression rather than the original
two interval result. In this case, by using the expressions (2.36), (2.46), and
the metric (2.31), we get the simpler expression

SFermi. [R ∪ I] ≈ 2SCFT [w3, w4]

=
c

3
log

:

; 4β

πεcutε2UV

888cosh
(

2π
β
(τa − τ)

)
− cosh

(
2π
β
(a+ b)

)888

sinh
(

2π
β
a
)

<

= .

(2.48)

Now we can evaluate the island formula for island phase. The functional
Sgen.(a, τa) of the island, which is specified by the parameters τa, a, is given
by

Sgen.(a, τa) =
Φ(w+

2 , w
−
2 )

4GN

+
Φ(w+

3 , w
−
3 )

4GN

+ SFermi.[w1, w2;w3, w4]

≈ 2

&
Φ(w+

3 , w
−
3 )

4GN

+ SCFT [w3, w4]

'

= 2

6
φ0

4GN

+
πφr

2GNβ

1

tanh
(

2π
β
a
)

+
c

6
log

:

; 4β

πεcutε2UV

888cosh
(

2π
β
(τa − τ)

)
− cosh

(
2π
β
(a+ b)

)888

sinh
(

2π
β
a
)

<

=
7
,

(2.49)
where in the second line we used the fact that the two intervals are symmetric
between the left and right regions and the approximation (2.48), and in the
third line we used the dilaton profile (2.19). The extremality conditions for
the island I are given by

∂τaSgen.(a, τa) = 0, ∂aSgen.(a, τa) = 0. (2.50)

From the first condition ∂τaSgen.(a, τa) = 0, we get

τa = τ. (2.51)
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By using the result, from the second condition ∂aSgen.(a, τ) = 0, we get the
one for the parameter a

1

sinh 2πa
β

=
GNcβ

3πφr

sinh π(a−b)
β

sinh π(a+b)
β

. (2.52)

The above equation determines a, that is, the location of the endpoints of
the island I. We note that while the location of the black hole horizon is at
y+ = −∞ and y− = −∞ as we saw in the analysis of the dilaton profile, the
endpoint of the island is at a (or −a), which is finite; thus the endpoints of
the island are outside the horizon for the eternal black hole [31]. This fact
means that the island region contains the region behind the horizon, i.e., the
black hole interior region14.

In the high temperature limit φr

GN cβ
≫ 1 where the near extremal entropy

2π
β
φr/4GN becomes large compared to the central charge c and the effect of

the Hawking radiation becomes small, the condition (2.52) reduces to

a ≈ b+
β

2π
log

&
6πφr

GNcβ

'
at the high temperature limit

GNφr

cβ
≫ 1.

(2.53)
In this case, the value of the functional Sgen.(a, τa) is given by

Sisland ≡ Sgen.(a, τa) ≈ 2

>
φ0 +

2π
β
φr

4GN

+
c

6
log

&
β

πεcutε2UV

e
2π
β
b

'?

≈ 2

!
SBH +

πc

3β
b

$
,

(2.54)

where in the second line we used the previous result (2.23) and dropped
terms, which is independent of the parameter b, in the CFT von Neumann
entropy. In this expression, the CFT von Neumann entropy is very small
compared to the no-island result (2.41) at late times. This is because the
Hawking quanta, which are store in R entangled with their pairs inside the
black hole interior is purified by the inclusion of the island region.

By combining the above results and using the island formula (2.42), we
get

S (ρR) = Min {Sno-island, Sisland}

≈ Min

!
2π

3
c
τ

β
, 2SBH

$
,

(2.55)

14For an evaporating black hole, not eternal, the endpoint of the island is little bit
O(GN ) inside the event horizon, see, e.g., [12].
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where in the second line we used the approximations (2.41) and (2.54) and
further we dropped subdominant terms. The time when the transition from
the no-island phase to the island one happens is called the Page time, τPage.
Roughly speaking, the Page time is given by τPage ∼ βSBH

c
. The above

discussion gives the Page curve for the eternal black hole. See figure 12.
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Figure 12: Schematic picture of the Page curve for the eternal black hole.
The von Neumann entropy of the Hawking radiation gives the Page curve.
The Page curve (green curve) is given by the smaller value between the two
curves Sno-island (blue curve), Sisland (red curve).

The entropy of the Hawking radiation calculated by the island formula
follows the Page curve and does not exceed the Bekenstein-Hawking entropy.
Thus, we do not encounter the information paradox.

2.2 The Island formula

In the previous subsection 2.1, we considered the AdS2 eternal black hole
coupled to the flat baths, by using the island formula we computed the von
Neumann entropy of the Hawking radiation (or equivalently the black hole),
and we checked that it gives the Page curve. In this subsection, we give some
more explanation on the island formula.

Firstly, the calculation of the island formula suggests that after the Page
time, we need to treat the degrees of freedom on (the entanglement wedge
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of) the island region I as that on (the entanglement wedge of) the Hawking
radiation R. This implies that the true Hawking radiation, which is described
by the QM and CFT system holographically in the current setup, consists
of the union of the Hawking radiation region R and the island region I in
the semi-classical gravitational description. Roughly speaking, this means
that the degrees of freedom on the black hole interior are encoded into the
Hawking radiation region R in a very complicated manner. We can make
this statement more precise by using the entanglement wedge reconstruction
(conjecture) [12] in the AdS/CFT correspondence, which states that local
operators on the entanglement wedge on the island region I can be expressed
(reconstructed) by operators on that of the radiation region R. Here we do
not explain such directions.

Next, we can apply the island formula not only an AdS black hole coupled
to a bath system but also a black hole in asymptotically flat spacetime,
e.g., [42–45]. Furthermore, we can apply the island formula to the de Sitter
space with some modifications, e.g., [26, 46, 47]. Thus, the island formula is
used to solve information paradoxes in various situations. In the next section
3, we will consider the island formula in different modeling of the evaporation
of a black hole.

In the previous subsection 2.1, we considered the case that the matter
theory is the holographic CFT, but it is not necessarily required for the
application of the island formula. We generally consider the effective field
theory on a curved spacetime, not necessarily conformal, and compute the
QFT von Neumann entropy instead of the CFT von Neumann entropy. In
such a case, the island formula is given by

S(ρR) = Min
I

!
Ext
I

"
Area(∂I)

4G
+ Seff [R ∪ I]

#$
, (2.56)

where Seff [R ∪ I] is the QFT von Neumann entropy on the interval R ∪ I by
using the effective field theory on the background spacetime.

Replica Wormhole and the Island formula

We briefly explain the derivation of the island formula. The complete
derivation can be founded in [32], see also [24]15. We use the setup in the
previous subsection 2.1.

The starting point is the replica trick for the von Neumann entropy of

15See also [45] for the derivation on the island formula in two-dimensional asymptotically
flat spacetime.

31



the Hawking radiation

S(ρR) = −trR[ρR log ρR]

= − lim
n→1

∂ntrR [ρnR] ,
(2.57)

thus we need to evaluate trR [ρnR]. We note that the reduced density matrix ρR
is defined holographically by (2.35), and through the AdS/CFT correspon-
dence trR [ρnR] can be evaluated in the gravity side with the semi-classical
limit, G → 0.

In evaluating the quantity trR [ρnR], we prepare n copies of the original
spacetime, and need to consider the (Euclidean) gravitational path integral
on the n copied spacetime.

The naive gravitational saddle is the disconnected n spacetimes (discon-
nected saddle) since it is topologically trivial. However, this leads to the
no-island result.

Thus we need to consider other gravitational saddles, which are topo-
logically non-trivial and non-perturbative contributions. Such gravitational
saddles are given by wormholes connecting some of or all of the n copied
spacetimes, called replica wormholes (replica wormhole saddle). The domi-
nant replica wormhole is given by the one connecting all the n copied space-
times. After the Page time, the replica wormhole becomes the dominant
saddle instead of the disconnected saddle. By considering the replica worm-
hole, we get the island formula in the limit n → 1 through the replica trick
(2.57).

3 Asymptotically Flat Black Hole in Disjoint

Universes setup

In this section, we consider different modeling of the evaporation of a black
hole, sometimes called the disjoint (universes) setup. In particular, we focus
on a black hole in asymptotically flat spacetime under the disjoint setup16.

In the disjoint setup, we introduce two universes A and B, and assume
that the universe A is non-gravitating, the universe B is gravitating and
contains a black hole, and the matter state on the two universes is given by
an entangled pure state |Ψ〉AB, which we explain later.

16There are also studies of black holes in asymptotically flat spacetime that do not use
the disjoint setup. See e.g., [42–45] for the discussions.
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Intuitively, we can consider the setup as follows: we consider an evaporat-
ing black hole in a gravitating universe, collect all Hawking quanta, and put
them in the other non-gravitating universe (the auxiliary universe). This re-
sults in the entanglement between the two universes represented by the state
|Ψ〉AB, which has a similar structure to the Hartle-Hawking state on a black
hole. See figure 13.

<latexit sha1_base64="t6Qj1+JnamzPwGLM4NBdtbGQJQY="></latexit>
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Figure 13: Schematic picture of the preparation of the disjoint setup. Left:
A black hole (in the universe B) emits Hawking quanta by Hawking radia-
tion, which are entangled with the black hole. Green dotted lines imply the
entanglement between the black hole and the Hawking radiation. Right: We
collect the Hawking quanta and put them into the auxiliary non-gravitating
universe A. In this case, the universe B is entangled with the universe A.
Green dotted lines also imply the entanglement between (black hole in) the
universe B and (the Hawking radiation in) the universe A.

In the papers [25, 26], by using the disjoint setup for two-dimensional
black holes in AdS and dS spacetime, the authors studied the entropy of
the Hawking radiation by using a modified version of the island (or HRT)
formula, and checked that the von Neumann entropy of the Hawking radia-
tion on the universe A, which is equal to the von Neumann entropy of the
universe B, obeys a Page curve as a strength of the entanglement between
the two universes A, B, not the time like the previous section.
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In this section, as noted above, we consider an evaporating black hole
in asymptotically flat spacetime by using the disjoint setup, and calculate
the von Neumann entropy of the Hawking radiation on the universe A17, or
the von Neumann entropy of the universe B, by using a modified version
of the island (or HRT) formula, which we will explain later. We note that
the von Neumann entropy of the universe B, which contains the black hole,
corresponds to the von Neumann entropy of the black hole on the universe.

After the calculation, we will consider a perturbation of the entangled
state by a local quench, which we will explain later, and study the von
Neumann entropy of the universe A or B.

3.1 Setup

3.1.1 Two disjoint asymptotically flat universes

We explain the disjoint setup in more detail. At first, we introduce two
disjoint universes, A and B which are asymptotically flat (see figure 14).
For simplicity, we consider two-dimensional spacetimes. Next, we define
two identical CFTs, on each universe A and B, and we assume that on
the universe B, we have a semi-classical gravitational description. Thus the
effective actions on the universes A, B are given by

logZA = logZCFT, logZB = −Igrav + logZCFT. (3.1)

As the gravitational sector Igrav of the above effective action, we consider
the CGHS action [28],

Igrav =
1

16πGN

%
dx2

√
−g (ΦR− Λ) , (3.2)

which is two-dimensional dilaton gravity in (asymptotically) flat space. The
action contains the dilaton Φ in addition to the metric gµν . Also, we intro-
duced a parameter Λ, which is negative, and similar to, but different from,
the cosmological constant.

The Hilbert space of the system is given by HA ⊗HB, which is bipartite.
Because the two universes A, B are disjoint, classical information can not be
exchanged between them, but CFT matter states on the universes A, B can
be quantum mechanically entangled with each other. We are interested in

17We sometimes call the entropy the von Neumann entropy of the universe A, and
similarly for B.
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the structure of the entanglement between states on the two Hilbert space.
To study the structure explicitly, we will consider the thermo-field double
(TFD) state on the system

|Ψ〉 =
∞3

i=0

√
pi |i〉A |ψi〉B, pi =

e−βEi

Z(β)
, (3.3)

where Z(β) is a normalization factor, which ensure the normalization con-
dition 〈Ψ|Ψ〉 = 1, |i〉A is a CFT energy eigenstate on the non-gravitating
universe A, and |ψi〉B is the same energy eigenstate on the gravitating uni-
verse B. Although they are same states, since, on the universe B gravity
is turned on, and properties of the states are affected by the fact, thus we
write them in different notations. The parameter β in (3.3) characterizes the
strength of the entanglement between the two universes, not the temperature
of a black hole. For this reason, sometimes 1/β is called the entanglement
temperature.

3.1.2 Islands in the setup

In the papers [25,26], for the TFD state (3.3), the von Neumann entropy on
the non-gravitating universe A, S(ρA) was studied. This quantity is defined
by

S(ρA) = −trρA log ρA, ρA = trB|Ψ〉〈Ψ|. (3.4)

The above von Neumann entropy is evaluated by the replica trick [25]
as noted in the previous section. In this disjoint setup case, the dominant
replica wormhole saddle is the replica wormhole connecting all the copies of
the universe B with given consistent boundary conditions. Such a replica
wormhole leads to the following formula for the von Neumann entropy [25]

S(ρA) = Min{Sno−island, Sisland}. (3.5)

Sno−island in the above formula is equal to the CFT thermal entropy
Sno−island = Sβ(B) given by

Sth(B) = −
3

i

pi log pi, (3.6)

where pi is defined in (3.3). More explicitly, it is given by

Sth(B) =
c

3
log

&
β

π
sinh

&
π2

β

''
, (3.7)
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in the coordinates (3.10) which we will explain later. One can obtain this
expression from (A.7) with l = π.

On the other hand, Sisland in the above formula is given by

Sisland = Ext
C̄

"
Φ(∂C̄)

4GN

+ Sβ[C̄]− Svac[C̄]

#
≡ Ext

C̄
Sgen[C̄], (3.8)

where Ext
C̄

means that we choose the configuration that extremize the gen-

eralized entropy among all possible intervals C̄ in the gravitating universe
B. Φ(∂C̄)/4GN is the area term of the generalized entropy, which is given
by the sum of the dilaton values at the endpoints of the interval C̄. Sβ[C̄] is
the von Neumann entropy for thermal states on C̄, and Svac[C̄] is that of the
vacuum state. Because the TFD state is pure on the two universe A, B, the
generalized entropy has the property that Sgen[C̄] = Sgen[AC]. This implies
the interval C in the gravitating universe B can be identified with the island
in current setup. We note that, although the term Svac[C̄] does not appear in
the island formula (2.42) (or (2.56)) of the previous section, the appearance
of the term results from the disjointness between the two universes [25].

We are interested in the behavior of the entropy S(ρA) as we vary the
entanglement temperature 1/β, in particular when the gravitating universe
B contains a black hole. In the papers [25, 26], it was argued that, in the
low entanglement temperature 1/β ≪ 1, because Sno−island < Sisland the von
Neumann entropy (3.5) is equal to the CFT thermal entropy Sth(B), which is
analog of the Hawking’s result for the von Neumann entropy of the Hawking
radiation. This also implies that the entropy linearly grows as we increase the
entanglement temperature 1/β. For sufficiently high temperature Sno−island

becomes larger than Sisland. Thanks to the formula (3.5), in that case, the
von Neumann entropy is given by Sisland, not the naive Hawking-like entropy
Sno−island. Furthermore, in the limit 1/β ≫ 1, Sisland almost coincides with
the Bekenstein-Hawking entropy in the gravitating universe B. In this way,
we can get the Page curve of a black hole in the current setup.

3.1.3 Embedding of two universes

One can study the above setup by embedding the system into larger Minkowski
spacetime M (see figure 14). Each universe is a Rindler wedge in the larger
Minkowski spacetime. The non-gravitating universe A is the left Rindler
wedge of M , and the gravitating one B is the right one. More specifically,
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we define the light-cone coordinates x± = x ± t on each universe18. Also,
for the right Rindler wedge, we define the coordinates (w+, w−) of the larger
Minkowski space M through

w± = e
2π
β

x±
, (3.9)

and for the left one we define w± = −e
2π
β

x±
.

Figure 14: The system with two disjoint asymptotically Minkowski spacetimes,
A and B. In this figure, these spacetimes (universes) are embedded into the larger
Minkowski spacetimes.

The non-gravitating universe A corresponds to the left Rindler wedge
of M , w± < 0, and the gravitating universe B does to the right one of M ,
w± > 0. Also, the thermo-field double state on the universes A, B is mapped
to the (Minkowski) vacuum of M . This situation is similar to the one in the
previous section 2.1.2.

