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Abstract

In this thesis, we investigate two quantum models. The first model is a Kerr-nonlinear paramet-
ric oscillator (KPO) coupled to a bath of harmonic oscillators. We assume that the detuning is
zero, then the Hamiltonian of the KPO has two degenerate ground states. We also assume that
the parametric pump is much stronger than the Kerr-nonlinearity. In this case, the approxi-
mate forms of the first two excited states are known. Using these four states, we derive the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian master equation for a KPO
from the microscopic Hamiltonian. We compare our GKSL equation with the GKSL equation
in the literature. We show that a KPO under our GKSL equation is more robust to excitation
errors than that under the GKSL equation in the literature. In particular, we show that in
the low-temperature limit of the bath, the state of a KPO under our GKSL equation is mostly
confined to the subspace spanned by KPO’s two degenerate ground states.

The second model consists of coupled harmonic oscillators in a star configuration, where
the central harmonic oscillator (system) is coupled to a finite number of surrounding harmonic
oscillators (bath). We define and investigate the nonequilibrium thermodynamic entropy of
the total system. In this model, when the initial state of the total system is given by the
tensor product of the Gibbs states of the system and the bath, every harmonic oscillator is
always in a Gibbs state with a time-dependent temperature. This enables us to define time-
dependent thermodynamic entropy for each harmonic oscillator, and thereby define the total
nonequilibrium thermodynamic entropy as their summation. We analytically confirm that
our total thermodynamic entropy satisfies the third law of thermodynamics. Our numerical
solutions show that, though the finite-time dynamics of the system is well approximated by the
GKSL equation, the total thermodynamic entropy production rate can be negative, while the
total thermodynamic entropy satisfies the second law of thermodynamics.
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Chapter 1

Introduction

In general, it is difficult to isolate a quantum system; the system always interacts with its
environment, which causes decoherence and dissipation of the system [1, 2]. Such a system
is called an open quantum system [3–5]. The total system, which consists of the system of
interest and the environment, may be isolated and its dynamics can be unitary. As the degrees
of freedom of the environment is huge, however, pursuing the total dynamics is generally beyond
our computational ability. Besides, the dynamics of the environment itself is typically of little
interest. Thus, we usually focus on the dynamics of the open system by taking the partial trace
over the degrees of freedom of the environment.

In the theory of open quantum systems, it is often assumed that the environment is in a
thermal equilibrium (Gibbs) state at the initial time. We call such an environment a bath.
Because of the interaction with the bath, the dynamics of the system is not unitary; it is not
described by the Schrödinger equation nor by the von Neumann equation. We do not have a
simple form of the time-evolution equation for the system for a general coupling. Nontheless,
when the coupling is weak enough for the time scale of the bath to be much shorter than that of
the system, the dynamics of the system is called Markovian; under several approximations its
dynamics can be described by a simple form of the time-evolution equation called the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian master equation [3, 4, 6–8]. This
equation comprises two parts; one is related to the dynamics induced by the Hamiltonian of
the system and the other is related to the decoherence which comes from the interaction with
the bath.

There is a procedure to derive the GKSL equation from the microscopic Hamiltonian of the
system, the bath, and their interaction; we will explain this procedure in Chapter 2. In the
derivation, we need the complete set of the eigenstates of the Hamiltonian of the system. When
the system is simple like a two-level system and a harmonic oscillator, we know the eigenstates
and can derive the explicit form of the GKSL equation [3, 4, 9]. On the other hand, when the
system is complicated like a Kerr-nonlinear parametric oscillator (KPO) [10], which we study
in Chapter 4, only several eigenstates of the Hamiltonian are known, and hence it is difficult
to derive its GKSL equation. Instead in the literature, as a decoherence part of the GKSL
equation for a KPO, the decoherence part of the GKSL equation for a harmonic oscillator is
often used [11–13]. As this decoherence part is not derived from the microscopic Hamiltonian
of the total system which consists of a KPO and its environment, it is doubtful whether this
decoherence part accurately describes the decoherence of the KPO. Indeed, we derive the GKSL
equation for a KPO starting from the microscopic Hamiltonian of the total system comprised of
the KPO and a bath of harmonic oscillators, finding a different form of the decoherence term.
Studying the decoherence of a KPO is practically important because the KPO is expected to
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be utilized as a qubit for a quantum computer [11, 14, 15]; it is necessary to reduce noise from
the environment as much as possible for precise quantum computation.

On the other hand, we study in Chapter 5 a total system made up of coupled harmonic
oscillators in a star configuration, in which the central harmonic oscillator (system of interest)
is coupled to a finite number of surrounding harmonic oscillators (bath). When the initial state
of the total system is a Gaussian state [16–20], not only the dynamics of the system of interest
but also the dynamics of the total system including the bath can be pursued [6]. Even when
the size of the bath is finite, we can set the parameters so that the finite-time dynamics of the
system of interest may be well approximated by the GKSL equation [6].

An open quantum system and a bath is one of the typical setups in the research field
of quantum thermodynamics [21–23], which explains microscopic thermodynamic changes of
microscopic quantum systems coupled with macroscopic ones. One of the most fundamental
problems in quantum thermodynamics is how to define thermodynamic quantities such as the
thermodynamic entropy, the temperature, heat, and work. Of particular importance is the ther-
modynamic entropy because it characterizes the irreversibility of thermodynamics. This is why
researchers have suggested several definitions of thermodynamic entropy [24–26] and various
ones of entropy production and of its rate; see Ref. [27] and references therein. Nevertheless,
there is no consensus for now.

There is active research [28–33] into the relation between non-Markovianity [34] of the
dynamics of an open quantum system and a negative entropy production rate of the total
system. However, there is no agreement about this relation mainly because there is no unified
definition of the entropy production rate or of non-Markovianity. On the other hand, when an
open quantum system is under the GKSL-type Markovian dynamics, it is widely believed that
the entropy production rate of the total system is non-negative [28–33], and researchers often
use the von Neumann entropy production rate [35], which is the negated time-derivative of
the von Neumann relative entropy [36, Sec. 11.8] between the reduced state of the system and
the reference stationary state of the GKSL equation. As we will see in Chapter 5, there is an
implicit assumption in the form of the von Neumann entropy production rate that the size of
a bath is so macroscopically large that its temperature does not change during the dynamics.
Although the temperature of the whole bath does not change macroscopically, the temperature
of a part of the bath can change microscopically; see Chapter 5. The von Neumann entropy
production rate cannot take this microscopic temperature change into account. In Chapter 5, we
consider the quantum model of coupled harmonic oscillators in a star configuration, pursuing
the time evolution of the temperature of each harmonic oscillator. We thereby define the
nonequilibrium thermodynamic entropy of the total system which incorporates the microscopic
temperature change of the bath. As a result, our total thermodynamic entropy production
rate can be negative though the finite-time dynamics of the central harmonic oscillator is well
approximated by the GKSL equation.

1.1 Purpose
In summary, our purpose in this thesis is to study dynamics and thermodynamics of coupled
quantum oscillators, based on the Hamiltonian of the total system which consists of a system of
interest and a bath. First, we want to clarify the relationship between the dynamics of a KPO
(the system of interest) and the Hamiltonian of the total system. Thus, we derive the GKSL
equation for a KPO starting from the total Hamiltonian. A KPO is a promising candidate
for a qubit in a quantum computer. Hence, the study of the decoherence of a KPO is of
practical importance. Second, we want to elucidate the relationship between the dynamics and
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thermodynamics of the quantum model of coupled harmonic oscillators. By considering this
model, we can pursue the dynamics of the total system microscopically. We analyze the effects of
the microscopic temperature changes of the subsystems on the nonequilibrium thermodynamic
entropy that we define for the total system. We believe that this study sheds a new light on
the connection between quantum mechanics and thermodynamics.

1.2 Organization of this thesis
Let us explain the organization of this thesis. In Chapter 2, we review a Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL)-type Markovian master equation [7,8]. Starting from the general
Hamiltonian of the total system consisting of a system of interest and a bath, we derive the
GKSL equation, Eq. (2.40) with Eq. (2.45), by performing the Born-Markov and the secular
(rotating-wave) approximations [3]. We also talk about a stationary state of the GKSL equation.
As an example, we derive the GKSL equation (2.99) for a damped harmonic oscillator [4, 6].
The decoherence part of this GKSL equation appears in the GKSL equation for a KPO (4.57)
in the literature, which we treat in Chapter 4. The GKSL equation of the damped harmonic
oscillator is also used in Chapter 5.

In Chapter 3, we review a Kerr-nonlinear parametric oscillator (KPO) [10]. We can con-
struct a KPO using a quantum circuit. We begin with an LC circuit, which is equivalent to
a harmonic oscillator [37]. Replacing the inductance L by a Josephson junction, we obtain a
transmon [37], which has nonlinearlity. If we use a loop with two parallel Josephson junctions
threaded by a magnetic flux, instead of using a single Josephson junction, we would have a
SQUID transmon, where SQUID is the abbreviation for a superconducting quantum interfer-
ence device [37]. Then, after some approximations and moving to a rotating frame, we arrive
at the Hamiltonian (3.38) of the KPO. We explain KPO’s two degenerate exact ground states
and approximate excited states. We can use the two degenerate exact ground states as the
logical states of a qubit for a quantum computer [11,14,15].

In Chapter 4, we tackle the decoherence of a KPO. After referring to the GKSL equation
(4.2) for a KPO in the literature, we derive our GKSL equation (4.56) for a KPO; starting from
the total Hamiltonian (4.8) of the KPO, the bath, and their interaction, we follow the procedure
explained in Chapter 2. Then, we compare our GKSL equation and the GKSL equation in the
literature. We show that a KPO under our GKSL equation is more robust to excitation errors
than that under the GKSL equation in the literature. In particular, in the low-temperature
limit of the bath, the state of a KPO under our GKSL equation is mostly confined to the
subspace spanned by KPO’s two degenerate ground states.

In Chapter 5, we define and investigate a total nonequilibrium thermodynamic entropy
(5.51) of the quantum model of coupled harmonic oscillators in a star configuration, introduced
in Chapter 2. In particular, we show that our total thermodynamic entropy production rate
(5.56) can be negative, though the finite-time dynamics of the system is well approximated
by the GKSL equation. This comes from the temperature change of each harmonic oscillator,
which is incorporated in our nonequilibrium thermodynamic entropy. This Chapter is based
on the following journal article:

• Takaaki Aoki, Yuichiro Matsuzaki, and Hideaki Hakoshima, “Possibility of the total ther-
modynamic entropy production rate of a finite-sized isolated quantum system to be neg-
ative for the Gorini-Kossakowski-Sudarshan-Lindblad-type markovian dynamics of its
subsystem,” Phys. Rev. A 103, 052208 (2021).

In Chapter 6, we conclude this thesis with future prospects.
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Chapter 2

Open quantum systems

In this Chapter, we review the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Marko-
vian master equation [7, 8]. We assume that the environment is large and in a thermal equi-
librium state at the initial time. We refer to such an environment as a bath. We also consider
the weak coupling limit.

Let us call the open quantum system [3, 4] A and the bath B. The total Hilbert space is
HA ⊗ HB. The total Hamiltonian is given by

Ĥ = ĤA + ĤB + ĤI , (2.1)

where ĤA and ĤB are the Hamiltonians of the system and the bath, respectively, while ĤI is
the interaction Hamiltonian. The dynamics of the total system in the Schrödinger picture is
governed by the von Neumann equation:

dρ̂(t)
dt = − i

~
[ĤA + ĤB + ĤI , ρ̂(t)], (2.2)

where ρ̂(t) is the density operator of the total system.
As we consider the weak coupling limit, we will treat the interaction Hamiltonian in a

perturbative manner. Thus, it is more convenient to transfer to the interaction picture, in
which the density operator ρ̂I(t) and the observable operator ÔI(t) are given by

ρ̂I(t) = e i
~ (ĤA+ĤB)tρ̂(t)e− i

~ (ĤA+ĤB)t, (2.3)
ÔI(t) = e i

~ (ĤA+ĤB)tÔ(t)e− i
~ (ĤA+ĤB)t. (2.4)

Here, Ô(t) is the observable operator in the Schrödinger picture. Then, the von Neumann
equation in the interaction picture is written as

dρ̂I(t)
dt = − i

~
[ĤI

I (t), ρ̂I(t)], (2.5)

whose integral expression is

ρ̂I(t) = ρ̂I(0) − i
~

∫ t

0
ds [ĤI

I (s), ρ̂I(s)]. (2.6)

By substituting Eq. (2.6) into Eq. (2.5), we obtain

dρ̂I(t)
dt = − i

~
[ĤI

I (t), ρ̂I(0)] − 1
~2

∫ t

0
ds [ĤI

I (t), [ĤI
I (s), ρ̂I(s)]]. (2.7)
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What we want is a closed equation on the dynamics of the system. For this purpose, let us
trace out the degrees of freedom of the bath:

dρ̂I
A(t)
dt = − i

~
TrB[ĤI

I (t), ρ̂I(0)] − 1
~2

∫ t

0
dsTrB[ĤI

I (t), [ĤI
I (s), ρ̂I(s)]], (2.8)

where

ρ̂I
A(t) = TrB[ρ̂I(t)]

= TrB[e i
~ (ĤA+ĤB)tρ̂(t)e− i

~ (ĤA+ĤB)t]
= e i

~ ĤAtTrB[e i
~ ĤBtρ̂(t)e− i

~ ĤBt]e− i
~ ĤAt

= e i
~ ĤAtTrB[ρ̂(t)]e− i

~ ĤAt

=: e i
~ ĤAtρ̂A(t)e− i

~ ĤAt (2.9)

is the density operator of the system in the interaction picture with ρ̂A(t) being the the density
operator of the system in the Schrödinger picture.

We prepare the following initial state:

ρ̂I(0) = ρ̂(0) = ρ̂A(0) ⊗ ρ̂th
B := ρ̂A(0) ⊗ e−β0

BĤB

Tr
[
e−β0

BĤB

] , (2.10)

where we set the initial state of the bath to the Gibbs state with inverse temperature β0
B.

There is no correlation between the system and the bath initially. The most general interaction
Hamiltonian in the Schrödinger picture is [38] (see also Sec. 3.3.1 in Ref. [3] and Sec. II.A in
Ref. [34])

ĤI = ~
∑

α

Âα ⊗ B̂α, (2.11)

where Â†
α = Âα and B̂†

α = B̂α. In the interaction picture, we have

ĤI
I (t) = ~

∑
α

ÂI
α(t) ⊗ B̂I

α(t), (2.12)

where ÂI
α(t) = e i

~ ĤAtÂαe− i
~ ĤAt and B̂I

α(t) = e i
~ ĤBtB̂αe− i

~ ĤBt. We assume that the first term in
Eq. (2.8) is zero [3, Sec. 3.3.1], so that we obtain

dρ̂I
A(t)
dt = − 1

~2

∫ t

0
dsTrB[ĤI

I (t), [ĤI
I (s), ρ̂I(s)]]. (2.13)

We note that the assumption TrB[ĤI
I (t), ρ̂I(0)] = 0 is satisfied by ĤI

I (t) in Eq. (2.70) and
ρ̂I(0) = ρ̂A(0) ⊗ e−β0

BĤB/Tr
[
e−β0

BĤB

]
with ĤB in Eq. (2.61); see Sec. 2.5. We also note that the

assumption TrB[ĤR,I
I (t), ρ̂R,I(0)] = TrB[ĤR,I

I (t), ρ̂R(0)] = 0 is satisfied by ĤR,I
I (t) in Eq. (4.30)

and ρ̂R(0) in Eq. (4.13); see Sec. 4.2.

2.1 The Born-Markov approximation
We here apply the Born approximation [3, Sec. 3.3.1], which states that because of weak cou-
pling, there occurs few correlations between the system and the bath, and the state of the bath
hardly changes in the time evolution:

ρ̂(t) ≈ ρ̂A(t) ⊗ ρ̂th
B . (2.14)
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The total density operator in the interaction picture has a similar form:

ρ̂I(t) ≈ ρ̂I
A(t) ⊗ ρ̂th

B . (2.15)

Substitution of Eq. (2.15) into Eq. (2.13) yields

dρ̂I
A(t)
dt = − 1

~2

∫ t

0
dsTrB[ĤI

I (t), [ĤI
I (s), ρ̂I

A(s) ⊗ ρ̂th
B ]]. (2.16)

We note that the Born approximation (2.14) is not a necessary condition for the dynamics of
the system to obey the GKSL equation. In some cases, the dynamics of the system is well
approximated by the GKSL equation while the state of the total system ρ̂(t) is far from the
tensor product state [6, Sec. 2.3.3].

Looking at Eq. (2.16), we see that the time derivative of the state of the system ρ̂I
A(t)

depends on the state of the system ρ̂I
A(s) in the past (0 ≤ s ≤ t). In order to get rid of this

memory effect, we here perform the Markov approximation.
First, we replace the integral variable in Eq. (2.16) from s to t− s:

dρ̂I
A(t)
dt = − 1

~2

∫ t

0
dsTrB[ĤI

I (t), [ĤI
I (t− s), ρ̂I

A(t− s) ⊗ ρ̂th
B ]]. (2.17)

Let τB denote the correlation time of the bath, which is a characteristic time scale in which
the integrand in the right-hand side of Eq. (2.17) decays. Roughly speaking, the integrand is
nonzero for 0 ≤ s . τB. We assume that the relaxation time of the system τR is much larger
than τB, and thereby replace ρ̂I

A(t − s) by ρ̂I
A(t). This is sometimes called the first Markov

approximation [34, Sec. IV.B.1], which results in:

dρ̂I
A(t)
dt = − 1

~2

∫ t

0
dsTrB[ĤI

I (t), [ĤI
I (t− s), ρ̂I

A(t) ⊗ ρ̂th
B ]]. (2.18)

Note that this equation is local in time.
As the integrand rapidly goes to zero for s � τB, we extend the upper limit of the integral

to ∞, which is known as the second Markov approximation [34, Sec. IV.B.1]:

dρ̂I
A(t)
dt = − 1

~2

∫ ∞

0
dsTrB[ĤI

I (t), [ĤI
I (t− s), ρ̂I

A(t) ⊗ ρ̂th
B ]]. (2.19)

2.2 The Redfield equation
This is called the Redfield equation [39,40]. We give two words of caution. First, the Redfield
equation is not guaranteed to be completely positive [41]. Hence, a system under the Redfield
equation may have negative populations, which is unphysical [1]. In order to achieve the
complete positivity, we need to perform the secular (rotating-wave) approximation, which we
will explain in Sec. 2.3. Second, in some literature, Eq. (2.18) instead of Eq. (2.19) is called the
Redfield equation (for example, Eq. (3.117) in Ref. [3] and Eq. (5.135) in Ref. [42]). However,
as pointed out at footnote 12 in Ref. [1], Redfield did extend the upper limit of the integral to
∞ in his original paper; see Eq. (2.14) in Ref. [39].

We now transform the Redfield equation (2.19) using the interaction Hamiltonian (2.12).
Let εj and |ψj〉 denote the jth eigenvalue and eigenstate of the Hamiltonian of the system:

ĤA =
∑

j

εj |ψj〉〈ψj| . (2.20)
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We assume that the eigenstates {|ψj〉} have no degeneracy. As {|ψj〉} is a complete orthonormal
set in HA, we can rewrite AI

α(t) as

ÂI
α(t) = e i

~ ĤAtÂαe− i
~ ĤAt

=
∑
j,k

e i
~ ĤAt |ψj〉〈ψj| Âα |ψk〉〈ψk| e− i

~ ĤAt

=
∑
j,k

e− i
~ (εk−εj)t |ψj〉〈ψj| Âα |ψk〉〈ψk|

=
∑
ωA

e−iωAtÂα(ωA), (2.21)

where in the summation in the last line, ωA is taken from {εk − εj|j, k = 1, 2 . . . } except for
duplication. Here, we have defined Âα(ωA) as

Âα(ωA) =
∑
j,k

εk−εj=~ωA

|ψj〉〈ψj| Âα |ψk〉〈ψk| . (2.22)

Note that the following relations are satisfied:

Â†
α(ωA) = Âα(−ωA), (2.23)

[ĤA, Âα(ωA)] = −~ωAÂα(ωA), (2.24)
[ĤA, Â

†
α(ωA)] = ~ωAÂ

†
α(ωA), (2.25)

[ĤA, Â
†
α(ωA)Âβ(ωA)] = 0, (2.26)∑

ωA

Âα(ωA) =
∑
ωA

Â†
α(ωA) = Âα. (2.27)

Inserting Eq. (2.21) into Eq. (2.12), we obtain

ĤI
I (t) = ~

∑
α,ωA

e−iωAtÂα(ωA) ⊗ B̂I
α(t) = ~

∑
α,ωA

eiωAtÂ†
α(ωA) ⊗ B̂I

α(t), (2.28)

where the last equality follows from the Hermiticity of ĤI
I (t) and B̂I

α(t).
We obtain another form of the Redfield equation by combining (2.19) and Eq. (2.28):

dρ̂I
A(t)
dt = − 1

~2

∫ ∞

0
dsTrB[ĤI

I (t), ĤI
I (t− s)ρ̂I

A(t) ⊗ ρ̂th
B − ρ̂I

A(t) ⊗ ρ̂th
B Ĥ

I
I (t− s)]

= − 1
~2

∫ ∞

0
dsTrB[ĤI

I (t)ĤI
I (t− s)ρ̂I

A(t) ⊗ ρ̂th
B − ĤI

I (t)ρ̂I
A(t) ⊗ ρ̂th

B Ĥ
I
I (t− s)

− ĤI
I (t− s)ρ̂I

A(t) ⊗ ρ̂th
B Ĥ

I
I (t) + ρ̂I

A(t) ⊗ ρ̂th
B Ĥ

I
I (t− s)ĤI

I (t)]

= 1
~2

∫ ∞

0
dsTrB[ĤI

I (t− s)ρ̂I
A(t) ⊗ ρ̂th

B Ĥ
I
I (t) − ĤI

I (t)ĤI
I (t− s)ρ̂I

A(t) ⊗ ρ̂th
B ] + h.c.

=
∫ ∞

0
dsTrB

∑
β,ωA

e−iωA(t−s)Âβ(ωA) ⊗ B̂I
β(t− s)ρ̂I

A(t) ⊗ ρ̂th
B

∑
α,ω′

A

eiω′
AtÂ†

α(ω′
A) ⊗ B̂I

α(t)

−
∑

α,ω′
A

eiω′
AtÂ†

α(ω′
A) ⊗ B̂I

α(t)
∑
β,ωA

e−iωA(t−s)Âβ(ωA) ⊗ B̂I
β(t− s)ρ̂I

A(t) ⊗ ρ̂th
B

+ h.c.

=
∑

ωA,ω′
A

∑
α,β

ei(ω′
A−ωA)t

∫ ∞

0
ds eiωAs

{
TrB[B̂I

β(t− s)ρ̂th
B B̂

I
α(t)]Âβ(ωA)ρ̂I

A(t)Â†
α(ω′

A)
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− TrB[B̂I
α(t)B̂I

β(t− s)ρ̂th
B ]Â†

α(ω′
A)Âβ(ωA)ρ̂I

A(t)
}

+ h.c.

=
∑

ωA,ω′
A

∑
α,β

ei(ω′
A−ωA)tΓα,β(ωA)[Âβ(ωA)ρ̂I

A(t)Â†
α(ω′

A) − Â†
α(ω′

A)Âβ(ωA)ρ̂I
A(t)] + h.c.,

(2.29)

where h.c. means the Hermitian conjugate and

Γα,β(ωA) =
∫ ∞

0
ds eiωAsTrB[B̂I

α(s)B̂β ρ̂
th
B ] (2.30)

is a one-sided Fourier transform of the correlation function of the bath.

