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Abstract
A negative muon forms an atomic binding state with a nucleus, called a muonic

atom. The X ray emitted by the muonic atom is referred to as a muonic X ray. The
muonic X ray has been used to measure the nuclear charge radius because the energy
of the muonic X ray is sensitive to the charge radius. Due to the increasing attention
to nuclear charge distribution, it is important to develop the interpretation method
to discuss the charge distribution with the muonic X ray in addition to the radius.

The muonic atom mainly decays via a capture process p+ + µ� ! n + nµ and it
is called the nuclear muon capture reaction, or simply the muon capture. Since the
muon has a large mass, the excited state produced by the muon capture has large
excitation energy. However, little is known about the structure of the excited state
following the muon capture. The neutrons emitted from the excited state are a probe
of the excited state following the muon capture. The experimental study is lacking
especially for the medium-heavy region.

The thesis consists of two parts.
In Part I, the muonic X ray spectroscopy is discussed. The analysis method of

the muonic X ray to deduce the charge radii and to discuss the charge distribution
is described using the experimental data of the muonic X ray from the muonic
palladium. The experiment was performed at the RCNP MuSIC-M1 beamline. The
energy of the muonic X rays from the muonic palladium with the mass number
of A = 104, 105, 106, 108, and 110 was measured by germanium detectors. The
charge radius of the palladium isotopes is determined by assuming two-parameter
Fermi distribution as the charge distribution. It is indicated that the energy of the
higher X-ray transitions plays an important role to deduce the model dependence in
the interpretation. The charge distribution is discussed using the extended nuclear
moment called Barrett moment. The charge distribution obtained from the electron
scattering and the theoretical calculation is compared with the present result of the
muonic X rays for 108Pd. The necessary precision for the future measurement of the
muonic X rays is discussed with the uncertainty of the current experiment.

The subject of Part II is the neutron emission following the muon capture
reaction. The measurement of the neutrons emitted following the muon capture
on the palladium isotopes with the mass number of A = 104, 105, 106, 108, and
110 was performed. The experiments were performed at the RCNP MuSIC-M1
beamline. The neutron energy spectrum was obtained by the time-of-flight method
for the 1-20 MeV region. The characteristic spectra with a two-component structure,
which consists of the low energy evaporation neutron below 5 MeV and high energy
direct component above it, were observed. The spectral shape of the neutron energy
is discussed by comparing the previous result for heavier nuclei and theoretical
calculation. The neutron-neutron angular correlation was also measured. Excess
at the small opening angle is found for the first time. Further experimental and
theoretical study is required to reveal the process of deexcitation after the muon
capture reaction.
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Chapter §

Introduction

This chapter is an introductory part of the thesis. The general descriptions
and motivations for the muon X-ray spectroscopy and neutron spectroscopy are
described in Sec. §.1 and §.2, respectively. The objective and outline of the thesis
are summarized in Sec. §.3.

§.1 Muonic X-ray spectroscopy

§.1.1 Charge radius of atomic nucleus

The atomic nucleus is a finite quantum many-body system that consists of nucleons,
namely protons and neutrons. The size of the nucleus is typically several fm and
the size itself is the most direct consequence of the finiteness. The size and shape of
the nucleus are thus directly related to the nuclear potential, the single-particle orbit,
and wavefunctions[1]. By measuring the size of the nuclei, unique phenomena such
as shell evolution[2] and neutron halo[3], have been observed. Moreover, the size of
the nucleus is the basement of the precise measurement for particle physics[4].

The size, simply root-mean-square (rms) radius, of the nucleus can be defined
in two ways. Corresponding to two nucleons, protons and neutrons, there are two
radii of the nucleus; the charge radius and matter radius. The charge radius is the
radius that is related to the electromagnetic interaction and the proton distribution
dominates the charge radius. The matter radius is that to the nuclear force and both
of the protons and neutrons contribute to it. Usually, the charge and matter radii are
different and the difference is the subject of the recent experimental and theoretical
studies. Therefore the precise determination of both radii is important. In this study,
the experimental determination of the charge radius is focused on.