3.2 An asymptotically flat black hole and its radiation
entropy

To use the island formula (3.5), we need to determine the dilaton profile Φ,
which appears in the generalized entropy (3.8). Because the TFD state leads
to the thermal expectation value of the stress-energy tensor 〈Ψ|T±±|Ψ〉 on

18We note that clearly, the light-cone coordinates are different from the Poincare coordi-
nates for the AdS spacetime in the previous section. We can distinguish which coordinate
we use from the context.

37



the gravitating universe B, the dilaton profile is affected by it through the
equations of motion.

In the CGHS model with the action (3.2), we fix the metric to be the flat
one, since by the variation of the action with respect to Φ we get R = 0. It
is convenient to use the compact coordinates (x+, x−) with the flat metric
given by

ds2 =
dx+dx−

cos2 x+ cos2 x− , −π

2
≤ x± ≤ π

2
. (3.10)

The above coordinates are related to the usual coordinates (X+, X−) with
the metric ds2 = dX+dX−, where X± = tan x±. In the x coordinates, the
asymptotic infinities of the spacetime correspond to x+ = ±π

2
and x− = ±π

2
.

Next, by varying the effective action on the universe B with respect to
the metric, we get the equations of motion for the dilaton

∇a∇bΦ− gab∇2Φ =
Λ

2
gab − 8πGN 〈Ψ|Tab|Ψ〉. (3.11)

Generally, in the conformal gauge, the metric is in the form

ds2 = e2ωdx+dx−, (3.12)

and using this metric, the above equations of motion becomes

−e2ω∂±
4
e−2ω∂±

5
Φ = 8π GN〈Ψ| T±±|Ψ〉, ∂+∂−Φ = 8π GN 〈Ψ|T+−|Ψ〉−Λ

4
e2ω.

(3.13)

The Sourceless solution

Firstly we discuss the dilaton profile for the case that the stress-energy tensor
vanishes 〈Ψ|Tab|Ψ〉 = 0. For the current setup, this happens in the limit that
the entanglement temperature is very low, β → ∞. It leads us to the dilaton
profile

Φ0 = φ0 +
|Λ|
4

tan x+ tan x−, (3.14)

where Λ is the parameter of the CGHS model (3.2). As we will see later,
the dilaton profile corresponds to an eternal black hole in asymptotically flat
spacetime, whose Penrose diagram is identical to the usual eternal black hole
(see the left panel of Fig. 15).
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Figure 15: Left: The Penrose diagram of the black hole without the back-reaction.
Right: The Penrose diagram of the black hole with the back-reaction of the source
(3.15). It develops a long wormhole region in its interior.

The Solution with the source

As we increase the entanglement temperature 1/β, we can not ignore the
back-reaction of the stress-energy tensor to the dilaton profile. The expecta-
tion value of the stress-energy tensor for the TFD state (3.3) is given by

〈Ψ|T±±|Ψ〉 = πc

12β2
≡ 〈T 〉β, 〈Ψ|T±∓|Ψ〉 = 0. (3.15)

In this case, we can solve the equations (3.13) for Φ, and we obtain

Φβ = φ0+
|Λ|
4

tan x+ tan x−−Xβ

@
x+ tan x+ + x− tan x−A , Xβ ≡ 4πG〈T 〉β.

(3.16)

The above solution corresponds to an eternal black hole, which has a long
interior region (the right panel of Fig. 15).

3.2.1 Penrose diagrams

Now that we have obtained the dilaton profile (3.16), which we are interested
in, we discuss the causal structure of the spacetime corresponding to the
dilaton profile. Because it turns out that the dilaton profile corresponds to
an eternal black hole, we consider the location of the singularity and the
event horizon of the black hole. Like in the previous subsection 2.1.1, at the
black hole singularity, the dilaton vanishes Φ = 0, and the bifurcation surface
of the black hole is given by the point that satisfies the conditions ∂±Φ = 0.
The Bekenstein-Hawking entropy is given by the dilaton value at the horizon
divided by 4GN .
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The sourceless solution

As a warm-up, we firstly consider the causal structure of the dilaton profile
(3.14) for the vanishing stress tensor. In this case, the locus of the singularity
satisfies

Φ0 = 0 ↔ tan x+ tan x− = −4φ0

|Λ| . (3.17)

In the coordinates (X+, X−), the locus of the singularity is just a hyperbola
X+X− = −4φ0/|Λ|, which is expected. The singularity intersects with the
right future null infinity x+ = π

2
at x− = 0, and it also intersects with the

left one x− = −π
2
at x+ = 0. By the observation, we can fix the location of

the event horizon to x+ = 0 and x− = 0. This is consistent with the location
of the bifurcation surface; that is, the black hole has only one bifurcation
surface at x± = 0. The dilaton value at the surface is given by Φ(0) = φ0,
which is related to the entropy of the black hole, and does not depend on the
parameter Λ.

The solution with the source

Next we consider the dilaton profile Φβ (3.16) for the case that the stress
tensor is non-vanishing. In this case, the geometry of the black hole is even-
tually deformed by the stress-energy tensor (3.15), due to the back-reaction.
Like the above simple case, we can study the location of the singularity in the
deformed spacetime from the dilaton profile Φβ. Near the the right future
null infinity x+ = π

2
, we can approximate the dilaton profile as

Φβ =
Λ

4
tan x+

&
tan x− − 2πXβ

|Λ|

'
, x+ → π

2
, (3.18)

where we dropped the extremal entropy term φ0. From the above equation,
the singularity intersects with the future infinity at x− = x−

c which satisfies

tan x−
c =

2πXβ

|Λ| . (3.19)

As we increase the entanglement temperature 1/β → ∞, Xβ in the right
hand side becomes larger, and the intersecting point goes to right spatial
infinity, x−

c → π
2
with x+ = π

2
. Similarly, the singularity intersects with the

left future null infinity x− = −π
2
at x+ = x+

c satisfing

tan x+
c = −2πXβ

|Λ| , (3.20)
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and in the limit 1/β → 0, it goes to x+
c → −π

2
, so this intersecting point

goes to the left spatial infinity. Because the dilaton profile (3.16) is a time
reflection symmetric x+ ↔ x−, the singularity also intersects with the past
null infinity similarly, i.e., the singularity intersects with the right past null
infinity x− = π

2
at x+ = −x+

c satisfying (3.20) and the left past null infinity
x+ = −π

2
at x− = −x−

c , (3.19). As a result, as we increase the entangle-
ment temperature 1/β → ∞, the singularity approaches to the reflection
symmetric slice x+ = x−, in other words the t = 0 time slice.

The above discussion also determines the location of the event horizon.
The right future horizon is at x− = x−

c satisfying (3.19). Similarly the left
future horizon is at x+ = −x+

c . Because these two future horizons do not
intersect on the reflection symmetric slice x+ = x−, the black hole have a
region in its interior, which is inaccessible causally from asymptotic spatial
infinities (the right panel of figure 15) . Such a region is called the causal
shadow region. The fact that the black hole singularity approaches the reflec-
tion symmetric slice x+ = x− as we increase the entanglement temperature
1/β → ∞ means that the causal shadow region becomes larger in the limit.

We can also check the above observation by considering locations of the
bifurcation surfaces (x+

H , x
−
H) from the conditions ∂±Φβ = 0. Due to the sym-

metry x+ ↔ x− of the dilaton profile (3.16), the locations of the bifurcation
surfaces satisfy x+

H = x−
H ≡ y, and the following condition

|Λ|
4

tan y −Xβ (cos y sin y + y) = 0. (3.21)

In the high entanglement temperature limit 1/β → ∞, the equation (3.21)
reduces to

tan y± =
4Xβy±
|Λ| . (3.22)

These bifurcation surfaces approach to the spatial asymptotic infinities, y± →
±π

2
in the high temperature limit 1/β → ∞. Also, in the limit 1/β → ∞,

the dilaton value at the bifurcation surfaces becomes

Φβ(x
±
H) = φ0 −

(πXβ)
2

|Λ| . (3.23)

We note that the dilaton value at the horizons, Φβ(x
±
H), becomes smaller

as we increase the entanglement temperature 1/β. The fact implies that, as
we increase the entanglement between the two universes β → 0, the black hole
horizon becomes smaller by the back-reaction from the stress-energy tensor.
The behavior is closely related to the fact that a black hole in flat spacetime
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evaporates through the emission of Hawking quanta. Our current setup (the
disjoint setup) indeed can be interpreted as a model of the black hole plus
a radiation system. The degrees of freedom of the Hawking radiation corre-
sponds to the CFT degrees of freedom in our setup, and the entanglement
of the TFD state (3.3) between the two universes A and B corresponds to
the entanglement in the Hartle-Hawking state. Thus the increase of the en-
tanglement between the two universes, (which we do by hand), emulates the
physics of the actual black hole evaporation process at late times, and as the
entropy of the black hole in our current setup becomes small or zero like an
actual evaporating black hole in asymptotically flat spacetime.

However, at the final stage that the black hole has almost evaporated, we
can not trust a semi-classical description of the black hole. This is because,
in a sufficiently large entanglement temperature regime, the two future and
past singularities get close to the reflection symmetric slice x+ = x−, and
in the end, they touch the slice. We can determine the critical temperature
from the dilaton values at the bifurcation surfaces (3.23), at which it becomes
zero.

3.2.2 Quantum extremal surface

Now we will compute the von Neumann entropy S(ρA) of the universe A by
using the island formula (3.5) with (3.8). To do so, we need to consider the
extremalization of the generalized entropy over all possible regions C̄, whose
endpoints are identified with QES surfaces. In the consideration, we assume
that the region C̄ is located on the reflection symmetric slice x+ = x− and
it is given by the union of two regions C̄ = C̄1 ∪ C̄2 , C̄1 : −π

2
< x+ ≤ −πx

2
,

C̄2 : πx
2

≤ x+ < π
2
with 0 < x < 1. Further, we assume that, when the

island phase dominates, the CFT von Neumann entropy of the union of the
two regions can be written as the sum of the CFT von Neumann entropies
of the single region C̄1 and that of C̄2 as the discussion in (2.47). Then the
generalize entropy reduces to a function of the variable x,

Sgen(x) = 2·Φβ(x)

4GN

+
2c

3
log

"
β

πεUV

sinh
π2

2β
(1− x)

#
−2c

3
log

"
1

εUV

sin
π

2
(1− x)

#
,

(3.24)
where εUV is the UV cutoff. One can obtain the above CFT entropy part
by using (A.7) and (A.8) with l = π, L = π. We give a plot of the above
generalized entropy in the top panel of figure 17.

In the high entanglement temperature limit β → 0, the location of the
quantum extremal surfaces almost approaches that of the classical bifurcation

42



surfaces of the black hole. This is because the quantum extremal surfaces
get close to the asymptotic spatial infinities, and thus, in the limit, the CFT
von Neumann entropy part in the generalized entropy becomes almost zero.
Therefore, we can regard the island region C as the causal shadow region in
the black hole interior (figure 16).

Figure 16: The location of the island C in the black hole with the back-reaction,
denoted by the blue line.

From above results, we can approximate the von Neumann entropy S(ρA)
like the discussion of the expression (2.55) and get the following expression

S(ρA) =

.
/0

/1

Sno−island = π2c
3β

β > βc

Sisland = 1
2GN

B
φ0 − (πXβ)

2

|Λ|

C
β < βc,

(3.25)

where βc is the critical inverse entanglement temperature, which is deter-
mined by Sno−island = Sisland. We give the plot of the Page curve for the
above expression (3.25) in the bottom panel of figure 17. Note that in this
section we consider a evaporating black hole in asymptotically flat space-
time, not an eternal black hole in AdS spacetime, thus the resulting Page
curve (the bottom panel of figure 17) is different from the one (figure 12) in
previous subsection 2.1.

3.3 Black hole interior in the presence of shock wave

We have checked that, as we make the entanglement between two universes
stronger, the size of the interior region of the black hole in the gravitating
universe B becomes larger. Thus we can interpret this interior region as the
one that is created by the entanglement between the degrees of freedom in the
gravitating universe B and those in the other universe A. In this subsection,
we investigate the interpretation further by considering local operations in
the gravitating universe B. Such local operations would “perturb” the entan-
glement between two universes. One can model such local operations by local
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Figure 17: Top: Plot of the generalized entropy Sgen(x) as a function of the
size (or the location of the endpoint) of the island in the interior. Bottom: The
resulting Page curve as a function of the entanglement temperature T = 1/β. Here
we set the parameters to be φ0 = 1700, |Λ| = 500, c = 50 in both figures and
β = 1 for left figure. (These plots were obtained in our paper [27] and we show
them.)

operator quench on the gravitating universe B. The local operator quench
on B means that we insert a local operator into the region we are interested
in on the gravitating universe B. The insertion of the local operator induces
shock waves in the two null directions on the universe B, along which the
stress-energy tensor has a delta-function-like peak. Through the equations
of motion (3.13), it can change the geometry of the black hole described by
the dilaton profile.

At first we consider a state |Ψ〉 on the universes A, B, which we prepare
by applying a local operator O in the gravitating universe B into the TFD
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state

|Ψ〉 = (1A ⊗O|B)|TFD〉 = 12
Z(β)

∞3

i=0

e−
β
2
Ei |i〉A ⊗O |ψi〉B . (3.26)

We will consider the von Neumann entropy S(ρA) for the above state by
using the island formula (3.5). Because the insertion of the local operator O
does not change the no-island case Sno−island

19, we focus on the non-empty
island case Sisland given by the generalized entropy,

Sgen = ExtC̄

"
Φ(∂C̄)

4GN

+ Sβ,E[C̄]− Svac[C̄]

#
, (3.27)

where Sβ,E[C̄] means the CFT von Neumann entropy calculated by using the
state (3.26).

Let (x+
0 , x

−
0 ) be the insertion point of the local operator O. Then we get

the reduced density matrix of the universe B

ρB =
trA|Ψ〉〈Ψ|

trA∪B |Ψ〉〈Ψ| =
1

ZO
e−εHO(x+

0 , x
−
0 )ρβ O†(x+

0 , x
−
0 ) e

−εH , (3.28)

where to make the density matrix normalizable we introduced the UV regu-
lator ε different from the UV cutoff εUV in the CFT von Neumann entropy,
and the normalization factor ZO is given by

ZO = 〈O(2iε)O(0)〉β, (3.29)

where we introduced the notation 〈· · ·〉β ≡ tr[ρβ · · · ].
The insertion of the local operator O affects the expectation value of the

stress-energy tensor, thus changes the dilaton profile through the equations
of motion (3.13). The expectation value of the stress-energy tensor is given
by the three point functions tr[ρβT±±OO], and it is given explicitly by (e.g.,
[48, 49]) in the ε → 0 limit

〈Ψ|T++(x
+)|Ψ〉 = πc

12β2
+ EShock δ(x

+ − x+
0 ),

〈Ψ|T−−(x
−)|Ψ〉 = πc

12β2
+ EShock δ(x

− − x−
0 ),

(3.30)

19The fact that the entropy for the no-island case is unchanged in the presence of the
local quench in the universe B can be understood by the direct calculation of the entropy
using the techniques explained in appendix B.
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where EShock is the constant related to the conformal dimension ∆ of the
local operator

EShock =
∆

ε
. (3.31)

Thus, the local quench creates a pair of shock waves in the spacetime, one of
which is left moving, the other is right moving. The delta functions in the
expectation value of the CFT stress-energy tensor manifest the existence of
these shocks. For notational convenience, we write E ≡ EShock below.

3.3.1 Dilaton part

We consider the effect of the shock waves on the dilaton profile Φ in detail.
In the current case with the stress tensor (3.30), the equations of motion
(3.13) become

−e2ω∂±
@
e−2ω∂±Φ

A
= 2Xβ + 8πGNE δ

@
x± − x±

0

A
,

∂+∂−Φ = −Λ

4
e2ω.

(3.32)

We can solve the above equations, and we get the dilaton profile in the
presence of shock wave,

Φ = φ0 +
|Λ|
4

tan x+ tan x− −Xβ(x
+ tan x+ + x− tan x−)

− 8πGNE cos2 x+
0 (tan x

+ − tan x+
0 )θ(x

+ − x+
0 )

− 8πGNE cos2 x−
0 (tan x

− − tan x−
0 )θ(x

− − x−
0 ),

(3.33)

where θ(x) is the Heaviside step function,

θ(x) =

>
1 x > 0

0 x < 0.
(3.34)

3.3.2 Classical extremal surfaces

Next, we determine the classical extremal surfaces in the black hole described
by the dilaton profile (3.33). We will see that the locations of the classical
extremal surfaces highly depend on that of the local operator instead. In the
right wedge of the operator insertion point x± > x±

0 , the dilaton profile is
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equal to the one Φβ,E defined by

Φβ,E = φ0 +
|Λ|
4

tan x+ tan x− −Xβ(x
+ tan x+ + x− tan x−)

− 8πGNE cos2 x+
0 (tan x

+ − tan x+
0 )− 8πGNE cos2 x−

0 (tan x
− − tan x−

0 ).