2.3 The secular (rotating wave) approximation and the
GKSL equation

In Eq. (2.29), if |ω′
A − ωA|−1 (ω′

A 6= ωA) is much smaller than the relaxation time of the
system τR, the terms with ω′

A 6= ωA rapidly oscillate. Neglecting these terms, called the secular
(rotating-wave) approximation [3, Sec. 3.3.1], results in

dρ̂I
A(t)
dt =

∑
ωA

∑
α,β

Γα,β(ωA)[Âβ(ωA)ρ̂I
A(t)Â†

α(ωA) − Â†
α(ωA)Âβ(ωA)ρ̂I

A(t)] + h.c. (2.31)

In order to divide the above equation into the Lamb-shift part and the decoherence part, we
decompose Γα,β(ωA) as

Γα,β(ωA) = 1
2γα,β(ωA) + iSα,β(ωA), (2.32)

where the elements

Sα,β(ωA) = 1
2i [Γα,β(ωA) − Γ∗

β,α(ωA)] (2.33)

form a Hermitian matrix and the elements

γα,β(ωA) = Γα,β(ωA) + Γ∗
β,α(ωA)

=
∫ ∞

0
ds eiωAsTrB[B̂I

α(s)B̂β ρ̂
th
B ] +

∫ ∞

0
ds e−iωAsTrB[ρ̂th

B B̂αB̂
I
β(s)]

=
∫ ∞

0
ds eiωAsTrB[B̂I

α(s)B̂β ρ̂
th
B ] +

∫ ∞

0
ds e−iωAsTrB[B̂I

α(−s)B̂β ρ̂
th
B ]

=
∫ ∞

−∞
ds eiωAsTrB[B̂I

α(s)B̂β ρ̂
th
B ] (2.34)

form a positive semidefinite matrix [4, Sec. 6.2.2]. We then arrive at

dρ̂I
A(t)
dt =

∑
ωA

∑
α,β

Γα,β(ωA)[Âβ(ωA)ρ̂I
A(t)Â†

α(ωA) − Â†
α(ωA)Âβ(ωA)ρ̂I

A(t)]

+
∑
ωA

∑
α,β

Γ∗
α,β(ωA)[Âα(ωA)ρ̂I

A(t)Â†
β(ωA) − ρ̂I

A(t)Â†
β(ωA)Âα(ωA)]

=
∑
ωA

∑
α,β

Γα,β(ωA)[Âβ(ωA)ρ̂I
A(t)Â†

α(ωA) − Â†
α(ωA)Âβ(ωA)ρ̂I

A(t)]
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+
∑
ωA

∑
α,β

Γ∗
β,α(ωA)[Âβ(ωA)ρ̂I

A(t)Â†
α(ωA) − ρ̂I

A(t)Â†
α(ωA)Âβ(ωA)]

=
∑
ωA

∑
α,β

[Γα,β(ωA) + Γ∗
β,α(ωA)]Âβ(ωA)ρ̂I

A(t)Â†
α(ωA)

−
∑
ωA

∑
α,β

[Γα,β(ωA)Â†
α(ωA)Âβ(ωA)ρ̂I

A(t) + Γ∗
β,α(ωA)ρ̂I

A(t)Â†
α(ωA)Âβ(ωA)]

=
∑
ωA

∑
α,β

γα,β(ωA)Âβ(ωA)ρ̂I
A(t)Â†

α(ωA)

−
∑
ωA

∑
α,β

[1
2γα,β(ωA) + iSα,β(ωA)

]
Â†

α(ωA)Âβ(ωA)ρ̂I
A(t)

−
∑
ωA

∑
α,β

[1
2γα,β(ωA) − iSα,β(ωA)

]
ρ̂I

A(t)Â†
α(ωA)Âβ(ωA)

= − i
~

[ĤLS, ρ̂
I
A(t)] + D[ρ̂I

A(t)], (2.35)

where

ĤLS =
∑
ωA

∑
α,β

~Sα,β(ωA)Â†
α(ωA)Âβ(ωA) (2.36)

is called the Lamb-shift Hamiltonian [3, Sec. 3.3.1] and

D[ρ̂I
A(t)] =

∑
ωA

∑
α,β

γα,β(ωA)
(
Âβ(ωA)ρ̂I

A(t)Â†
α(ωA) − 1

2{Â†
α(ωA)Âβ(ωA), ρ̂I

A(t)}
)

(2.37)

is the decoherence part. Here, the curly parentheses {•, •} denote the anticommutator. From
Eq. (2.26), we find that the system Hamiltonian and the Lamb-shift Hamiltonian commute:

[ĤA, ĤLS] = 0. (2.38)

Let us transform Eq. (2.35) into the Schrödinger-picture version. From Eq. (2.9) we obtain

ρ̂A(t) = e− i
~ ĤAtρ̂I

A(t)e i
~ ĤAt, (2.39)

whose time-derivative is calculated as in

dρ̂A(t)
dt = − i

~
[ĤA, ρ̂A(t)] + e− i

~ ĤAt dρ̂I
A(t)
dt e i

~ ĤAt

= − i
~

[ĤA, ρ̂A(t)] + e− i
~ ĤAt

(
− i
~

[ĤLS, ρ̂
I
A(t)] + D[ρ̂I

A(t)]
)

e i
~ ĤAt

= − i
~

[ĤA + ĤLS, ρ̂A(t)] + D[ρ̂A(t)], (2.40)

where

D[ρ̂A(t)] =
∑
ωA

∑
α,β

γα,β(ωA)
(
Âβ(ωA)ρ̂A(t)Â†

α(ωA) − 1
2{Â†

α(ωA)Âβ(ωA), ρ̂A(t)}
)
. (2.41)

Here, we have used Eq. (2.38) and

e− i
~ ĤAtÂβ(ωA)e i

~ ĤAt = eiωAtÂβ(ωA), (2.42)
e− i

~ ĤAtÂ†
α(ωA)e i

~ ĤAt = e−iωAtÂ†
α(ωA), (2.43)
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which come from Eqs. (2.24) and (2.25).
Let us transform Eq. (2.41) into the GKSL form [3, Sec. 3.2.2]. Since the matrix γ(ωA) =

(γα,β(ωA)) is positive semidefinite, it can be diagonalized using the unitary matrix u(ωA)
as u(ωA)γ(ωA)u†(ωA) = γ̃(ωA), where γ̃(ωA) is the diagonal matrix whose diagonal element
γ̃α(ωA) = γ̃α,α(ωA) is non-negative. Defining new operators {Ĉα(ωA)} as

Ĉα(ωA) =
∑

β

uα,β(ωA)Âβ(ωA), (2.44)

the decoherence part (2.41) is diagonalized:

D[ρ̂A(t)] =
∑
ωA

∑
α

γ̃α(ωA)
(
Ĉα(ωA)ρ̂A(t)Ĉ†

α(ωA) − 1
2{Ĉ†

α(ωA)Ĉα(ωA), ρ̂A(t)}
)
. (2.45)

We have finally obtained the GKSL master equation: Eq. (2.40) with Eq. (2.45).
Let us give explicit forms of γα,β(ωA) and Sα,β(ωA). In a similar way with Eq. (2.21), we

rewrite B̂I
α(s) as

B̂I
α(s) =

∑
ωB

e−iωBsB̂α(ωB) (2.46)

with

B̂α(ωB) =
∑
j,k

εB
k −εB

j =~ωB

∣∣∣ψB
j

〉〈
ψB

j

∣∣∣ B̂α

∣∣∣ψB
k

〉〈
ψB

k

∣∣∣ , (2.47)

where εB
j and

∣∣∣ψB
j

〉
denote the jth eigenvalue and eigenstate of the Hamiltonian of the bath:

ĤB =
∑

j

εB
j

∣∣∣ψB
j

〉〈
ψB

j

∣∣∣ . (2.48)

Substituting this into Eq. (2.30), we obtain

Γα,β(ωA) =
∑
ωB

∫ ∞

0
ds ei(ωA−ωB)sTrB[B̂α(ωB)B̂β ρ̂

th
B ]

=
∑
ωB

[
πδ(ωA − ωB) + i P.V.

( 1
ωA − ωB

)]
TrB[B̂α(ωB)B̂β ρ̂

th
B ], (2.49)

where P.V. means the the Cauchy principal value. From Eq. (2.34), we similarly have

γα,β(ωA) =
∑
ωB

∫ ∞

−∞
ds ei(ωA−ωB)sTrB[B̂α(ωB)B̂β ρ̂

th
B ]

=
∑
ωB

2πδ(ωA − ωB)TrB[B̂α(ωB)B̂β ρ̂
th
B ]. (2.50)

Combining Eqs. (2.32), (2.49), and (2.50) yields

Sα,β(ωA) = −iΓα,β(ωA) + i
2γα,β(ωA)

=
∑
ωB

P.V.
(

TrB[B̂α(ωB)B̂β ρ̂
th
B ]

ωA − ωB

)
. (2.51)
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2.4 A stationary state
In this subsection, we show that the Gibbs state of the system at inverse temperature β0

B,

ρ̂th
A := e−β0

BĤA

Tr
[
e−β0

BĤA

] (2.52)

is a stationary solution [4, Sec. 6.2.8] of the Markovian master equation (2.40). Note that the
first term in Eq. (2.40) vanishes for ρ̂A(t) = ρ̂th

A because of Eq. (2.38). Since the decoherence part
(2.41) depends on γα,β(ωA), we derive the relation about γα,β(ωA). Note that the correlation
function of the bath satisfies the following relation:

〈B̂I
α(s)B̂β〉 := TrB[B̂I

α(s)B̂β ρ̂
th
B ]

= TrB[e i
~ ĤBsB̂αe− i

~ ĤBsB̂βe−β0
BĤB ]

TrB

[
e−β0

BĤB

]
= TrB[B̂βe i

~ ĤB(s+i~β0
B)B̂αe− i

~ ĤBs]
TrB

[
e−β0

BĤB

]
= TrB[B̂βe i

~ ĤB(s+i~β0
B)B̂αe− i

~ ĤB(s+i~β0
B)e−β0

BĤB ]
TrB

[
e−β0

BĤB

]
= TrB[B̂βB̂

I
α(s+ i~β0

B)ρ̂th
B ]

= 〈B̂βB̂
I
α(s+ i~β0

B)〉, (2.53)

which is called the Kubo-Martin-Schwinger (KMS) condition [43,44]. Then, we obtain

γα,β(ωA) =
∫ ∞

−∞
ds eiωAsTrB[B̂I

α(s)B̂β ρ̂
th
B ]

=
∫ ∞

−∞
ds eiωAsTrB[B̂βB̂

I
α(s+ i~β0

B)ρ̂th
B ]

=
∑
ωB

e~β0
BωB

∫ ∞

−∞
ds ei(ωA−ωB)sTrB[B̂βB̂α(ωB)ρ̂th

B ]

=
∑
ωB

e~β0
BωB 2πδ(ωA − ωB)TrB[B̂βB̂α(ωB)ρ̂th

B ]

= e~β0
BωA

∑
ωB

2πδ(ωA − ωB)TrB[B̂†
α(ωB)B̂β ρ̂

th
B ]∗

= e~β0
BωA

∑
ωB

2πδ(ωA − ωB)TrB[B̂α(−ωB)B̂β ρ̂
th
B ]∗

= e~β0
BωAγ∗

α,β(−ωA)
= e~β0

BωAγβ,α(−ωA). (2.54)

Moreover, using the relations (2.24), (2.25), and (2.26), we find

ρ̂th
A Âα(ωA) = e~β0

BωAÂα(ωA)ρ̂th
A , (2.55)

ρ̂th
A Â

†
α(ωA) = e−~β0

BωAÂ†
α(ωA)ρ̂th

A , (2.56)
ρ̂th

A Â
†
α(ωA)Âβ(ωA) = Â†

α(ωA)Âβ(ωA)ρ̂th
A . (2.57)
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Figure 2.1: A quantum model of coupled harmonic oscillators in a star configuration.

Using Eqs. (2.23), (2.54), (2.55), (2.56), and (2.57), we finally find that ρ̂th
A is a stationary state:

dρ̂th
A

dt = D[ρ̂th
A ]

=
∑
ωA

∑
α,β

γα,β(ωA)
(
Âβ(ωA)ρ̂th

A Â
†
α(ωA) − 1

2{Â†
α(ωA)Âβ(ωA), ρ̂th

A }
)

=
∑
ωA

∑
α,β

γα,β(ωA)
(
e−~β0

BωAÂβ(ωA)Â†
α(ωA)ρ̂th

A − Â†
α(ωA)Âβ(ωA)ρ̂th

A

)
=
∑
ωA

∑
α,β

(
γβ,α(−ωA)Â†

β(−ωA)Âα(−ωA)ρ̂th
A − γα,β(ωA)Â†

α(ωA)Âβ(ωA)ρ̂th
A

)
=
∑
ωA

∑
α,β

(
γα,β(−ωA)Â†

α(−ωA)Âβ(−ωA)ρ̂th
A − γα,β(ωA)Â†

α(ωA)Âβ(ωA)ρ̂th
A

)
= 0. (2.58)

2.5 A damped harmonic oscillator
As an example, let us consider a quantum model of coupled harmonic oscillators in a star
configuration [45, Sec. III.A]; see Fig. 2.1. It consists of the central harmonic oscillator j = 1,
which we refer to as the system A, and N surrounding harmonic oscillators j = 2, . . . , N + 1,
which we refer to as the bath B. The system A and each harmonic oscillator j in B interact
with each other with the coupling constant gj. The total system is isolated, and hence its
Hamiltonian is time-independent as in

Ĥ = ĤA + ĤB + ĤI , (2.59)

where

ĤA = ~ω1

(
â†

1â1 + 1
2

)
, (2.60)

ĤB =
N+1∑
j=2

Ĥj, Ĥj = ~ωj

(
â†

j âj + 1
2

)
, (2.61)

ĤI =
N+1∑
j=2

~gj

(
â†

1âj + â1â
†
j

)
, (2.62)
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with âj and â†
j denoting the annihilation and creation operators of the jth harmonic oscillator,

which satisfies the following commutation relations:[
âj, â

†
k

]
=δj,k, (2.63)

[âj, âk] =
[
â†

j, â
†
k

]
= 0 for j, k = 1, . . . , N + 1. (2.64)

This total Hamiltonian is a type of Fano-Anderson Hamiltonian in condensed matter physics
and of Lee-Friedrichs Hamiltonian in atomic physics [46–51]. When the counter-rotating terms∑N+1

j=2 ~gj(â†
1â

†
j + â1âj) are added to the interaction Hamiltonian in Eq. (2.62), the total Hamil-

tonian becomes the Caldeira-Leggett Hamiltonian [51,52]. When N is large enough, the system
is damped by the bath, and hence is called a damped harmonic oscillator [4, 6]. If the cou-
plings {gj} of the harmonic oscillators are sufficiently weak, the dynamics of the system is well
approximated by the GKSL master equation [3, 4, 6–8], which we derive in this subsection.

Let us rewrite the interaction Hamiltonian (2.62) in the form of Eq. (2.11):

ĤI = ~
2∑

α=1
Âα ⊗ B̂α, (2.65)

Â1 = â†
1 + â1, (2.66)

Â2 = i(â†
1 − â1), (2.67)

B̂1 =
N+1∑
j=2

gj

2 (â†
j + âj), (2.68)

B̂2 =
N+1∑
j=2

igj

2 (â†
j − âj). (2.69)

In the interaction picture, we have

ĤI
I (t) = ~

2∑
α=1

ÂI
α(t) ⊗ B̂I

α(t), (2.70)

ÂI
1(t) = e−iω1tâ1 + eiω1tâ†

1 =
∑

ωA=±ω1

e−iωAtÂ1(ωA), (2.71)

Â1(ω1) = â1, Â1(−ω1) = â†
1, (2.72)

ÂI
2(t) = −ie−iω1tâ1 + ieiω1tâ†

1 =
∑

ωA=±ω1

e−iωAtÂ2(ωA), (2.73)

Â2(ω1) = −iâ1, Â2(−ω1) = iâ†
1, (2.74)

B̂I
1(t) =

N+1∑
j=2

(
e−iωjt gj

2 âj + eiωjt gj

2 â
†
j

)
=

∑
ωB∈{ωj ,−ωj |j=2,...,N+1}

e−iωBtB̂1(ωB), (2.75)

B̂1(ωj) = gj

2 âj, B̂1(−ωj) = gj

2 â
†
j (2.76)

B̂I
2(t) =

N+1∑
j=2

(
−ie−iωjt gj

2 âj + ieiωjt gj

2 â
†
j

)
=

∑
ωB∈{ωj ,−ωj |j=2,...,N+1}

e−iωBtB̂2(ωB), (2.77)

B̂2(ωj) = −igj

2 âj, B̂2(−ωj) = igj

2 â
†
j. (2.78)
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Using them, we calculate γα,β(ωA) in Eq. (2.50); its (1,1)-component is given by

γ1,1(ωA) =
∑
ωB

2πδ(ωA − ωB)TrB[B̂1(ωB)B̂1ρ̂
th
B ]

=
∑

j

∑
ωB

2πδ(ωA − ωB)TrB

[
B̂1(ωB)gj

2 (â†
j + âj)ρ̂th

B

]

=
∑

j

∑
ωB=±ωj

2πδ(ωA − ωB)Trj

[
B̂1(ωB)gj

2 (â†
j + âj)ρ̂th

j

]

=
∑

j

2πδ(ωA − ωj)Trj

[
gj

2 âj
gj

2 (â†
j + âj)ρ̂th

j

]

+
∑

j

2πδ(ωA + ωj)Trj

[
gj

2 â
†
j

gj

2 (â†
j + âj)ρ̂th

j

]

=
∑

j

πg2
j

2 δ(ωA − ωj)Trj

[
(â†

j âj + 1)ρ̂th
j

]

+
∑

j

πg2
j

2 δ(ωA + ωj)Trj

[
â†

j âj ρ̂
th
j

]

=
∑

j

πg2
j

2 [(n̄(ωj) + 1)δ(ωA − ωj) + n̄(ωj)δ(ωA + ωj)]

=
∑

j

πg2
j

2 [(n̄(ωA) + 1)δ(ωA − ωj) + n̄(−ωA)δ(ωA + ωj)]

= (n̄(ωA) + 1)
∑

j

πg2
j

2 [δ(ωA − ωj) − δ(ωA + ωj)], (2.79)

where

n̄(ωj) = 1
eβ0

B~ωj − 1
(2.80)

is the mean excitation number of a harmonic oscillator at thermal equilibrium with frequency
ωj at inverse temperature β0

B, and we used

n̄(−ωj) = −(n̄(ωj) + 1), (2.81)

ρ̂th
B = e−β0

BĤB

Tr
[
e−β0

BĤB

] =
N+1⊗
j=2

e−β0
BĤj

Tr
[
e−β0

BĤj

] =:
N+1⊗
j=2

ρ̂th
j . (2.82)

Similarly, we have the other components as

γ1,2(ωA) = (n̄(ωA) + 1)
∑

j

iπg2
j

2 [δ(ωA − ωj) + δ(ωA + ωj)], (2.83)

γ2,1(ωA) = γ∗
1,2(ωA) = −γ1,2(ωA) = −(n̄(ωA) + 1)

∑
j

iπg2
j

2 [δ(ωA − ωj) + δ(ωA + ωj)], (2.84)

γ2,2(ωA) = (n̄(ωA) + 1)
∑

j

πg2
j

2 [δ(ωA − ωj) − δ(ωA + ωj)] = γ1,1(ωA). (2.85)
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From Eqs. (2.71) and (2.73), we need to consider two cases: ωA = ±ω1, so that we have

γ1,1(ω1) = γ2,2(ω1) = (n̄(ω1) + 1)
∑

j

πg2
j

2 δ(ω1 − ωj) = Γ[n̄(ω1) + 1]
2 , (2.86)

γ1,2(ω1) = −γ2,1(ω1) = iΓ[n̄(ω1) + 1]
2 , (2.87)

γ1,1(−ω1) = γ2,2(−ω1) = Γn̄(ω1)
2 , (2.88)

γ1,2(−ω1) = −γ2,1(−ω1) = − iΓn̄(ω1)
2 , (2.89)

where

Γ = πJ(ω1) (2.90)

is the relaxation rate of the system with

J(ω) =
N+1∑
j=2

g2
j δ(ω − ωj) (2.91)

being the spectral density of the bath. Note that this spectral density is a comb of delta
peaks [53, Sec. I]. If ω1 6= ωj for j = 2, . . . , N + 1, we have Γ = πJ(ω1) = 0. Thus, when we
calculate Γ in Eq. (2.90), we need to take the limit of N → ∞ so that the spectral density
J(ω) may become a continuous function. For example, if we consider an Ohmic bath [6, 34],
the spectral density is written as J(ω) = ηωe−ω/ωc , where η is the coupling strength between
the system and the bath and ωc is the cutoff frequency. Having obtained the explicit forms of
γα,β(ωA) in Eqs. (2.86), (2.87), (2.88), and (2.89), and of Âα(ωA) in Eqs. (2.72) and (2.74), we
find the decoherence part (2.41) in the form

D[ρ̂A(t)] = γ1,1(ω1)
(
Â1(ω1)ρ̂A(t)Â†

1(ω1) − 1
2{Â†

1(ω1)Â1(ω1), ρ̂A(t)}
)

+ γ1,2(ω1)
(
Â2(ω1)ρ̂A(t)Â†

1(ω1) − 1
2{Â†

1(ω1)Â2(ω1), ρ̂A(t)}
)

+ γ2,1(ω1)
(
Â1(ω1)ρ̂A(t)Â†

2(ω1) − 1
2{Â†

2(ω1)Â1(ω1), ρ̂A(t)}
)

+ γ2,2(ω1)
(
Â2(ω1)ρ̂A(t)Â†

2(ω1) − 1
2{Â†

2(ω1)Â2(ω1), ρ̂A(t)}
)

+ γ1,1(−ω1)
(
Â1(−ω1)ρ̂A(t)Â†

1(−ω1) − 1
2{Â†

1(−ω1)Â1(−ω1), ρ̂A(t)}
)

+ γ1,2(−ω1)
(
Â2(−ω1)ρ̂A(t)Â†

1(−ω1) − 1
2{Â†

1(−ω1)Â2(−ω1), ρ̂A(t)}
)

+ γ2,1(−ω1)
(
Â1(−ω1)ρ̂A(t)Â†

2(−ω1) − 1
2{Â†

2(−ω1)Â1(−ω1), ρ̂A(t)}
)

+ γ2,2(−ω1)
(
Â2(−ω1)ρ̂A(t)Â†

2(−ω1) − 1
2{Â†

2(−ω1)Â2(−ω1), ρ̂A(t)}
)

= Γ(n̄(ω1) + 1)
(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})

+ Γn̄(ω1)
(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})
. (2.92)
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Next, in an analogous way with the calculation of γα,β(ωA), we calculate Sα,β(ωA) (2.51),
which appears in the Lamb-shift Hamiltonian (2.36):

S1,1(ω1) =
∑
ωB

P.V.
(

TrB[B̂1(ωB)B̂1ρ̂
th
B ]

ω1 − ωB

)

= P.V.
∑

j

g2
j

4

(
n̄(ωj) + 1
ω1 − ωj

+ n̄(ωj)
ω1 + ωj

)

= P.V.
∫ ∞

0
dω

∑
j

g2
j

4 δ(ω − ωj)
(
n̄(ω) + 1
ω1 − ω

+ n̄(ω)
ω1 + ω

)

= 1
4P.V.

∫ ∞

0
dω J(ω)

(
n̄(ω) + 1
ω1 − ω

+ n̄(ω)
ω1 + ω

)
, (2.93)

S1,2(ω1) = S∗
2,1(ω1) = i

4P.V.
∫ ∞

0
dω J(ω)

(
n̄(ω) + 1
ω1 − ω

− n̄(ω)
ω1 + ω

)
, (2.94)

S2,2(ω1) = S1,1(ω1), (2.95)

S1,1(−ω1) = S2,2(−ω1) = −1
4P.V.