In addition to the rms charge radius, the charge distribution is recently getting
attention. The rms radius is the second-order moment of the charge distribution.
The higher-order moment, especially the fourth moment < r4 >, is important to
determine the surface thickness[5–7]. To obtain the higher moment, the charge
distribution should be determined by extending the measurement of the rms radius.

The charge radius has been measured mainly by three experimental methods.
The optical isotope shift (OIS) measurement of the electronic atom is the most precise
method for the relative value. Because of the difficulty to solve the many-body
problem, the OIS measurement cannot determine the absolute value of the radius.
The electron scattering experiment and the measurement of the muonic X-ray
transition energy are used for the absolute value. The experimental precision of the
two methods is almost the same and the systematic uncertainty is different. Thus
the electron scattering and muonic X-ray is complementary for the determination of
the charge radius[1, 8, 9].
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The electron scattering can measure the charge distribution and systematic
measurement has been performed for most of the stable nuclei. Furthermore, a
recent study is making it possible to perform electron scattering experiments for
unstable nuclei[10, 11]. On the other hand, the muonic X-ray transition energy is
only used for the determination of the charge radius and there is no discussion of
the charge distribution with the muonic X-ray transition energy.

§.1.2 Muonic atom and muonic X ray

The muon is a particle with the mass of 105.6583715 MeV/c2 and the charge ±1[12].
There is negative and positive muon and hereafter only the negative muon is
discussed since only the negative muon can form the bound state with the positively
charged nucleus.

The muonic atom is the bound state of the nucleus and the negative muon.
Because of the mass difference, the atomic radius (Bohr radius) of the muonic
atom is about 200 times smaller than that of the ordinary electronic atom. The
wavefunction and the binding energy of the muonic atom are more sensitive to
the nuclear charge distribution than the electronic atom due to the smaller atomic
radius. The binding energy of the electronic and muonic atom is also different by
about 200 times. Since the spatial and energy scale of the electronic and muonic
atom is much different, the surrounding electrons can be neglected and the muonic
atom can be considered as a two-body system in the first approximation[13–15].
Furthermore, the dominant interaction between the muon and the nucleus is only
the electromagnetic interaction during the formation of the atom. This simple
description of the muonic atom makes the theoretical interpretation easier compared
to the electronic atom, which is the target of the OIS measurement. Therefore, the
nuclear charge radius can be determined by measuring the binding energy of the
muonic atom.

The muonic X ray is the transition X ray emitted from the muonic atom. Because
the muon is firstly filled at the binding state with a high principal quantum number
(typically n ⇠ 15) during the formation of the muonic atom[16], the emission of
the muonic X ray usually accompanies the formation of the muonic atom without
any managements. The transition energy of the muonic X ray is the difference in
the energy of the initial and final states. Thus the measurement of the muonic
X rays makes it possible to determine the binding energy of the muonic atom
experimentally. The typical energy of the muonic X ray is from several tens keV
to several MeV. This energy is suited to be measured by g-ray detectors, such as
semiconductor detectors[17].

The uncertainty of the radius determined by the muonic X ray is contributed
by the interpretation in addition to the experimental uncertainty. To interpret the
muonic transition energy into the charge radius, the model charge distribution
should be assumed for the numerical calculation. As for the most common
compilation [9], the two-parameter Fermi distribution with a fixed surface
diffuseness is assumed. The model uncertainty of the calculation is not
straightforward, and it is difficult to quantitatively evaluate the model dependence.

The higher-order transitions of the muonic X ray provide a new perspective to
the interpretation of the muonic transition energy. In the previous studies, only
the Ka series (2p-1s transitions) are used in the discussion for the charge radius
because they have the highest sensitivity to the charge distribution. Several earlier
studies[18, 19] report the higher transitions and they actually discuss the detailed
aspects of the muonic X-ray transition. On the other hand, the number of the
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experimental inputs limits the number of the parameters that can be determined.
The higher transition must be included in the analysis to determine the diffuseness
parameter in the two-parameter Fermi distribution.