(3.35)

On the other hand, in the left wedge x± < x±
0 , it coincide with the original

dilaton profile Φ = Φβ,E=0 ≡ Φβ (3.16), see figure 18. We note that if there
is no shock wave, i.e., E = 0, a causal shadow region exists in the interior
of the black hole, thus there are two bifurcation surfaces in the black hole.
Even in the presence of the shock wave, the dilaton profile (3.33) has also
two critical points, one of which is located near the left asymptotic spatial
infinity (x+, x−) = (−π

2
,−π

2
) and the other is located near the right one

(x+, x−) = (π
2
, π
2
). In this subsection, we consider only the local operator

insertions which do not change the location of the left horizon (or the left
bifurcation surface) of the original dilaton profile Φβ. To consider such a
situation, we simply consider the restriction of the range of the operator
insertion point to 0 < x+

0 + x−
0 . Under the restriction, we can consider

only the change of the right critical point below. We can discuss operator
insertions in the region x+

0 + x−
0 < 0 similarly.

Figure 18: The dilaton profile (3.33) in the presence of the shock wave. In the
right wedge of the local operator insertion point, x± > x±0 , we have Φ = Φβ,E with
(3.35). On the left wedge, x± < x±0 , the dilaton profile coincides with Φβ,0, which
is identical to (3.16) .

To specify the right classical extremal surface, it is useful to introduce
characteristic two critical points of the dilaton profile Φ. We denote by
x± = x±

H(0) the first critical point of the undeformed dilaton profile Φβ(x
±)

,i.e.,

∂±Φβ|x±=x±
H(0) = 0 → tan x±

H(0) =
2π

|Λ|Xβ. (3.36)
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The other critical point is the one x± = x±
H(E) of the deformed dilaton profile

Φβ,E (3.35), which satisfies

tan x±
H(E) =

4

|Λ|

(π
2
Xβ + 8πGNE cos2 x0

)
. (3.37)

These critical points are candidates for the classical extremal surfaces
of the full dilaton (3.33), and depending on the operator insertion point
x± = x±

0 , we choose one of them, which gives the smaller dilaton value.

For simplify of the below discussion, we consider the symmetric insertions
x+
0 = x−

0 ≡ x0 instead of considering all possible cases. In such a case, from
the symmetry the above two candidate extremal surfaces are symmetric too,
that is, they are on the reflection symmetric slice : x+

H(0) = x−
H(0) ≡ xH(0),

and x+
H(E) = x−

H(E) ≡ xH(E). Generally, we have the relation xH(0) <
xH(E) due to the effect of the shock wave. In the current setup, there are
three possible cases for the operator insertion points (see figure 18), that is,
the operator insertion points is (1) behind the original horizon x0 < xH(0) ,
(2) in the middle of two horizons, xH(0) < x0 < xH(E) and (3) in the
exterior of the deformed horizon xH(E) < x0.

Case 1

In the case (1), we insert the local operator O into the left region of the
original horizon : x0 < xH(0) (top panel of figure 19). In this case, only the
classical extremal surface is the critical point of the deformed dilaton profile
x± = xH(E) given by (3.37). This is because x± = xH(0) is not a critical
point of the full dilaton profile (3.33), since at this point x± = xH(0) the
full dilaton profile (3.33) becomes the deformed one Φβ,E (3.35), due to the
condition x0 < xH(0). At the classical extremal surface the dilaton value is
given by Φ(xH(E)) = Φβ,E(xH(E)).

Case 2

In the case (2), we insert the local operator O into between the two would-be
classical extremal surfaces xH(0) < x0 < xH(E) (middle panel of figure 19).
In this case, both the two critical points x± = x±

H(0) and x± = x±
H(E) are

classical extremal surfaces of the dilaton profile (3.33).
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Case 3

In the case (3), we insert the local operator O into the right region of the
deformed horizon xH(E) < x0 (bottom panel of figure 19). In this case, only
the classical extremal surface is the critical point of the undeformed dilaton
profile x± = x±

H(0). Again this is because the critical point of the deformed
dilaton profile x± = x±

H(E) is not that of the full dilaton profile (3.33) in
this region. At the classical extremal surface the dilaton value is given by
Φβ(x

±
H(0)).

Figure 19: Three possible locations of the local operator O on the reflection
symmetric slice Σ : x+ = x−. Top : When x0 < xH(0) < xH(E), the classical
extremal surface is located at x± = xH(E). Middle : When xH(0) < x0 < xH(E),
both x± = xH(0) and x± = xH(E) are extremal. Bottom: When xH(0) <
xH(E) < x0, the classical extremal surface is located at x± = xH(0).

3.3.3 CFT entropy part

To compute the generalized entropy (3.27) we need to give the expression of
the CFT von Neumann entropy Sβ,E[C̄] of the reduced density matrix (3.28)
on the region C̄ in the gravitating universe B. Since we are interested in the
high entanglement temperature limit 1/β → ∞, the region C̄ is the union
of two disjoint pieces C̄ = C̄1 ∪ C̄2, as in the discussion of the shockless case
3.2.2. Let the coordinates of C̄ to be as follows;

!
x±
2 = −π

2
,

x±
3 = x3 ± t3,

for C̄1

!
x±
5 = x5 ± t5,

x±
6 = π

2
.

for C̄2
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In the high entanglement temperature limit β → 0 limit, x±
3 → x±

2 and
x±
5 → x±

6 holds. Therefore, if there is no shock wave E = 0, the CFT thermal
von Neumann entropy on the region C̄ = C̄1 ∪ C̄2 at finite temperature β is
given by

Sβ[C̄] =
c

6
log

"
β

πεUV

sinh

&
π

β

@
x+
3 − x+

2

A'#
+

c

6
log

"
β

πεUV

sinh

&
π

β

@
x−
3 − x−

2

A'#

+
c

6
log

"
β

πεUV

sinh

&
π

β

@
x+
6 − x+

5

A'#
+

c

6
log

"
β

πεUV

sinh

&
π

β

@
x−
6 − x−

5

A'#
.

(3.38)

Also we need the CFT vacuum von Neumann entropy for C̄ = C̄1 ∪ C̄2, and
the entropy is given by

Svac[C̄] =
c

6
log

"
1

εUV

sin
@
x+
3 − x+

2

A#
+

c

6
log

"
1

εUV

sin
@
x−
3 − x−

2

A#

+
c

6
log

"
1

εUV

sin
@
x+
6 − x+

5

A#
+

c

6
log

"
1

εUV

sin
@
x−
6 − x−

5

A#
.

(3.39)

CFT entropy for a single interval Next, we consider the CFT thermal
von Neumann entropy Sβ,E[C̄] in the presence of a local quench. This kind of
von Neumann entropy (entanglement entropy) was discussed in [50], which
we will review in appendix B. As a warmup, we study the simple case of the
von Neumann entropy Sβ,E[C̄] of the single interval,

C̄ : x±
5 < x± < x±

6 =
π

2
, (3.40)

whose endpoint is located at the asymptotic spatial infinity x±
6 = π

2
. To

introduce the CFT von Neumann entropy explicitly, we firstly fix the region
C̄, i.e., fix x±

5 .

This von Neumann entropy can be evaluated, at first writing the quantity
trρn

C̄
in terms of the four point function involving twist operators,

trρnC̄ = tr
4
ρβ O⊗n(x1)σn(x5)σ−n(x6)O⊗n(x4)

5
, (3.41)

after the derivative of it with respect to n, and taking n → 1 limit. Here
x1 and x4 are given by (B.4), which are related to the operator insertion
point x0. When the CFT has the large central charge c ≫ 1 and the sparse
spectrum, the above four-point function can be approximated by the vacuum
conformal block with an appropriate choice of branch [50]. We explain this
computation in detail in appendix B.
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The expression of the CFT von Neumann entropy is constrained by the
causal relationship between the operator insertion point x± = x±

0 and the
endpoint x±

5 of the region C̄ [48–59]. Indeed, the local operator insertion
induces a pair of shock waves, one of which is left moving and the other is
right moving, and roughly speaking, we can interpret the pair as an entangled
pair of particles. In this interpretation, the CFT von Neumann entropy
can be non-trivial only when one of the shock waves enters the domain of
dependence of the region D[C̄] and its “partner” does not. Thus, for the
fixed endpoint x± = x±

5 of the region D[C̄], there are four possible forms of
the von Neumann entropy, depending on the relative position of the endpoint
and the operator insertion point as in figure 20.

(1) When the endpoint x5 is in the right wedge of the operator insertion
point x0, i.e., x

±
5 > x±

0 , both left and right moving shock waves do not enter
the domain of dependence D[C̄] of the region C̄. Thus, the shock waves
can not change the entanglement between the region C̄ and its complement
region, and the CFT von Neumann entropy of the region C̄ is equal to that
for the shockless case Sβ[C̄] owing to causality.

(2) Similarly, when the endpoint x5 is in the left wedge of the operator
insertion point x±

0 > x±
5 , both left and right moving shock waves enter the

domain of dependence D[C̄], and again owing to causality the von Neumann
entropy is equal to that for the shockless case Sβ[C̄].

(3) When the local operator is inserted in the causal future or past of
the endpoint, the CFT von Neumann entropy can be changed by the shock
waves. When the operator insertion point is inside the future light-cone of
the endpoint x5, i.e., x

−
5 > x−

0 and x+
0 > x+

5 , then the left moving one of the
shock waves contributes to the CFT von Neumann entropy non-trivially. In
this case, the difference between the non-trivial CFT von Neumann entropy
and the trivial one, ∆S ≡ Sβ,E[C̄]− Sβ[C̄], is given by [50]

∆SF =
c

6
log

6
β

πε

sin πα

α

sinh π
β
(x+

0 − x+
5 ) sinh

π
β
(x+

6 − x+
0 )

sinh π
β
(x+

6 − x+
5 )

7
. (3.42)

On the other hand, when the local operator is inserted inside the past
light cone of the endpoint x5, i.e., x

−
0 > x−

5 and x+
5 > x+

0 , then only the right
moving one of the shock waves contributes non-trivially, and the non-trivial
part is given by

∆SP =
c

6
log

6
β

πε

sin πα

α

sinh π
β
(x−

0 − x−
5 ) sinh

π
β
(x−

6 − x−
0 )

sinh π
β
(x−

6 − x−
5 )

7
. (3.43)
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Figure 20: Three possible causal relations between the operator at x± = x±0 and
the interval C̄. Top and Middle : The local operator is spatially separated from
C̄. In this case, the non-trivial part of the CFT entropy ∆S in the generalized
entropy is vanishing owing to causality. Bottom: When the local operator and
the C̄ are causally connected, the right mover emitted by the quench can enter the
causal diamond of D[C̄]. Only in this case, ∆S is non vanishing. In particular,
∆S is given by (3.42).

CFT entropy for two disjoint intervals In evaluating the generalized
entropy, we need to consider the CFT von Neumann entropy of two disjoint
intervals C̄ = C̄1∪ C̄2. The possible form for the CFT von Neumann entropy
is constrained by causality. In the previous subsection, we saw that, as we
increase the entanglement temperature 1/β → ∞, the size of two intervals
become smaller C̄1, C̄2 → 0. From the observation, it is reasonable to
approximate the von Neumann entropy of two disjoint intervals by the sum
of the von Neumann entropies of the single interval C̄1 and that of C̄2,

S[C̄] ≈ S[C̄1] + S[C̄2]. (3.44)

Thus it is enough to consider the von Neumann entropy for a single interval
in evaluating the generalized entropy in the high entanglement temperature
limit 1/β → ∞. This discussion is very similar to that of (2.47).
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For simplicity, we assume the shock waves do not enter the domain of
dependence of the left interval C̄1, i.e., x

±
0 > x±

3 , thus in this case only the
von Neumann entropy of the right region S[C̄2] can be changed by the shock
waves non-trivially.

3.3.4 Quantum extremal surfaces

We will study the behavior of the dominant quantum extremal surface as
we change the operator insertion point x0. In particular, we will mainly
study it in the high entanglement temperature limit, where the island con-
tribution dominates, and in such a situation the classical extremal surface
is located near the spatial asymptotic infinity x± = π

2
. We decompose the

CFT von Neumann entropy Sβ,E[C̄]−Svac[C̄] in (3.27) , into the trivial part
Sβ[C̄] − Svac[C̄] which does not contain the effect of the local quench, and
the remaining one ∆S = Sβ,E[C̄] − Sβ[C̄]. In this decomposition, in high
entanglement temperature limit the former part does not give almost no
contribution to the generalized entropy and we ignore the trivial part below.
As we noted before in 3.2.2, under high entanglement temperature limit the
classical extremal surfaces almost coincides with the bifurcation surfaces of
the black hole. Thus, now we will mainly study the non-trivial part of the
CFT von Neumann entropy to get the non-trivial quantum extremal surfaces.
Before studying the case that the non-trivial part of the CFT von Neumann
entropy does not give non-trivial contributions, we explain two limiting cases
where the non-trivial part vanishes.

At first, when the local operator is inserted into the deep interior of the
black hole x0 ∼ 0, the location of the quantum extremal surface almost
coincides with that of the bifurcation surface of the black hole, which is
deformed by the shock waves, i.e., x± = x±

H(E) given by (3.37). The reason
for the above coincidence is that we insert the local operator into the deep
interior region of the black hole x0 ∼ 0, which is spatially separated from
the bifurcation surface of the deformed black hole x± = x±

H(E), thus, in this
case, the non-trivial CFT entropy part ∆S vanishes owing to causality.

On the other hand, when the local operator is inserted into the exterior
of the deformed black hole, i.e., x0 > xH(E), because the non-trivial CFT
entropy part ∆S vanishes in this case again, the location of the quantum ex-
tremal surface almost coincides that of the bifurcation surface of the original
undeformed black hole at x± = x±

H(0) given by (3.36). Below, we explain
details of the above behavior of the quantum extremal surfaces.

Before the explanation, we note that the generalized entropy which we
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consider have the contribution coming from the left quantum extremal sur-
face, which is independent of the operator insertion point x±

0 as long as we
consider the operator insertion for the region x+

0 +x−
0 > 0 (and x±

0 > x±
3 ). In

the high temperature limit, the contribution from the left quantum extremal
surface is given by (3.23) divided by 4GN and we denote the contribution by
SL.

Then, we have the following three cases for the generalized entropy from
the above discussions.

Case 1

When we insert the local operator inside the original horizon x0 < xH(0)
(the top panel of figure 20), the location of the (right) quantum extremal
surface almost coincides with that of the bifurcation surface of the black hole
which is deformed by the shock waves. In this case, since the location of the
quantum extremal surface is at x± = xH(E) and the non-trivial CFT part
vanishes ∆S = 0, we obtain the following generalized entropy

Sgen =
Φβ,E(xH(E))

4GN

+ SL

=
1

4GN

6
φ0 −

4

|Λ|

6&
πXβ

2

'2

+ 8π2GNXβE cos2 x0

7

− 128π2G2
N

|Λ| E2 cos4 x0 + 16πGNE cos2 x0 tan x0

7
+ SL.

(3.45)

Case 2

When we insert the local operator in between two candidate quantum ex-
tremal surfaces (the middle panel of figure 20), xH(0) < x0 < xH(E), the
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generalized entropy is given by

Sgen = Min

!
Φβ(xH(0))

4GN

,
Φβ,E(xH(E))

4GN

$
+ SL

=
1

4GN

6
φ0 −

(πXβ)
2

|Λ|

+Min

!
0,−16πGNE cos2 x0

&
2πXβ

|Λ| +
16πGN

|Λ| E cos2 x0 − tan x0

'$7
+ SL.

(3.46)
In this case, the non-trivial CFT entropy part vanishes again ∆S = 0.

We can explicitly give the point x±
0 = xT at which the two contribution

coincides satisfies the following equation

tan xT =
2πXβ

|Λ| +
16πGN

|Λ| E cos2 xT . (3.47)

Case 3

When we insert the local operator outside the deformed horizon xH(E) < x0

(the bottom panel of figure 20), we have the following trivial generalized
entropy

Sgen =
Φβ (xH(0))

4GN

+ SL

=
1

4GN

6
φ0 −

(πXβ)
2

|Λ|

7
+ SL.