∫ ∞

0
dω J(ω)

(
n̄(ω) + 1
ω1 + ω

+ n̄(ω)
ω1 − ω

)
, (2.96)

S1,2(−ω1) = S∗
2,1(−ω1) = − i

4P.V.
∫ ∞

0
dω J(ω)

(
n̄(ω) + 1
ω1 + ω

− n̄(ω)
ω1 − ω

)
. (2.97)

Then, the Lamb-shift Hamiltonian (2.36) is calculated as

ĤLS

~
= S1,1(ω1)Â†

1(ω1)Â1(ω1) + S2,2(ω1)Â†
2(ω1)Â2(ω1)

+ S1,2(ω1)Â†
1(ω1)Â2(ω1) + S2,1(ω1)Â†

2(ω1)Â1(ω1)
+ S1,1(−ω1)Â†

1(−ω1)Â1(−ω1) + S2,2(−ω1)Â†
2(−ω1)Â2(−ω1)

+ S1,2(−ω1)Â†
1(−ω1)Â2(−ω1) + S2,1(−ω1)Â†

2(−ω1)Â1(−ω1)
= 2S1,1(ω1)â†

1â1 − 2iS1,2(ω1)â†
1â1 + 2S1,1(−ω1)â1â

†
1 + 2iS1,2(−ω1)â1â

†
1

= 2[S1,1(ω1) − iS1,2(ω1) + S1,1(−ω1) + iS1,2(−ω1)]â†
1â1 + const.

= P.V.
∫ ∞

0
dω J(ω)

ω1 − ω
â†

1â1 + const.. (2.98)

Therefore, the GKSL equation for the damped harmonic oscillator is given by

dρ̂A(t)
dt = −i[(ω1 + ∆)â†

1â1, ρ̂A(t)] + Γ(n̄(ω1) + 1)
(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})

+ Γn̄(ω1)
(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})
, (2.99)

∆ = P.V.
∫ ∞

0
dω J(ω)

ω1 − ω
. (2.100)

Under this GKSL master equation, the system is equilibrated with the bath in the limit t → ∞:

ρ̂A(∞) = ρ̂th
A = e−β0

BĤA

Tr[e−β0
BĤA ]

. (2.101)

This is the stationary state explained in Sec. 2.4.
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Chapter 3

Kerr-nonlinear parametric oscillator

A Kerr-nonlinear parametric oscillator (KPO) can be constructed using a quantum circuit. We
review the quantum circuit in Sec. 3.1 and the Hamiltonian of a KPO in Sec. 3.2.

3.1 Quantum circuit

3.1.1 An LC circuit
Let us first consider a classical LC oscillator [54, Sec. 2.3], which consists of an inductor L and
a capacitor C; see Fig. 3.1. We set the sign of the charge Q on the capacitor and the direction
of the current I along the circuit as in Fig. 3.1. Then we have

I = −dQ
dt . (3.1)

Kirchhoff’s voltage law dictates

Q

C
= dΦ

dt = L
dI
dt , (3.2)

where Φ = LI is a magnetic flux through the inductor. From the above equations, we obtain

d2I

dt2 = −ω2
0I, ω0 = 1√

LC
, (3.3)

which shows that the LC oscillator is equivalent to a harmonic oscillator. The magnetic energy
stored by the inductor is Φ2/2L and the electrical energy stored by the capacitor is Q2/2C =
CΦ̇2/2, and hence the classical Hamiltonian of the LC oscillator is given by

HLC = C

2 Φ̇2 + 1
2LΦ2. (3.4)

Figure 3.1: An LC oscillator.
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Table 3.1: The correspondence between the mechanical oscillator and the LC oscillator.

mechanical oscillator LC oscillator
m C
k 1/L
x Φ

p = mẋ Q = CΦ̇

Let us quantize this Hamiltonian by comparing it with that of a mechanical oscillator

Hm = m

2 ẋ
2 + k

2x
2. (3.5)

We find the correspondence between the mechanical oscillator and the LC oscillator as in
Table 3.1.

The quantum Hamiltonian of the mechanical oscillator is given by

Ĥm = p̂2

2m + k

2 x̂
2 (3.6)

with the following canonical commutation relation:

[x̂, p̂] = i~. (3.7)

Analogously, the quantum Hamiltonian of the LC oscillator is given by

ĤLC = Q̂2

2C + Φ̂2

2L (3.8)

with the following canonical commutation relation:

[Φ̂, Q̂] = i~. (3.9)

The LC oscillator behaves quantum mechanically if the circuit is constructed of superconducting
materials and is held at a sufficiently low temperature [37, Sec. II.A]. It is common to use
dimensionless observables ϕ̂ and n̂ defined by

ϕ̂ = Φ̂
Φ0
, Φ0 = ~

2e, (3.10)

n̂ = Q̂

2e, (3.11)

where Φ0 is the reduced magnetic flux quantum (2πΦ0 = h/2e is the magnetic flux quantum),
ϕ̂ is the phase difference across the inductor [55, Sec. 3.2], and n̂ is the number of Cooper
pairs [37, Sec. II.A]. Then, the Hamiltonian (3.8) and the commutation relation (3.9) of the
quantum LC oscillator are expressed as

ĤLC = 4EC n̂
2 + EL

2 ϕ̂2, (3.12)

[ϕ̂, n̂] = i, (3.13)

where EC = e2/2C is the charging energy and EL = Φ2
0/L = ~2/4e2L is the inductive energy [37,

Sec. II.A]. Note that the frequency of the LC oscillator can be written as

ω0 = 1√
LC

= 2
√

2ELEC

~
. (3.14)
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Figure 3.2: A transmon.

Figure 3.3: A quantum rotor under the force of the gravity.

3.1.2 Transmon
Since the energy levels of the LC oscillator are separated equally, we cannot induce a specific
transition; for example, one between the ground and the first excited states. Thus, we cannot
use these states as a qubit. In order to encode qubits, we need nonlinearity. As a nonlinear
element, we introduce a Josephson junction, whose Hamiltonian is given by

ĤJ = −EJ cos ϕ̂, (3.15)

where EJ is the Josephson energy [37, Sec. II.B]. Replacing the inductor in the LC oscillator
by the Josephson junction and setting EJ � EC , we obtain a transmission-line shunted plasma
oscillation qubit, called the transmon, which was introduced in Ref. [56]. Because of the large
ratio of EJ/EC , the transmon is insensitive to the charge noise. Its Hamiltonian is given
by [37, Sec. II.C]

Ĥ = 4EC n̂
2 − EJ cos ϕ̂. (3.16)

The circuit of the transmon is shown in Fig. 3.2
We can grasp the behavior of the transmon by mapping its Hamiltonian on that of a quantum

rotor under the force of the gravity [56]; see Fig. 3.3. Let us use cylindrical coordinates (r, φ, z).
A mass m is attached to one end of a massless rod of length l. The other end of the rod is fixed
to the coordinate origin. The rotation axis and the rotation angle are z and φ̂, respectively.
Then the Hamiltonian of the rotor is given by

Ĥ = L̂2
z

2ml2 −mgl cos φ̂, (3.17)

where L̂z = −i~∂/∂φ is the angular momentum of the rotor. Comparing Eq. (3.16) with
Eq. (3.17), we find the correspondence in Table 3.2. The transmon regime EJ � EC corresponds
to a large gravitational force mg and a large moment of inertia ml2, which restricts the motion
of the rotor to 〈φ̂2〉 � 1. From this correspondence, we find that the Taylor expansion of cos ϕ̂
in Eq. (3.16) to the fourth order, which we will employ in Eq. (3.20), is a good approximation.
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Table 3.2: The correspondence between the transmon and the quantum rotor.

transmon quantum rotor
n̂ L̂z/~
ϕ̂ φ̂
EC ~2/8ml2
EJ mgl

Figure 3.4: A SQUID transmon.

3.1.3 A SQUID transmon
The Josephson energy EJ of the transmon in Fig. 3.2 is a fixed parameter that depends on
the design and the fabrication of the Josephson junction. By replacing the single Josephson
junction by a loop with two parallel Josephson junctions, we can control the Josephson energy
using a magnetic flux threading the loop [37, Sec. II.C]; see Fig. 3.4. A superconducting loop
with multiple Josephson junctions is called a superconducting quantum interference device
(SQUID) [37, Sec. II.C].

The Hamiltonian of the SQUID transmon in Fig. 3.4 is given by [37, Sec. II.C]

Ĥ = 4EC n̂
2 − EJ(cos ϕ̂1 + cos ϕ̂2)

= 4EC n̂
2 − 2EJ cos

(
ϕ̂1 − ϕ̂2

2

)
cos

(
ϕ̂1 + ϕ̂2

2

)

= 4EC n̂
2 − 2EJ cos

(
φ(t)

2

)
cos ϕ̂

= 4EC n̂
2 − ẼJ(φ(t)) cos ϕ̂, (3.18)

where ϕ̂1 and ϕ̂2 are phase differences across each Josephson junction, φ(t) := Φ(t)/Φ0, ϕ̂ :=
(ϕ̂1 + ϕ̂2)/2, and ẼJ(φ(t)) := 2EJ cos(φ(t)/2). The second to the last line follows from the
following relation [57, Sec. 6.4.1]:

ϕ̂1 − ϕ̂2 = φ(t) mod 2π. (3.19)

Note that we can tune the Josephson energy ẼJ(φ(t)) of the SQUID transmon by varying φ.

3.2 Hamiltonian of a KPO

3.2.1 KPO with a single SQUID
We here derive the Hamiltonian of a KPO from that of the SQUID transmon in Eq. (3.18). As
discussed in Sec. 3.1.2, the average phase difference ϕ̂ of the SQUID transmon satisfies 〈ϕ̂2〉 � 1
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in the transmon regime EJ � EC . Thus, we Taylor-expand cos ϕ̂ to the fourth order:

cos ϕ̂ ≈ 1 − 1
2 ϕ̂

2 + 1
24 ϕ̂

4. (3.20)

We define the dc and ac parts of φ(t) as in [10, Sec. 4.1]
φ(t) = φdc + φac(t), φac(t) = 2πδp cosωpt. (3.21)

When δp � 1, we can approximate cos(φ(t)/2) as

cos
(
φ(t)

2

)
= cos

(
φdc

2

)
cos

(
φac(t)

2

)
− sin

(
φdc

2

)
sin

(
φac(t)

2

)

≈ cos
(
φdc

2

)
− πδp sin

(
φdc

2

)
cosωpt. (3.22)

Then we have
ẼJ(φ(t)) = 2EJ cos(φ(t)/2) = Ẽdc

j + Ẽac
j (t), (3.23)

Ẽdc
j := 2EJ cos

(
φdc

2

)
, (3.24)

Ẽac
j (t) := −2πδpEJ sin

(
φdc

2

)
cosωpt. (3.25)

From Eqs. (3.18), (3.20), and (3.23), we obtain [10, Sec. 4.1]

Ĥ ≈ 4EC n̂
2 +

Ẽdc
j

2 ϕ̂2 +
Ẽac

j (t)
2 ϕ̂2 −

Ẽdc
j

24 ϕ̂4, (3.26)

where we neglected c-valued terms and the smallest q-valued term Ẽac
j (t)ϕ̂4/24. The first and

the second terms constitute the Hamiltonian of a harmonic oscillator:

4EC n̂
2 +

Ẽdc
j

2 ϕ̂2 = 2
√

2Ẽdc
j EC

1
2

1
2

√√√√ Ẽdc
j

2EC

ϕ̂2 + 2
√√√√2EC

Ẽdc
j

n̂2


= ~ω(0)

c

(
â†â+ 1

2

)
, (3.27)

where ω(0)
c := 2

√
2Ẽdc

j EC/~ is the Josephson plasma frequency [10, Sec. 4.1] and we have
introduced the bosonic creation and annihilation operators â† and â as in

ϕ̂ =
(

2EC

Ẽdc
j

) 1
4

(â+ â†), (3.28)

n̂ = − i
2

(
Ẽdc

j

2EC

) 1
4

(â− â†). (3.29)

Then, the Hamiltonian (3.26) is rewritten as

Ĥ = ~ω(0)
c â†â− ~K

12 (â+ â†)4 + ~p(â+ â†)2 cosωpt, (3.30)

where
K = EC/~, (3.31)

p = −πδpEJ

~

√√√√2EC

Ẽdc
j

sin
(
φdc

2

)
= −πδpω

(0)
c

4 tan
(
φdc

2

)
, (3.32)

and we neglected a c-valued term. In Eq. (3.32), we set parameters so that p may be positive.
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Rotating frame

We can transform Eq. (3.30) to the Hamiltonian of a KPO by moving to the rotating frame.
We first explain the relation between a state and a Hamiltonian in the laboratory frame and
ones in a rotating frame. The Schrödinger equation in the laboratory frame is written in the
form

d
dt |ψ〉 = − i

~
Ĥ |ψ〉 . (3.33)

Let R̂ be the unitary operator which maps a state in the laboratory frame to one in the
rotating frame. We now derive the Schrödinger equation which R̂ |ψ〉 obeys. By taking the
time derivative of R̂ |ψ〉, we obtain

d
dt(R̂ |ψ〉) = R̂

d
dt |ψ〉 +

(
d
dtR̂

)
|ψ〉

= R̂
(

− i
~
Ĥ |ψ〉

)
+
(

d
dtR̂

)
|ψ〉

= − i
~

[
R̂ĤR̂† + i~

(
d
dtR̂

)
R̂†
]
R̂ |ψ〉

= − i
~
ĤRR̂ |ψ〉 , (3.34)

where

ĤR = R̂ĤR̂† + i~
(

d
dtR̂

)
R̂† (3.35)

is the Hamiltonian in the rotating frame.
In the rotating frame with

R̂ = exp
(

iωp

2 â
†ât
)
, (3.36)

the SQUID-transmon Hamiltonian in Eq. (3.30) is transformed into

ĤR

~
=
(
ω(0)

c − ωp

2

)
â†â− K

12
(
âe−i ωp

2 t + â†ei ωp
2 t
)4

+ p
(
âe−i ωp

2 t + â†ei ωp
2 t
)2

cosωpt. (3.37)

By performing the rotating-wave approximation, in which all the oscillating terms are neglected,
we arrive at the Hamiltonian of the KPO [10, Table I]:

ĤR

~
= ∆â†â− K

2 â
†2â2 + p

2(â2 + â†2), (3.38)

where ∆ = ωc − ωp/2 is the detuning, ωc := ω(0)
c − K is the dressed resonator frequency [58,

Appendix C], K is the Kerr nonlinearity, and p is the parametric pumping rate [10]. The
modulation frequency is set nearly twice the dressed resonator frequency: ωp ≈ 2ωc [58, Sec. I],
which means ∆ ≈ 0; the detuning is sometimes neglected in the literature [11–13].
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Figure 3.5: A circuit of the KPO with a SQUID array. Each SQUID is threaded by the external
magnetic flux Φ(t).

3.2.2 KPO with multiple SQUIDs
In the previous subsection, we considered the transmon with a single SQUID. A KPO with
an array of multiple SQUIDs is also studied in the literature [58, 59]; in fact, it was realized
experimentally [58]. The Hamiltonian of the KPO can be derived in a similar way to the case
of the single SQUID, as we show briefly in this subsection.

The circuit is shown in Fig. 3.5. The Hamiltonian is given by [58, Appendix C]

Ĥ = 4EC n̂
2 −NEJ(Φ(t)) cos ϕ̂

N
, (3.39)

where ϕ̂ is the overall phase across the SQUID array and N is the number of SQUIDs. We here
assume that the average phase across each SQUID is ϕ̂/N . The Josephson energy for a single
SQUID is controlled by the external magnetic flux Φ(t) as EJ(Φ(t)) = EJ + δEJ cosωpt with
δEJ � EJ . Let us introduce the bosonic annihilation and creation operators as [58, Appendix
C]

ϕ̂ =
(2NEC

EJ

) 1
4

(â+ â†), (3.40)

n̂ = − i
2

(
EJ

2NEC

) 1
4

(â− â†). (3.41)

Tayler-expanding cos
(
φ̂/N

)
to the fourth order in Eq. (3.39) leads to the same form of the

Hamiltonian as in Eq. (3.30) [58, Appendix C]:

Ĥ = ~ω(0)
c â†â− ~K

12 (â+ â†)4 + ~p(â+ â†)2 cosωpt (3.42)

with ~ω(0)
c = 2

√
2ECEJ/N , ~K = EC/N

2, and p = ω(0)
c δEJ/4EJ . Then, the Hamiltonian of

the KPO (3.38) is obtained in the same procedure as the previous subsection.

3.2.3 Eigenstates
We here explain the eigenstates of the KPO Hamiltonian in Eq. (3.38). For brevity, we hereafter
set ωp = 2ωc, which leads to [10, Sec. 2]

ĤR

~
= −K

2 â
†2â2 + p

2(â2 + â†2) (3.43)
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= −K

2
(
â†2 − α2

) (
â2 − α2

)
+ K

2 α
4 (3.44)

with α =
√
p/K. We see that the two coherent states

|±α〉 = e− |±α|2
2

∞∑
n=0

(±α)n

√
n!

|n〉 (3.45)

are its degenerate eigenstates with the largest eigenenergy Kα4/2 = p2/2K [11]. Here, |n〉 is a
single-mode bosonic Fock state:

â |0〉 = 0, (3.46)
â |n〉 =

√
n |n− 1〉 for n = 1, 2, . . . , (3.47)

â† |n〉 =
√
n+ 1 |n+ 1〉 for n = 0, 1, 2, . . . (3.48)

As 〈α|−α〉 = e−2α2 , |α〉 and |−α〉 are quasiorthogonal for α � 1. Hence, for the realization of a
quantum computer, it is proposed to use the KPO as a qubit whose logical states are defined as
|0̄〉 := |α〉 and |1̄〉 := |−α〉 in the regime p � K [11,14,15]. The bars of |0̄〉 and |1̄〉 distinguish
them from the Fock states |0〉 and |1〉.

The cats states |C0,±
α 〉 := N 0,±

α (|α〉±|−α〉) = N 0,±
α ( |0̄〉± |1̄〉) with N 0,±

α = [2(1±e−2α2)]−1/2

are also the degenerate eigenstates [12]. Here, |C0,±
α 〉 are called cat states because they are the

quantum superpositions of macroscopically distinguishable coherent states |α〉 and |−α〉 for
large α [60]. Different from |±α〉, the cat states |C0,+

α 〉 and |C0,−
α 〉 are orthogonal to each

other. Note that |C0,+
α 〉 and |C0,−

α 〉 have even and odd parities with respect to the number of
excitations, respectively. In order to see this, we express |C0,±

α 〉 with the Fock states in the form∣∣∣C0,+
α

〉
/N 0,+

α = |α〉 + |−α〉

= e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉 + e− |−α|2
2

∞∑
n=0

(−α)n

√
n!

|n〉

= 2e− α2
2

∞∑
n=0

α2n√
(2n)!

|2n〉 , (3.49)

∣∣∣C0,−
α

〉
/N 0,−

α = 2e− α2
2

∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1〉 . (3.50)

Then we find that |C0,+
α 〉 and |C0,−

α 〉 are the eigenstates of the parity operator P̂ := exp
(
iπâ†â

)
with the eigenvalues 1 (even) and −1 (odd), respectively. When p = 0, the Fock state |n〉 is
the eigenstate of the Hamiltonian (3.43) with eigenenergy −Kn(n−1)/2. Then, |0〉 and |1〉 are
the degenerate eigenstates with the largest eigenenergy 0. Note that |0〉 and |1〉 have even and
odd parities, respectively. As P̂ commutes with the KPO Hamiltonian in Eq. (3.43), the parity
is a conserved quantity [12, Sec. II.A]. Thus, preparing the initial states as |0〉 and |1〉 and
adiabatically increasing the pumping rate from 0 to p, we can generate the cat states |C0,+

α 〉
and |C0,−

α 〉, respectively [10].
Quantum superpositions of the cat states |C0,±

α 〉 are a useful resource in quantum compu-
tation [13]. In fact, |C0,+

α 〉 is the standard initial state in quantum computation [15]. However,
due to the noise from the environment, the quantum superposition is destroyed (decoherence):

∣∣∣C0,+
α

〉
= N 0,+

α ( |0̄〉 + |1̄〉) → |0̄〉〈0̄| + |1̄〉〈1̄|
2 . (3.51)
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Figure 3.6: Schematic energy diagram of a KPO Hamiltonian in Eq. (3.43).

During this decoherence process, phase-flip error occurs:∣∣∣C0,+
α

〉
= N 0,+

α ( |0̄〉 + |1̄〉) →
∣∣∣C0,−

α

〉
= N 0,−

α ( |0̄〉 − |1̄〉). (3.52)

Here, the name “phase flip” comes from the change of the relative phase of |1̄〉 to |0̄〉 by π [61,
Sec. 2.2.2]. Analyzing and reducing the phase-flip error is important for quantum computation.
This is why we calculate the phase-flip rate in Sec. 4.3.2.

The exact forms of the other eigenstates are not known. However, the approximate forms
of the high-energy eigenstates can be obtained by transforming the Hamiltonian with the dis-
placement operator D̂(±α) = eα(â†−â) as [12, Sec. II.A]

ˆ̃HR

~
:= D̂(±α)Ĥ

R

~
D̂†(±α)

= −K

2
[
(â† ∓ α)2 − α2

] [
(â∓ α)2 − α2

]
+ K

2 α
4

= −K

2 (â†2 ∓ 2αâ†)(â2 ∓ 2αâ) + K

2 α
4

= −K

2 â
†2â2 ±Kα(â†2â+ â†â2) − 2Kα2â†â+ K

2 α
4

≈ −2Kα2â†â+ K

2 α
4, (3.53)

where the last approximation follows from α � 1. This is the Hamiltonian of an inverted
harmonic oscillator [12, Sec. II.A]. The Fock state |n〉 is an eigenstate of Eq. (3.53) with
eigenenergy −2~Kα2n + ~Kα4/2. Note that n must be small for the approximation to be
good. That is, |n〉 and −2~Kα2n+~Kα4/2 for small n are the approximate forms of the high-
energy eigenstate and eigenenergy, respectively, of ˆ̃HR. On the other hand, the approximate
high-energy eigenstates of the Hamiltonian (3.43) are the shifted Fock states {D̂(±α) |n〉} for
small n. Thus, the form of the energy diagram of the Hamiltonian (3.43) is an inverted double
well [12, Sec. II.A]; see Fig. 3.6. We can create the eigenstates of the parity operator P̂ using
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the shifted Fock states as [62, Appendix C]∣∣∣Cn,±
α

〉
:= N n,±

α [D̂(α) ± (−1)nD̂(−α)] |n〉 , (3.54)

N n,±
α :=

[
2
(
1 ± (−1)ne−2|α|2Ln(4|α|2)

)]−1/2
, (3.55)

P̂
∣∣∣Cn,±

α

〉
= ±

∣∣∣Cn,±
α

〉
, (3.56)

where Ln(x) is the Laguerre polynomial. Note that |Cn,+
α 〉 and |Cm,−

α 〉 are orthogonal to each
other because they have different parities with respect to the number of excitations [62, Ap-
pendix C]. However, any two states in {|Cn,±

α 〉} with the same parity are not exactly orthogonal
to each other [62, Appendix C]:〈

Cm,±
α

∣∣∣Cn,±
α

〉
= 2N m,±

α N n,±
α [δm,n ± (−1)mDm,n(2α)], (3.57)

Dm,n(2α) := 〈m|D̂(2α)|n〉

= e−2|α|2

√√√√min(m,n)!
max(m,n)!L

(|m−n|)
min(m,n)(4|α|2) ×

{
(2α)m−n m ≥ n

(−2α∗)n−m m < n
, (3.58)

where L(β)
n (x) is the generalized (associated) Laguerre polynomial. Note that L(0)

n (x) = Ln(x).
In addition to the phase-flip error ( |C0,+

α 〉 ↔ |C0,−
α 〉) and the bit flip error ( |α〉 ↔ |−α〉,

or |0̄〉 ↔ |1̄〉), the noise from the environment can excite the state of a KPO out of the cat
subspace C0, which is spanned by |C0,±

α 〉, to the other eigenstates |Cn,±
α 〉 for n = 1, 2, . . . . This

excitation should be reduced in order to efficiently use a KPO as a qubit. We calculate the
excitation rate from |C0,+

α 〉 to |C1,±
α 〉 in Sec. 4.3.2.
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Chapter 4

Decoherence of a Kerr-nonlinear
parametric oscillator

In this Chapter, we derive the GKSL equation for a Kerr-nonlinear parametric oscillator (KPO)
from the microscopic Hamiltonian and compare it with the GKSL equation in the literature.
The latter uses a decoherence part of the damped harmonic oscillator; we review this in Sec. 4.1.
Then in Sec. 4.2, we derive the GKSL equation using KPO’s two degenerate exact ground states
and two degenerate approximate first-excited states. We compare the two GKSL equations in
Sec. 4.3; we find that a KPO under our GKSL equation is more robust to excitation errors than
that under the GKSL equation in the literature.

