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Abstract

In physics, we describe and predict various phenomena on the basis of fundamental concepts
such as symmetry and topology, which further leads to the universal understanding about
nature. Despite the great success, the conventional physics mainly focused on closed systems
at thermal equilibrium or open systems near thermal equilibrium, and a universal understanding
of open systems far from equilibrium has yet to be developed. In this thesis, we develop a general
theory of open systems effectively described by non-Hermitian Hamiltonians and explore new
nonequilibrium phenomena that arise from the interplay between non-Hermiticity, topology,
and localization. First, we show that the non-Hermitian skin effect, which is the anomalous
localization due to non-Hermiticity, originates from intrinsic non-Hermitian topology. Such a
topological origin not merely explains the universal feature of the known skin effect, but also
leads to new types of the skin effects—symmetry-protected skin effects. As prime examples, we
investigate reciprocal skin effects and higher-order skin effects that originate from symmetry-
protected non-Hermitian topology. Furthermore, we develop a field-theoretical description of
the intrinsic non-Hermitian topological phases. Because of the dissipative and nonequilibrium
nature of non-Hermiticity, our theory is formulated solely in terms of spatial degrees of freedom,
which contrasts with the conventional theory for closed systems defined in spacetime. Our
theory provides a universal understanding of non-Hermitian topological phenomena, including
the unidirectional transport in one dimension and the chiral magnetic skin effect in three
dimensions. In addition, we show that the non-Hermitian skin effect is a signature of an
anomaly from the field-theoretical perspective. The universality of our theory manifests itself
as applicability even in the presence of disorder. We develop a scaling theory of localization in
non-Hermitian disordered systems. We find that non-Hermiticity introduces a new scale and
breaks down the one-parameter scaling, which is the central assumption of the conventional
scaling theory of localization. Instead, we identify the origin of unconventional non-Hermitian
delocalization as the two-parameter scaling. We also classify the universality classes of non-
Hermitian disordered systems according to symmetry. Our work establishes the new universality
of open systems.
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Chapter 1

Introduction

1.1 Background

In physics, we describe and predict various phenomena and develop the universal understand-
ing about nature. The development of physics accompanies the development of fundamental
concepts. In mechanics, we conceive the ideas of force and energy, which give a unified under-
standing about the motion of a falling apple and a planet. In electromagnetism, we introduce
the concepts of electric and magnetic fields, by which we identify the origin of light. In ther-
modynamics, we formulate the ideas of temperature, heat, and entropy, which underlie the
industrial revolution. The universality of theoretical concepts is a key to the success of physics.
If a theory were not based on a general and universal formulation, it could not describe ac-
tual natural phenomena, which inevitably include complicated disorder and imperfection that
cannot be taken into account for theoretical modeling.

In modern physics, one of the important fundamental concepts is symmetry. Symmetry is
invariance of a system under a certain transformation. Translation invariance of time and space
is closely related to the conservation of time and momentum, respectively [LL60]. Spontaneous
breaking of symmetry lies at the heart of classifying phases of matter such as magnets and
superconductors, as well as characterizing the structure of the universe [NJL61b,NJL61a]. The
critical phenomena accompanying spontaneous symmetry breaking do not depend on specific
details of systems but depend solely on symmetry and dimensions, forming the universality
classes of phase transitions [Gol92,Car96]. Furthermore, the gauge symmetry, which is artificial
symmetry that keeps the theory invariant and controls the degrees of freedom, constitutes
the standard model of particle physics [Wei95]. In addition to continuous symmetry, discrete
symmetry also plays a fundamental role. In particular, time-reversal invariance is important for
chaos and integrability of quantum many-body systems [Wigh9,Dys62]. Similarly, time-reversal
symmetry, together with particle-hole symmetry and chiral symmetry [AZ97], characterizes the
universality classes of Anderson localization in disordered electron systems, not depending on
details of the systems.

Another crucial concept in contemporary physics is topology. Mathematically, topology
is concerned with geometrical properties invariant under continuous deformations. Topology
characterizes phases and order of matter that are captured solely by global properties. Such
topological phases cannot be described by the paradigm of spontaneous symmetry breaking
since it is based only on local order parameters. The prototype of topological phases is found
in the quantum Hall effect [KDP80]. In a two-dimensional electron system with a strong mag-
netic field at low temperature, the Hall conductivity is quantized to be multiples of a physical
constant. The quantized Hall conductivity originates from the topological invariant, Chern



number, of the ground-state wave function, which remains invariant as long as an energy gap is
open [TKNdN82|. Thanks to the topological protection, the quantization of the Hall conduc-
tivity is immune to local perturbations including disorder and many-body interaction, which
is even applied to the calibration of electrical resistance. Topological phases are ubiquitous
in nature and found in insulators [Hal88, KMO05b, KM05a, BHZ06, KWB*07] and superconduc-
tors [RGOO, Kit01]. In the field-theoretical perspective, topological phases are formulated on
the basis of the gauge principle. In particular, the bulk-boundary correspondence, which is
the central principle of topological phases, is understood by an inflow of quantum anomaly: a
topological field theory is gauge dependent at the boundary, and this gauge noninvariance must
be compensated by the anomaly at the boundary.

Despite the great success, the conventional physics mainly focused on closed systems at
thermal equilibrium. In open systems far from equilibrium, by contrast, we need to reconsider
the fundamentals of physics. While closed systems are described by Hermitian Hamiltonians,
open systems are no longer described by Hermitian Hamiltonians. Rather, non-Hermiticity is
a new concept that constitutes the nature of open systems. Recent years have witnessed the
new rich physics of non-Hermitian Hamiltonians that effectively describe open classical and
quantum systems [EGMKT18 BBK21]. Non-Hermiticity induces a new type of spontaneous
symmetry breaking that accompanies an exceptional point [BB98|. Non-Hermiticity also en-
ables a localization transition even in one-dimensional disordered systems [HN96, HN97]. More-
over, non-Hermiticity gives rise to new topological phases that have no analogs in Hermitian
systems [RL0O9, ESHK11,HH11,Sch13, MPS15, Leel6, LBH" 17, XWD17,SZF18, KFar, GAK™ 18,
KHG'19,YWI18, KEBB18,LT19, KSUS19, KBS19, YM19]. Non-Hermitian physics finds practi-
cal applications such as unidirectional invisibility [Mos09, LRE*11,RBM ™12, FXF*13,POL*"14],
enhanced sensitivity [Wield, LZOT16, HHW*17,COZ"17,LC18,ZSH"19], and topological las-
ing [SJIGGT17,PWH"18, BNV*17,ZMT*18, HBL"18, BWH"18,ZQW™19]. Still, a general the-
ory of open systems far from equilibrium, including non-Hermitian physics, has yet to be
established. It is unclear how non-Hermiticity changes the fundamental concepts in physics
including symmetry and topology. Such a general theory should be helpful in systematically
predicting new physical phenomena that can be observed in experiments. The nonequilibrium
physics of open systems awaits further theoretical and experimental advances.

1.2 Summary

In this thesis, we develop a general theory of open systems that describes the interplay between
non-Hermiticity, topology, and localization. On the basis of the universality of our theory, we
also predict a variety of new nonequilibrium phenomena in open systems.

This thesis is organized as follows. While all the chapters are closely related, each chapter
is written so that it can be read independently.

e In Chap. 2, we review the recent development of non-Hermitian physics. First, we begin
with reviewing the basic mathematics of non-Hermitian matrices, especially their unique
properties such as biorthogonality of eigenstates and exceptional points. Next, we review
how non-Hermiticity appears in nature. Non-Hermiticity is ubiquitous and plays a leading
role in open classical and quantum systems. Furthermore, we review symmetry in non-
Hermitian physics [KSUS19]. We demonstrate that non-Hermiticity changes the nature
of symmetry by ramifying and unifying [KHG™19] symmetry, culminating in the 38-fold
internal-symmetry classification instead of the 10-fold classification for Hermitian systems.



Finally, we review topological phases of non-Hermitian systems [KKSUS19]. The rich non-
Hermitian topology originates from the two types of complex-energy gaps—point gap
and line gap. These two types of complex-energy gaps enable topological classification of
non-Hermitian systems, as well as exceptional points [KBS19]. We provide the periodic
tables of Hermitian and non-Hermitian topological phases in Appendix A.

In Chap. 3, we discuss the non-Hermitian skin effect, which is a unique feature of non-
Hermitian systems and plays a crucial role in non-Hermitian topology [Leel6, YWIS8,
KEBBI18]. The skin effect is the anomalous localization and the extreme sensitivity to
boundary conditions due to non-Hermiticity. We illustrate this with a prototypical non-
Hermitian model with nonreciprocal hopping [HN96, HN97]. Remarkably, the Bloch band
theory no longer describes the bulk of non-Hermitian systems with open boundaries if
the skin effect occurs. To elucidate such a non-Bloch band feature, recent works [YW18,
YM19] have developed a non-Bloch band theory that is applicable to non-Hermitian
systems with arbitrary boundary conditions, which we also review. After these reviews,
we reveal that the skin effect actually originates from intrinsic non-Hermitian topology and
identify the skin effect as an intrinsic non-Hermitian topological phenomenon in terms of
band theory and spectral theory [OKSS20]. This work provides a universal understanding
about the bulk-boundary correspondence and the skin effect in non-Hermitian systems.

In Chap. 4, we reveal new types of non-Hermitian topological phenomena—symmetry-
protected skin effects. As a prime example, we discover the reciprocity-protected skin
effect that originates from Zy non-Hermitian topology [OKSS20]. We also demonstrate
that this Z, skin effect invalidates the standard non-Bloch band theory; instead, we
develop a modified non-Bloch band theory in the symplectic class in a general man-
ner [KOS20]. We provide the details about this nonstandard non-Bloch band theory in
Appendix B. Furthermore, we classify possible other symmetry-protected skin effects for
the 38-fold internal symmetry class in arbitrary dimensions [OKSS20]. As another prime
example of symmetry-protected skin effects, we discover higher-order counterparts of the
non-Hermitian skin effect [KSS20]. We show that the higher-order skin effect accompa-
nies the new boundary physics that has no analogs in Hermitian higher-order topological
phases and non-Hermitian first-order topological phases. We provide the details about
the corner skin effect in Appendix C.

In Chap. 5, we develop a field-theoretical description of the intrinsic non-Hermitian topo-
logical phases [KSR21]. Because of the dissipative and nonequilibrium nature of non-
Hermiticity, our theory is formulated solely in terms of spatial degrees of freedom, which
contrasts with the conventional theory defined in spacetime. Our theory provides a uni-
versal understanding of non-Hermitian topological phenomena such as the unidirectional
transport in one dimension and the chiral magnetic skin effect in three dimensions. Fur-
thermore, it systematically predicts new physics; we illustrate this by revealing transport
phenomena and skin effects in two dimensions induced by a perpendicular spatial texture.
From the field-theoretical perspective, the non-Hermitian skin effect is a signature of an
anomaly. This work establishes a new connection between nonequilibrium physics and
high-energy physics.

In Chap. 6, we develop a scaling theory of localization in non-Hermitian systems [KR21].
While disorder inevitably leads to Anderson localization in Hermitian systems in one di-
mension, non-Hermiticity can destroy Anderson localization and lead to delocalization
even in one dimension [HN96, HN97]. We reveal that non-Hermiticity introduces a new
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scale and breaks down the one-parameter scaling, which is the central assumption of
the conventional scaling theory of localization. Instead, we identify the origin of uncon-
ventional non-Hermitian delocalization as the two-parameter scaling. Furthermore, we
establish the threefold universality of non-Hermitian localization based on reciprocity;
reciprocity forbids delocalization without internal degrees of freedom, while symplectic
reciprocity results in a new type of symmetry-protected delocalization. This work elu-
cidates the new universality of open disordered systems. We provide several detailed
discussions on non-Hermitian disordered systems in Appendix D.

11



Chapter 2
Non-Hermitian physics

Hermiticity of Hamiltonians is a common assumption in quantum mechanics. It ensures real
spectra and unitarity of the dynamics. However, even non-Hermitian Hamiltonians can have
real spectra in the presence of parity-time (P7T) symmetry [BB98, BBJ02, Ben07]. Such non-
Hermitian Hamiltonians can be physically realized in open classical and quantum systems by
appropriately controlling external coupling to the environment, such as gain and loss. Soon
after the early theoretical proposals in classical optics [MEGCMO08, EGMCMO07, MMEGCO08],
a signature of a non-Hermitian Hamiltonian with P7 symmetry was indeed observed in ex-
periments [GSDT09, RMEG™10]. A number of theoretical and experimental developments fol-
lowed to understand the unique and universal features of non-Hermitian systems [KYZ16,
FEGGI7,EGMKT18 MA19,0RNY19]. Away from open systems far from thermal equilibrium,
non-Hermiticity is ubiquitous in nature. Non-Hermiticity appears also in electron systems at
equilibrium as a result of finite lifetimes of quasiparticles [KFar, 2718, PIF19, SF18, YPKI18,
YPKH19,BB19,MR19,KYK19,NQI*20]. Effective non-Hermitian matrices are relevant also to
the depinning transition of superconductors in a tilted magnetic field [HN96, HN97] and the di-
electric breakdown of Mott insulators [FK98,0A10]. Non-Hermitian matrices exhibit unconven-
tional characteristics in comparison with Hermitian matrices: eigenstates can be nonorthogo-
nal [Brol4] and a complex spectrum can possess exceptional points [Kat66,Ber04,Heil2]. These
mathematical properties lead to a number of unique phenomena and functionalities without
Hermitian counterparts in theory [MEGCMO08, EGMCM07, MMEGC08, KGMO08, Mos09, Lon09,
CGCS10,Lon10,CGS11,LRE*11,Wiel4,JOL*14,ZRS*14,1.ZO"16] and experiments [GSD*09,
RMEG™*10,SLZ"11,RBM*12,BBPS13,FXF*13,POL"14,POR*14,FWM*14, HMH"14,FSA15,
GEB*15, DMB*16, XMJH16, POL"16, MZS*T16, HHW 17, COZ"17, AYF17,LPH"19] of open
classical systems, as well as theory [BBJMO7, GKNO08, GS08, BG12, LC14, LRM14, AFU17,
KAU17,QNO"18,LC18,ZSH"19,NKU18, DHM19,YNA*19] and experiments [ZZS*16,PCS™ 16,
LHLT19, XWZ"19, WLG"19, NAJM19, OLH"21] of open quantum systems.

Meanwhile, the past decades have witnessed the dramatic development of topological phases
of matter [HK10,QZ11,CTSR16]. One of the early examples of topological phases was found
in the integer quantum Hall effect [KDP80, TKNdN82, Hal88]. Beyond this prototype, topo-
logical phases were shown to be much more ubiquitous [KMO05b, KM05a, BHZ06, KWB*07].
Notably, while the topological phase in the quantum Hall effect disappears in the presence
of time-reversal invariance, the Zs topological phase that accompanies the quantum spin Hall
effect [KMO05b, KM05a, BHZ06, KWB™07] is protected by time-reversal invariance. These com-
peting effects of symmetry enrich the properties of topological phases. More generally, the
most fundamental symmetry for topological insulators and superconductors is internal symme-
try known as the Altland-Zirnbauer symmetry in the random-matrix theory [AZ97]. On the
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basis of the Altland-Zirnbauer symmetry, together with K-theory [Kar78], the periodic table of
topological insulators and superconductors was developed [SRFL08, Kit09, RSFL10, CTSR16],
which serves as a general and comprehensive theoretical framework of topological phases.
This periodic table is generally applicable to the topological phases in insulators [SSH79,
KDP80, TKNAN82, Koh85, Hal88, KM05b, KM05a, FK06, MB07, Roy09, FKMO07, BHZ06, FKO07,
KWB*07] and superconductors [RG00,Iva01,Kit01, FK08, QHRZ09,STF09,SLTDS10,LSDS10,
ORvO10, AORT11,NSS*08, Alil2,SA17]. The universality of topology even leads to applica-
tions to synthetic materials such as photonic systems [LJS14,OPA"19] and cold atoms [GBZ16,
CDS19]. Further development includes topological phases of gapless systems [NN83, Hev05,
Sat06,Mur07, WTVS11,BB11,BHB11,YZT*12,LWY*15 XBA*15 LWF*15 AMV18] and crys-
talline insulators [Full, HPB11, SMJZ13, CYR13, MF13, SS14, SSG16, WACB16, KIBvW*17,
PVW17,BECT17, WPV18 PWV18,ZJ5S"19, TPVW19,VEF19,0PW20] including higher-order
topological phases [BBH17a, BBH17b, LPT*17, SFF17,FF19,SCV*18,Khalg].

Recent studies have found the remarkable interplay of the aforementioned two research
fields, non-Hermitian physics and topological physics [OTO"20, BBK21]. While topologi-
cal phases were mainly investigated for Hermitian systems at thermal equilibrium, much re-
search in recent years has focused on the topological characterization of non-Hermitian sys-
tems both in theory [RL09, SHEK12 ESHK11, HH11, LH13, PN13, Sch13, SJCPA16, LGV15,
MPS15, Leel6, RLLar, MKKO20, LBH*17, XWD17, MH17, Xio18, SZF18, KFar, Liel8a, ZZ18,
TN18, MABVFTI18,CXYF18, KAKU18,CB18,PIF19,SF18,YJL"18, GAKT18, KHGT19,YW18,
YSW18b, YPK18, KEBB18, PHG18, KSU18, MPBC18,CZ18,Liel8b, YH19, WRZ19,L.T19, JS19,
BCKB19, OY19, LZA*19, ZLLZ19, YPKH19, LLG19, CSBB19, KD19, EKB19, KSUS19, ZL19,
HBR19, ZRLC*19, CC20, HPG19, ZRR21, RZS19, BKS20, KBS19, YM19, LZ19, BB19, MR19,
0S19, SYW19a, SYW19b, KYK19, Lon19b, GWWK20, LAZV19, YKH19, RHS19, Sch20, IT19,
HRB19, CYWR20, ZF20, WBN20, NQI"20, ZYF20, OKSS20, MLLG20, Lon20, XZGC21, LM21,
WSBevF20,YSHC21,KB20,WGK20,YZFH20,LLY20,MKA*20,YMH20,SIV20,YM20,LHY *20,
YY20, LLMG20, YJS21, KOS20, TK20, BB20, MC20, KS20, XLH*21, SBGI20, LZYC20, SS20,
BS21, YMB21, ZR21, DSS*21, MHar, OTY20, KSS20, FHW21, Leiar, KSR21, OS21, YM21, ZY-
Far, SZH21, LMLG21,0TY21, VDNS21, SO21, PMRar, YH21, SP21, LZZar, BFvdBM21, KP21]
and experiment [PBK*15, ZRP*15, ZHI* 15, WKP+17, XZB*17,SJGG+17, PWH*18, BNV+17,
ZMT*18,ZPY 18 HBLT18 BWH"18 CHC*19,ZQW™*19,BLLC19,HHI*20,GBvWC20,XDW™20,
HHS*20,WKH*20,YHU  ar, WKLS21,WDY "21,ZOH"21,PTG*20,HZZ*21,ZTJ*21, WDWF21].
Certain topological phases of Hermitian systems survive even in the presence of non-Hermiticity
[RL09,SHEK12,ESHK11], including non-Hermitian extensions of the Su-Schrieffer-Heeger model
[SHEK12, ESHK11, Sch13, Leel6, YW18 KD19, WKP*17,SJGG*17, PWH*18], the Chern in-
sulator [SZF18, YSW18b, KEBB18, KSU18, HBL*18, BWH"18|, and the quantum spin Hall
insulator [KHG719]. On the other hand, non-Hermiticity induces new types of nonequilibrium
topological phases without Hermitian analogs. In fact, non-Hermitian topological phases arise
generally in odd spatial dimensions [GAK™18, KSUS19] while no topological phases appear in
these dimensions for Hermitian systems without symmetry. These unique topological phases
arise from the complex-valued nature of spectra, which enables two types of complex-energy
gaps—point and line gaps [KSUS19]. On the basis of these two types of complex-energy gaps,
topological classification of non-Hermitian systems was established for the 38-fold symmetry
class [KSUS19]. Furthermore, non-Hermiticity changes the properties of topological boundary
modes. For example, non-Hermiticity makes the edge modes amplified and enables novel lasers
topologically protected against disorder and defects [SIGGT17, PWHT18 BNV 17, ZMT*18,
HBLT18, BWH"18,ZQW™19]. The bulk-boundary correspondence, which is a central princi-
ple of topological phases, can also break down in non-Hermitian systems. This breakdown
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arises from the extreme sensitivity of non-Hermitian systems to boundary conditions, which is
called the non-Hermitian skin effect [Leel6, YW18, KEBBI18|. Spectra and wave functions of
non-Hermitian systems under the open boundary conditions can be strikingly different from
those under the periodic boundary conditions, only the latter of which are predicted by the
Bloch band theory. To elucidate such a non-Bloch feature of non-Hermitian systems, recent
works have developed a non-Bloch band theory that works even under arbitrary boundary
conditions [YW18, YM19].

In this chapter, we review the recent development of non-Hermitian physics. In Sec. 2.1, we
discuss the mathematics of non-Hermitian matrices. Even in the absence of Hermiticity, PT
symmetry can give rise to entirely real spectra [BB98]. Non-Hermitian matrices exhibit unique
features that have no counterparts in Hermitian matrices, such as nonorthogonal eigenstates
and exceptional points. In Sec. 2.2, we review non-Hermitian physics in the classical regime.
Non-Hermitian Hamiltonians appear in a variety of open classical systems and lead to new
phenomena and functionalities unique to non-Hermitian systems. In Sec. 2.3, we review non-
Hermitian physics in the quantum regime. Non-Hermitian Hamiltonians effectively describe
open quantum systems, as well as finite-lifetime quasiparticles in solids. In Sec. 2.4, we review
symmetry of non-Hermitian Hamiltonians [KSUS19]. Non-Hermiticity changes the nature of
symmetry by ramifying and unifying symmetry in a fundamental manner. Consequently, the 10-
fold symmetry classification for Hermitian systems [AZ97] is replaced by the 38-fold symmetry
classification for non-Hermitian systems [KSUS19]. In Sec. 2.5, we review topology of non-
Hermitian systems [KSUS19]. The rich non-Hermitian topology originates from the complex-
valued nature of the spectrum, which enables two types of complex-energy gaps: point gap
and line gap. These two types of complex-energy gaps enable the general classification of
non-Hermitian topological phases and lead to universal nonequilibrium topological phenomena
intrinsic to open systems.

2.1 Mathematics

2.1.1 Real spectra in non-Hermitian Hamiltonians having P7 sym-
metry

While Hermitian Hamiltonians always have real spectra, non-Hermitian Hamiltonians generally
have complex spectra. However, Hermiticity is not necessary for the entirely real spectra;
spectra can be real even in non-Hermitian Hamiltonians. A non-Hermitian Hamiltonian in one
dimension

H=p"—(@iz)" (N eR) (2.1)

was shown to have entirely real spectra for some N [BB98, Ben07]. This model reduces to the
harmonic oscillator

H=p*+2* for N=2, (2.2)

whose energy levels are
E,=2n+1 (n=0,1,2,---). (2.3)

Also for N > 2, the spectrum is entirely real and positive. For 1 < N < 2, although some
number of eigenenergy remain real, an infinite number of the eigenenergy are no longer real
and form complex-conjugate pairs. For N < 1.42207, the eigenenergy is real only for the
ground state. As N approaches 1 from the above, the ground-state energy diverges, and no
real eigenenergy appears for N < 1. The entirely real spectrum of this non-Hermitian model
was rigorously proved in Refs. [DDT01la, DDTO01b].
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In Ref. [BB98], it was pointed out that the numerically confirmed real spectra are due to
parity-time (P7) symmetry. Here, space inversion (parity transformation) P is defined by

PiP = —i, PpP=—p, PP =2 (2.4)

for z € C, and time reversal 7 is defined by

TiT =2, TpT =—p, TT =2" (2.5)
While space inversion does not accompany complex conjugation and hence is unitary symmetry,
time reversal accompanies complex conjugation and hence is anti-unitary symmetry. Although

the non-Hermitian model defined by Eq. (2.1) respects neither parity nor time-reversal symme-
try, it respects the combined P7T symmetry:

A

(PT)H (PT) ™' =H. (2.6)

In addition to the specific model in Eq. (2.1), generic non-Hermitian Hamiltonians can have
entirely real spectra in the presence of PT symmetry. To see this property, we consider eigenen-
ergy £ € C and the corresponding right eigenstate |¢):

Hlp) = E|p). (2.7)
Then, because of PT symmetry, we have
H(PT |¢)) = PT (Hp)) = PT (E|¢)) = E* (PT |)), (2.8)

which implies that PT |p) is also an eigenstate of the Hamiltonian H with its eigenenergy E*.
Here, antiunitary of P7 symmetry is used [i.e., (PT) E (PT)~! = E*]. Thus, if PT symmetry
is not spontaneously broken, i.e., the eigenstate |¢) itself respects PT symmetry

PT o) o |o), (2.9)

we have F = FE*, which leads to £ € R. Importantly, an eigenstate itself does not nec-
essarily respect PT symmetry even if the Hamiltonian respects P7T symmetry because the
PT-symmetry operator is not unitary but antiunitary. As a result, P7T symmetry can be spon-
taneously broken. If PT symmetry is spontaneously broken, i.e., if the eigenstate |¢) itself
does not respect PT symmetry, we only have complex-conjugate pairs of eigenenergy. For the
model in Eq. (2.1), all the eigenstates themselves respect PT symmetry for N > 2, while some
eigenstates do not respect P7T symmetry for N < 2. It is also notable that unbroken PT
symmetry is sufficient for real spectra but not necessary; a necessary and sufficient condition
for real spectra in non-Hermitian Hamiltonians is known to be pseudo-Hermiticity (see also
Sec. 2.4.3 for details about pseudo-Hermiticity) [Mos02a, Mos02b, Mos02c].

The discovery that PT symmetry can lead to real spectra even in non-Hermitian Hamilto-
nians generated considerable interest in the physics and mathematics of non-Hermitian Hamil-
tonians. One of the important initial aims was to replace Hermiticity, which is a mathematical
condition whose physical content is obscure, with another fundamental physical condition as
the requirement of quantum mechanics. Notably, Hermiticity ensures not only real spectra but
also unitarity of the dynamics; real spectra do not necessarily lead to unitarity. Hence, it is non-
trivial whether a consistent physical theory can be built on non-Hermitian Hamiltonians solely
with real spectra. Such a quantum theory with non-Hermitian Hamiltonians having unbroken
PT symmetry was demonstrated to be well defined in a consistent manner [BBJ02]. This work
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introduced unnoticed charge-conjugation symmetry C inherent in all P7-symmetric Hamilto-
nians and constructed a positive-definite metric structure using CP7T conjugation. It should be
noted that this complex extension of quantum mechanics is equivalent to and indistinguishable
from conventional quantum mechanics in terms of physics since the CP7T metric is not physi-
cally observable [Mos03,Brol6]. Nevertheless, intriguing physical phenomena of non-Hermitian
Hamiltonians are observable in different setups—open systems far from equilibrium.

2.1.2 Biorthogonal formalism

Here, we review basic mathematical properties of non-Hermitian Hamiltonians, which are also
useful in understanding the physics of non-Hermitian Hamiltonians. One of the crucial proper-
ties of non-Hermitian Hamiltonians is that orthogonality of eigenstates is replaced by biorthog-
onality that defines the relation between the Hilbert space and its dual space [Brol4]. To see
the biorthogonal formalism, we consider a generic non-Hermitian Hamiltonian H. Let E, be
its complex eigenenergy and |¢,) ({x,|) be the corresponding right (left) eigenstate:

a lon) = Enlen),  (Xal o= By (Xnl - (2.10)

Here, we assume that the spectrum is not degenerate. For Hermitian Hamiltonians, the right
and left eigenstates are always equivalent to each other: |p,) = |xn) = ({Xx|)!. For generic
non-Hermitian Hamiltonians, however, this is not true. Moreover, the right eigenstates are not
necessarily orthogonal with each other, and the same property applies to the left eigenstates:

(Omlen) 7 Omn (Pnlen) s (XmlXn) 7 Omn (XnlXn) - (2.11)

Nevertheless, the right and left eigenstates are biorthogonal:

Biorthogonality

If the spectrum is not degenerate, we have

<Xm|§0n> = Omn <Xn|90n> . (2.12)

To prove biorthogonality, from the right eigenequation H lon) = En|n), we have

<Xm|ﬁ|90n> = En (Xml|®n) - (2.13)
Meanwhile, from the left eigenequation (x| H = Ep, (Xm|, we have

<Xm|ﬁ|90n> = Emn (Xmlen) - (2.14)
Then, these equations lead to

by which we have (x,|¢n) = 0 for m # n since the spectrum is not degenerate by assumption.
We also show that the eigenstates {|p,)} are linearly independent and complete although
they are not necessarily orthogonal:
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Completeness

For a non-Hermitian Hamiltonian without degeneracy, a full set of the eigenstates {|¢,)} is
linearly independent and complete.

To prove linear independence, we consider a set of numbers {¢,} that satisfies

> culon) =0. (2.16)

n

Because of biorthogonality (X.u|®¥n) = dmn (Xn|pn), we have

Cn <Xn|90n> =0 (2‘17)

for all n. We note (x,|¢n) # 0 for a Hamiltonian without degeneracy. Hence, we have ¢, = 0,

i.e., linear independence of the set of the eigenstates {|¢,)}. Since the number of these linearly

independent eigenstates is equal to the dimension of the Hilbert space, this set is also complete.
Moreover, we have the following completeness condition:

Completeness condition

If eigenstates are complete, we have

Z [on) { T Xal _ (2.18)

n

with the identity operator I.

To prove this condition, we show

o) (Xnl
(0 ———— | |v) = Wy 2.19
W\ R | W = v (2.19)
for an arbitrary state [1). Because of the completeness of the eigenstates, we can expand it as

e oo LalY)
)= nlen), cn: AT (2.20)

n

Then, we have

w(Z' Xm') )= 3t biadend,, =Y (el =l 220

Xm | 90m I Xm | me
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2.1.3 Exceptional point

We have so far assumed that non-Hermitian Hamiltonians have no degeneracy. By contrast,
non-Hermitian Hamiltonians can possess unique level degeneracy called exceptional points
[Kat66, Ber04, Heil2]. At exceptional points, eigenstates coalesce with each other and are
incomplete. Since Hermiticity ensures completeness of eigenstates even in the presence of level
degeneracy, exceptional points cannot appear in Hermitian systems and are hence unique to
non-Hermitian systems.

To understand properties of exceptional points, we consider a simple non-Hermitian Hamil-
tonian with two levels: '

H:@+w@:cyi0, (2.22)
where ;’s are Pauli matrices, and v > 0 controls the degree of non-Hermiticity. As discussed
in Sec. 2.2, this two-level system has been experimentally realized in various open systems. The
energy spectrum is obtained as

Ey =+4/1-—12 (2.23)

For v < 1, the spectrum is entirely real; for v > 1, the eigenenergy appears in a complex-
conjugate pair. The entirely real spectrum is due to P7 symmetry; in fact, the Hamiltonian
respects it for

PT = 6,K (2.24)

with complex conjugation K. The corresponding eigenstates are obtained as

1) o <_ivi \1/1_772) ;o Ixe) o <ivi \}1_—72) : (2.25)

Therefore, the eigenstates indeed respect PT symmetry for v < 1, but they do not for v > 1,
which is consistent with the discussions in Sec. 2.1.1.

The two levels coalesce at v = 1. In addition to the eigenenergy, the eigenstates coincide
with each other for v = 1:

e =ler o (L) = by () (2.26)

1

These eigenstates satisty self-orthogonality

(Xxlpx) = 0. (2.27)

The Hamiltonian is not diagonalizable and becomes defective at v = 1:

. . i 1
H=6,+i6, = G _i> . (2.28)
Notably, such a deficit of an eigenspace is impossible in Hermitian systems.

Exceptional points appear in nature and give rise to unique phenomena and functionali-
ties that have no Hermitian counterparts, as discussed below. In addition, exceptional points
possess unique topological structures, as demonstrated in Sec. 2.5.4. It should also be noted

that spontaneous symmetry breaking induced by non-Hermiticity plays a fundamental role in
statistical mechanics [Y1.52,LY52 Fis78,1D89].
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2.2 Classical physics

2.2.1 Open classical systems

The past two decades have witnessed new rich physics of non-Hermitian Hamiltonians in a
variety of open classical systems. In a couple of early theoretical works [MEGCMO08, EGMCMO07,
MMEGCO08], it was proposed that non-Hermitian Hamiltonians can be experimentally realized
in classical optics instead of quantum mechanics. This theoretical proposal is based on the
relationship between the classical optical equation and the Schrodinger equation. In particular,
the paraxial propagation of light in photonic lattices is described by [Jac62]

1 [/ 0? 0?

.0 L ' koAn (z,y; 2)
lazw(x7y7 Z) - 2k0 (81:2 + 8y2> w(w7y7 Z) +

LBy @), (229

where light propagates in the z direction; ¢ (z, y; 2) is the electric field envelope function defined
by E (x,y;2) = (1, y; z) e*02=98) with the electric field E (x,y; ), and ng + An (z,y; 2) is the
refractive index. This paraxial equation of light has the same form as the Schrodinger equation
in two dimensions

h? < 0* 0

G ) P Y @) i), (230

1%¢ (l’, Y3 t) = _%
where a quantum particle in two dimensions (x,y) evolves in time ¢, and ¢ (x, y;t) denotes its
wave function. Thus, the propagation of light in the array of waveguides in the z direction is
formally equivalent to the temporal evolution (i.e., evolution in the ¢ direction) of a quantum
particle in a two-dimensional lattice. Notably, we can make the refractive index ng+An (x, y; 2)
complex-valued. Here, the real part describes the index profile of the lattice, and the imaginary
part represents the gain-loss distribution. To respect P7T symmetry in Eq. (2.29), the complex
refractive index should satisfy

Re [An (z,y; z)] = Re[An (—x, —y; 2)], (2.31)
Im [An (z,y; 2)] = —Im [An (—z, —y; 2)], (2.32)

which can be achieved by a judicious design that involves a combination of optical gain and
loss and the process of index guiding.

In addition to the above experimental proposal, Refs. [MEGCMO08, EGMCMO07, MMEGCO0§]
studied the optical beam dynamics in complex P7 arrays and found its unique characteristic
that originates from nonorthogonality of the associated Bloch eigenmodes. In particular, the
following PT-symmetric periodic potential in one dimension was studied:

V (z) = 4 [cos® (z) + iVpsin (2z)] (2.33)

which indeed respects PT symmetry V (z) = V* (—x). The band structure is entirely real for
Vo < 0.5 and complex for Vi > 0.5. The PT-transition point Vi = 0.5 serves as an exceptional
point, at which some bands begin to coalesce with each other. Such unique complex band
structures do not appear in the absence of gain or loss.

Consistent with the general discussions in Sec. 2.1.2, the eigenmodes of this non-Hermitian
Hamiltonian are nonorthogonal:

/_OO o (k,x) on (K, 2) de # 0mnd (K —K'), (2.34)

o0
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where ¢, (k,z) is a right eigenmode with Bloch momentum k. As a direct consequence of this
nonorthogonality, unusual phenomena occur in this complex PT-symmetric potential. In the
PT-symmetric array, the beam splits in two, and birefringence occurs. This asymmetry can be
intuitively understood in terms of the presence of a chiral energy flow due to the P7T-symmetric
structure involving balanced gain and loss. Moreover, the power oscillates during propagation
due to the nonorthogonality between eigenmodes. This power oscillation can occur even though
the spectrum is entirely real.

Soon after the theoretical proposal [MEGCM08,EGMCM07, MMEGCO08], the non-Hermitian
Hamiltonian in Eq. (2.22) was experimentally realized [GSDT09, RMEGT10]. These first
experiments observed spontaneous P7T-symmetry breaking that accompanies an exceptional
point and power oscillation due to nonorthogonality of eigenstates. After the first experi-
mental observations, the unique properties of non-Hermitian systems were extensively stud-
ied both in theory and experiment. Several unconventional phenomena and functionalities
were revealed, such as power oscillations [MEGCMO08, EGMCM07, MMEGCO08, RBM 12}, uni-
directional invisibility [Mos09, LRE*11, RBM ™12, FXF*13, POL"14], high-performance lasers
[CGCS10,Lon10,CGS11,JOLT14,PORT14,FWM T 14, HMH* 14, MZS" 16], exceptional-point en-
circlement [GEBT15,DMB*16,XMJH16], and enhanced sensitivity [Wiel4, LZO"16, HHW' 17,
COZ*17,L.C18,ZSH"19], which we review in the rest of this section.

2.2.2 Unidirectional invisibility

PT-symmetric periodic potentials can act as unidirectional invisible media near the P7T-
symmetry-breaking point that accompanies an exceptional point [Mos09, LRET11]. For ex-
ample, we consider the PT-symmetric periodic structure whose refractive index is given as

(2.35)

n(z) = {no+n1 cos (282) + inysin (282) (2] < L/2);
g (121 > L/2).

This potential is Hermitian for ny = 0 and possesses an exceptional point at ny = ny. We solve
the scattering problem, whose solution is obtained as the following matrix:

ET My M EL
() = (i 302) (22). 2
where Ey and Ej, are the amplitudes of the forward and backward propagating waves, respec-

tively. Here, the transmission and reflection amplitudes for the left and right incidence waves

are obtained as
1 My, Mo

— L= — , = .

M22 L M22 M22
For the PT-symmetric potential described by Eq. (2.35) with zero detuning k = f3, the scat-
tering problem is straightforwardly solved as

tL = tR = TR (237)

1 (ny — no)* k2/4n2 (n1 + ng)* k2 /4n?
th,=tp=——5—=; TL= , TR = , 2.38
PR T cos2(AL)T YT AP [eot? (AL)] T AP [eot? (AL)| 239

A= \/—M. (2.39)

2
4ng

where )\ is defined as
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In the Hermitian case with ny = 0, we have r, = rg. In the non-Hermitian case with ny # 0, by
contrast, the asymmetry in the left and right reflection coefficients arises. At the exceptional
point with n; = ns, this asymmetry is most pronounced:

tL :tR: 1, TL:O, TR = 1. (240)

Therefore, the wave entering the sample from the left is entirely unaffected while the wave
entering the same sample from the right experiences perfect reflection. Such unidirectional in-
visibility was experimentally observed in various classical systems [RBM ™12, FXF 13, POL™ 14]
and may find applications in designing novel metamaterials.

2.2.3 Exceptional-point encirclement

An important property of exceptional points is the geometry of the self-intersecting Riemann
sheets on which the complex eigenvalues unfold [Heil2]. This mathematical property directly
leads to unconventional phenomena in physics. In particular, the system does not return to
its initial state upon encirclement but to a different state on another Riemann sheet, requiring
a second encirclement to return to the initial state. In addition, nonadiabatic transitions give
rise to chiral behavior through which the direction of encirclement solely determines the final
state of the system in a fully dynamical picture.

Such encirclement around an exceptional point was observed in experiments [GEBT15,
DMB™16, XMJH16]. For example, the dynamical encirclement of an exceptional point was
mapped onto the spatial propagation in a two-mode waveguide that features suitably engineered
boundary modulations and internal losses [DMB™16]. Since the polarity of the encirclement is
dictated solely by the propagation direction, the chiral behavior manifests itself in unique trans-
mission characteristics: the waveguide transmits predominantly into one mode depending on
the direction of propagation. In another optomechanical experiment [XMJH16], a mechanical
membrane was placed inside an optical resonator, and an external laser was used to implement
the above chiral transfer.

2.2.4 Enhanced sensitivity

Exceptional points can qualitatively enhance the sensitivity of a sensor [Wiel4]. To see this
enhancement, we consider the 2 x 2 Hamiltonian

)G ) e

where A, B > 0 are intrinsic parameters of the sensor and € > 0 controls an external pertur-
bation. The sensor is Hermitian for A = B, but non-Hermitian for the asymmetric coupling
A # B. The splitting of the eigenenergy is readily obtained as

AFE (6) =2v/(A+¢) (B +¢), (2.42)

which is measured as a function of € to detect the target. For the Hermitian sensor with A = B,
it linearly increases with respect to the perturbation:

AFE () — AE(0) = 2e. (2.43)
For the non-Hermitian sensor with A, B # 0, on the other hand, it is obtained as

A+B

AE (e) — AE(0) ~ Ji5
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which also increases linearly with respect to e. However, at the exceptional point with B = 0,
this splitting is given as

AE(e)—AE(0) = (A+e)e~VAe, (e<A), (2.45)

which is proportional to £'/? and qualitatively enhanced compared with the Hermitian sensor.