More generally, the charge distribution can be discussed with the higher
transition in addition to the charge radius. In this thesis, the model which was
introduced by Barrett[20] is extended and a new approach to discuss the charge
distribution by the muonic X ray is proposed. In this approach, the muonic transition
energy is quantitatively compared with the charge distribution which is deduced
from the theory and the electron scattering experiment.

The palladium isotope (Z = 46) is used as the target nuclei. In this study, the
muonic X rays of the stable palladium isotopes with A = 104, 105, 106, 108, and
110 were measured. The lowest 2p-1s transition energy is already measured and
summarized in the compilation [9] and the charge radii are also tabled in it. As
discussed above, in this compilation, the charge radii are deduced with only the
lowest transitions and the uncertainty estimation is not performed for the rms radii.
Moreover, the original paper is not published for several nuclei in the compilation
including the palladium isotopes. This situation makes it difficult to ensure the
credibility of the charge radius, which is one of the most fundamental parameters
in natural science.

§.2 Neutron emission following nuclear muon capture

The atomic ground state of a muonic atom decays via two weak processes[21]. One
is µ-e decay as same as the bare muon in the vacuum;

µ� ! e� + n̄e + nµ. (§.1)

The other is the nuclear muon capture reaction. The nuclear muon capture reaction
(hereafter, merely muon capture) is the process in which a proton in the nucleus
captures the negative muon and transforms into a neutron. The elementary process
is described as

µ� + p+ ! n + nµ. (§.2)

The branching ratio depends on the nuclei. For the light nuclei such as hydrogen
or carbon, the muonic atom decays via µ-e decay. The probability of the muon
capture, namely the lifetime of the muonic atom, roughly depends on the fourth
of the nuclear charge Z4[22]. Except for the lightest nuclei, the muon capture is
the dominant process and more than 90% of the muonic atom decays via the muon
capture[23].

The elementary process of the muon capture is similar to the electron capture

e� + p+ ! n + ne. (§.3)

The largest difference is the mass of the capturing lepton. The muon has the mass
of 105.6 MeV/c2 and the absence of the muon after the reaction of the muon capture
(§.2) makes the Q value of the reaction large ⇠ 100 MeV. Because of the large Q value,
which is larger than the typical Fermi energy of the nucleus, all nuclei can decay via
the muon capture reaction suppose the muon is there.

For the nucleus with (Z,A), the muon capture remains the excited state of (Z �
1,A) nucleus as

µ� + (Z, A) ! (Z � 1, A)⇤ + nµ. (§.4)
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The large Q value provides the high excitation energy for the nucleus. While a large
part of the energy is taken away by the kinetic energy of the emitting neutrino,
the typical excitation energy is from several MeV to several tens MeV. Due to the
large excitation energy, the residual nuclei usually deexcites by emitting neutrons, g
rays, and sometimes light charged particles. Contrary to the simple description of
the elementary process, little is known about the excited state following the muon
capture. Since the neutrino is difficult to detect by the ordinary detector, even the
excitation function has not been directly measured[21].

The particles emitted from the excited state following the muon capture are the
possible clue for the excitation structure of the muon capture. Except for the g
rays, the neutrons are the major part of the emitted particles because the charged
particle emission such as protons and deuterons is hindered by the Coulomb
barrier. The charged particle emission is the order of 1% for medium-heavy nuclei
for example[21, 24]. The typical number distribution of the emitted neutrons is
illustrated in Fig. §.1. The largest path of the decay process is the one neutron
emission whereas approximately half of the muon capture reaction is accompanied
by multi neutron emission[21, 25, 26].

The energy spectrum of the emitted neutrons is a fundamental aspect of the
decay process of the muon capture. The previous study by Schröder measured
the neutron energy for thallium, lead, and bismuth. The measured neutron energy
spectra shown in Fig. §.2 contain two components; the low energy neutrons below
5 MeV and the high energy neutrons above it. The low energy component is
interpreted as the evaporation neutron from the highly excited nucleus. The
high-energy neutron is the direct neutron, which is the neutron that is kicked by
the elementary process (§.2) out of the nucleus with fewer scatterings to the other
nucleons[27].