4.1 Decoherence of a KPO in the literature
The dominant source of noise in a KPO is a single-photon loss [12, Appendix B]. In order to
describe the decoherence due to the noise, the following master equation is often used in the
literature (see, for example, Eq. (7) in Ref. [11] and Sec. III in Ref. [12]):

dρ̂(t)
dt = − i

~
[Ĥ, ρ̂(t)] + κ

(
2âρ̂(t)â† −

{
â†â, ρ̂(t)

})
, (4.1)

where Ĥ is the KPO Hamiltonian in Eq. (3.43) and κ is a real parameter that is supposed to
mean the decay rate. When a single-photon gain is also taken into account, the following master
equation is used (see, for example, Eq. (11) in Ref. [12] and Eq. (S21) in the supplementary
material of Ref. [13]):

dρ̂(t)
dt = − i

~
[Ĥ, ρ̂(t)] + κ(n̄+ 1)

(
2âρ̂(t)â† −

{
â†â, ρ̂(t)

})
+ κn̄

(
2â†ρ̂(t)â−

{
ââ†, ρ̂(t)

})
, (4.2)

where n̄ is the thermal occupation number. Note that Eq. (4.1) corresponds to the case n̄ = 0
in Eq. (4.2). Since the temperature of the environment of a KPO is finite in experiments (for
example, 18 mK in Ref. [13]; see Sec. VI.A in its supplementary material), Eq. (4.2) is preferable
to Eq. (4.1).

We find that the decoherence part in Eq. (4.2) has the same form as that of a damped
harmonic oscillator in Eq. (2.99). The GKSL equation for the damped harmonic oscillator
is derived from a microscopic Hamiltonian as we explained in Sec. 2.5. However, the master
equation for the KPO in Eq. (4.2) is not derived from a microscopic Hamiltonian, but naively
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adopts the decoherence part of a damped harmonic oscillator; the derivation of Eq. (4.1) (the
n̄ = 0 case) is explained in Appendix B in Ref. [12]. We are not satisfied with it, however, as
we explain in the next section.

4.2 Decoherence of a KPO in our treatment

4.2.1 KPO coupled to a bath
Let us incorporate the effect of the environment (namely, the bath). We refer to the KPO
(namely, the system) and the bath as A and B, respectively. The bath B consists of N harmonic
oscillators; let ωk and gk respectively denote the angular frequency and the interaction strength
with the system A of the kth harmonic oscillator in the bath B. The total Hamiltonian of the
system and the bath in the laboratory frame is given by

Ĥ = ĤA + ĤB + ĤI (4.3)

with

ĤA = ~ω(0)
c â†â− ~K

12 (â+ â†)4 + ~p(â+ â†)2 cosωpt, (4.4)

ĤB =
N∑

k=1
Ĥk, Ĥk = ~ωkb̂

†
kb̂k, (4.5)

ĤI =
N∑

k=1
~gk(â† + â)(b̂†

k + b̂k), (4.6)

where b̂k denotes the bosonic annihilation operator of the kth harmonic oscillator. In the
rotating frame with

R̂ = exp
[
−iωp

2

(
â†â+

N∑
k=1

b̂†
kb̂k

)
t

]
, (4.7)

the total Hamiltonian is transformed to

ĤR = ĤR
A + ĤR

B + ĤR
I (4.8)

with

ĤR
A

~
= −K

2 â
†2â2 + p

2(â2 + â†2), (4.9)

ĤR
B =

N∑
k=1

~
(
ωk − ωp

2

)
b̂†

kb̂k, (4.10)

ĤR
I =

N∑
k=1

~gk

(
â†b̂k + âb̂†

k

)
, (4.11)

where we performed the rotating-wave approximation and set ωp = 2ωc.
We prepare the following initial state in the laboratory frame:

ρ̂(0) = ρ̂A(0) ⊗ ρ̂th
B := ρ̂A(0) ⊗ e−β0

BĤB

Tr
[
e−β0

BĤB

] . (4.12)
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In the rotating frame, it is transformed to

ρ̂R(0) = R̂ρ̂(0)R̂† = R̂Aρ̂A(0)R̂†
A ⊗ R̂Bρ̂

th
B R̂

†
B = ρ̂R

A(0) ⊗ ρ̂th
B , (4.13)

where

R̂A = exp
[
−iωp

2 â
†ât
]
, (4.14)

R̂B = exp
[
−iωp

2
∑

k

b̂†
kb̂kt

]
. (4.15)

Note that the initial state of the bath does not change by the transformation R̂, since R̂B and
ρ̂th

B commute with each other. Since we are interested in the bit-flip rate ( |α〉 ↔ |−α〉, or |0̄〉
↔ |1̄〉) and the phase-flip rate ( |C0,+

α 〉 ↔ |C0,−
α 〉), the initial state of the system ρ̂R

A(0) is chosen
from states in the cat subspace C0 spanned by |C0,+

α 〉 (∝ |α〉+ |−α〉) and |C0,−
α 〉 (∝ |α〉−|−α〉).

We focus on a short interaction time in which the state of the system is mostly confined to the
cat subspace C0, because after that, the KPO is useless as a qubit.

Incidentally, in Appendix B in Ref. [12], the authors derived Eq. (4.1) by starting from the
following interaction Hamiltonian in the interaction picture:

ĤI
I (t) =

∑
k

~gk(âb̂†
kei(ωk−ωc)t + â†b̂ke−i(ωk−ωc)t), (4.16)

where ωc = ω(0)
c − K is the dressed resonator frequency [58, Appendix C]. This interaction

Hamiltonian would be obtained if the total Hamiltonian in the Schrödinger picture were given
by

Ĥ = ĤA + ĤB + ĤI (4.17)

with

ĤA = ~ωcâ
†â, (4.18)

ĤB =
N∑

k=1
Ĥk, Ĥk = ~ωkb̂

†
kb̂k, (4.19)

ĤI =
N∑

k=1
~gk(â†b̂k + âb̂†

k). (4.20)

If the total Hamiltonian in the rotating frame were given by Eq. (4.17), by tracing the same
route as in Sec. 2.5, we would have the following form of the decoherence part:

Dlit[ρ̂R
A(t)] = Γ

(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

] (
2âρ̂R

A(t)â† −
{
â†â, ρ̂R

A(t)
})

+ Γ
(
ωp

2

)
n̄
(
ωp

2

) (
2â†ρ̂R

A(t)â−
{
ââ†, ρ̂R

A(t)
})
, (4.21)

where

n̄(ω) = 1
eβ0

B~ω − 1
, (4.22)

Γ(ω) = πJ(ω), (4.23)
J(ω) =

∑
k

g2
kδ(ω − ωk) (4.24)

and we set ωp = 2ωc. Note that Eq. (4.18) is not the Hamiltonian of a KPO, but of a harmonic
oscillator. Hence, we do not accept Eq. (4.21) as the decoherence part of a GKSL equation for
a KPO.
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4.2.2 Our GKSL equation for a KPO
We now derive the GKSL equation for a KPO in a way similar to that of the damped harmonic
oscillator in Sec. 2.5. Let us rewrite the interaction Hamiltonian (4.11) in the form of Eq. (2.11):

ĤR
I = ~

2∑
ᾱ=1

ÂR
ᾱ ⊗ B̂R

ᾱ , (4.25)

ÂR
1 = â† + â, (4.26)

ÂR
2 = i(â† − â), (4.27)

B̂R
1 =

N∑
k=1

gk

2 (b̂†
k + b̂k), (4.28)

B̂R
2 =

N∑
k=1

igk

2 (b̂†
k − b̂k), (4.29)

where we put the bar in the subscript ᾱ in order to distinguish it from α =
√
p/K. In the

interaction picture, we have

ĤR,I
I (t) = ~

2∑
ᾱ=1

ÂR,I
ᾱ (t) ⊗ B̂R,I

ᾱ (t), (4.30)

ÂR,I
ᾱ (t) = e i

~ ĤR
A tÂR

ᾱ e− i
~ ĤR

A t, (4.31)
B̂R,I

ᾱ (t) = e i
~ ĤR

BtB̂R
ᾱ e− i

~ ĤR
Bt. (4.32)

We can calculate γR
ᾱ,β̄

(ωA) in Eq. (2.50) as (see Appendix A)

γR
1,1(ωA) = Γ(ωp/2 + ωA) n̄(ωp/2 + ωA) + 1

2 + Γ(ωp/2 − ωA) n̄(ωp/2 − ωA)
2 , (4.33)

γR
1,2(ωA) = iΓ(ωp/2 + ωA) n̄(ωp/2 + ωA) + 1

2 − iΓ(ωp/2 − ωA) n̄(ωp/2 − ωA)
2 , (4.34)

γR
2,1(ωA) = γR∗

1,2(ωA) = −γR
1,2(ωA), (4.35)

γR
2,2(ωA) = γR

1,1(ωA), (4.36)

where

n̄(ω) = 1
eβ0

B~ω − 1
, (4.37)

Γ(ω) = πJ(ω), (4.38)
J(ω) =

∑
k

g2
kδ(ω − ωk). (4.39)

Let us rewrite ÂR,I
ᾱ (t) as

ÂR,I
ᾱ (t) = e i

~ ĤR
A tÂR

ᾱ e− i
~ ĤR

A t

=
∑
j,k

e i
~ ĤR

A t
∣∣∣ψR

j

〉〈
ψR

j

∣∣∣ ÂR
ᾱ

∣∣∣ψR
k

〉〈
ψR

k

∣∣∣ e− i
~ ĤR

A t

=
∑
j,k

e− i
~ (εR

k −εR
j )t
〈
ψR

j

∣∣∣ÂR
ᾱ

∣∣∣ψR
k

〉 ∣∣∣ψR
j

〉〈
ψR

k

∣∣∣
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Figure 4.1: Four-level approximation. We consider only four levels in the red frame.

=
∑
ωA

e−iωAtÂR
ᾱ (ωA), (4.40)

ÂR
ᾱ (ωA) :=

∑
j,k

εR
k −εR

j =~ωA

〈
ψR

j

∣∣∣ÂR
ᾱ

∣∣∣ψR
k

〉 ∣∣∣ψR
j

〉〈
ψR

k

∣∣∣ , (4.41)

where {εR
j } and {

∣∣∣ψR
j

〉
} are the eigenenergies and the eigenstates of ĤR

A , respectively. If we knew
the exact forms of {εR

j } and {
∣∣∣ψR

j

〉
}, we could obtain the exact form of the master equation for

the KPO in the rotating frame in the Schrödinger picture:

dρ̂R
A(t)
dt = − i

~
[ĤR

A , ρ̂
R
A(t)] + D[ρ̂R

A(t)], (4.42)

D[ρ̂R
A(t)] =

∑
ωA

∑
ᾱ,β̄

γR
ᾱ,β̄(ωA)

(
ÂR

β̄ (ωA)ρ̂R
A(t)ÂR†

ᾱ (ωA) − 1
2{ÂR†

ᾱ (ωA)ÂR
β̄ (ωA), ρ̂R

A(t)}
)
, (4.43)

where we neglected the Lamb-shift Hamiltonian ĤR
LS for brevity. In fact, the Lamb-shift Hamil-

tonian is often neglected in the literature because it has only a small effect in general [3]. We
are interested in the early-time dynamics in which the population probability of the system
in the cat subspace C0 is very high. Thus, in Eq. (4.41), which appears in the decoherence
part, Eq. (4.43), we neglect all the terms except for ones which induce the transitions between
high-energy levels. We assume that |C1,±

α 〉 are good approximations of the first two excited
eigenstates of the Hamiltonian of the system in Eq. (4.9). We hence approximate Eq. (4.41) as

ÂR
ᾱ (ωA) ≈

3∑
j,k=0

εR
k −εR

j =~ωA

〈
ψR

j

∣∣∣ÂR
ᾱ

∣∣∣ψR
k

〉 ∣∣∣ψR
j

〉〈
ψR

k

∣∣∣ (4.44)

with ∣∣∣ψR
0

〉
=
∣∣∣C0,+

α

〉
,

∣∣∣ψR
1

〉
=
∣∣∣C0,−

α

〉
, (4.45)∣∣∣ψR

2

〉
≈
∣∣∣C1,+

α

〉
,

∣∣∣ψR
3

〉
≈
∣∣∣C1,−

α

〉
; (4.46)

see Fig. 4.1. The eigenenergies are given by

εR
0 = εR

1 = 1
2~Kα

4, (4.47)

εR
2 ≈ εR

3 ≈ −2~Kα2 + 1
2~Kα

4 = −2~p+ 1
2~Kα

4. (4.48)
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Figure 4.2: (a) The excitation induced by ÂR
1 (2p). (b) The deexcitation induced by ÂR

1 (−2p).

Then, we need to consider the three cases: ωA = 0,±2p in Eq. (4.44). After a lengthy calculation
(see Appendix B), we arrive at the following form of the decoherence part:

Dours[ρ̂R
A(t)] ≈ Γ

(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

2

] (
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2 − 2p
)
n̄
(
ωp

2 − 2p
)

×
(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2 − 2p
) [
n̄
(
ωp

2 − 2p
)

+ 1
]

×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)
, (4.49)

where

ÂR
1 (0) ≈

1∑
n=0

2α
(∣∣∣Cn,−

α

〉〈
Cn,+

α

∣∣∣+ ∣∣∣Cn,+
α

〉〈
Cn,−

α

∣∣∣)
≈ 2α

(
|α〉〈α| − |−α〉〈−α| + D̂(α) |1〉〈1| D̂†(α) − D̂(−α) |1〉〈1| D̂†(−α)

)
, (4.50)

ÂR
1 (2p) ≈

∣∣∣C1,−
α

〉〈
C0,+

α

∣∣∣+ ∣∣∣C1,+
α

〉〈
C0,−

α

∣∣∣ ≈ D̂(α) |1〉〈α| + D̂(−α) |1〉〈−α| , (4.51)

ÂR
1 (−2p) ≈

∣∣∣C0,−
α

〉〈
C1,+

α

∣∣∣+ ∣∣∣C0,+
α

〉〈
C1,−

α

∣∣∣ ≈ |α〉〈1| D̂†(α) + |−α〉〈1| D̂†(−α), (4.52)∣∣∣Cn,±
α

〉
≈ 1√

2
[D̂(α) ± (−1)nD̂(−α)] |n〉 . (4.53)

Note that ÂR
1 (0) does not change energy, ÂR

1 (2p) induces the excitation, and ÂR
1 (−2p) induces

the deexcitation; see Fig. 4.2. We find that our decoherence part in Eq. (4.49) does not
cause the bit flip (|α〉 ↔ |−α〉, or |0̄〉 ↔ |1̄〉). This is because we made the approximation
|Cn,±

α 〉 ≈ 1√
2 [D̂(α) ± (−1)nD̂(−α)] |n〉. In order to calculate the bit-flip rate correctly, we must

adopt ∣∣∣Cn,±
α

〉
= N n,±

α [D̂(α) ± (−1)nD̂(−α)] |n〉 , (4.54)

N n,±
α =

[
2
(
1 ± (−1)ne−2|α|2Ln(4|α|2)

)]−1/2
, (4.55)

where Ln(x) is the Laguerre polynomial. This is left as our future work.
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4.3 Comparison between our GKSL equation and the
GKSL equation in the literature

Let us compare our GKSL equation

dρ̂R
A(t)
dt = − i

~
[ĤR

A , ρ̂
R
A(t)] + Dours[ρ̂R

A(t)] (4.56)

and the GKSL equation in the literature

dρ̂R
A(t)
dt = − i

~
[ĤR

A , ρ̂
R
A(t)] + Dlit[ρ̂R

A(t)], (4.57)

where the two decoherence parts Dours[ρ̂R
A(t)] and Dlit[ρ̂R

A(t)] are given by Eqs. (4.49) and (4.21),
respectively. We compare analytical forms of Eqs. (4.49) and (4.21) in Sec. 4.3.1. Then, we
compare the dynamics of a KPO under Eqs. (4.56) and (4.57) in Sec. 4.3.2.

4.3.1 Analytical comparison
To begin with, we transform Eq. (4.21) by expressing â and â† in terms of ÂR

1 (0) and ÂR
1 (±2p)

in order to make clear the difference between Eq. (4.21) and (4.49). The action of â on |Cn,±
α 〉

for n = 0, 1 is

â |C0,±
α 〉 = α |C0,∓

α 〉 , (4.58)
â |C1,±

α 〉 = α |C1,∓
α 〉 + |C0,∓

α 〉 . (4.59)

Restricting the Hilbert space to the subspace spanned by |C0,±
α 〉 and |C1,±

α 〉, we approximate
â as

â ≈ α
(

|C0,+
α 〉〈C0,−

α | + |C0,−
α 〉〈C0,+

α |
)

+
(
α |C1,−

α 〉 + |C0,−
α 〉

)
〈C1,+

α | +
(
α |C1,+

α 〉 + |C0,+
α 〉

)
〈C1,−

α |

= 1
2Â

R
1 (0) + ÂR

1 (−2p) = 1
2Â

R†
1 (0) + ÂR†

1 (2p). (4.60)

We then approximate â† as

â† ≈ 1
2Â

R
1 (0) + ÂR

1 (2p) = 1
2Â

R†
1 (0) + ÂR†

1 (−2p). (4.61)

Using Eqs. (4.60) and (4.61), we approximate Dlit[ρ̂R
A(t)] in Eq. (4.21) as

Dlit[ρ̂R
A(t)] ≈ Γ

(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

2

] (
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR
1 (2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (0), ρ̂R

A(t)}
)
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+ Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (0), ρ̂R

A(t)}
)
. (4.62)

On the other hand, we transform Eq. (4.49) as follows. Assuming p � ωp as in the ex-
periments [13, 58], we make the approximation ωp/2 − 2p ≈ ωp/2 in Eq. (4.49), so that we
have

Dours[ρ̂R
A(t)] ≈ Γ

(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

2

] (
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)
. (4.63)

We find that Dlit[ρ̂R
A(t)] in Eq. (4.62) contains all the terms in Dours[ρ̂R

A(t)] in Eq. (4.63). The
difference is

Dlit[ρ̂R
A(t)] − Dours[ρ̂R

A(t)] ≈ Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR
1 (2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)
n̄
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (0), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

]
×
(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (0), ρ̂R

A(t)}
)
. (4.64)

Let us see the effect of this difference on the dynamics of the KPO in the next subsection.

4.3.2 Numerical comparison
For numerical calculations, we used QuTiP, the Quantum Toolbox in Python [63,64]. We show
the parameters that we used in Table 4.1. Here, d is the dimension at which we truncated
bosonic excited states. We employ an Ohmic bath whose spectral density is given by

J(ω) = ηωe−ω/ωcut , (4.65)

where η is the coupling strength and ωcut is the cutoff frequency. We calculated the fidelity [61,
Sec. 9.2.2] listed in Table 4.2. This table shows that the approximation in Eq. (4.46) is good;
hence we can use our GKSL equation in (4.56), which is based on Eq. (4.46). Note that neither
F ( |ψR

0 〉 , |C0,+
α 〉) nor F ( |ψR

1 〉 , |C0,−
α 〉) is exactly equal to one because we truncated bosonic

excited states.
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Table 4.1: The parameters of the KPO and the bath.

d 50
α =

√
p/K 5

K/2π 1 MHz
ωp/2π 12 GHz
η 10−4

ωcut/2π 48 GHz

Table 4.2: Fidelity F (|ψ〉 , |φ〉) = | 〈ψ|φ〉 |.

F ( |ψR
0 〉 , |C0,+

α 〉) 0.9999998
F ( |ψR

1 〉 , |C0,−
α 〉) 0.999994

F ( |ψR
2 〉 , |C1,+

α 〉) 0.989
F ( |ψR

3 〉 , |C1,−
α 〉) 0.989

Phase-flip rate and excitation rate

Let us prepare the initial state of the system as ρ̂R
A(0) = |C0,+

α 〉〈C0,+
α |. We here consider the

phase-flip rate ( |C0,+
α 〉 → |C0,−

α 〉) and the excitation rate ( |C0,+
α 〉 → |C1,±

α 〉). We calculate the
population of each level in the form p±

n (t) := 〈Cn,±
α |ρ̂R

A(t)|Cn,±
α 〉 for n = 0, 1. For the initial

temperature of the bath, we consider two cases: T 0
B = 18 mK and 180 mK.

First, we set T 0
B = 18 mK. We show in Fig. 4.3 the time dependence of the population of

each level p±
n (t) for n = 0, 1 under our GKSL equation (4.56) and under the GKSL equation

(4.57) in the literature. Under our GKSL equation (4.56) (see the left panel), the phase-flip rate
p−

0 (t) increases from p−
0 (0) = 0 to p−

0 (5 ns) ≈ 0.5 and becomes almost constant after t ≈ 5 ns.
The excitation rates p±

1 (t) are very low, although not exactly zero; see Fig. 4.4. On the other
hand, under the GKSL equation (4.57) in the literature (see the right panel in Fig. 4.3), the
population in the ground states p±

0 (t) decreases after t = 5 ns due to the excitation to |C1,±
α 〉.

The difference between the two panels in Fig. 4.3 comes from the difference between
Dours[ρ̂R

A(t)] and Dlit[ρ̂R
A(t)] in Eq. (4.64). Let us focus on this difference under the parame-

ters in Table 4.1 and T 0
B = 18 mK. Since n̄(ωp/2) = [e~ωp/2kBT 0

B − 1]−1 ≈ 1.1 × 10−7 � 1, we
can approximate Eq. (4.63) as

Dours[ρ̂R
A(t)] ≈ 1

2Γ
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

)(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)
. (4.66)

This decoherence part does not induce the excitation to |C1,±
α 〉. On the other hand, n̄(ωp/2) � 1

leads to

Dlit[ρ̂R
A(t)] − Dours[ρ̂R

A(t)] ≈ Γ
(
ωp

2

)(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (0), ρ̂R

A(t)}
)
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Figure 4.3: The time dependence of the population of each level p±
n (t) := 〈Cn,±

α |ρ̂R
A(t)|Cn,±

α 〉
for n = 0, 1: (a) Under our GKSL equation (4.56); (b) Under the GKSL equation (4.57) in
the literature. The initial temperature of the bath is T 0

B = 18 mK. The other parameters are
shown in Table 4.1.
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Figure 4.4: The excitation rates p±
1 (t) under our GKSL equation (4.56). The parameters are

the same as those in Fig. 4.3
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= Γ
(
ωp

2

)(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR†
1 (2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR

1 (2p)ÂR
1 (0), ρ̂R

A(t)}
)
(4.67)

and

Dlit[ρ̂R
A(t)] ≈ 1

2Γ
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2

)(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (0) − 1
2{ÂR†

1 (0)ÂR†
1 (2p), ρ̂R

A(t)}
)

+ Γ
(
ωp

2

)(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR

1 (2p)ÂR
1 (0), ρ̂R

A(t)}
)
. (4.68)

Note that ρ̂R
A(t)ÂR†

1 (0)ÂR†
1 (2p) in the third line in Eq. (4.68) and ÂR

1 (2p)ÂR
1 (0)ρ̂R

A(t) in the last
line in Eq. (4.68) induce the excitation to |C1,±

α 〉. We find that while our decoherence part
Dours[ρ̂R

A(t)] in Eq. (4.66) does not induce the excitation to |C1,±
α 〉 very much, the decoherence

part in the literature Dlit[ρ̂R
A(t)] in Eq. (4.68) does. This means that our GKSL equation (4.56)

is not only more accurate than the GKSL equation (4.57) in the literature, but also preferable
to the latter in the sense that the state of a KPO under our GKSL equation is more confined to
the cat subspace C0 than that under the GKSL equation in the literature. That is, a KPO under
our GKSL equation is more robust to excitation errors than that under the GKSL equation in
the literature. We can make similar arguments when the initial temperature of the bath is low
enough to satisfy n̄(ωp/2) � 1.