This enhancement of sensitivity due to exceptional points was experimentally observed in
optical systems [HHW™17, COZ"17]. In one experiment [COZ"17], two nanoscale scatterers
were used to tune a whispering-gallery-mode micro-toroid cavity, where light propagates along
a surface in a controlled manner. Subsequently, a target nanoscale object perturbs the system
from its exceptional point, leading to the aforementioned square-root singularity. In another
experiment [HHW™17], a PT-symmetric photonic laser molecule was realized in a coupled
cavity arrangement with balanced gain and loss. Notably, this system is a three-level system,

and even the /3 singularity was experimentally observed. The effect of quantum noise was
also discussed theoretically [LC18,ZSH"19].

2.3 Quantum physics

2.3.1 Open quantum systems

Beyond the classical regime, non-Hermitian Hamiltonians can effectively describe open quan-
tum systems. In an early work [Gam28], complex-valued energy was introduced to describe
the alpha decay, in which a particle can escape from the nucleus by quantum tunneling. In
such an effective description, the real and imaginary parts of complex energy were shown
to respectively describe energy levels and widths of the nuclear resonance. Subsequently,
complex-valued potentials were introduced to describe the scattering between neutrons and
nuclei [FPW54, Fes58, Fes62], in which the imaginary part of the potentials arises from the neu-
tron absorption and the formation of compound nuclei. While non-Hermiticity was introduced
phenomenologically in these early works, this approach can be rigorously justified in terms
of the scattering theory [Rot09, Moill]. Other theories can also provide formal and rigorous
justification for the use of non-Hermiticity to effectively describe open quantum systems, such
as the quantum jump method [DZR92, DCM92, MCD93, Car93, PK98, Dal05].

To capture the essence of such an effective non-Hermitian description of open quantum
systems, let us consider a simple quantum two-level particle that is subject to a probabilistic
decay [LC14]. Here, we assume that the decay of the particle can be tracked by an ancillary
detector, which plays a role of the environment. The whole system, the particle and the ancilla,
is initially prepared as

[ (@) = (1) +511))10), (2.46)

where [{) and [1) describe the two levels of the particle, and |0) describes the initial state of the
ancilla. In a short time interval dt, the particle decays with the probability p = v |3 |2 dt < 1.
The wave function then evolves to

W de)) = o |1 [0) + 8 (1 _ ”—C”) 110} + V7 la) [1) (2.47)

2
where |a) is an eigenstate with no particle, and |1) is a state of the ancilla corresponding to
the measurement outcome of the particle decay. At this point, the ancilla detects the presence
or absence of the particle. When the particle decays and the ancilla detects the particle, |1) is
projected out as
[tho (t 4 dt)) = |a)|1). (2.48)
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On the other hand, when the particle does not decay and the ancilla detects no particle, |0) is
projected out as

|ma+ﬁ»=a<rﬁﬂ%ﬁ>uw»+ﬁé—1ﬁgﬁ>mm» (2.49)

Therefore, the conditional dynamics in the absence of the particle decay is described by

10

[ (t+ ) = —— , (2.50)
[[e=Hendt |4 (£)) ||
where Heff is the effective non-Hermitian Hamiltonian defined as
Hg = —%(AZ—I—[A). (2.51)

It should be noted that quantum operations with gain or loss of energy and particles en-
tail a probabilistic process and cannot be performed in a deterministic manner, which is
to be contrasted with classical operations. Consequently, the continuous measurement of a
particle—precise control of the environment—is essential for the effective description by the
non-Hermitian Hamiltonian. Although we here focus on a specific two-level system, such a
discussion can be generalized to arbitrary dissipative quantum dynamics [Car93, PK98, Dal05].

Unique features of non-Hermitian quantum systems were theoretically studied in a number
of recent works [BBJMO07, GKN08,GS08,BG12,LC14,LRM14,AFU17, KAU17,QNO"18,LC18,
ZSHT19, NKU18, DHM19, YNA*19]. For example, phase transitions [L.LC14, AFU17, NKUIS,
DHM19], entanglement [LRM14, KAU17], and sensing [LC18,ZSH*19] in non-Hermitian quan-
tum systems were investigated. Furthermore, the spectral transitions and exceptional points,
which are clear signatures of non-Hermitian systems, were experimentally observed in sev-
eral open quantum systems [Z2ZS*16,PCST16, LHL"19,XZB"17, XWZ 19, WLG*19,NAJM19,
OLH™21], including cold atoms [LHL"19, OLH"21], single photons [XZB*17, XWZ"19], single
spins in a nitrogen-vacancy center [WLG™19], and superconducting qubits [NAJM19].

2.3.2 Lifetime of quasiparticles

Away from the nonequilibrium setups, non-Hermiticity effectively describes the lifetimes of
quasiparticles in solids at thermal equilibrium [KFar|. According to the band theory [AMT76],
quasiparticles in noninteracting periodic crystals have infinite lifetimes. By contrast, many-
body interaction and disorder, as well as coupling to external leads, give rise to scattering
of the quasiparticles and make their lifetimes finite [AGD63, Dat95, AS06]. Here, the finite
lifetimes of quasiparticles are described by the imaginary parts of their energy, and the effective
Hamiltonian of the finite-lifetime quasiparticles lacks Hermiticity.

More formally, the effective non-Hermitian Hamiltonian H (k,w) for quasiparticles is defined
by the retarded Green function G (w):

GR(w)=[w—H (k,w)]™", Hkw) :=H (k) +2(kw), (2.52)

where Hj (k) is a single-particle Hamiltonian in a periodic potential, and 3 (k,w) is the self-
energy that includes the effects of, for example, electron-electron scattering, electron-phonon
scattering, and electron-impurity scattering. Importantly, the self-energy ¥ (k,w) is non-
Hermitian for finite-lifetime quasiparticles even if the original Bloch Hamiltonian Hy (k) is
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Hermitian. The quasiparticle Hamiltonian H (k,w) provides a natural generalization of the
noninteracting Bloch Hamiltonian Hy (k).

In recent years, the physical consequences of non-Hermiticity in the self-energy were exten-
sively studied [KFar,ZZ18 PIF19,SF18 YPK18, YPKH19,BB19,MR19, KYK19,NQI"20]. As a
prime example, non-Hermiticity in the self-energy is shown to deform a Fermi surface and give
rise to a Fermi arc in the bulk that bridges two exceptional points [KFar]. The emergence of
the bulk Fermi arc is understood, for example, by the following non-Hermitian Dirac model:

H (k) = ko, + (ky +i7) 0y, (2.53)

with Pauli matrices o, and o, and the degree v € R of non-Hermiticity. This continuum
model describes a single valley degree of freedom of graphene in the absence of non-Hermiticity
[CNGPT09,DSAHR11]; the non-Hermiticity v effectively describes the lifetimes of quasiparti-
cles. The spectrum of this Dirac model is

E (k) = £1/k2 + (k, +17)* = £v/F =72 + 2ink,. (2.54)

Now, we set the Fermi energy to zero (i.e., Re E' = 0) and investigate the Fermi surface. In the
absence of non-Hermiticity (i.e., 7 = 0), the two bands touch with each other at zero energy,
and hence the Fermi surface reduces to a point:

ky =k, = 0. (2.55)

In the presence of non-Hermiticity (i.e., v # 0), by contrast, the Fermi surface described by
Re ' = 0 is determined as

which forms an arc in momentum space. Notably, Fermi surfaces in the bulk are always closed
in Hermitian systems. Thus, the bulk Fermi arc is forbidden in Hermitian systems and hence
unique to non-Hermitian systems. The emergence of the bulk Fermi arc due to non-Hermiticity
was theoretically proposed to induce quantum oscillations even in insulators [SF18].

It should be noted that the effective non-Hermitian description of finite-lifetime quasiparti-
cles is not necessarily independent of open quantum systems discussed in Sec. 2.3.1; a relation-
ship of the effective non-Hermitian description between open quantum systems and strongly
correlated electron systems has been demonstrated in a recent work [MP20)].

2.3.3 Vortex pinning and dielectric breakdown

Non-Hermitian Hamiltonians can have different origins. For example, depinning of flux lines
from extended defects in type-II superconductors subject to a tilted external magnetic field
was shown to be effectively described by a non-Hermitian Hamiltonian [HN96, HN97]. The
depinning transition of the flux lines is well described by the classical partition function

7 = / Da ¢~ Elel/ksT (2.57)

where kg is the Boltzmann constant, T is temperature, and € R? describes the flux lines.
The energy E [x (7)] of the flux lines phenomenologically reads

E[a:(T)]:/ [g (fl—f)Q—g-j—f+V(w>
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dr, (2.58)




where m is the effective mass, g € R? is the degree of the tilted external magnetic field, and V
is the potential energy. The classical-quantum correspondence [Suz76,Kog79] lets us transform
this classical problem into another quantum problem. In Refs. [HN96,HN97], the above classical
system was shown to be equivalent to the quantum Hamiltonian

5 _ (p+ig) i
Here, g acts like an imaginary vector potential and makes the Hamiltonian non-Hermitian. It
was further demonstrated that the imaginary vector potential g enables delocalization even
in disordered one-dimensional systems, although such delocalization is forbidden in disordered
one-dimensional systems with Hermiticity. This continuum model and its lattice counterpart,
which were first introduced by Hatano and Nelson [HN96, HN97], are prototypical models that
exhibit topological phases intrinsic to non-Hermitian systems, as extensively discussed later in
this thesis.

In a related context, it was proposed that the imaginary gauge potential describes the
dielectric breakdown of a Mott insulator [FK98]. There, the imaginary vector potential was
demonstrated to destroy the Mott-insulating phase and lead to a new type of quantum phase
transition. This discovery shows a unique role of non-Hermiticity in quantum many-body
physics. The connection between the imaginary vector potential and the dielectric breakdown
was rigorously justified in a subsequent work [OA10)].

It is also notable that the equivalence between non-Hermitian systems in flat spaces and
Hermitian systems in curved spaces has been proposed for specific models in a recent work
[LZZar]. This equivalence implies that non-Hermiticity can be engineered by controlling the
geometry of the underlying space.

2.4 Symmetry

Symmetry plays a significant role in modern physics. In non-Hermitian physics, P77 symme-
try is relevant to real spectra and exceptional points, as discussed in Sec. 2.1.1. Here, we
review general classification of internal symmetry for Hermitian and non-Hermitian systems.
In Sec. 2.4.1, we review the 10-fold symmetry classification of Hermitian systems (Table 2.1),
which was first provided by Altland and Zirnbauer [AZ97]. In Sec. 2.4.2, we show that non-
Hermiticity changes the nature of symmetry by ramifying and unifying symmetry in a funda-
mental manner. In Sec. 2.4.3, we review the symmetry classification of non-Hermitian systems
(Table 2.2) [KSUS19]. As a consequence of the symmetry ramification and unification, the
symmetry classification of non-Hermitian systems is 38 fold instead of 10 fold. This 38-fold
symmetry classification is a fundamental theoretical framework of non-Hermitian physics and
describes, for example, non-Hermitian topological phases and non-Hermitian random matrices.

2.4.1 Altland-Zirnbauer symmetry

We summarize the tenfold internal-symmetry class for noninteracting fermionic systems (Ta-
ble 2.1) [AZ97,EMO08, Beel5, CTSR16]. We consider a generic noninteracting fermionic system
described by the Hermitian Hamiltonian

H =Y & Hynly. (2.60)
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Table 2.1: Tenfold Altland-Zirnbauer (AZ) symmetry class [AZ97]. The symmetry class is
specified by the presence or absence of time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CS). The entries +1 indicate the signs of TRS and PHS. The
entries 0 indicate the absence of the symmetry.

A7 class TRS PHS CS

A 0 0 0
AlII 0 0 1
Al +1 0 0
BDI +1 +1 1
D 0 +1 0
DIII -1 +1 1
All -1 0 0
CII —1 -1 1
C 0 -1 0
CI +1 -1 1

Here, ¢, (¢!) annihilates (creates) a fermion on site n, satisfying the canonical anticommutation
relations {¢,, ¢} = d,,,,. The indices n describe the lattice sites, as well as possible internal
degrees of freedom such as the spin degree of freedom. The Hermitian matrix H = (Hmn)mn
is the single-particle Hamiltonian. While we discuss normal fermionic systems in Eq. (2.60)
in the following, the discussion can be straightforwardly generalized to Bogoliubov-de Gennes
Hamiltonians for superconductors by using the Nambu spinors instead of the complex fermion
operators.

We begin with unitary symmetry that does not mix fermion annihilation and creation
operators. We introduce a symmetry transformation by

G = Gy = U U™ = Upy . (2.61)

Here, Uis a unitary operator that acts on the fermionic Fock space, while U = (U, ), ,, is a

unitary matrix instead of a second-quantized operator. Because of unitarity of U , the canonical
anticommutation relations are preserved under the symmetry transformation:

{emicl} =U e, el U™ (2.62)

Symumetry of the system is described by the invariance of the Hamiltonian H under the sym-
metry operation U:

A~

UHU™ = H, (2.63)
which is equivalent to
UTHU =H (2.64)

for the single-particle Hamiltonian H. The unitary operation ¢ is internal when it acts only
on the internal degrees of freedom and does not act on the spatial degrees of freedom. Such
internal symmetry is relevant to disordered electron systems and characterizes the universality
classes of Anderson localization and topological phases. We note that the tenfold symmetry
classification [AZ97] does not include the unitary symmetry that commutes with single-particle
Hamiltonians. This is because the Hamiltonian is block diagonalized in a trivial manner in the
presence of such unitary symmetry.
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Time-reversal symmetry Time-reversal symmetry is described by the antiunitary opera-
tion defined by

TemT = Tnntn (2.65)

n

and
VzeC T2 '=z" (2.66)

Here, T is an antiunitary operator that acts on the fermionic Fock space, while 7 = (7,.,)

m,n

is a unitary matrix. A system respects time-reversal invariance if the Hamiltonian H satisfies
THT ' =H. (2.67)

If this relation is satisfied, we have
TOWT t=0(-t), (2.68)

where O (t) = e*Oe= is the time-evolved operator of a fermionic operator O. In terms of
the single-particle Hamiltonian H, time-reversal invariance is equivalent to

T 'H*T = H. (2.69)
In the presence of translation invariance, time-reversal symmetry imposes
TH* (k)T ' =H (k) (2.70)

on the Bloch Hamiltonian H (—k) in momentum space. Because of antiunitarity of time-reversal
symmetry, the symmetry operator and matrix are required to satisfy

T2 = ()Y, 7T ==+1 (2.71)
with the number operator N := >, ¢hé,. The signs in these equations correspond to the
signs of time-reversal symmetry in Table 2.1. For 72 = —1, time-reversal symmetry leads to

the Kramers degeneracy. Generally, while time-reversal symmetry with 7*7 = 41 enhances
Anderson localization [GLK79, AKLL80], time-reversal symmetry with 7*7 = —1 suppresses
Anderson localization [HLN80]. Similarly, while time-reversal symmetry with 7*7 = +1 leads
to the absence of topological phases in two dimensions, time-reversal symmetry with 77 = —1
gives rise to the Zs topological phases that host the quantum spin Hall effect [KMO05b, KMO05a).

Particle-hole symmetry Particle-hole symmetry (or equivalently, charge-conjugation sym-
metry) is described by the unitary operation defined by

CenC™ = Crch, (2.72)

where C and C = (Cmvn)m,n are unitary operators and matrices, respectively. In contrast to
time-reversal symmetry, this operation mixes fermion annihilation and creation operators. It
describes the transformation between particles and holes, and flips the sign of the electron
charge with respect to the charge neutral point:

A

CQC'=—-Q (2.73)
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withQ =N —-N /2. The Hamiltonian is particle-hole symmetric if it satisfies

CHC'=H, (2.74)
which leads to tr H = 0 and
C'H'C=-H (2.75)
in real space and
CH" (k)C™' = —H (—k) (2.76)

in momentum space. Particle-hole symmetry acts as unitary symmetry on the fermionic Fock
space but acts as antiunitary symmetry on the single-particle Hilbert space. Similarly to time-
reversal symmetry, the symmetry operator and matrix are required to satisfy

¢2=(£1)V, ¢'C==+l (2.77)

In the presence of particle-hole symmetry, eigenenergy appears in opposite-sign pairs (E, —F);
zero-energy modes are subject to a special constraint. Similarly to time-reversal symmetry,
particle-hole symmetry changes the universality classes of Anderson localization and topo-
logical phases. For C*C = +1, for example, zero modes remain to be delocalized even in
one-dimensional disordered systems [BFGMO0], while such delocalization is forbidden in one-
dimensional disordered systems without symmetry protection. Furthermore, particle-hole sym-
metry plays a crucial role in topological superconductors [Alil12, SA17].

Chiral symmetry Finally, chiral symmetry (or equivalently, sublattice symmetry) is defined
by the antiunitary operation defined by

Dépnl ™ =) Thnélh, (2.78)

where T is an antiunitary operator on the fermionic Fock space, and I' = (I, ), . is a uni-
tary matrix on the single-particle Hilbert space. The system respects chiral symmetry if the
Hamiltonian satisfies

THT ' = H, (2.79)
which leads to tr H = 0 and
I'HI' = -H (2.80)
in real space and
TH (k)T = —H (k) (2.81)

in momentum space. The symmetry matrix I" can be chosen to be Hermitian and satisfy
I'? = 1 without loss of generality. In the simultaneous presence of time-reversal symmetry and
particle-hole symmetry, chiral symmetry appears as a combination of the two symmetry. Even
in the absence of time-reversal symmetry and particle-hole symmetry, chiral symmetry can be
respected, for example, in bipartite hopping models. Similarly to particle-hole symmetry, chiral
symmetry imposes a special constraint on zero modes, which results in delocalization even
in one-dimensional disordered systems [Dys53, BMSA98]. Chiral symmetry can also protect
topological phases in one dimension and lead to pairs of zero modes at boundaries, for example,
in a model of polyacetylene [SSH79].
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2.4.2 Symmetry ramification and unification

Non-Hermiticity changes the nature of symmetry [KSUS19]. In fact, non-Hermiticity ramifies
and unifies symmetry in a fundamental manner. First, to see the symmetry ramification, let us
consider particle-hole symmetry as an example. For Hermitian systems, particle-hole symmetry
is defined by Eq. (2.75). Thus, particle-hole symmetry can be generalized by the same equation
for non-Hermitian systems. However, we can generalize particle-hole symmetry in another
way. The key property is that transposition coincides with complex conjugation for Hermitian
systems by definition:

H*=H". (2.82)

As a result, for Hermitian systems, Eq. (2.75) is equivalent to the following equation defined
with complex conjugation:
C'H*C=—H. (2.83)

Importantly, Eqs. (2.75) and (2.83) are not equivalent for non-Hermitian systems. Thus,
non-Hermiticity ramifies particle-hole symmetry. Since non-Hermitian Bogoliubov-de Gennes
Hamiltonians for superconductors and superfluids satisfy Eq. (2.75) as shown below, the sym-
metry in Eq. (2.75) [Eq. (2.83)] is denoted by PHS (PHS') for non-Hermitian systems.

Such symmetry ramification occurs also for all the other symmetry. Another crucial example
is chiral symmetry and sublattice symmetry, which are equivalent to each other and defined by
Eq. (2.80) for Hermitian systems. Equation (2.80) can be directly generalized to non-Hermitian
systems, but again, chiral symmetry can be generalized in a different manner. For Hermitian
systems, Eq. (2.80) is equivalent to

I'H'T =—H, (2.84)

because of H = H'. Importantly, Egs. (2.80) and (2.84) are not equivalent to each other
for non-Hermitian systems although they are equivalent in the presence of Hermiticity. Since
the physical chiral symmetry, which is the combined symmetry of time-reversal symmetry and
particle-hole symmetry, is described by Eq. (2.84) as shown below, the symmetry in Eq. (2.84)
[Eq. (2.80)] is denoted by CS (CS') for non-Hermitian systems. Here, CST is also denoted by SLS
because bipartite lattice systems realize this symmetry even in the presence of non-Hermiticity.

Non-Hermiticity not only ramifies but also unifies symmetry [KHG19]. To see this sym-
metry unification, we consider the following antiunitary symmetry:

T'H*T=H, C'H*C=-H, (2.85)

where 7 and C are unitary matrices. As discussed above, T describes time-reversal symmetry
(TRS), while C describes the Hermitian conjugate of particle-hole symmetry (i.e., PHST), which
are clearly distinct from each other for Hermitian systems. However, when a non-Hermitian
system H respects TRS, another non-Hermitian system iH respects PHS™. Thus, a set of all
non-Hermitian systems having TRS coincides with another set of all non-Hermitian systems
having PHS': non-Hermiticity unifies TRS and PHS'.

As a consequence of the symmetry ramification and unification, the 10-fold symmetry clas-
sification for Hermitian systems (Table 2.1) [AZ97] is replaced by the 38-fold symmetry classi-
fication for non-Hermitian systems (Table 2.2) [KSUS19], as demonstrated in the following.
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Table 2.2: AZ and AZ' symmetry classes for non-Hermitian Hamiltonians [KSUS19]. Time-
reversal symmetry (TRS) and particle-hole symmetry (PHS) are defined by TH* (k)T ! =
H (—k) with T7* = +1 and CH” (k)C™' = —H (—k) with CC* = +1, respectively. As a
combination of TRS and PHS, chiral symmetry (CS) is defined by TH' (k) T~! = —H (k) with
I'? = 1. The 10-fold AZ symmetry class is divided into the 2-fold complex class that only
involves CS and the 8-fold real class where TRS and PHS are relevant. Moreover, TRS' and
PHS' are respectively defined by TH” (k)7 ' = H (—k) with 77* = £1 and CH* (k)C~' =
—H (—k) with CC* = £1, which constitute the AZ" symmetry class. Class Al (AII) in the real
AZ symmetry class and class D' (C") in the real AZ" symmetry class are equivalent.

Symmetry class TRS PHS TRS' PHS' CS

A 0 0 0 0 0

Complex AZ iy 0 0 0 1
AT +1 0 0 0 0

BDI  +1 +1 0 0 1

D 0 +1 0 0 0

DIII -1 +1 0 0 1

Real AZ All -1 0 0 0 0
CII -1 -1 0 0 1

C 0 -1 0 0 0

CI +1 -1 0 0 1

AT 0 0 +1 0 0

BDIf 0 0 +1 +1 1

Df 0 0 0 +1 0

DIII 0 0 —1 +1 1

Real AZ! AITT 0 0 1 0 0
elill 0 0 1 -1 1

Cf 0 0 0 -1 0

Crf 0 0 +1 -1 1

2.4.3 38-fold symmetry

AZ symmetry We consider a generic noninteracting fermionic system described by the fol-
lowing second-quantized non-Hermitian Hamiltonian

H=> & Hynn, (2.86)

m,n

where the matrix H is a single-particle non-Hermitian Hamiltonian. In contrast to the previous
discussions, we do not impose Hermiticity on H or H. Time reversal is described by an
antiunitary operator T that acts on the fermion operators in the same manner as the Hermitian
case:

TemT 1 = Zﬁmén, TTl =2 (VzeCQ), (2.87)

n

where T is a unitary matrix (777 = 71T = 1). This operation serves as time reversal also in
non-Hermitian systems. Time-reversal invariance of the second-quantized Hamiltonian leads to

T'H*T=H, TT"'==+l (2.88)
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in real space, and

TH ()T '=H(-k), TT ==+l (2.89)

in momentum space. This action on a single-particle non-Hermitian Hamiltonian by TRS is
the same as that on a Hermitian one [AZ97]. As discussed in Sec. 2.1.1, TRS is relevant to the
reality of spectra and the stability of non-Hermitian systems.

Similarly to the Hermitian case, PHS is described by a unitary operator C that acts on the
fermion operators as

Zcmn et (2.90)

where C is a unitary matrix (CCT = CTC = 1). The presence of PHS for the second-quantized
Hamiltonian CHC™! = H leads to

C'H'C=-H, CC*=+1 (2.91)

in real space, and
CHT (k)C'=-H(~k), CC*=+1 (2.92)

in momentum space. As also pointed out in Sec. 2.4.2, in the presence of Hermiticity (lf[ f =
H), this PHS condition is equivalent to CH* (k) C~* = —H (—k) [AZ97]. For non-Hermitian
Hamiltonians, however, complex conjugation and transposition do not coincide with each other,
and thus PHS is defined in terms of transposition instead of complex conjugation.

As a combination of TRS and PHS, CS is defined by an antiunitary operator [ :=7C. The
invariance of the Hamiltonian H under T’ imposes the following condition on a single-particle
Hamiltonian:

I'H'T=-H, =1 (2.93)

in real space, and
rH ()T =—-H(k), T?=1 (2.94)

in momentum space. This CS condition is equivalent to TH (k) ™' = —H (k) in the presence
of Hermiticity (H' = H) [AZ97], but it is not for non-Hermitian Hamiltonians. For exam-
ple, graphene [SHEK12, ESHK11] and the Su-Schrieffer-Heeger model [Sch13, WKP*17,Liel8a,
PWH™18] with balanced gain and loss respect CS.

The three symmetry 7, C, and I constitute a natural and physical extension of the Altland-
Zirnbauer symmetry class for non-Hermitian Hamiltonians (Table 2.2), which respectively act
on a non-Hermitian Hamiltonian as Egs. (2.89), (2.92), and (2.94). The 10-fold symmetry class
is divided into the 2-fold complex class that only involves CS and the 8-fold real class where
TRS and PHS are relevant.

AZ'" symmetry In contrast to the Hermitian case, other internal symmetry arises. As a result
of the difference between complex conjugation and transposition for non-Hermitian Hamiltoni-
ans (i.e., H* # HT), a variant of TRS appears, which is defined with transposition by

THY (k)T ' =H(~k), TT"==+l, (2.95)

where 7 is a unitary matrix (777 = 777 = 1). Similarly, a variant of PHS can be defined
with complex conjugation by

CH*(k)C'=—-H(-k), CC*=+l, (2.96)
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where C is a unitary matrix (CCT = C'C = 1). In the following, the symmetry described by
Eq. (2.95) is denoted by TRS', and the symmetry described by Eq. (2.96) is denoted by PHS'.
This is because TRS' (PHS') is defined by Hermitian conjugation of TRS (PHS). For Hermitian
Hamiltonians (H = H'), TRS and PHS respectively coincide with TRS' and PHS'; however,
this is not the case in the presence of non-Hermiticity. This Hermitian-conjugate counterpart
of the Altland-Zirnbauer symmetry also appears naturally in non-Hermitian systems. For
example, onsite dissipation often breaks Hermiticity and TRS at the same time, but their
combination can be retained as TRS'. Furthermore, effective non-Hermitian Hamiltonians in
the scattering theory support the symmetry. It is also notable that TRS describes reciprocity of
non-Hermitian Hamiltonians and plays an important role in the skin effects and the anomalous
delocalization, as discussed later in this thesis.

TRS' and PHS' in addition to CS also constitute the 10-fold symmetry class, which we
call the AZ' symmetry class (Table 2.2). This AZ" symmetry class is again divided into the
2-fold complex class that only involves CS and the 8-fold real class where TRS' and PHS' are
relevant. Here, each complex AZ' class coincides with the corresponding complex AZ class.
Moreover, class Al in the real AZ class and class D' in the real AZ' class are equivalent because
of the topological unification of TRS and PHS' [KHG*19]: when a non-Hermitian Hamiltonian
H respects TRS, another non-Hermitian Hamiltonian iH respects PHS'. Similarly, class AII
in the real AZ class and class C' in the real AZ' class are equivalent.

Sublattice symmetry Another important internal symmetry is SLS, which is defined in
momentum space by

SH(k)S'=-H(k), S*=1, (2.97)

where S is a unitary matrix (SST = S'S = 1). For example, SLS appears in a bipartite
lattice where particle hopping only connects sites on different sublattices, such as the Su-
Schrieffer-Heeger model [SSH79] with asymmetric hopping [Leel6,Liel8a, MABVET18,YJL 18,
YW18, KEBBI18]. SLS coincides with CS defined by Eq. (2.94) in the presence of Hermiticity
(H = HT) [AZ97], but this is not the case for non-Hermitian Hamiltonians.

SLS can be considered as additional symmetry to the AZ symmetry (see Tables XI and XII
in Appendix A of Ref. [KSUS19] for details). There are 3 symmetry classes for the complex
A7 class with SLS and 19 symmetry classes for the real AZ class with SLS.

Pseudo-Hermiticity As pointed out in Sec. 2.1.1, pseudo-Hermiticity serves as another key
internal symmetry [Mos02a, Mos02b, Mos02¢], which is defined by

nH' (kYn™' = H(k), n*=1, (2.98)

with a unitary and Hermitian matrix n (nn' = n'n = 1 and 5’ = ). Here, pseudo-Hermiticity
is a generalization of Hermiticity, in that it is trivially satisfied with n = 1 in the presence of
Hermiticity. In addition, it has a similar role to PT symmetry [BB98, BBJ02, Ben07] because
positivity of 1 is equivalent to the real spectrum of a non-Hermitian Hamiltonian [Mos02a,
Mos02b, Mos02¢|. Pseudo-Hermiticity can also be considered as additional symmetry to the
AZ or AZ' symmetry class. Moreover, the AZ or AZ' class with pseudo-Hermiticity is equivalent
to the AZ or AZ' class with SLS (see Table XIV in Appendix B of Ref. [KSUS19] for details).

38-fold classification The symmetry discussed above constitutes all the internal symmetry
in non-Hermitian physics, which generalizes and extends the AZ symmetry classification [AZ97]
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for Hermitian Hamiltonians to that for non-Hermitian Hamiltonians. This symmetry classifi-
cation is 38 fold: the 10 AZ symmetry classes with the additional 6 AZ" symmetry classes, as
well as the 22 AZ symmetry classes with SLS. This 38-fold symmetry classification is generally
applicable to a number of non-Hermitian systems.

The 38-fold classification [KSUS19] is basically equivalent to the Bernard-LeClair symmetry
classification that describes non-Hermitian random matrices [BL02, Mag08, SHEK12, ESHK11,
Liel8b, BCKB19]. The Bernard-LeClair symmetry classification initially overlooked five sym-
metry classes, which were corrected and completed by the 38-fold symmetry classification in
Ref. [KSUS19] (see Sec. IT F of Ref. [KSUS19] for details). The physical insight into these
symmetry classes was also elucidated in Ref. [KSUS19].

2.5 Topology

Topology plays a central role in contemporary physics. In particular, topology describes a
variety of phases of matter that cannot be described by spontaneous symmetry breaking [HK10,
(QZ11,CTSR16]. Topological phases are ubiquitous in insulators and superconductors, as well as
semimetals, all of which are classified according to symmetry [CTSR16]. A signature of topology
manifests itself as the bulk-boundary correspondence: nontrivial bulk topology results in the
emergence of anomalous boundary states. Certain topological phases and their anomalous
boundary modes are protected by symmetry.

Here, we review topological phases of Hermitian and non-Hermitian systems. In Sec. 2.5.1,
we review topological phases and their classification of Hermitian insulators and superconduc-
tors. In Sec. 2.5.2, we introduce two types of complex-energy gaps, point and line gaps, which
are key to understanding non-Hermitian topology. In Sec. 2.5.3, we review the topological clas-
sification of non-Hermitian systems on the basis of the two types of complex-energy gaps and
the 38-fold internal symmetry (see also Sec. 2.4 for details about symmetry in non-Hermitian
physics). In Sec. 2.5.4, we demonstrate that the interplay of the two types of complex-energy
gaps characterizes unique topological structures of exceptional points.

2.5.1 Topological classification of Hermitian systems

In one dimension, chiral symmetry or particle-hole symmetry gives rise to topological phases
although no topological phases appear in the absence of symmetry. Such symmetry-protected
topological phases in one dimension are characterized by the quantized polarization of the
bulk [Vanl8]. In the presence of boundaries, zero modes appear at the two ends [SSHT79.
In superconductors, the zero modes obey the statistics of Majorana fermions [Kit01], which
may be applied to topological quantum computation [NSST08]. In two dimensions, topological
phases can appear even in the absence of symmetry. In fact, the ground-state wave function
is characterized by the Chern number [TKNAN82, Koh85, Hal88|, which induces the quantum
Hall effect. Although an energy gap is open in the bulk, chiral gapless modes accompany this
topological phase in the presence of boundaries. Moreover, while the topological phase of the
Chern insulator does not rely on any symmetry, time-reversal symmetry

T 'H*T=H, TT"'=-1 (2.99)

leads to a new type of topological phases characterized by a Z, topological invariant [KMO05b,
KMO05a]. This type of time-reversal symmetry is respected in spinful fermionic systems. In the
presence of such time-reversal symmetry, the quantum Hall response vanishes, but the quantum
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spin Hall response arises. Furthermore, anomalous helical edge modes appear in the presence
of boundaries, which are subject to the Kramers degeneracy.

As seen in the above prime examples, symmetry plays an important role also in topological
phases of matter. The interplay of symmetry and topology is two fold:

e Symmetry imposes constraints and reduces topological phases. For example, the topolog-
ical phases in the Chern insulator break down in the presence of time-reversal symmetry.

e Symmetry protects and enriches topological phases. For example, the Zs topological
phase in the quantum spin Hall insulator is protected by time-reversal symmetry.

These competing effects enrich topological phases.

Topological insulators and superconductors in the band theory are generally classified into a
periodic table (see Table A.1 in Appendix A.1) [SRFLO08,Kit09, RSFL10]. Most fundamentally,
topological insulators and superconductors are classified according to the Altland-Zirnbauer
symmetry (Table 2.1) [AZ97], which is reviewed in Sec. 2.4.1. On the basis of the internal
symmetry, Hermitian topological insulators and superconductors are classified in a general
manner (see Appendix A.1 for its derivation).

2.5.2 Complex-energy gaps

In the topological classification of Hermitian insulators and superconductors, two Hermitian
Hamiltonians are defined to be topologically equivalent if and only if they are continuously
deformed into each other while retaining symmetry and an energy gap. In the non-Hermitian
case, on the other hand, it is nontrivial how to define an energy gap since the spectrum is
complex for a generic non-Hermitian Hamiltonian.

Here, we recall that an energy gap means the presence of an energy region where no states
are present. In the Hermitian case, such a vacant region in the spectrum should be contractible
to a zero-dimensional point £ = FEp called the Fermi energy since the spectrum is entirely
real and forms a one-dimensional parameter space. Thus, it is naturally and uniquely defined
to have an energy gap if and only if its energy bands do not cross the Fermi energy E = Fp
[Fig. 2.1 (a)]. In the non-Hermitian case, by contrast, a forbidden energy range where no states
exist is not necessarily contractible to a zero-dimensional point since the complex spectrum of
a generic non-Hermitian Hamiltonian forms a two-dimensional parameter space. As a result,
such a forbidden energy region can be either a zero-dimensional point or a one-dimensional line,
and accordingly the definition of the complex-energy gap in a non-Hermitian Hamiltonian is
not unique. We can define a zero-dimensional point gap if and only if complex-energy bands do
not cross a reference point £ = Ep in the complex-energy plane [Fig. 2.1 (b)]. Independently,
we can also define a one-dimensional line gap if and only if complex-energy bands do not cross
a reference line in the complex-energy plane [Fig. 2.1(c)]. The precise definitions of these
complex-energy gaps are provided later in this section.

Importantly, the two definitions are independent of each other, and which one should be
adopted depends on the individual physical situations that we are interested in. For example,
the Anderson transition in a one-dimensional non-Hermitian system can be captured by topol-
ogy in terms of a point gap [HN96, HN97, SN98, GAK™18]. On the other hand, topologically
protected boundary states experimentally observed in non-Hermitian optical and photonic sys-
tems [PBK*15, WKP*17,XZB"17,SJGG*17, PWH"18, BNV™17, ZMT*18 BWH™18] can be
understood by a line gap. The two definitions of the complex-energy gaps are thus comple-
mentary to each other. Moreover, the topological classification drastically changes according
to the definition of the complex-energy gaps, as discussed in detail in Sec. 2.5.3. In the absence
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Figure 2.1: Definition of energy gaps for Hermitian and non-Hermitian Hamiltonians. (a) En-
ergy gap for a Hermitian Hamiltonian. A Hermitian Hamiltonian is defined to be gapped if
and only if its energy bands do not cross the Fermi energy Er (red dot), and gap closing as-
sociated with a topological phase transition occurs between the trivial and topological phases.
(b) Point gap for a non-Hermitian Hamiltonian. A non-Hermitian Hamiltonian is defined to
have a point gap if and only if its complex-energy bands do not cross a reference point £ = Ep
in the complex-energy plane (red dot). (c) Line gap for a non-Hermitian Hamiltonian. A non-
Hermitian Hamiltonian is defined to have a line gap if and only if its complex-energy bands do
not cross a reference line in the complex-energy plane (red line). Reproduced from Fig. 1 of
Ref. [KSUS19]. Copyright 2019 by the American Physical Society.

of symmetry, for example, a topological phase characterized by a point gap is present only in
odd spatial dimensions, while a topological phase characterized by a line gap is present only in
even spatial dimensions (see class A of Table A.3 in Appendix A.2).

Point gap Although a complex-energy point £ = FEp that serves as an obstacle in the
complex-energy plane is arbitrary in the absence of symmetry, it is subject to restrictions in
the presence of symmetry. For example, it should be taken as Im Ep = 0 in the presence of
time-reversal symmetry since eigenenergy comes in complex-conjugate pairs (E, E*); it should
be taken as Ep = 0 in the presence of sublattice symmetry since eigenenergy comes in opposite-
sign pairs (E, —F). Thus, it is convenient to choose Ep to be zero energy, which leads to the
precise definition of the point gap as follows:
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Point gap

A non-Hermitian Hamiltonian H (k) is defined to have a point gap if and only if it is invertible,
ie.,

VEk det H (k) # 0, (2.100)

and all the eigenenergy is nonzero, i.e.,

Vk E(k)#0. (2.101)

Under this definition, a gapless system possesses a zero-energy state for some k. A point gap
helps understand the Anderson transition in non-Hermitian one-dimensional systems [HN96,
HNO97,SN98, GAK™18] that occurs as a result of the competition between disorder and non-
Hermiticity. Since one-dimensional Hermitian systems always show the Anderson localization
[AALRT79,ATAF80], the delocalization is unique to non-Hermitian systems. Here, a topological
invariant can be assigned to a generic non-Hermitian system in one dimension. In the Hatano-
Nelson model [i.e., Eq. (2.59)], wave functions are delocalized (localized) and the system is
metallic (insulating) if the winding number is nonzero (zero) [GAKT18]. Moreover, in a non-
Hermitian quasicrystal (Aubry-André-Harper model [AA80]), localization (delocalization) of
wave functions corresponds to the nontrivial (trivial) topology [Lon19a]. Topology in terms of
a point gap also characterizes exceptional points, as discussed in Sec. 2.5.4.

Line gap In the absence of symmetry, a complex-energy line that serves as an obstacle in
the complex-energy plane is arbitrary. In the presence of symmetry, by contrast, such a line is
subject to restrictions. In particular, it should be either the imaginary axis (Re £ = 0) or the
real axis (Im £ = 0) when symmetry imposes a real structure on the complex spectrum. For
example, the real axis should be considered when complex-conjugate pairs (F, E*) appear in
the spectrum because of time-reversal symmetry; the imaginary axis should be considered when
pairs (E, —FE*) appear because of chiral symmetry. In contrast to the point gap, there are no
restrictions due to sublattice symmetry since sublattice symmetry does not give the complex
spectrum real structures [eigenenergy just comes in (E,—FE) pairs]. Thus, it is convenient to
choose the line that determines the complex gap as the imaginary axis (real gap) or the real
axis (imaginary gap), which leads to the precise definition of the line gap in the following:

Line gap

A non-Hermitian Hamiltonian H (k) is defined to have a line gap in the real (imaginary) part
of its complex spectrum [real (imaginary) gap| if and only if it is invertible, i.e.,

VEk detH (k) +#0, (2.102)
and the real (imaginary) part of all the eigenenergy is nonzero, i.e.,

Vk ReE(k)#0 (ImE (k) +#0). (2.103)
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Figure 2.2: Flattening procedures of Hermitian and non-Hermitian Hamiltonians. (a) Flatten-
ing of a Hermitian Hamiltonian with an energy gap. A Hermitian Hamiltonian can be flattened
to another Hermitian Hamiltonian with H? = 1 without closing the energy gap. (b) Unitary
flattening of a non-Hermitian Hamiltonian with a point gap. A non-Hermitian Hamiltonian can
be flattened to a unitary Hamiltonian with HTH = 1 without closing the point gap. (c) Hermi-
tian flattening of a non-Hermitian Hamiltonian with a line gap. A non-Hermitian Hamiltonian
can be flattened to a Hermitian (an anti-Hermitian) Hamiltonian with A? = +1 (H?> = —1) in
the presence of a real (an imaginary) gap. Reproduced from Fig. 2 of Ref. [KSUS19]. Copyright
2019 by the American Physical Society.