(3.48)
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Net result

From above results, we obtain the following generalized entropy as the func-
tion of the operator insertion point x0 in the high temperature limit,

Sgen (x0) =

.
///////////0

///////////1

1

4GN

6
φ0 −

(πXβ)
2

|Λ|

− 2E cos2 x0

&
2πXβ

|Λ| +
2

|Λ|E cos2 x0 − tan x0

'7
+ SL for x0 < xT

1

4GN

6
φ0 −

(πXβ)
2

|Λ|

7
+ SL for xT < x0.

(3.49)
We display the plots of the above generalized entropy for two different E
cases in figure 21 20.

The plots show that when the local operator is inserted outside the black
hole horizon, the generalized entropy is not affected by the local operator and
remains unchanged, while when it is inserted inside the black hole horizon,
the generalized entropy is changed by it and decreases. The plots also show
that as we insert the local operator into the deeper interior of the black hole,
the generalized entropy becomes smaller significantly.

This is because if we insert the local operator inside of the horizon and
create the shock waves at the insertion point, the resulting black hole have the
longer interior wormhole region compared to the shockless case, which is seen
from the relation xH(0) < xH(E), and as a result the entropy of the black hole
becomes smaller Φβ(xH(0))/4GN > Φβ,E(xH(E))/4GN . Thus, in some sense,
what the shock waves do is to make the black hole further “evaporate”. The
black hole in the gravitating universe B has been evaporating owing to the
entanglement between two universes A, B, and the local operator insertion
accelerates the evaporation, which means that the entropy of the black hole
decrease faster as a function of the entanglement temperature β.

We can get the actual von Neumann entropy of the universe A, S(ρA),
by using the formula (3.5), that is, the entropy is given by the minimum
between two von Neumann entropy Sno−island and Sgen (x0). The plot of the
actual von Neumann entropy S(ρA) is shown in figure 22. Because we are

20 We obtained the plots in our paper [27] which show in this section by full numer-
ical calculations through the faithful extremization of the generalized entropies, unlike
analytical expressions appearing in the body of this section.
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Figure 21: Plots of the generalized entropy Sgen, (3.49), as the function of x0
(0 ≤ x0 ≤ π/2) with φ0 = 1700, β = 1, |Λ| = 500, c = 50, ε = 0.1. ∆ = 8 (E =
80)(top) and ∆ = 1 (E = 10)(bottom). The dotted line is the value of the entropy
for the shock-less case, ∆ = 0 (E = 0). (These plots were also obtained in our
paper [27] and we show them again.)

interested in the behavior of the von Neumann entropy S(ρA) as a function of
the entanglement temperature 1/β, we give the plot (figure 22) as a function
of 1/β with fixing the operator insertion point x± = x±

0 . As the entangle-
ment temperature becomes higher, the bifurcation surface of the black hole
gets closer to the asymptotic spatial infinity, and the local operator initially
located outside of the black hole horizon is absorbed into the black hole. Like
the expression (3.25), we can again see that, above some critical tempera-
ture βc, the dominant contribution to the von Neumann entropy S(ρA) is
given by the generalized entropy Sgen(x0) (3.49). In particular, in the high
entanglement temperature limit 1/β → ∞, because the local operator goes
into the deep interior of the black hole against to the black hole horizon of

57



Figure 22: Plots of the Page curves corresponding to the shockless case (3.25)
and the case with the shock (3.50) as the function of T = 1/β with fixing the
location of the operator, which we place on the reflection symmetric slice x+0 = x−0 .
φ0 = 1700, |Λ| = 500, c = 50, ∆ = 10, ε = 0.01, x+0 = x−0 = 1.343. The island
begins dominating at T ≃ 0.993 and the location of the corresponding QES is
x+H(0) = x−H(0) ≃ 1.328. The von Neumann entropy with a shock decreases faster
than the one without it. (These plots were also obtained in our paper [27] and we
show them again.)

the low entanglement temperature regime, the generalized entropy Sgen(x0)
is given by the first line of (3.49). Thus an approximate expression for the
von Neumann entropy is given by

S(ρA) =

.
/////////0

/////////1

Sno−island =
π2c

3β
β ≫ βc

Sgen(x0) =
1

4GN

6
φ0 −

(πXβ)
2

|Λ|

− 2E cos2 x0

&
2πXβ

|Λ| +
2

|Λ|E cos2 x0 − tan x0

'7
+ SL β ≪ βc.

(3.50)

Since the above expression (3.50) is clearly different from the one (3.25)
without the local operator insertion, we consider the difference between them.

In the previous case (3.25), above the critical temperature βc, the von
Neumann entropy decreases as

Sisland =
1

4GN

6
φ0 −

(πXβ)
2

|Λ|

7
+ SL. (3.51)
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On the other hand, in the presence of the shock waves, the von Neumann
entropy (3.50) decreases faster than the one without the shock waves (3.25)
owing to the additional terms coming from the shock wave, which are pro-
portional to the constant E. This also supports the point of view that the
shock waves accelerate the evaporation of the black hole in our setup.

3.3.5 QESs with non-trivial CFT entropy

We have focused on the cases that the non-trivial part of the CFT von
Neumann entropy ∆S = Sβ,E[C̄]− Sβ[C̄] vanishes by choosing the operator
insertion point to be on the time reflection symmetric slice x+

0 = x−
0 . We

note that, in such cases, the quantum extremal surfaces and the local operator
insertion point are spatially separated. As a result, the quantum extremal
surfaces coincide with the classical extremal surfaces, which we can identify
with the bifurcation surfaces of the black hole.

On the other hand, when the local operator is inserted into the causal
future of the original horizon x± = x±

H(0), i.e., x
+
0 > x+

H(0), x
−
0 < x−

H(0), then
the non-trivial part of the CFT von Neumann entropy does not vanish.

Firstly, we determine the location of the classical extremal surface. The
full dilaton profile is still given by (3.33), and since we expect that the new
classical extremal surface is in the causal past of the local operator insertion
point, we extremize

ΦR(x
±) = φ0 +

|Λ|
4

tan x+ tan x− −Xβ(x
+ tan x+ + x− tan x−)

− 8πGNE cos2 x−
0 (tan x

− − tan x−
0 ).

(3.52)

From the above dilaton profile ΦR(x
±), we get the critical point (x+

H(E), x−
H(E))

satisfying

x−
H(E) = x−

H(0), tan x+
H(E) = tan x+

H(0) +
32πGNE

|Λ| cos2 x−
0 . (3.53)

We note that the above critical point (x+
H(E), x−

H(E)) is different from the
one (x+

H(E), x−
H(E)) of Φβ,E (3.35).

The shock wave induces the shift of the horizon along the x+ direction.
In order for the critical point (x+

H(E), x−
H(E)) to be in the causal past of the

local operator insertion point, we need the condition

tan x+
H(0) +

32πGNE

|Λ| cos2 x−
0 < tan x+

0 . (3.54)
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Next to determine the location of the quantum extremal surface x± = x±
Q1

in the same situation, we consider the generalized entropy obtained from
(3.42),

Sgen(x
±) =

ΦR(x
±)

4GN

+
c

6
log

6
β

πε

sin πα

α

sinh π
β
(x+

0 − x+
5 ) sinh

π
β
(x+

6 − x+
0 )

sinh π
β
(x+

6 − x+
5 )

7

+ Sβ[C̄]− Svac[C̄] + SL

(3.55)
where SL is the contribution from the left extremal surface, as in the dis-
cussion in 3.3.4. In the high temperature limit, SL ≈ Φβ(x

±
H(0))/4GN with

(3.23).

We consider the critical point of the above generalized entropy (3.55).
Because the non-trivial part of the CFT entropy ∆S does not contribute to
its derivative with respect to x−, tan x+

Q1
is still given by

tan x+
Q1

= tan x+
H(0) +

32πGNE

|Λ| cos2 x−
0 . (3.56)

On the other hand, the derivative with respect to x+ is modified by ∆S.
By ignoring the trivial CFT entropy part Sβ[C̄]− Svac[C̄], we obtain

tan x−
Q1

=
4

|Λ|

6
π

2
Xβ +

cπ

6β
cos2 x+

Q1

*
1

sinh π
β
(x+

0 − x+
Q1
)
− 1

sinh π
β
(x+

6 − x+
Q1
)

+7
.

(3.57)
Since the above conditions determine x±

Q1
, by substituting the coordinates

x±
Q1

into the generalized entropy we can give the expression of the generalized
entropy (3.55).

There is also another quantum extremal surface, x± = x±
Q2
, which is

located at the right wedge of the local operator insertion point x±
Q2

> x±
0 . In

this case, the non-trivial CFT entropy part ∆S vanishes, thus the quantum
extremal surface x±

Q2
almost coincides with the bifurcation surface of the

original black hole x±
Q2

= x±
H(0).

Although there are two candidates for the quantum extremal surface at
x± = x±

Q1
and x± = x±

Q2
, they can not appear simultaneously owing to

the non-symmetric insertion of the local operator. If the local operator is
inserted into the causal future of the bifurcation surface of the original black
hole x+

0 > x+
H(0), x

−
0 < x−

H(0), then the bifurcation surface is shifted to the
point (x+

H(E), x−
H(E)). In this case, the candidate quantum extremal surface

at x±
H(0) = x±

Q2
is no longer extremal, and only the other candidate quantum

60



extremal surface x± = x±
Q1

becomes the quantum extremal surface. On the

other hand, if the local operator x±
0 is inserted into the exterior of the original

horizon x±
0 > x±

H(0), then x± = x±
Q2

becomes the quantum extremal surface.
Thus, we obtain the generalized entropy

Sgen,E(x
+
0 , x

−
0 ) =

>
Sgen(x

±
Q1
) for x−

H(0) > x−
0

Sgen(x
±
Q2
) for x−

H(0) < x−
0 .

(3.58)

In the high entanglement temperature limit, we can get the generalized en-
tropy Sgen(x

±
Q1
) by evaluating it at the point specified by (3.56) and (3.57)

into the expression (3.55). Sgen(x
±
Q2
) almost coincides with the entropy of

the original black hole Φβ(x
±
H(0))/4GN . From the formula (3.5), the von

Neumann entropy is given by the minimum between the above generalized
entropy and the thermal CFT von Neumann entropy Sno−island,

S(ρA) = Min {Sno−island, Sgen,E} . (3.59)

Plot of the result

We consider the case that although the location of the left moving shock wave
is fixed x+ = x+

0 , and we can change that of the right moving one as shown
in figure 23. We consider the case x+

0 > x+
H(E) so that the local operator

insertion point can move between the interior and the exterior of the black
hole. Under the above conditions, we plot the generalized entropy Sgen,E(x

±
0 )

as a function of x−
0 in figure 24.

As we decrease the value of x−
0 , the local operator is “falling” into the

region behind the black hole horizon, and we are interested in the behavior
of the von Neumann entropy as the local operator is falling to the black hole
horizon and eventually enters the black hole interior.

This plot in figure 24 for the asymmetric local operator insertion is com-
pared to the similar plot shown in figure 21, where we insert the local operator
on the reflection symmetric slice (3.49), as in the top panel of figure 23.

The two plots (fig 24 and 21) have the common feature that when we
insert the local operator outside the black hole horizon x− > x−

H(0), the two
generalized entropy almost coincides with the classical entropy of the original
black hole, that is, the Bekenstein-Hawking entropy of the black hole, which
is given by Φβ(x

±
H(0))/4GN with (3.23). This is because the non-trivial CFT

entropy part ∆S vanishes owing to the space-like separation between the
local operator insertion point and the quantum extremal surface.
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Figure 23: Top: The operator inserted on the time reflection symmetric slice
(the blue line). In this case the operator is spatially separated from the bifurcation
surface of the black hole at x± = x±H(0). (The black hole horizon is drawn by the
red lines.) Bottom: The operator inserted on the non time reflection symmetric
slice. In this case, the bifurcation surface can causally contact with the operator.

On the other hand, when we insert the local operator into the black
hole interior x−

0 < x−
H(0), their behaviors of the generalized entropy are

different. In particular, we can see that there is a bump in the plot for the
asymmetric insertion (figure 24), however, for the symmetric insertion (figure
21), there is no such a bump. The presence of the bump is related to the
fact that the quantum extremal surface for the asymmetric insertion is in
the causal past of the local operator insertion point, i.e., the non-trivial CFT
entropy part ∆S does not vanish. On the other hand, for the symmetric
local operator insertion, owing to the space-like separation between the local
operator insertion point and the quantum extremal surface, the non-trivial
CFT entropy part ∆S vanishes.

We can interpret the bump in figure 24 as a result of the dynamics of
the black hole. In order to explain the interpretation, it is useful to follow
the plot backward in the x−

0 direction. As we decrease x−
0 , the black hole

becomes larger owing to the absorption of the local operator, and this gives
the sudden increase of the generalized entropy in the plot. After the increase
of the black hole size, the black hole starts to evaporate again, and therefore,
the generalized entropy starts decreasing.
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Figure 24: Plot of the generalized entropy given in (3.58) as a function of x−0 with
fixing x+0 (the case of the non-symmetric insertion), with the choice of parameters
φ0 = 1700, |Λ| = 500, c = 50, β = 1, ∆ = 7, ε = 0.1, x+0 = 1.373. The dotted line
corresponds to the shockless case ∆ = 0. (These plots were also obtained in our
paper [27] and we show them again.)

One can regard the difference between these behaviors of the two gener-
alized entropies as the difference in the ways of these two insertions. The
symmetric operator insertion can be regarded as a local operation, since, in
the symmetric case, the local operator is inserted in either the domain of de-
pendence of the island region D[C] (, which we can consider as a part of the
radiation system on the non-gravitating universe A) or its causal complement
region D[C̄] in the universe B, as in the top panel of figure 23. Because they
are local operations, they can only decrease or unchanged the von Neumann
entropy, not increase21. On the other hand, local operators inserted asym-
metrically can enter a region that is behind the horizon and belong to neither
of the two domains of dependence D[C] and D[C̄] (the bottom panel of figure
23). Thus, these asymmetric operator insertions are not local operations, so
they can increase the entanglement between two regions C and C̄, leading to
the bump in figure 24.

21This property is used to characterize entanglement in quantum information theory,
see details in, e.g., [60].
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3.3.6 The von Neumann entropy

We can give the von Neumann entropy S(ρA) by using the formula (3.59)
with the above results. Again we plot the von Neumann entropy S(ρA) as
a function of the entanglement temperature 1/β with fixing the operator
insertion point x± = x±

0 in figures 25 and 26. As we increase the entan-
glement temperature, the location of the bifurcation surface approaches the
asymptotic spatial infinity, so the black hole horizon expands, and the local
operator is absorbed into the black hole. Thus, in this case, we can again
observe the same physics as in the case that we vary x−

0 .

Figure 25: Plots of the Page curves corresponding to the shockless case (3.25)
and the case with a shock wave (3.59) as the function of the entanglement
temperature T = 1/β with fixing the position of the operator, which is not
on the reflection symmetric slice, ie x+0 ∕= x−0 , with the choice of parameters
φ0 = 1700, |Λ| = 500, c = 50, ∆ = 7, ε = 0.1, x+0 = 1.373, x−0 = 1.332. The
island begins dominating at T ≃ 0.993 and the location of the corresponding QES
is x+H(0) = x−H(0) ≃ 1.328. (These plots were also obtained in our paper [27] and
we show them again.)

When we choose the operator insertion point and the conformal dimension
of the local operator suitably, the behavior of the resulting von Neumann
entropy becomes complicated as in figure 26. It is reasonable to compare
this behavior with that of the von Neumann entropy for the shockless case
(3.25). In the latter case where there is no shock wave, the transition between
the no-island entropy Sno−island and the island entropy Sisland happens only
once. However, in the former case, the transition between the no-island and
island entropy can happen multiple times.
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Figure 26: Similar plot to figure 25 but the shock wave has a larger energy than
the previous case. We plot the Page curve only around the points at which the
non-trivial dominance changes happen unlike the previous case (figure 25). The
Page curve is given by the minimum between them. We set the parameters to be
φ0 = 1700, |Λ| = 500, c = 50, ∆ = 8, ε = 0.01, x+0 = 1.373, x−0 = 1.332. In this
case, the transitions between them happen several times. The first transition is at
T ≃ 0.993 and the location of the corresponding QES is x+H(0) = x−H(0) ≃ 1.328.
(These plots were also obtained in our paper [27] and we show them again.)