Next, we set T 0
B = 180 mK. In this case n̄(ωp/2) ≈ 0.25, and

2Γ(ωp/2)n̄(ωp/2)ÂR
1 (2p)ρ̂R

A(t)ÂR†
1 (2p)

in our decoherence part (4.63) induces excitation to |C1,±
α 〉; see Fig. 4.5. Because of the differ-

ence between Dours[ρ̂R
A(t)] and Dlit[ρ̂R

A(t)] in Eq. (4.64), the time dependence of the population
of each level p±

n (t) := 〈Cn,±
α |ρ̂R

A(t)|Cn,±
α 〉 for n = 0, 1 under our GKSL equation (4.56) differs

from that under the GKSL equation (4.57) in the literature. We can see that p±
1 (t) under our

GKSL equation are smaller than those under the GKSL equation in the literature. Hence,
when T 0

B = 180 mK, too, a KPO under our GKSL equation is more robust to excitation errors
than that under the GKSL equation in the literature.
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Figure 4.5: The time dependence of the population of each level p±
n (t) := 〈Cn,±

α |ρ̂R
A(t)|Cn,±

α 〉 for
n = 0, 1 under our GKSL equation (4.56) and under the GKSL equation (4.57) in the literature:
(a) p+

0 (t); (b) p−
0 (t); (c) p+

1 (t); (d) p−
1 (t). The initial temperature of the bath is T 0

B = 180 mK.
The other parameters are the same as those in Fig. 4.3.
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Chapter 5

Nonequilibrium thermodynamic
entropy of a quantum model of coupled
harmonic oscillators

In this Chapter, we define and investigate the nonequilibrium thermodynamic entropy of a
quantum model of coupled harmonic oscillators in a star configuration, introduced in Sec. 2.5.
In Sec. 5.1, we review thermodynamic entropy of a macroscopic bipartite system. In Sec. 5.2,
we review the von Neumann entropy production rate. In Sec. 5.3, we introduce the initial state
and the dynamics. In Sec. 5.4, we show that every harmonic oscillator is in a Gibbs state with
a time-dependent temperature in our settings. We thus define the time-dependent thermo-
dynamic entropy of each harmonic oscillator in a similar way to the definition in equilibrium
thermodynamics and statistical mechanics. Then, we define the nonequilibrium thermodynamic
entropy of the total system as the summation of them. This total thermodynamic entropy sat-
isfies the third law of thermodynamics. In Sec. 5.5, we set the parameters so that the finite-time
dynamics of the system may be well-approximated by the GKSL master equation. We show
numerically that our total thermodynamic entropy production rate can take negative values,
while our total thermodynamic entropy satisfies the second law of thermodynamics. In Sec. 5.6,
we discuss several topics.

5.1 Review of thermodynamic entropy of a macroscopic
bipartite system

Equilibrium thermodynamics of macroscopic systems is an established theory [65, 66]. The
irreversibility of thermodynamics is expressed by its second law, which can be cast into the
form of the principle of increasing total thermodynamic entropy [65, Sec. 14.2] 1. Let us
prepare an adiabatic system in an equilibrium state with some constraints (for example, a
system consisting of two subsystems at different temperatures separated by an adiabatic wall).
If we get rid of the constraints (e.g. remove the wall) at time tini, the system should change to
a new equilibrium state at time tfin. The final total thermodynamic entropy Sth

tot(tfin) must be
1Throughout this thesis, we intentionally use the term ‘thermodynamic entropy’ in order to distinguish it

from other types of entropy, such as the von Neumann entropy [67], the Rényi entropy [68], and the diagonal
entropy [69].

39



greater than or equal to the initial one Sth
tot(tini):

∆Sth
tot(tfin) = Sth

tot(tfin) − Sth
tot(tini) ≥ 0, (5.1)

where ∆Sth
tot(t) := Sth

tot(t) − Sth
tot(tini) denotes the total thermodynamic entropy production

from tini to t. This is the principle of increasing total thermodynamic entropy. Here, the word
“total” refers to the adiabatic system itself, excluding its environment, and is used to distinguish
∆Sth

tot(t) from the internal thermodynamic entropy production, which we will explain in the next
paragraph. Note that the principle is concerned with the difference of thermodynamic entropy
between the initial and final equilibrium states; it does not forbid the total thermodynamic
entropy from decreasing during the intermediate nonequilibrium processes [65, Sec. 14.2]. In
other words, the total thermodynamic entropy production rate Πth

tot(t) := dSth
tot(t)/dt can be

negative for some time t.
Actually, the theory of nonequilibrium thermodynamics of macroscopic systems, including

a proper definition of nonequilibrium thermodynamic entropy Sth(t), has not been established
yet [70]. However, the entropy balance [70, Sec. 2.3] in Eq. (5.2) below is considered to hold
universally. Let us consider a system A and its environment B, whose thermodynamic entropies
are denoted by Sth

A (t) and Sth
B (t), respectively. The time derivative of Sth

A (t) is written as the
sum of the internal thermodynamic entropy production rate of the system Pth

A (t) and the
thermodynamic entropy flux into the system F th

A (t) as follows:

d
dtS

th
A (t) = Pth

A (t) + F th
A (t). (5.2)

This is the entropy balance. We must distinguish the internal thermodynamic entropy produc-
tion ∫ tfin

tini
dtPth

A (t) (5.3)

from the total thermodynamic entropy production in the previous paragraph. When the tem-
perature TA(t) of the system A is defined, the entropy flux into the system A is defined as [70,
Sec. 1.3.3.2]

F th
A (t) := 1

TA(t)
đQA(t)

dt , (5.4)

where đQA(t)/dt is the heat flux into the system A and the bar in đQA(t) means that it is an
inexact differential [70, Sec. 1.3.2]. Then, the internal entropy production rate of the system
A is determined from Eqs. (5.2) and (5.4). On the other hand, when the temperature TA(t)
of the system A is not defined uniquely because of being out of equilibrium, it is a subject of
research how to define each of Pth

A (t) and F th
A (t). A similar relation to Eq. (5.2) holds for the

environment:
d
dtS

th
B (t) = Pth

B (t) + F th
B (t). (5.5)

The point is that the entropy flux into the system is not equal to that out of the environment
in general:

F th
A (t) 6= −F th

B (t). (5.6)

In order to recognize this point, let us consider the following example [66, Sec. 4.3] [70,
Sec. 7.1.1]. We prepare an isolated system composed of the two subsystems A and B which are
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separated by two fixed walls, namely an adiabatic wall and a diathermal wall. The subsystems
A and B are in equilibrium states with temperatures T 0

A and T 0
B, respectively, with T 0

A < T 0
B.

The total system is also at equilibrium. Then, we remove the adiabatic wall at time tini, so
that heat begins to flow from B to A through the diathermal wall and continues flowing until
the two subsystems are at an equal temperature at time tfin. Let us assume that the thermal
conductivity of the diathermal wall is so small that each of the two subsystems should be always
in an equilibrium state and that their temperatures TA(t) and TB(t) change very slowly during
the process. We call this process as quasistatic [66, Sec. 4.3] for both A and B in the sense
that each of them is always in an equilibrium state. We note that there are other definitions of
quasistatic processes; see, for example, Sec. 12.6 in Ref. [65].

Let us describe the internal energy of the subsystem A as EA(t). From the first law of
thermodynamics, the change of EA(t) is equal to the sum of the heat QA into A and the work
WA done on A: ∆EA(t) = QA +WA. In the present example, WA is always zero because of the
fixed diathermal wall. Hence the heat flux into the subsystem A is given by dEA(t)/dt. From
the law of energy conservation, the heat flux into the subsystem B is given by −dEA(t)/dt.
Then the entropy fluxes into the two subsystems are given by

F th
A (t) = 1

TA(t)
dEA(t)

dt , (5.7)

F th
B (t) = − 1

TB(t)
dEA(t)

dt . (5.8)

These equations show that the entropy flux into A is not equal to that out of B at t 6= tfin
because TA(t) 6= TB(t). As the process is quasistatic for both A and B, the time derivatives of
the thermodynamic entropies of the two subsystems are given by [66, Sec. 4.3]

d
dtS

th
A (t) = 1

TA(t)
dEA(t)

dt , (5.9)

d
dtS

th
B (t) = − 1

TB(t)
dEA(t)

dt . (5.10)

Combining Eqs. (5.2), (5.5), and (5.7)-(5.10), we find that the internal thermodynamic entropy
production rates of the two subsystems are both zero:

Pth
A (t) = Pth

B (t) = 0. (5.11)

We regard this as a sign that the process is quasistatic for both A and B.
Let us confirm that the above example satisfies the principle of increasing total thermo-

dynamic entropy (5.1). The total thermodynamic entropy production rate is the sum of the
variation rates of the thermodynamic entropies of the two subsystems:

Πth
tot(t) = d

dtS
th
tot(t) = d

dtS
th
A (t) + d

dtS
th
B (t) = TB(t) − TA(t)

TA(t)TB(t)
dEA(t)

dt ≥ 0, (5.12)

where the last inequality follows from TB(t) ≥ TA(t) and dEA(t)/dt ≥ 0. This leads to the
satisfaction of the principle of increasing total thermodynamic entropy:

∆Sth
tot(tfin) =

∫ tfin

tini
dtΠth

tot(t) ≥ 0. (5.13)

Note that the total thermodynamic entropy production rate is not the sum of the internal
thermodynamic entropy production rates:

Πth
tot(t) 6= Pth

A (t) + Pth
B (t). (5.14)
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5.2 Review of the von Neumann entropy production rate
Let us consider an undriven open quantum system A (different from A in the previous section)
which is coupled to a thermal bath B with initial temperature T 0

B. If the coupling is sufficiently
weak, the dynamics of the system is well approximated by the GKSL-type Markovian master
equation in Eq. (2.40). Then the following von Neumann entropy production rate [35] is
typically used:

ΠvN(t) := − d
dtK

vN
(
ρ̂A(t)||ρ̂th

A

)
, (5.15)

where ρ̂A(t) is the density operator of the system, ρ̂th
A = e−β0

BĤA/Tr[e−β0
BĤA ] is the stationary

state in Eq. (2.52), and

KvN (ρ̂1||ρ̂2) := kBTr [ρ̂1 (ln ρ̂1 − ln ρ̂2)] = −SvN(ρ̂1) − kBTr [ρ̂1 ln ρ̂2] (5.16)

is the von Neumann relative entropy [36, Sec. 11.8] with SvN(ρ̂) := −kBTr [ρ̂ ln ρ̂] being the von
Neumann entropy.

We can transform Eq. (5.15) as follows [3, Sec. 3.2.5]:

ΠvN(t) = − d
dtK

vN
(
ρ̂A(t)||ρ̂th

A

)
= d

dtS
vN
A (t) + kB

d
dtTr

ρ̂A(t) ln e−β0
BĤA

Tr[e−β0
BĤA ]


= d

dtS
vN
A (t) − 1

T 0
B

d
dtTr

[
ρ̂A(t)ĤA

]
− kB ln Tr[e−β0

BĤA ] d
dtTr [ρ̂A(t)]

= d
dtS

vN
A (t) − 1

T 0
B

d
dtEA(t)

= d
dtS

vN
A (t) + 1

T 0
B

d
dtEB(t), (5.17)

where EA(t) and EB(t) are the mean energies of the system and the bath, respectively. The
last term in the third line of Eq. (5.17) becomes zero because Tr [ρ̂A(t)] = 1 all the time. From
the conservation of the total energy, we have derived the last line in Eq. (5.17), ignoring the
interaction energy due to weak coupling. The first term in the last line of Eq. (5.17) is the
time derivative of the von Neumann entropy of the system and the second term is the time-
derivative of the thermodynamic entropy of the bath under the quasistatic process. Note that
an implicit assumption is made that the temperature of the bath does not change from the
initial temperature T 0

B in this second term. However, when the size of the bath is finite, the
temperature of a part of the bath changes as we will show in Sec. 5.5.2. In this case, we cannot
use the von Neumann entropy production rate.

If we regarded the von Neumann entropy of the system as its nonequilibrium thermodynamic
entropy, the von Neumann entropy production rate (5.17) would be regarded as the total
thermodynamic entropy production rate. However, this is a delicate matter, because the von
Neumann entropy is not equal to the thermodynamic entropy in general. For example, let
us decouple the system from the bath in the middle of the dynamics. Then the system is
isolated, in general out of equilibrium, and undergoes the unitary dynamics. If the system
shows thermalization [71], its nonequilibrium thermodynamic entropy should change. However,
its von Neumann entropy does not change under the unitary dynamics [36, Sec. 11.1.1]. Hence
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we do not regard the von Neumann entropy of the system as its thermodynamic entropy in
general. However, when the system is in a Gibbs state, its von Neumann entropy coincides with
its thermodynamic entropy. Actually, we will consider such a case by adopting special settings
in the next section.

It is shown that the von Neumann entropy production rate is always non-negative during
the dynamics [35]:

ΠvN(t) ≥ 0 ∀t. (5.18)

This leads to the non-negative von Neumann entropy production:

∆SvN(t) :=
∫ t

tini
dsΠvN(s) ≥ 0 ∀t ≥ tini. (5.19)

The above two inequalities are often regarded as signs of irreversibility. Here the total system is
not necessarily at equilibrium at tini or t. Hence, the inequality (5.19) with t = tfin is different
from the principle of increasing total thermodynamic entropy (5.1) unless each of the total
system and the system A is in an equilibrium state at both tini and tfin.

5.3 Settings

5.3.1 Hamiltonian
Let us consider the quantum model of coupled harmonic oscillators in a star configuration which
was introduced in Sec. 2.5. We can cast the total Hamiltonian in Eq. (2.59) into the form

Ĥ =
N+1∑
j=1

~ωj

2
(
r̂2

2j−1 + r̂2
2j

)
+

N+1∑
j=2

~gj (r̂1r̂2j−1 + r̂2r̂2j) =: ~2 r̂TH r̂, (5.20)

where we have introduced the modified position operator r̂2j−1 and the modified momentum
operator r̂2j,

r̂2j−1 :=
âj + â†

j√
2

, r̂2j :=
âj − â†

j√
2 i

, (5.21)

and their vector representation

r̂ = (r̂1, r̂2, . . . , r̂2N+1, r̂2N+2)T (5.22)

as well as a 2(N + 1)-dimensional symmetric matrix H, whose nonzero elements are

H2j−1,2j−1 = H2j,2j = ωj for j = 1, . . . , N + 1,
H1,2j−1 = H2j−1,1 = H2,2j = H2j,2 = gj for j = 2, . . . , N + 1.

(5.23)

5.3.2 Initial state and unitary dynamics
Let us impose the constraint ĤI = 0 for t < 0 and prepare the following initial state:

ρ̂(t ≤ 0) = e−β0
AĤA

ZA

⊗ e−β0
BĤB

ZB

= e−β0
AĤA

ZA

⊗

N+1⊗
j=2

e−β0
BĤj

Zj

 , (5.24)
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where

ZA = Tr
[
e−β0

AĤA

]
= 1

2 sinh(β0
A~ω1/2) , ZB = Tr

[
e−β0

BĤB

]
=

N+1∏
j=2

Zj, (5.25)

Ĥj = ~ωj

(
â†

j âj + 1
2

)
, Zj = Tr

[
e−β0

BĤj

]
= 1

2 sinh(β0
B~ωj/2) . (5.26)

That is, the system and the bath are both in the Gibbs states with inverse temperatures β0
A

and β0
B, respectively, and they are uncorrelated. We calculate ZA in Eq. (5.25) in Appendix C.

We can calculate ZB and Zj in a similar way. Because of the constraint ĤI = 0, the initial
state (5.24) is an equilibrium state:

ρ̂(t2) = e−i ĤA+ĤB
~ (t2−t1)ρ̂(t1)ei ĤA+ĤB

~ (t2−t1) = ρ̂(t1) for t1 ≤ t2 ≤ 0. (5.27)

At time t = 0, we remove the constraint ĤI = 0 and let the state of the total system evolve
under the total Hamiltonian (5.20). The interaction sets in between the system and the bath,
which creates correlations.

As ĤA and ĤB are purely quadratic, the initial state (5.24) is a Gaussian state [16–20]
with vanishing first moments: Tr [r̂ρ̂(0)] = 0. Moreover, as the total Hamiltonian is purely
quadratic, the total density operator

ρ̂(t) = Û(t)ρ̂(0)Û †(t) with Û(t) = exp
(

−iĤ
~
t

)
(5.28)

is always a Gaussian state with vanishing first moments: Tr [r̂ρ̂(t)] = 0. Therefore, ρ̂(t) is
completely characterized by the 2(N+1)×2(N+1) covariance matrix σ(t) whose (j, k)-element
is given by

σj,k(t) = Tr [ρ̂(t){r̂j, r̂k}] , (5.29)

where the curly parentheses {•, •} denote the anticommutator. Note that the covariance matrix
is a symmetric matrix. Because of Eq. (5.28), the following relation holds [16, Sec. 5.1.2]:

σ(t) = V (t)σ(0)V (t)T with V (t) = eΩHt, (5.30)

where

Ω =
N+1⊕
j=1

Ω1 =


Ω1

. . .
Ω1

 , Ω1 =
(

0 1
−1 0

)
, (5.31)

and H is the 2(N + 1)-dimensional symmetric matrix introduced in Eq. (5.20). We give the
derivation of Eq. (5.30) in Appendix D.

If the total system is in a Gaussian state, its subsystems are also in Gaussian states. Thus,
each of the states of the system and the bath is Gaussian and is completely characterized by
the covariance matrices σA(t) and σB(t), respectively, which are the submatrices of σ(t) [16,
Sec. 5.2]:

σ(t) =
(
σA(t) σAB(t)
σAB(t)T σB(t)

)
, (5.32)
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where σA(t) is a two-dimensional symmetric matrix, σB(t) is a 2N -dimensional symmetric
matrix, and σAB(t) is a 2 × 2N matrix. Each harmonic oscillator in the total system is also in
a Gaussian state which is totally determined by the following covariance matrix:

σj(t) :=
(
σ2j−1,2j−1(t) σ2j−1,2j(t)
σ2j−1,2j(t) σ2j,2j(t)

)
(5.33)

for j = 1, . . . , N + 1. The initial covariance matrix for the state (5.24) is [16, Sec. 3.3]

σ(0) =
(
σA(0) 0

0 σB(0)

)
,

σA(0) = σ1(0) = coth
(

~ω1

2kBT 0
A

)
I2,

σB(0) =
N+1⊕
j=2

σj(0), σj(0) = coth
(

~ωj

2kBT 0
B

)
I2,

(5.34)

where T 0
A = 1/(kBβ

0
A), T 0

B = 1/(kBβ
0
B), and I2 is the two-dimensional identity matrix. We

calculate σ1,1(0), which is a component of σA(0), in Appendix C. The other components of σ(0)
can be calculated in a similar way.

5.3.3 The GKSL master equation
As we explained in Sec. 2.5, If the couplings {gj} of the harmonic oscillators are sufficiently weak,
the dynamics of the system is well approximated by the GKSL master equation in Eq. (2.99).
As we will show in the next section, the first term in the right-hand side in Eq. (2.99) is always
equal to zero in our settings. Then the GKSL master equation (2.99) becomes

d
dt ρ̂A(t) = Γ(n̄(ω1) + 1)

(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})

+ Γn̄(ω1)
(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})
. (5.35)

Under this GKSL master equation and the initial covariance matrix in Eq. (5.34), the covariance
matrix of the system at time t is written as [20, Sec. 4.1.1]

σA(t) =
[
coth

(
~ω1

2kBT 0
A

)
e−2Γt + coth

(
~ω1

2kBT 0
B

)(
1 − e−2Γt

)]
I2. (5.36)

We derive Eq. (5.36) in Appendix E.

5.4 Analytical results

5.4.1 Gibbs states
We show that each harmonic oscillator is always in a Gibbs state with a time-dependent tem-
perature under the unitary dynamics (5.28) of the total system. Note that there is a one-to-one
correspondence between the density operator and the covariance matrix of each harmonic oscil-
lator. As the covariance matrix is easier to calculate than the density matrix, we first calculate
the covariance matrix. By substituting Eq. (5.34) into Eq. (5.30), we find (see Appendix F)

σj(t) = σ2j−1,2j−1(t)I2 for j = 1, . . . , N + 1. (5.37)
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According to the calculation in Appendix F, the density operator is expressed with the covari-
ance matrix (5.37) in the following form:

ρ̂j(t) = e−βj(t)Ĥj

Zj(t)
, (5.38)

Zj(t) = Tr
[
e−βj(t)Ĥj

]
= 1

2
√
σ2j−1,2j−1(t)2 − 1, (5.39)

βj(t) = 1
kBTj(t)

= 2
~ωj

coth−1 [σ2j−1,2j−1(t)]

= 1
~ωj

ln
(
σ2j−1,2j−1(t) + 1
σ2j−1,2j−1(t) − 1

)
= 1

~ωj

ln
(

2Ej(t) + ~ωj

2Ej(t) − ~ωj

)
, (5.40)

where Ej(t) is the mean energy of the jth harmonic oscillator:

Ej(t) = Tr
[
Ĥj ρ̂j(t)

]
= ~ωj

2 σ2j−1,2j−1(t). (5.41)

We find that each harmonic oscillator is always in a Gibbs (thermal equilibrium) state with
a time-dependent temperature Tj(t). In this meaning, the dynamics is quasistatic for every
harmonic oscillator.

As the system is always in a Gibbs state, the relation [(ω1 + ∆)â†
1â1, ρ̂A(t)] = [(ω1 +

∆)â†
1â1, e−βA(t)~ω1â†

1â1/ZA(t)] = 0 holds all the time. Therefore the GKSL master equation
(2.99) transforms into Eq. (5.35). Using Eq. (5.36) for the time-dependent temperature Tj(t)
in Eq. (5.40), we find that the system under the GKSL master equation is equilibrated with
the bath in the limit t → ∞:

TA(∞) = T1(∞) = T 0
B; (5.42)

we will plot this in Fig. 5.4 below.

5.4.2 Thermodynamic entropy
We define the time-dependent free energy and the time-dependent thermodynamic entropy of
the jth harmonic oscillator simply following the analog of equilibrium statistical mechanics and
thermodynamics:

Fj(t) := −kBTj(t) lnZj(t), (5.43)

Sth
j (t) := Ej(t) − Fj(t)

Tj(t)
. (5.44)

In fact, the von Neumann entropy of the jth harmonic oscillator coincides with its thermody-
namic entropy because it is in a Gibbs state [65, Sec. 21.1]:

SvN
j (t) := −kBTr [ρ̂j(t) ln ρ̂j(t)]

= −kBTr
ρ̂j(t) ln

e−βj(t)Ĥj

Zj(t)


= 1
Tj(t)

Tr
[
ρ̂j(t)Ĥj

]
+ kB lnZj(t)

= Ej(t) − Fj(t)
Tj(t)

= Sth
j (t). (5.45)
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We can rewrite Sth
j (t) in Eq. (5.44) as a strictly monotonically increasing function of Ej(t):

Sth
j (t)
kB

= 2Ej(t) + ~ωj

2~ωj

ln
(

2Ej(t) + ~ωj

2~ωj

)
− 2Ej(t) − ~ωj

2~ωj

ln
(

2Ej(t) − ~ωj

2~ωj

)
. (5.46)

This is followed by
∂Sth

j (t)
∂Ej(t)

= kB

~ωj

ln
(

2Ej(t) + ~ωj

2Ej(t) − ~ωj

)
= 1
Tj(t)

(5.47)

and
d
dtS

th
j (t) = 1

Tj(t)
d
dtEj(t), (5.48)

where the last equality in Eq. (5.47) comes from Eq. (5.40). We regard dEj(t)/dt as the heat flux
into the jth harmonic oscillator because its Hamiltonian Ĥj is time independent [22, Sec. 2.1].
Then, Eq. (5.48) is a manifestation of the quasistatic process; see Eq. (5.9). We define the
thermodynamic entropy flux into the jth harmonic oscillator as

F th
j (t) = 1

Tj(t)
d
dtEj(t), (5.49)

just as Eq. (5.7). Then we find that the internal thermodynamic entropy production rate of
the jth harmonic oscillator is zero:

Pth
j (t) = d

dtS
th
j (t) − F th

j (t) = 0, (5.50)

which is also a manifestation of the quasistatic process.
In order to define the nonequilibrium thermodynamic entropy of the total system, we impose

the additivity of the thermodynamic entropy, which is satisfied in equilibrium thermodynamics
of macroscopic systems (see Secs. 11.5 and 13.11 in Ref. [65]). We thereby arrive at

Sth
tot(t) :=

N+1∑
j=1

Sth
j (t)

= kB

N+1∑
j=1

[
2Ej(t) + ~ωj

2~ωj

ln
(

2Ej(t) + ~ωj

2~ωj

)
− 2Ej(t) − ~ωj

2~ωj

ln
(

2Ej(t) − ~ωj

2~ωj

)]
.