Under this definition of a real (imaginary) gap, a gapless system includes eigenenergy
with ReE (k) = 0 (ImE (k) = 0) for some k. Line gaps were employed explicitly in Refs.
[SHEK12, ESHK11,SZF18, KHG'19] and implicitly in many other works. They characterize
topologically protected boundary states, which were also observed in experiments [PBK™15,
WKPH17,XZB"17,SJIGG*T17, PWH" 18, BNV™17, ZMT*18 BWHT18]. Notably, topologically
protected boundary states in Hermitian systems are immune to non-Hermiticity as long as a
real gap is open and relevant symmetry is respected, which is generally ensured by the nontriv-
ial non-Hermitian topology in terms of line gaps. Furthermore, the presence of an imaginary
gap has a significant influence on the open quantum dynamics [KHG™19] although it has no
counterpart in closed systems.

2.5.3 Topological classification of non-Hermitian systems

We provide the topological classification of non-Hermitian systems according to all the 38 sym-
metry classes discussed in Sec. 2.4.3 and the two types of the complex-energy gaps discussed in
Sec. 2.5.2. Here, non-Hermitian Hamiltonians Hy (k) and H; (k) are defined to be topologically
equivalent if and only if there exists a continuous family of non-Hermitian Hamiltonians H, (k)
(0 < X < 1) that interpolates between them, i.e.,

Hy—o (k) = Ho(k), Hx-1 (k)= H (k) (2.104)

with certain symmetry and a complex-energy gap for all A € [0, 1]. Our strategy is to reduce this
non-Hermitian problem to the established topological classification of Hermitian Hamiltonians
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in the AZ symmetry class without [SRFLO08, Kit09, RSFL10] and with [SS14] additional sym-
metry. In particular, we demonstrate that a non-Hermitian Hamiltonian can be continuously
deformed into a unitary matrix in the presence of a point gap [Fig. 2.2 (b)] and a Hermitian or
an anti-Hermitian matrix in the presence of a line gap [Fig. 2.2 (c)]. The results are listed in
the periodic tables in Appendix A.2.

Unitary flattening for point gaps In the presence of a point gap, a non-Hermitian Hamil-
tonian can be flattened into a unitary matrix without point-gap closing. This property is
guaranteed by the following theorem (see Appendix C in Ref. [KSUS19] for a proof):

Unitary flattening for point gaps

If a non-Hermitian Hamiltonian H (k) has a point gap, it can be continuously deformed into a
unitary matrix U (k) while keeping the point gap and its symmetry [Fig. 2.2 (b)].

This theorem reduces the topological classification of a non-Hermitian Hamiltonian to the
classification of a unitary matrix. Furthermore, with the flattened unitary matrix U (k), we
have a flattened Hermitian matrix

(k) = (U&k) Ué’“)), 72 (k) = 1. (2.105)

Symmetry of the original non-Hermitian Hamiltonian H (k) discussed in Sec. 2.4.3 imposes the
constraints also on the extended Hermitian Hamiltonian H (k). In addition to these constraints,
H (k) respects additional chiral symmetry (sublattice symmetry):

SHEK)S = —H(k), = ((1) _01> . (2.106)

Since there exists a one-to-one correspondence between a unitary matrix U (k) and an extended
Hermitian matrix H (k) that satisfies Eq. (2.106) [RH17, GAK'18], topology of H (k) can
also be captured by the extended Hermitian Hamiltonian H (k). Therefore, the topological
classification of a non-Hermitian Hamiltonian H (k) with a point gap and symmetry reduces
to that of a Hermitian Hamiltonian that respects the original symmetry and the additional
chiral symmetry in Eq. (2.106), which reduces to the topological classification of Hermitian
systems [SRFL08, Kit09, RSFL10,5S14]. In this manner, the periodic tables under point gaps
are obtained as Tables A.3-A.9 in Appendix A.2.

Hermitian flattening for line gaps In contrast to the unitary flattening for point gaps, the
flattening procedure changes for line gaps. A non-Hermitian Hamiltonian can be flattened into
a Hermitian matrix in the presence of a real gap and an anti-Hermitian matrix in the presence
of an imaginary gap. This property is guaranteed by the following theorem (see Appendix D
in Ref. [KSUS19] for a proof):
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Hermitian flattening for line gaps

If a non-Hermitian Hamiltonian H (k) has a line gap in the real (imaginary) part of its complex
spectrum [real (imaginary) gap|, it can be continuously deformed into a Hermitian (an anti-
Hermitian) matrix while keeping the line gap and its symmetry [Fig. 2.2 (¢)].

This theorem also reduces the topological classification of a non-Hermitian Hamiltonian to
that of a Hermitian matrix [SRFL08, Kit09, RSFL10,SS14]. Here, we note that topology of an
anti-Hermitian Hamiltonian H (k) [i.e, H' (k) = —H (k)] under an imaginary gap is equivalent
to that of a Hermitian Hamiltonian iH (k) under a real gap [KHG"19]. The periodic tables
under line gaps are also obtained as Tables A.3-A.9 in Appendix A.2.

In summary, the rich non-Hermitian topology is attributed to the complex-valued nature
of the spectrum, which enables the aforementioned two types of complex-energy gaps: line gap
and point gap. Since a non-Hermitian Hamiltonian with a line gap is continuously deformed
to a Hermitian Hamiltonian without closing the line gap, topology for a line gap describes
the robustness of conventional topological phases against non-Hermitian perturbations, which
is relevant to topological lasers [SJGGT17, PWHT18 BNV*17, ZMT*18, HBL"18, BWHT 18,
ZQWT19], for example. On the other hand, a non-Hermitian Hamiltonian with a point gap is
allowed to be deformed to a unitary one. Thus, point-gapped topological phases cannot always
be continuously deformed into any Hermitian counterparts; topology for a point gap can be
intrinsic to non-Hermitian systems in contrast to a line gap. Consequently, point gaps describe
unique non-Hermitian topological phenomena, as extensively explored in this thesis.

2.5.4 Non-Hermitian topology of exceptional points

The two types of complex-energy gaps are also relevant to exceptional points and enable their
topological classification [KBS19].

Non-Hermitian gapless structures As discussed in Sec. 2.5.2, in the presence of a point
(line) gap, complex-energy bands do not cross a reference point (line) in the complex-energy
plane [Fig. 2.3 (a, b)]. If symmetry exists, both complex-energy gaps should be invariant under
the symmetry. Without loss of generality, the reference point is supposed to be placed on the
reference line. Then, a line gap is always closed when a point gap is closed. However, the
converse is not necessarily true; a point gap can be open even when a line gap is closed.

This nature of complex-energy gaps enables two distinct types of non-Hermitian gapless
structures. We encircle a gapless region (point, line, surface, and so on) in momentum space
by a (p — 1)-dimensional sphere SP~1 (p > 1), where S° S!, and S? denote a pair of points,
a circle, and a surface, respectively. The system has a complex-energy gap on SP~!, but two
different situations may happen:

(i) Both point and line gaps are open [Fig. 2.3 (¢)].
(ii) Only a point gap is open [Fig. 2.3 (d)].
In the former case [i.e., (i)], the non-Hermitian Hamiltonian on S?~! can be continuously de-

formed into a Hermitian (or an anti-Hermitian) Hamiltonian [KKSUS19]. Thus, in a manner
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Figure 2.3: Non-Hermitian gapless structures. Complex spectra (blue regions) in non-Hermitian
systems may host two types of energy gaps: (a) point gap and (b) line gap. A point (line) gap is
open when the complex spectrum does not cross a reference point (line) in the complex-energy
plane. (c¢) Hermitian gapless point (Dirac point). On a region (blue circle) around it, both
point and line gaps are open. (d) Exceptional point. On a region (blue circle) around it, a
point gap is open but a line gap is closed. Reproduced from Fig. 1 of Ref. [KBS19]. Copyright
2019 by the American Physical Society.

analogous to the Chern number for the Weyl point [AMV18], the gapless region hosts a topo-
logical charge essentially identical to that in the Hermitian case. In the latter case [i.e., (ii)], by
contrast, we need to assign a different topological charge to the gapless region on the basis of
the point gap on SP~!. It should be noted that the latter is intrinsic to non-Hermitian systems
and impossible in Hermitian ones, since there is no distinction between point and line gaps for
Hermitian Hamiltonians.

Importantly, exceptional points realize the latter unique gapless structure as shown in
Fig. 2.3 (d) and are characterized by topological charges for point gaps. A distinctive property
of an exceptional point is the swapping of eigenenergy and eigenstates upon its encirclement,
as mentioned in Sec. 2.2.3. For illustration, let us consider a two-dimensional system with no
symmetry that has an exceptional point k = kgp at which two complex bands E. (k) coalesce.
A representative model is given as

H (k) = kyo, + (ky, +1v) 0y (2.107)

with Pauli matrices o,, and the degree of non-Hermiticity . While the same model is in-
vestigated in Sec. 2.3.2 to understand the bulk Fermi arc, we here focus on its topological
characterization. The eigenenergy is

Ei (k) = £/k2 — 2 + 2ivk, (2.108)

with the square root singularity around the exceptional points
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Figure 2.4: Non-Hermitian topological semimetals. (a) Weyl exceptional ring (red ring) with
the two independent topological charges, the Chern number defined on the surface S? that
encloses the ring (p = 3, line gap) and the winding number defined on the loop S! across the
ring (p = 2, point gap). (b) Topological dumbbell of exceptional points in three dimensions.
The bulk Fermi arc with Re £ = 0 connects a pair of exceptional points (EPs, red points).
Reproduced from Fig. 2 of Ref. [KBS19]. Copyright 2019 by the American Physical Society.

As a direct consequence of this singularity, a branch cut and a self-intersecting Riemann surface
appear in the complex-energy plane. Thus, F, (k) and E_ (k) are swapped when we go around
a loop S! in momentum space that encircles one of the exceptional points. Importantly, a point
gap for the reference point E (kgp) is open but a line gap is closed on S'. As a result, the
determinant of H (k) — F (kgp) does not vanish on S', which enables us to define the winding
number for a point gap as

dk
S1 27
An exceptional point with W #£ 0 is topologically stable. For the above representative model,
the exceptional points kgp = (+7,0) are characterized by W = F1, respectively.

Multiple topological structure Because of the two types of complex-energy gaps, ex-
ceptional points can be characterized by a couple of independent topological charges. A
prime example is the Weyl exceptional ring in three-dimensional systems with no symmetry
[Fig. 2.4 (a)] [Ber04, XWD17]. For the Hermitian case, the topological stability of a Weyl point
in three dimensions is ensured by the Chern number defined on an enclosing surface [AMV18].
In the presence of non-Hermiticity, such a Weyl point morphs into an exceptional ring. A
representative model is

H (k) = kyo, + kyo, + (k. +iv) 0, (2.111)

with a Weyl exceptional ring at
k24 k2 =2 (2.112)

On a sphere [S? in Fig. 2.4 (a)] that encloses the ring, a line gap is open, and the Chern
number remains to be well defined unless it annihilates with another ring (this Chern number
corresponds to the Z index for a line gap with codimensions p = 3; see Table A.10 with no
symmetry). Moreover, on S! across the ring, a point gap is open and the winding number
in Eq. (2.110) is well defined (this winding number corresponds to the Z index for a point
gap with codimensions p = 2). Notably, the two topological charges are independent of each
other and individually ensure the topological stability of the Weyl exceptional ring. Such a
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multiple topological structure is a general hallmark of non-Hermitian topological semimetals.
For example, symmetry-protected exceptional rings in two dimensions [ZHI" 15, BCKB19,0Y 19,
ZLLZ19,YPKH19] may host different topological charges.

Topological classification of exceptional points We can also classify exceptional points
and non-Hermitian topological semimetals according to symmetry and complex-energy gaps.
The results are summarized in Table A.10 in Appendix A.3 (see also Tables S2-S7 in Supple-
mental Material of Ref. [KBS19] for all the 38 symmetry classes). This classification specifies
exceptional points and non-Hermitian topological semimetals in a general manner and describes
their unconventional nodal structures. The unique nodal structures, as well as the concomitant
physical phenomena, are topologically protected against symmetry-preserving perturbations.

The classification also predicts unknown non-Hermitian topological semimetals and nodal
superconductors. As an illustrative example, we consider an exceptional point in three dimen-
sions (p = 3) protected by chiral symmetry. Although exceptional rings [Ber04, XWD17] and
surfaces [OY19, ZLLZ19] were discussed before, such an exceptional point in three dimensions
was first discussed in Ref. [KBS19]. A representative model is systematically constructed in
the following manner. We begin with a Hermitian gapless system in four dimensions

H (k) = kyo,7y + kyo,7y + koopT, + kyoy (2.113)

with Pauli matrices o;’s and 7;’s.  Corresponding to the Z index for a real line gap with
codimensions p = 4 (see Table A.10 with chiral symmetry), it possesses a topologically stable
gapless point at k = 0, around which the three-dimensional winding number [SRFL0O8 RSFL10,
QHZ10] is defined because of chiral symmetry with I' = o,. Now, we add a non-Hermitian
perturbation iyo,7, to this Hermitian model. Similarly to the Weyl exceptional ring, non-
Hermiticity spawns an exceptional ring. The complex spectrum is obtained as

E (k) :i\/k§+ki+(,/k§+k§iw)2, (2.114)

and an exceptional ring appears at

2+ k2= k,=k =0. (2.115)
Finally, we take k, = 0 and regard this four-dimensional model as a three-dimensional one,
H (k) = ky0o,70 + kyo, 1y + koo, 7, + 170,75, (2.116)
which has a pair of exceptional points at
kgp = (£7,0,0). (2.117)

As illustrated in Fig. 2.4 (b), these exceptional points are connected by a Fermi arc with
Re EF = 0, forming a topologically stable dumbbell configuration. The topological stability
of the exceptional points is ensured by the Z index, which is given as the Chern number +1 of
the Hermitian matrix iH (k) I" defined on a surface that encloses each of the exceptional points
(see also Table A.10 with chiral symmetry, p = 3, and point gap).

Notably, topologically stable gapless points are absent in Hermitian three-dimensional sys-
tems with chiral symmetry. The above gapless structures are thus unique to non-Hermitian
systems. Furthermore, the above recipe is widely applicable to different symmetry classes and
spatial dimensions. Unknown exceptional points and non-Hermitian topological semimetals can
be systematically predicted, which is one of the advantages of the classification.
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Chapter 3

Non-Hermitian skin effect

As discussed in Chap. 2, much recent research has focused on the distinctive characteris-
tics of non-Hermitian topological phases. The rich non-Hermitian topology is attributed to
the complex-valued nature of the spectrum, which enables two types of complex-energy gaps
[KSUS19]: line gap and point gap. Since a non-Hermitian Hamiltonian with a line gap is
continuously deformed to a Hermitian one without closing the line gap [KKSUS19], topology for
a line gap describes the robustness of conventional topological phases against non-Hermitian
perturbations. On the other hand, a non-Hermitian Hamiltonian with a point gap is allowed
to be deformed to a unitary one [GAK™18 KSUS19]. As a result, point-gapped topological
phases cannot always be continuously deformed into any Hermitian counterpart; the topology
for a point gap is intrinsic to non-Hermitian systems in sharp contrast to a line gap.

A hallmark of topological phases is the presence of localized states at the boundaries as a
result of nontrivial topology of the bulk [HK10,QZ11, CTSR16]. Remarkably, non-Hermiticity
alters the nature of the bulk-boundary correspondence. The critical distinction is the extreme
sensitivity of the bulk to the boundary conditions, which is called the non-Hermitian skin
effect [Leel6, YW18, KEBBI18|. It accompanies the localization of bulk eigenstates as well as
the clear distinction of bulk spectra according to the boundary conditions, which forces us to
redefine the bulk topology so as to be suitable for the open boundary conditions. In particular,
although the skin effect invalidates the conventional Bloch band theory, researchers formulated
a non-Bloch band theory that works even under arbitrary boundary conditions [YW18, YM19].
Recent experimental observations confirmed the skin effect and the non-Bloch band theory in
mechanical metamaterials [BLLC19,GBvWC20], electrical circuits [HHIT20, HHS*20], quantum
walk [XDW"20], and photonic lattices [WKH"20]. The skin effect plays a crucial role in
a general understanding about topological phases of non-Hermitian systems, especially their
bulk-boundary correspondence [Leel6,Xiol8 MABVET18, GAKT18,YW18,YSW18b, KEBBIS,
KSU18,MPBC18,LT19,JS19,LZA"19,LLG19,KD19,EKB19,KSUS19,HBR19,ZRR21, BKS20,
YM19,0S19,SYW19a, SYW19b, Lon19b, RHS19, Sch20,IT19, HRB19, CYWR20]. Even if the
skin effect occurs, the bulk-boundary correspondence persists in the presence of a line gap
since non-Hermitian Hamiltonians with a line gap can be continuously deformed to Hermitian
ones. However, the bulk-boundary correspondence for a point gap has yet to be clarified.
Since a point gap describes intrinsic non-Hermitian topology, the nature of the bulk-boundary
correspondence may be distinct from the Hermitian counterpart. Even when a point gap
is open under the periodic boundary conditions, it can be closed under the open boundary
conditions [GAKT18, Xiol8, LT19]. Thus, the non-Hermitian skin effect obscures point-gap
topology.

In this chapter, we provide a unified understanding about the bulk-boundary correspondence
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and the skin effect in non-Hermitian systems [OKSS20]. We show that the bulk-boundary
correspondence holds even for a point gap in semi-infinite systems with only one boundary. In
finite systems with open boundaries, by contrast, we demonstrate that the point-gap topology
inevitably induces the non-Hermitian skin effect. Thus, the skin effect originates from intrinsic
non-Hermitian topology. On the basis of such a topological origin, we reveal new types of the
skin effects protected by symmetry, as illustrated in the next chapter (Chap. 4).

This chapter, especially Secs. 3.3 and 3.4, is based on Ref. [OKSS20].

3.1 Hatano-Nelson model

We begin with reviewing the non-Hermitian skin effect. It accompanies the emergence of an
extensive number of skin modes localized at arbitrary boundaries; O (L) skin modes appear in
d dimensions. This sharply contrasts with Hermitian systems, in which the bulk is insensitive
to boundary conditions, and there appear O (L?~!) boundary modes under the open boundary
conditions. The extensive number of boundary modes are unique to non-Hermitian systems.
A prototypical model that exhibits the skin effect is the Hatano-Nelson model [HN96, HN97]:

Hyn = Z [(t +g)¢ n+10n +(t—g) éj@én—i-l] ; (3.1)

n

where t,g € R are the hopping amplitudes, and &, (¢]) annihilates (creates) a particle on site
n. We assume t > g > 0 for simplicity. The corresponding Bloch Hamiltonian reads

HHN (k) = (t + g) eiik + (t — g) eik
= 2tcosk — 2igsin k. (3.2)

Under the periodic boundary conditions, the system is described by Hpyy (k) with real wave
numbers k € [0, 27]. The spectrum forms a loop in the complex-energy plane, and the eigen-
states are delocalized in the bulk.

Under the open boundary conditions, by contrast, the system is no longer described by
Hyn (k). To understand this, let us consider the following similarity transformation (imaginary
gauge transformation [HN96, HN97]):

~

VeV =T, VIV = (0<r < 00). (3.3)

r

The Hamiltonian I:IHN transforms into

t .
IHHNV Z { t—i—g n+1cn + géilén-s-l] . (3.4)
In particular, for
t—g
=T 3.5
T'x P ga ( )

we have

T T, = V=2 Y (S + ). (3.6)

which is Hermitian. Importantly, this transformation does not change the spectrum since it
is a similarity transformation under the open boundary conditions. Hence, the non-Hermitian
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Hamiltonian Hyx with open boundaries has the same spectrum as the Hermitian Hamiltonian
V. 'HuxV;, , which is given as

E (k) = 2y/t? — g?cosk, k €]0,2n]. (3.7)

This spectrum is entirely real and lies on the real axis in the complex-energy plane. Since
V;:lltl'm\ﬂ/rX has delocalized eigenstates, all the eigenstates of Hyy are localized at the left

edge as ~ e /¢ with the localization length ¢ = [log rx\_l. Clearly, the spectrum and the
eigenstates of the bulk are dramatically sensitive to the boundary conditions, which is impossible
in Hermitian systems. This is the non-Hermitian skin effect in the Hatano-Nelson model. In
a similar manner, the skin effect generally occurs in non-Hermitian systems. In d dimensions,
the O (L%) skin modes can appear at arbitrary boundaries including edges and corners.

Meanwhile, the Hatano-Nelson model is also a prototypical example that is characterized
by intrinsic non-Hermitian topology. Let us consider a generic one-dimensional system with a
point gap [GAKT 18, KSUS19]:

Vke[0,2n] det (H (k) — E) £ 0. (3.8)

Here, E € C is reference energy, and H (k) is the Bloch Hamiltonian. For this one-dimensional
system, the topological invariant is given as the following winding number W (E) € Z:

W (E) 7{% Ik 4 g det (H (k) — B) (3.9)
= — — —log de —F). :
\ omidk °
This topological invariant is well defined as long as the spectrum of H (k) does not cross the
given energy E [i.e., H (k) is point-gapped in terms of a reference point E|. Importantly, the
topological invariant W (E) is intrinsic to non-Hermitian systems [GAK™ 18, KSUS19]. In fact,
without symmetry protection, no topological invariant is well defined in Hermitian systems in
one dimension [HK10,QZ11, CTSR16].

The non-Hermitian topology of H (k) can also be understood on the basis of the extended
Hermitian Hamiltonian

A (k,E) = (HT (k?_E* H(k())_E) . (3.10)

By construction, H (k, F) respects chiral symmetry
Td (k,E)IT™'=—-H(k,E), TI:=o0.. (3.11)

If the non-Hermitian Hamiltonian H (k) is topologically nontrivial for F, the extended Hermi-
tian Hamiltonian H (k, E) is also topologically nontrivial under the open boundary conditions.
For the Hatano-Nelson model, we have W (E) = sgn(g) as long as F is inside the loop de-
scribed by Eq. (3.2). The extended Hermitian Hamiltonian in Eq. (3.10) is similar to the
Su-Schrieffer-Heeger model [SSH79].

Both complex-energy winding and skin effect have no counterparts in Hermitian systems
and are intrinsic to non-Hermitian systems. Below in this chapter, we show that these two
non-Hermitian phenomena are actually closely related to each other: the skin effect originates
from the intrinsic non-Hermitian topology [ZYF20, OKSS20]. If W (E) is nonzero, the skin
effect occurs; otherwise, no skin effect occurs. The skin modes in the Hatano-Nelson model
correspond to a pair of zero modes in the Su-Schrieffer-Heeger model. This understanding
constitutes a universal feature of non-Hermitian topology.
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3.2 Non-Bloch band theory

Because of the non-Hermitian skin effect, the conventional Bloch band theory is not generally
applicable to non-Hermitian systems. The Bloch band theory works only under the periodic
boundary conditions, and the skin effect invalidates it under the open boundary conditions. To
overcome this difficulty, recent works have developed a non-Bloch band theory that works even
under the open boundary conditions [YW18, YM19].

The non-Bloch band theory is formulated as follows. We consider a generic non-Hermitian
Hamiltonian in one dimension described by

0= Z Z Z l“/anr] E (3.12)

n  j=—lprv=1

where é,,, (¢} ,) is the annihilation (creation) operator at site n, and Hj, is the single-particle
Hamiltonian. Here n describes the spatial degrees of freedom, [ describes the hopping range,
and p, v describe the internal degrees of freedom per unit cell. We assume translation invariance
under the periodic boundary conditions. Thus, Hj ,, is independent of sites n away from the
edges. Because of the noninteracting (quadratic) nature of the Hamiltonian, the diagonalization
of the many-body Hamiltonian H reduces to diagonalization of the single-particle Hamiltonian
H, whose elements are given by H; ,,. Let E € C be complex eigenenergy of H and |¢) (|x))
be the corresponding right (left) eigenstate [Brol4]:

H|¢)=E|o), H'|x)=E"|x). (3.13)

Because of translation invariance of H away from the edges, the eigenstates are given by a
linear combination of fundamental solutions

Zm” Vo) = ZZB" "In) lu),  Binol) €C, (3.14)

n=1 p=1

where L is the number of unit cells, |n) is a state localized at site n, and |u) is a state with
the internal degree pu. This wave function is delocalized through the bulk for |3| = 1, while
it is localized around the edge n =1 (n = L) for |5| < 1 (|8| > 1). The corresponding bulk
Hamiltonian is described by
l
=Y Hi, (3.15)

=1

where Hj is a ¢ X ¢ matrix defined by (H;),,, == Hj,. and satisfies

H (8;)¢i) = E|¢i) - (3.16)

In the presence of Hermiticity, Eq. (3.14) is just a plane wave and H () is a conventional
Bloch Hamiltonian because of || = 1. The possible f;’s for given E are determined by the
characteristic equation

det [H (6) — E] =0, (3.17)

which is the 2lg-th-order algebraic equation in terms of 5. For these 8;’s (i = 1,2,--- ,2lq), the
right eigenstate |¢) in real space can be represented as

2lqg L

=YD s o) (3.18)

i=1 n=1
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Now, it is nontrivial how to determine (;’s for the continuum bands of systems. While we
have |5;] =1 (i.e., plane waves) for Hermitian systems, this is not necessarily the case for non-
Hermitian systems with open boundaries. Importantly, the non-Bloch band theory developed
in Refs. [YW18, YM19] provides a general condition for the continuum bands of non-Hermitian
systems, summarized as follows:

Non-Bloch band theory [YW18, YM19]

Suppose that H (3) denotes a bulk Hamiltonian in one dimension with 3 := e* and complex-
valued wave numbers k € C. Moreover, 5;’s (i = 1,2,--- . 2M; |B1] < |Ba] < -+ < |Bam])
denote the solutions to the characteristic equation

det [H (8) — E] = 0 (3.19)

in terms of 8 for the given eigenenergy F € C. Then, the continuum bands are formed by
H () with the trajectory of By and fyr41 satisfying

‘5M| = |5M+1|- (3-20)

For example, in the Hatano-Nelson model, the bulk Hamiltonian reads
H(B)=(t+g)57" +(t—g)B. (3.21)
The characteristic equation det [H () — E] = 0 gives the quadratic equation
(t—9)3*—Ef+t+g=0. (3.22)
Since §; and [, are the two solutions to this quadratic equation, we have

t+g

I (3.23)

61+62:ti’ B1f2 =
—4g

Then, the condition (3.20) leads to

81 = 102 = [ =, (321

which reproduces the skin modes in Sec. 3.1.

In general, if a right eigenstate |¢) is localized at one end, the corresponding left eigenstate
|x) is localized at the other end. To see this property, we notice that |x)" is, by definition, a
right eigenstate of H1 with the eigenenergy E. Then, let us consider transposition H — HT,
which leads to the transformations

Hj,,uzz — Hfj,u,ua (325)
and
! !
H(B) = > HT.p7=> HIp7=H" (5. (3.26)
j=—1 j=—1
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This result implies that if 3 satisfies Eq. (3.17) for H, 3! satisfies Eq. (3.17) for HT, and vice
versa. Recalling that |y)” is a right eigenstate of H”, we conclude that if |¢) is localized at one
end, |x) is localized at the other end, and vice versa. This also means that delocalization of
|¢) occurs simultaneously with delocalization of |x).

Notably, the above non-Bloch band theory implicitly assumes the absence of symmetry and
can break down in the presence of symmetry. In Sec. 4.2, we demonstrate that it is indeed
modified in the symplectic class [YY20, KOS20], which accounts for the Zs reciprocal skin
effect [OKSS20]. Furthermore, the non-Bloch band theory is not directly applicable if the open
boundary conditions are imposed in more than one direction. Thus, the non-Bloch band theory
can be modified in higher dimensions. In Sec. 4.4, we demonstrate that such a modification in
higher dimensions indeed arises and underlies the higher-order skin effect.

3.3 Index theorem

While the skin effect obscures the bulk-boundary correspondence for finite non-Hermitian sys-
tems, we still have the bulk-boundary correspondence for semi-infinite non-Hermitian systems,
as demonstrated below. Similarly to the Hermitian case, the bulk-boundary correspondence
for semi-infinite non-Hermitian systems is formulated as the index theorem.

3.3.1 Class A

As discussed previously, non-Hermitian Hamiltonian H is defined to have a point gap if and
only if its complex spectrum does not cross a reference point £ € C [GAKT 18, KSUS19]. The
simplest nontrivial example of the point-gapped topological phases appears in one-dimensional
systems with no symmetry. While det (H — E) is always real for Hermitian Hamiltonians H, it
can be complex for non-Hermitian Hamiltonians H, for which the winding number W (F) € Z
is defined as Eq. (3.9). Topological phases are absent in one-dimensional Hermitian systems
without symmetry protection [HK10,QZ11, CTSR16]; the point-gap topology characterized by
W (E) is intrinsic to non-Hermitian systems.

Corresponding to W (E) # 0, the boundary modes with the eigenenergy E can appear in
semi-infinite systems with only one boundary. Suppose that the non-Hermitian system has a
boundary on the left but no boundary on the right (the same semi-infinite boundary conditions
are chosen below unless otherwise stated). An important observation is that the Hermitian
Hamiltonian H is constructed from H as [GAKT18, KSUS19)

- 0 H-E
H = <HT—E* ; ) (3.27)

Under the periodic boundary conditions, when a point gap is open for the non-Hermitian
Hamiltonian H (k), a real energy gap is also open for the Hermitian Hamiltonian H (k), and
vice versa. In addition, H respects additional chiral symmetry by construction:

TAHT ' = A (3.28)

with I' := o,. As a result of the conventional bulk-boundary correspondence for Hermitian
Hamiltonians, H with the semi-infinite boundary possesses topologically protected zero modes
localized at the boundary [HK10,Q711,CTSR16] in a manner similar to the Su-Schrieffer-Heeger
model [SSH79]. The corresponding topological invariant coincides with W (E) in Eq. (3.9). For
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W (E) > 0, there appear boundary modes (0 |E))" with negative chirality, i.c.,

g <|g>) T (Mg)) ) (3.29)

which implies that |E) is a right eigenstate of non-Hermitian H (i.e., H |E) = E|E)) localized
at the boundary. For W (E) < 0, on the other hand, the boundary modes (|E) 0)" have

positive chirality, i.e.,
E)\ _ (1B
r ( 0 )= + ' (3.30)

which in turn implies that |E) is a right eigenstate of HT, i.e., a left eigenstate of H (i.e.,
(E|H = (E| E) [Brol4].

The above discussion is valid for arbitrary £ € C in the complex-energy plane satisfying
W (E) # 0. Thus, in semi-infinite systems Hgipc, an infinite number of boundary modes
emerges as a result of the nontrivial winding number W (E) # 0. This conclusion leads to the
following index theorem in spectral theory [BG05, TE05]:

Index theorem

Let o (H(k)) be the spectrum of H (k) with k € [0, 27], which generally forms closed curves
in the complex-energy plane (Fig. 3.1). Then, the spectrum of the semi-infinite Hamiltonian
Hgpe with only one boundary is equal to o (H(k)) together with the whole area of £ € C
enclosed by o (H(k)) with W (E) # 0. For W (E) > 0 [W (E) < 0], there appears a right (left)
eigenstate |E) of Hspe localized at the boundary:

Heimc |E) = E|E)  ((E| Hsmo = (E| E). (3.31)

Similar index theorems are considered in Refs. [LBH"17, GAK™"18].
The index theorem is illustrated with the Hatano-Nelson model [HN96, HN97] in Eq. (3.1).
The spectrum of the Bloch Hamiltonian

Hyn (k)= (t+g)e ™+ (t —g)e* (3.32)
forms an ellipse in the complex-energy plane, and we have
W (E) = sgn(g) (3.33)

for £ € C inside this ellipse. In fact, the hopping from the left to the right dominates the
hopping from the right to the left for ¢ > 0, which leads to the emergence of the boundary
modes.

We can confirm the emergence of boundary modes by directly solving the Schrodinger
equation. We assume t > g > 0 for the sake of simplicity. Suppose that the system has a

boundary on the left but no boundary on the right. If a state |E) = (¢1 1y 13 )T is an
eigenstate with eigenenergy FE, the Schrodinger equation reads
(t+9g) i+ (t = g)Viys = Bty (3.34)
in the bulk and
o = lim ¢h; =0 (3.35)
1—00
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(a) Periodic \Q (b)

&

Semi-infinite

Figure 3.1: Complex spectra of non-Hermitian systems with periodic, open, and semi-infinite
boundaries. (a) A semi-infinite system possesses an infinite number of boundary modes due to
the nonzero winding number W # 0 in the corresponding periodic system. (b) The spectrum
of a semi-infinite system shrinks through the imaginary gauge transformation, resulting in an
arc of the open-boundary system. Reproduced from Fig. 1 of Ref. [OKSS20]. Copyright 2020
by the American Physical Society.

at the boundaries. We take an ansatz 1; ~ 3 (8 € C). From the bulk equation (3.34), we have

t+g , B+ \/E2—(? - ¢?)

3 +(t—g)f=FE, ie, [B=ps(F): 20— 9) . (3.36)
Here, the absolute values of both |8, ()| and |- (E)| should be less than 1 so that |E) can
satisfy the semi-infinite boundary conditions (3.35). To see this fact, suppose, for example,
that |54 (E)| is larger than 1. We note that |5, (E)| = 1 describes delocalized states, in which
we are not interested here. Now, a generic eigenstate is given as 1¢; = ¢y 3. (E) + c_f. (E)
with some coefficients c;,c_ € C. However, because of |34 (E)| > 1, the boundary conditions
given by Eq. (3.35) lead to ¢, +c¢_ =0, as well as ¢y, = 0 or fy = [_, either of which results
in ¢; = 0. Therefore, we need both |54 (E)| < 1 and |5_ (E)| < 1 to obtain eigenstates, which
in turn leads to

1> 18, (B) 8- ()| = |22

Moreover, introducing ¢ € [0,27] by 3 = |3| €', we have

le, ¢g<0. (3.37)

o {t 91— g) ym} €05 o + i {—%g +(t—g) ym} sin . (3.38)

18]
which leads to

(ReE)> (ImE)> 1 {t—l—g

n _ t+g
(2t)* 29)> (2t | |8] |

’ 2 1 : 2
-9 w@ oot o {—Wﬂt—g) |ﬁ|} sin? .
(3.39)
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The right-hand side of this equation reaches a maximum for cos ¢ = 0 or sin = 0. Hence, we
have

(2t)°

(ReE)*  (ImE)? .
@r e o {

0 el S L gl
Et=alel] . oo S - }
(3.40)

Since both of the two in the right-hand side reach a maximum for || = 1 because of Eq. (3.37),
we have
(ReE)* (ImE)?
5 T 7 =
(21) (29)

Thus, the semi-infinite Hatano-Nelson model indeed has an infinite number of boundary states
for E' € C with the nontrivial winding number W (E) = sgn (¢g) = +1. Remarkably, the above
discussions are not necessarily applicable to finite systems with open boundaries, in which a
stricter boundary condition 1y = ©¥y4+1 = 0 is imposed instead of Eq. (3.35).

(3.41)

3.3.2 Class AII'

We have a different type of index theorems in the presence of symmetry. For example, non-
Hermitian Hamiltonians H in class AII" respect reciprocity [KSUS19]:

THY (KT '=H(-k), TT"=-1, (3.42)

where 7 is a unitary operator. A set of Hamiltonians with this symmetry is called the symplectic
class. In the presence of a point gap for reference energy E € C, the following Z, topological
invariant v (E) € {0,1} is defined:

o (B o [ s ). o

In a semi-infinite system Hgipc, the index theorem reads
# [zero modes of (Hsipc — F)] =v(E) (mod 2). (3.44)

To see this index theorem, we consider the extended Hermitian Hamiltonian

o 0 H-F
H = (HT e 0 ) , (3.45)
which belongs to symmetry class DIIT [QHZ10,SR11,BA13] with chiral and time-reversal sym-
metry described by
_ (1 0 - (0 T
re (L), (8 Tk "

where I denotes complex conjugation. The conventional bulk-boundary correspondence for
the Hermitian Hamiltonian H states that H has a Kramers pair of zero modes localized at the
boundary for v (E) = 1. One of the zero modes has positive chirality (i.e., T'|p) = +|o1)),
and the other has negative chirality (i.e., I'|p_) = — |p_)), both of which are related by time
reversal (i.e., T |¢_) = |¢4)). Thus, these zero modes are represented as

o= ) =Tl =(T5"). (3.47)
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which leads to
H|E)=E|E), H'(T|E)")=E"(T|E)"). (3.48)

These equations imply that [E) (T |E)") is a right (left) eigenstate of the semi-infinite non-
Hermitian Hamiltonian with v (E) = 1. Because of the Z, nature of topology, only the parity
of the boundary modes is relevant. This different type of index theorems is relevant to the Z,
skin effect protected by reciprocity, as discussed in Sec. 4.1.

3.3.3 Class D

Non-Hermitian Hamiltonians H in class D respect particle-hole symmetry [KSUS19]:
CH" (k)C™'= —H (—k), CC*=+1, (3.49)

where C is a unitary operator. Particle-hole symmetry creates opposite-energy pairs (E, —F)
and makes zero energy a special symmetric point in the complex-energy plane. Hence, we take
a reference point as zero energy so that it will respect particle-hole symmetry. In the presence
of the point gap, the following Z, topological invariant v € {0,1} is defined:

(1) = sen {% X exp {_% /k:Wcllogdet () C]} } | (3.50)

In semi-infinite systems Hgigc, the index theorem reads
# [zero modes of Hgipe| = v (mod 2). (3.51)

To see this index theorem, we consider the extended Hermitian Hamiltonian H in Eq. (3.45)
with E' = 0, which belongs to symmetry class DIII [QHZ10,SR11,BA13] in a manner similar
to non-Hermitian Hamiltonians in class AII'. For H, particle-hole symmetry is described by

C— <2 g) X, (3.52)

and time-reversal symmetry is described as a combination of particle-hole and chiral symmetries

by

—C 0

Here, T is chosen so that it will commute with C (i.e., CT = TC). The bulk-boundary correspon-
dence for the Hermitian Hamiltonian H states that H has a Kramers pair of zero modes localized
at the boundary for ¥ = 1. One of the zero modes has positive chirality (i.e., I'|p4) = + |p4))
and the other has negative chirality (i.e., I'|[¢_) = — |p_)), both of which are related by time
reversal (i.e., T |¢_) = |p4)). Thus, these zero modes are represented as

eb= (10 )+ =Tl = (€0, (3.54)

T::iFé:i( 0 C)/c. (3.53)

which leads to
H|0) = H'(C|0)") = 0. (3.55)

These equations imply that |0) (C|0)7) is a right (left) eigenstate with zero energy of the semi-
infinite non-Hermitian Hamiltonian with » = 1. We discuss consequences of this index theorem
for class D also in Sec. 4.3.
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3.4 Topological origin of non-Hermitian skin effects

3.4.1 Skin effect as intrinsic non-Hermitian topology

The index theorem for semi-infinite systems is not directly applicable to finite systems with
open boundaries. In fact, an infinite number of boundary modes is impossible in finite systems.
Furthermore, an additional boundary condition is imposed because of the other boundary, which
may forbid some of the boundary states appearing in semi-infinite systems. For example, the
spectrum of the Hatano-Nelson model (Hun)ope With open boundaries forms not a loop but a
line on the real axis in the complex-energy plane, which signals the non-Hermitian skin effect.
As discussed in Sec. 3.1, using an imaginary gauge transformation [HN96, HN97, YW 18, LT19]

ViV, =rid, VvleVi=rTla, (0<r < o0), (3.56)

7

we have a Hermitian Hamiltonian [ := V! (Hun)ope Ve for v« == /[(t — g) / (t + g)|. Here,
Eq. (3.56) shifts the momentum from k to k& — ilogr. Since this similarity transformation
does not change the spectrum, (Hpun)opo has the entirely real spectrum and hence no longer
retains the point gap. Importantly, such a non-Hermitian skin effect is a general non-Hermitian
topological phenomenon as a direct consequence of point-gap topology, as summarized in the
following theorem:

Theorem: topological origin of non-Hermitian skin effects [OKSS520]

A finite Hamiltonian Hpogc with open boundaries is always topologically trivial in terms of a
point gap. Consequently, if the corresponding Hamiltonian H (k) under the periodic boundary
conditions is gapped and topological with respect to a point gap, the non-Hermitian skin effect
inevitably occurs with a topological phase transition.