Indeed, in figure 26, we can observe that at sufficiently low entanglement
temperature, the no-island entropy Sno−island dominates, and by increasing
the entanglement temperature, the island entropy Sisland becomes the dom-
inant contribution like the behavior of the Page curve without the shock
wave. However, this is not the end of the story. Namely, as we further in-
crease the entanglement temperature, the black hole horizon expands, and
thus the local operator is falling to the black hole horizon. This results in
the size change of the black hole and the sudden increase of Sisland. Now
that the island entropy Sisland, which is affected by the local operator, gets
larger than the no-island entropy Sno−island, above this temperature the no-
island entropy Sno−island again dominates. Again as we further increase the
entanglement temperature, the size of the black hole becomes smaller ow-
ing to the emissions of Hawking quanta, which corresponds to the increase
of the entanglement temperature, thus eventually the island entropy Sisland

becomes smaller than the no-island one Sno−island, and it becomes dominant
once again.
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4 The Island formula and Baby Universes

In this section, we focus on the island formula in a setup that a AdS black
hole is coupled to the bath CFT like in section 2 from a different perspective.
In particular, we reconsider a treatment of the ensemble of quantum states
that appears in a semi-classical description of a black hole by introducing
new degrees of freedom, which we call the baby universe, and discuss the
relationship between the island formula and the baby universe. We also
discuss some physical implications of the baby universe. We note that the
baby universe explained below is different from the non-gravitating universe
A in previous section 3.

The introduction of the baby universe is related to the random fluctua-
tions of an evaporating black hole. At first, we explain this relation briefly.

In principle, the evaporation process of a black hole is described by the
bipartite system associated with the Hilbert space of the black hole HBH

and that for the Hawking radiation HR. In this case, the state on this total
system is given by an entangled state between the two systems HBH and
HR. Of course, since the description of such an entangled state involves a
quantum theory of gravity and such an entangled state depends on the detail
of the quantum gravity, thus it seems impossible to study such a system
efficiently. However, as was firstly discussed by Page [5], one can obtain a
time variation of the von Neumann entropy of the Hawking radiation, which
is consistent with the unitarity of quantum gravity, by taking the average
of the entropy over the random fluctuations in the entangled state. This
averaging operation enables us to have a partially fine-grained description
of the evaporating black hole while maintaining semi-classical properties, to
the extent of obtaining results, which is consistent with the principles of
quantum theory. Indeed, in such a prescription, the island formula enables
us to recover the Page curve within a semi-classical description of gravity.
In particular, the Euclidean replica wormholes nicely capture the effects of
these random fluctuations and their averaging geometrically.

We focus on a description of these random fluctuations in a Lorentzian
spacetime in the semi-classical regime. We argue that the averaging over the
random fluctuations can be “purified” by introducing an auxiliary system,
which is often called a baby universe and entangled with the original space-
time. This new spacetime, the baby universe, is connected to the original
spacetime with the black hole by an Einstein-Rosen (ER) bridge correspond-
ing to the entanglement between the two spacetime. One can think of the
baby universe as accommodating partially fine-grained information of the
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evaporating black hole (see figure 29). It is enough to use such information
to derive the Page curve.

Below we will see the above discussion in more detail and explain some
physical implications.

4.1 Baby Universe and Ensemble nature of Semi-Classical
Gravity

In this subsection, we explain the role of the baby universe in the evaluation of
the von Neumann entropy of Hawking radiation through the island formula.

For this purpose, we begin with the fact that we have two distinct de-
scriptions of a quantum theory of gravity. One of them is the fine-grained
description, and the other is the coarse-grained one.

In the first full-fledged fine-grained description of quantum gravity, we
have a sufficient number of observables (i.e., the complete set of operators of
quantum gravity) to distinguish quantum states completely. Notice that, in
this fine-grained, we can perform measurements with arbitrary precision. We
focus on the gravitational system which has a black hole emitting Hawking
quanta by the Hawking radiation. In the full-fledged fine-grained microscopic
description, in the system a state has the following form,

|ΨM〉 =
N3

i=1

k3

α=1

FM
iα |ψi〉BH |α〉R , (4.1)

where FM
iα is a fixed number. Here we introduced the orthonormal bases

|ψi〉BH of the Hilbert space HBH for micro-states for the black hole, and
|α〉R for the Hilbert space HR for the Hawking quanta participating in the
entanglement between the black hole and the Hawking radiation. N and k
are the dimensions of their two Hilbert spaces.

The second description of the system is the coarse-grained one by using
a semi-classical gravitational theory, where we have a limited number of ob-
servables, i.e., a subset of the complete set of observables of quantum gravity,
or coarse-grained observables such as thermodynamical quantities. The spa-
tial and time resolution of such observables are much worse than the Planck
scale. In this description, the precise measurement of the coarse-grained ob-
servables can not fully specify the full quantum state of the full theory, but
at best only specifies a set of states that have the same expectation values
of the coarse-grained observables and correspond to the same semi-classical
spacetime geometries.
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Due to the limited number of observables and also to the fact that the
resolution is much worse than the Planck scale, one is forced to describe the
system in a coarse-grained way, in terms of a mixed state, i.e., an ensemble of
states {pM , |ΨM〉}M , where pM is a probability distribution, which we explain
later. This ensemble includes the class of the states |ΨM〉 given by

|ΨM〉 =
N3

i=1

k3

α=1

CM
iα |ψi〉BH |α〉R , (4.2)

with the random coefficient matrix CM
iα .

Semi-classically we can not distinguish two such states |ΨM〉, |ΨN〉 , which
have different random coefficients CM , CN . This suggests that a coarse-
grained observer describes the state by the mixed state as follows,

ρBH∪R =
3

M

pM |ΨM〉〈ΨM | , (4.3)

where pM is the Gaussian probability distribution determined by the ensem-
ble of states or random coefficient matrix CM

iα . Explicitly the probability
distribution is given by (e.g., [61, 62])

pM =

&
Nk

π

'Nk

exp
@
−Nk tr(CMCM†)

A
, (4.4)

and it satisfies the normalization condition
D

M pM = 1. See also (C.1)-
(C.3) in appendix C. We also note that the coefficients Ciα are satisfying the
following relationship,

〈1〉 = 1

〈CiαC
†
βj〉 =

1

kN δijδαβ

〈CiαC
†
βjCkγC

†
δl〉 =

1

(kN )2
(δijδαβ · δklδγδ + δilδαδ · δjkδβγ)

〈(Πn
a=1Ciaαa)(Π

n
b=1C

†
βbjb

)〉 = 1

(kN )n
(all possible contractions of indices)

〈(Πn
a=1Ciaαa)(Π

m
b=1C

†
βbjb

)〉 = 0 for m ∕= n
(4.5)

where 〈·〉 means the average over the random coefficient matrix CM
iα .

One can consider the randomness of the coefficient in the state (4.2) as the
consequence of the highly chaotic dynamics of a black hole. More explicitly,
the randomness can be understood as follows: Suppose that an observer tries
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to determine the fine-grained state (4.1) by measurement of observables. To
do so, the observer needs to perform a measurement with the Planck scale
precision. However, for a coarse-grained observer, the measurement resolu-
tion is much worse than the Planck scale. Note that during the measurement
time-scale, the microscopic state can time-evolve. Thus, if the measurement
time-scale is much longer than the Planck scale, the microscopic state can
time-evolve to almost all possible states of the form (4.2). In this way, a
coarse-grained observer sees the black hole state as the state (4.2) with ran-
domness. From the above discussion, we can intuitively understand why
the randomness appears in the semi-classical description of the black hole
dynamics.

Once we coarse-grain the system, we get the mixed state (4.2), not the
pure state (4.1), and apparently we lose the microscopic details of the original
state (4.1). However, within the coarse-grained description, we can compute
some aspects of the fine-grained entropy, which is the von Neumann entropy
calculated by using the fine-grained description, of Hawking radiation by
purifying this mixed state (4.2) by introducing an auxiliary system HBU ,
which we often call the baby universe. For instance, the recent understanding
of the island formula suggests that by the purification, we can capture some
part of fine-grained information of the Hawking radiation while using the
semi-classical description. The related discussions on random fluctuations in
black hole physics can be found in, e.g., [63–65]. We also note that Gaussian
random fluctuations have a geometric interpretation in terms of the end-of-
the-world branes in two-dimensional JT gravity [24].

We note that to purify the original system with the mixed state (4.3), we
need to introduce an auxiliary system HBU whose Hilbert space dimension
is at least equal to or greater than that of the original system. In particular,
the dimension of the baby universe Hilbert space HBU depends on the coarse-
graining procedure we consider. By using this baby universe Hilbert space,
one can give the simplest purified state by

|Φ〉BH∪R∪BU =
3

M

√
pM |ΨM〉BH∪R|M〉BU , (4.6)

where {|M〉BU} are orthonormal baby universe states. A fine-grained ob-
server can access to the auxiliary system, but a coarse-grain observer can
not. We note that the coarse-grained description using the auxiliary system
is not a full-fledged fine-grained description of the original system consist-
ing of the black hole and the Hawking radiation. This is because we are
artificially adding the degrees of freedom of the baby universe, which do not
appear in the original Hilbert space HBH ⊗HR. In other words, in the fine-
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grained (quantum gravitational) description, the actual fine-grained state
realized in the system is one of the states in the ensemble, not the one with
the baby universe. However, we consider the purified state (4.6) because it
has an effective semi-classical gravitational description, on the contrary to
the full-fledged fine-grained state (4.1) in quantum gravity. Moreover, as we
will explain later, if we focus only on averaged properties of the fine-grained
entropy, such as the Page curve, it is enough to consider the purified state
by the baby universe.

We note that by tracing out the black hole degrees of freedom BH in
the mixed state (4.3), we can get the reduced density matrix of the Hawking
radiation ρR, but it gives an approximately thermal mixed state and its
resulting von Neumann entropy S(ρR) gives the Hawking’s result

S(ρR) = S( 〈ρ(M)R〉M )

= log k,
(4.7)

where we defined,

ρ(M)R = trBH [ |ΨM〉〈ΨM |BH∪R ] , 〈ρ(M)R〉M =
3

M

pM ρ(M)R. (4.8)

See the appendix C.1 for the derivation.

Next, we consider the von Neumann entropy of the Hawking radiation
in the fine-grained description. For this purpose, firstly, we consider a ge-
ometric description of the purified state (4.6). In the purified state, the
Hawking radiation HR and the black hole HBH are entangled with the auxil-
iary baby universe HBU . From the viewpoint of ER=EPR (conjecture) [66],
which states that the existence of the entanglement between two distant re-
gions is related to that of a spatial wormhole connecting the two regions, it is
expected that the entanglement between the baby universeHBU and the orig-
inal system HR ⊗HBU is geometrically realized by an Einstein-Rosen bridge
that connects the two systems (see figure 29). The detailed properties of
the Einstein-Rosen bridge may depend highly on the choice of the ensemble.
If this combined system is realized within the framework of the AdS/CFT
correspondence, the auxiliary baby universe can be modeled by an additional
boundary, and its gravity dual involves an Einstein-Rosen bridge connecting
the new boundary. This purification process is the key in the finding of the is-
land formula, which captures some aspects of fine-grained information of the
quantum gravity states through non-perturbative contributions in the semi-
classical gravitational description of gravity. For instance, when we describe
an evaporation process of a black hole semi-classically, such non-perturbative
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contributions are required to get a consistent result with quantum gravity.
In such an evaporation process, the discreteness of the energy spectrum of
the black hole micro-states is essential to ensure the unitarity of the pro-
cess. However, in the coarse-grained description, typical energy differences
between black hole micro-states are invisible since they are typically of order
O(e−SBH ), where SBH is the Bekenstein-Hawking entropy [67]. We can take
the discrete energy spectrum into account after including non-perturbatively
small contributions, which are provided by Euclidean wormholes [68, 69].

What the island formula suggests is that, after the Page time, one should
identify the fine-grained Hilbert space of the Hawking radiation HR with
the tensor product of two Hilbert spaces HR ⊗ HBU in our formulation.
On the other hand, before the Page time, HR should be identified with
just that of the Hawking radiation HR, and correspondingly the fine-grained
Hilbert space of the black hole should identify with the tensor product of
the black hole and the baby universe HBH ⊗HBU . This difference between
the radiation (and equivalently the black hole) Hilbert spaces before and
after the Page time comes from the fact that the inequality between the
Hilbert space dimensions of the Hawking radiation and that of the black
hole changes. Indeed, before the Page time, since the total state (4.6) is
pure, the von Neumann entropy of the union of the black hole and the baby
universe BH ∪BU equals to the previous von Neumann entropy (4.7) of the
Hawking radiation R, i.e., S(ρBH∪BU) = S(ρR) = log k, which is consistent
with the behavior of the Page curve before the Page time.

After the Page time, the reduced density matrix of the Hawking radiation
and the baby universe ρR∪BU for the purified state (4.6) gives the the fined-
grained entropy of the Hawking radiation HR, which is different from the
von Neumann entropy (4.7) of the naive density matrix (4.3),

S(ρR) = S(ρR∪BU)

= logN
= SBH .

(4.9)

In appendix C.2 we give details of this calculation. The above result (4.9)
reproduces the behavior of the Page curve after the Page time, which gives the
Bekenstein-Hawking entropy SBH of the black hole. Thus by appropriately
dividing the total system BH ∪ R ∪ BU into two parts, we can obtain the
von Neumann entropy which obeys the Page curve (see table 1).

We also know that the fine-grained entropy S(ρR) of the Hawking radia-
tion can be computed by using the island formula (2.56). In the calculations
of the von Neumann entropy using the island formula, it was essential to
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Black Hole Hawking Radiation von Neumann Entropy
Before the Page time BH ∪BU R S(ρBH∪BU) = S(ρR) = log k
After the Page time BH R ∪BU S(ρBH) = S(ρR∪BU) = SBH

Table 1: How to divide the total system BH ∪ R ∪ BU into two subsys-
tems before and after the Page time, and the corresponding von Neumann
entropies.

include the contribution of the island, which typically occupies a region be-
hind a black hole horizon. Thus it is reasonable to identify the island region
behind the black hole horizon with the Einstein-Rosen bridge of the purified
state (4.6) connecting the original spacetime and the baby universe, which
stores fine-grained information of the original spacetime.

One can naturally identify these baby universe states {|M〉BU} in the
fine-grained Hilbert space with so-called α states [70–72] in the baby universe
Hilbert space, which diagonalizes the baby universe creation operators [73].
Then each fine-grained state |ΨM〉|M〉 belongs to different super-selection
sectors, since each α state does. In particular, this implies that off diagonal
matrix elements 〈ΨM |〈M |(O ⊗ I)|ΨN〉|N〉 for any operator O acting on the
black hole and the Hawking radiation HBH ⊗ HR vanish, thus any local
measurement on them can not distinguish the entangled pure state (4.6)
with the following mixed state only with classical correlation

ρ =
3

M

pM |ΨM〉〈ΨM |⊗ |M〉〈M |, (4.10)

in the sense that

tr [|Φ〉〈Φ| (O ⊗ I)] = tr [ρ (O ⊗ I)] =
3

M

pM〈ΨM |O|ΨM〉. (4.11)

To put it another way, LOCCs22 acting only on the black hole BH and the
Hawking radiation R, which can be available to a coarse-grained observer,
can not distinguish the pure state (4.6) and the mixed state (4.10). However
one can see that the von Neumann entropies of these two states (4.6) and
(4.10) on R = R ∪ BU are different. Indeed, the von Neumann entropy of
the mixed state ρ (4.10), contains a classical Shannon term, meanwhile the
von Neumann entropy of the pure state (4.6) does not. From another point
of view, LOCCs on the original system BH ∪ R and the baby universe BU ,
which can only be available to a fine-grained observer, can distinguish the

22LOCC stands for local operation and classical communication, which are fundamental
physical operations in quantum information theory, see, e.g., [60].
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two states (4.6) and (4.10), because the equalities in (4.11) do not necessarily
hold for general operators acting on the Hilbert space HBH ⊗HR ⊗HBU .

In the following subsection, we discuss several implications of the baby
universe and the Einstein-Rosen bridge connecting the baby universe and the
original spacetime. The Einstein-Rosen bridge may depend on the geometric
structure of the baby universe. We can not fully determine the geometry of
the baby universe from the first principles of quantum gravity, but there is
a canonical and minimal choice for such a baby universe; starting with the
original system |ΨM〉, we prepare its copy |Ψ̃M〉, and regard it as the purifier
(the baby universe) |M〉BU = |Ψ̃M〉Puri.. Then the state (4.6) becomes

3

M

√
pM |ΨM〉BH∪R|Ψ̃M〉Puri.. (4.12)

The existence of the boundaries in the original system |ΨM〉 implies that
the purifier system |M〉BU = |Ψ̃M〉Puri. should also have similar boundaries.
More generally, there are possibilities that we may choose multiple copies of
the original system as the purifier (the baby universe) |M〉BU = |Ψ̃M〉⊗n

Puri.,
and further choose their linear combinations as the purifier. Again from the
ER=EPR, the entanglement between the original spacetime and the purifier
(the baby universe) implies the existence of the Einstein-Rosen bridge con-
necting two island regions of the two spacetimes. This Einstein-Rosen bridge
will affect the non-perturbative physics of this system.