(5.51)

We analytically confirm that our thermodynamic entropy (5.51) satisfies the third law of
thermodynamics [65, Sec. 23.7] as follows. The temperature Tj(t) in Eq. (5.40) and the ther-
modynamic entropy Sth

j (t) in Eq. (5.46) become zero for the vacuum state:

Tj(t) → +0, Sth
j (t) → +0 as Ej(t) → ~ωj

2 + 0. (5.52)

As Tj(t) and Sth
j (t) are both strictly monotonically increasing functions of Ej(t), the thermo-

dynamic entropy Sth
j (t) becomes zero if and only if Tj(t) becomes zero:

Sth
j (t) → +0 as Tj(t) → +0. (5.53)

This and Eq. (5.51) lead to the third law of thermodynamics:

Sth
tot(t) → +0 as Tj(t) → +0 ∀j, (5.54)

which supports the validity of our definition of the total thermodynamic entropy in Eq. (5.51).
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5.4.3 Total thermodynamic entropy production and its rate
We define the total thermodynamic entropy production as

∆Sth
tot(t) := Sth

tot(t) − Sth
tot(0) = Sth

A (t) − Sth
A (0) +

N+1∑
j=2

[
Sth

j (t) − Sth
j (0)

]
(5.55)

and its rate as

Πth
tot(t) := d

dtS
th
tot(t) =

N+1∑
j=1

1
Tj(t)

d
dtEj(t) = 1

TA(t)
d
dtEA(t) +

N+1∑
j=2

1
Tj(t)

d
dtEj(t). (5.56)

Let us transform this into the form which we can easily calculate in terms of the covariance
matrix. Using Eqs. (G.5) and (G.6) in Appendix G, we obtain

Πth
tot(t) = ~ω1

TA(t)

N+1∑
j=2

gjσ1,2j(t) −
N+1∑
j=2

~ωj

Tj(t)
gjσ1,2j(t)

= kB

N+1∑
j=2

gjσ1,2j(t)
[
ln
(
σ1,1(t) + 1
σ1,1(t) − 1

)
− ln

(
σ2j−1,2j−1(t) + 1
σ2j−1,2j−1(t) − 1

)]
. (5.57)

This total thermodynamic entropy production rate can be negative as we will see in Fig. 5.3.

5.4.4 The difference between our total thermodynamic entropy pro-
duction rate and the conventional one

Let us consider the weak-coupling regime so that the finite-time dynamics of the system is well
approximated by the GKSL master equation in Eq. (5.35). In our settings, the von Neumann
entropy of the system coincides with its thermodynamic entropy as in Eq. (5.45), and hence
the conventional entropy production rate ΠvN(t) in Eq. (5.17) has the following form:

ΠvN(t) = 1
TA(t)

d
dtEA(t) + 1

T 0
B

d
dtEB(t) = 1

TA(t)
d
dtEA(t) +

N+1∑
j=2

1
T 0

B

d
dtEj(t). (5.58)

Let us transform Eq. (5.58) into the form which we can easily calculate. As we consider the
weak-coupling regime, we neglect the interaction energy: dEB(t)/dt = −dEA(t)/dt. From the
first equality in Eq. (5.58), we obtain

ΠvN(t) =
(

1
TA(t) − 1

T 0
B

)
d
dtEA(t) (5.59)

= ~ω1Γ
(

1
T 0

B

− 1
TA(t)

)[
2EA(t)
~ω1

− coth
(

~ω1

2kBT 0
B

)]

= ~ω1Γ
(

1
T 0

B

− 1
TA(t)

)[
coth

(
~ω1

2kBTA(t)

)
− coth

(
~ω1

2kBT 0
B

)]
, (5.60)

where the second line follows from Eqs. (5.41) and (5.36), and the last line follows from
Eq. (5.40). The difference between our total thermodynamic entropy production rate Πth

tot(t)
in Eq. (5.56) and the conventional entropy production rate ΠvN(t) in Eq. (5.58) arises from the
gaps between {Tj(t)} and T 0

B:

ΠvN(t) − Πth
tot(t) =

N+1∑
j=2

(
1
T 0

B

− 1
Tj(t)

)
d
dtEj(t). (5.61)
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5.5 Numerical results

5.5.1 Parameters
For a numerical example, we use an Ohmic bath [6, 34], whose spectral density is

J(ω) =
N+1∑
j=2

g2
j δ(ω − ωj) = ηωe−ω/ωcut , (5.62)

where η is the coupling strength between the system and the bath, and ωcut is the cutoff
frequency. Here, we discretize the bath by equal spaces as in Appendix A in Ref. [6]:

ωj = ωmin + (j − 2)∆ω, ∆ω = ωmax − ωmin

N − 1 (5.63)

for j = 2, . . . , N+1. Adopting a logarithmic discretization [72] yields qualitatively same results
as those obtained in this section; see Sec. 5.6.4. We set the coupling constant gj by integrating
Eq. (5.62) over ω as in

N+1∑
j=2

g2
j =

∫ ωmax+ε

ωmin−ε
dω ηωe−ω/ωcut '

N+1∑
j=2

η∆ωωje−ωj/ωcut , (5.64)

which gives

gj =
√
η∆ω ωje−ωj/ωcut (5.65)

for j = 2, . . . , N + 1. For numerical demonstration, we fix the parameters as follows:

ω1 = 4 MHz, ωcut = 3 MHz, ωmin = 0.026 MHz, ωmax = 20 MHz,
η = 10−3, T 0

A = 10µK, T 0
B = 50µK. (5.66)

Let us check whether the finite-time dynamics of the system is well-approximated by the
GKSL master equation when N = 4000, 6000, and 8000. Note that the quantum state of
the system is totally determined only by σ1,1(t). Thus, in Fig. 5.1 we compare σ1,1(t) which
we calculate from the unitary dynamics of the total system (5.30) and that we calculate from
the GKSL master equation (5.36). We find that the two curves coincide with each other for
t . 2π/∆ω, and hence we conclude that the dynamics of the system is well approximated
by the GKSL master equation in that time range. However, the dynamics of the system no
longer obeys the GKSL master equation for t & 2π/∆ω because at t = t1 := 2π/∆ω, we
have eiωjt1 = e2πiωmin/∆ω for j = 2, . . . , N + 1, and hence all harmonic oscillators in the bath
have almost the same phase and recurrencelike behavior happens; see Fig. 5.1. This means
that the dynamics of the system is non-Markovian as a map. Hence we restrict ourselves to
tmax < t1 = 2π/∆ω in the following calculations. Note that t1 is almost proportional to N for
large N because ∆ω = (ωmax −ωmin)/(N − 1); we thus need not worry about the recurrencelike
behavior for sufficiently largeN . We also remark that the interaction energy EI(t) := Tr[ρ̂(t)ĤI ]
is negligibly small under the parameters in Eq. (5.66) for large N ; see Fig. 5.2. This justifies
the transformation from the first equality of Eq. (5.58) to that of Eq. (5.60).
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Figure 5.1: The time evolution of σ1,1(t). We adopt the Ohmic bath separated by equal spaces;
see Eqs. (5.63) and (5.65). The parameters are shown in Eq. (5.66). The green dotted line is
obtained from the solution of the GKSL master equation in Eq. (5.36). The other lines are
obtained from the unitary dynamics of the total system in Eq. (5.30).
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Figure 5.2: The time evolution of dEA(t)/dt in Eq. (G.5), dEB(t)/dt in Eq. (G.9), and dEI(t)/dt
in Eq. (G.10) when N = 4000 under the unitary dynamics of the total system in Eq. (5.30).
The setting and all the parameters except N are the same as those in Fig. 5.1.
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Figure 5.3: The total thermodynamic entropy production rate Πth
tot(t) in Eq. (5.57) under the

unitary dynamics of the total system in Eq. (5.30) and the conventional entropy production
rate ΠvN(t) in Eq. (5.60) under the GKSL master equation in Eq. (5.36). The setting and all
the parameters except N are the same as those in Fig. 5.1.

5.5.2 Negative total thermodynamic entropy production rate
We compare in Fig. 5.3 our total thermodynamic entropy production rate Πth

tot(t) in Eq. (5.57)
with the conventional entropy production rate ΠvN(t) in Eq. (5.60). We find that our total
thermodynamic entropy production rate Πth

tot(t) is negative in a certain time range, in contrast
to the conventional entropy production rate ΠvN(t), which is always non-negative. As we said
in Sec. 5.4.4, Πth

tot(t) differs from ΠvN(t) because some of {Tj(t)} differ from T 0
B; see Eq. (5.61).

Let us see the behaviors of {Tj(t)} below.
We find in Fig. 5.4 that the temperature of the system TA(t) relaxes to the initial tempera-

ture of the bath T 0
B, while some of the temperatures {Tj(t)} of the harmonic oscillators in the

bath decrease. The harmonic oscillators which show temperature decreasing have almost the
same frequency as the system (Fig. 5.5). This can be explained as follows. The mean energy
of the system EA(t) is a strictly monotonically increasing function of the temperature of the
system TA(t), and hence EA(t) increases as TA(t) relaxes to T 0

B, which is higher than the initial
temperature of the system T 0

A. In order for EA(t) to increase, the system must receive particles
with energy ~ω1. Note that the total particle number operator ∑N+1

j=1 â†
j âj commutes with the

total Hamiltonian (5.20), so that the total particle number is conserved. Thus, in order for the
system to receive a particle with energy ~ω1, the bath must provide the particle, and only the
harmonic oscillators whose frequencies are almost the same as the system can do so. When
the harmonic oscillators provide the particle, their mean energies {Ej(t)} decrease. Hence,
the time-dependent temperature Tj(t), which is a strictly monotonically increasing function of
Ej(t), also decreases.

We see from Fig. 5.5 that as |ωj −ω1| becomes smaller, [T 0
B −Tj(t)] and |dEj(t)/dt| become

larger, and so does [1/T 0
B−1/Tj(t)]dEj(t)/dt. AsN becomes larger, more harmonic oscillators in

the bath take part in the energy exchange with the system, and hence [T 0
B−Tj(t)] and |dEj(t)/dt|

for each harmonic oscillator become smaller; see Fig. 5.5. In addition, ∑N+1
j=2 dEj(t)/dt =
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Figure 5.4: Time-dependent temperature Tj(t) in Eq. (5.40) of each harmonic oscillator. We
set N = 4000. The setting and all the parameters except N are the same as those in Fig. 5.1.
The blue solid line is the time-dependent temperature of the system obtained from the unitary
dynamics of the total system in Eq. (5.30). The red dashed line, which is almost identical
to the blue solid line, is the time-dependent temperature of the system obtained from the
solution of the GKSL master equation in Eq. (5.36). The dotted lines are the time-dependent
temperatures of all the harmonic oscillators in the bath obtained from the unitary dynamics of
the total system in Eq. (5.30).

dEB(t)/dt = −dEA(t)/dt does not depend on N as long as the dynamics of the system obeys
the GKSL master equation. Therefore as N becomes larger, ΠvN(t) − Πth

tot(t) in Eq. (5.61)
becomes smaller as in Fig. 5.3.

5.5.3 The second law of thermodynamics
We compare in Fig. 5.6 our total thermodynamic entropy production ∆Sth

tot(t) in Eq. (5.55)
with the conventional entropy production, which in our settings is given by

∆SvN(t) : =
∫ t

0
dtΠvN(t) = Sth

A (t) − Sth
A (0) − EA(t) − EA(0)

T 0
B

. (5.67)

As the entropy production is the time integral of the entropy production rate, our total ther-
modynamic entropy production approaches the conventional entropy production as N becomes
larger, which is similar to the case of the total entropy production rate. In fact, the difference

∆SvN(t) − ∆Sth
tot(t) = EA(0) − EA(t)

T 0
B

+
N+1∑
j=2

[
Sth

j (0) − Sth
j (t)

]
(5.68)

is almost proportional to N−1 for large N ; see Fig. 5.7. This suggests that ∆Sth
tot(t) may

converge to ∆SvN(t) in the limit N → ∞.
Our total thermodynamic entropy production changes little for 800µs . t ≤ 1200µs, as

shown in Fig. 5.6. We therefore regard the quantum state of the total system ρ̂(t) in this time
range as an equilibrium state. Since ∆Sth

tot(t) > 0 for 800µs . t ≤ 1200µs, we judge that our
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Figure 5.5: The time-dependent temperatures {Tj(t)} (upper panels) and the time derivatives
of the mean energies {dEj(t)/dt} (lower panels) of the harmonic oscillators in the bath which
have almost the same frequencies as that of the system. The color expresses the value of Tj(t)
(dEj(t)/dt) in the upper (lower) panels. The vertical axis corresponds to the number j of each
harmonic oscillator. The horizontal axis corresponds to time. We set N = 4000 in (a) and (d),
N = 6000 in (b) and (e), and N = 8000 in (c) and (f). The setting and the other parameters
are the same as those in Fig. 5.1.
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Figure 5.6: The thermodynamic entropy production ∆Sth
tot(t) in Eq. (5.55) under the unitary

dynamics of the total system in Eq. (5.30) and the conventional entropy production ∆SvN(t) in
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except N are the same as those in Fig. 5.1.

0.0 0.5 1.0 1.5 2.0 2.5
1/N ×10 4

0

2

4

6

8

SvN
(t)

Sth to
t(t

) (
10

25
J/K

) t = 1200 s (data)
t = 600 s (data)
t = 400 s (data)
t = 200 s (data)
t = 1200 s (fitting)
t = 600 s (fitting)
t = 400 s (fitting)
t = 200 s (fitting)
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The setting and all the parameters except N are the same as those in Fig. 5.1.
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total thermodynamic entropy Sth
tot(t) satisfies the principle of increasing total thermodynamic

entropy (5.1).

5.6 Discussions

5.6.1 Conventional entropy production rate
We compare in Fig. 5.8 the conventional entropy production rate ΠvN(t) in Eq. (5.59) under the
unitary dynamics of the total system in Eq. (5.30) and the conventional entropy production rate
ΠvN(t) in Eq. (5.60) under the GKSL master equation in Eq. (5.36). We find that the former
is close to the latter and is positive for t . 1030µs. The negative values of the former for
1030µs . t ≤ 1200µs are much smaller than its positive values for t . 950µs. Moreover, the
system is almost in equilibrium with the bath for 1030µs . t ≤ 1200µs. This also supports that
the dynamics of the system for 0 ≤ t ≤ 1200µs is well-approximated by the GKSL equation.

5.6.2 Protocol dependence of our total thermodynamic entropy pro-
duction

The definition of our nonequilibrium thermodynamic entropy Sth
tot(t) in Eq. (5.51) is based on

the initial state of the total system in Eq. (5.34). Here, let us consider a different initial state.
As an example, we focus on the state of the total system with N = 4000 in Sec. 5.5 at t = 204µs:

σ(204µs) =
(
σA(204µs) σAB(204µs)
σAB(204µs)T σB(204µs)

)
. (5.69)

If we get rid of the correlation between the system and the bath, we will have

σ̄(204µs) =
(
σA(204µs) 0

0 σB(204µs)

)
. (5.70)

Note that our total nonequilibrium thermodynamic entropy of the state in Eq. (5.69) is equal
to that of the state in Eq. (5.70). However, it is not obvious whether our total nonequilibrium
thermodynamic entropy of the state

σ(t) = V (t− 204µs)σ(204µs)V (t− 204µs)T (5.71)

is equal to the total nonequilibrium thermodynamic entropy of the state

σ̄(t) = V (t− 204µs)σ̄(204µs)V (t− 204µs)T. (5.72)

Note that the state in Eq. (5.71) for t ≥ 204µs is the same as that used in Sec. 5.5. Thus, if we
prepare the state in Eq. (5.69) as the initial state of the total system, each harmonic oscillator
at t ≥ 204µs is in a Gibbs state. On the other hand, if we prepare the state in Eq. (5.70) as the
initial state of the total system, we do not know whether each harmonic oscillator at t ≥ 204µs
is in a Gibbs state.

If we assume that each harmonic oscillator at t ≥ 204µs is in a Gibbs state in the case of
the initial state in Eq. (5.70), the temperature of each harmonic oscillator time-evolves as in
Fig. 5.9. We find that the time evolution of the temperature TA(t) of the system in Fig. 5.9 is
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Figure 5.8: The conventional entropy production rate ΠvN(t) in Eq. (5.59) under the unitary
dynamics of the total system in Eq. (5.30) and the conventional entropy production rate ΠvN(t)
in Eq. (5.60) under the GKSL master equation in Eq. (5.36): (a) 0 ≤ t ≤ 1200µs; (b) 0 ≤
t ≤ 228µs; (c) 240µs ≤ t ≤ 468µs; (d) 480µs ≤ t ≤ 708µs; (e) 720µs ≤ t ≤ 948µs; (f)
960µs ≤ t ≤ 1200µs. We set N = 4000. The setting and all the parameters except N are the
same as those in Fig. 5.1.

56



200 400 600 800 1000 1200
time t ( s)

4.2

4.4

4.6

4.8

5.0

Te
m

pe
ra

tu
re

 (1
0

K)

TA(t) (simulation)
TA(t) (GKSL)

Figure 5.9: Time-dependent temperature Tj(t) of each harmonic oscillator assuming that they
are in Gibbs states. We adopt the Ohmic bath separated by equal spaces; see Eqs. (5.63) and
(5.65). We set N = 4000. The blue solid line is the time-dependent temperature of the system
obtained from the unitary dynamics of the total system in Eq. (5.72). The red dashed line here,
which is almost identical to the blue solid line, is the same as the red dashed line in Fig. 5.4.
The dotted lines are the time-dependent temperatures of all the harmonic oscillators in the
bath obtained from the unitary dynamics of the total system in Eq. (5.72).

almost the same as that in Fig. 5.4. As the conventional entropy production

∆SvN(t) = Sth
A (t) − Sth

A (204µs) − EA(t) − EA(204µs)
T 0

B

(5.73)

depends on the state of the system only, the conventional entropy production of the state in
Eq. (5.72) is almost the same as that of the state in Eq. (5.71).

On the other hand, the time evolutions of the temperatures Tj(t) of the harmonic oscillators
in the bath in Fig. 5.9 are different from those in Fig. 5.4. As our total thermodynamic entropy
production

∆Sth
tot(t) = Sth

A (t) − Sth
A (204µs) +

N+1∑
j=2

[
Sth

j (t) − Sth
j (204µs)

]
(5.74)

depends not only on the state of the system, but also on the states of the harmonic oscillators
in the bath, our total thermodynamic entropy production of the state in Eq. (5.72) is different
from that of the state in Eq. (5.71); see Fig. 5.10.

5.6.3 The same initial temperatures of the system and the bath
Let us investigate how does the temperature of the system change if the initial temperature of
the system is equal to that of the bath. Here, we fix the parameters as follows:

ω1 = 4 MHz, ωcut = 3 MHz, ωmin = 0.026 MHz, ωmax = 20 MHz,
N = 4000, T 0

A = T 0
B = 50µK. (5.75)
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Figure 5.10: Our total thermodynamic entropy production ∆Sth
tot(t) in Eq. (5.74) of the state in

Eq. (5.72) (the dashed magenta line) and that of the state in Eq. (5.71) (the yellow line), which
is the same as the yellow line in Fig. 5.6. The parameters are the same as those in Fig. 5.9.

For the coupling strength η, we consider two cases: η = 10−3 (weak coupling) and η = 0.1
(strong coupling). When the coupling is weak, the interaction energy EI(t) is small; see
Fig. 5.11. Hence, the mean energy EA(t) of the system changes little, nor does the tem-
perature TA(t) of the system; see Fig. 5.12. On the other hand, when the coupling is strong,
the interaction energy EI(t) is large and negative; see Fig. 5.13. Hence, the mean energy EA(t)
of the system increases much and so does the temperature TA(t) of the system; see Fig. 5.14.

5.6.4 Discretization of a bosonic bath
In Sec. 5.5.1, we discretized the bath by eqaul spaces; see Eq. (5.63). Here, let us adopt a
logarithmic discretization [72]:

ωj+1 = ωj + ∆ωj, (5.76)
∆ωj+1 = l∆ωj = lj−1∆ω2 (5.77)

for j = 2, . . . , N with l > 0. Using these equations, we obtain

ωN+1 = ω2 +
N∑

j=2
∆ωj = ω2 + ∆ω2

N∑
j=2

lj−2 = ω2 + lN−1 − 1
l − 1 ∆ω2, (5.78)

or

∆ω2 = l − 1
lN−1 − 1(ωN+1 − ω2) (5.79)

and

∆ωj = lj−2∆ω2 = (l − 1)lj−2

lN−1 − 1 (ωN+1 − ω2), (5.80)

ωj = ω2 + ∆ω2

j−1∑
k=2

lk−2 = ω2 + lj−2 − 1
lN−1 − 1(ωN+1 − ω2) (5.81)
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Figure 5.11: The time evolution of EA(t) −EA(0), EB(t) −EB(0), and EI(t) under the unitary
dynamics of the total system in Eq. (5.30). We adopt the Ohmic bath separated by equal
spaces; see Eqs. (5.63) and (5.65). We set η = 10−3. The other parameters are shown in
Eq. (5.75).
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Figure 5.12: Time-dependent temperature Tj(t) in Eq. (5.40) of each harmonic oscillator. The
setting and all the parameters are the same as those in Fig. 5.11. The blue solid line is the
time-dependent temperature of the system obtained from the unitary dynamics of the total
system in Eq. (5.30). The red dashed line is the time-dependent temperature of the system
obtained from the solution of the GKSL master equation in Eq. (5.36). The dotted lines are
the time-dependent temperatures of all the harmonic oscillators in the bath obtained from the
unitary dynamics of the total system in Eq. (5.30).
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Figure 5.13: The time evolution of EA(t) −EA(0), EB(t) −EB(0), and EI(t) under the unitary
dynamics of the total system in Eq. (5.30). We set η = 0.1. The setting and all the parameters
except η are the same as those in Fig. 5.11.
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Figure 5.14: Time-dependent temperature Tj(t) in Eq. (5.40) of each harmonic oscillator. The
setting and all the parameters are the same as those in Fig. 5.13. The blue solid line is the time-
dependent temperature of the system obtained from the unitary dynamics of the total system in
Eq. (5.30). The dotted lines are the time-dependent temperatures of all the harmonic oscillators
in the bath obtained from the unitary dynamics of the total system in Eq. (5.30).