To see the theorem, we begin with

lim o (HOBC> CcCo (HSIBC) , (357)

N—oo

where 0 (Hopc) is the spectrum of a non-Hermitian system Hopc with open boundaries and N
unit cells, and o (Hgipc) is the spectrum of the corresponding semi-infinite system Hgpe. In
fact, an approximate eigenstate of Hgpc can be obtained from an eigenstate of Hopc, which
becomes an exact eigenstate for N — oo (this statement can be made more rigorous in terms
of pseudospectra in spectral theory [BG05, TE05]; see Supplemental Material of Ref. [OKSS20]
for a rigorous proof). The contrary is not always true: even if an approximate eigenstate of
Hope is constructed from an eigenstate of Hgpe, it is not necessarily an exact eigenstate of
Hogc-
A crucial step is again the imaginary gauge transformation:

Hosec = V, 'HopcVr,  Hsise =V, 'HsiscVe (0 <7 < 00). (3.58)
For each transformation, we still have the inclusion in Eq. (3.57):
dim o (V, ' HopcV,) C o (V, ' HaipcV;) - (3.59)

This imaginary gauge transformation does not change the spectrum of Hogc. However, it
changes the spectrum of Hgpc since Hgpe has no boundary on the right because of the semi-
infinite nature [Fig. 3.1 (b)]. In fact, H (k) changes to H (k —ilogr) through V. Nevertheless,
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Eq. (3.59) implies that the transformed semi-infinite spectrum includes the spectrum of Hopc
for any transformation V,.. Thus, we have

lim o (Hopc) C () o (V' HsiscV,) - (3.60)

N—o0
re(0,00)

Because of the index theorem for semi-infinite systems, when H (k) has a point gap and
W (E) >0 (W (FE) <0), right (left) boundary modes with eigenenergy E appear in the semi-
infinite system. Let us choose an appropriate imaginary gauge V, such that these boundary
modes are transformed to delocalized bulk modes. Then, E is on the edges of o (V.7 HgpcV}),
whereas it is originally located inside o (Hgpc). Thus, the intersection of o (Hgpc) and
o (V.7 HgpcV,) is strictly smaller than o (Hgpe) (see Supplemental Material of Ref. [OKSS20]
for a rigorous proof). Repeating this procedure for all V,. with r € (0, 00), the right-hand side
of Eq. (3.60) reaches an open curve or a topologically trivial area for which the interior satisfies
W (E) = 0, otherwise a contradiction arises (see Supplemental Material of Ref. [OKSS20] for a
rigorous proof). Since this region includes limy_,» 0 (Hopc) because of Eq. (3.60), Hopc is also
topologically trivial and different from H (k) with nontrivial topology. Furthermore, o (Hopc)
is indeed distinct from o (H (k)), which implies the inevitable occurrence of the non-Hermitian
skin effect due to the point-gap topology.

It should be noted that an observation similar to our theorem is also made in Ref. [LT19],
which is made rigorous by our results. Moreover, we identify the non-Hermitian skin effect as
the point-gap topology. Here, the intrinsic point-gap topology is the only origin of the non-
Hermitian skin effect. Suppose that a non-Hermitian system with open boundaries exhibits the
skin effect and that its spectrum is different from o (H (k)). This, together with Eq. (3.57),
implies the presence of boundary states under the semi-infinite boundary conditions, which in
turn requires nontrivial point-gap topology of H (k) from the index theorem for semi-infinite
systems. The topological origin constitutes a universal feature of the non-Hermitian skin effect.
Furthermore, based on this general understanding, new types of the skin effects—symmetry-
protected skin effects—are discovered, as illustrated in the next chapter (Chap. 4).

3.4.2 Relationship with the non-Bloch band theory

As summarized in Sec. 3.2, Refs. [YW18, YM19] determine the conditions for the spectra of
open-boundary systems and develop the non-Bloch band theory of non-Hermitian systems.
Their conditions are actually equivalent to the set in the right-hand side of Eq. (3.60). On
the basis of spectral theory [BG05, TE05], together with the results in Refs. [YW18, YM19], we
show

lim o (HOBC) = ﬂ g (V;_IHSIBc‘/;) . (361)

N—oo
re(0,00)

Here, the hopping range of the system is [ < oo, and the number of internal degrees of freedom
is m. We prove Eq. (3.61) by contraposition, i.e.,
E ¢ lim o (HOBC) <~ E ¢ ﬂ o (V;_lHSIBCm) . (362)
N re(0,00)

The non-Bloch band theory developed in Refs. [YW18,YM19] demonstrates that the spectrum
of a non-Hermitian Hamiltonian Hopc with open boundaries satisfies

Jim 0 (Hoso) = {E € C | |8in(E)| = B (BN}, (369
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where B;(E)’s (i = 1,---,2lm) with |51(E)| < -+ < |Bam(F)| are the zeros of the 2lm-th
polynomial 8™ det (H () — E). In the following, we assume this result. The previous argument
in Sec. 3.4.1 only derives the inclusion relation of Eq. (3.60). On the other hand, Eq. (3.63)
leads to the stronger relation of Eq. (3.61), as shown below.

We first notice

E ¢ o (Hgpe) <= W(E)=0, and det(H(f)—FE)#0forpeT:={pecC| |B|(: 1})
3.64

because of the index theorem for semi-infinite systems. Here, 8™ det (H () — E) is the 2lm-th
polynomial for S such that

det (H(B) — E) = a_pmB "™ + a_pmi1 7" 4 -y ™, a; € C. (3.65)

Because of the argument principle, the winding number W (E) for H () with 8 € T is given
by the difference of the numbers of the zeros and the poles of det (H(3) — E) inside the disk
D:= {8 € C| |B| < 1}. Hence, the numbers of the zeros and the poles in D coincide with
each other for W (E) = 0. In addition, § = 0 is the only pole of det (H(f8) — E) with the

multiplicity /m. Thus, we have the following lemma:

Lemma We have E ¢ o (Hgpc) if and only if the 2lm-th polynomial 8™ det (H () — E)
has no zeros on T and has Im zeros in D. Similarly, we have £ ¢ o (V. ! HgpcV,) if and
only if 3™ det (H(8) — E) has no zeros on 7T := {8 € C | |3] = r~'} and has Im zeros
inr'D={seC||8 <r '}

We note that Eq. (3.57) immediately follows from the former part of this lemma. For E ¢
o (Hsipe), the lemma leads to |Bi, (E)| # |Bim+1 (E)|. Then, we have E ¢ limy_,o 0 (Hopc)
because of Eq. (3.63), which implies Eq. (3.57).

Now, we show Eq. (3.61). If we have F ¢ limy_,o 0 (Hopc), Eq. (3.63) implies that there
exists ry > 0 such that

B (E) | < 1t < |Bumta (E) ], (3.66)

and vice versa. Equation (3.66) implies that 3" det (H (8) — E) has no zeros on 7;'T and

Im zeros in r;'D. Then, Eq. (3.66) also means E ¢ o (V,'HsicV;,) and hence E ¢

ﬂre(opo) o (V.- HgpcV,) because of the lemma, resulting in Eq. (3.62). We thus have Eq. (3.61).
Recently, a similar result has been obtained in a related work [ZYF20].
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Chapter 4

Symmetry-protected non-Hermitian
skin effects

A unique feature of non-Hermitian systems is the skin effect, which is the extreme sensitivity
to boundary conditions. In Chap. 3, we reveal that the skin effect originates from intrinsic non-
Hermitian topology. In this chapter, we demonstrate that such a topological origin not merely
explains the universal feature of the known skin effect, but also leads to new types of the skin
effects—symmetry-protected skin effects. In Sec. 4.1, we discover the Z, skin effect protected
by reciprocity and discuss its unique properties that are distinct from the conventional skin
effect [OKSS20]. As shown in Sec. 4.2, this Zy skin effect accompanies a modification of the
non-Bloch band theory [KOS20]. In Sec. 4.3, we clarify the bulk-boundary correspondence of
non-Hermitian systems and discuss possible other skin effects in arbitrary dimensions on the
basis of topological classification. Intrinsic non-Hermitian topology leads to the skin effects
also in higher dimensions. As prime examples, in Secs. 4.4 and 4.5, we discuss the higher-order
counterparts of the non-Hermitian skin effects in higher dimensions [KSS20]. The discussions in
this chapter provide a unified understanding about the bulk-boundary correspondence and the
skin effects in non-Hermitian systems, as well as new nonequilibrium topological phenomena

unique to open systems.
This chapter is based on Refs. [OKSS20, KOS20, KSS20].

4.1 Zs skin effect protected by reciprocity

The point-gap topology and the corresponding skin effect are enriched by symmetry. Reci-
procity is one of such important symmetry, which is defined by the transposition version of
time-reversal symmetry [KSUS19]:

THY (k)T '=H(-k), TT =1, (4.1)

where 7 is a unitary operator. This symmetry is fundamental as reciprocity in non-Hermitian
spinful systems and naturally appears, for example, in mesoscopic systems [Bee97, Beel5] and
open quantum systems [HKKU20, LMC20,SRP20, BP07].

In conventional quantum spin Hall insulators, the integer Chern number vanishes but
the Kane-Mele Z, topological invariant [KKM05b, KM05a] becomes nontrivial because of time-
reversal symmetry [HK10,QZ11, CTSR16]. Similarly, Eq. (4.1) trivializes the winding number
in Eq. (3.9), but instead, it supplies a Zy invariant. The Z, topological invariant v (E) € {0,1}
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for a reference point £ € C is given by [KSUS19]

s I e R

Corresponding to the Zy topological invariant v (F), we have an index theorem similar
to the standard class without symmetry (i.e., class A) (see Sec. 3.3.2 for details). A clear
distinction from the standard class is the Kramers degeneracy due to Eq. (4.1) [ESHKII,
KSUS19,ZL1LZ19]. The extended Hermitian Hamiltonian H in Eq. (3.27) respects time-reversal
symmetry as well as the additional chiral symmetry I', analogous to time-reversal-invariant
topological superconductors [QHRZ09, QHZ10,SR11, BA13]. The index theorem states that
the semi-infinite system H hosts an odd number of boundary Majorana Kramers pairs for each
E with v(E) = 1. In terms of the original non-Hermitian Hamiltonian H, the Kramers pair
reduces to a pair of right and left eigenstates of H localized at the same boundary. Using
the transposition version of time reversal in Eq. (4.1), we can convert the left eigenmode into
a right one in the oppositely extended semi-infinite system (i.e., semi-infinite system with a
boundary only on the right). As a result, finite systems with open boundaries host localized
modes at both ends, as explicitly shown in the following model.

We recall that a quantum spin Hall insulator [KMO05b, KM05a] can be constructed from a
pair of time-reversed quantum Hall insulators [Hal88] with the spin-orbit coupling. Similarly,
combining the Hatano-Nelson model Hyy (k) and its reciprocal partner Hfy (—k) (see Sec. 3.1
for details on the Hatano-Nelson model), we have a canonical model that exhibits the Z, skin
effect:

o HHN (k) —2Assin k
H (k) = (—QA sink HIy(—k)
= 2tcosk — 2A (sink) o, — 2ig (sink) o, (4.3)

with ¢,9, A > 0. Here, A describes the spin-orbit coupling. In real space, the Hamiltonian
reads

0= Z [éjl-‘rl (t —iAoy, + go.) ¢n + éil (t +1A0s — g02) Enpa ] (4.4)

n

where ¢, (¢!) annihilates (creates) a spinful particle with two components. It indeed respects
reciprocity with 7 = io,. Under the periodic boundary conditions, the spectrum is given as

E. (k) =2tcosk £ 2i\/g?> — A?sink, (4.5)

which is entirely real for |g| < |A] and forms a loop in the complex-energy plane for |g| > |A|
(Fig. 4.1). Thus, for |g| > |A|, H (k) retains a point gap. Since it can be continuously deformed
to H (k) with ¢ = g and A = 0 while keeping the point gap, the Z, invariant in Eq. (4.2) is
obtained as v (E) = 1 when FE is in the area enclosed by o (H (k)).

As well as the periodic-boundary spectra, the open-boundary spectra are shown in Fig. 4.1.
The open-boundary spectrum is clearly different from the periodic-boundary counterpart, which
indicates the non-Hermitian skin effect. Each complex eigenenergy consists of a Kramers pair,
one of which is localized at the left boundary and the other at the right boundary. Because
of the Zy nature, the point-gap topology becomes trivial and no skin effect occurs if the two
nontrivial systems are stacked. Such a stacked system is explicitly constructed, for example, as

stack H (k 6 o
H (k):<—15(~)a H(k))’ (4.6)
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Figure 4.1: Complex spectra of the symplectic Hatano-Nelson model. The black dashed curves
denote the spectra under the periodic boundary conditions, and the red dots denote the spectra
under the open boundary conditions (L = 100). (a) The periodic-boundary spectrum and the
open-boundary spectrum coincide with each other, and no skin effect occurs (t = 1.0, A = 0.3,
g = 0.2). (b) The periodic-boundary spectrum forms a loop in the complex plane, but the
open-boundary spectrum lies on the real axis, which is a signature of the skin effect (t = 1.0,
A =0.3, g =0.4). Reproduced from Fig. 1 of Ref. [KOS20]. Copyright 2020 by the American
Physical Society.

where the off-diagonal terms are symmetry-preserving couplings. Consistently, the skin effect
no longer survives in this stacked system [OKSS20].

Since the Z, skin effect is topologically protected by reciprocity, it breaks down by a
symmetry-breaking perturbation including (6h)o,. In particular, such a local perturbation,
which does not connect the ends, may be infinitesimal for the breakdown of the skin ef-
fect [OS19]. This local infinitesimal instability is unique to symmetry-protected non-Hermitian
skin effects (see Appendix B.2 for details).

4.2 Non-Bloch band theory in the symplectic class

As summarized in Sec. 3.2, recent works [YW18 YMI19] have developed a non-Bloch band
theory that works even under arbitrary boundary conditions to elucidate the breakdown of the
Bloch band theory due to the non-Hermitian skin effect. However, the validity of the non-
Bloch band theory has been unclear in the presence of symmetry. Here, although the standard
non-Bloch band theory [YW18,YM19] is applicable to generic non-Hermitian systems without
symmetry, we demonstrate its breakdown in the symplectic class [KOS20]. For non-Hermitian
Hamiltonians, the symplectic class (class AII' in Ref. [KSUS19]) is defined by reciprocity given
by Eq. (4.1). Because of this symmetry, Hamiltonians exhibit Kramers degeneracy even in
non-Hermitian systems, leading to the breakdown of the standard non-Bloch band theory.
Instead, we generally provide a modified condition for continuum bands in the symplectic class,
summarized as follows:
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Non-Bloch band theory in the symplectic class [KOS20]

Suppose that non-Hermitian Hamiltonians respect reciprocity in
TH'T'=H, TT"=-1 (4.7)
and belong to the symplectic class. The solutions to the characteristic equation
det[H (8) —E]=0 (4.8)
are generally denoted by

Here, 8; and B; ' form a Kramers pair. Then, the condition for continuum bands is given as

|Bani—1| = |Ban| - (4.10)

Notably, the standard non-Bloch band theory [YW18, YM19] predicts Eq. (3.20), i.e.,

|Bane] = 1Bans (4.11)

for continuum bands, but this is not the case in the symplectic class. The condition (3.20)
intuitively implies the interference between the non-Bloch waves with 5y, and ;1. In the
symplectic class, however, the non-Bloch waves with 85y, and 3,;, cannot interfere with each
other since they form a Kramers pair; instead, the non-Bloch waves with (9,1 and Baops
interfere, replacing the condition (3.20) with the condition (4.10). This nonstandard non-Bloch
band theory underlies the Z, skin effects protected by reciprocity in Sec. 4.1 [OKSS20].

More precisely, the conditions (3.20) and (4.10) are derived from the boundary conditions.
In the standard (symplectic) case, boundary conditions impose a constraint on 3;’s, which forms
an Mth-order (a 2Mth-order) algebraic equation in terms of 3f, g%, ... gL (BE, ---, BL,,
Bo, -+, BrY) with the system size L [see Eq. (B.20) in Appendix B.1 for the symplectic case].
In the standard case, because of the assumption || < |52 < --+ < |Ban], the leading-order
term generally includes

(Br+1Bm+2 - - 52M)L (4.12)
and the next-to-leading-order term includes
(BmBriga - ‘ﬁQM)L~ (4.13)

To respect the constraint, these two terms should be comparable to each other for L — oo,
which leads to Eq. (3.20). In the symplectic case, by contrast, reciprocity forbids the appearance
of a term proportional to

(BaniBang—r -+ B )" (4.14)
which should be dominant in the absence of symmetry (see Appendix B.1 for a detailed deriva-
tion). Consequently, the leading-order-term including

(Bana Bang 1 Bong o+~ B )" (4.15)
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and the next-to-leading-order term including

(Bonr—oBani—s -~ B )" (4.16)

should be comparable, which yields Eq. (4.10).

Below, we discuss several important aspects of the non-Bloch band theory in the symplectic
class. In Sec. 4.2.1, we summarize the basic properties of reciprocity and how reciprocity changes
the non-Bloch band theory. In Sec. 4.2.2, we investigate in detail the symplectic extension of
the Hatano-Nelson model, which is a prototypical non-Hermitian system in the symplectic
class. We also confirm that this model is indeed described by the non-Bloch band theory in
the symplectic class. In Sec. 4.2.3, we further investigate the symplectic Hatano-Nelson model
with next-nearest-neighbor hopping and numerically confirm the non-Bloch band theory in the
symplectic class.

4.2.1 Reciprocity

As also described above, reciprocity is one of the fundamental internal symmetry [KSUS19].
There are two types of reciprocity according to the sign of the unitary matrix 7 (i.e., TT* = +1
or TT* = —1), one of which is defined by

TH'T ' =H, TT"=+1, (4.17)

and the other is defined by Eq. (4.7). In Ref. [KSUS19], this symmetry is called TRS' since
it is a Hermitian-conjugate counterpart of time-reversal symmetry (TRS), and non-Hermitian
Hamiltonians with Eqs. (4.17) and (4.7) are defined to belong to classes AI" and AII', respec-
tively. Classes AI" and AII' are also called the orthogonal and symplectic classes, respectively,
in a similar manner to the Hermitian case. Reciprocity appears in a variety of non-Hermitian
systems. For example, time-reversal-invariant Hermitian Hamiltonians with gain or loss (i.e.,
complex onsite potential) respect it and belong to the orthogonal (symplectic) class in the ab-
sence (presence) of the spin degrees of freedom. In addition, it is relevant to open quantum
systems described by the master equation [HKKU20, LMC20,SRP20, BP07].

Reciprocity imposes some constraints on the eigenstates |¢) and |x). In the orthogonal
class, Eq. (4.17) yields

H(T X)) =TH" [x\)"=E(T X)), (4.18)

which means that 7 |x)* is also a right eigenstate with the eigenenergy E. The eigenenergy is,
in general, not degenerate solely in the presence of Eq. (4.17). Hence, the two right eigenstates
are equivalent to each other, i.e.,

|6) o< T |x)" (4.19)

Because of the relationship between |¢) and |x) discussed in Sec. 3.2, they are forbidden to
be localized in the orthogonal class. In fact, if |¢) were localized at one end, 7T |x)" would be
localized at the other end, which contradicts Eq. (4.19). Here, we use the fact that the internal-
symmetry operation does not change the place at which eigenstates are localized. Thus, no
skin effects appear in the orthogonal class, and this is why we call the symmetry in Eq. (4.17)
reciprocity.

The absence of skin effects in the orthogonal class can be derived also on the basis of the
non-Bloch band theory [KSUS19]. Since transposition transforms H (3) to H? (87') as shown
in Eq. (3.26), reciprocity for H [i.e., Eq. (4.17)] imposes

TH" (B)T ' =H(B™M). (4.20)
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Then, when [ is a solution to the characteristic equation (3.17), we have

det [H (37') — E] = det [THT (8)T ' — E|
= det [H (5) - E]
=0, (4.21)

which implies that 37! is another solution to Eq. (3.17). Hence, the solutions to the 2lg-th-order
equation (3.17) can be represented as

Bil < < Bl TG < - < 1B (4.22)
Then, using Eq. (3.20), which is the salient result of the non-Bloch band theory, we have

|5lq| = |ﬁl?11|7 i.e., ’ﬁlq| =1. (423)

Consequently, bulk eigenstates are delocalized and no skin effects occur.

Notably, in Sec. 3.4 [ZYF20,0KS520], we show that the skin effects originate from nontrivial
topology that cannot be continuously deformed to any Hermitian systems. Consistently, such
intrinsic non-Hermitian topology is absent in one-dimensional systems in the orthogonal class;
see class Al in Table A.5 of Appendix A.2 [KSUS19).

In the symplectic class, in which Eq. (4.7) is respected, we still have Eq. (4.18). A cru-
cial distinction is Kramers degeneracy due to 77T* = —1 [ESHK11, KSUS19]. Such generic
degeneracy is absent in the orthogonal class. In fact, because of 77 = —7, we have

XTI = T = = (XTI, (4.24)

which leads to (x|7|x)" = 0. This indicates that |¢) and T |x)”*, which belong to the same
eigenenergy, are biorthogonal [Brol4] to each other and linearly independent of each other.
Thus, all the eigenenergy is at least twofold degenerate.

Similarly to the orthogonal class, we have Eq. (4.21) even in the symplectic class. In terms of
H (3), the non-Bloch waves |¢;) and T |x;)" form a Kramers pair; the former satisfies Eq. (3.16),
while the latter satisfies

H (87 (T [xa)") = E(T Ixa)") - (4.25)

Because of this Kramers degeneracy, the characteristic equation has the 4l¢-th order and its
solutions are generally represented as

Bu] <o < |Bugl <1< 1Bkl <+ <187 (4.26)

If the standard non-Bloch band theory is applicable, we have |(8y,| = |62_l;|, and hence no skin
effects appear in a manner similar to the orthogonal class. However, the reciprocal skin effect is
feasible in the symplectic class, as shown in Sec. 4.1 [OKSS20]. This fact implies a modification
of the standard non-Bloch band theory, as discussed above.

4.2.2 Symplectic Hatano-Nelson model

Below, we investigate the symplectic Hatano-Nelson model in Eq. (4.4) and confirm the non-
Bloch band theory in the symplectic class [i.e., Eq. (4.10)]. The bulk Hamiltonian of the
symplectic Hatano-Nelson model reads

H(B) = (t — iAo, + go.) B + (t +iAc, — go.) B. (4.27)
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This Hamiltonian respects reciprocity

o, H' (8)o,' = H (571), (4.28)

Y

and indeed belongs to the symplectic class.
Under the periodic boundary conditions, 3 satisfies || = 1 and hence is given by 3 = e
with a real wave number k € [0, 27]. Then, the Bloch Hamiltonian is

H (k) =2tcosk — 2 (Ao, +igo,)sink. (4.29)

The spectrum of H (k) is given as

E (k) = 2tcosk 4+ 2i\/g%> — A?sink, (4.30)

which is entirely real for |g| < |A] and forms a loop in the complex plane for |g| > |A| (Fig. 4.1).
Under the open boundary conditions, let € C be eigenenergy and

) =D D> dusln)ls) (4.31)

n=1 se{t,}}

be the corresponding right eigenstate. The Schrodinger equation in real space reads

(t — iAo, + go.) (in_i) 4 (t+iAao, — go) <¢n+m) _E (an (4.32)

¢n+17¢

in the bulk (n =2,3,--- ;L — 1), and

(t+iAo, — go.) (221) =F (iii) , (4.33)
(t — iAo, + go.) <¢L‘1’T) = F (%T) (4.34)
Or—1,) oL,

at the edges. Defining ¢ s and ¢ s by the bulk equation (4.32), the boundary equations (4.33)

and (4.34) reduce to
¢0,T _ ¢L+1,T o
(¢0,¢) B (¢L+1,¢> =0 (4.35)

Suppose that a fundamental solution is given as

Pn,s X B Ps. (4.36)

From the bulk equation (4.32), we have

[H (8) — E] @D = 0. (4.37)

To have a nontrivial solution (¢1 ¢;)" # 0, the coefficient matrix H (8) — E should not be
invertible, leading to the characteristic equation

det [H (8) — E] = 0, (4.38)
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ie.,
E=t(B+87")£vVg2-A2(B-p57"). (4.39)

This is a quartic equation in terms of § for given £ and decomposes into a pair of quadratic
equations

<t+ \/92—A2> B Ef+t—\ g A?=0, (4.40)
<t—\/92—A2) B2—EB+t+ /g2 — A2 =0. (4.41)

Notably, when 3 satisfies this characteristic equation, =1 also satisfies it; in particular, when
3 satisfies Eq. (4.40), B! satisfies Eq. (4.41), and vice versa. This is a direct consequence of
reciprocity, as discussed in Sec. 4.2.1. Furthermore, a fundamental solution with 8 and another
fundamental solution with S~ are linearly independent of each other and form a Kramers pair.
Now, we define the solutions to Eq. (4.40) as 81 and B2 (|f1] < |B2|), which satisfy

t— /a2 AQ
b1P2 = S —— (4.42)
t+/g? — A2

The solutions to Eq. (4.41) are given as 8; " and (5 . Since the solutions 31, 32, B; ', 35 ' to the
characteristic equation are defined so as to respect |51 < |52, the standard non-Bloch band
theory [YW18, YM19] predicts

|Ba] = 165" (4.43)
for continuum bands. However, this is not the case in the symplectic class; we have
1] = 1], (4.44)

as shown below.
Now, the eigenstate |¢) = 2%, > se(ty) Pns [n) [s) can be obtained as a linear combination
of the above fundamental solutions:

N . §Z5<1+) . ¢(2+) B ¢(1_) » ¢(2_)
(zn1> = [ (qb{u) + 5 ¢{2+) + 3 qﬁ{l_) + 55 (b%_) (4.45)

forn=1,2,---, L. Here, since (¢$i) qﬁfi))T satisfies Eq. (4.37), we have

3 . (i)
(ivg_iAA t9 A ) <¢ ):o. (4.46)

1
£V =8 —g) \¢*

Notably, ((b?i) ¢iii))T does not depend on i. Hence, Eq. (4.45) further simplifies to

<znT) = (BT 14 + B3 024) (Cl ) + (B b1+ By o) ( ! ) , (4.47)
n,d +

Cc_

with some constants ¢4, ¢oyr € C and

Cy =

_—i(i\/gl— A?+9g) (4.48)
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Then, the boundary conditions (4.35) reduce to

(G14 + G2+) (é) + (91 + d2) ( ! ) =0, (4.49)

C_

- < 1 - = - - 1
(51L+1¢1+ + BQL—HQSQ—&-) (C+> + (Bl (L+l)¢1_ + 52 (L+1)¢2_) <C_) =0. (450)
The vectors (1 ¢, )T and (1 ¢_)T form a Kramers pair and linearly independent of each other.
In particular, they are biorthogonal to each other [Brol4], i.e., the left counterpart of (1 cy)”
is orthogonal to (1 c_)T. As a result, we have

QB& + QgQ:t = 5f(L+1)€51i + 52i(L+1)€Z_52¢ =0, (4.51)

leading to
= pitt (4.52)

for a nontrivial solution ((/Bu, qui) # 0. This equation means that the absolute values of (;
and [ coincide with each other and are given, from Eq. (4.42), as

t— /g2 — A2
t+ /g2_A2

The relative phase between ; and (3, can be different, resulting in the formation of continuum
bands.

Equation (4.53) provides the localization length of eigenstates and the criteria of the skin
effect. For |g| < |A|, we have 51| = |B2| = 1, and hence eigenstates are delocalized. For
lg| > |A|, on the other hand, we have || = |f2| # 1, and hence the eigenstates are localized at
the edges. In contrast to the conventional skin effect, skin modes appear at both edges; when
an eigenstate is localized at one edge, the Kramers partner is localized at the other edge. The
numerical calculations shown in Fig. 4.1 confirm this result. For |g| > |A|, the spectrum under
the periodic boundary conditions forms a loop in the complex plane, but the spectrum under
the open boundary conditions lies on the real axis, which is a signature of the non-Hermitian
skin effect.

In the above calculations, an important distinction from the standard case is the equivalence
between (qb%li) gbili) )T and (gbfi) (bfi))T. In fact, if they were linearly independent, we would
have | 3| = |85 '] instead of | 31| = |B2| in a manner similar to the standard case [YW18,YM19).
However, symplectic reciprocity makes ((b%li) (bili))T and ((b%zﬂ (bfi))T linearly depend on each
other and changes the condition for continuum bands (see Appendix B.1 for a general proof).

|B1] = |Bo| = . (4.53)

4.2.3 Symplectic Hatano-Nelson model with next-nearest-neighbor
hopping
To further verify the nonstandard non-Bloch band theory, we consider the symplectic Hatano-

Nelson model with next-nearest-neighbor hopping;:

H=Y" [agﬂ (t — iAo, + g0.) Gy + & (t+ 100, — g0.) ényr +1 (&) 0én + é;an+2)] . (4.54)

n
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Figure 4.2: Symplectic Hatano-Nelson model with next-nearest-neighbor hopping (¢ = 1.0,
A=02,g=038,¢=0.4). (a) Brillouin zone (BZ) and generalized Brillouin zone (GBZ). The
system with periodic boundaries is described by the BZ (black dashed loop), which forms the
unit circle in the complex 8 plane. By contrast, the system with open boundaries is described by
the GBZ (blue solid loops), which is determined by the non-Bloch band theory in the symplectic
class. (b) Complex spectra. The open-boundary spectrum (L = 30, red dots) coincides with
the non-Bloch bands determined by the GBZ (blue solid curves), which is different from the
periodic-boundary spectrum (black dashed loop). Reproduced from Fig. 2 of Ref. [KOS20].
Copyright 2020 by the American Physical Society.

where t' denotes the amplitude of the next-nearest-neighbor hopping. The bulk Hamiltonian
reads

H(B) = (t —iAo, + go.) 71+ (t +iAo, — go.) B+ (BQ + B’z) , (4.55)

and the energy dispersion is given by the characteristic equation det [H (8) — E] = 0, i.e.,

E=t(B+p")+t(82+87) Vg2 —-A2(B-87"). (4.56)

The characteristic equation is eighth order and decomposes into a pair of quartic equations
in terms of 3, while it reduces to a pair of quadratic equations for t = 0 as investigated in
Sec. 4.2.2. Consequently, the analytical solutions are not simple.

We numerically investigate the symplectic Hatano-Nelson model with the next-nearest-
neighbor hopping in a similar manner to Ref. [YM19] and confirm that it is indeed described
by the nonstandard non-Bloch band theory. Figure 4.2 (a) shows the Brillouin zone and the
generalized Brillouin zone of this model. The system with periodic boundaries is described by
the Brillouin zone, which forms the unit circle |5| = 1 in the complex 5 plane. By contrast, the
system with open boundaries is described by the generalized Brillouin zone, which is determined
by Eq. (4.10) of the non-Bloch band theory in the symplectic class. In this model, Eq. (4.10)
means

B3] = 184l (4.57)

where the eight solutions to Eq. (4.56) for given E € C are denoted by 81, B, B3, B4; 81, B35,
Byt Bt with [B1] < |Ba] < |Bs] < |B4]l. In the presence of non-Hermiticity, the generalized
Brillouin zone does not necessarily form the unit circle, which is a direct manifestation of
the non-Hermitian skin effect. In contrast to the standard case, the generalized Brillouin
zone generally consists of a pair of loops, one of which is inside the unit circle and the other
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is outside the unit circle. This is a consequence of reciprocity, and each loop describes the
localized modes at the right or left edge. Figure 4.2 (b) shows the complex spectra of this
model. The open-boundary spectrum cannot be described by the Bloch bands determined by
the Brillouin zone, which is another signature of the skin effect. However, it is in complete
agreement with the non-Bloch bands determined by the generalized Brillouin zone. It is also
notable that both generalized Brillouin zone and complex spectra are symmetric about the real

axis, which originates from time-reversal symmetry o, H* (8) 0! = H (8*).

4.3 Bulk-boundary correspondence

4.3.1 Modified bulk-boundary correspondence

A non-Hermitian Hamiltonian H is defined to have a line gap if and only if its spectrum does not
cross a reference line in the complex-energy plane. The modified bulk-boundary correspondence
persists for a line gap because a non-Hermitian Hamiltonian with a line gap can be continuously
deformed to a Hermitian one [KSUS19]. In Sec. 3.4, on the other hand, we develop a theory of
the bulk-boundary correspondence for a point gap.

Importantly, point and line gaps are not necessarily independent of each other. In fact, if a
line gap is open, a point gap is also open with a reference point on the reference line. Hence,
a remnant of line-gap topology may survive in the presence of a point gap even if the line gap
is closed. Prime examples include non-Hermitian superconductors in one dimension without
time-reversal symmetry (i.e., class D). In this case, particle-hole symmetry

CHT (k)C'=—-H(-k), CC*=+1 (4.58)

lets zero energy be a special point in the complex-energy plane in contrast to reciprocity. As
a result, non-Hermitian systems have the Zs topological phases for both point and line gaps,
and their topological invariants coincide with each other [KSUS19]. The Majorana zero modes
in Hermitian topological superconductors survive as long as the point gap at £ = 0 is open.
Correspondingly, an index theorem states the emergence of the zero modes localized at the
boundary (see Sec. 3.3.3 for details).

By contrast, point-gap topology can be nontrivial even if line-gap topology is trivial. For
example, while line-gap topology is absent in one dimension with and without reciprocity
[KSUS19], the point-gap topology characterized by Eqgs. (3.9) and (4.2) is present. As shown
above, such intrinsic point-gap topology in finite systems leads to the non-Hermitian skin effect.

4.3.2 Non-Hermitian Su-Schrieffer-Heeger model

As a prototypical non-Hermitian model that exhibits both skin effect and modified bulk-
boundary correspondence, we here investigate a non-Hermitian extension of the Su-Schrieffer-
Heeger model [SSH79] with asymmetric hopping [Leel6, KEBB18, YW18, YM19]. It exhibits
the skin effect under the open boundary conditions due to the point-gap topology under the
periodic boundary conditions. Still, a line gap can be open and the corresponding topological
invariant protected by sublattice symmetry can be well defined under the open boundary con-
ditions. As a result, topologically protected zero modes can emerge because of this line-gap
topology.
The Hamiltonian of the non-Hermitian Su-Schrieffer-Heeger model reads

—ik
Hesn () = (04 weos k) o, + wsinktig) o, = (0 PFOEETT )L s
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Figure 4.3: Non-Hermitian Su-Schrieffer-Heeger model with asymmetric hopping. (a, b) Com-
plex spectra under the (a) periodic and (b) open boundary conditions (L = 100) with v = 1/3,
w =1, and g = 1/2. (a) Under the periodic boundary conditions, each of the two bands (red
and blue curves) forms a loop in the complex-energy plane. (b) Under the open boundary con-
ditions, the energy bands (red dots) form arcs and are different from those under the periodic
boundary conditions (black dotted curves), which signals the non-Hermitian skin effect. Still,
a line gap for the imaginary axis is open (i.e., Re E' # 0) and the zero modes appear because
of the line-gap topology. (c, d) Complex spectra under the (c) periodic and (d) open boundary
conditions (L = 100) with v =3/4, w =1, and g = 6/5.

with v,w,g € R [Leel6, KEBB18, YW18, YM19]. In contrast with the Hatano-Nelson model,
Hsgsn (k) respects sublattice symmetry:

SHgsu (k) S™' = —Hggy (k), S* =1, (4.60)

with § = 0,. As a result of sublattice symmetry, Hssy (k) possesses Z topological phases in
the presence of a line gap [KSUS19]. The corresponding topological invariant (winding number
W) has the same form as that in the Hermitian case,

dk dHss (k)
= — — H —. 4.61
W= st () T (461

On the other hand, Hgsy(k) possesses Z @ Z topological phases in the presence of a point gap,
i.e., two independent Z topological invariants are well defined [KSUS19]. One of these invariants
coincides with Wy, and the other is the following winding number Wp, which is intrinsic to
point-gap topology (see also 1D class A with S in Table 4.3):

——l H 4.62
]}{BZ 51 dk ogdet Hssy (k) . (4.62)

For Hermitian systems, we have Wp = 0. Notably, Wy, can be a half integer in non-Hermitian
systems, while it is always an integer for Wp = 0. In the above, the reference line for the line
gap is chosen as a line in the complex-energy plane that crosses ' = 0, and the reference point
for the point gap is chosen as EF = 0 so that they will respect sublattice symmetry. While they
may be chosen as lines and points away from these symmetric lines and points, respectively,
the consequent topological phases reduce to those without sublattice-symmetry protection.
As shown in Fig. 4.3, the non-Hermitian Su-Schrieffer-Heeger model exhibits the skin effect
under the open boundary conditions, which originates from the intrinsic point-gap topology.
Consistent with our preceding discussions, each of the two energy bands forms an arc in the

67



complex-energy plane. Notably, we have Wp = 0 in terms of the reference point £ = 0 for
Fig. 4.3 (a, b). Nevertheless, we have a nontrivial winding number when we choose a reference
point as energy inside the loop determined by Hgssy (k), instead of the symmetric point F = 0
that respects sublattice symmetry. In this case, the topological classification reduces to that
without symmetry despite sublattice symmetry of the Hamiltonian, as described above. On
the other hand, we have Wp # 0 for Fig. 4.3 (¢, d), which directly leads to the skin effect.

In either case, the bulk spectrum under the open boundary conditions has a line gap for the
imaginary axis (i.e., Re E' # 0). Therefore, Wi, can be defined for the bulk Hamiltonian under
the open boundary conditions. According to the non-Bloch band theory [KEBBI18, YW18,
YM19], the open-boundary bulk Hamiltonian is given by

v—g
v+g

. (4.63)

—1 _—ik
HssH(k—ilogTo)=< 0 v+ g+ wry'e )7 o

v—g-+ wroe'® 0

which provides a nonzero winding number W7, in either case of Fig. 4.3. As a result, topologically
protected zero modes emerge for Fig. 4.3 (b,d).
We note in passing that sublattice symmetry in Eq. (4.60) is distinct from chiral symmetry
defined by [KSUS19]
TH ()T ' = —-H(k), T?=1, (4.64)

where I' is a unitary operator. While Eqgs. (4.60) and (4.64) are equivalent to each other in
Hermitian systems [H' (k) = H (k)], they are not in non-Hermitian systems. Correspondingly,
although H (k) with chiral symmetry possesses Z topological phases in the presence of a line
gap for the real part of the spectrum, it does not possess nontrivial point-gap topology in terms
of a reference point on the symmetric line (i.e., the imaginary axis) [KSUS19]. For example,
another non-Hermitian extension of the Su-Schrieffer-Heeger model [SSH79] with balanced gain
and loss [ESHK11, Sch13, WKP*17,SJGGT17] respects chiral symmetry instead of sublattice
symmetry.

4.3.3 Classification of skin effects

As discussed above, the skin effect originates from intrinsic non-Hermitian topology. To char-
acterize such intrinsic non-Hermitian topology in a general manner, we here classify the homo-
morphisms from line-gap topology to point-gap topology for all the 38-fold internal symmetry
class in arbitrary spatial dimensions [OKSS20,Shil9]. This classification allows us to know
possible types of symmetry-protected skin effects for general internal-symmetry classes and
arbitrary dimensions (Tables 4.1, 4.2, and 4.3).

As discussed above, if a line gap is open, a point gap is also open with a reference point
on the reference line. Hence, we can define a map from a line-gapped topological phase to a
point-gaped one for each spatial dimension and symmetry class. Such maps are obtained as
follows. Given a non-Hermitian Hamiltonian H (k) in d dimensions, we introduce an extended
Hermitian Hamiltonian [GAK™ 18, KSUS19]

H (k) = (HTO(k) Hék)> , (4.65)

which respects chiral symmetry TH (k)T~! = —H (k) with I == o,. Here, H (k) is gapped
when H (k) has a point gap, and vice versa. Thus, topological classification for H (k) with
respect to a point gap coincides with the topological classification of Hermitian Hamiltonians

68



H (k) [GAKT18, KSUS19]. The obtained topological phases are denoted by Kp. On the other
hand, when one keeps a line gap, an additional constraint arises on H (k). As shown in
Ref. [KSUS19], a non-Hermitian Hamiltonian H (k) with a real (an imaginary) line gap is
continuously deformed to a Hermitian (an anti-Hermitian) Hamiltonian while keeping the line
gap (and the point gap as well). Therefore, when one considers the classification of H (k)
while keeping a real (an imaginary) line gap of H (k), H (k) is supposed to be Hermitian
(anti-Hermitian). Notably, Hermiticity (anti-Hermiticity) of H (k) imposes additional chiral
symmetry with T, = o, (T} = 0,) on H (k). Because of this additional symmetry, we have
a different topological phase Ky, (K1) with respect to a point gap in the presence of a real
(an imaginary) line gap. Leaving the additional chiral symmetry I', (I';) out of consideration
defines a homomorphism f, : K, — Kp (fi : K1, = Kp) from Kj, (K1) to Kp. Because of the
dimensional isomorphism of the K-theory, it suffices to compute f, and f; in zero dimension to
get the homomorphisms in arbitrary spatial dimension (see Refs. [OKSS20,Shil9] for details).

If a point-gapped non-Hermitian Hamiltonian H (k) lies in the image of either homomor-
phism f, or f;, H (k) can be continuously deformed to a Hermitian or anti-Hermitian Hamil-
tonian, and thus the topological nature is attributed to the conventional Hermitian one. By
contrast, if H (k) does not, its topological nature is intrinsic to non-Hermitian Hamiltonians.
In other words, the quotient group Kp/(Im f, UIm f;) indicates the presence of the topological
nature unique to non-Hermitian systems. A prime example of such intrinsic point-gap topology
is found in one-dimensional systems without symmetry (class A), where the non-Hermitian skin
effect occurs as a consequence of nontrivial topology, as discussed in Sec. 3.4. Tables 4.1, 4.2,
and 4.3 summarize the quotient groups Kp/(Im f,UIm f;) for all fundamental symmetry classes
(see also Sec. 2.4 for details about symmetry classes of non-Hermitian systems).