4.2 Gauss Law modified by the Baby Universe

In this subsection, we discuss the physical implication of the existence of the
baby universe sector introduced in the last subsection, which accommodates
fine-grained information of the original system. We are mainly interested in
how the baby universe helps to recover information of the interior of the black
hole from the Hawking radiation. We will also briefly explain the relation
between our formulation and the paradox discussed in the paper [30].

Before starting the discussion, we give a remark. In the light of the
AdS/CFT correspondence, the introduction of a new additional boundary,
i.e., the boundary of the baby universe sounds puzzling, since the AdS/CFT
correspondence states that a theory of full quantum gravity in the bulk cor-
responds to a (non-gravitating) CFT on the boundary. This means that, in
principle, we can read all the details of the bulk quantum gravity Hilbert
space from the single CFT Hilbert space. Thus, naively we do not need to
introduce the second copy of the CFT, as we did in the previous section,
which results in the baby universe sector.
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Nevertheless, we are forced to do so since we are considering a semi-
classical description of the system. Then, to restore fine-grained information
within the semi-classical regime, we need to introduce an auxiliary baby
universe system and regard the new baby universe degrees of freedom as a
part of the Hawking radiation degrees of freedom after the Page time. If we
do not do this, this restriction amounts to that on the boundary, we are just
accessible to a sub-Hilbert space Hcoarse which characterizes coarse-grained
degrees of freedom. To include the rest of the CFT Hilbert space, which we
term Hfine just because it describes fine-grained degrees of freedom, we need
to introduce a second copy of the CFT Hilbert space, and accommodate Hfine

to it.

One can obtain the full Hilbert space on the single boundary by gluing
two asymptotic boundaries of the two spacetime (see figure 27). In the re-
sulting bulk spacetime, we have two homologically inequivalent paths, both
of which connect a point in the interior of the black hole (and belong to the
island region) to the boundary of the spacetime (see figure 27). The first
path is the trivial one (the Path 1 (blue dotted line) in figure 27), which en-
tirely lies within the original spacetime. This path necessarily intersects with
the entanglement wedge of the black hole. However, in the presence of the
baby universe, there is a second path (the Path 2 (green dotted line) in figure
27), which does not intersect with the entanglement wedge of the black hole.
Instead, the second path crosses the Einstein-Rosen bridge, which connects
the original spacetime to the baby universe, and ends on the second asymp-
totic boundary, which accommodates fine-grained degrees of freedom, as in
the green dotted line in figure 27. Since these two boundaries of the original
spacetime and the baby universe are glued together, the second path con-
nects the island region and the conformal boundary without passing through
the entanglement wedge of the black hole. As we will see later, in considering
the gravitational dressing, it is natural to consider the second path instead
of the first path.

4.2.1 The modification of Gauss Law

By the presence of the baby universe which has its own asymptotic boundary,
the gravitational Gauss law is inevitably modified. We see this modification
below.

Let Σ be a Cauchy slice of the spacetime, then the gravitational Gauss
law relates the expectation value of the bulk stress-energy tensor 〈Tbulk〉 to
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Figure 27: Schematic picture of the geometry of the AdS black hole coupled
the bath CFT (left Penrose diagram) and the baby universe geometry (right
red Penrose diagram) connected by the Einstein-Rosen bridge (transparent
green shaded region), corresponding to the pure state (4.12). After the Page
time, the fine-grained Hawking radiation R is the union of the Hawking
radiation R (violet region) and the baby universe BU (red region). We regard
the above spacetime describing this union by gluing two distinct asymptotic
boundary regions BU and R. The island region I is connected to the fine-
grained Hawking radiation R ∪ BU through two paths, Path 1 and Path 2.
The Path 1 (thick blue dotted line) intersects with the entanglement wedge
of the black hole BH (orange shaded region), but the Path 2 (thick green
dotted line) does not.

the boundary energy H∂ [h] (the holographic stress-energy tensor) as follows

〈Tbulk〉 = H∂ [h]. (4.13)

Here the boundary energy H∂ [h] is given by the integration of the ADM
current J i over the conformal boundary ∂Σ [74],

H∂ [h] ≡
1

2κ2

%

∂Σ

dd−1x
√
g niJ

i (κ =
2

8πGN), (4.14)

where ni is the normal vector to the conformal boundary ∂Σ, and the ADM
current J i is defined by

Ji ≡ N∇j
@
hij − hg0ij

A
−∇jN

@
hij − hg0ij

A
(4.15)

under the ADM decomposition

ds2 = −N2dt2 + gij
@
dxi +N idt

A @
dxj +N jdt

A
, (4.16)
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and the expansion from the background metric g0ij as follows gij = g0ij +
κhij. More precisely, the gravitational Gauss law in the form (4.13) is a
perturbative version of the gravitational Gauss law which can be derived
from the full Hamiltonian constraint

H[πij, gij] = 2κ2g−1

&
gijgklπ

ikπjl − 1

d− 1

@
gijπ

ij
A2
'
− 1

2κ2
(R− 2Λ) +Hmatter = 0,

(4.17)
where gij is the metric on the Cauchy slice, πij is the conjugate momentum,
and Hmatter is the matter Hamiltonian density. In the above constraint, by
expanding (4.17) from the background metric, gij = g0ij + κhij, and then at
the second order of the expansion the constraint gives the relation (4.13).
Details of the derivation can be found in, e.g., [74]. The boundary energy
H∂ [h] should be understood as the change of the black hole mass, H∂ [h] =
MBH [g+h]−MBH [g] owing to the back-reaction from the bulk stress-energy
tensor 〈Tbulk〉.

In the paper [30], the authors argued that the gravitational Gauss law
suggests an interesting puzzle on the island formula. Assume that we act
a local operation on a state on the island region. Because information of
the island region is encoded in the Hilbert space of the Hawking radiation
HR, we can regard the local operation as a local operation on the radiation
Hilbert space HR. This local operation changes the expectation value of the
bulk stress-energy tensor. Then the gravitational Gauss law (4.13) relates
the change of the expectation value of the bulk stress-energy tensor 〈Tbulk〉 on
the island region behind the horizon to the change of the boundary energy
H∂ [h]. This implies that any change on the island region, no matter how
it is small, is always detectable from the conformal boundary ∂Σ according
to the gravitational Gauss law. However, this sounds puzzling because ∂Σ
belongs to the entanglement wedge of the black hole. More explicitly, this
means that in the bipartite system HR ⊗HBH , a local operation only on HR

can change the state of HBH .

The above paradox is naturally resolved once we introduce the baby uni-
verse sector which admits the new boundary (see figure 27). In the presence
of this new part of the spacetime, the gravitational Gauss law must be mod-
ified as follows

〈Tbulk〉 = H∂BH [h] +H∂BU [h], (4.18)

where H∂BH [h] denotes the boundary energy of the original spacetime with
the black hole, and similarly H∂BU [h] does the boundary energy of the baby
universe.

The modified gravitational Gauss law (4.18) immediately suggests that,
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in the presence of the baby universe, local operations on the island region
need not to be detected on the conformal boundary of the black hole. To
put it another way, 〈Tbulk〉 ∕= 0 does not necessarily mean H∂BH [h] ∕= 0.
Rather, it is reasonable to relate the non-trivial change 〈Tbulk〉 on the island
region to the boundary energy of the baby universe H∂BU [h] since the island
region is encoded into the fine-grained Hawking radiation Hilbert spaceHR =
HR ⊗HBU after the Page time. Indeed, the island region holds fine-grained
information of the Hawking radiation after the Page time, thus from the
boundary point of view, such bulk operations on the island region should
be encoded into the fine-grained part of the CFT Hilbert space Hfine, which
coincides with the boundary Hilbert space of the baby universe HBU .

One can interpret the above statement more intuitively as follows. Firstly
we consider putting a local operator in the spacetime, which induces a small
energy excitation in the bulk. The gravitational Gauss law means that by
measuring the total flux for an appropriate closed surface, we can know the
energy of the small excitation within the closed surface. The presence of
the baby universe makes the measurement of the flux highly non-trivial.
The Einstein-Rosen bridge connecting the original spacetime and the baby
universe can release some part of the flux of the original spacetime into the
baby universe (see figure 28). Here we note that because in our current setup,
the baby universe has boundaries, flux lines can end on the boundaries of
the baby universe as figure 28. That is, in measuring the total flux, we
also need to consider the baby universe (right spacetime of figure 28) in
addition to the original spacetime (left spacetime of figure 28). By the usual
gravitational Gauss law, if we just measure only the flux of the original
spacetime (left spacetime of figure 28), then we can not know the exact
energy of the small excitation. This modification is not visible within the
coarse-grained precision, but without the modification, we may encounter
many problems, e.g., violation of the conservation law.

There are several other implications of the generalized gravitational Gauss
law (4.18) as well. Firstly, the existence of the baby universe boundary energy
term suggests that the gravitational Gauss law (4.18) does not precisely hold
within the original black hole spacetime, 〈Tbulk〉 ∕= H∂BH [h] generally. For
instance, one way to treat the generalized Gauss law (4.18) is that it relates
the spectrum of the fine-grained part H∂BU [h] to that of the coarse-grained
part H∂BH [h]. It is expected that the energy spectrum of the fine-grained
part H∂BU [h] is discrete, and the typical differences between two nearest
energy eigenvalues are of order e−SBH . This forces the energy spectrum of
the coarse-grained part H∂BH [h] also discrete, which is necessary for the
unitary time evolution of the black hole evaporation process.
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Figure 28: Schematic picture of flux lines on the geometry corresponding
to (4.12) (, similar to the figure discussed in [75]). The dotted lines are
horizons. A local operator φ (red dot) is put on the original spacetime (left
region). The two spacetimes are connected by the Einstein-Rosen bridge
(blue region). Some of flux lines (orange lines) escape into the baby universe
(right red region) through the Einstein-Rosen bridge .

Now we estimate the magnitude of the violation of the gravitational Gauss
law in the original spacetime. In order to obtain a unitary time evolution
of an evaporating black hole, we need non-perturbative corrections of order
e−SBH , where SBH is the Bekenstein-Hawking entropy of the black hole. This
implies that we need fine-grained states in a small energy window of order
e−SBH , therefore H∂BU is of the same order. This leads us to the following
estimation

〈Tbulk〉 −H∂BH [h] = O(e−SBH ), (4.19)

i.e., the gravitational Gauss law (4.18) is violated only non-perturbatively in
the original spacetime.

We note that such a baby universe is different from those appearing by
cutting Euclidean wormholes into half, in the semi-classical gravitational
path integral, see, e.g., [76]. The later baby universe is always closed, and
thus does not have any asymptotic boundary. Such a closed baby universe
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corresponds to an additional factor of the von Neumann algebra of the CFT
[77]. On the other hand, our baby universe has an asymptotic boundary,
which encodes fine-grained information of the state.

4.2.2 Comment on gravitational dressing

In a theory with dynamical gravity, local operators are not physical since they
are not diffeomorphism invariant. One way to make them diffeomorphism
invariant is to connect the local point P to an asymptotic boundary point
P∂ , via a gravitational Wilson line, i.e., φ(P ) → φ(P )Wgravity(P, P∂). Such
a prescription is called gravitational dressing. In the paper [30], the authors
argued that such a gravitational dressing of a local operator on the island
region is inconsistent with the entanglement wedge reconstruction implicated
by the island formula. This is because the gravitational Wilson line connects
a point on the island to a point on the conformal boundary of the AdS black
hole. However, this sounds troublesome, because whereas the island formula
suggests that an operator locally acting on the island region can be expressed
as that on the radiation Hilbert space according to the entanglement wedge
reconstruction, the gravitational Wilson line attached to the operator inter-
sects with the entanglement wedge of the black hole, thus it does change the
state of the black hole Hilbert space HBH .

From our point of view, the above paradox is naturally resolved because,
in the presence of the baby universe with an asymptotic boundary, the grav-
itational Wilson line can end on the baby universe boundary (see figure 29).
Moreover, because the new baby universe boundary belongs to the Hawking
radiation degrees of freedom after the Page time, it is still an operator on
the radiation Hilbert space, even after the gravitational dressing.

5 Summary and Future Directions

5.1 Summary

In this thesis, we studied the entropy of Hawking radiation and also black
holes by using the island formula from two perspectives.

In section 3, in the framework of the disjoint setup, we studied the dy-
namics of a black hole in flat space, which is entangled with an auxiliary
non-gravitational universe. As a result, due to the back-reaction of the en-
tanglement between the two universes, the area of the black hole horizon
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Figure 29: Schematic picture of the geometry of the AdS black hole coupled to
the bath CFT (left Penrose diagram) and their copy (right Penrose diagram)
connected to the original spacetime through the Einstein-Rosen bridge (blue
region), corresponding to the state (4.12). The local operator φ in the island
(cyan dot) can be gravitationally dressed with a gravitational Wilson line
Wgravity(P, Ppuri.) (green line) which ends on the baby universe (right Penrose
diagram) without intersecting the entanglement wedge of the original black
hole degrees of freedom (orange shaded region).

becomes smaller and the interior region becomes longer. Their changes can
be understood in terms of the monogamy of entanglement [25]. Because
the gravitating universe B contains two black hole horizons, the Hilbert
space of the universe B naturally decomposes into two horizon Hilbert spaces
HBL

⊗ HBR
. Both of these degrees of freedom are strongly entangled with

the universe A, so according to the monogamy of entanglement, the entan-
glement between the two horizons should be suppressed. This suppression is
geometrically manifested by the long interior region of the black hole. Then,
we evaluated the von Neumann entropy of universe A, or equivalently the en-
tanglement entropy between the two universes, and obtained the Page curve
of an evaporating black hole in our setting.

We also investigated the effects of local operations on black holes. One
can model such local operations by insertions of CFT local operators, which
is called local operator quench. In our setting, it is natural to consider
the insertions into the black hole interior as well as the insertions into the
black hole exterior. Such insertions can back-react to the black hole through
the stress-energy tensor expectation value for the state including the local
operator. Some differences exist between the cases of interior and exterior
insertions. When the local operator is inserted outside the black hole horizon,
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the entanglement entropy does not change. In contrast, if the local operator
is inserted inside the black hole horizon, the entanglement entropy decreases
significantly. This disruption becomes stronger as the insertion point gets
deeper into the black hole.

In section 4, we studied a partially fine-grained description of semi-classical
evaporating black holes by introducing a new degree of freedom called a baby
universe. We confirmed that the behavior of the Page curve can be obtained
by introducing such a baby universe and properly dividing the system into
two parts.

We also argued that in an ordinary consistent long-range gravity theory,
the gravitational Gauss law must be modified by the introduction of the baby
universe that is connected to the original spacetime, and when there is an
island after Page time, this modification is essential to obtain results that
are consistent with the idea of entanglement wedge reconstruction.

5.2 Future Directions

Local Quench outside the two universes

In the disjoint setup for a black hole in asymptotically flat space, we con-
sidered a local quench in universe B, where there is a black hole, but by
considering the proper analytical connection of coordinates, we can consider
a local quench that does not belong to both universes A and B. In that
case, depending on where the local operator is inserted, the entanglement
is expected to change even though there is no island. In this thesis, we did
not deal with such a local quench because the treatment of the shock waves
was unclear. However, we expect that investigating such a situation will be
useful for further understanding the entanglement between black holes and
Hawking radiation.

Entangled disjoint multi-universes

In the disjoint setup in this thesis, the entangled states that were mainly
considered were those between two universes, A and B. However, entangled
states between more universes, specifically between three or more universes,
can be considered as well. It is a non-trivial question whether a similar
argument can be made in such a situation, and it is expected to be an im-
portant issue in understanding the ER=EPR conjecture, which proposes a
relationship between entanglement and spacetime.
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The division of the baby universe which leads to the usual island
formula

In this thesis, we considered von Neumann entropy with a division such that
the baby universe always belongs to a black hole or Hawking radiation as
listed in table 1, however, other possibilities of division exist.