60



0 200 400 600 800 1000 1200
time t ( s)

1

2

3

4

5

Te
m

pe
ra

tu
re

 (1
0

K)

TA(t) (logarithmic separation)
TA(t) (GKSL)

Figure 5.15: Time-dependent temperature Tj(t) in Eq. (5.40) of each harmonic oscillator. We
adopt the Ohmic bath separated logarithmically; see Eqs. (5.82) and (5.83). The parameters
are shown in Eq. (5.84). The blue solid line is the time-dependent temperature of the system
obtained from the unitary dynamics of the total system in Eq. (5.30). The red dashed line,
which is almost identical to the blue solid line, is the time-dependent temperature of the system
obtained from the solution of the GKSL master equation in Eq. (5.36). The dotted lines are
the time-dependent temperatures of all the harmonic oscillators in the bath obtained from the
unitary dynamics of the total system in Eq. (5.30).

for j = 3, . . . , N + 1. In summary, the logarithmic discretization in Eqs. (5.76) and (5.77) is
equivalent to

ωj = ωmin + lj−2 − 1
lN−1 − 1(ωmax − ωmin) (5.82)

for j = 2, . . . , N + 1. A procedure similar to Eq. (5.64) leads to

gj =
√
η∆ωj ωje−ωj/ωcut (5.83)

for j = 2, . . . , N + 1. we fix the parameters as follows:

ω1 = 4 MHz, ωcut = 3 MHz, ωmin = 0.026 MHz, ωmax = 20 MHz,
N = 4000, l = 1.001, η = 10−3, T 0

A = 10µK, T 0
B = 50µK. (5.84)

We show in Fig. 5.15 the time evolution of the temperature Tj(t) of each harmonic oscillator.
We compare in Fig. 5.16 our total thermodynamic entropy production rate Πth

tot(t) in Eq. (5.57)
with the conventional entropy production rate ΠvN(t) in Eq. (5.60). We compare in Fig. 5.17 our
total thermodynamic entropy production ∆Sth

tot(t) in Eq. (5.55) with the conventional entropy
production ∆SvN(t) in Eq. (5.67). We have obtained with the logarithmically separated bath
the qualitatively same results as those with the equally separated bath in Sec. 5.5; see Figs. 5.3,
5.4, and 5.6.
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Figure 5.16: The total thermodynamic entropy production rate Πth
tot(t) in Eq. (5.57) and the

conventional entropy production rate ΠvN(t) in Eq. (5.60). The green dotted line labeled
“conventional” here is the same as that in Fig. 5.3. The yellow line labeled “equal separation”
here is the same as the yellow line labeled “thermodynamic (N = 4000) in Fig. 5.3. The
cyan line labeled “logarithmic separation” is Πth

tot(t) calculated under the same setting and
parameters as those in Fig. 5.15.
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Figure 5.17: The total thermodynamic entropy production ∆Sth
tot(t) in Eq. (5.55) and the

conventional entropy production ∆SvN(t) in Eq. (5.67). The green dotted line labeled “con-
ventional” here is the same as that in Fig. 5.6. The yellow line labeled “equal separation” here
is the same as the yellow line labeled “thermodynamic (N = 4000) in Fig. 5.6. The cyan line
labeled “logarithmic separation” is ∆Sth

tot(t) calculated under the same setting and parameters
as those in Fig. 5.15.
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Chapter 6

Conclusions

In this thesis, we have studied dynamics and thermodynamics of coupled quantum oscillators,
based on the Hamiltonian of the total system which consists of a system of interest and a
bath. Our main results are in Chapters 4 and 5. As the system of interest, we consider a
Kerr-nonlinear parametric oscillator (KPO) in Chapter 4 and a quantum harmonic oscillator
in Chapter 5. In both cases, the bath is comprised of many quantum harmonic oscillators. The
coupling between the system and the bath is weak enough for the dynamics of the system to
be well-approximated by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian
master equation.

In Chapter 4, we have microscopically derived the GKSL equation (4.56) for a KPO, starting
from the Hamiltonian (4.8) of the total system. By doing so, the relationship between the
dynamics of the KPO and the Hamiltonian of the total system has become clear. On the other
hand, the decoherence part of the GKSL equation (4.57) in the literature is obtained under the
assumption that the system is a quantum harmonic oscillator, which is not true. Therefore,
it is questionable whether the GKSL equation in the literature describes the decoherence of
a KPO correctly. We have compared the dynamics of a KPO under our GKSL equation and
that under the GKSL equation in the literature. As a result, we have found that the excitation
error of a KPO under our GKSL equation is smaller than that under the GKSL equation in
the literature. In particular, in the low-temperature limit of the bath, we have found that the
state of a KPO under our GKSL equation is mostly confined to the cat subspace C0, which is
spanned by KPO’s two degenerate ground states, |C0,±

α 〉. This is desirable when we use a KPO
as a qubit for a quantum computer, whose mission is to reduce as many errors as possible.
We claim that it is essential to employ our more accurate GKSL equation to reproduce this
desirable result.

Let us describe future prospects regarding the decoherence of a KPO. First, in the derivation
of our GKSL equation (4.56), we assumed the following: (i) α � 1; (ii) four-level approximation
is good (see Fig. 4.1); (iii) |Cn,±

α 〉 ≈ 1√
2 [D̂(α) ± (−1)nD̂(−α)] |n〉 [Eq. (4.53)]. As we explained

in Sec. 4.2.2, due to the assumption (iii), we cannot calculate the bit-flip rate (|α〉 ↔ |−α〉,
or |0̄〉 ↔ |1̄〉) correctly with our GKSL equation (4.56). To amend this point, we would like
to derive the GKSL equation for a KPO adopting Eq. (4.54). In Ref. [73], it was shown that
making use of higher effective excited states |Cn,±

α 〉 for n = 2, 3 achieves a faster Rx gate, which
exchanges the populations between |α〉 = |0̄〉 and |−α〉 = |1̄〉. In this case, the assumption (ii)
is broken. We would like to expand our GKSL equation so that we can also treat the transitions
to and from |Cn,±

α 〉 for n = 2, 3, . . . .
As another prospect, we want to compare our GKSL equation with experiments. Until now,

experiments of a KPO have been done with small α (for instance α ≈ 1.6 in Ref. [13]). On the
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other hand, owing to the assumption (i), we cannot use our GKSL equation when α is small.
To amend this, we would like to derive the GKSL equation for a KPO with small α. For this
purpose, we need the forms of the excited states of the KPO. Unfortunately, even approximate
forms of the excited states are not known when α is small. Searching for the forms of the
excited states of a KPO with small α is left as our future work.

In Chapter 5, we have defined and analyzed the nonequilibrium thermodynamic entropy for
the quantum model of coupled harmonic oscillators in a star configuration. As the initial state
of the total system, we have prepared the tensor product of the Gibbs states of the system and
the bath. As a result, we have found that every harmonic oscillator is always in a Gibbs state
with a time-dependent temperature. This allows us to define the thermodynamic entropy for
each harmonic oscillator in a similar way to the definition in equilibrium thermodynamics and
statistical mechanics. We can treat every harmonic oscillator on an equal footing thanks to the
initial state that we adopted. We have defined the nonequilibrium thermodynamic entropy of
the total system as the summation of the thermodynamic entropy of each harmonic oscillator.
We have analytically confirmed that our total thermodynamic entropy satisfies the third law of
thermodynamics. We have found numerically that our total thermodynamic entropy production
rate can be negative though the finite-time dynamics of the central harmonic oscillator (the
system of interest) is well approximated by the GKSL-type Markovian master equation, while
our total thermodynamic entropy satisfies the second law of thermodynamics. This contrasts
with the von Neumann entropy production rate, which is always positive. This difference
originates in our microscopically treating the harmonic oscillators in the bath. We can pursue
the time evolution of the temperature of each harmonic oscillator in our formulation. We hence
found that the temperatures of the harmonic oscillators in the bath which have almost the same
frequency as the system change due to the interaction. Our thermodynamic entropy production
rate takes this into account; see Eq. (5.56). On the other hand, the form of the von Neumann
entropy production rate does not take the temperature changes into account;. see Eq. (5.58).
Therefore, when the size of the bath is finite, our thermodynamic entropy production rate is
preferable.

Let us discuss the future prospect regarding the nonequilibrium thermodynamic entropy of
the quantum model of coupled harmonic oscillators. If we prepare a different initial state from
the tensor product of the Gibbs states of the system and the bath, each harmonic oscillator will
be no longer in a Gibbs state. That is, each harmonic oscillator is out of equilibrium. Then
we cannot define the nonequilibrium thermodynamic entropy of each harmonic oscillator in a
similar way to the definition in equilibrium thermodynamics and statistical mechanics. Study-
ing how to define the nonequilibrium thermodynamic entropy for a nonequilibrium harmonic
oscillator can be an interesting future work. As another issue, when we summed the thermody-
namic entropy of each harmonic oscillator to define the nonequilibrium thermodynamic entropy
of the total system, we assumed the additivity of the thermodynamic entropy because of the
weak couplings between the system and the harmonic oscillators in the bath. However, if the
couplings are strong, the contribution of the interaction between the system and the harmonic
oscillators in the bath to the nonequilibrium thermodynamic entropy of the total system will
not be negligible. How to incorporate the effect of the couplings is left as our future work.
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Appendix A

Derivation of γR
1,1(ωA) in Eq. (4.33)

In this Appendix, we derive γR
1,1(ωA) in Eq. (4.33). Let us calculate B̂R,I

ᾱ (t) in Eq. (4.32) as

B̂R,I
1 (t) =

N∑
k=1

(
e−i(ωk−ωp/2)t gk

2 b̂k + ei(ωk−ωp/2)t gk

2 b̂
†
k

)
=

∑
ωB∈{ωk−ωp/2,−(ωk−ωp/2)|k=1,...,N}

e−iωBtB̂R
1 (ωB), (A.1)

B̂R
1 (ωk − ωp/2) = gk

2 b̂k, B̂1(−(ωk − ωp/2)) = gk

2 b̂
†
k (A.2)

B̂R,I
2 (t) =

N∑
k=1

(
−ie−i(ωk−ωp/2)t gk

2 b̂k + iei(ωk−ωp/2)t gk

2 b̂
†
k

)
=

∑
ωB∈{ωk−ωp/2,−(ωk−ωp/2)|k=1,...,N}

e−iωBtB̂R
2 (ωB), (A.3)

B̂R
2 (ωk − ωp/2) = −igk

2 b̂k, B̂R
2 (−(ωk − ωp/2)) = igk

2 b̂
†
k. (A.4)

Using these, we calculate γR
ᾱ,β̄

(ωA) in Eq. (2.50); its (1,1)-component is given by

γR
1,1(ωA) =

∑
ωB

2πδ(ωA − ωB)TrB[B̂R
1 (ωB)B̂R

1 ρ̂
th
B ]

=
∑

k

∑
ωB

2πδ(ωA − ωB)TrB

[
B̂R

1 (ωB)gk

2 (b̂†
k + b̂k)ρ̂th

B

]

=
∑

k

∑
ωB=±(ωk−ωp/2)

2πδ(ωA − ωB)Trk

[
B̂R

1 (ωB)gk

2 (b̂†
k + b̂k)ρ̂th

k

]

=
∑

k

2πδ(ωA − (ωk − ωp/2))Trk

[
gk

2 b̂k
gk

2 (b̂†
k + b̂k)ρ̂th

k

]

+
∑

k

2πδ(ωA + (ωk − ωp/2))Trk

[
gk

2 b̂
†
k

gk

2 (b̂†
k + b̂k)ρ̂th

k

]

=
∑

k

πg2
k

2 δ(ωA − (ωk − ωp/2))Trk

[
(b̂†

kb̂k + 1)ρ̂th
k

]
+
∑

j

πg2
k

2 δ(ωA + (ωk − ωp/2))Trk

[
b̂†

kb̂kρ̂
th
k

]

=
∑

k

πg2
k

2 [(n̄(ωk) + 1)δ(ωA − (ωk − ωp/2)) + n̄(ωk)δ(ωA + (ωk − ωp/2))]
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=
∑

k

πg2
k

2 [(n̄(ωp/2 + ωA) + 1)δ(ωp/2 + ωA − ωk)

+ n̄(ωp/2 − ωA)δ(ωp/2 − ωA − ωk)]

= Γ(ωp/2 + ωA) n̄(ωp/2 + ωA) + 1
2 + Γ(ωp/2 − ωA) n̄(ωp/2 − ωA)

2 , (A.5)

where

n̄(ω) = 1
eβ0

B~ω − 1
, (A.6)

Γ(ω) = πJ(ω), (A.7)
J(ω) =

∑
k

g2
kδ(ω − ωk) (A.8)

and we used

ρ̂th
B = e−β0

BĤB

Tr
[
e−β0

BĤB

] =
N⊗

k=1

e−β0
BĤk

Tr
[
e−β0

BĤk

] =:
N⊗

k=1
ρ̂th

k . (A.9)

We can calculate the other components similarly.
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Appendix B

Derivation of our decoherence part
Dours[ρ̂R

A(t)] in Eq. (4.49)

In this Appendix, we give a detailed calculation related to the derivation of Eq. (4.49). Let us
calculate the action of â on |Cn,±

α 〉 for n = 0, 1 as

â
∣∣∣C0,+

α

〉
= âN 0,+

α (|α〉 + |−α〉)
= αN 0,+

α (|α〉 − |−α〉)

= α
N 0,+

α

N 0,−
α

∣∣∣C0,−
α

〉
, (B.1)

â
∣∣∣C0,−

α

〉
= α

N 0,−
α

N 0,+
α

∣∣∣C0,+
α

〉
, (B.2)

â
∣∣∣C1,+

α

〉
= âN 1,+

α [D̂(α) − D̂(−α)] |1〉

= N 1,+
α [D̂(α)(â+ α) − D̂(−α)(â− α)] |1〉

= N 1,+
α

(
[D̂(α) − D̂(−α)] |0〉 + α[D̂(α) + D̂(−α)] |1〉

)
= N 1,+

α

N 0,−
α

∣∣∣C0,−
α

〉
+ α

N 1,+
α

N 1,−
α

∣∣∣C1,−
α

〉
, (B.3)

â
∣∣∣C1,−

α

〉
= âN 1,−

α [D̂(α) + D̂(−α)] |1〉

= N 1,−
α [D̂(α)(â+ α) + D̂(−α)(â− α)] |1〉

= N 1,−
α

(
[D̂(α) + D̂(−α)] |0〉 + α[D̂(α) − D̂(−α)] |1〉

)
= N 1,−

α

N 0,+
α

∣∣∣C0,+
α

〉
+ α

N 1,−
α

N 1,+
α

∣∣∣C1,+
α

〉
, (B.4)

whose Hermitian conjugates are〈
C0,+

α

∣∣∣ â† = α
N 0,+

α

N 0,−
α

〈
C0,−

α

∣∣∣ , (B.5)
〈
C0,−

α

∣∣∣ â† = α
N 0,−

α

N 0,+
α

〈
C0,+

α

∣∣∣ , (B.6)
〈
C1,+

α

∣∣∣ â† = N 1,+
α

N 0,−
α

〈
C0,−

α

∣∣∣+ α
N 1,+

α

N 1,−
α

〈
C1,−

α

∣∣∣ , (B.7)
〈
C1,−

α

∣∣∣ â† = N 1,−
α

N 0,+
α

〈
C0,+

α

∣∣∣+ α
N 1,−

α

N 1,+
α

〈
C1,+

α

∣∣∣ . (B.8)
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Note that the action of â† and â changes the excitation-number parity and that any two
states with different parities are orthogonal to each other. We calculate ÂR

1 (0) as

ÂR
1 (0) ≈

3∑
j,k=0

εR
k −εR

j =0

〈
ψR

j

∣∣∣ÂR
1

∣∣∣ψR
k

〉 ∣∣∣ψR
j

〉〈
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k
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≈
〈
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α
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α
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α
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α
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α
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α
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α
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α
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α
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α

〉 ∣∣∣C1,+
α

〉〈
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α

∣∣∣
=
(
α

N 0,−
α
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α

+ α
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α

N 0,−
α

) ∣∣∣C0,−
α
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α

∣∣∣+ (
α
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α
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α
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α
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〉
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α
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α

+ N 1,+
α
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α

〈
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α
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α

〉
+ α
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α
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α

] ∣∣∣C1,−
α

〉〈
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α

∣∣∣
+
[
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α
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α

〈
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α
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α

〉
+ α
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α
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α
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α

N 0,+
α

〈
C1,+

α
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α

〉
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α
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α

〉〈
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α
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=

1∑
n=0
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α )2 + (N n,−
α )2

N n,+
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α
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α
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α

∣∣∣)
+
[
2N 1,−

α N 1,+
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where in the third equality we have used Eqs. (B.1)-(B.8), in the fourth equality we have used
Eq. (3.57) and in the last equality we have used Eq. (3.58). In a similar way, we have

ÂR
2 (0) ≈ iα(N 0,+

α )2 − (N 0,−
α )2

N 0,+
α N 0,−

α
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(B.10)

Note that ÂR†
ᾱ (0) = ÂR

ᾱ (0) holds. Then, let us calculate ÂR
ᾱ (±2p) as

ÂR
1 (2p) ≈
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j,k=0
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ÂR
2 (2p) ≈ i

[
N 1,−

α

N 0,+
α

− 4αN 1,−
α N 0,+

α D1,0(2α)
] ∣∣∣C1,−

α

〉〈
C0,+

α

∣∣∣
+ i

[
N 1,+

α

N 0,−
α

+ 4αN 1,+
α N 0,−

α D1,0(2α)
] ∣∣∣C1,+

α

〉〈
C0,−

α

∣∣∣ , (B.12)

ÂR
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Note that ÂR†
ᾱ (±2p) = ÂR

ᾱ (∓2p) holds.
Substituting ωA = 0,±2p into γR

ᾱ,β̄
(ωA) in Eqs. (4.33) and (4.34), we obtain

γR
1,1(0) = Γ

(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

2

]
, (B.15)

γR
1,1(2p) = 1

2Γ
(
ωp

2 + 2p
) [
n̄
(
ωp

2 + 2p
)

+ 1
]

+ 1
2Γ

(
ωp

2 − 2p
)
n̄
(
ωp

2 − 2p
)
, (B.16)

γR
1,1(−2p) = 1

2Γ
(
ωp

2 − 2p
) [
n̄
(
ωp

2 − 2p
)

+ 1
]

+ 1
2Γ

(
ωp

2 + 2p
)
n̄
(
ωp

2 + 2p
)
, (B.17)

γR
1,2(0) = i

2Γ
(
ωp

2

)
, (B.18)

γR
1,2(2p) = i

2Γ
(
ωp

2 + 2p
) [
n̄
(
ωp

2 + 2p
)

+ 1
]

− i
2Γ

(
ωp

2 − 2p
)
n̄
(
ωp

2 − 2p
)
, (B.19)

γR
1,2(−2p) = i

2Γ
(
ωp

2 − 2p
) [
n̄
(
ωp

2 − 2p
)

+ 1
]

− i
2Γ

(
ωp

2 + 2p
)
n̄
(
ωp

2 + 2p
)
. (B.20)

Hereafter we approximate e−2α2 ≈ 0 because we assume α � 1; for example, e−2×52 ≈ 2×10−22.
Then we have

N n,±
α ≈ 1√

2
, (B.21)

69



∣∣∣Cn,±
α

〉
≈ 1√

2
[D̂(α) ± (−1)nD̂(−α)] |n〉 , (B.22)〈

Cm,±
α

∣∣∣Cn,±
α

〉
≈ δm,n, (B.23)

Dm,n(2α) ≈ 0, (B.24)

ÂR
1 (0) ≈

1∑
n=0

2α
(∣∣∣Cn,−

α

〉〈
Cn,+

α

∣∣∣+ ∣∣∣Cn,+
α

〉〈
Cn,−

α

∣∣∣) , (B.25)

ÂR
2 (0) ≈ 0, (B.26)

ÂR
1 (2p) ≈

∣∣∣C1,−
α

〉〈
C0,+

α

∣∣∣+ ∣∣∣C1,+
α

〉〈
C0,−

α

∣∣∣ , (B.27)

ÂR
2 (2p) ≈ i

(∣∣∣C1,−
α

〉〈
C0,+

α

∣∣∣+ ∣∣∣C1,+
α

〉〈
C0,−

α

∣∣∣) , (B.28)

ÂR
1 (−2p) ≈

∣∣∣C0,−
α

〉〈
C1,+

α

∣∣∣+ ∣∣∣C0,+
α

〉〈
C1,−

α

∣∣∣ , (B.29)

ÂR
2 (−2p) ≈ −i

(∣∣∣C0,−
α

〉〈
C1,+

α

∣∣∣+ ∣∣∣C0,+
α

〉〈
C1,−

α

∣∣∣) . (B.30)

Note that ÂR
2 (2p) = iÂR

1 (2p) and ÂR
2 (−2p) = −iÂR

1 (−2p) holds. We finally arrive at the
following form of the decoherence part in Eq. (4.49):

Dours[ρ̂R
A(t)] ≈

∑
ωA=0,±2p

2∑
ᾱ,β̄=1

γR
ᾱ,β̄(ωA)

(
ÂR

β̄ (ωA)ρ̂R
A(t)ÂR†

ᾱ (ωA) − 1
2{ÂR†

ᾱ (ωA)ÂR
β̄ (ωA), ρ̂R

A(t)}
)

= γR
1,1(0)

(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ γR
1,1(2p)

(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ γR
1,2(2p)

(
ÂR

2 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
2 (2p), ρ̂R

A(t)}
)

+ γR
2,1(2p)

(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

2 (2p) − 1
2{ÂR†

2 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ γR
2,2(2p)

(
ÂR

2 (2p)ρ̂R
A(t)ÂR†

2 (2p) − 1
2{ÂR†

2 (2p)ÂR
2 (2p), ρ̂R

A(t)}
)

+ γR
1,1(−2p)

(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ γR
1,2(−2p)

(
ÂR

2 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
2 (−2p), ρ̂R

A(t)}
)

+ γR
2,1(−2p)

(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

2 (−2p) − 1
2{ÂR†

2 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

+ γR
2,2(−2p)

(
ÂR

2 (−2p)ρ̂R
A(t)ÂR†

2 (−2p) − 1
2{ÂR†

2 (−2p)ÂR
2 (−2p), ρ̂R

A(t)}
)

= γR
1,1(0)

(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ [γR
1,1(2p) + iγR

1,2(2p) − iγR
2,1(2p) + γR

2,2(2p)]

×
(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ [γR
1,1(−2p) − iγR

1,2(−2p) + iγR
2,1(−2p) + γR

2,2(−2p)]

×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

= γR
1,1(0)

(
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)
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+ 2[γR
1,1(2p) + iγR

1,2(2p)]

×
(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ 2[γR
1,1(−2p) − iγR

1,2(−2p)]

×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)

= Γ
(
ωp

2

) [
n̄
(
ωp

2

)
+ 1

2

] (
ÂR

1 (0)ρ̂R
A(t)ÂR†

1 (0) − 1
2{(ÂR†

1 (0)ÂR
1 (0), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2 − 2p
)
n̄
(
ωp

2 − 2p
)

×
(
ÂR

1 (2p)ρ̂R
A(t)ÂR†

1 (2p) − 1
2{ÂR†

1 (2p)ÂR
1 (2p), ρ̂R

A(t)}
)

+ 2Γ
(
ωp

2 − 2p
) [
n̄
(
ωp

2 − 2p
)

+ 1
]

×
(
ÂR

1 (−2p)ρ̂R
A(t)ÂR†

1 (−2p) − 1
2{ÂR†

1 (−2p)ÂR
1 (−2p), ρ̂R

A(t)}
)
. (B.31)
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Appendix C

Calculations of ZA in Eq. (5.25) and
σ1,1(0) in Eq. (5.34)

We calculate ZA in Eq. (5.25) as in

ZA = Tr
[
e−β0

AĤA

]
= Tr

[
exp

[
−β0

A~ω1

(
â†

1â1 + 1
2

)]]
=

∞∑
n=0

exp
[
−β0

A~ω1

(
n+ 1

2

)]

= e−β0
A~ω1/2

1 − e−β0
A~ω1

= 1
2 sinh(β0

A~ω1/2) . (C.1)

We calculate σ1,1(0) in Eq. (5.34) as in

σ1,1(0) = Tr [ρ̂(0){r̂1, r̂1}]
= Tr

[
2ρ̂A(0)r̂2

1

]
= Tr

exp
[
−β0

A~ω1
(
â†

1â1 + 1
2

)]
ZA

(2â†
1â1 + 1 + â†2

1 + â2
1)


= 2
ZA

∞∑
n=0

(
n+ 1

2

)
exp

[
−β0

A~ω1

(
n+ 1

2

)]