Like surface Dirac fermions in topological insulators, higher-dimensional skin modes ap-
pear in any boundary of the system under proper boundary conditions. For example, a two-
dimensional variant of the Z, skin effect is present in the symplectic class (see Supplemental
Material of Ref. [OKSS20] for details). There, skin modes coexist with bulk modes under the
open boundary conditions in one direction and the periodic boundary conditions in the other
direction, which are the “proper boundary conditions” in this system. Notably, only O (L) skin
modes appear from all the O (L?) modes in this model (L denotes the length in one direction),
which is unfeasible for the skin effects in one dimension.

Since weak topological invariants can be defined in higher dimensions, the corresponding
weak skin effects can occur. For example, the two-dimensional skin effect in Ref. [HHS™20]
is due to one-dimensional point-gap topology of H (k,,k,) with fixed k,. By contrast, the
aforementioned two-dimensional skin effects in Ref. [OKSS20] originate from strong point-gap
topology defined by both k, and k,. This strong nature is well understood by the skin effect due
to a m-flux defect, in a similar manner to time-reversal-invariant topological superconductors
in two dimensions [QHRZ09].
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Table 4.1: Classification table of intrinsic non-Hermitian topology for the AZ symmetry class.

AZ class d
A
AIII
Al
BDI
D
DIII
ATl
CII
C
CI

)
ISH

ooogoooNoNH
—_
IS ¥

coocoococooolo ol
)
Y

o@oooNoooNH
w
ISH

coocoNooolool
N
ISH

oooNooogoNn
o
o

o oo o oo oo ol
™
ISH

ONOOO§OOON||
\]

OO OO oo oo ol

&

Table 4.2: Classification table of intrinsic non-Hermitian topology for the AZ' symmetry class.

AZfclass d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7T
AT 0 0 0 27, 0 Zs Zs Z
BDIf 0 0 0 0 0 0 0 0
Df 0 Z 0 0 0 27 0 0
DIIIf 0 Zs Zs 0 0 0 0 0
AIIf 0 Zs Zs Z 0 0 0 27
CITt 0 0 0 0 0 0 0 0
Cft 0 27 0 0 0 Z 0 0
Crf 0 0 0 0 0 Zs Zs 0
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Table 4.3: Classification table of intrinsic non-Hermitian topology for the AZ symmetry class
with additional symmetry (i.e., sublattice symmetry or pseudo-Hermiticity).

AZ class Add. symm. d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
A n 0 0 0 0 0 0 0 0
AIII Seins 0 0 0 0 0 0 0 0
A S 0 Z 0 Z 0 Z 0 Z
AIII S_,n- Zy 0 Ly 0 Zy 0 Ly 0
Al n 0 0 0 0 0 0 0 0
BDI Sits Nt 0 0 0 0 0 0 0 0
D . 0 0 0 0 0 0 0 0
DIII Sy 0 0 0 0 0 0 0 0
AL . 0 0 0 0 0 0 0 0
CII Sity Nas 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0
CI S s 0 0 0 0 0 0 0 0
Al S_ 0 Z 0 0 0 Z 0 0
BDI Sty 0 0 0 0 Z, 0 Z, 0
D S, 0 0 0 Z 0 Z, 0 Z
DIII Sy 0 0 0 0 Z, 0 Z, 0
All S_ 0 Z 0 0 0 Z 0 0
CII Sy Z, 0 Z, 0 0 0 0 0
C S, 0 Zo 0 z 0 0 0 z
CI Sy Z, 0 Z, 0 0 0 0 0
Al - 0 Z, Z, 0 0 0 0 0
BDI S__,n__ 0 0 0 0 0 0 0 0
D n- 0 0 0 0 Loy 0 0 0
DIII Sy 0 0 0 0 Z, Z, 0 0
AlIl n- 0 0 0 0 0 Zy Ly 0
CII S__.n_ 0 0 0 0 0 0 0 0
C n— Ly 0 0 0 0 0 0 0
CI Sy Z, Z, 0 0 0 0 0 0
AT S. Z, Z 0 0 0 Z 0 Zs
BDI SJF,, n—+ ZQ ZQ ZQ 0 0 0 ZQ 0
D S- 0 Zy Ly Z 0 0 0 Z
DIII Sy e Z, 0 Z, Z, Z, 0 0 0
ATl S, 0 z 0 Z, Z, z 0 0
CII Sio,n—+ 0 0 Z, 0 Z, Z, Z, 0
C S- 0 0 0 Z 0 Zy Zy Z
CI SJr, y T4— Z2 0 0 0 ZQ 0 ZQ ZQ
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4.4 Second-order skin effect

Recently, higher-order counterparts of topological phases were revealed and investigated exten-
sively [BBH17a,BBH17b,LPT*17,SFF17,FF19, KvMB18,SCV*18,Khal8 KPVWI18,YSW18a,
MW18, TB19, LVK19, BLH19]. Higher-order topological phases are protected by spatial sym-
metry such as inversion, mirror, and rotation symmetry. Importantly, the nature of the bulk-
boundary correspondence is changed for higher-order topological phases. In two dimensions,
second-order topology leads to O (1) zero modes localized at the corners, which is to be con-
trasted with O (L) chiral or helical edge modes accompanied by first-order topology. Similarly,
in three dimensions, third-order topology leads to O (1) zero modes localized at the corners,
instead of O (L?) surface modes in first-order topological insulators. Higher-order topology was
observed in various experiments [SGPS*18,IBBT18, PBHB18, SWV 18, XYGT19, NWAK19,
MOZ*19, HKM*19, PLB"20], and may lead to unique phenomena and functionalities due to
its new boundary physics.

As discussed previously, topological phases and their boundary physics are enriched also
by non-Hermiticity. Despite the rich physics of non-Hermitian topological systems, little re-
search has hitherto addressed non-Hermitian topological phenomena in higher dimensions. In
particular, the non-Hermitian skin effect has been investigated mainly in one dimension and
has remained largely unknown in higher dimensions. Similarly, the non-Bloch band theory in
Refs. [YW18,YM19] is applicable only to one dimension, and its validity in higher dimensions
has remained elusive.

Here, we discover higher-order counterparts of the non-Hermitian skin effect. They give rise
to new types of boundary modes as a result of higher-order non-Hermitian topology (Fig. 4.4).
In two-dimensional systems with the system size L x L and open boundaries along both di-
rections, the conventional skin effect accompanies O (L?) skin modes at arbitrary boundaries
[Fig. 4.4 (c)]. In the second-order skin effect, by contrast, O (L) skin modes appear at the
corners [Fig. 4.4 (d)]. This is also distinct from Hermitian second-order topological insulators,
in which only O (1) corner modes appear as a result of Hermitian topology [Fig. 4.4 (b)]. We
demonstrate that the higher-order skin effect cannot be described by the conventional non-Bloch
band theory, which implies its inevitable modification in higher dimensions.

Notably, the higher-order non-Hermitian skin effect is distinct from non-Hermitian exten-
sions of higher-order topological insulators [LZAT19, LLG19, EKB19,ZRLC"19,1.7Z19, YJS21].
There, even in the presence of non-Hermiticity, the corner modes have the same topological na-
ture as the Hermitian counterparts. Consequently, the number of these corner modes is O (1).
Moreover, the other modes typically exhibit the first-order skin effect and are also localized at
boundaries. In the second-order skin effect, by contrast, the corner skin modes originate from
intrinsic non-Hermitian topology that has no counterpart in Hermitian systems. Almost all
the O (L?) modes are delocalized through the bulk, and only O (L) skin modes appear at the
corners.

In Sec. 4.4.1, we introduce a non-Hermitian model in two dimensions that exhibits the
second-order skin effect [Eq. (4.66)]. This model is systematically constructed on the basis
of a Hermitian second-order topological insulator [BBH17a, BBH17b]. The spectra and wave
functions of this system are investigated in Sec. 4.4.2. Then, in Sec. 4.4.3, we identify the topo-
logical origin of the second-order non-Hermitian skin effect as the Wess-Zumino term [WZ71].
This topological invariant is protected by four-fold-rotation-type symmetry in Eqs. (4.80) and
(4.90). The second-order skin effect requires a modification of the non-Bloch band theory, as
demonstrated in Sec. 4.4.4. Furthermore, we investigate the third-order non-Hermitian skin
effect in Sec. 4.5.
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Figure 4.4: Higher-order non-Hermitian skin effect. Boundary modes (red lines or dots) are
shown in a two-dimensional system with the system size L x L. (a) Hermitian first-order
topological insulator. At the edges, O (L) chiral or helical modes appear. (b) Hermitian
second-order topological insulator. At the corners, O (1) zero modes appear. (c) First-order
non-Hermitian skin effect. At arbitrary boundaries, O (L?) skin modes appear because of
intrinsic non-Hermitian topology. (d) Second-order non-Hermitian skin effect. At the corners,
O (L) skin modes appear because of intrinsic non-Hermitian topology. Reproduced from Fig. 1
of Ref. [KKSS20]. Copyright 2020 by the American Physical Society.

It is notable that similar results have been obtained in a recent related work [OTY20]. While
the second-order skin effect here is protected by rotation-type symmetry, the second-order skin
effect in Ref. [OTY20] is protected by inversion-type symmetry. Moreover, on the basis of our
theoretical results, the second-order skin effect has been observed in the recent experiments of
active particles [PTG20] and acoustic materials [ZTJ*21]. These recent experiments show the
utility of non-Hermitian topology for active control of materials.

4.4.1 Model and symmetry

We provide a model that exhibits the second-order non-Hermitian skin effect. The Bloch
Hamiltonian reads

H (k) = —i(y+ Acosky) + A(sinky) o, + (7 + Acosky) oy, + A (sinky) 0, (4.66)

where v and A are real parameters, and o;’s (i = x,y, z) are Pauli matrices. As discussed previ-
ously, the Hatano-Nelson model is closely related to the Su-Schrieffer-Heeger model. Similarly,
this model is constructed on the basis of a Hermitian second-order topological insulator. In
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fact, the extended Hermitian Hamiltonian is given as

Fos () = ( o é"”)

= (y+ Acosky) T, + A(sinky) 0,7 + (v + Acosky) 0,7 + A (sinky) 0,7,  (4.67)

where 7;’s (i = x,y, z) are Pauli matrices that describe the additional degrees of freedom. This
Hermitian Hamiltonian is a prototypical model of a second-order topological insulator that
was first introduced by Benalcazar, Bernevig, and Hughes [BBH17a, BBH17b]. There, no edge
modes appear under the open boundary conditions solely along one direction. Nevertheless,
under the open boundary conditions along both directions, zero-energy modes appear at the
corners for |y/A] < 1.

Spatial symmetry plays a crucial role in the second-order topological phase of Hgpy (k) and
the second-order non-Hermitian skin effect of H (k). First, both Hppy (k) and H (k) respect
spatial-inversion (parity) symmetry:

oyHppn (k) 0, = Hppn (—k), (4.68)
oyH (k)o,' = H (k). (4.69)
In addition, Hppy (k) respects mirror symmetry:
(0.7,) Hep (ky, ky) (0.7,) " = Hppi (ke ky) (4.70)
(0.7,) Hepy (ko ky) (027,) " = Hppy (kg, —ky) - (4.71)
Correspondingly, H (k) respects
o H' (ky, ky) oot = —H (—ky, ky) (4.72)
o H (ky ky) oyt = —H (ky, —k,) . (4.73)
They also respect the following transposition-associated mirror symmetry
oo Hbpy (ks k) 07t = Hepn (—ka, ky) (4.74)
o HEpy (koo ky) 07 = Hppn (ka, —ky) | (4.75)
and
o H (ky, k) 0.t = H (—ky, k), (4.76)
o H" (ky k) o' = H (ky, —k,) . (4.77)

The combination of Egs. (4.72) and (4.73), or the combination of Eqs. (4.76) and (4.77) reduces
to Eq. (4.69). As shown in Sec. 4.4.4, the symmetry in Eqs. (4.76) and (4.77) vanishes the first-
order skin effect in H (k) along the  and y directions, respectively. Furthermore, Hggy (k)
respects four-fold-rotation symmetry:

R4ﬁBBH (k:va ky) Rzl = f{BBH (_kyu kz) ) (478)

where R, is a unitary matrix given as

Ry = ((1) _io(’y) . (4.79)

Correspondingly, H (k) respects
— oy H (ky, ky) = H (—ky, k) . (4.80)

This rotation-type symmetry protects the second-order skin effect, as shown in Sec. 4.4.3.
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Figure 4.5: Second-order non-Hermitian skin effect. The complex spectra of the non-Hermitian
model in two dimensions [Eq. (4.66)] are shown for 30 x 30 sites. The parameters are given
as A = 1.0, as well as (al, a2, a3, a4) v = 0.5, (b1, b2, b3, bd) v = 1.0, or (cl, ¢2, c3,
c4) v = 1.5. The open boundary conditions are imposed along none of the directions for (al,
b1, cl), only along the = direction for (a2, b2, ¢2), only along the y direction for (a3, b3, ¢3),
and both of the directions for (a4, b4, c4). The spectra for the periodic boundary conditions
are shown as the grey regions, while the spectra for the open boundary conditions are shown as
the red dots. For |v/\| < 1, the corner skin modes appear under the open boundary conditions
along all the directions, as shown in (a4). The spectrum of these corner skin modes is given as
E = —iy (1 + eie) with 6 € [0,27]. Reproduced from Fig. 2 of Ref. [KSS20]. Copyright 2020
by the American Physical Society.

4.4.2 Corner skin effect

We numerically obtain the complex spectrum of the non-Hermitian model under various bound-
ary conditions, as shown in Fig. 4.5. Under the periodic boundary conditions, eigenstates are
delocalized through the bulk and form two bands [Fig. 4.5 (al, bl, c1)]; the bulk spectrum is
given as

B (k) = 4/ \2sin® b, + (3 + Acos ,)* + X2sin® by — i (7 + Acosk,). (4.81)

The complex-energy gap between the two bands is closed at |y| = |\|. Similarly, under the
open boundary conditions solely along the x direction [Fig. 4.5 (a2, b2, ¢2)] or solely along the
y direction [Fig. 4.5 (a3, b3, c3)], no skin effect occurs, in general. This corresponds to the
absence of zero modes in lfIBBH under these boundary conditions.

Under the open boundary conditions in both directions, by contrast, skin modes appear for
|v] < |A| [Fig. 4.5 (a4)]. These skin modes are not included in the bulk spectrum and localized
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Figure 4.6: Wave functions for the second-order non-Hermitian skin effect. Under the open
boundary conditions along both x and y directions, eigenstates of the non-Hermitian model in
two dimensions [Eq. (4.66)] are shown for L = 30, v = 0.5, and A = 1.0. (a) Corner skin modes
(E = —0.027 — 0.0008i). (b) Delocalized bulk modes (E = —1.64 — 0.94i). Reproduced from
Fig. 3 of Ref. [KSS20]. Copyright 2020 by the American Physical Society.

at boundaries. In particular, the skin modes are localized at the corners, while the other bulk
modes are delocalized (Fig. 4.6). For all the 2L? eigenstates, the number of the corner skin
modes is 2L, while the number of the delocalized bulk modes is 2L (L — 1). Notably, the skin
spectrum forms a loop in the complex-energy plane even under the open boundary conditions,
which is forbidden for the conventional skin effect [ZYF20, OKSS20].

This model can be solved also in an analytical manner (see Appendix C.1 for details). In
particular, for sufficiently large L, the spectrum of the corner skin modes is given as

E=—iy(1+€%), 6€]0,2n], (4.82)

and their localization lengths &, and §, along the x and y directions are given as

AN L

=& = <log ‘—D . (4.83)
Y

These analytical results are consistent with the numerical results.

The corner skin modes are a new type of boundary modes unique to non-Hermitian systems
in higher dimensions. They are distinct from both O (L?) skin modes for the conventional
skin effect and O (1) corner modes in Hermitian second-order topological insulators. We call
this new type of the skin effect the second-order skin effect. It originates from second-order
non-Hermitian topology protected by spatial symmetry, as shown in Sec. 4.4.3.

Notably, Ref. [LLG19] provided another non-Hermitian model in two dimensions that ex-
hibits corner skin modes. Similarly to our model, the O (L) skin modes are localized at the
corners, while the other O (L?) modes are delocalized through the bulk. However, this model
is characterized by the bulk Chern number, and under the open boundary conditions, there
appear chiral edge modes closing the line gap. Non-Hermiticity further pushes these chiral
edge modes to the corners, resulting in the corner skin modes. Thus, the corner skin modes
in Ref. [LLG19] arise from the combination of Hermitian topology (i.e., Chern number) and
non-Hermiticity. On the other hand, the Chern number vanishes for our model in Eq. (4.66).
Instead, the corner skin modes in our model are characterized solely by intrinsic non-Hermitian
topology in terms of a point gap, as discussed in Sec. 4.4.3.

We also note in passing that different types of boundary modes appear for other boundary
conditions. Even under the periodic boundary conditions along the x direction, there appear
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O (L) modes away from the bulk bands as long as the open boundary conditions are imposed
along the y direction, as shown in Fig. 4.5 (a3). These modes are localized at both edges with
the localization length ¢, in Eq. (4.83) (see Appendix C.2.1 for details), and their spectrum is
given as

E = —iy —ile e, (4.84)
These edge modes do not touch the bulk bands, which contrasts with the chiral edge states
in Chern insulators. On the other hand, even if the open boundary conditions are imposed
along the x direction, no edge modes generally appear under the periodic boundary conditions
along the y direction. Even under these boundary conditions, boundary modes appear for
|v/A| =1 [Fig. 4.5 (b2)]. Anomalously, they belong to the same wave number k, = 7 and the
same eigenenergy E = —ivy, and form exceptional points; 2L eigenstates coalesce into only 2
eigenstates, one of which is localized at the left edge and the other of which is localized at the
right edge (see Appendix C.2.2 for details). The relationship between these boundary modes
and the corner skin modes may merit further investigation.

4.4.3 Wess-Zumino term

The second-order non-Hermitian skin effect originates from the Zsy-quantized Wess-Zumino
(WZ) term introduced in the following. In two dimensions, we can define the one-dimensional
winding numbers

Wm0 et [H (ko k = 4
e S osdet [ (k)] (= a.). (1.85)
along the x and y directions, respectively. As shown below, given a non-Hermitian Hamiltonian
H (k,, k,) which is invertible and has no one-dimensional winding numbers W, = W, = 0, we
can define a geometric quantity WZ [H| called the WZ term which takes a value in the circle
[0,1]. The absence of the one-dimensional winding numbers ensures the existence of a smooth
path of invertible Hamiltonians H (k,, k,, t) from the original one

H (ki kot = 0) = H (ky, k) (4.86)
to another constant one
H (ki iyt = 1) = Heonst (4.87)
at the end. The WZ term is defined by [WZ71]
1

 24n? [0,27]% % [0,1]

WZ[H] : tr [H'dH]". (4.88)

While the WZ term is a real number, it is not quantized in the absence of symmetry.

Although the extension H (k,, k,) — H (ky, ky,t) is not unique, the difference WZ [H] —
WZ [H'] between the two extensions H (k,, ky,t) and H' (k,, k,,t) is the integer-valued three-
dimensional winding number of the third homotopy class

m3 (GLy (C)) = Z, (4.89)

where N > 2 is the dimension of the matrix H (k;, k,). Thus, the WZ term in Eq. (4.88) does
not depend on extensions of H (k,, k,) as a quantity in the circle [0, 1]. It is a two-dimensional
analog of the Berry-phase formula of the electric polarization [Vanl8g].
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Spatial symmetry can quantize the WZ term, similarly to the quantization of the electric
polarization due to spatial-inversion symmetry. Here, we focus on the following four-fold-
rotation-type symmetry:

UH (ky k) V™t = H(—ky, k), (UV)? =1, (4.90)

where U and V are unitary matrices that are, in general, independent of each other. The
two-dimensional model in Eq. (4.66) respects this symmetry with [i.e., Eq. (4.80)]

U=—ieg, V=" (4.91)

We show that this rotation-type symmetry indeed quantizes the W7 term to the Z, values
WZ[H] € {0,1/2}. (4.92)
For an extension H (k;, k) — H (ky, ky,t) for ¢t € [0, 1], we introduce a different extension by
H' (ky, ky,t) == UH' (k,, —k,, ) V7' (t€[0,1]). (4.93)

Because of rotation-type symmetry in Eq. (4.90), H' (k;, ky,t) at t = 0 coincides with the
original Hamiltonian:

H' (ky, ky,t =0) = H (kg k) . (4.94)
In a straightforward manner, we can also show
WZ[H'| = —WZ[H], (4.95)

and
2WZ[H] = WZ[H] — WZ [H']. (4.96)

The right-hand side of this equation gives the integer-valued three-dimensional winding number,
which proves that the WZ term WZ [H] is quantized to the Zy value. For our model in Eq. (4.66),
the WZ term takes the nontrivial value

WZ[H]=1/2 for |y/A < 1. (4.97)

Thus, the Zs-quantized WZ term is a meaningful topological invariant of two-dimensional non-
Hermitian systems, as long as four-fold-rotation-type symmetry in Eq. (4.90) is respected.
In general, the WZ term is quantized to the Z, value when either rotation-type symmetry

UH' (k)V™' = H (c,k) (4.98)
or reflection symmetry
UH (k)V~' = H (mk) (4.99)

is respected, where k — ¢,k is an n-fold rotation and k +— mk is a reflection on an axis. It
can be proven in the same way as four-fold-rotation-type symmetry in Eq. (4.90).

It should also be noted that four-fold-rotation-type symmetry in Eq. (4.90) vanishes the
one-dimensional winding numbers in Eq. (4.85). In fact, we have

4% —]f% dke 010 det [HT (—ky, k)] = =W, (4.100)
*T=T P ok, O° v )] = =y '
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and on the other hand, we have

W, = —7{%%&10 det [H' (—ky, ky)] = W, (4.101)
ST omiok, ° v Fe)] = Wa- '
These equations result in
W, =W, =0. (4.102)

The quantization of the WZ term is closely related to the corner skin effect. This can be
understood in view of the topological invariant in momentum space and the adiabatic parameter
by Teo and Kane [TK10]. Let us consider a point defect and a circle S that encloses this
point defect. We consider a non-Hermitian Hamiltonian H (k,, k,, s) and the corresponding
extended Hermitian Hamiltonian H (ky, ky, s) defined with the adiabatic parameter s € S!
that characterizes the spatial modulation of the Hamiltonians far from the point defect. The
zero modes of H (kg ky, s) at the point defect are detected by the three-dimensional winding
number W3, which is in turn given as the winding of the WZ term

W3 = }gl ds%WZ [H ()] (4.103)

In H (ky, ky, s), there appear W3 zero modes localized at the point defect. In a similar manner
to the Hatano-Nelson model, these zero modes accompany the skin modes at the same defect
in the original non-Hermitian Hamiltonian H (k,, k,, s).

In the following, we show that the nonzero WZ term WZ [H] leads to the presence of the
corner zero modes in the extended Hermitian Hamiltonian, and consequently, the presence of
the corner skin modes in the original non-Hermitian Hamiltonian. Let us impose the open
boundary conditions along both x and y directions. Near the edges, no zero modes appear
because of the vanishing one-dimensional winding numbers in Eq. (4.102), allowing us to con-
sider the adiabatic changes of the microscopic Hamiltonian near the edges into a slowly varying
Hamiltonian while keeping the topological phase. In doing so, we can define a family of Hamil-
tonians H (k,, k,,s) for each edge such that H (ky, k,,s = 0) is the Hamiltonian deep inside
the bulk and that H (ky, ky, s = 1) is outside the finite system. For example, H (ky, ky,s =1)
can be chosen as the vacuum Hamiltonian ﬁvac. Let the families of the edge Hamiltonians
be H (k,, ky,s), H, (k,, ky,s), H, (kg ky, s), and Hy (k,, k,,s) for the left, right, up, and down
edges, respectively. We assume that the edge Hamiltonians, as well as the bulk Hamiltonian,
enjoy four-fold-rotation-type symmetry, meaning that they are related in a four-fold-symmetric
way. For example, the up-edge Hamiltonian is related to the right-edge one by

H, (ky, ky,s) = UH] (ky, Ky, s) V! (4.104)

for the off-diagonal parts.
Then, the changes in the WZ terms

1
d
AWZ, = f ds W2 IH, (5)] (v € {lr,u,d)), (4.105)
0
from the bulk to the vacuum for the four edges satisfy

AWZ) = —AWZ, = AWZ, = —AWZj. (4.106)

Here, the vacuum Hamiltonian f[vac is assumed to be in common for all the edges. This structure
gives a constraint on the three-dimensional winding numbers in Eq. (4.103) of the four corners:
W3 of the upper-right corner is given as

Ws = AWZ, — AWZ, = 2AWZ, = —2WZ[H] (4.107)
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Figure 4.7: Wess-Zumino (WZ) term and corner zero modes. The numbers of the zero modes
in the extended Hermitian Hamiltonian H (ks, ky) with four-fold-rotation symmetry are shown
as the even and odd integers at each corner. (a) and (b) correspond to the trivial (WZ = 0)
and nontrivial (WZ = 1/2) WZ terms, respectively. Reproduced from Fig. 4 of Ref. [KSS20].
Copyright 2020 by the American Physical Society.

modulo 2. This implies that if the quantized WZ term of the bulk is nontrivial (i.e., WZ [H] =
1/2), the three-dimensional winding number W3 of the four corners should be odd, especially
nonzero, and hence the extended Hermitian Hamiltonian should have zero modes localized at
the corners. Figure 4.7 shows possible quartets of the numbers of the corner zero modes ac-
companied by the trivial and nontrivial bulk WZ terms. Since the presence of the zero modes
in the extended Hermitian Hamiltonian leads to the skin effect in the non-Hermitian Hamilto-
nian [OKSS20], the bulk WZ term leads to the corner skin effect. Similar Z, quantization for
corner zero modes was recently discussed for Hermitian second-order topological superconduc-
tors [TJWar].

It should be noted that the nontrivial WZ term does not always imply the corner skin effect.
Suppose that a real line gap is open and that the Chern number Ch is well defined for each
band. Then, under rotation-type symmetry in Eq. (4.90), or more generally Eq. (4.98), with a
common unitary matrix U = V', we have the equality

2WZ = Ch (4.108)

modulo 2. This is because the inverse of the Green’s function G (k,w) == [iw — H (k)] plays
the role of the Hamiltonian H (k, s) introduced before, and the Chern number is given as the
three-dimensional winding number

1 113
Ch = —7{ tr [GdG™1 4.109
2472 J 10,2712 x[—o0,50] [ ) ( )

of G7! (k,w). The condition U = V is crucial in Eq. (4.108); for U # V, the gluing condition
UG (k,w=0)]"V"' = G (k,w=0) at w = 0 does not hold. As a corollary, Hermitian
Hamiltonians always satisfy Eq. (4.108) since Hermiticity is equivalent to the trivial rotation
(i.e., 1k = k) with U = V = 1. Thus, Chern insulators can also have the nontrivial WZ term
regardless of the presence or absence of the corner skin modes.

On the other hand, even though the non-Hermitian model in Eq. (4.66) takes the nontrivial
WZ term WZ = 1/2 for |y| < |A|, it has a nonzero real line gap except for |y| = |A|, and the
Chern number vanishes. While this difference between the WZ term and the Chern number
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may seem like a contradiction, we do not actually have any contradictions. First, Eq. (4.108)
is not always true for generic unitary matrices U and V. In fact, the non-Hermitian model in
Eq. (4.66), for which we have U # V [see Eq. (4.80)], does not satisfy Eq. (4.108). Moreover,
we inevitably have an obstacle to having a continuous path from the non-Hermitian model
in Eq. (4.66) to a Hermitian Hamiltonian while keeping the real line gap and rotation-type
symmetry in Eq. (4.80): if a Hermitian Hamiltonian H (k) = H' (k) respects Eq. (4.80), it
is subject to the constraint —io,H (k.) = H (k.) and hence vanishes [i.e., H (k.) = 0] at the
symmetric points k. = (0,0), (7, 7), meaning closing of both point and line gaps. This fact
implies intrinsic non-Hermitian topology of the model in Eq. (4.66).

4.4.4 Non-Bloch band theory in higher dimensions

While symmetry can protect skin effects, it can also vanish skin effects. Prime examples include
orthogonal reciprocity, as discussed in Sec. 4.2.1. Other prime examples are spatial-inversion
(parity) symmetry

PH (k)P ' = H(—k) (4.110)

with a unitary matrix P respecting P? = 1, and transposition-associated mirror symmetry
MHT () M;' = H (m;k) (4.111)

with a unitary matrix M; respecting M? = 1. Here, m; denotes a reflection that changes k;
into —k;; in two dimensions, for example, we have my (k;, k) = (—k,, k,) and m,, (k,, k,) =
(kz, —ky). Our model with the corner skin modes indeed respects these symmetry with P = g,
ie., Eq. (4.69)], M, = o, [i.e., Eq. (4.76)], and M, = 0, [i.e., Eq. (4.77)]. In one dimension,
no skin effect occurs in the presence of these symmetry [KSUS19]. This is compatible with
the vanishing winding number in the presence of these symmetry. Even in higher dimensions,
mirror-type symmetry in Eq. (4.111) vanishes the winding number and the consequent skin
effect along the 7 direction.
The absence of the skin effect in one dimension can be shown on the basis of

|Bu| = [Brral (4.112)

which is the salient result of the non-Bloch band theory (see Sec. 3.2 for details) [YW18,YM19].
We begin with the characteristic equation

det [H (8) — E] = 0. (4.113)

In terms of H (f3), spatial-inversion symmetry in Eq. (4.110) imposes

PH(B)P~=H(B7), (4.114)
and hence leads to
det [H (87") — E] = 0. (4.115)
This equation implies that 371 is another solution to the characteristic equation (4.113) if 3 is
a solution. Because of the assumption |81| < |fs| < -+ |Ban]|, we then have
Povi—ipa =G0 (1=1,2,---, M), (4.116)

Now, using Eq. (4.112), we finally have
|Bu| = [Bua| =1, (4.117)
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showing that continuum bands are formed by delocalized eigenstates. Similarly, transposition-
associated symmetry in Eq. (4.111) also leads to the absence of the skin effect in one dimension.

Importantly, the above discussion is not directly applicable in higher dimensions. This is
because the non-Bloch band theory in Refs. [YW18, YM19], especially Eq. (4.112), is inappli-
cable under the open boundary conditions along more than one direction. Remarkably, the
higher-order skin effect requires a modification of the non-Bloch band theory in higher dimen-
sions. In fact, if Eq. (4.112) were valid even in higher dimensions, transposition-associated
mirror symmetry in Eq. (4.111) leads to the absence of the skin effect along the i direction.
However, this would contradict the emergence of the corner skin effect in our two-dimensional
model with Eq. (4.111) for both z and y directions. Hence, the non-Bloch band theory is indeed
modified in higher dimensions.

Nevertheless, it is naturally expected that Eq. (4.112) is valid for an extensive number of
eigenstates even in higher dimensions. This is consistent with delocalization of the O (L?) bulk
modes in our model. On the other hand, the O (L) corner skin modes cannot be described by
the current non-Bloch band theory. It is thus important to develop a non-Bloch band theory
in higher dimensions in a general manner, which we leave for future work.

4.5 Third-order skin effect

The non-Hermitian skin effect can even have the third-order nature in three dimensions. For
the third-order non-Hermitian skin effect, O (L) corner skin modes emerge from all the O (L?)
modes. We provide a model that exhibits the third-order skin effect. The Bloch Hamiltonian
reads

H (k) =i\ (sinky) o, +1(y+ Acosk,) o, + i) (sink,) 0.
+ (v + Acosky) T, + A(sink,) 7, + (v + Acos k) T, (4.118)

where 7 and A\ are real parameters, and o;’s and 7;’s (i = z,y,2) are Pauli matrices. The
extended Hermitian Hamiltonian reads

i (9= (i 707)

= —\(sink,) pyo, — (v + Acosky) pyo, — A (sink,) pyo.

+ (v + Acosky) puTy + A (sink,) po1y + (v + Acos k) puTa, (4.119)
where p;’s (i = r,y,2) are Pauli matrices that account for the additional degrees of freedom.
Similarly to the second-order topological insulator, Hggy (k) is a prototypical example of a
third-order topological insulator that was first proposed by Benalcazar, Bernevig, and Hughes
[BBH17a, BBH17b]. It can exhibit zero-energy modes localized at the corners under the open
boundary conditions along all the three directions, although no boundary modes appear under

other boundary conditions.
The Hermitian model Hgpy (k) respects spatial-inversion symmetry:

(pyoyTy) F[BBH (k) (pyOyTy)il = f{BBH (—k). (4.120)
Correspondingly, H (k) respects

(0yTy) HT (k) (O'yTy)il =—H(-k). (4.121)
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Figure 4.8: Third-order non-Hermitian skin effect. The complex spectra of the non-Hermitian
model in three dimensions [Eq. (4.118)] are shown for 10 x 10 x 10 sites. The parameters are
given as A = 1.0, as well as (al, a2, a3, ad) v = 0.5 or (bl, b2, b3, b4) v = 1.5. The open
boundary conditions are imposed along none of the directions for (al, bl), only along the z
direction for (a2, b2), only along the x and y directions for (a3, b3), and along all the directions
for (a4, b4). The spectra for the periodic boundary conditions are shown as the grey regions,
while the spectra for the open boundary conditions are shown as the red dots. The corner skin
modes appear under the open boundary conditions along all the directions, as shown in (a4).
Reproduced from Fig. 5 of Ref. [KSS20]. Copyright 2020 by the American Physical Society.

Moreover, Hppy (k) respects mirror symmetry:

(px0z> I:IBBH (kxa kya kz) (pzaz)_l = FIBBH (_kx; ky; kz) 3 (4122)
(pxaw) jv{BBH (kxa kya kz) (pxax)_l - gBBH (kwv _kya kz) ) (4123)
(py7y) Hepw (ka, Ky, k2) (pyTy)_l = Hgpn (k) ky, —k-) . (4.124)

Correspondingly, H (k) respects

o H (ky by, k) oot = H (—ky, by, k2 (4.125)
oo H (ky Ky, k) ot = H (ky, —ky, k), (4.126)
Ty HY (kg by, ko) 7,70 = —H (kay by, =) . (4.127)

Such spatial symmetry plays a crucial role in the third-order skin effect.

The third-order topological insulator Hgpy (k) with |y/A| < 1 exhibits zero-energy corner
modes. Correspondingly, corner skin modes appear in the non-Hermitian model H (k) with
open boundaries along all the directions. In Fig. 4.8, we show the numerically obtained spectra
for various boundary conditions. Under the periodic boundary conditions, no skin effect occurs,
and all the eigenstates are delocalized through the bulk. The bulk forms four bands and their
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Figure 4.9: Wave functions for the third-order non-Hermitian skin effect. Under the open
boundary conditions along all the directions, eigenstates of the non-Hermitian model in three
dimensions [Eq. (4.118)] are shown for L = 10, v = 0.5, and A = 1.0. (a) Corner skin modes
(E = —0.050 — 0.086i). (b) Delocalized bulk modes (E = —1.49 — 1.34i). (c) Edge modes
(E = —1.15 — 0.361). (d) Surface modes (£ = —0.13 — 1.20i). Reproduced from Fig. 6 of
Ref. [KSS20]. Copyright 2020 by the American Physical Society.

spectrum is given as

E (k) = :I:\/(’y + Acosky)” + (v 4+ Acosk.)” + N2sin® k,

+ i\/)\2 sin? k, + (7 4+ Acosky)” + A2sin k. (4.128)

Under the open boundary conditions along all the directions, an extensive number of eigenstates
remain delocalized and form the bulk bands [Fig. 4.9 (b)]. However, some of the eigenstates
exhibit the skin effect and are localized at the four corners [Figs. 4.8 (a4) and 4.9 (a)]. For the
conventional skin effect, there appear O (L?) skin modes in a three-dimensional system with
the system size L x L x L; for the third-order skin effect, by contrast, only O (L) skin modes
appear at the corners. This also contrasts with zero-energy corner modes in Hermitian third-
order topological insulators, the number of which is O (1). Thus, the third-order non-Hermitian
skin effect gives rise to a new type of boundary physics in three dimensions.

Finally, it is notable that the three-dimensional model in Eq. (4.118) exhibits different
types of boundary modes in addition to the corner skin modes. As shown in Fig. 4.8 (a3),
gapless modes appear as long as the open boundary conditions are imposed for both x and
y directions. These gapless modes appear even though the periodic boundary conditions are
imposed along the z direction. Their spectrum crosses Im £ = 0, i.e., the imaginary line gap is
closed. Consistently, they are localized at the corners on the xy plane, but delocalized along the
z direction [Fig. 4.9 (¢)]. Moreover, other gapless modes appear as long as the open boundary

84



conditions are imposed in the z direction [Fig. 4.8 (a4)]. Their spectrum crosses Re £ = 0, i.e.,
the real line gap is closed. These gapless modes are localized on the surface perpendicular to
the z axis [Fig. 4.9 (d)].
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Chapter 5

Topological field theory of
non-Hermitian systems

Topology plays a key role in modern physics. Topological phases of matter have been ar-
guably one of the most actively studied condensed-matter systems in recent years [HK10,
QZ11,CTSR16]. A universal understanding of topological phases is obtained by topological
field theory in spacetime. For example, the Chern-Simon theory describes the quantum Hall
effect [Red84,NS83,ZHK89, FK91, LF91, WZ92a], and the axion electrodynamics describes the
magnetoelectric effect [QHZ08, EMV09]. One of the consequences of the topological field theory
description is the bulk-boundary correspondence: in the presence of a boundary, a topologi-
cal field theory is gauge dependent at the boundary, and this gauge noninvariance must be
compensated by an anomaly at the boundary [CH85].

While topological phases were mainly investigated for Hermitian systems at equilibrium,
topological phases of non-Hermitian systems have attracted growing interest [BBK21]. How-
ever, topological field theories have yet to be established for non-Hermitian systems. Field-
theoretical characterization of intrinsic non-Hermitian topology has remained elusive, although
it is crucial for understanding and exploring non-Hermitian topological phenomena including
the skin effect.

Here, we develop a field-theoretical description of the intrinsic non-Hermitian topological
phases. Because of the dissipative and nonequilibrium nature of non-Hermiticity, our theory
is formulated solely in terms of spatial degrees of freedom, which contrasts with the conven-
tional theory defined in spacetime. It provides a universal understanding about non-Hermitian
topological phenomena, such as the unidirectional transport in one dimension and the chiral
magnetic skin effect in three dimensions. Furthermore, it systematically predicts new physics;
we illustrate this by revealing transport phenomena and skin effects in two dimensions induced
by a perpendicular spatial texture. From the field-theoretical perspective, the non-Hermitian
skin effect, which is anomalous localization due to non-Hermiticity, is shown to be a signature
of an anomaly. As a virtue of the field-theoretical description, our theory is relevant not only to
noninteracting systems but also to disordered and interacting systems, as well as open quantum
systems described by master equations.

This chapter is based on Refs. [KSR21].

5.1 Topological field theory

As discussed in the preceding chapters, non-Hermitian systems give rise to unique topological
phases that have no counterparts in Hermitian systems. For convenience, we first summarize
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such intrinsic non-Hermitian topology in band theory, for which we develop a field-theoretical
description. Suppose that a non-Hermitian Bloch Hamiltonian H (k) has a point gap, i.e., it is
invertible in terms of reference energy F € C [GAK™ 18, KSUS19]:

Vk det (H(k) — E) # 0. (5.1)

Then, the following winding number W, (FE) € Z is well defined:

dk ( d
Wi(E) = — — | = logdet (H(k)—FE) ). 5.2
(B)i=— § ot (g towdet (1109 - ) (5:2)
A prototypical lattice model with nontrivial W; is the Hatano-Nelson model [HN96, HN97],
described by the Hamiltonian

- 1 g4 . At
== 3 [ ) it (=) ] (53)

n

where ¢, (¢]) annihilates (creates) a particle on site n, and v € R denotes the asymmetry of
the hopping amplitudes and describes the degree of non-Hermiticity. The corresponding Bloch
Hamiltonian reads

H(k) = —cosk +iysink (5.4)

and winds around the origin in the complex energy plane. Consequently, we have
Wi (E) = sgn (7) (5.5)

as long as the reference energy F is inside the region surrounded by the loop of H (k). Despite
the presence of a point gap, an energy gap for the real part of the spectrum closes at k = +m/2,
i.e., Re H (k = +m/2) = 0; this type of energy gap is called a line gap [SZF18, KSUS19]. To
understand a universal feature of non-Hermitian topology, let us consider the continuum Dirac
Hamiltonian around the line-gap-closing points:

H(k) = k +iy. (5.6)

This non-Hermitian Dirac Hamiltonian, similarly to its lattice counterpart, is characterized by
the nonzero winding number

Wi(E) = %sgn (v—ImFE). (5.7)

An important consequence of nontrivial W is the non-Hermitian skin effect [ZYF20, OKSS20].
In the presence of a boundary, there appear |IW;(FE)| eigenstates with the eigenenergy E at the
boundary. Notably, W;(FE) can be nontrivial for many choices of the reference energy E, and
consequently, an extensive number of eigenstates are localized at the boundary. In the lattice
model in Eq. (5.3), all the eigenstates are localized at the right (left) edge for v > 0 (y < 0).
Such anomalous localization is impossible in Hermitian systems and hence presents a unique
non-Hermitian topological phenomenon.