For example, one may also consider the possibility of dividing the baby
universe Hilbert space HBU into two parts HBUBH

⊗HBUR
, and then define

the radiation Hilbert space as HR = HBUR
⊗HR, instead of HR = HBU ⊗HR

which we do in the body of the thesis. In such a case, the states of the
baby universe are given by |M〉BUBH

⊗ |M〉BUR
. In this case, assuming the

orthogonality of the basis of HBUBH
, we can check that the von Neumann

entropy of the reduced density matrix ρBUR∪R takes the following form

S(ρBUR∪R) = −
3

M

pM log pM +
3

M

pMS(ρ(M)R),

where ρ(M)R is given in (4.8). Then it is natural to define the fine-grained
entropy of Hawking radiation S(ρR) as a conditional entropy of knowing
the probability distribution pM by subtracting the classical Shannon term
H(pM) = −

D
M pM log pM ,

S(ρR) = S(ρBUR∪R)−H(pM) =
3

M

pM S(ρ(M)R).

This entropy coincides with the one discussed in, e.g., [61], giving the Page
curve. However, we do not know the natural choice for such a dividing of
the baby universe Hilbert space HBU . Therefore, it would be interesting to
investigate such directions further.

Multi-boundary Wormhole and Baby Universe

In the body of this thesis, we did not explicitly discuss the geometry of a
system consisting of a black hole, Hawking radiation, and a baby universe.
However, we can consider concrete geometric models to understand further
detailed properties of the system.

A class of the candidate geometries is the multi-boundary wormhole so-
lution of three-dimensional Einstein gravity with a negative cosmological
constant. It is useful to consider the coordinates in which the AdS3 metric
takes the following form

ds2 = −dt2 + cos2 tdΣ2
2, (5.1)
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where we denote by dΣ2
2 the metric of two-dimensional hyperbolic space. We

can construct these multi boundary wormholes by taking the appropriate
quotient of the hyperbolic space by the isometry group SL(2, R)× SL(2, R)
of AdS3. Such a multi-boundary wormhole geometry has multiple conformal
boundaries, on each of which we can define a CFT Hilbert space. In each
asymptotic region, there is a horizon whose horizon area corresponds to the
number of degrees of freedom in the boundary CFT Hilbert space.

For simplicity, we consider such a wormhole geometry with three asymp-
totic boundaries below. These three boundaries represent three Hilbert
spaces of Hawking radiation HR, the black hole HBH, and the baby uni-
verse HBU, see figure 30. Therefore, one can identify the horizon area of
each asymptotic region with the von Neumann entropy of each Hilbert space
computed in (C.8), (C.12), (C.16) in Appendix C. The interior region behind
these horizons is identified with the Einstein-Rosen bridge, which connects
the original black hole with the baby universe.

This geometric description manifests the entanglement structure of (4.6)
as follows. When k = dimHR is small, which models the early time of the
black hole evaporation, this system is almost a bipartite system in which HBH

and HBU are entangled (see left panel of figure 30). As we increase k, the
cross-section of the Einstein-Rosen bridge gets larger, and at sufficiently late
times k ≫ 1, HBU becomes mostly entangled with the Hawking radiation
Hilbert space HR (see right panel of figure 30).

It would be interesting to study the entanglement structure of the system
by using this geometric model in detail.
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Figure 30: The three boundary wormhole, which models the black hole BH,
the Hawking radiation R, and the baby universe BU . The dotted lines are
horizons for three boundaries. The boundaries of the baby universe BU , the
black hole BH, and the Hawking radiation R are represented by the green,
red, and blue lines respectively. The actual (minimal) extremal surface,
which divides the system into two parts as listed in table 1, is represented
by the orange dotted line (horizon). The horizon area of the baby universe
(purple dotted line) corresponds to the von Neumann entropy of the baby
universe (C.16). Left: The three boundary wormhole which models the
system at early times. In this case, the area of the actual extremal surface
(orange dotted line) corresponds to the von Neumann entropy of the Hawking
radiation, or equivalently that of the union of the black hole and the baby
universe (C.8). Right: The three boundary wormhole which models the
system at late times. In this case, the area of the actual extremal surface
(orange dotted line) corresponds to the von Neumann entropy of the Hawking
radiation and the baby universe, or equivalently that of the black hole (C.12).
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A von Neumann Entropy in CFT2

In this appendix, we briefly review the calculation of the von Neumann en-
tropy in a two-dimensional conformal field theory with a central charge c
and present some results, which we use in the main sections. In appendix
B, we explain the von Neumann entropy in the case that we consider a local
quench.

At first, let |Ψ〉 denote a normalized state on the system, and HA ⊗HAc

denote the Hilbert space of the system, which is given by the tensor product
of two Hilbert spaces associated to regions (sub-systems) A and Ac. We
assume that the metric is flat, and the region A consists of a single interval,
and Ac is its complement. The reduced density matrix associated with the
subsystem A is given by tracing out the remaining degrees of freedom

ρA = trAc |Ψ〉 〈Ψ| . (A.1)

Then the von Neumann entropy of the reduced density matrix ρA is given by

S(ρA) = − trA ρA log ρA, (A.2)

and this von Neumann entropy is called the entanglement entropy frequently.
We can consider the von Neumann entropy for the reduced density matrix
ρAc similarly. In the case that the total state is pure, not a mixed state, the
von Neumann entropy has the property S(ρA) = S(ρcA). The von Neumann
entropy measures the quantum entanglement between the two sub-systems
A and Ac.

Since, in general, it is difficult to evaluate the right-hand side of the von
Neumann entropy (A.2), instead we use the replica trick, consider the Rényi
entropy given by

S(n)[A] ≡ 1

1− n
log tr ρnA, (A.3)

and through the n → 1 limit we get the von Neumann entropy

S(ρA) ≡ S[A] = lim
n→1

S(n)[A]. (A.4)

Thus to get the von Neumann entropy we consider tr ρnA.

In evaluating the quantity tr ρnA, by using a conformal symmetry, we can
associate it with the two point function of the twist and anti-twist operates
[40, 78]

tr ρnA = 〈σnσ−n〉 , (A.5)
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where σn and σ−n are inserted into the endpoints of the region A. Here the
conformal dimension of the twist and anti-twist operators is given by 2Hn =
c
12

@
n− 1

n

A
. Then by evaluating the two point function we can compute tr ρnA

and the Rényi entropy, and by taking the n → 1 limit we obtain the von
Neumann entropy.

Below we present some results on the von Neumann entropy for some
cases [40, 78].

von Neumann entropy of an interval on a system with infinite size

When the system size is infinite and the system is at zero temperature,
the von Neumann entropy of the interval, whose size is given by l, is given
by

S(ρA) =
c

3
log

l

εUV

, (A.6)

where εUV is the UV cutoff.

For the system is at finite temperature 1/β, the von Neumann entropy is
given by

S(ρA) =
c

3
log

&
β

πεUV

sinh

&
πl

β

''
. (A.7)

von Neumann entropy of an interval on a system with finite size

When the system size is finite and given by L, and the system is at
zero temperature and with periodic boundary conditions, the von Neumann
entropy of the interval, whose size is given by l, is given by

S(ρA) =
c

3
log

&
L

πεUV

sin

&
πl

L

''
, (A.8)

where εUV is the UV cutoff.

A.1 The vacuum entropy formula

In this subsection, we derive the vacuum entropy formula (2.36) holographi-
cally by using the Ryu-Takayanagi formula [6]

SRT[w1, w2] = Minγ
Area(γ)

4G
(3)
N

, (A.9)

where G
(3)
N is the three-dimensional Newton constant. The above quantity

(A.9) calculated in AdS3 is equal to the von Neumann entropy in CFT2,
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SCFT [w1, w2]. Here, after the minimization, the resulting γ is the minimal
surface homologous to the interval between the two points w1, w2 like the
discussion of (1.2). The interval between the two points w1, w2 corresponds
to the boundary region A in the discussion of (1.2). Since we consider CFT2,
the bulk dual is AdS3. In this case, the minimal surface γ is given by the
geodesic connecting the points w1, w2, and its area Area(γ) is given by the
geodesic length between the points.

At first we derive a (space-like) geodesic length in the Poincare AdS3

coordinates, which corresponds to the vacuum state in CFT2 with the w
coordinates. In such a case it it sufficient to consider the following AdS3

Poincare metric

ds2Poincar AdS3
=

dz2 + dx2 − dt2P
z2

=
dz2 + ds2

z2
,

(A.10)

where we introduced the coordinates satisfying ds2 = dx2−dt2P in the second
line. Later we will relate the Poincare AdS3 coordinates to the w coordinates,
where the metric is given by ds2 = Ω−2dw+dw−, and give expressions by
using the w coordinates. For notational convenience, we call w1 and w2 the
point 1 and 2 respectively.

In the (Poincare) coordinates (z, s), geodesics are given by semi-circles
whose centers are at z = 0,

z2 + (s− s0)
2 =

&
d(1, 2)

2

'2

(A.11)

where s0 and d(1, 2) > 0 are determined by the location of the two points 1
and 2. The conditions for s0 and d(1, 2) are given by

z2b1 + (s1 − s0)
2 =

&
d(1, 2)

2

'2

z2b2 + (s2 − s0)
2 =

&
d(1, 2)

2

'2

,

(A.12)

where the coordinate zb1, s1 (zb2, s2) is the coordinates of the point 1 (2) in
the (Poincare) coordinates (z, s). As we will see later, we are interested in
the case that zb1, zb2 are very small, which implies the points 1 and 2 are
very closed to the AdS3 boundary z = 0. In such a case, from the above
conditions we get the following expressions

s0 ≈
s1 + s2

2
, (A.13)
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and
d(1, 2)2 ≈ |s2 − s1|2

=

8888
% 2

1

ds

8888
2

=
88(x2 − x1)

2 − (tP2 − tP1)
2
88 .

(A.14)

To evaluate the geodesic length, it is convenient to introduce a new pa-
rameter by

z =
d(1, 2)

2
sin ξ

s = s0 +
d(1, 2)

2
cos ξ.

(A.15)

The boundary condition for the geodesic γ, which ends on the two points 1
and 2, gives the upper and lower value for ξ

1 ≫ zb1 =
d(1, 2)

2
sin ξb1

≈ d(1, 2)

2
ξb1,

1 ≫ zb2 =
d(1, 2)

2
sin ξb2

≈ d(1, 2)

2
(π − ξb2)

(A.16)

where we assumed the relation s1 < s2. By using the above parameter, we
get the geodesic length

Area(γ) =

% 2

1

dsPoincar AdS3

=

% ξb2

ξb1

dsPoincar AdS3

dξ
dξ

= log

*
tan ξb2

2

tan ξb1
2

+

≈ log

&
d(1, 2)2

zb1zb2

'

= log

&
(x2 − x1)

2 − (tP2 − tP1)
2

zb1zb2

'
,

(A.17)

Next we relate the Poincare AdS3 coordinates to the w coordinates in
AdS3 boundary, i.e., CFT2, following the techniques discussed in [14].
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Near the Poincare AdS3 boundary z ≪ 1, we consider the w coordinates
given by the following relation

ds2Poincar AdS3
=

dz2 − dt2P + dx2

z2
=⇒

z=zb≪1
−dw+dw−

z2b
= − 1

ε2UV

dy+dy− (A.18)

where we defined w± ≡ tP ± x, and εUV is the UV cutoff. From the above
relation, we obtain

zb = εUV

E
dw+

dy+
dw−

dy−

= εUV Ω(w+, w−),

(A.19)

where in the second line we defined Ω(w+, w−) =
9

dw+

dy+
dw−

dy− .

By substituting the above result (A.19) into the expression for the geodesic
length (A.17) in the AdS3 Poincare coordinate , we get

Area(γ) = log

"
|(w+

2 − w+
1 )(w

−
2 − w−

1 )|
ε2UVΩ(w

+
1 , w

−
1 )Ω(w

+
2 , w

−
2 )

#
(A.20)

As a result from the Ryu-Takayanagi formula we obtain

SCFT [w1, w2] = SRT [w1, w2] =
Area(γ)

4G
(3)
N

=
c

6
log

"
|(w+

2 − w+
1 )(w

−
2 − w−

1 )|
ε2UVΩ(w

+
1 , w

−
1 )Ω(w

+
2 , w

−
2 )

#
,

(A.21)

where in the second line we used the Brown-Henneaux’s central charge c =
3ℓAdS3

2G
(3)
N

[79]. Here ℓAdS3 is the AdS3 length scale, which we set to be unity

ℓAdS3 = 1.

B von Neumann entropy and local quench for

two disjoint intervals

In this appendix we will derive the expressions appearing in 3.3.3 and 3.3.3 for
the CFT von Neumann entropy with a local operator insertion, by following
the argument of [50]. We focus on the state (3.26) of the total system AB,
and the reduced density matrix on the two intervals C̄ in the universe B.

We denote by ρC̄ the reduced density matrix on two intervals C̄ = C̄1∪C̄2,
whose endpoints are given by x±

2 and x±
3 (x±

2 ≤ x±
3 ) for C̄1 and x±

5 and x±
6
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Figure 31: The two intervals in the universe B

(x±
3 < x±

5 ≤ x±
6 ) for C̄2 respectively (see figure 31), i.e., ρC̄ = trC ρ. Here

we give the density matrix ρ by the reduced density matrix of the universe
B (3.28). We can calculate the CFT von Neumann entropy of this density
matrix by using the replica trick. To do so, at first we consider the n-th
Rényi entropy

S(n)[C̄] =
1

1− n
log tr ρnC̄ (B.1)

and, by taking the limit

S[C̄] = lim
n→1

S(n)[C̄], (B.2)

we can get the CFT von Neumann entropy.

To calculate tr ρn
C̄
, we need to consider a normalized 2n-point function

on an n-sheeted replica manifold branched along the region C̄. Because this
reduced density matrix ρC̄ has the thermal form, each replica sheet is given
by a cylinder with the thermal periodicity β. The 2n-point function is equal
to the normalized six-point function which includes twist operators on a (no-
replicated) manifold (which is the thermal cylinder), in the cyclic orbifold
theory CFT⊗n/Zn. We use the later description and evaluate the six-point
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function given by

tr ρnC̄ =
〈O⊗n(x+

1 , x
−
1 )σn(x

+
2 , x

−
2 )σ−n(x

+
3 , x

−
3 )σn(x

+
5 , x

−
5 )σ−n(x

+
6 , x

−
6 )O†⊗n(x+

4 , x
−
4 )〉β

(〈O(x+
1 , x

−
1 )O†(x+

4 , x
−
4 )〉β)n

,

(B.3)
where 〈· · · 〉β denote the thermal trace tr[ ρβ · · · ].

In the above expression, we introduced the UV regulator ε in the location
of the local operators by >

x±
1 = x±

0 ∓ iε,

x±
4 = x±

0 ± iε;
(B.4)

O⊗n andO†⊗n denote the products of the local operatorsOi andO†
i which are

the i-th copies of the local operators in the cyclic orbifold theory CFT⊗n/Zn,

O⊗n = O1O2 . . .On,

O†⊗n = O†
1O

†
2 . . .O†

n.
(B.5)

which have conformal dimension nhO; σn and σ−n are twist and anti-twist
fields respectively, which have conformal dimension 2Hn given by

Hn =
c

24

&
n− 1

n

'
. (B.6)

We will evaluate the six-point function (B.3) in a holographic CFT. Such
a CFT has a large central charge and a sparse spectrum. In this class of
theories, one can approximate the six-point function function by a six-point
Virasoro vacuum conformal block with an appropriate choice of branch cut
[50]. To introduce the conformal block, it is useful to map the thermal
cylinder to a plane by

w±(x±) = exp

&
2π

β

@
x± − x±

0

A'
, (B.7)

and further consider the conformal map

z±(w±) =

@
w±

1 − w±Aw±
34

w±
13

@
w± − w±

4

A , (B.8)

where we introduced the notation w±
ij = w±

i − w±
j . Through the conformal

map w± → z±, one can map tr ρn
C̄

in the six-point function (B.3) to the
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following one on the plane,

tr ρnC̄ =((1− z+)(1− z−))2Hn(z+65z
−
65)

2Hn

×
>&

β

πεUV

'4

sinh

&
π

β
x+
65

'
sinh

&
π

β
x−
65

'
sinh

&
π

β
x+
32

'
sinh

&
π

β
x−
32

'?−2Hn

× 〈O⊗n
88σn

@
z+, z−

A
σ−n(1, 1)σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉,
(B.9)

where we introduced the UV cutoff εUV different from the UV regulator in
(B.4), and the notation

〈O⊗n
88σn

@
z+, z−

A
σ−n(1, 1)σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉

≡ lim
z+4 ,z−4 →∞

@
z+4 z

−
4

A2nhO 〈O†⊗n(z+4 , z
−
4 )σn(z

+, z−)σ−n(1, 1)σn(z
+
5 , z

−
5 )σ−n(z

+
6 , z

−
6 )O⊗n(0, 0)〉.