The high-energy neutrons have been investigated for several nuclear species[21,
28–30]. It is revealed that the high energy component continues up to 100 MeV,
which is the possible maximum energy of the muon capture reaction. On the
other hand, the low energy neutrons below 5 MeV have not been paid much
attention. In addition to the Schröder’s result for three heavy nuclei, a few results
are reported for light nuclei such as carbon and oxygen[31, 32]. However, there
is no direct measurement of the neutron energy for the medium-heavy region
A ⇠ 100. Furthermore, these previous studies use the natural target and the isotope
dependence of the neutron energy has not been discussed.

The palladium is the medium-heavy Z = 46 nuclei with six stable isotopes. In
this study, the neutron energy following the muon capture on the palladium isotope
enriched target with A = 104,105, 106, 108, and 110 are measured experimentally.

In addition to the energy spectrum of the neutrons, the angular correlation of the
neutrons is considered to reflect the microscopic structure of the excited state after
the muon capture. There is one previous study to measure the angular correlation of
the neutron following the muon capture for 40Ca[28]. They reported the excess at a
large opening angle with high energy neutron with the energy deposit above 10 MeV
as shown in Fig. §.3. On the other hand, the neutron-neutron correlation has not been
measured for the low-energy neutrons. Therefore, the coincidence measurement
would provide new information for the muon capture reaction.
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FIGURE §.1: Neutron multiplicity of several nuclei. The points
indicate the experimental results and the lines are theoretical

predictions. The figure is taken from [25].

FIGURE §.2: Neutron energy spectrum for Tl, Pb, ad Bi. The points
are the experimental results and the vertical error bars indicate the
energy uncertainty. There is a kinked structure around 5 MeV. The

figure is taken from [33].
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FIGURE §.3: Neutron angular correlation for 40Ca. The results are
illustrated for several neutron energy thresholds. The figure is taken

from [28]

§.3 Thesis objective and outline

The thesis consists of two parts; the muonic X ray spectroscopy (Part I) and neutron
emission following the nuclear muon capture (Part II).

The objectives of Part I of the thesis is three points:

• Summarize the experimental and analysis method to measure the
experimental value of the muonic X ray transition energy.

• Give the experimental result of muonic transition energy and the determined
charge radii for the stable palladium isotopes.

• Propose a new method to interpret the experimental data to nuclear charge
distribution.

• Suggest the necessary experimental resolution for the future experiment.

Part I consists of four chapters. The experimental setup to measure muonic
X ray of the palladium isotopes is described in Chap. I-1 and the analysis of the
experimental data is in Chap. I-2. The result of the analysis, namely the measured
transition energy, is summarized and the charge radius and charge distribution are
discussed using the result in Chap. I-3. In Chap. I-4, the conclusion and future
outlook are described.

The objectives of Part II is :

• Measure the neutron energy following the muon capture on stable palladium
isotopes with the mass number of 104, 105, 106, 108, and 110 for the low-energy
region below 20 MeV.

• Measure the neutron angular correlation for these isotopes.

• Compare them with the previous measurement and the theoretical calculation.

Part II consists of four chapters. The experimental setup including the beamline,
target, and detector system is described in Chap. II-1 while some of the experimental
setups are common with Part I. The analysis to deduce the neutron energy and
angular correlation is written in Chap. II-2. The resulted spectrum is summarized
in Chap. II-3. In this chapter, a comparison of the experimental result with the
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previous experiment and the theoretical calculation is discussed. Chapter II-4 is for
the summary and future outlook.

For the experimental works in the thesis, the author has contributed to

• Design of the detector setup (Part I, II)

• Development the data acquisition system (Part I, II)

• Planing of the beamtime schedule (Part I, II)

• Data analysis to determine the transition energy (Part I) and the neutron
energy spectrum and the angular correlation (Part II)

• Development of the numerical calculation code for the muonic transition
energy (Part I)

• Development of the interpretation method of the muonic X ray to the charge
radii and distribution (Part I)

• Major part of the discussion (Part II).
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Muonic X-ray spectroscopy
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