5.1.1 Spacetime field theory for Hermitian systems

Before developing effective field theories for intrinsic non-Hermitian topology, let us briefly
recall the Hermitian case. The effective field theories for Hermitian systems are obtained by
introducing a gauge potential (A, @) to a microscopic Hamiltonian and integrating out matter
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degrees of freedom. The quantum partition function of a Hamiltonian H (k) is given by the
path integral as

= / DYDy €' (5.8)

with the (real-time) action
_ / D0, + 6 — H(—i0s — A)] ) dadt. (5.9)

Here, ¥ and 1) describe matter degrees of freedom, and ¢ and A are scalar and vector potentials,
respectively. Integrating over the matter field, we obtain the effective action S[A, ¢| for the

external field,
elSlAdl . —Z[A’ 9l (5.10)
with
Z[A ¢ =det (w+¢— H(k—A)). (5.11)
In the presence of an energy gap, the effective action is given by a local functional of (A, ¢).

The response of the system to the external field can be read off from the current density

0S
0A’
In this formulation, the topological invariant that appears in the topological term of the effective
action is given by the Green’s function [IM87,Vol03, QHZ0S]

j = (5.12)

Go(k,w) == (iw — H(k))™", (5.13)

which is a non-Hermitian matrix. For example, if we consider the two-dimensional Dirac
Hamiltonian

H(k) = ko, + kyo, +mo, (5.14)
we obtain the (2 + 1)-dimensional Chern-Simons theory
C
S[A, ¢] = 4; > e A, 1), A (x, ) dPxdt (A, = —9), (5.15)
pvre{x,y,t}

where () is the Chern number defined by the Green’s function in Eq. (5.13):

d?kdw oGy 0G,* oGy * .
oy g (@2 (0260 (029)] e G0

%

The current corresponding to this topological action reads

. G4 .
Ji = o Z eij B (i=w9), (5-17)

Jj=z,y

which is the quantum Hall effect.

The above path integral, in its Euclidean version, assumes the Gibbs state as an equilibrium
density matrix. On the other hand, for the non-Hermitian case, the thermal equilibrium is no
longer achieved, and it is generally unclear what kind of path integral one should set up. This
constitutes a fundamental difficulty for developing effective field theories. This may be tackled,
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for example, by the Schwinger-Keldysh approach [Kam11,SBD16]. Nevertheless, as long as an
energy gap for the real part of the spectrum (i.e., line gap) stays open, the above procedure gives
rise to topological field theories even for non-Hermitian systems. In this case, non-Hermitian
topological phases are continuously deformable to their Hermitian counterparts [KSUS19], and
share the same topological field theory. For example, for non-Hermitian Chern insulators, the
above procedure delivers the (2 + 1)-dimensional Chern-Simons theory in Eq. (5.15) [HPG19].
However, this is not the case for intrinsic non-Hermitian topology. For the non-Hermitian Dirac
Hamiltonian in Eq. (5.6), the line gap vanishes, and the matter degrees of freedom cannot be
integrated out safely; if we calculate S[A, ¢] from Eq. (5.11), it is ill defined. We also note that
the quantization of W1 (E) in Eq. (5.2) is guaranteed by the point gap E(k) # E instead of the
line gap Re E(k) # E, which is a unique gap structure due to the complex-valued nature of the
spectrum [GAK'18, KSUS19,KBS19].

5.1.2 Space field theory for non-Hermitian systems

We thus seek a different formulation of field theory for intrinsic non-Hermitian topological
phases. Since these phases arise out of equilibrium, the temporal degree of freedom should play
a special role. Then, let us Fourier transform the field operator in time by

U(x,t) = /zDE(cc)e_iEtdE (5.18)

and focus on fixed energy E. We also switch off the scalar potential ¢ and focus on a time-
independent vector potential A(x). The action in Eq. (5.9) in spacetime reduces to

Sp = /@ZE [H(—i0, — A) — E]¢p dx. (5.19)

In contrast to Eq. (5.9), this action is written solely in terms of the spatial degrees of freedom.
The functional integral

ZplA] = / DipDig €F = det (H(k — A) — E) (5.20)

serves as a generating functional of the single-particle Green’s function (F — H(k))™' with
reference energy F. It is therefore expected to capture all physical information—including the
topological one such as the non-Hermitian skin effect. From this generating functional Zg[A],
we define the effective action Sg[A] by

eSrlAl — ZZEE—[[‘S]]. (5.21)

This type of spatial field theory is commonly used for Anderson localization [Efe97a, AS06] and
also for Hermitian topological systems in odd dimensions [SRFLO8]. It is discussed also for
Floquet systems and their boundary unitary operators [GGR21, LSGR21].

To further emphasize the special role played by the temporal direction, we note that one
of the wave numbers, such as k in Eq. (5.6), plays a role similar to frequency w for Hermitian
systems; the inverse of the Green’s function Gy(k,w) in Eq. (5.13) for a Hermitian Hamiltonian
is identified with a non-Hermitian Hamiltonian H (k) in Eq. (5.20) by replacing w with k.
Thus, the effective action of a non-Hermitian system in d 4+ 0 dimensions is mathematically
equivalent to that of a Hermitian system in (d — 1) +1 dimensions. Consistently, d-dimensional
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non-Hermitian systems are topologically classified in the same manner as (d — 1)-dimensional
Hermitian systems in the same symmetry class. In fact, non-Hermitian Bloch Hamiltonians
H (k) in d dimensions with Altland-Zirnbauer symmetry have the same topological classification
as Hermitian Bloch Hamiltonians in d — 1 dimensions with the same symmetry class [KSUS19].
The difference of one dimension corresponds to time. The degree of a point gap, such as ~ in
Eq. (5.6), gives a relevant energy scale and ensures the local expansion of the effective action
by the gauge potential.

Reference [XZGC21] argues that topological classification of non-Hermitian systems in one
dimension is the same as the Hermitian case from the field-theoretical perspective. At the face
value, this result may contradict the intrinsic non-Hermitian topological phases in one dimen-
sion [GAK™18, KSUS19]. However, since Ref. [XZGC21] assumes a line gap and a spacetime
formulation, it is not incompatible with our space formulation for a point gap.

5.2 One dimension

5.2.1 (1+ 0)-dimensional Chern-Simons theory

Below, we explicitly provide field theories of intrinsic non-Hermitian topology and discuss
unique phenomena including the skin effect. For the non-Hermitian Dirac Hamiltonian in
Eq. (5.6), the effective action is

SplA] ~itr [(H(-i0,) — E) " A(2)] , (5.22)

where the vector potential A is assumed to be sufficiently small. After taking the sum explicitly,
this reduces to

SulA] = Wi(E) / Az)da, (5.23)

where the winding number W;(E) is defined for reference energy E as Eq. (5.2). This is
the (1 + 0)-dimensional Chern-Simons theory. As discussed above, replacing x with ¢, we
have the (0 + 1)-dimensional Chern-Simons theory, which describes Hermitian systems in zero
dimension.

5.2.2 Unidirectional transport

From this effective action, the current is obtained as

jlz, E) = 5(5?(%] = Wi (E). (5.24)

Thus, particles unidirectionally flow from the left to the right (from the right to the left) for
Wy > 0 (W, < 0). Consistently, in the lattice model in Eq. (5.3), the hopping amplitude
from the left to the right is greater (smaller) than that from the right to the left for Wy > 0
(W1 < 0). This type of directional amplification ubiquitously appears, for example, in open
photonic systems [LGV15, GAKT18, WBN20, XLLH"21], parametrically driven bosonic systems
[MPBC18], and active matter [YHU ar]. The topological field theory in Eq. (5.23) underlies
such unidirectional transport induced by asymmetric hopping.

The unidirectional dynamics in one dimension is confirmed also for non-Hermitian lattice
models. Figure 5.1 shows the single-particle dynamics of the Hatano-Nelson model in Eq. (5.3).
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Figure 5.1: Unidirectional transport in the Hatano-Nelson model. The time evolution of the
center of mass of a wave packet is shown for the Hermitian case (y = 0, black dashed line)
and the non-Hermitian case (7 = £0.5, red solid lines). The periodic boundary conditions
are imposed with L = 60. The initial state is chosen as the single-site excitation |¢ (0)) =
|zg) with o = L/2 = 30. While the wave packet does not move in the Hermitian case, it
moves unidirectionally in the non-Hermitian case. The direction of the unidirectional transport
depends on the sign of the non-Hermiticity 7. Reproduced from Fig. S1 of Supplemental
Material of Ref. [KSR21]. Copyright 2021 by the American Physical Society.

While the wave packet does not move in the Hermitian case, it moves unidirectionally in the
non-Hermitian case. The velocity of the wave packet coincides with the group velocity

%ReE(k) =sink for k =sgn(y)(r/2), (5.25)
where the direction of the wave packet depends on the sign of the non-Hermiticity 7. These re-
sults are consistent with the topological field theory, which describes the unidirectional particle
flow in Eq. (5.24).

It should be noted that the topological invariant I/; may not necessarily lead to a quantized
observable despite the quantization of ;. This is partly due to the difference between right and
left eigenstates of non-Hermitian Hamiltonians [Brol4], similarly to the nonquantization of the
Hall conductance in a non-Hermitian Chern insulator [HPG19]. Nevertheless, the qualitative
behavior of non-Hermitian systems is correctly described by the topological field theory.

5.2.3 Anomaly inflow and skin effect

In the presence of a boundary, the topological action is no longer gauge invariant. Suppose
that the system described by Eq. (5.23) is confined to the region z1, < x < xg, outside of which
is the vacuum. Then, under the gauge transformation

df
A A+ = 5.26
— + 0 (5.26)

with an arbitrary function f, the effective action Sg changes by
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and explicitly depends on the choice of the gauge f. To retain gauge invariance, an additional
degree of freedom is required at the boundaries x = xr,, xg. This boundary system reads

SEEY = Wy (E) [p(zr) — (aL)], (5.28)

where () denotes the phase of the wavefunction at z. Since ¢ changes to ¢ + f through the

gauge transformation, Sy changes by
Sy e S —WA(E) [f(am) — f(an)]. (5.29)

Thus, while Sg and S are individually gauge dependent, their combination S+ Sp""4*Y
is indeed gauge invariant.

The boundary action in Eq. (5.28) describes a pair of the charges W;(E) and —W;(FE) at
xr = xr and x = z, respectively. These charges correspond to skin modes. Importantly, the
reference energy E can be chosen arbitrarily as long as Wj(F) is nontrivial. An extensive
number of the charges appear at the boundary, which correspond to an extensive number of
skin modes. Thus, the skin effect originates from a non-Hermitian anomaly. This contrasts
with Hermitian systems in one dimension, in which an anomaly results in only a finite number
of symmetry-protected zero-energy modes at the boundary.

It is also notable that the boundary charges create a potential gradient in the opposite
direction from the current in Eq. (5.24). This is in balance with the current-driving internal
field. Consequently, the system reaches a nonequilibrium steady state in contrast to the thermal
equilibrium state realized in Hermitian systems. We note that the anomaly discussed here is
distinet from a dynamical anomaly in Refs. [LAZV19, TK20,BS21,0S21].

5.3 Three dimensions: chiral magnetic skin effect

5.3.1 (3 + 0)-dimensional Chern-Simons theory

Topological field theories are formulated also in higher dimensions. In general, non-Hermitian
systems in d dimensions are described by the (d 4+ 0)-dimensional Chern-Simons theory for
odd d. This contrasts with Hermitian systems, which are described by the (d + 1)-dimensional
Chern-Simons theory for even d. Using topological field theories, we understand non-Hermitian
topological phenomena in a universal manner.

In three dimensions, the non-Hermitian Dirac Hamiltonian

H(k) = ko, + kyo, + ko, + 1y (5.30)

results in the (3 + 0)-dimensional Chern-Simons theory:

Ws(E)
SplA] = — — Zk: / eijndi ()0, Ap(z)d . (5.31)
ij
Here, W3 is the three-dimensional winding number [KSUS19]

1o o050 0 20 (o 0, 28

ijk
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where reference energy is assumed to be zero for simplicity. The current density of this theory
is
: _ 05p[A] _ Ws(E)

j(x, E) = A) o B(x), (5.33)
where B := V x A is a magnetic field. Thus, particles flow along the direction of the magnetic
field B. This is the chiral magnetic effect [FKWO08] in which non-Hermiticity induces chirality
imbalance in a manner similar to an electric field. This further implies that the direction
of amplification can be controlled by a magnetic field, which is a unique property of three-
dimensional systems. It is also remarkable that Ref. [BS21] recently constructed a lattice model
that exhibits the non-Hermitian chiral magnetic effect. Our discussions give a field-theoretical
understanding about it.

Under the open boundary conditions, Sg is gauge dependent. For the quantum Hall effect,
which is described by the (2 4 1)-dimensional Chern-Simons theory in Eq. (5.15), the gauge
noninvariance is balanced with an anomaly of chiral fermions at the boundary [CH85]. In the
non-Hermitian case, the boundary degrees of freedom are described by a Hamiltonian with a
single exceptional point,

H(k) = +k, — ik,, (5.34)

for [W5(E)| = 1 [DSST21]. In general, the number of exceptional points at the boundary is
|W3(E)|. This boundary Hamiltonian reduces to the inverse of the Green’s function of the
conventional chiral fermions by replacing k, with frequency w. In 1+ 1 dimensions, a chiral
anomaly is described by

. . E
Oudy + Ouji = — (5.35)

with an axial current (jf,j{‘) and an electric field £ = 0,4, — 0;A, [Adl69, BJ69, PS95].
Replacing time with another spatial component y, we have the following non-Hermitian analog

of the anomaly equation:

V-, E) = w, (5.36)

7T
where B := 0, A, — 0,A, is a magnetic field perpendicular to the surface. In terms of the global
quantities such as the charge Ny (V) of the right-moving (left-moving) particle H (k) = k,—ik,
|H (k) = —k,—ik,], as well as the magnetic flux ® := [ B(x)d*z, this anomaly equation reduces
to
W3 (E)P
Nr(E) — N.(E) = Ws(E)® (5.37)

s
Combining it with the global conservation law Ng + Ni, = 0 due to U(1) symmetry, we have

_WelB)e gy - WaE)D (5.38)

or o

Nr(E)

Here, ®/27 is the number of the fluxes since 27 denotes the flux quantum in the natural units
(i.e., e = h = 1). Thus, a signature of the topological action in three dimensions appears as
the skin effect induced by a magnetic field. The number of the skin modes is given by the
topological invariant W3 and the number of fluxes. While Ref. [BS21] predicted this three-
dimensional version of the skin effect—chiral magnetic skin effect—on the basis of the bulk
topological invariant, we here derive it from a chiral anomaly at boundaries.
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Figure 5.2: Winding number W;i(E) in the presence of magnetic fluxes. For the non-
Hermitian Hamiltonian in Eq. (5.39) with the vector potential in Eq. (5.40), the argument
of det [H (k,) — E|] is shown as a function of the wavenumber k,. The parameters are chosen
as v = 0.5 and L, = L, = 10. The periodic boundary conditions are imposed along all the
directions. The number of the magnetic fluxes is m = 1 for (a-e) and m = 5 for (f-j). The
reference energy is £ = —4 for (a, f), £ = =2 for (b, g), £ = 0 for (¢, h), E = 2 for (d,
i), and £ = 4 for (e, j). The winding numbers are given as Wi (E) = 0 for E = £4 (a, e, f,
i), Wi(E) = —m for (b, d, g, i), and W1(E) = 2m for (c, h). Reproduced from Fig. S3 of
Supplemental Material of Ref. [KSR21]. Copyright 2021 by the American Physical Society.

5.3.2 Chiral magnetic skin effect

As discussed above, a chiral anomaly of (2 + 0)-dimensional boundary states results in the
chiral magnetic skin effect. This result can also be confirmed in a lattice model. Here, we
investigate the following non-Hermitian system in three dimensions:

H (k) = cosk, + cosky + cosk, + iy (o, sink, + oy sink, + o, sink,), (5.39)

where v € R denotes the degree of non-Hermiticity. Let us impose a magnetic field along the
z direction. In particular, we consider the vector potential

2mmy 0 (=1 L-1),
Ay =———F, Ay =1 2rmz A, =0, (5.40)
L$Ly L y = L) s

where m is an integer, and L, and L, denote the lengths of the system along the z and y
directions, respectively. This vector potential gives

/Bzdxdy = 27m, (5.41)
which means the presence of m magnetic fluxes (note that 27 is the flux quantum in the natural
units).

In the presence of a magnetic field, the three-dimensional winding number of H (k) leads
to the one-dimensional winding number along the direction parallel to the magnetic field. In
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Figure 5.3: Chiral magnetic skin effect. Complex spectra of the non-Hermitian Hamiltonian
in Eq. (5.39) with the vector potential in Eq. (5.40) are shown. The parameters are chosen as
v=0.5and L, = L, = L, = 10. The number of magnetic fluxes is m =1 for (a, b) and m =5
for (¢, d). The periodic boundary conditions are imposed along the = and y directions. Along
the z direction, the periodic boundary conditions are imposed for (a, ¢), and the open boundary
conditions are imposed for (b, d). Skin modes appear under the open boundary conditions (b,
d). Reproduced from Fig. S4 of Supplemental Material of Ref. [KSR21]. Copyright 2021 by
the American Physical Society.

particular, if a magnetic field is imposed along the z direction, the one-dimensional winding
number

Wi(E) = — ]g " ngr ( dzz arg det (H (k.) — E)) (5.42)

can be nontrivial. Here, arg denotes the argument of a complex number. Figure 5.2 shows the
winding numbers W;(FE) for various choices of the reference energy E and the number m of
magnetic flux. While W (E) vanishes for E such that the three-dimensional winding number
W3(E) vanishes, Wi(E) is nonzero for E such that W3(E) is nonzero. Notably, Wi (FE) is
proportional to m.

According to the field-theoretical discussions, skin modes generally appear at a boundary
perpendicular to a magnetic field when the three-dimensional system supports the nontrivial
winding number. Consistently, under the magnetic field along the z direction, skin modes
appear under the open boundary conditions along the z direction (Fig. 5.3). This is also
consistent with the nontrivial (one-dimensional) winding number shown in Fig. 5.2. A similar
result has recently been reported in Ref. [NBS20].

We note that the number of skin modes is not necessarily proportional to the number of
magnetic fluxes in finite systems. The field-theoretical discussions assume infinite degrees of
freedom and do not strictly apply to finite systems. Nevertheless, they explain qualitative
behavior of non-Hermitian topological phenomena even in finite systems, as shown here for
the chiral magnetic skin effect. Similarly, in one dimension, the number of skin modes is not
necessarily proportional to the winding number W in finite systems, although we strictly have
this proportional relationship in semi-infinite systems (see Chap. 3 for details) [OKSS20].
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5.4 Two dimensions: spatial-texture-induced skin effect

5.4.1 Wess-Zumino term

Lower-dimensional topological field theories are derived from higher-dimensional ones. Topo-
logical field theories of Hermitian superconductors in 0+ 1 and 1+ 1 dimensions, and Hermitian
insulators in 2+ 1 and 3+ 1 dimensions are derived from the Chern-Simons theories in 2+ 1 and
4 + 1 dimensions, respectively [QHZ08]. Topological field theories of non-Hermitian systems in
even dimensions are also derived from higher-dimensional ones. Let us reduce the z direction
of the (3 + 0)-dimensional theory in Eq. (5.31) by considering z to be a parameter and making
the gauge potential A be independent of z. Then, the effective action in Eq. (5.31) reduces to

1
= — [ O(x, B)B(x)d’z. (5.43)
2m
This is the effective action of non-Hermitian systems in two dimensions. Here, 0 is a non-
Hermitian analog of the electric polarization in (1 + 1)-dimensional Hermitian systems [Van18].
It can be identified with the Wess-Zumino term [WZT71]:

1

2472 BZx[0,1]

0 = tr[H 'dH]* € R/Z, (5.44)

where H = H(k, s) is an extension of the two-dimensional Hamiltonian H (k) that satisfies

H(k,s=0)=H(k), H(k,s=1)=H, (5.45)

with a constant Hamiltonian Hy. In other words, 6 gives the integral of the three-dimensional
winding number density for an extension H (ky, Ky, s). Here, for simplicity, we set reference
energy F to zero and assume the absence of the one-dimensional winding number.

While Eq. (5.43) generally describes non-Hermitian systems in two dimensions, certain
symmetry is needed for the quantization of . For example, suppose that the system is invariant
under reciprocity

THY (k)T '=H(k), TT =-1 (5.46)

with a unitary matrix 7 (i.e., class AII" [KSUS19]). In terms of reciprocity, a magnetic field
B is odd. Hence, 6 should also be odd under reciprocity so that the action will be reciprocal.
Since 0 is well defined only modulo 1, it is quantized to be the Z, values

0=0,1/2, (5.47)

which gives the Z, classification of the topological phase. Moreover, 6 is quantized also in
spinless superconductors that respect particle-hole symmetry (i.e., class D [KSUS19]). The Zy
quantization is reminiscent of the quantized polarization in particle-hole-symmetric topologi-
cal insulators in 1 4+ 1 dimensions and time-reversal-invariant topological insulators in 3 + 1
dimensions [QHZ08].
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5.4.2 Skin effect induced by a spatial texture

The action in Eq. (5.43) generally describes non-Hermitian topological phenomena in two di-
mensions. The current density is

4 1
J

which shows a particle flow in the direction perpendicular to the gradient of #. Now, suppose
that 6 is spatially modulated along the y direction. Naively, such a y-dependent texture leads
to a flow along the y direction and is irrelevant to transport along the x direction. However,
Eq. (5.48) describes a perpendicular flow along the z direction as a result of non-Hermitian
topology.

To understand this non-Hermitian topological phenomenon, we here consider the two-
dimensional non-Hermitian system H = Hy + V with

Hy(k) = oy sink, + oy sink, + iy (cosk, + cos k), (5.49)
V(x) = o, sin¢(x) + iy cos p(x). (5.50)

We assume that V' is translationally invariant along the = direction and modulated only along
the y direction. In particular, we consider

p(x) = g - @y, (5.51)

Ly

where © describes the spatial gradient of the texture along the y direction. This spatial texture
induces nontrivial 6, which in turn leads to the unidirectional transport and the skin effect
along the x direction. For v = 0, the spectrum is entirely real and no skin effect occurs even in
the presence of the spatial texture [Fig. 5.4 (a, b)]. The transport phenomenon is understood
by the wave packet dynamics in a manner similar to the one-dimensional case (see Sec. 5.2.2 for
details). Consistently with the absence of the complex-spectral winding and the skin effect, the
center of mass of a wave packet does not move under the time evolution [Fig. 5.4 (c)]. For v # 0,
the spectrum generally becomes complex, but neither skin effect nor unidirectional transport
arises in the absence of the spatial texture [Fig. 5.4 (d, e, f)]. In the simultaneous presence of
and the spatial texture, on the other hand, the system exhibits the non-Hermitian topological
phenomenon due to the nontrivial Wess-Zumino term. Under the periodic boundary conditions,
the spectrum is characterized by the nontrivial winding numbers in the complex energy plane
[Fig. 5.4 (g)], which induce the skin effect under the open boundary conditions [Fig. 5.4 (h)].
Accordingly, the center of mass of a wave packet moves unidirectionally [Fig. 5.4 (i)]. Notably,
this transport along the z direction arises from the spatial texture along the y direction, which
is a unique feature of the two-dimensional case that is distinct from the one-dimensional case.
The topological field theory in Eq. (5.43) correctly describes this non-Hermitian topological
phenomenon.

Moreover, Fig. 5.5 shows the skin effect for various choices of the spatial gradient ©. For
sufficiently small © (< 1/4), no skin effect occurs [Fig. 5.5 (a)]. With increasing O, skin modes
gradually appear [Fig. 5.5(b)]. We count the skin modes as a function of © [Fig. 5.5 (c)].
Here, we investigate the inverse participation ratios >, |¢ (z, |t/ Doay [V (2, y)|? for all the
eigenstates 1. They decrease with o< 1/L,L, for delocalized eigenstates but remain to be
approximately one for localized eigenstates, and hence measure the degree of localization. It
is notable that the skin effect along the y direction or Anderson localization may arise since
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the texture breaks translation invariance along the y direction. Still, as long as the periodic
boundary conditions are imposed along the x direction, the inverse participation ratios are small
for all the eigenstates even under the open boundary conditions along the y direction. Thus, no
localization phenomena occur except for the skin effect along the x direction. The number of
the skin modes is compatible with the change of the Wess-Zumino term. As demonstrated by
these results, the spatial texture enables the control of the skin modes, which is also a unique
feature of two-dimensional systems.

After the present work [KSR21], a recent work [SZH21] used our topological field theory
descriptions and studied the geometric response of non-Hermitian systems in three dimensions.
In particular, Ref. [SZH21] used the Euclidean version of the Wen-Zee action [WZ92b] and
found a new type of non-Hermitian skin effects induced by disclination. Similarly, dislocation-
induced skin effects were proposed [PMRar, SP21, BEvdBM21]. These results also show the
universality and utility of our topological field theory descriptions.
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Figure 5.4: Non-Hermitian topological phenomena in two dimensions. Complex spectra of the
non-Hermitian Hamiltonian in Eq. (5.50) with L, = 50 and L, = 20 are shown under the
periodic boundary conditions for (a, d, g) and under the open boundary conditions along the
x direction for (b, e, h). The corresponding time evolution of the center of mass of a wave
packet along the z direction is shown for (c, f, i), where the periodic boundary conditions are
imposed, and the initial state is prepared to be [¢ (0)) o< >°, |z = L./2,y). (a, b, ¢) Hermitian
system with the spatial texture (y = 0 and © = 1). (d, e, f) Non-Hermitian system without
the spatial texture (7 = 0.5 and © = 0). (g, h, i) Non-Hermitian system with the spatial
texture (v = 0.5 and © = 1). Under the periodic boundary conditions, the complex spectrum
is characterized by nontrivial winding numbers, which lead to the skin effect under the open
boundary conditions. Consistently, the center of mass of a wave packet moves unidirectionally.
Reproduced from Fig. S5 of Supplemental Material of Ref. [KSR21]. Copyright 2021 by the
American Physical Society.
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Figure 5.5: Non-Hermitian skin effect in two dimensions. Complex spectra and wavefunctions
of the non-Hermitian Hamiltonian in Eq. (5.50) with L, = 50, L, = 20, and v = 0.5 are
investigated for various choices of the spatial gradient ©. The open boundary conditions are
imposed along both = and y directions. (a) Complex spectrum for © = 0.15. (b) Complex
spectrum for © = 0.5. (c) Number of the skin modes. The localized eigenstates whose inverse
participation ratios (IPRs) are less than 0.015 are counted as a function of © for the periodic
(orange dots) and open (red dots) boundary conditions, which are compatible with the change
of the Wess-Zumino (WZ) term along the y direction [Af := 0 (y = L,)—6 (y = 0); black curve].
The reference energy of the WZ term is chosen to be zero energy. Reproduced from Fig. S6 of
Supplemental Material of Ref. [KSR21]. Copyright 2021 by the American Physical Society.
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Chapter 6

Nonunitary scaling theory of
non-Hermitian localization

Anderson localization [And58] is the disorder-induced localization of coherent waves and plays
an important role in transport phenomena of condensed matter [LR85, EMO08], light [SBFS07,
LAPT08,5SC13], and cold atoms [BJZT08, RDFT08]. A unified understanding of Anderson
localization is provided by the scaling theory [Tho74, AALR79, ATAF80]. Based on the one-
parameter-scaling hypothesis of the conductance with respect to to the system size, the scaling
theory describes the criticality of localization transitions in three dimensions and predicts the
absence of delocalization in one and two dimensions. Symmetry further changes the universality
class of localization. For example, time-reversal symmetry (reciprocity) in the presence of spin-
orbit interaction enables delocalization even in two dimensions [HLN80]; chiral (sublattice)
symmetry enables delocalization of zero modes even in one dimension [Dys53,SJ81, GWI1,
Gad93,AZ97, BF97, BMSA98, BFGMO00].

As discussed in the preceding chapters, the physics of non-Hermitian systems has attracted
considerable interest in recent years [KYZ16, EGMK™'18, BBK21]. Anderson localization was
also investigated in non-Hermitian systems with asymmetric hopping [HN96, Efe97b, FZ97,
HN97, BSB97, FZ99, GK98, NS98, MSA98, HN98, YL99, LGV15, AHN16, GAK"18, MPBCI1S,
HKU19, ZYX20, JLY"19] and gain or loss [FPY94, BPB96, BC96, PMB96, Lon19a, Lon19c,
TME20, HS20], the latter of which is directly relevant to random lasers [Wie08, Wiel3]. Even
in the presence of non-Hermiticity, random lasers in one dimension never exhibit delocaliza-
tion similarly to the Hermitian case. By contrast, a non-Hermitian extension of the An-
derson model with asymmetric hopping, which was first investigated by Hatano and Nel-
son [HN96, HN97, HNO8], exhibits delocalization in one dimension. Importantly, this implies
the breakdown of the conventional scaling theory of localization, which predicts the absence of
delocalization in one dimension. In fact, since Anderson localization results from the destruc-
tive interference of coherent waves, non-Hermiticity should lead to decoherence and destroy
Anderson localization. However, it remains unclear how non-Hermiticity changes the scaling
theory of localization, and a unified understanding of non-Hermitian localization has yet to be
obtained.

In this chapter, we develop a scaling theory of localization in non-Hermitian disordered
systems. On the basis of the random-matrix approach for nonunitary scattering matrices, we
reveal that non-Hermiticity introduces a new scale and breaks down the one-parameter-scaling
hypothesis. Instead, we demonstrate the two-parameter scaling (Fig. 6.1), which is the origin
of the unconventional non-Hermitian delocalization. Furthermore, we establish the threefold
universality of non-Hermitian localization according to reciprocity (Table 6.1). While non-
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Hermitian systems exhibit unidirectional delocalization in the absence of symmetry, reciprocity
forbids it without internal degrees of freedom, which explains the absence of delocalization in
random lasers. We also find a new universality class of localization transitions: bidirectional

delocalization protected by symplectic reciprocity.
This chapter is based on Ref. [KR21].

6.1 Nonunitary scaling theory

6.1.1 Non-Hermitian delocalization

In the conventional scaling theory of localization [AATLR79], we consider the dependence of the
conductance G on the length scale L. A sufficiently small system is diffusive and described by
Ohm’s law (Boltzmann transport theory [AM76, Abr88]), leading to

G o L% (6.1)

in d dimensions. For a sufficiently large system, on the other hand, the wave coherence can
lead to Anderson localization and hence

G ox et (6.2)

with a > 0. The transition between these two regimes is understood by the scaling function

B(G) = dlog G

= Tl (6.3)

In the localized regime, it is given as
B (G) =1logG <0, (6.4)

and hence the conductance G gets smaller with increasing the system length L. In the diffusive
regime, we have

which is positive (negative) for d > 2 (d < 2). Consequently, a localization transition occurs
in three dimensions at G = G. where 3 (G.) = 0; by contrast, no transitions occur in one
dimension since 5 (G) is always negative and G monotonically decreases in both diffusive and
localized regimes.

Non-Hermiticity gives rise to a new regime that has no analogs in particle-number-conserving
systems. In fact, it describes coupling to an external environment and can lead to amplification
(lasing), resulting in

G x " (6.6)

with the amplification rate v > 0. In such a regime, we have
B(G)=logG >0 (6.7)

in arbitrary dimensions, and hence delocalization is possible even in one dimension. The am-
plifying regime can arise from nonunitarity of scattering matrices. In Hermitian systems, uni-
tarity is imposed on scattering matrices as a direct consequence of current conservation, and
the transmission amplitudes cannot exceed one (see Appendix D.1). In non-Hermitian systems,
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by contrast, such a constraint is absent and the conductance G' can be arbitrarily large, which
enables the amplification as G oc €7,

The delocalization in the amplifying regime can also be understood by the Thouless criterion
[Tho74,Ham20]. In the diffusive regime, it takes the Thouless time

tn o L (6.8)

for a particle to reach one end from the other in a system of size L. To realize this diffusive
transport, try, should be smaller than the time scale

1

determined by the level spacing AE oc L~ of the spectrum. Since we have

trn 2—d
— o L7, 6.10
A (6.10)
this is possible in three dimensions (i.e., t1,/At o L™! < 1) but impossible in one dimension
(i.e., trn/At o< L > 1). In the amplifying regime, on the other hand, particle inflow from the
environment enables the ballistic transport, and the relevant time scale is

tx o L. (6.11)
Since we have ;
N 1-d
— x L 12
AL T (6.12)

tx is comparable to At even in one dimension (i.e., tx/At ~ 1), which enables delocaliza-
tion. Notably, an additional relevant scale emerges in the amplifying regime, which implies the
breakdown of the one-parameter-scaling hypothesis [Tho74, AALR79], as discussed below.

6.1.2 Scaling equations

To uncover universal behavior of Anderson localization in non-Hermitian systems, we revisit
the Hatano-Nelson model [HN96, HN97, HN98] and derive the scaling equations for transport
properties. We show that the scaling behavior should be understood in terms of two parameters
rather than one. On the basis of this understanding, we later discuss Anderson localization for
other symmetry classes and find new universality classes. Our scaling theory also explains the
different universality classes between the Hatano-Nelson model and random lasers.

The Hatano-Nelson model [HN96, HN97, HN98] reads

A 1 Y\ o . YN At A At
H = Z {—5 [(J + 5) CILJrlCn + (J - 5) CILC’IZ“FI] + mnCLCn} ) (613)

where ¢, (¢l) annihilates (creates) a fermion at site n, J + /2 (J — v/2) € R describes
the hopping from the left to the right (from the right to the left), and m,, € R is the random
potential at site n. The asymmetry « of the hopping can be introduced in various open classical
systems such as photonic systems [LGV15,COZ*17, WKH"20, WKLS21, WDY 21, WDWF21],
mechanical metamaterials [BLLC19, GBvWC20], and electrical circuits [HHIT20, HHS*20]. In
open quantum systems, it can be realized with cold atoms [GAK 18], quantum walk [XDW20],
and solid-state spins [ZOH'21]. Whereas eigenstates are localized for weak ~y, they can be
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delocalized for strong . In the literature, the complex spectrum [HN96, FZ97, HN97, BSBI7,
799, GK98, HN98, HKU19], the conductance [BSBI7,YL99], and the chiral transport [LGV15,
MPBC18] were investigated for this lattice model. Nevertheless, the scaling theory has not
been fully developed.

The nature of the non-Hermitian delocalization should not depend on specific details of
the model but solely on symmetry. To understand such a universal feature, we construct a
continuum model from the Hatano-Nelson model. To this end, we focus on a narrow shell
around the band center Re £ = 0 and decompose the fermions by

b = M Mg + e (kp = 1/2) . (6.14)

Here, @ZR and @EL are the right-moving and left-moving fermions on the two Fermi points (val-
leys), respectively. Assuming that ¢g and v, vary slowly in space, we have the continuum

model .
i [ i) (Zif;) (6.15)
with

ha = (=10, +1v/2) 7, + mo (z) + mq (z) 7o, (6.16)

where Pauli matrices 7;’s describe the two valley degrees of freedom. We assume that mg and
m; are the Gaussian disorder that satisfies

(mi () =0, (mi () m; (2')) = 20,0 (x — 2’) (6.17)

with u; > 0 and the ensemble average (x). Although we begin with the Hatano-Nelson model,
we emphasize that ha does not depend on its specific details but universally on symmetry.
Generic non-Hermitian systems without symmetry including ha are defined to belong to class
A in the 38-fold classification of internal symmetry (see Sec. 2.4 for details) [BL02, KSUS19].
We note in passing that time-reversal symmetry of ha (i.e., 7,h57, ' = ha) does not change
the universality of localization.

Now, we formulate the scaling equations (functional renormalization group equations). The
conductance Gr from the left to the right (G, from the right to the left) is given by the cor-
responding transmission eigenvalue Ty (71,) according to the Landauer formula [Dat95, Imr97].
Then, we consider the incremental changes of T 1,, in addition to the reflection eigenvalue Ry,
from the left to the left (Rg from the right to the right), upon attachment of a thin slice in
which the scattering can be treated perturbatively. Such attachment renormalizes the proba-
bility distribution of Tg 1, and Ry /g, resulting in its scaling (Fokker-Planck) equation according
to the system size L. It provides all the information about the transmission eigenvalues Tg 1,
and the conductances Ggr,1,. In the Hermitian case, the scaling equations were obtained by
Dorokhov, and by Mello, Pereyra, and Kumar [Dor82, MPK88, Bee97, Beel5].

For the continuum model hy, we find that non-Hermiticity v amplifies one of Ty and Tf,
and attenuates the other, but does not have significant influence on their phases. As a result,

we have ( > ( )
dTw 1, Tr (1 — Rur
= +~Tgr /1 — 1
where {
(= — 6.19
o (6.19)

is the mean free path determined by the disorder strength (see Appendix D.4 for detailed
derivations). The ensemble average (x) is taken over the attached thin slice and the phases
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of the scattered waves for given Ty, and Ry r. This scaling equation (6.18) implies that the
transmission amplitudes are given as

TR/L = eiVLT (620)

with the transmission amplitude 7" in Hermitian systems. For L > /, the conductance fluctu-
ations become as large as the averages (G), which no longer represent the conductances of a
single sample. In fact, the conductance distributions are broad and asymmetric, and follow the
log-normal distributions. Consequently, the typical conductances are G¥P := e{°2G) instead of
(G). Because of

~typ
L

(L>>0) (6.21)

C

in the Hermitian case [Dor82, MPKS88, Bee97, Beel5], the typical conductances in the non-

Hermitian case are
GoP
R /0L, (6.22)

C

Thus, either one of the two conductances exhibits delocalization. For v > 0, for example, G%yp
diverges for L — oo above the transition point

1
Y=% =7 (6.23)
around which the critical behavior

|(;;{p B (;C|

g <=l (6.24)

appears.

6.1.3 Two-parameter scaling

In Hermitian systems, the scaling equations and the conductance G depend solely on L /0. This
confirms the one-parameter-scaling hypothesis, which underlies the absence of delocalization in
one dimension [Tho74, AALR79]. However, the obtained scaling equation (6.18) clearly indi-
cates the emergence of the additional scale v due to non-Hermiticity. In fact, non-Hermiticity
leads to the distinction between Gg and Gy, which is impossible in Hermitian systems by cur-
rent conservation. From Eq. (6.18), we show in Fig. 6.1 the renormalization-group flow based
on both Gr and Gf,. In addition to the fixed point

(Gr,GL) = (0,0) (6.25)
for the localized phase, a pair of additional fixed points
(Gr,GL) = (G.,0),(0,Ge) (6.26)
emerges away from Ggr = Gp. As a result, delocalization with
(Gr,GL) = (00,0), (0,00) (6.27)

is possible for sufficiently strong non-Hermiticity. Therefore, the emergence of the new scale and
the breakdown of the one-parameter scaling are the origin of the non-Hermitian delocalization
in one dimension.
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Figure 6.1: Two-parameter scaling of non-Hermitian localization. The renormalization-group
flow is shown according to the conductance Gy from the left to the right and the conductance Gy,
from the right to the left. The system size L increases along with the arrows. While localization
with (Ggr, G1) = (0,0) (black dot) occurs in Hermitian systems (Gr = G1,), delocalization with
(Gr,GL) = (00,0),(0,00) (red dots) arises for sufficiently strong non-Hermiticity. Reproduced
from Fig. 1 of Ref. [KR21]. Copyright 2021 by the American Physical Society.

It is also notable that the average conductances are

—_— Y

Ge

since the Hermitian counterpart is (G) /G ~ e %/4 [Dor82, MPKS88, Bee97, Beel5]. Hence,
(Gr) exhibits critical behavior at

(GryL) o(EV—1/40)L (6.28)

1
= — 2
which is different from the critical point
1
=7 (6.30)

of the typical conductance GR® [YL99]. Such a difference in the critical points is another
manifestation of the breakdown of the one-parameter scaling. In fact, if the scaling equations
are described solely by a single parameter £, both (Gr) and GR® are functions of L/¢, and
hence their critical points should coincide with each other. The different critical points of (Gg)
and Gﬁ'p imply the two different length scales ¢ and y~!.