(B.10)

Next, we evaluate (B.10) with an insertion of a complete set as follows

〈O⊗n
88σn

@
z+, z−

A
σ−n(1, 1)σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉

=
3

α

〈O⊗n
88σn

@
z+, z−

A
σ−n(1, 1)|α〉〈α|σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉,

(B.11)

where the sum runs over all possible intermediate states. However, in the
ε → 0 limit, z± approach 1, and since the OPE σn(z)σ−n(1) starts from the
identity, one can consider the approximation of the six-point function as a
product of four-point functions as follows

〈O⊗n
88σn

@
z+, z−

A
σ−n(1, 1)σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉
≃ 〈O⊗n

88σn

@
z+, z−

A
σ−n(1, 1)|O⊗n〉〈O⊗n|σn

@
z+5 , z

−
5

A
σ−n

@
z+6 , z

−
6

A88O⊗n〉,
(B.12)

in the ε → 0 limit. Further by considering the conformal map

z̃±
@
z±

A
=

@
z±1 − z±

A
z±64

z±16
@
z± − z±4

A (B.13)
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to the second four-point function in (B.12), we obtain

tr ρnC̄(t)

=

>&
β

πεUV

'4

sinh

&
π

β
x+
65

'
sinh

&
π

β
x−
65

'
sinh

&
π

β
x+
32

'
sinh

&
π

β
x−
32

'?−2Hn

× ((1− z+)(1− z−))2Hn
F
O⊗n

88σn

@
z+, z−

A
σ−n(1, 1)

88O⊗n
G

×
@@
1− z̃+5

A @
1− z̃−5

AA2Hn
F
O⊗n

88σn

@
z̃+5 , z̃

−
5

A
σ−n(1, 1)

88O⊗n
G
.

(B.14)

In general, it is not easy to obtain a full analytic expression of the above
four-point functions because they depend on the details of the dynamics of
the CFT which we consider. Nevertheless, since we focus on the holographic
CFT that has the large central charge c ≫ 1 and the sparse spectrum, one
can approximate the four-point functions by the vacuum Virasoro conformal
block.

Furthermore, when we compute the von Neumann entropy by taking n →
1 limit of the twist operators in the correlation function (B.14), it is enough
to consider the Heavy-Heavy-Light-Light Virasoro block, since the conformal
dimension of the twist and anti-twist operators approaches to 0, i.e., Hn/c →
0 as n → 1. In taking the limit, we fix the conformal dimension hO of the
local operator O, which is assumed to be proportional to the central charge
c. Under the limit, the dominant contribution of such a four-point function
is given by [80]

@@
1− z+

A @
1− z−

AA2Hn
F
O⊗n

88σn

@
z+, z−

A
σ−n(1, 1)

88O⊗n
G

≃
*
(z+)

1−α
2 (1− (z+)α) (z−)

1−α
2 (1− (z−)α)

α2(1− z+)(1− z−)

+−2Hn

,
(B.15)

where α =
9

1− 24hO
c

=
9

1− 12∆
c
. By substituting this result into (B.14)

and taking the n → 1 limit, we obtain the expression for the CFT von
Neumann entropy S[C̄] = Sβ[C̄] +∆S[C̄] with
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@
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J
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(B.16)
Sβ[C̄] is the CFT von Neumann entropy of the two intervals C̄1 ∪ C̄2 at
finite temperature T = 1/β, and ∆S[C̄] is the contribution to the CFT von
Neumann entropy from the perturbation by the local operator O 23.

The right-hand side of the expression (B.16) includes branch cuts, thus
in order to make it well-defined, we need to choose the branch appropriately.
One can archive this by demanding that the resulting von Neumann entropy
is consistent with causality and positivity of the non-trivial part ∆S[C̄]. In
imposing such conditions, it is helpful to consider the quasi-particle picture
[51,56,57] for the time evolution of the von Neumann entropy under the local
quench. The quasi-particle picture states the following: By the local quench,
a pair of entangled quasi-particles is created at the operator insertion point,
one of which propagates along one spatial direction at the speed of light, and
the other does the opposite direction.

The non-trivial part of the CFT von Neumann entropy ∆S[C̄] can be
non-zero only in the case that one of such particles enters in the region C̄
while the other does not [48–59]. This condition constrains branches which
we should choose, because vanishing of the non-trivial part ∆S[C̄] = 0 is
equivalent to choose the branch where (z, z5) → 1 in the ε → 0 limit . If
we have multiple branches which satisfy the above condition, the physical
intuition coming from the holographic dual setup suggests that one should
choose the one giving the minimal value of ∆S[C̄] among candidates.

In our current setup, the causality condition requires that the CFT von
Neumann entropy is vanishing in the following three cases: (1) the local
operator is inserted in the domain of dependence of the intervals, i.e., x0 ∈
D[C̄1] or x0 ∈ D[C̄2] (2) the local operator is not inserted in these domains of
dependence, but the right moving particle created by the local quench enters
into the region D[C̄2] and the left-moving one does in the region D[C̄1]. (3)

23Note that if we choose the other channel, then Sβ [C̄] and ∆S[C̄] take a different form.
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Figure 32: The regions in which ∆S[C̄] must vanish. The shaded regions corre-
spond to (I)− (V ).

the local operator is inserted in D[C], where C is the complement region of
C̄.

More concretely, the conditions that the CFT von Neumann entropy
should vanish in the above regions suggests that we should choose the branch
(z+, z−) → (1, 1) and (z̃+5 , z̃

−
5 ) → (1, 1) when the operator O is inserted in

the below regions

(I) D[C̄1]: x
+
0 < x+

3 , x
−
0 < x−

3 ,

(II) D[C̄2]: x
+
5 < x+

0 , x
−
5 < x−

0 ,

(III) Union of the causal pasts of D[C̄1] and D[C̄2]: x
+
0 < x+

3 , x
−
5 < x−

0 ,

(IV) Union of the causal futures of D[C̄1] and D[C̄2]: x
+
5 < x+

0 , x
−
0 < x−

3 ,

(V) D[C]: x+
3 < x+

0 < x+
5 , x

−
3 < x−

0 < x−
5 .

(See figure 32.) When the local operator is inserted in other regions, the
expression of ∆S[C̄] is given by suitable analytic continuations of (B.16) with
respect to x0 from the above regions (I)− (V ). By using the above standard

95



choices, we can specify branches on the other regions from the consistency
of analytic continuation of x±

0 .

Let us take the region x+
0 < x+

3 and x−
3 < x−

0 < x5 as an example of such
a calculation and specify possible branch choices in the region. Starting from
the three regions (I), (III) and (V) which are adjacent to the region x+

0 < x+
3

and x−
3 < x−

0 < x−
5 , we move the local operator O to the region x+

0 < x+
3

and x−
3 < x−

0 < x−
5 . We expand z± and z̃±5 to the first order in ε, which is

very small compared to the inverse temperature β, and consider the change
of their imaginary parts under the move. For the case (I), the imaginary part
of z− changes sign from plus to minus at x−

0 = x−
3 , but the others remain

unchanged. In such a case, we choose the branches as (z+, z−) → (1, e2πi)
and (z̃+5 , z̃

−
5 ) → (1, 1). For the case (III), the imaginary part of z̃−5 changes

sign from plus to minus x−
0 = x−

5 , but the others not. Similarly, we choose
the branches as (z+, z−) → (1, 1) and (z̃+5 , z̃

−
5 ) → (1, e2πi). For the case (V),

the imaginary part of z+ changes sign from minus to plus at x+
0 = x+

3 , but the
others not. In this case, we choose the branches as (z+, z−) → (e2πi, 1) and
(z̃+5 , z̃

−
5 ) → (1, 1). From the above calculation, we have finished specifying

possible branch choices in the region x+
0 < x+

3 and x−
3 < x−

0 < x−
5 .

Now that we have determined the branches in the region, we can get the
analytic expression for ∆S[C̄] in the region. Because each branch gives a
different non-trivial part ∆S[C̄] and as noted above we should choose the
dominant contribution corresponding to the minimum ∆S[C̄] among can-
didates in the region [53]. For example, we consider the region x+

0 < x+
3

and x−
3 < x−

0 < x5, and evaluate ∆S[C̄]. In this region, x+
0 < x+

3 and
x−
3 < x−

0 < x−
5 , we must compare the above three branch choices obtained

from analytic continuation from the three regions (I), (III) and (V), and pick
up the minimum among the three choices. As a result we get

∆S[C̄] =
c

6
log

H

I β

πε

sin πα

α

sinh
(

π
β

@
x+
3 − x+

0

A)
sinh

(
π
β

@
x+
0 − x+

2

A)

sinh
(

π
β

@
x+
3 − x+

2

A)

J

K

for the region : x+
0 < x+

3 and x−
3 < x−

0 < x−
5 .

(B.17)
By similar discussions, we can also obtain the expression of ∆S[C̄] for the
other regions. By combining all the results and Sβ[C̄], we get the full expres-
sion for the entire region in the universe B.

Until now, we have considered the CFT von Neumann entropy of the
two intervals. However, one can easily apply the above analysis to the sin-
gle interval case by removing either region C̄1 or C̄2 and following similar
discussions.
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C The von Neumann Entropy of the naive

Hawking Radiation, the Black hole and the

Baby Universe

In this appendix, we evaluate the von Neumann entropy of various sub-
systems for the states (4.6) and (4.3) by using the relationship (4.5). In
particular, we consider the following von Neumann entropy: (i) the naive
Hawking radiation or the union of the black hole and the baby universe,
S(ρR) = S(ρBH∪BU); (ii) the naive Hawking radiation and the baby universe
or the black hole S(ρR∪BU) = S(ρBH); (iii) the baby universe or the union of
the black hole and the naive Hawking radiation S(ρBU) = S(ρBH∪R).

Before evaluating them, we note the relation between the pure state (4.6)
and the mixed state (4.3), which are given by

ρBH∪R = trBU [|Φ〉〈Φ|BH∪R∪BU ]

=
3

M

pM |ΨM〉〈ΨM |BH∪R.
(C.1)

We also note that the probability distribution pM is given by (e.g., [61, 62])

pM =

&
Nk

π

'Nk

exp
@
−Nk tr(CMCM†)

A
, (C.2)

and this probability distribution is normalized

3

M

pM →
&
Nk

π

'Nk % NL

i,j=1

kL

α,β=1

dCM
iα dC

†M
βj exp

@
−Nk tr(CMCM†)

A

= 1

(C.3)

and gives the relationship (4.5). We give the above probability distribution
explicitly, but in calculating the von Neumann entropy below, we do not use
the relation (4.5) rather than the explicit form (C.2), .

C.1 The entropy of the naive Hawking radiation S(ρR) =
S(ρBH∪BU)

In order to evaluate the von Neumann entropy of the naive Hawking radiation
R, we focus on the reduced density matrix for the naive Hawking radiation.
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It is given by

ρR =
3

M

pM trBH [|ΨM〉〈ΨM |BH∪R]

=
3

M

pM ρ(M)R

≡ 〈ρ(M)R〉M ,

(C.4)

where in the second line we defined the following reduced density matrix

ρ(M)R = trBH [|ΨM〉〈ΨM |BH∪R]

=
N3

i=1

k3

α,β=1

CM
iαC

†M
βi |α〉〈β|R

(C.5)

and in the last line to emphasize the ensemble average of the reduced density
matrix ρ(M)R we introduced the notation 〈ρ(M)R〉M , which is defined by the
second line. We note that such average operations are given by the relation
(4.5).

Next we consider the following quantity of the above reduced density
matrix

trR ρnR =
3

M1,M2,··· ,Mn

pM1pM2 · · · pMn trR[ρ(M1)R ρ(M2)R · · · ρ(Mn)R]

=
3

M1,M2,··· ,Mn

pM1pM2 · · · pMn

×
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

CM1
i1α1

C†M1

α2i1
CM2

i2α2
C†M2

α3i2
· · ·CMn

inαn
C†Mn

α1in

=
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

〈CM1
i1α1

C†M1

α2i1
〉M1〈CM2

i2α2
C†M2

α3i2
〉M2 · · · 〈CMn

inαn
C†Mn

α1in
〉

=
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

1

(kN )n
δi1i1δα1α2δi2i2δα2α3 · · · δininδαnα1

=
1

kn−1
,

(C.6)
where in the third line the labels M1, · · · ,Mn are distinguished, and we take
the ensemble average for each factor, which consists of the same label Ms,
and in the forth line we used the relation (4.5).
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Thus we get the von Neumann entropy (4.7)

S(ρR) = S(〈ρ(M)R〉M)

= − lim
n→1

∂n trR ρnR

= log k.

(C.7)

This von Neumann entropy is equal to the Hawking’s result, and it means
the information paradox.

We note that since the total state (4.6) is pure, the above von Neumann
entropy is equal to that of the the union of the black hole and the baby
universe BH ∪BU

S(ρBH∪BU) = S(ρR)

= log k.
(C.8)

C.2 The entropy of the naive Hawking radiation and
the baby universe
S(ρR∪BU) = S(ρBH)

Next, to obtain the von Neumann entropy of the union of the naive Hawking
radiation and the baby universe R ∪ BU(= R), we focus on the reduced
density matrix given by

ρR∪BU = trBH [|Φ〉〈Φ|BH∪R∪BU ]

=
3

MN

√
pMpN (trBH |ΨM〉〈ΨN |BH∪R)⊗ |M〉〈N |BU

=
3

MN

√
pMpN

N3

i=1

k3

α,β=1

CM
iαC

†N
βi |α〉〈β|R ⊗ |M〉〈N |BU .

(C.9)
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As in the previous case, we focus on the following quantity

trR∪BU ρnR∪BU =
3

M1,M2,··· ,Mn

pM1pM2 · · · pMn

× trR [(trBH |ΨM1〉〈ΨM2 |)(trBH |ΨM2〉〈ΨM3 |) · · · (trBH |ΨMn〉〈ΨM1 |)]

=
3

M1,M2,··· ,Mn

pM1pM2 · · · pMn

×
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1
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C†M2
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C†M3
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· · ·CMn
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=
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k3

α1,α2,··· ,αn=1
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α1in
CM1

i1α1
〉M1〈C

†M2

α2i1
CM2

i2α2
〉M2〈C

†M3

α3i2
CM3

i3α3
〉M3 · · · 〈C

†Mn

αnin−1
CMn

inαn
〉Mn

=
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

1

(kN )n
δini1δα1α1δi1i2δα2α2 · · · δin−1inδαnαn

=
1

N n−1
,

(C.10)
where in the fourth line we used the relation (4.5). We note that N = eSBH .

From the above result, we get the von Neumann entropy of the union of
the naive Hawking radiation and the baby universe (4.9)

S(ρR∪BU) = − lim
n→1

∂n trR∪BU ρnR∪BU

= logN
= SBH .

(C.11)

We note that the above von Neumann entropy is also equal to that of the
black hole BH

S(ρBH) = S(ρR∪BU)

= SBH .
(C.12)
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C.3 The entropy of the baby universe S(ρBU) = S(ρBH∪R)

Finally, to obtain the von Neumann entropy of the baby universe BU , we
focus on the reduced density matrix given by

ρBU = trBH∪R [|Φ〉〈Φ|BH∪R∪BU ]

=
3

MN

√
pMpN (trBH∪R |ΨM〉〈ΨN |BH∪R)⊗ |M〉〈N |BU

=
3

MN

√
pMpN

N3

i=1

k3

α=1

CM
iαC

†N
αi |M〉〈N |BU .

(C.13)

Then we get

trBU ρnBU =
3

M1,M2,··· ,Mn

pM1pM2 · · · pMn

×
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

CM1
i1α1

C†M2

α1i1
CM2

i2α2
C†M3

α2i2
· · ·CMn

inαn
C†M1

αnin

=
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

× 〈C†M1

αnin
CM1

i1α1
〉M1〈C

†M2

α1i1
CM2

i2α2
〉M2〈C

†M3

α2i2
CM3

i3α3
〉M3 · · · 〈C

†Mn

αn−1in−1
CMn

inαn
〉Mn

=
N3

i1,i2,··· ,in=1

k3

α1,α2,··· ,αn=1

1

(kN )n
δini1δαnα1δi1i2δα1α2 · · · δin−1inδαn−1αn

=
1

(kN )n−1
,

(C.14)
where in the third line we used the rule (4.5).

From the above result, we obtain the von Neumann entropy of the baby
universe

S(ρBU) = − lim
n→1

∂n trBU ρnBU

= log(kN )

= SBH + log k.

(C.15)

This is equal to the von Neumann entropy of the union of the black hole and
the Hawking radiation BH ∪R

S(ρBH∪R) = S(ρBU)

= SBH + log k.
(C.16)
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