= − 2
ZA

∞∑
n=0

∂

∂x
exp

[
−x

(
n+ 1

2

)]∣∣∣∣∣
x=β0

A~ω1

= −2 ∂

∂x
log

[ ∞∑
n=0

exp
[
−x

(
n+ 1

2

)]]∣∣∣∣∣
x=β0

A~ω1

= 2 ∂

∂x
log [2 sinh(x/2)]

∣∣∣∣∣
x=β0

A~ω1

= coth
(

~ω1

2kBT 0
A

)
. (C.2)
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Appendix D

Derivation of Eq. (5.30)

In this Appendix, we derive Eq. (5.30) [16, Sec. 5.1.2]. The modified position and momentum
operators introduced in Eq. (5.21) satisfy the canonical commutation relations:

[r̂j, r̂k] = iΩj,k for j, k = 1, . . . , 2(N + 1), (D.1)

where Ω is given by Eq. (5.31). The total Hamiltonian in the Heisenberg picture is

ĤH(t) =
N+1∑
j=1

~ωj

2
(
r̂H

2j−1(t)2 + r̂H
2j(t)2

)
+

N+1∑
j=2

~gj

(
r̂H

1 (t)r̂H
2j−1(t) + r̂H

2 (t)r̂H
2j(t)

)
= ~

2
(
r̂H(t)

)T
H r̂H(t), (D.2)

where r̂H
k (t) = Û †(t)r̂kÛ(t) for k = 1, . . . , N + 1 and

r̂H(t) =
(
r̂H

1 (t), r̂H
2 (t), . . . , r̂H

2N+1(t), r̂H
2N+2(t)

)T
. (D.3)

Then, the canonical commutation relations in the Heisenberg picture are written as[
r̂H

j (t), r̂H
k (t)

]
= iΩj,k for j, k = 1, . . . , 2(N + 1), (D.4)

The Heisenberg equation of motion reads
d
dt r̂

H
j (t) = i

~
[
ĤH(t), r̂H

j (t)
]

= i
2
∑
k,l

[
r̂H

k (t)Hk,lr̂
H
l (t), r̂H

j (t)
]

= i
2
∑
k,l

Hk,l

([
r̂H

k (t), r̂H
j (t)

]
r̂H

l (t) + r̂H
k (t)

[
r̂H

l (t), r̂H
j (t)

])
= i

2
∑
k,l

Hk,l

(
iΩk,j r̂

H
l (t) + iΩl,j r̂

H
k (t)

)
= 1

2
∑
k,l

(
Ωj,kHk,lr̂

H
l (t) + Ωj,lHl,kr̂

H
k (t)

)
=
∑
k,l

Ωj,kHk,lr̂
H
l (t), (D.5)

where the fourth line follows from the symmetry of H and the anti-symmetry of Ω. We recast
Eq. (D.5) in the vector form

d
dt r̂

H(t) = ΩH r̂H(t), (D.6)
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whose solution is

r̂H(t) = V (t)r̂ with V (t) = eΩHt. (D.7)

We finally arrive at Eq. (5.30):

σ(t) = Tr
[
ρ̂(t)

{
r̂, r̂T

}]
= Tr

[
ρ̂(0)

{
r̂H(t),

(
r̂H(t)

)T
}]

= V (t)σ(0)V (t)T. (D.8)
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Appendix E

Derivation of Eq. (5.36)

In this Appendix, we derive Eq. (5.36). The components of σA(t) are written as

σ1,1(t) = Tr
[
2r̂2

1ρ̂(t)
]
, (E.1)

σ2,2(t) = Tr
[
2r̂2

2ρ̂(t)
]
, (E.2)

σ1,2(t) = σ2,1(t) = Tr [(r̂1r̂2 + r̂2r̂1)ρ̂(t)] (E.3)

with

2r̂2
1 = 2â†

1â1 + 1 + â†2
1 + â2

1, (E.4)
2r̂2

2 = 2â†
1â1 + 1 − â†2

1 − â2
1, (E.5)

r̂1r̂2 + r̂2r̂1 = 2i(â†2
1 − â2

1). (E.6)

Using the commutation relations

[â1, â
†
1] = 1, (E.7)

[â1, â1] = [â†
1, â

†
1] = 0, (E.8)

we obtain

[â†
1, 2r̂2

1] = −2â†
1 − 2â1, (E.9)

[â1, 2r̂2
1] = 2â†

1 + 2â1, (E.10)
[â†

1â1, 2r̂2
1] = [â1â

†
1, 2r̂2

1] = 2â†2
1 − 2â2

1, (E.11)
[â†

1, 2r̂2
2] = −2â†

1 + 2â1, (E.12)
[â1, 2r̂2

2] = −2â†
1 + 2â1, (E.13)

[â†
1â1, 2r̂2

2] = [â1â
†
1, 2r̂2

2] = −2â†2
1 + 2â2

1, (E.14)
[â†

1, r̂1r̂2 + r̂2r̂1] = 4iâ1, (E.15)
[â1, r̂1r̂2 + r̂2r̂1] = 4iâ†

1, (E.16)
[â†

1â1, r̂1r̂2 + r̂2r̂1] = [â1â
†
1, r̂1r̂2 + r̂2r̂1] = 4i(â†2

1 + â2
1). (E.17)

Under the GKSL equation
d
dt ρ̂A(t) = Γ(n̄(ω1) + 1)

(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})

+ Γn̄(ω1)
(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})
, (E.18)
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the time derivative of σ1,1(t) is calculated as in

d
dtσ1,1(t) = Tr

[
2r̂2

1
d
dt ρ̂(t)

]
= Γ(n̄(ω1) + 1)Tr

[
2r̂2

1

(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})]

+ Γn̄(ω1)Tr
[
2r̂2

1

(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})]
= Γ(n̄(ω1) + 1)Tr

[
(−2â†

1 − 2â1)2â1ρ̂A(t) − (2â†2
1 − 2â2

1)ρ̂A(t)
]

+ Γn̄(ω1)Tr
[
(2â†

1 + 2â1)2â†
1ρ̂A(t) − (2â†2

1 − 2â2
1)ρ̂A(t)

]
= −2Γ(n̄(ω1) + 1)Tr

[
(2r̂2

1 − 1)ρ̂(t)
]

+ 2Γn̄(ω1)Tr
[
(2r̂2

1 + 1)ρ̂(t)
]

= −2ΓTr
[
2r̂2

1ρ̂(t)
]

+ 2Γ[2n̄(ω1) + 1]

= −2Γ
[
σ1,1(t) − coth

(
~ω1

2kBT 0
B

)]
, (E.19)

whose solution is

σ1,1(t) = coth
(

~ω1

2kBT 0
B

)
+ e−2Γt

[
σ1,1(0) − coth

(
~ω1

2kBT 0
B

)]

=
[
coth

(
~ω1

2kBT 0
A

)
e−2Γt + coth

(
~ω1

2kBT 0
B

)(
1 − e−2Γt

)]
. (E.20)

Similarly, the time derivative of σ2,2(t) is calculated as in

d
dtσ2,2(t) = Tr

[
2r̂2

2
d
dt ρ̂(t)

]
= Γ(n̄(ω1) + 1)Tr

[
2r̂2

2

(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})]

+ Γn̄(ω1)Tr
[
2r̂2

2

(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})]
= Γ(n̄(ω1) + 1)Tr

[
(−2â†

1 + 2â1)2â1ρ̂A(t) − (−2â†2
1 + 2â2

1)ρ̂A(t)
]

+ Γn̄(ω1)Tr
[
(−2â†

1 + 2â1)2â†
1ρ̂A(t) − (−2â†2

1 + 2â2
1)ρ̂A(t)

]
= −2Γ(n̄(ω1) + 1)Tr

[
(2r̂2

2 − 1)ρ̂(t)
]

+ 2Γn̄(ω1)Tr
[
(2r̂2

2 + 1)ρ̂(t)
]

= −2ΓTr
[
2r̂2

2ρ̂(t)
]

+ 2Γ[2n̄(ω1) + 1]

= −2Γ
[
σ2,2(t) − coth

(
~ω1

2kBT 0
B

)]
, (E.21)

whose solution is

σ2,2(t) = coth
(

~ω1

2kBT 0
B

)
+ e−2Γt

[
σ2,2(0) − coth

(
~ω1

2kBT 0
B

)]

=
[
coth

(
~ω1

2kBT 0
A

)
e−2Γt + coth

(
~ω1

2kBT 0
B

)(
1 − e−2Γt

)]
. (E.22)
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Finally, the time derivative of σ1,2(t) is calculated as in

d
dtσ1,2(t) = Tr

[
(r̂1r̂2 + r̂2r̂1)

d
dt ρ̂(t)

]
= Γ(n̄(ω1) + 1)Tr

[
(r̂1r̂2 + r̂2r̂1)

(
2â1ρ̂A(t)â†

1 −
{
â†

1â1, ρ̂A(t)
})]

+ Γn̄(ω1)Tr
[
(r̂1r̂2 + r̂2r̂1)

(
2â†

1ρ̂A(t)â1 −
{
â1â

†
1, ρ̂A(t)

})]
= Γ(n̄(ω1) + 1)Tr

[
4iâ12â1ρ̂A(t) − 4i(â†2

1 + â2
1)ρ̂A(t)

]
+ Γn̄(ω1)Tr

[
4iâ†

12â†
1ρ̂A(t) − 4i(â†2

1 + â2
1)ρ̂A(t)

]
= −2Γ(n̄(ω1) + 1)Tr [(r̂1r̂2 + r̂2r̂1)ρ̂(t)] + 2Γn̄(ω1)Tr [(r̂1r̂2 + r̂2r̂1)ρ̂(t)]
= −2ΓTr [(r̂1r̂2 + r̂2r̂1)ρ̂(t)]
= −2Γσ1,2(t), (E.23)

whose solution is

σ1,2(t) = e−2Γtσ1,2(0) = 0. (E.24)

Thus, we arrive at Eq. (5.36).
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Appendix F

Every harmonic oscillator is in a Gibbs
state with a time-dependent
temperature

In this Appendix, we show that every harmonic oscillator is in a Gibbs state all the time. As
each harmonic oscillator is in a single-mode Gaussian state with vanishing first moments, its
density operator is totally determined by its covariance matrix (5.33). Since the time evolution
of the covariance matrix is easier to calculate than that of the density operator, we first calculate
the covariance matrix of each harmonic oscillator at time t in the next two paragraphs. Then, in
the last paragraph, using the relation between the density operator and the covariance matrix
in Eq. (F.14), we show that each harmonic oscillator is in a Gibbs state with a time-dependent
temperature Tj(t).

The matrix H in Eq. (5.20) with the elements (5.23) has a form of the following symmetric
block matrix:

H =



ω1I2 g2I2 g3I2 · · · gN+1I2
g2I2 ω2I2 0 · · · 0
g3I2 0 ω3I2

. . . ...
... ... . . . . . . 0

gN+1I2 0 · · · 0 ωN+1I2

 . (F.1)

Therefore, the nth power of H has a form of the following symmetric block matrix:

Hn =


h1,1(n)I2 · · · h1,N+1(n)I2

... . . . ...
h1,N+1(n)I2 · · · hN+1,N+1(n)I2

 , (F.2)

whose elements satisfy

(Hn)2j−1,2k−1 = (Hn)2j,2k , (Hn)2j−1,2k = (Hn)2j,2k−1 = 0
for n ∈ N, j, k = 1, . . . , N + 1.

(F.3)

The (2n− 1)th and the (2n)th powers of the matrix Ω in Eq. (5.31) are given by

Ω2n−1 = (−1)n−1Ω, Ω2n = (−1)nI2N+2 for n ∈ N, (F.4)
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where I2N+2 is the (2N+2)-dimensional identity matrix. The matrices H and Ω commute with
each other:

HΩ = ΩH. (F.5)

Using Eqs. (F.4) and (F.5), we can rewrite V (t) = eΩHt in Eq. (5.30) as

V (t) = eΩHt

=
∞∑

n=0

Ω2n (Ht)2n

(2n)! +
∞∑

n=1

Ω2n−1 (Ht)2n−1

(2n− 1)!

=
∞∑

n=0

(−1)n (Ht)2n

(2n)! + Ω
∞∑

n=1

(−1)n−1 (Ht)2n−1

(2n− 1)!
= cosHt+ Ω sinHt, (F.6)

whose transpose is

V (t)T = cosHt− [sinHt]Ω (F.7)

because ΩT = −Ω. From Eq. (F.3), we find

(cosHt)2j−1,2k−1 = (cosHt)2j,2k , (cosHt)2j−1,2k = (cosHt)2j,2k−1 = 0,
(sinHt)2j−1,2k−1 = (sinHt)2j,2k , (sinHt)2j−1,2k = (sinHt)2j,2k−1 = 0

for j, k = 1, . . . , N + 1.
(F.8)

As the initial covariance matrix (5.34) is diagonal, each element of σ(t) = V (t)σ(0)V (t)T is
written as

σj,k(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)j,l σl,l(0) (cosHt− [sinHt]Ω)l,k

for j, k = 1, . . . , 2N + 2.
(F.9)

Let us calculate the elements of the covariance matrix of the jth harmonic oscillator (5.33).
We first obtain

σ2j−1,2j−1(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)2j−1,l σl,l(0) (cosHt− [sinHt]Ω)l,2j−1

=
2N+2∑

l=1

[
(cosHt)2j−1,l + (sinHt)2j,l

]
σl,l(0)

[
(cosHt)l,2j−1 + (sinHt)l,2j

]

=
N+1∑
m=1

[
(cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

+ (sinHt)2j,2m σ2m,2m(0) (sinHt)2m,2j

]
=

N+1∑
m=1

[
(cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

+ (sinHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

]
, (F.10)
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where the second line follows from the form of Ω in Eq. (5.31), the third line follows from
Eq. (F.8), and the last line follows from Eq. (F.8) and the form of σ(0) in Eq. (5.34). Similarly,
we have

σ2j,2j(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)2j,l σl,l(0) (cosHt− [sinHt]Ω)l,2j

=
2N+2∑

l=1

[
(cosHt)2j,l − (sinHt)2j−1,l

]
σl,l(0)

[
(cosHt)l,2j − (sinHt)l,2j−1

]

=
N+1∑
m=1

[
(cosHt)2j,2m σ2m,2m(0) (cosHt)2m,2j

+ (sinHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

]
=

N+1∑
m=1

[
(cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

+ (sinHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

]
= σ2j−1,2j−1(t), (F.11)

σ2j−1,2j(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)2j−1,l σl,l(0) (cosHt− [sinHt]Ω)l,2j

=
2N+2∑

l=1

[
(cosHt)2j−1,l + (sinHt)2j,l

]
σl,l(0)

[
(cosHt)l,2j − (sinHt)l,2j−1

]

=
N+1∑
m=1

[
− (cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

+ (sinHt)2j,2m σ2m,2m(0) (cosHt)2m,2j

]
=

N+1∑
m=1

[
− (cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

+ (sinHt)2j−1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

]
=

N+1∑
m=1

[
− (cosHt)2j−1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

+ (sinHt)2m−1,2j−1 σ2m−1,2m−1(0) (cosHt)2j−1,2m−1

]
= 0, (F.12)

where the fifth line follows from the symmetry of cosHt and sinHt. We thus arrive at

σj(t) = σ2j−1,2j−1(t)I2, (F.13)

which appears in Eq. (5.37) in the main text.
As the jth harmonic oscillator is in a single-mode Gaussian state with vanishing first mo-

ments, its density operator is completely characterized by the covariance matrix in Eq. (F.13)
and has the following form [74]:

ρ̂j(t) =
exp

[
−1

2 r̂T
j Gj(t)r̂j

]
Zj(t)

, (F.14)
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where

r̂j = (r̂2j−1, r̂2j)T , (F.15)

Gj(t) = 2iΩ1 coth−1 [σj(t)iΩ1] = 2 coth−1 [σ2j−1,2j−1(t)] I2 with Ω1 =
(

0 1
−1 0

)
, (F.16)

Zj(t) = 1
2
√

det (σj(t) + iΩ1) = 1
2
√
σ2j−1,2j−1(t)2 − 1. (F.17)

Let us show that ρ̂j(t) in Eq. (F.14) is a Gibbs state below. The numerator of Eq. (F.14) is
transformed using Eqs. (F.15) and (F.16) as

exp
[
−1

2 r̂T
j Gj(t)r̂j

]
= exp

[
− 2
~ωj

coth−1 [σ2j−1,2j−1(t)]
~ωj

2
(
r̂2

2j−1 + r̂2
2j

)]
= exp

[
−βj(t)Ĥj

]
,

(F.18)

where

βj(t) = 1
kBTj(t)

= 2
~ωj

coth−1 [σ2j−1,2j−1(t)] = 1
~ωj

ln
(
σ2j−1,2j−1(t) + 1
σ2j−1,2j−1(t) − 1

)
. (F.19)

The trace of the numerator of Eq. (F.14) is equal to the denominator:

Tr
[
exp

[
−1

2 r̂T
j Gj(t)r̂j

]]
= Tr

[
exp

[
−βj(t)Ĥj

]]
= Tr

[
exp

[
−βj(t)~ωj

(
â†

j âj + 1
2

)]]
=

∞∑
n=0

exp
[
−βj(t)~ωj

(
n+ 1

2

)]

= exp [−βj(t)~ωj/2]
1 − exp [−βj(t)~ωj]

= 1
exp [βj(t)~ωj/2] − exp [−βj(t)~ωj/2]

= 1√
σ2j−1,2j−1(t)+1
σ2j−1,2j−1(t)−1 −

√
σ2j−1,2j−1(t)−1
σ2j−1,2j−1(t)+1

= 1
2
√
σ2j−1,2j−1(t)2 − 1

= Zj(t), (F.20)

where in the sixth line, we have used Eq. (F.19). Therefore, we have derived Eqs. (5.38) and
(5.39):

ρ̂j(t) = e−βj(t)Ĥj

Zj(t)
, Zj(t) = Tr

[
e−βj(t)Ĥj

]
= 1

2
√
σ2j−1,2j−1(t)2 − 1, (F.21)

which shows that the jth harmonic oscillator is in the Gibbs state with the time-dependent
inverse temperature βj(t).
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Appendix G

The time derivative of the mean energy
of each harmonic oscillator, the bath,
and the interaction

In this Appendix we calculate the time derivative of the mean energy of each harmonic oscillator
so that we can transform the thermodynamic entropy production rate (5.56) to the more easily
calculable form (5.57). We also calculate the time derivative of the mean energy of the bath
and the interaction in order to show in Fig. 5.2 that the interaction energy is negligibly small.

The Heisenberg equations of motions read

d
dt r̂

H
1 (t) = i

~
[
ĤH(t), r̂H

1 (t)
]

= ω1r̂
H
2 (t) +

N+1∑
j=2

gj r̂
H
2j(t), (G.1)

d
dt r̂

H
2 (t) = i

~
[
ĤH(t), r̂H

2 (t)
]

= −ω1r̂
H
1 (t) −

N+1∑
j=2

gj r̂
H
2j−1(t), (G.2)

d
dt r̂

H
2j−1(t) = i

~
[
ĤH(t), r̂H

2j−1(t)
]

= ωj r̂
H
2j(t) + gj r̂

H
2 (t) for j = 2, . . . , N + 1, (G.3)

d
dt r̂

H
2j(t) = i

~
[
ĤH(t), r̂H

2j(t)
]

= −ωj r̂
H
2j−1(t) − gj r̂

H
1 (t) for j = 2, . . . , N + 1. (G.4)

Then, the time derivative of the mean energy of each harmonic oscillator is calculated as

d
dtEA(t) = d

dtE1(t)

= ~ω1

2
d
dtσ1,1(t)

= ~ω1

2
d
dtTr

[
ρ̂(0)

{
r̂H

1 (t), r̂H
1 (t)

}]
= ~ω1

2 Tr
[
ρ̂(0)

{
d
dt r̂

H
1 (t), r̂H

1 (t)
}]

+ ~ω1

2 Tr
[
ρ̂(0)

{
r̂H

1 (t), d
dt r̂

H
1 (t)

}]

= ~ω1

2 Tr
ρ̂(0)


ω1r̂

H
2 (t) +

N+1∑
j=2

gj r̂
H
2j(t)

 , r̂H
1 (t)




+ ~ω1

2 Tr
ρ̂(0)

r̂H
1 (t),

ω1r̂
H
2 (t) +

N+1∑
j=2

gj r̂
H
2j(t)



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= ~ω1

2

ω1σ2,1(t) +
N+1∑
j=2

gjσ2j,1(t)
+ ~ω1

2

ω1σ1,2(t) +
N+1∑
j=2

gjσ1,2j(t)


= ~ω1

ω1σ1,2(t) +
N+1∑
j=2

gjσ1,2j(t)


= ~ω1

N+1∑
j=2

gjσ1,2j(t), (G.5)

d
dtEj(t) = ~ωj

2
d
dtσ2j−1,2j−1(t)

= ~ωj

2
d
dtTr

[
ρ̂(0)

{
r̂H

2j−1(t), r̂H
2j−1(t)

}]
= ~ωj

2 Tr
[
ρ̂(0)

{
d
dt r̂

H
2j−1(t), r̂H

2j−1(t)
}]

+ ~ωj

2 Tr
[
ρ̂(0)

{
r̂H

2j−1(t),
d
dt r̂

H
2j−1(t)

}]

= ~ωj

2 Tr
[
ρ̂(0)

{(
ωj r̂

H
2j(t) + gj r̂

H
2 (t)

)
, r̂H

2j−1(t)
}]

+ ~ωj

2 Tr
[
ρ̂(0)

{
r̂H

2j−1(t),
(
ωj r̂

H
2j(t) + gj r̂

H
2 (t)

)}]
= ~ωj

2 [ωjσ2j,2j−1(t) + gjσ2,2j−1(t)] + ~ωj

2 [ωjσ2j−1,2j(t) + gjσ2j−1,2(t)]

= ~ωj [ωjσ2j−1,2j(t) + gjσ2,2j−1(t)]
= ~ωjgjσ2,2j−1(t)
= −~ωjgjσ1,2j(t) for j = 2, . . . , N + 1, (G.6)

where the last line follows from

σ1,2j(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)1,l σl,l(0) (cosHt− [sinHt]Ω)l,2j

=
2N+2∑

l=1

[
(cosHt)1,l + (sinHt)2,l

]
σl,l(0)

[
(cosHt)l,2j − (sinHt)l,2j−1

]

=
N+1∑
m=1

[
− (cosHt)1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

+ (sinHt)2,2m σ2m,2m(0) (cosHt)2m,2j

]
=

N+1∑
m=1

[
− (cosHt)1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

+ (sinHt)1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

]
, (G.7)

σ2,2j−1(t) =
2N+2∑

l=1
(cosHt+ Ω sinHt)2,l σl,l(0) (cosHt− [sinHt]Ω)l,2j−1

=
2N+2∑

l=1

[
(cosHt)2,l − (sinHt)1,l

]
σl,l(0)

[
(cosHt)l,2j−1 + (sinHt)l,2j

]

=
N+1∑
m=1

[
(cosHt)2,2m σ2m,2m(0) (sinHt)2m,2j
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− (sinHt)1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

]
=

N+1∑
m=1

[
(cosHt)1,2m−1 σ2m−1,2m−1(0) (sinHt)2m−1,2j−1

− (sinHt)1,2m−1 σ2m−1,2m−1(0) (cosHt)2m−1,2j−1

]
= −σ1,2j(t). (G.8)

Inserting Eqs. (G.5) and (G.6) into Eq. (5.56), we obtain Eq. (5.57), which we can calculate
from the covariance matrix σ(t).

The time derivative of the mean energy of the bath is calculated as

d
dtEB(t) =

N+1∑
j=2

d
dtEj(t) = −

N+1∑
j=2

~ωjgjσ1,2j(t). (G.9)

From the conservation of the total energy, the time derivative of the interaction energy is
calculated as

d
dtEI(t) = − d

dtEA(t) − d
dtEB(t) =

N+1∑
j=2

~(ωj − ω1)gjσ1,2j(t). (G.10)

In Fig. 5.2, we compare dEA(t)/dt in Eq. (G.5), dEB(t)/dt in Eq. (G.9), and dEI(t)/dt in
Eq. (G.10).
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