In our nonunitary two-parameter scaling, the critical exponents are integers, which contrast
with the more complicated exponents in the two-parameter scaling of the quantum Hall transi-
tion [PG87,Huc95, KOKO05]. The simple scaling dimensions appear to be due to one dimension.
Several recent works [LOS21a, LOS21b, LXKKSar, LYRF21], which appeared after the present
work [KKR21]|, numerically demonstrated that non-Hermiticity leads to the new universality
classes of localization transitions also in higher dimensions. There, the universality classes are
characterized by complicated critical exponents in contrast to the one-dimensional case. It is
worthwhile to study these new universality classes in terms of the renormalization group.
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6.2 Symmetry

6.2.1 Threefold universality by reciprocity

Symmetry can further change the universality class of Anderson localization. In particular,
reciprocity, defined by
THYT'=H, TT7T*=+1, (6.31)

with a unitary matrix 7, is fundamental symmetry relevant to localization. For example, reci-
procity with 77* = +1 (—1) enhances (suppresses) the localization and shortens (lengthens)
the localization length in Hermitian wires in quasi-one dimension [Dor82, MPK88,Bee97,Beel5].
Moreover, symplectic reciprocity with 77 = —1 enables delocalization even in two dimen-
sions [HLN80], although delocalization is forbidden without symmetry protection. Here, we
uncover the threefold universality of non-Hermitian localization based on reciprocity (Table 6.1).
As demonstrated below, the influence of reciprocity is more dramatic than the Hermitian case.
We consider a non-Hermitian continuum model

hart = —iT.0, + mq (x) + (my (z) +i7/2) 70, (6.32)

which respects
Tohyi Ty = h (6.33)

and hence belongs to class AI' (orthogonal class; see Sec. 2.4 for details) [KSUS19]. Notably,
the asymmetry between the valleys [i.e., i(y/2) 7, term in Eq. (6.16)] is forbidden because of
reciprocity, which leads to

Gr = Gy, (6.34)

even in non-Hermitian systems. Thus, the nonunitary fixed points away from Gr = G, in
Fig. 6.1 cannot be reached, and the unidirectional delocalization is forbidden. In terms of the
scaling equations, reciprocity-preserving non-Hermiticity is irrelevant by the ensemble average
over disorder, whereas reciprocity-breaking non-Hermiticity gives rise to an additional scale (see
Appendix D.4 for detailed derivations). Consequently, the universality in class AI" is the same
as the Hermitian counterpart, which contrasts with class A. The continuum model in Eq. (6.32)
describes disordered wires with gain or loss (i.e., complex onsite potential), including random
lasers [Wie08, Wiel3]. Reciprocity underlies the absence of delocalization in random lasers.

On the other hand, reciprocal systems with 77" = —1 instead of T7T* = +1 are defined
to belong to class AII' (symplectic class) [KSUS19]. Although reciprocity imposes Gr = G,
also in this case, an important distinction in the symplectic class is the Kramers degeneracy,
which gives rise to a new type of non-Hermitian delocalization protected by reciprocity. The
corresponding continuum model is

hagt = (=10, + Ao, +1(v/2) 0,) 7o + mo (x) + my () 74, (6.35)

which respects
-1
(0yTz) him (0y72) " = hapi- (6.36)

Here, Pauli matrices o;’s describe the internal degrees of freedom such as spin. The scaling
equations can be obtained in a manner similar to class A (see Appendix D.4 for detailed
derivations). In this case, one of the Kramers pair is amplified to the right while the other is
amplified to the left because of non-Hermiticity. We then have

Ggp _ Giyp
Ge Ge

~ (67L 4 e—yL) e—L/f ~ 6("Y|_1/£)L (637)
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Table 6.1: Threefold universality of non-Hermitian localization based on reciprocity. The types
of delocalization and the typical conductances for L > ¢ are shown according to non-Hermiticity
~ and the mean free path ¢ > 0.

Class Symmetry Delocalization Conductances
A No Unidirectional e(F—1/0L
AT HY = H No oL/t

Al g,H"0;'=H  Bidirectional ((hl-1/0t

for L > ¢. Thus, the eigenstates are bidirectionally delocalized in contrast to classes A and Al
Without symmetry, one of the transmitted channels dominates the other, and non-Hermitian
delocalization is unidirectional. Hence, the bidirectional delocalization arises only in the pres-
ence of symplectic reciprocity. Despite Gg = G, the conductance of one channel serves as
GRr and that of the corresponding Kramers partner serves as Gp, in the two-parameter scaling
shown in Fig. 6.1, the sum of which yields the total conductance.

While reciprocity is equivalent to time-reversal symmetry

TH*T '=H (6.38)

in Hermitian systems, this is not the case in non-Hermitian systems. The corresponding sym-
metry classes with time-reversal symmetry are classes Al and AIT [KSUS19]. The universality
of non-Hermitian localization is also different depending on whether one imposes time-reversal
symmetry or reciprocity. In fact, time-reversal symmetry does not change the universality of
the non-Hermitian localization (see Appendix D.4 for details), whereas reciprocity can forbid
or enhance it as discussed above.

As discussed in Chap. 4, reciprocity enriches non-Hermitian topology and skin effects. While
reciprocity with 77* = +1 eliminates the skin effect, reciprocity with 77* = —1 gives rise
to the Z, skin effect, which is compatible with the aforementioned threefold universality of
non-Hermitian localization. It is worthwhile to clarify the analogy between the non-Hermitian
delocalization and skin effects. Reciprocity also leads to threefold universality of non-Hermitian
random matrices [HKKU20)].

6.2.2 Chiral and sublattice symmetry

In the presence of chiral or sublattice symmetry, zero modes can be delocalized even in Her-
mitian systems in one dimension, accompanied by the Dyson singularity [Dys53]. Similarly to
time-reversal symmetry and reciprocity, chiral symmetry and sublattice symmetry are distinct
from each other in non-Hermitian systems, the former (latter) of which corresponds to class
ATIT (AIITY) [KSUS19]. For example, a random hopping model with gain or loss respects chiral
symmetry, while a random asymmetric hopping model respects sublattice symmetry. In the
presence of chiral symmetry

TIhTAIHT:;l = _hAIHa (639)

non-Hermiticity is found not to change the universality of delocalization (see Appendix D.4 for
detailed derivations); by contrast, in the presence of sublattice symmetry

7'schAHIT7':;1 = —hamts (640)

non-Hermiticity enables the unidirectional delocalization in a manner similar to class A. In fact,
the asymmetry between the valleys is allowed for sublattice symmetry, but forbidden for chiral
symmetry.
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It is also notable that the non-Hermitian delocalization shares the same nature with the
delocalization of zero modes due to chiral symmetry. To see this correspondence, we notice the
following Hermitian Hamiltonian H (F) constructed from a non-Hermitian Hamiltonian H and
FE € C [FZ97,BMSA98, GAK'18, KSUS19, OKSS20):

A (E) = (HTEE* H5E> (6.41)

As discussed in the preceding chapters, this Hermitization procedure plays a key role also
in non-Hermitian random matrices [FZ97] and non-Hermitian topological phases [GAK™18,
KSUS19,0KSS20]. When E is eigenenergy of H and |¢) is the corresponding right eigenstate,
(0 |¥))" is a zero mode of H (E). Thus, delocalized eigenstates can appear in H even in the
presence of disorder if the corresponding zero modes are delocalized in H (E). Consistently,
when H belongs to class A or AII' (AI"), H (E) belongs to class AIIT or DIII (CI) [KSUS19],
for which delocalization of zero modes is possible (impossible) [BMSA98, BEGMO00].

Non-Hermitian disordered systems and the corresponding Hermitian systems also share the
same critical exponents of the localization transitions. As discussed above, the localization
transitions in one-dimensional non-Hermitian systems in classes A and AII' are characterized
by the critical exponent v = 1, which coincides with the critical behavior in the correspond-
ing Hermitian systems with chiral symmetry [MSHSP14, ABF*14]. A recent work [LXKKSar]
further confirmed this correspondence for non-Hermitian disordered systems in two and three
dimensions with extensive numerical calculations. A remarkable consequence of this correspon-
dence is superuniversality: the localization transitions in some different symmetry classes of
non-Hermitian disordered systems are characterized by the same critical exponent. Further-
more, this correspondence is helpful in predicting the unknown critical exponents in Hermitian
systems, which paves a new efficient way to study the localization transitions of Hermitian
systems by the corresponding non-Hermitian systems.

6.3 Lattice models

To confirm our nonunitary scaling theory, we generalize the transfer-matrix method [KMOS10]
to the non-Hermitian case and numerically investigate non-Hermitian lattice models. We con-
sider generic one-dimensional Hamiltonians with onsite disorder described by

A 1 /. R N R R .
H=>" {_5 (CLHJRCH + cILJLan) + cLMncn} , (6.42)

where ¢, (¢!) annihilates (creates) an N-component fermion at site n, and Jg (J) and M,
are N x N matrices that describe the hopping from the left to the right (from the right to
the left) and the disordered potential at site n, respectively. This Hamiltonian reduces to the
Hatano-Nelson model in Eq. (6.13) for Jg = J +~v/2, J, = J — /2, and M,, = m,,. In the
presence of Hermiticity Ht=H , we have

Jh=Ju, M= M,. (6.43)

When the disorder is sufficiently strong, the eigenstates are localized. The site-n component of
an eigenstate localized around n = nyq is generally described by

~In—nol /g,
U ~ {6 = (n<no), (6.44)

e~mmol/Sr (n > ny).

109



To efficiently obtain the localization lengths &, and &g, we begin with the Schrodinger
equation

J, J,
- 7an—1 - ?Lwn—i—l + Mn¢n - E¢na (645)

where /' € C is eigenenergy and 1, is the site-n component of the corresponding eigenstate.
This leads to

() = () i (PG I o

In this representation, the Schrodinger equation is viewed as the spatial evolution of the wave
function (v, @Dn_l)T from the left to the right through the system described by the transfer
matrix Mrp,. Then, the left localization length &, is given as the inverse of the smallest positive
eigenvalue of the 2N x 2N matrix

I T
— log (H MLn) (H MLn> . (6.47)
n=1
Similarly, we have

(5) (1) o (PEEI )

from which we can obtain the right localization length £&g. While My, describes the spatial
evolution of the wave function from the left to the right, Mg, describes that from the right to
the left.

In Hermitian systems, we have JE{ = Ji, and hence &, = £g. In non-Hermitian systems, on
the other hand, we can have two different localization lengths (i.e., &, # &r). This is similar
to the conductances G, and Ggr. As discussed above, the distinction between &1, and &g leads
to the two-parameter scaling of non-Hermitian localization. Moreover, we have |det My,| =
|det Mr,| = 1 in Hermitian systems, which ensures &, = g < oo and hence the absence of
delocalization in one dimension. However, this is not the case in non-Hermitian systems, which
enables the divergence of the localization length and the consequent delocalization even in one
dimension.

Figure 6.2 (a) shows the localization lengths for the Hatano-Nelson model in Eq. (6.13). For
~v > 0, the right localization length g diverges at a critical point, whereas the left localization
length &1, remains finite, which is a signature of the unidirectional delocalization. Around the
critical point, {g diverges as
x

|’Y - ’7C|
A symplectic extension of the Hatano-Nelson model is given by

. 1
H:Z{— [n+1 <J+%—1A01> o+l <J_@+1A01> én“} +éjz(mn+h0-3)én}-

2
(6.50)
The non-Hermitian skin effect of this model without disorder (W = 0) is investigated in Chap. 4
[OKSS20, KOS20]. This lattice model with h = 0 corresponds to the continuum model in
Eq. (6.35). In contrast to the original Hatano-Nelson model, we have &, = &g for h = 0 because
of reciprocity. As a result, both &, and &g diverge at a critical point [Fig. 6.2 (b)], which is a

Er (6.49)
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Figure 6.2: Non-Hermitian localization on lattices (L = 5000, J = 1.0, E' = 0). The disordered
onsite potential is uniformly distributed over [-W/2, W /2], and each datum shows the average
over 1000 samples. (a) Hatano-Nelson model (class A). For v > 0, the right localization length
diverges at a transition point, whereas the left localization length remains finite. The transition
points are W, = 2.22 (v = 0.4) and W, = 3.56 (v = 1.0). (b) Symplectic Hatano-Nelson model
(class AIT'; A = 0.2, W = 4.0). Both right and left localization lengths diverge at the transition
point 7. = 1.30 (red solid curve). The delocalization vanishes in the presence of a reciprocity-
breaking perturbation » = 0.01 (black dotted curve). Reproduced from Fig. 2 of Ref. [KR21].
Copyright 2021 by the American Physical Society.

signature of the bidirectional delocalization. Because of the reciprocity-protected nature, the
delocalization vanishes even in the presence of a small reciprocity-breaking perturbation i # 0,
which is unique to the symplectic class.

In Appendix D.5, we provide additional numerical results of non-Hermitian disordered sys-
tems in one dimension. The localization transitions of non-Hermitian disordered systems
in higher dimensions were also investigated by the transfer-matrix method in recent works
[LOS21b, LXKKSar, LYRF21].

6.4 Discussions

Transport phenomena of disordered systems, including Anderson localization and transitions,
enjoy universality in various scaling limits that is governed only by a few physical parameters.
This is embodied by the one-parameter scaling of localization [Tho74,AALR79]. In this chapter,
we have demonstrated that non-Hermiticity makes it break down and leads to the two-parameter
scaling, which generally describes the unconventional non-Hermitian delocalization.

While we here restrict ourselves to the single-channel case, it is meaningful to consider the
limit of thick wires to fully uncover universal properties—we leave this as a future problem.
Moreover, a random-matrix theory underlies Anderson localization [Bee97,Beel5], and it merits
further research to generalize this relationship to non-Hermitian systems. Notably, a recent
work [HKKU20] showed the threefold universality of complex-level-spacing distributions for
non-Hermitian random matrices.

From a topological perspective, our nonunitary two-parameter scaling shares similarities
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with the two-parameter scaling of the quantum Hall transition [PG87, Huc95, KOKO05]. As
discussed in the preceding chapters, the Hatano-Nelson model is characterized by a topological
invariant unique to non-Hermitian systems [GAK™18 KSUS19]. In our continuum model, this
topological invariant is sgn~y, similar to the Hall conductivity given by the Dirac mass term.
An open problem is to formulate an effective field theory for the nonunitary two-parameter
scaling, akin to the nonlinear sigma model augmented with a topological term for the quantum
Hall transition. This should also give a unified understanding about topology and localization
in open systems. In this regard, the topological field theory for non-Hermitian systems in
Chap. 5 [KSR21] should play a key role.
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Chapter 7

Conclusion

We have developed a general theory of open systems and established their universality. We
have demonstrated that non-Hermiticity, which is the hallmark of open systems, induces
new nonequilibrium physics in various aspects. Our theory has direct relevance to exper-
iments in view of recent experimental advances. For example, on the basis of our theory
in Chap. 4 [KSS20], the higher-order non-Hermitian skin effect has been observed in recent
experiments of active particles [PTG720] and acoustic materials [ZTJ"21]. Similarly, other
non-Hermitian topological phenomena, such as the chiral magnetic skin effect in three dimen-
sions, are expected to be experimentally realized in the near future. Such new nonequilibrium
topological phenomena should also open a new way of actively controlling materials. The uni-
versality of our theory manifests itself as robustness against disorder. In fact, in Chap. 6, we
have developed a scaling theory of non-Hermitian disordered systems and elucidated the uni-
versality classes of Anderson localization in open systems. Notably, the competition between
nonreciprocity and disorder has been experimentally observed in open photonic systems in one
dimension [WKH™"20]. Similarly, new universality classes of non-Hermitian disordered systems
should be confirmed in future experiments. Furthermore, the topological field theory developed
in Chap. 5 is universally applicable even in the presence of disorder and many-body interaction
since it is solely based on the gauge principle. It merits further research to explore the quantum
many-body physics of open systems on the basis of our topological field theory.

In this thesis, we aim to significantly advance nonequilibrium physics and further push it
into a new direction with new concepts. Our theory tells us a new characterization and clas-
sification of phases of matter far from equilibrium. Conventionally, we focus only on states
when we discuss phases of matter. For example, we study spontaneous symmetry breaking
and topological phases of thermal equilibrium states or ground states. Such a state-based
characterization assumes that we are interested only in physics at equilibrium. Even far from
equilibrium, it is arguably important to characterize states such as stationary states. However,
universal features of nonequilibrium phases appear not only in states but also in dynamics. In
fact, the intrinsic non-Hermitian topology cannot be captured only by states. Instead, it is char-
acterized by operators themselves, which contain information about both spectra and states.
Consequently, intrinsic non-Hermitian topology describes dynamical phenomena in open sys-
tems, prime examples of which include the skin effects and the anomalous delocalization. Such
operator-based characterization also underlies the new formulation of a field theory developed
in Chap. 5 [KSR21]. These discussions show that new physics actually hides in apparently
complicated nonequilibrium dynamics. To unveil it, we should further develop fundamental
concepts [DGI1]. We hope that the development of nonequilibrium physics, including a theory
of life [Sch44], will herald a new perspective on the world.
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Appendix A

Periodic table of topological phases

A.1 Hermitian systems

The topological classification of Hermitian insulators and superconductors is shown in the
periodic table A.1 [SRFL08,Kit09, RSFL10, CTSR16]. The classification procedure is based on
the following two steps:

e Identify the classifying spaces and topology (homotopy group) of Hermitian insulators
and superconductors in zero dimension (i.e., Hermitian matrices).

e Reduce the topological problem to an extension of the Clifford algebra and determine the
topology of insulators and superconductors in nonzero dimensions.

To classify topological phases of Hermitian insulators and superconductors, we first deter-
mine the topology of Hermitian matrices in each Altland-Zirnbauer (AZ) symmetry class [AZ97].
For example, let us consider a Hermitian matrix without any symmetry (i.e., class A). We as-
sume the presence of an energy gap, i.e.,

Vn E,#0 <= detH #0. (A.1)

Here, topology of this Hermitian matrix can be captured only by its wave function. Then, we
can generally flatten its energy spectrum without closing the energy gap so that the energy of
empty (occupied) bands is —1 (+1). After this spectral flattening, the Hermitian Hamiltonian
is expressed as

I _

H:U(O _Ol)Ul, UeU(m+n), (A.2)
where the number of the empty (occupied) bands is assumed to be m (n), and U is the unitary
group. The topology of the Hermitian Hamiltonian is solely determined by the unitary matrix
U. Notably, U has the following gauge ambiguity:

U—U (UO’“ [?n) . U;eU(i). (A.3)

Then, U belongs to a parameter space
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Table A.1: Topological classification table for Hermitian insulators and superconductors in the
tenfold Altland-Zirnbauer (AZ) symmetry class [SRFL08, Kit09, RSFL10]. Topological phases
are classified according to the AZ symmetry class and the spatial dimensions d. The entries
Z, Zso, 27, or O represent the presence or absence of nontrivial topological insulators and
superconductors, and types of these systems when they exist.

AZ class Classifying space d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7

A Co Z 0 Z 0 Z 0 Z 0
AIIT C 0 A 0 Z 0 Z 0 Z
Al Ro Z 0 0 0 27 0 Zo Zo
BDI Ri1 Zo Z 0 0 0 27 0 Zo
D Ro Zo Zo Z 0 0 0 27 0
DIII Rs 0 Zo Zo Z 0 0 0 27
Al Ra 27 0 Zs Zs Z 0 0 0
CII Rs 0 27 0 Zo Zo Z 0 0
C Re 0 0 2Z 0 Zs Zs Z 0
CI Ry 0 0 0 27 0 Zo Zo Z

Table A.2: Classifying spaces of Hermitian matrices and extension of Clifford algebra in the
Altland-Zirnbauer (AZ) symmetry classes.

A7 class Classifying space o Extension
Al R() O (m + n) /O (m) x O (n) 7z Olo’g — ClLQ
BDI R O (n) o CZLQ — Cl173
D RQ O (271) /U (n) Zg Cl072 — Cl[),g
DIII Rg U (2n) /Sp (TL 0 Cl073 — Cl0,4
ATT Ry Sp(m+n)/Sp(m)xSp(n) Z Clyy— Clsg
CII Rs Sp (TL) 0 Clg’() — Cl371
C Rﬁ Sp (TL) /U (n) 0 Olgjo — Cl271
CI R, U (n) /O (n) 0 Cl271 — Cl272

The disconnected components of this parameter space Cy determine the topological phases of
the Hermitian matrix, which are calculated by its zeroth homotopy group m (Cy). Because of
the mathematical fact

7o (Co) = Z, (A.5)

a topological phase characterized by an integer is well defined. This Z topological invariant is
given as the number of the occupied bands

Chg =n, (AG)

which is also known as the zeroth Chern number. The parameter space that determines the
topology of the system is called classifying space (e.g., Cp in class A). Additional symmetry can
change the classifying space, as well as the corresponding topological phase. The classifying
spaces in all the AZ symmetry classes are summarized in Table A.2.

We can determine the topology of Hermitian systems in an alternative algebraic way. To see
this algebraic approach, we consider the following low-energy description of the Hamiltonian in
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momentum space near the relevant momentum point:

d
i=1
where k = (ki,--- ,kq) is the deviation of the momentum, and T'g, I'y, -+, Ty form Clifford
algebra:
In the presence of the AZ symmetry [AZ97] defined by
THT '=H, T?=41, (A.9)
CHC™'=—-H, (C*=4+1, (A.10)
SHS'=-H, & =1, (A.11)
the Dirac matrices respect
TOoT =Ty, T, T=-I; (i#0), (A.12)

The Dirac mass term ml’y is responsible for a bulk energy gap and lives in the classifying space
discussed before. The topology of the original Hermitian system can be characterized by the
mass term mlI’y.

This topological problem can reduce to an extension problem of Clifford algebra. For exam-
ple, let us consider Hermitian systems without any symmetry (i.e., class A). In this symmetry
class, the Dirac matrices in the kinetic term satisfy

Clg = {T; [ {T, T} =20y, 4,5 € {1, -+ ,d}} (A.15)
The mass term anticommutes with all the Dirac matrices in the kinetic term, i.e.,
{To, I} =0 (1=1,---,d), (A.16)
which leads to C'l;, 1. We thus consider the mass as a generator that extends the algebra as
Cly — Clgyq. (A.17)

Counting different ways to extend the algebra means counting unitary equivalent masses that
determine topological phases. The classifying space Cy in Eq. (A.4) corresponds to the extension
of Clifford algebra in Eq. (A.17).

The above discussions can be applied to all the other symmetry classes, as summarized in
Table A.2. The two symmetry classes without antiunitary symmetry (complex class) form the
complex Clifford algebra which leads to

Cd+2 ~ Cd, <A18)

while the other eight symmetry classes with antiunitary symmetry (real class) form the real
Clifford algebra which leads to
Rd+8 ~ Rd. <A19)

As a consequence, the classification table A.1 for topological insulators and superconductors
has a periodic structure in terms of spatial dimensions: the complex class has a period of two,
and the real class has a period of eight.
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A.2 Non-Hermitian systems

The topological classification of non-Hermitian systems [KSUS19] is listed in the periodic tables
for the complex AZ symmetry class (Table A.3), the real AZ symmetry class (Table A.4), the
real AZ' symmetry class (Table A.5), the complex AZ symmetry class with sublattice symmetry
(Table A.6), and the real AZ symmetry class with sublattice symmetry (Table A.7). In addition
to this 38-fold topological classification, we provide the periodic tables for the AZ symmetry
class with pseudo-Hermiticity (Tables A.8 and A.9).

Table A.3: Topological classification table for non-Hermitian systems in the complex AZ sym-
metry class [KSUS19]. Non-Hermitian topological phases are classified according to the AZ
symmetry class, the spatial dimensions d, and the definition of a complex-energy point (P) or
line (L) gap. The subscript of L specifies the line gap for the real or imaginary part of the
complex spectrum.

A7 class G
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P o NN of

N

[=}
IS

o N o|lo N||
—
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o N o|lo N||
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Table A.4: Topological classification table for non-Hermitian systems in the real AZ symmetry
class [KSUS19]. Non-Hermitian topological phases are classified according to the AZ symmetry
class, the spatial dimensions d, and the definition of a complex-energy point (P) or line (L)
gap. The subscript of L specifies the line gap for the real or imaginary part of the complex
spectrum.

AZ class Gap Classifying space d=0 d=1 d=2 d=3 d=4 d=5 d=26 d=17

P R1 Zo Z 0 0 0 27 0 Lo

Al Ly Ro Z 0 0 0 27 0 Lo Zo
L R2 Zo Zo Z 0 0 0 27 0

P Ro Zo Zo Z 0 0 0 27 0

BDI Ly R1 Zo Z 0 0 0 27 0 Zo
L Ra X Ra Zo @ Lo Zo @ Za ZDL 0 0 0 272 @ 2Z 0

D P Rs3 0 Zo Zo Z 0 0 0 27
L Ra Zo Zo Z 0 0 0 27 0

P Ra 27 0 Zo Zo Z 0 0 0

DIII Ly Rs3 0 Zo Zo Z 0 0 0 27
L Co Z 0 Z 0 Z 0 Z 0

P Rs 0 27 0 Zo Zo Z 0 0

AII Ly Ra 27 0 Zo Zo Z 0 0 0
L; Re 0 0 27 0 Lo Zo Z 0

P Re 0 0 27 0 Zo Zo Z 0

CII Ly Rs 0 27 0 Zo Zo Z 0 0
L; Re X Re 0 0 27 @ 2Z 0 Zo @ Zo Zo @ Lo ZDZL 0

c P R~ 0 0 0 27 0 Zo Lo Z
L Re 0 0 27 0 Zo Zo Z 0

P Ro Z 0 0 0 27 0 Zo Zo

CI Ly R~ 0 0 0 27 0 Zo Lo Z
L Co Z 0 Z 0 Z 0 Z 0
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Table A.5: Topological classification table for non-Hermitian systems in the real AZ' symmetry
class [KSUS19]. Non-Hermitian topological phases are classified according to the AZ' symmetry
class, the spatial dimensions d, and the definition of a complex-energy point (P) or line (L)
gap. The subscript of L specifies the line gap for the real or imaginary part of the complex

spectrum.

AZT class
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Table A.6: Topological classification table for non-Hermitian systems in the complex AZ sym-
metry class with sublattice symmetry (SLS) [KKSUS19]. Non-Hermitian topological phases are
classified according to the AZ symmetry class with additional SLS, the spatial dimensions d,
and the definition of a complex-energy point (P) or line (L) gap. The subscript of S specifies
the commutation (+) or anticommutation (—) relation to chiral symmetry: 'Sy = +S.I". The
subscript of L specifies the line gap for the real or imaginary part of the complex spectrum.

SLS AZ class Gap Classifying space d=0 d=1 d=2 d=3 d=4 d=25 d=26 d=7
P C1 0 YA 0 Z 0 Z 0 Z
Sy AIII Ly C1 X Cq 0 VAV 0 A=Y/ 0 VA=Y 0 VA=Y
L C1 X Cq 0 VAV 0 A=Y/ 0 VAV 0 A=Y/
s N P C1 x Cq 0 217 0 Y/ 0 27 0 Y/
L Cy 0 Z 0 Z 0 Z 0 Z
P Co X Co ZD7Z 0 ZDZ 0 Y/ 0 ZDZ 0
S AIIL Ly Co Z 0 Z 0 Z 0 Z 0
L; Co Z 0 A 0 Z 0 z 0
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Table A.7: Topological classification table for non-Hermitian systems in the real AZ symmetry
class with sublattice symmetry (SLS) [KSUS19]. Non-Hermitian topological phases are classi-
fied according to the AZ symmetry class with additional SLS, the spatial dimensions d, and the
definition of a complex-energy point (P) or line (L) gap. The subscript of S specifies the com-
mutation (+) or anticommutation (—) relation to time-reversal symmetry and/or particle-hole
symmetry; for the symmetry classes that involve both time-reversal symmetry and particle-hole
symmetry (BDI, DIII, CII, and CI), the first subscript specifies the relation to time-reversal
symmetry and the second one to particle-hole symmetry. The subscript of L specifies the line
gap for the real or imaginary part of the complex spectrum.

SLS AZ class Gap Classifying space d=0 d=1 d=2 d=3 d=14 d=5 d=6 d=717
P R4 Zo Z 0 0 0 27 0 Zo
Siy BDI Lr R1 x R1 Zo @ Lo ZHZ 0 0 0 27.@ 27 0 Zo ® Lo
L; Ri X R1 Lo ® Lo VYA 0 0 0 270 27 0 Zo ® Lo
P Rs 0 Zo Zo 7 0 0 ) 27,
S _ DIII Ly R3 x R3 0 Zo® Ly Lo ® Lo ZHZ 0 0 0 27.® 27
L; ) 0 z 0 Z 0 Z 0 zZ
P Rs 0 27 0 Zo Zo Z 0 0
Siy ci Lr Rs x Rs 0 27 @ 27 0 Zo ® Lo Lo ® Lo YAy 0 0
L; Rs X Rs 0 223 27 0 Lo ®Ty Lo ®Zs VY 0 0
P Ry 0 0 0 27, 0 Zo Zo Z
S__ cI Lr Rz X Rp 0 0 0 27.@ 27 0 Lo ®Ly Lo ®ZLs ZOL
L; ) 0 z 0 z 0 zZ 0 Z
P Cy 0 Z 0 Z 0 Z 0 Z
S_ Al Lr Ry 0 0 0 27 0 Zo Zo z
L; Rs 0 Zo Zo Z 0 0 0 27
P Co Z 0 Z 0 Z 0 Z 0
S_4+ BDI Ly Ro Z 0 0 0 27 0 Zo Zo
L; Ro Zo Zo z 0 0 0 27 0
s, D P Cy 0 Z 0 Z 0 Z 0
L R4 Zo Z 0 0 0 27 0 Zo
P Co Z 0 Z 0 Z 0 Z 0
S_y DIII Lr Ro Zo Zo z 0 0 0 27, 0
L Ro z 0 0 0 27 0 Zo Zo
P Cq 0 Z 0 Z 0 Z 0 Z
S_ AII Ly Rs3 0 Zo Zo Z 0 0 0 27
L; Ry 0 0 0 27 0 Zo Zo z
P Co Z 0 Z 0 yA 0 yA 0
S_4+ CII Ly R4 27 0 Zo Zo Z 0 0 0
L; Re 0 0 27, 0 Zo Zo A 0
s, c P [ 0 Z 0 0 Z 0 Z
L Rs 0 27 0 Zo Zo Z 0 0
P Co Z 0 Z 0 Z 0 yA 0
S_y el Ly Re 0 0 27 0 Zo Za z 0
Ls Ra 27 0 Zo Zo z 0 0 0

continued on next page
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TABLE A.7 continued

P Rs3 0 Zg Zo Z 0 0 0 27,
S__ BDI Ly C1 0 Z 0 Z 0 Z 0 Z

L; R3 X R3 0 Zo ®ZLy Lo ®Zo VAYA 0 0 0 27 @ 2Z
P Rs 0 27 0 Zg Zo Z 0 0
Sit DIII Ly C1 0 Z 0 Z 0 Z 0 Z
L; Cy 0 z 0 z 0 z 0 Z
P Ry 0 0 0 27 0 Zo Zo Z
S__ CII Ly C1 0 Z 0 Z 0 Z 0 Z

L; Rz X Ry 0 0 0 27 @ 2Z 0 Zo ®Zo Lo ®ZLo ZHL
P R Zo Z 0 0 0 27 0 Zo
Sy CI L, C1 0 Z 0 Z 0 Z 0 Z
L; Cy 0 z 0 z 0 Z 0 Z

R1 X Ry Zo®Zs VYA 0 0 0 27 @ 27 0 Zo ® Lo
St Al Ly Ry Zo z 0 0 0 27 0 Zo
L; R Zo z 0 0 0 27 0 Zo
P Ro X Rao To DLy LoD Zo 7D7 0 0 0 27.& 27 0
Si_ BDI Ly Ro Zs Zg Z 0 0 0 27 0
L; Ro Zo Zs Z 0 0 0 27 0

s D P Rz X Ry 0 Ly ®Ly Lz DLz YASY 0 0 0 27 @ 27
L R3 0 Zo Lo Z 0 0 0 27
P R4 X Ry 27 @ 27 0 Ly ®ZLy Lo ®ZLo VYA 0 0 0
Sy DIIT Ly Ra 27 0 Zo Lo Z 0 0 0
L; Ry 27 0 Zo Zs Z 0 0 0
P Rs X Rs 0 27 @ 2Z 0 YR Y ZH7Z 0 0
Si ATl Ly Rs 0 27 0 Lo Zo Z 0 0
L; Rs 0 27, 0 Lo Zg Z 0 0
P Re X Rg 0 0 27 @ 27 0 Ty ® Ly Lo @ Lo DL 0
Sy CII Ly Re 0 0 27 0 Zo Lo Z 0
L; Re 0 0 27, 0 Zg Zs Z 0

s o P Rz X Ry 0 0 0 22 @ 2Z 0 To ®Loy Lo ® Lo ZHL
L Ry 0 0 0 27, 0 Zo Zo 7

P Ro X Ro VYA 0 0 0 27Z @ 2Z 0 Zo ® Lo Zoy ®Zo
Sq— CI Ly Ro Z 0 0 0 27 0 Zo Zg
L Ro Z 0 0 0 27 0 Zo Lo

Table A.8: Topological classification table for non-Hermitian systems in the complex AZ sym-
metry class with pseudo-Hermiticity (pH) [KSUS19]. Non-Hermitian topological phases are
classified according to the AZ symmetry class with additional pH, the spatial dimensions d,
and the definition of a complex-energy point (P) or line (L) gap. The subscript of 74 specifies
the commutation (+) or anticommutation (—) relation to chiral symmetry: I'ny = +n.I". The
subscript of L specifies the line gap for the real or imaginary part of the complex spectrum.

pH AZ class Gap Classifying space d=0 d=1 d=2 d=3 d=4 d=5 d=6 da=17
P Co Z 0 Z 0 Z 0 Z 0
n A Ly Co X Co ZOZ 0 YASWA 0 ZOZL 0 ZPZ 0
L; ) 0 Z 0 zZ 0 Z 0 zZ
P C1 0 7 0 Z 0 Z 0 Z
N4 ATII L, Ci1 xCy 0 ZPZL 0 ZBZL 0 ZPZL 0 YASYA
L; €1 x Cy 0 YAy 0 VAY/ 0 YAy 0 VAY/
Co x Co ey 0 Y 0 VY 0 Y 0
n_ AIII Ly Co Z 0 Z 0 Z 0 Z 0
L; Co Z 0 Z 0 Z 0 Z 0
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Table A.9: Topological classification table for non-Hermitian systems in the real AZ symmetry
class with pseudo-Hermiticity (pH) [KSUS19]. Non-Hermitian topological phases are classified
according to the AZ symmetry class with additional pH, the spatial dimensions d, and the
definition of a complex-energy point (P) or line (L) gap. The subscript of 1 specifies the
commutation (+) or anticommutation (—) relation to time-reversal symmetry and/or particle-
hole symmetry; for the symmetry classes that involve both time-reversal symmetry and particle-
hole symmetry (BDI, DIII, CII, and CI), the first subscript specifies the relation to time-reversal
symmetry and the second one to particle-hole symmetry. The subscript of L specifies the line
gap for the real or imaginary part of the complex spectrum.

pH AZ class Gap Classifying space d= d=1 d=2 d=3 d=14 d=5 d=6 d=7

P Ro Z 0 0 0 27 0 Zo Zo

' Al L, Ro X Ro ZOZ 0 0 0 2Z @27 0 Zo ®Zs Lo ®ZLo
L; R Zo z 0 0 0 27 0 Za
P R1 Zo Z 0 0 0 27 0 7o

— BDI Ly R1 x R1 Zo @ Lo ZHZ 0 0 0 27.@ 27 0 Zo Lo

Li R1 X R1 Zo @ Lo A=Y/ 0 0 0 270 27 0 Zo ® Lo
P Ro Zo Zo Z 0 0 0 27 0
ny D Lr Ro x Ra Zo® Lo  To®Lo A=Y/ 0 0 0 276 2Z 0
L; R Zo Z 0 0 0 27 0 Za
P Rs 0 Zo Zo Z 0 0 0 27

Nyt DIII Ly R3 x R3 0 Zo®Ls Lo ® Lo ZHZ 0 0 0 27.@ 27
L; ) 0 z 0 z 0 zZ 0 Z
P Ra 27 0 Zo 7o Z 0 0 0
ny All Lr R4 X Ry 276 27 0 Zo ® Ly Lo ®Ls VY 0 0 0
L; Rs 0 27 0 Zo Zo zZ 0 0
P Rs 0 27 0 Zo Zo Z ) 0
Ny ci Lr Rs x Rs 0 27, @ 27 0 Zo® Ly Lo ® Lo ZHZ 0 0
Ly Rs X Rs 0 22 27 0 Lo ®ZLy Lo®ZLs YAy 0 0
P Re 0 0 27 0 Zo Zo Z 0
ny c Ly Rg X Rg 0 0 27 @ 2Z 0 Zo @ Ly Lo ®ZLo &L 0
L; Rs 0 27 0 Zo Zo zZ 0 0
P Ry 0 0 0 27 0 Zo Zo Z

N4 cI L. Ry x Ry 0 0 0 27 @ 27 0 Lo ®Ly Lo ®ZLs 0L

L; ) 0 z 0 z 0 zZ 0 zZ
Co Z 0 Z 0 Z 0 zZ 0
ny_ BDI Lr Ro z 0 0 0 27 0 Zo Zo
L Ro Zo Zo z 0 0 0 27 0
P Co Z 0 Z 0 Z 0 Z 0
n_y DIIT Lr Ro Zo Zo z 0 0 0 27 0
L Ro Z 0 0 0 27 0 Zo Zo
P Co Z 0 Z 0 Z 0 Z 0
ny_ cI Lr Ry 27 0 Zo Zo z 0 0 0
L Re 0 0 27 0 Zo Zo Z 0
P Co 0 Z 0 Z 0 Z 0
n_y I Lr Re 0 0 27 0 Zo Zo z 0
L Ra 27 0 Zo Zo z 0 0 0

continued on next page
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TABLE A.9 continued

P Ra Zoy Zo 7 0 0 0 27, 0
n_ Al Ly Co z 0 z 0 z 0 Z 0
L R3 0 Zgy Zy Z 0 0 0 27,
P R3 0 Zgy Zs 7 0 0 0 27,
n__ BDI Ly cy 0 Z 0 Z 0 Z 0 z
L R3 X R3 0 Lo ®Ly Lo ® Lo VA=Y 0 0 0 27 @ 27
P Ry 27, 0 T Zy 7 0 0 0
n_ D Ly Co z 0 z 0 z 0 z 0
L; R3 0 Zo Zo Z 0 0 0 27
P Rs 0 27, 0 Zg Zs Z 0 0
n__ DIII Ly cy 0 Z 0 Z 0 Z 0 z
L Cy 0 Z 0 Z 0 Z 0 Z
P Re 0 0 27, 0 Zo Zo Z 0
n_ ATI Ly Co z 0 z 0 z 0 z 0
L; Rz 0 0 0 27 0 Zo Zo VA
P Ry 0 0 0 27, 0 Zg Zs Z
n__ CII Ly C1 0 Z 0 Z 0 Z 0 Z
L R7 X Ry 0 0 0 27.& 27 0 Zo ®Zy Lo ®Zo DL
P Ro Z 0 0 0 27, 0 T 7oy
n_ e} Ly Co Z 0 Z 0 Z 0 Z 0
L; R7 0 0 0 27 0 Zo Zo z
P R1 7oy 7 0 0 0 27, 0 Zoy
n__ CI Ly Cq 0 Z 0 Z 0 Z 0 z
L; Cy 0 Z 0 Z 0 VA 0 VA
Ra2 X Ra2 Zo @ Lo Zo @ Lo YASYA 0 0 0 27 @ 2Z 0
n_4 BDI Ly Ra 2 Zy Z 0 0 0 27, 0
L; Ra Zgy Ty z 0 0 0 27, 0
P Ra X Ra 27627 0 Zo ® Lo Lo ®Zo &7 0 0 0
N — DIII Ly Ry 27, 0 Zs Zo Z 0 0 0
L R4 27, 0 Zgy Zgy Z 0 0 0
P Rg X Re 0 0 27 @ 27 0 Zo ®Zo To®Zo Y 0
n_4 CII Ly Re 0 0 27, 0 Zsy Zgy Z 0
L Re 0 0 27, 0 Ty Zg z 0
P Ro X Ro Y 0 0 0 27 @ 27 0 Zo ®Zo Zo®Zo
N — CI Ly Ro z 0 0 0 27, 0 Zs Zgy
L; Ro z 0 0 0 27, 0 Ty Zg

A.3 Exceptional points

Table A.10 provides the classification of exceptional points and non-Hermitian topological
semimetals [KBS19]; see also Tables S2-S7 in Supplemental Material of Ref. [KBS19] for all
the 38 symmetry classes. This periodic table specifies exceptional points and non-Hermitian
topological semimetals in a general manner and describes their unconventional nodal structures.

Table A.10: Classification table of topologically stable exceptional points at generic momentum
points [KBS19]. The codimensions p are defined as p := d — dgp with the spatial dimensions
d and the dimensions dgp of the gapless region; exceptional points, lines, and surfaces are
described by dgp = 0, 1, 2, respectively. Complex-energy gaps have two distinct types, a point
(P) or line (L) gap, and the subscript of L specifies a line gap for the real or imaginary part of
the complex spectrum. The sign of PT (CP) symmetry means (PT) (PT)* [(CP) (CP)*].
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Appendix B

Non-Bloch band theory with symmetry

B.1 Derivation of the non-Bloch band theory in the sym-
plectic class

We develop the non-Bloch band theory in the symplectic class in a general manner [KOS20].
We consider a generic non-Hermitian Hamiltonian described by

Z Z Z Z NVStCn+],uscn vt (Bl)

n j==lpr=1ste{1,l}

In comparison with the standard class discussed in Sec. 3.2, the indices s,t € {1,]} are added
to Eq. (3.12) to account for the internal degrees of freedom arising from reciprocity in Eq. (4.7).
A prime example of such internal degrees of freedom is the spin degrees of freedom. Corre-
spondingly, the eigenstates are given by a linear combination of fundamental solutions

L

> n) (87 |¢ir) + B 6in)) (B.2)

n=1

where |¢;+) can be expanded as

| i) : Z P (B.3)

n=1se{t,l}
and is a right eigenstate of H (57F):
H (67) |pix) = E i) - (B.4)
The corresponding left eigenstate |x;.) of H (37) is defined by
HY(B5) Ixix) = E* [Xix) - (B.5)

Here, {£} reduces to {1,]} in the absence of perturbations that mix 1 and |, including spin-
orbit interaction; however, {4} does not necessarily reduce to {7, |} in the presence of spin-orbit
coupling. In addition, ;’s and Bi_l’s (1 =1,2,---,2lq) are the solutions to the characteristic
equation

det [H (8) — E] = 0. (B.6)
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Without loss of generality, they can be chosen to satisfy

B < o < |Bagl 1< |Bye] < -+ < BTV (B.7)

As described in Sec. 4.2.1, |¢;4) and |¢;_) are biorthogonal to each other and form a Kramers
pair. Specifically, we have

|6i-) =T Ixiv)™s  |is) = =T xa-)" (B-8)

under the appropriate choice of the gauges. Generally, the left eigenstates |x;+)’s are deter-
mined when the right eigenstates |¢,.)’s are given, except for the arbitrariness of normaliza-
tion [Brol4]. In this respect, Eq. (B.8) provides the normalization conditions of |x;+)’s. From
these fundamental solutions, the right eigenstate |¢) and the left eigenstate |x) in real space
can be given as

2lq

ZZln B i) + B i) (B.9)

i=1 n=1
2lg L

=SS n) (87" hs) + (80" i) (B.10)

i=1 n=1
under the appropriate choice of gauges and normalization. In addition, we have from Eq. (B.8)

2lq

T = ZZW B3 |bin) + 87" din)) (B.11)
i=1 n=1
which is the Kramers partner of |¢) satisfying (x|7|x)" = 0.
Generic eigenstates |¢) and T |x)" in Egs. (B.9) and (B.11) include 2lg x 2 X ¢ x 2 unknown
variables (ﬁ,(f;t) (1=1,2,-+-2lg; p=1,2,--+ ,q; s =1,]) in Eq. (B.3). They reduce to 2lq x 2
unknown variables, for example, ¢§1Ti), because of the Schrodinger equation (B.4) for the bulk

Hamiltonian H (3). Here, the rank of H () is assumed appropriately in a manner similar to
Ref. [YM19].

The 2lg x 2 unknown variables ¢;4 = b1y (i) (it =1,---,2lq) are determined by boundary
conditions. In general, the boundary Condltlons are given by details about the lq sites around
each end. Hence, the boundary conditions for |¢) can be represented by

2lq

Z £ B:) 6 + £5 (871 di-) =0, (B.12)

2lq

Z g] B@ gbz-ﬁ- + 5 g; (ﬁ )ng_) =0, (B13)

=1

where f;(8;) and g¢; (8;) (j = 1,2,---,2lq) are functions of f; that do not depend on L.
Importantly, the boundary conditions for the Kramers partner 7 |x)" are independent of the
boundary conditions for |¢), and should satisfy

fj (52>¢z++fj (ﬁ ) i— )— ) (B'14)

—BFg; (B;) dir + B g5 (B71) di) = 0. (B.15)

Z(
2?(
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For example, when the eigenstates vanish at n = 0 and n = L + 1 in a manner similar to the
example in Sec. 4.2.2, we have 2% (|gir) + |di-)) = S (X iy ) + B 19,)) = 0 for
|¢), and f; (B;) and g; (5;) are given by |¢;1). Indeed, the boundary conditions (4.51) for the
symplectic Hatano-Nelson model are described by these equations.

While we have 4/q unknown variables ¢;+, the boundary conditions (B.12)-(B.15) provide
8lq linear equations. This implies that Eqs. (B.12)-(B.15) are not linearly independent of each
other because of some constraints on f; (5;) and g; (5;). To have such constraints, we notice

from Egs. (B.12) and (B.14)

2lq 2lq
S B b= fi (87 b =0. (B.16)
i=1 i=1
In matrix representation, we have
fr(87) f1 (Bag) P1+
: _ : : =0. (B.17)
f2lq (ﬁli) f2lq (ﬁ;?q) ¢21qi
To have a nontrivial solution, the 2lq x 2lq coefficient matrix Fy should not be invertible, i.e.,
f1 (57) fr (Baig)
det Fy = det : : =0. (B.18)
f2lq (Bli) f2lq (6$q)

Consistently, these constraints are respected in the specific example (i.e., symplectic Hatano-

Nelson model) in Sec. 4.2.2 since (¢§1i) gbili))T and (qﬁfi) qﬁfi))T are linearly dependent on

each other. The combination of Eqgs. (B.13) and (B.15) yields similar constraints on g; (5;).
Then, from Egs. (B.12) and (B.13), we have

fi(Br) f1 (Baiq) f1 (B f (52_13) b1y
farg (B1) foiq (Baig) forg (BT) faiq (52_5;) Qggzﬁ —0. (B.19)
Broi (B1) Bsiq (Bag) — Brtar (B Ban g1 (Bag) $1- S
Bt gaiq (B1) 34921 (Bag) B " g4 (B7) Boiw 921q (Bg) ) \O2tq-
To have a nontrivial solution, the 4lq x 4lq coefficient matrix should not be invertible, i.e.,
f1(B1) J1 (Baig) fr(Bh) fi (Bag)
fauq ‘(51) Jauq ('ﬁ21q> fauq (‘517 Y Jauq (‘ﬁ{z;) _
WOl Blg (B) o Bh (B Bile (B - Gpta(ah) |70 (B2
BE gaiq (B1) 33149210 (B21q) B guq (BT Bg_qugzzq (Bg_l;)
The determinant on the left-hand side is a 2lg-th-order polynomial in terms of 8F, - -+, BQqu,
62_qu, -+, Br¥. Because of Eq. (4.26), its leading-order term includes (527;52_13_1 N
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and the next-to-leading-order term includes (ﬁglqﬁgl;flﬁ;léﬂ -7 in general. To satisfy
Eq. (B.20) for L — oo, the absolute values of these terms need to coincide with each other,
which leads to the condition (3.20) for the standard case [YW18, YM19]. However, this is
not the case in the symplectic class. In fact, the term including (52];52_13_1 - B does not
appear since it is proportional to det F,, which vanishes as shown in Eq. (B.18). As a result,
the leading-order term includes (ﬁzlqﬁi;l 527;72 - DY and the next-to-leading-order term
includes (527;_2627;_3 - B HE, both of which should be comparable to each other for L — oo.
Therefore, it is necessary to have

|ﬁ2lq52_l;_152_l;_2 T 51_1| - |ﬁ2_l;_252_l;_3 T 51_1|7 <B21)

leading to |Baig—1| = |Bayql, 1-€., Eq. (4.10) with M = lq.

B.2 Infinitesimal instability

The nonstandard non-Bloch band theory is relevant solely in the presence of symplectic reci-
procity in Eq. (4.7). Because of this symmetry-protected nature, continuum bands in the sym-
plectic class are fragile against a reciprocity-breaking perturbation, even if it is infinitesimal.
As shown in Appendix B.1, reciprocity forbids the term proportional to (85585 1 - B¢
for the boundary conditions. However, if we break reciprocity, such a term generally appears
and becomes the leading-order term, and the standard non-Bloch band theory characterizes
continuum bands.

Now, let € > 0 be a degree of the reciprocity-breaking perturbation. Since the leading-order
term € (BynrBons_1 -+ B 1)F and the next-to-leading-order term (BansByny_q -+ 51 )Y should be
comparable to each other for continuum bands, we have

€|BonrBang—1 -+ B 1" = |Bam By -+ B " (B.22)

Thus, for L — oo, we indeed have |85,/ = |B2um/, i-e., Eq. (4.10). This condition is respected
even for infinitesimal but nonzero ¢ > 0. More precisely, the reciprocity-breaking perturbation
should at least exceed € ~ O (|Bau|*") to satisfy Eq. (B.22). Notably, the order of the two
limits L — oo and € — 0 plays a decisive role. If we take L — oo first, the standard non-Bloch
band theory is relevant even for ¢ — 0. By contrast, if we take ¢ — 0 first, the left-hand side
of Eq. (B.22) vanishes and Eq. (B.22) cannot be satisfied even for L — oo, resulting in the
nonstandard non-Bloch band theory in the symplectic class.

For example, let us add a reciprocity-breaking perturbation to the symplectic Hatano-
Nelson model. Physically, such a perturbation can be a magnetic field. In the absence of the
perturbation, the characteristic equation is quartic and the four solutions 3y, B2, 87 ', By ' come
in Kramers pairs, as investigated in Sec. 4.2.2. For |g| > |A|, we have

|Bil = 1Ba] # 1 # 1611 = 1821, (B.23)

which is consistent with the continuum-band condition (4.10) in the symplectic class. In the
presence of the perturbation, on the other hand, Eq. (3.20) of the standard non-Bloch band
theory is relevant, as described above. However, Eq. (B.23) does not satisfy Eq. (3.20). As a
result, the continuum bands make a dramatic difference. Even the non-Hermitian skin effect
can vanish because of such an infinitesimal perturbation [OKSS20].
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B.3 Other symmetry classes

B.3.1 Symplectic class with additional symmetry

We have demonstrated that the non-Bloch band theory is altered by symplectic reciprocity
in Eq. (4.7). In the 38-fold classification of internal-symmetry classes [KSUS19], the simplest
symmetry class relevant to this nonstandard non-Bloch band theory is class AIIf, in which
only symplectic reciprocity is present. The nonstandard non-Bloch band theory replaces the
standard one also in other symmetry classes, as long as symplectic reciprocity is respected. For
example, it is relevant even in the presence of additional sublattice symmetry S or pseudo-
Hermiticity 1. The possible symmetry classes are classified in Sec. 4.3 [OKSS20, Shil9] on
the basis of the relationship between the intrinsic non-Hermitian topology and skin effects. In
addition to class AIIT, such symmetry classes include class DIIIT, class C with S, class Al with
n—, class CI with S, or n__, class BDI with S;_ or 77—, and class D with S_ (see Tables 4.1,
4.2, and 4.3).

It should be noted that certain symmetry leads to real-valued wave numbers and restores the
conventional Bloch band theory. For example, reciprocity without internal degrees of freedom
leads to the absence of skin effects and replaces the non-Bloch band theory with the Bloch
band theory, as discussed in Sec. 4.2.1. In a similar manner, certain additional symmetry can
replace the nonstandard non-Bloch band theory with the conventional Bloch band theory even
in the presence of symplectic reciprocity.

B.3.2 Particle-hole symmetry

Another important internal symmetry is particle-hole symmetry, which is defined by
CH'C'=—-H, CC"=+1, (B.24)

with a unitary matrix C. This symmetry is generally relevant to non-Hermitian supercon-
ductors. For CC* = +1 (—1), non-Hermitian Hamiltonians are defined to belong to class D
(C) [KSUS19]. In terms of the bulk Hamiltonian H (/3), it imposes

CHY (B)C™' = —H (8. (B.25)

Now, let E € C be eigenenergy of H (5) and |¢) (|x)) be the corresponding right (left) eigen-
state. Then, we have

H(BE(Cx))=-EC)), (B.26)
which means that C [x)* is an eigenstate of H (37!) with the eigenenergy —F. Hence, particle-
hole symmetry generally creates opposite-eigenenergy pairs (E, —F). This is to be contrasted
with reciprocity, which imposes a constraint on each eigenenergy.

Still, particle-hole symmetry makes zero energy E = 0 special and imposes a constraint on
zero-energy states. In particular, the zero-energy states do not exhibit skin effects for CC* = +1
(class D). To see this, we focus on the characteristic equation det [H () — E] = 0. Because of
particle-hole symmetry, we have

det [H (87") — E] =det [-CH" (8)C™" — E]
= det [-H (8) — E]. (B.27)

For generic E € C, this equation does not have direct relationships with the original charac-
teristic equation det [H (8) — E] = 0. For E = 0, however, we have

det [H (871)] = det [H (8)] = 0, (B.28)
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which implies that 37! is another solution to the characteristic equation with £ = 0. Thus,
similarly to the orthogonal class discussed in Sec. 4.2.1, zero-energy states are delocalized and
no skin effects occur in the presence of particle-hole symmetry. It should be stressed that this
discussion does not necessarily mean delocalization of generic eigenstates with £ # 0 even if
the Hamiltonian respects particle-hole symmetry. Furthermore, it is applicable only to zero
modes in continuum bands, and Majorana zero modes isolated from continuum bands can be
localized.

For CC* = —1 (class C), on the other hand, |¢) and C|x)" with £ = 0 form a Kramers
pair, and the above discussions are not applicable in a manner similar to the symplectic class.
Consequently, the zero-energy states, if present, should be described by the nonstandard non-
Bloch band theory. We note, however, that such zero-energy skin states may be forbidden to
appear in continuum bands for a different reason. Actually, in one-dimensional systems in class
C, no zero-energy skin state is protected by intrinsic non-Hermitian topology (see Table 4.1 in
Sec. 4.3). The non-Bloch band theory and the skin effects in non-Hermitian superconductors
need further study, which we leave for future work.

B.3.3 Commutative unitary symmetry and spatial symmetry

A similar modification of the non-Bloch band theory can arise from symmetry that is not
included in the 38-fold internal symmetry. For example, when unitary symmetry that commutes
with the Hamiltonian is present, the Hamiltonian is block diagonal in the eigenbasis of the
symmetry:

H(8) = D H: (). (B.29)

The symplectic Hatano-Nelson model discussed in Sec. 4.2.2 respects such unitary symmetry
for A = 0. Physically, this means conservation of spin due to the absence of spin-orbit coupling.
In this case, H; (f)’s do not interact with each other. Consequently, the non-Bloch band theory
should be applied not to the original Hamiltonian H () but to each subspace H; (). Similarly
to the symplectic class discussed in Appendix B.2, non-Hermitian systems with commutative
unitary symmetry are fragile even against an infinitesimal perturbation.

Spatial symmetry can also change the non-Bloch band theory. For example, Ref. [RHS19]
found a reciprocal skin effect in the presence of reflection symmetry. We point out that this
reflection-symmetry-protected skin effect should be accompanied by a modification of the stan-
dard non-Bloch band theory similarly to symplectic reciprocity. Our nonstandard non-Bloch
band theory in the symplectic class can further be modified in the presence of such additional
symmetry.
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Appendix C

Exact corner and edge modes

C.1 Corner skin modes

We exactly solve the non-Hermitian Hamiltonian in Eq. (4.66) with open boundaries along both
x and y directions. In particular, we obtain the corner skin modes in an analytical manner. Let
E € C be eigenenergy, and @; (m,n) € C? be the component of the corresponding eigenstate
at the lattice site (m,n) € [1, L]*. Because of periodicity of the bulk, as well as transposition-

—

associated mirror symmetry in Eqs. (4.76) and (4.77), ¢ (m,n) can be described as
§(m,n) = BIBIT, ¢ + BB, BERITmENG 4 gEATmpltg (1)

with 3, 8, € C and ¥4+ € C?. The normalization of J(m, n) requires |G, <1 and |§,| < 1.
In the bulk, the Schrodinger equation reads

M (m,n) + Top ) (m — 1,n) + Totp (m + 1, n)

F Ty (mn = 1) + Ty (myn+ 1) = E (m,) (€2)
with
M = —iy + voy, (C.3)
T,y = w7 (C.4)
T w (C.5)

With Eq. (C.1), the bulk equation leads to

H (87" B, Uex = E sy, (C.6)
where H (3,, ) is the bulk Hamiltonian

H(B,,8,) = —i (—77t§%y1 Jj;éyl) . (C.7)

At the boundaries, on the other hand, the Schrodinger equation reads
T, (0,m) =0, (C8)
T, ¢ (L+1,n) =0, (C.9)
Tyt (m, 0) = 0, (C.10)
T, (m, L+1) =0, (C.11)
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with m,n =1,2,--- | L. With Eq. (C.1), these boundary equations reduce to

Tov (Uiy + BT ) = T,H (Vo + BEO_) =0, (C.12)
T (BET'O oy +04) =T, (B0, +0__) =0, (C.13)
Ty (Tsg + By 0 ) =T, (4 + BYT0__) =0, (C.14)
Ty (5L+1U++ + U+ ) = (/BL+1U_+ —+ 'U__) = 0 (015)
Now, we express Ury as Uiy = (a4 bii)T. Then, these boundary equations reduce to
by + By 0y =by + 870 =0, (C.16)
frttagy +ay =B ay +a_ =0, (C.17)
ay4 + ByL+1a+_ =a_, + ByLHa__ =0, (C.18)
/8;+1b++ + b+, — ﬁj—i_lber + bff — O, (019)
which are further simplified to
a b !
+- +- —L-1
i S (s — , C.20
A4+ (b++> Y ( )
9 _ (b__+>1 = —pLH (C.21)
a4+ byt v
a—— b\ L+1-L—1
=\ =BT B, (C.22)
A4+ ++

Meanwhile, since U, (0U_y) is an eigenstate of H (8., 8,) [H (8%, 8,)] from Eq. (C.6), we
have

(Y + A8y —1iE) ary + (7 + ABy) by =0, (C.23)
(v + A8 —1E) a—y + (v + ABy) by = 0. (C.24)
Using Eq. (C.21), we have
v+ A3, —iF v+ ABy a B
(s iy 0 ) (57) o (©2)

To have a nontrivial solution (a;, by,) # 0, the determinant of the coefficient matrix should
vanish, which results in

B, =1 (C.26)

or
iE— Bl —B."
N BL+T _ g-L-1’

Similarly, since U, (0y_) is an eigenstate of H (f5;, 8,) [H (BI, B, 1)] from Eq. (C.6), we have

(C.27)

E=—i(y+A8) (C.28)
or ﬁL B—L
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Furthermore, since @, (7__) is an eigenstate of H (3., 8,) [H (8;*,5,")] from Eq. (C.6), we

have A3 Y
fy _'_ x 1E ’7 + y a++ i
(#5003 570 exs —im) (477) =0 (€30

resulting in
B (74 A8,)" = =B (3 + A —E)?. (C31)
Importantly, we need

|Ba| = [By] (C.32)

so that the above equation will hold for sufficiently large L.

The corner skin modes are described by Eq. (C.28). If Eq. (C.27) holds in addition to
Eq. (C.28), we have 3, = £1. Then, we also have £ = —i(y £ A) and 8, = —\/~, —v/A, which
further leads to |y| = |A| from Eq. (C.32). Hence, we have Eq. (C.26) as long as Eq. (C.28)
and |y| # |A| holds. Because of the normalization condition |3, < 1, we need

m <1 (C.33)
Equations (C.26) and (C.28) lead to
. 0 0
#0050 = B == (00 s 2o ) €30
H(5:L 8" - E=i ()\ (Bs aﬁ{ ) (A _O”Y )/’7) . (C.35)

Since (ayy byy)and (- b__) x (5§(L+1)a++ 6§(L+1)b++) are eigenstates of H (8,, 8,) and
H(8,",5,"), respectively, we have

(N> =9%) /v (B — 6.1 a++) B
( 2INBe = 5 BT (8 =) /’y> (b++ " .

2(L+1) 2 2\ 2
(8. — 8,1 (g—) =— (A 7 ) . (C.37)

Ay
To satisfy this equation for sufficiently large L, we need |8,/8,] = 1, i.e., Eq. (C.32). Fur-
thermore, the phase of §, is quantized by this equation. Since we have |5,;| = |5,] # 1, the
eigenstates are localized at the corners, and the skin effect occurs. The spectrum of these corner
skin modes is

which leads to

E=—iy(14+€%), 0€0,2n], (C.38)

and their number is 2L.
On the other hand, the eigenstates described by Eq. (C.29) are delocalized through the
bulk. With 3, = ¢*v, Eq. (C.29) reduces to
v sin (k, L)

T sin (ky (L+1))’ (C.39)

which quantizes the wave number k, € [0,27]. We have L real solutions in k, € [0, 7] for
|v/A| > 1; all the 2L? eigenstates do not exhibit the skin effect and are delocalized through
the bulk. For |y/A| < 1, on the other hand, we have L — 1 real solutions in k, € [0, 7]; the
corresponding 2L (L — 1) eigenstates are delocalized, while the other 2L eigenstates are the
corner skin modes.
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C.2 Edge modes

C.2.1 Open boundary conditions along the y direction

We consider the non-Hermitian Hamiltonian in Eq. (4.66), imposing the open boundary con-
ditions along the y direction and the periodic boundary conditions along the x direction. The
Schrodinger equation is given as

My, (n) + Tyt (n — 1) + T, (n+ 1) = B4 (n) (C.40)
in the bulk (n =2,3,---,L — 1), and
My, (1) + T, (2) = E¢ (1), (C.41)
My (L) + Ty B (L — 1) = B (L) (C.42)
at the edges. Here, T),; is defined as Eq. (C.5), and M, is defined as
My, = —i(y+ Acosk,) + A (sink,) o, + vo,. (C.43)

When ¢ (0) and 4 (L + 1) are respectively defined by the bulk equations (C.40) for n = 1 and
n = L, the boundary conditions in Egs. (C.41) and (C.42) reduce to

Typth (0) = Ty_tp (L +1) = 0. (C.44)

Now, suppose that j, is a solution to the characteristic equation det [H (3,) — E] = 0 for
eigenenergy E € C, where the bulk Hamiltonian H (8,) is given as

H (By) - ka + ByTy— + ﬁy_lTy—i—- (0'45)

Because of transposition-associated mirror symmetry in Eq. (4.77), By ! is another solution to
the characteristic equation for the same eigenenergy E. Hence, the corresponding eigenstate is
generally expanded as

¥ (n) = Bye, + pyHire (C.46)
with |8,] <1 and ¢ € C?. The boundary conditions (C.44) further reduce to
Ty (G +Be) =T, (BLe, + ) =0. (C.47)

Thus, for |5,] < 1 and sufficiently large L, we need

gy o ((1)) e (é) . (C.48)

We note that this is not necessarily required for |3,| = 1. Since Bjc} is an eigenstate of the
bulk Hamiltonian H (f,), we finally have

E = —iy —ike e, (C.49)
gl

For the appearance of these edge modes, we need the normalization condition |5,| < 1, i.e.,
7‘
—| <1 C.51
) (C51)

The obtained analytical results are consistent with the numerical results in Fig. 4.5.
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C.2.2 Open boundary conditions along the x direction

We next consider the non-Hermitian Hamiltonian in Eq. (4.66), imposing the open boundary
conditions along the x direction and the periodic boundary conditions along the y direction.
The Schrodinger equation is given as

My, (n) + Topth (n = 1) + To_t) (n+ 1) = E¥ (n) (C.52)
in the bulk (n =1,2,--- L), and
Tost0 (0) = TtV (L +1) = 0 (C.53)
at the edges. Here, T, is defined as Eq. (C.4), and My, is defined as
My, = =iy + (v + Acosky) oy + A (sin k) 0. (C.54)
The bulk Hamiltonian H (3,) is given as
H (B) = My, + BoToe + B, T (C.55)
Similarly to Appendix C.2.1, an eigenstate is generally expanded as
U (n) = Bré, + BLTTNE (C.56)
with |3,| <1 and & € C?. The boundary conditions (C.53) further reduce to
Tpv (Cp +BETE) =T, (BE'e, + ) = 0. (C.57)

Thus, for |5,] < 1 and sufficiently large L, we need

g, =~ ((1)) i~ (?) . (C.58)

Since BE¢y is an eigenstate of the bulk Hamiltonian H (f3,), we have

E = —iy —iA\f,, (C.59)
—iky _ _
e X (C.60)

To satisfy Eq. (C.60), we need e *v € R, i.e., k, = 0, 7. For k, =0 (k, = 7), Eq. (C.60) leads
toy = —A (y = A). Thus, in contrast to Appendix C.2.1, the parameters v and A should be
fine-tuned for the appearance of the edge modes. For these fine-tuned parameters, we have
My, —o,x = —i7, and hence 3, = 0 and E = —iy. All the 2L eigenstates of H () with k, = 0,7
belong to the same eigenenergy and form an exceptional point. A half of the eigenstates are
localized at the left edge and the other half of them are localized at the right edge. The obtained
analytical results are consistent with the numerical results in Fig. 4.5.
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Appendix D

Scattering theory of non-Hermitian
disordered systems

D.1 Scattering and transfer matrices

We consider a non-Hermitian disordered system H in one dimension connected to two ideal
leads. A wave incident on the disordered region from the left (right) is

m

ah=(af af - ad)" o= (00 b e )] (D.1)
and the reflected and transmitted waves scattered to the right (left) are

bt = (bir by - b})T [agut = (af a, - a]’v)T] ) (D.2)

The scattering matrix S relates these incident and scattered waves by

- +
Aout _ ain — TL tL
<bjut>_s(bin)7 5= <tR TR)’ (D-3)

where r, (rg) is an N x N invertible matrix that describes the reflection from the left to the
left (from the right to the right), and tg (f1) is an N x N invertible matrix that describes the
transmission from the left to the right (from the right to the left). In a similar manner, the

transfer matrix M is defined by
bjut _ a'i-"I_l
(b; ) _M(a;n). (D.4)

These definitions of the scattering matrix and transfer matrix mean

Aoy = 7“Lozfr“1 + t1b;,, (D.5)

bl =trai +rrbi, (D.6)

bowe = Muag, + Misag,,, (D.7)

b;l = Mgla;; —|— Mgga;ut, (DS)
which leads to ) .
. tR — TRtE L TRtE
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and

ry, = —M;QlMgl, (DlO)
rr = MMy, (D.11)
t, = My, (D.12)
tR - M11 - M12M231M21. (Dlg)
Notably, we have
dett
det M = det [(tg — rrty're) tp' — (retp!) to (=t ')t = det tR. (D.14)
et iy,

When the system is closed (i.e., isolated from the environment) and hence the Hamiltonian
H is Hermitian, the amplitude of the waves is conserved under the scattering:

lat|* + |0 ]” = |agu|” + [0 |- (D.15)

n out out

As a result, the scattering matrix S is unitary:
STS =55t =1. (D.16)

Unitarity of S implies that the Hermitian matrices tLtTL, thL, 1-— rLrE, and 1 — TRTE{ have the
same set of eigenvalues. In addition, since we have

+ A\ + +\f +
lait|* = |ague|” = [bie]” = |b2]* = (bbé:“) T (b,;{:lt) = (;_ ) MM (;_ ) (D.17)

1 in out out

with a Pauli matrix 7., the transfer matrix M is pseudo-unitary:
.Mt =M (D.18)

However, when the system exchanges energy or particles with the environment and hence
the Hamiltonian H is non-Hermitian, the scattering matrix S and the transfer matrix M are
not unitary and pseudo-unitary, respectively, which can change the universality of localization
transitions.

D.2 Symmetry in scattering theory

When the system respects symmetry, certain constraints are imposed on the non-Hermitian
Hamiltonian H and the nonunitary scattering matrix S. Importantly, non-Hermiticity and
nonunitarity change the nature of symmetry, and the symmetry constraints become different
from the conventional constraints in Hermitian systems. While the symmetry constraints for
non-Hermitian Hamiltonians H are identified in Refs. [BL02, KSUS19], we here provide the
symmetry constraints for nonunitary scattering matrices S (Table D.1). Our discussions are
based on the relationship between H and S (Mahaux-Weidenmiiller formula [Bee97, Beel5)):

1-inK (E) _ 1
ek (B K(E) =Wt W, (D.19)

S (F) =W,

where E € C is energy of the incident and the scattered waves, and W describes the coupling
between the system and the leads and is assumed to commute with the symmetry operations.
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D.2.1 Time-reversal symmetry and reciprocity
Time-reversal symmetry for non-Hermitian Hamiltonians H is defined by

TH*T '=H, TT"==#l, (D.20)

where 7T is a unitary matrix (i.e., 777 = 77! = 1) and commutes with the coupling matrix
W (i.e., TW*T—1 =W). Then, we have

* —1 __ 1 _ *
TK*(E)T = T HW =K (£, (D.21)
and hence |4 K (B
* o L+am R -
TS*(E)T = T=ink (B7) STH(EY). (D.22)

For TT* = +1 (TT* = —1), non-Hermitian systems are defined to belong to class Al (AII)
[KSUS19].

Non-Hermiticity enables a Hermitian-conjugate counterpart of time-reversal symmetry as
another fundamental symmetry (TRS' in Ref. [KSUS19]). Because of the difference between
complex conjugation and transposition, the symmetry defined by

TH'T ' =H, TT"=+=+l, (D.23)

is distinct from time-reversal symmetry defined by Eq. (D.20). As a consequence of this sym-
metry, we have

TKT (E)T ' = (E), (D.24)

and hence

1 —inK (E)
1+irK (E*)
For TT* = +1 (TT* = —1), non-Hermitian systems are defined to belong to class AI" (AII')
[KSUS19]. For T = 1, for example, Eq. (D.25) implies

TST(EYT ' = = S(E). (D.25)

i =ry,, TR =rR, t =tg, (D.26)
and hence the transmission probability from the right to the left is equivalent to the transmission
probability from the left to the right [i.e., tr (t,t] ) = tr (tgth)]. Thus, the symmetry defined by

Table D.1: Symmetry of non-Hermitian Hamiltonians A and nonunitary scattering matrices
S. A typical representation of symmetry is shown for each class, where o;’s and 7;’s are Pauli
matrices that describe the spin and valley degrees of freedom, respectively. Furthermore, the
type of delocalization and the typical conductances for sufficiently large systems L > ¢ are
shown with non-Hermiticity v and the mean free path ¢ > 0.

Class Symmetry of H Symmetry of S Delocalization Typical conductances
A No No Unidirectional eE-1/0L

Al nH 7, '=H S*(E) =St (E") Unidirectional e(FV—1/0L

ATt rHT = H ST (E) S (E) No e~ Lt

AII (Umi) H* (O'mi)71 = H {Tz S* (E) U = S ! (E*) Unidirectional e(iwfl/é)]’

Alrf (oy7e) HT (%%)71 =H oyST(E ) =5S(E) Bidirectional elh=1/0L

AllI mHiT ' =—H SH(E) = S( E*) Bidirectional (chiral unitary) e~ V/BL/nt

Al nHr ' =-H S(E)=S""(-E) Unidirectional EVE—/BL/xt
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Eq. (D.23) physically means reciprocity in non-Hermitian systems. Importantly, time-reversal
symmetry and reciprocity are distinct from each other in non-Hermitian systems, although they
are equivalent to each other in Hermitian systems; the symmetry constraints in Egs. (D.22)
and (D.25) and the consequent universality of localization transitions are different from each
other.

D.2.2 Particle-hole symmetry

Particle-hole symmetry for non-Hermitian Hamiltonians H is defined by
CH'C'=—H, (CC*=+l1, (D.27)

where C is a unitary matrix and commutes with the coupling matrix W (i.e., CWTC~t = W).
Then, we have

1
T —1 _ — K (—
CK' (E)C 1% fon W K (-FE), (D.28)
and hence |4 ink (~E)
T 4 1+imK(-E) B
CS" (E)C' = Tk () —B) ST (—E). (D.29)

In a manner similar to time-reversal symmetry and reciprocity, non-Hermiticity enables a
Hermitian-conjugate counterpart of particle-hole symmetry (PHS' in Ref. [KSUS19)):

CH*C'=-H, CC"=+l. (D.30)
Then, we have
CK*(E)C'=WT o 1+ FW=-K(-E"), (D.31)
e cs (B)ct = LoITEEEY g gy (D.32)
1+irK (—E*) ' '

Whereas Egs. (D.29) and (D.32) are equivalent to each other in the presence of unitarity, they
are not in the nonunitary case.

D.2.3 Chiral symmetry and sublattice symmetry
Chiral symmetry for non-Hermitian Hamiltonians H is defined by
TH'T™' = —H, (D.33)

where T' is a unitary and Hermitian matrix and commutes with the coupling matrix W (i.e.,

I'WT~! = W). Then, we have

KT (BT = WTE* 1+ =W = ~K (—E%), (D.34)
and hence A 1+ ink (—E°) _ S (=B (D.35)
1 —inK (—E¥) ' '
On the other hand, sublattice symmetry is defined by
SHS'=—H, (D.36)
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where § is a unitary and Hermitian matrix and commutes with the coupling matrix W. Then,
we have

1
-1 _ K
SK (E)S W o HW K (-FE), (D.37)
and hence |4 inK ()
-1 + 1 B _ qQ-1l/_
SS(E)S™ = T=ink () STH(—E). (D.38)

Whereas chiral symmetry defined by Eq. (D.35) and sublattice symmetry defined by Eq. (D.38)
are equivalent to each other in the presence of unitarity, they are not in the nonunitary case.
Non-Hermitian systems that respect chiral symmetry in Eq. (D.35) [sublattice symmetry in
Eq. (D.38)] are defined to belong to class AIIT (AIII") [KSUS19)].

D.3 Green’s function

We present a scattering theory of non-Hermitian Hamiltonians in one dimension. For the
non-Hermitian Hamiltonian

H(xz)=Hy(z)+V (x), (D.39)
let E and ¢ (z) be eigenenergy and the corresponding right eigenstate, respectively:
[Ho (z) +V (2)] ¢ (2) = E ¢ (2). (D.40)

For this Schrodinger equation, we define the Green’s function Gy (x) by

Hy(z)Go(z) + 0 (x) = EGp(x). (D.41)
Then, the eigenstate ¢ () satisfies
e@) =)+ [ dyGole—n)V e W), (D.42)

where g () is a solution to the Schrodinger equation in the absence of the potential V' (x):
Hy () o (z) = Epo (). (D.43)

For a sufficiently weak potential V' (z), the Born approximation is justified. Up to the second-
order Born approximation, the eigenstate is given as ¢ (z) ~ ¢ (z) + @1 (z) + 2 (z) with

o1 (2) = / "y Go (e — )V () o (). (D.A4)

p@= [ dy [ GGV @GE-IVEnE. D)
In particular, we consider the scattering for
Hy () = —i1,0,. (D.46)

Here, 7, is a Pauli matrix that describes the two valley degrees of freedom. Performing the
Fourier transformations

< dk - ikx
() :/_ %eikm (D.48)
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for Eq. (D.41), we have

Using the formulas

00 dk elkr i

> dk 6ikx .
—————— = Fie 70 D.51
/OOQWEiie+k Fle 0 (), (D-51)

with a positive infinitesimal constant € > 0 and the Heaviside step function 6, we have

FieF*0 (+x) 0 ) . (D.52)

D.4 Scaling equations

We formulate the scaling equations (functional renormalization group equations) for non-
Hermitian disordered systems in one dimension. Our formulation is based on the random-
matrix approach developed for Hermitian quasi-one-dimensional systems by Dorokhov, and by
Mello, Pereyra, and Kumar [Dor82, MPK88, Bee97, Beel5]. The conductance from the left to
the right (from the right to the left) is given by the sum of the transmission eigenvalues from the
left to the right (from the right to the left) according to the Landauer formula [Dat95, Imr97].
Then, we consider an incremental change of the transmission eigenvalues upon attachment of
a thin slice of length dL to the system of length L. The transmission matrix and the reflection
matrix are respectively defined as t;,g (L) and 71/ (L) for the original system and ¢,/ (dL)
and 7y /g (dL) for the attached thin slice. The transmission matrix and the reflection matrix of
the combined system of length L + dL are given as [Dat95, Imr97]

tr (L+dL) = tp(L)[1—rg(dL)ry (L)) "ty (dL), (D.53)
ro(L+dL) = 1y (dL) +ty (dL) (L — 1y (L) rg (dL)] " (D) tr (dL).  (D.54)

The scattering in the thin slice can be treated perturbatively (i.e., by the Born approximation
summarized in Appendix D.3) for sufficiently weak disorder such that the mean free path
¢ is much smaller than the Fermi wavelength. Moreover, the incident wave is assumed to be
independently and uniformly distributed in the parameter space determined by symmetry. After
the above calculations, we have the moments of the transmission eigenvalues and the reflection
eigenvalues, which result in the Fokker-Planck equation (DMPK equation) of their probability
distribution. This probability distribution provides all the information about the transmission
eigenvalues and the conductances. In Hermitian systems, we have thL + rﬂ{ =1 as a direct
result of unitarity of scattering matrices, and the Fokker-Planck equation can be described
solely by the transmission eigenvalues. In non-Hermitian systems, by contrast, the transmission
eigenvalues are independent of the reflection eigenvalues, and hence the Fokker-Planck equation
is described by both of them. The types of delocalization and typical conductances for L > /¢
are summarized in Table D.1.
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D.4.1 Class A

We investigate the following non-Hermitian continuum model with disorder:
h = (—i0y 4+ 173/2) 7, + mg () + (M () +171/2) 70 + (Mo () + 172/2) 7y, (D.55)

where 7,;’s (i = 1,2,3) are the degrees of non-Hermiticity, and 7;’s are Pauli matrices that
describe the valley degrees of freedom. The disorder is defined to satisfy

(mi(z)) =0, (mi(z)m; (2)) = 2p:6;0 (x — 2') , (D.56)

where the brackets denote the ensemble average. This continuous model describes a generic non-
Hermitian wire having a single channel with two valleys. For lattice models, mg (x) and m; (z)
correspond to a disordered onsite potential, while my (x) corresponds to disordered hopping.
A constant imaginary term such as iyy/2 is omitted since it does not affect the localization of
eigenstates. The Hatano-Nelson model [HN96, HN97, HN98] at the band center (i.e., Re E = 0)
is described by ms = v; = 79 = 0, and the asymmetry of the hopping amplitudes corresponds
to non-Hermiticity 3.

We begin with solving a scattering problem for a thin slice of length dL. Suppose that an
incident wave €'*® |4) enters the thin slice at [0, dL] from the left, where |+) is the eigenstate of
7. with the eigenvalue 1. The incident wave satisfies —ir,d, (¢**|+)) = k|+) and is indeed
a right-moving wave with eigenenergy £ = k. In the following, we assume F = k € R so that
the incident wave will be a plane wave. For x < 0, up to the second-order Born approximation
in Egs. (D.44) and (D.45), the eigenstate is given as ¢ (z) ~ e** |+) + o1 (z) + @2 (x) with

dL
0 0
o1 (7) = /0 dy(o _ie—im—y))

mo (y) + i73/2 my (y) —ima (y) +i71/2 4+ 72/2\ iy
x (m1 (y) +ima (y) +i71/2 — 72/2 mo (y) — iy3/2 ) e I)
dL
_——— / dy % (my () + ima (4) + 11/2 — 72/2) | -)
~ —i[my (dL/2) +imsy (dL/2) +iv1/2 — 72/2] (dL) e %% | =), (D.57)

drL drL
p9 () = —e_””/ dy/ dz *vt2) < : o 0 )
0 0 my (y) +ims (y) +iy1/2 — 72/2 mg (y) — iys/2
(y —

X (eik(y_z)% 2 eik(z—y)g (z—y) ) (m1 (2) +Tr$z§?)y;ﬁlgvﬁ2 — 72/ 2)

~ 0. (D.58)

On the other hand, for x > dL, we have

L —ieik@=y)
ie
1 (z) = / dy ( )
; 0 0

mo (y) +i73/2 my (y) —ima (y) +i71/2 +92/2\ iky
- <m1 (y) +ima (y) +i71/2 — 72/2 mo (y) — /2 )e +)
= —ie* [ dy(ma () +00/2) |4)
~ —i[mg (dL/2) +iv3/2] (dL) e** |+), (D.59)
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dL dL . . .
05 (z) = _eik:z/ dy/ ds e (—y+2) (mo (y)(;i— i73/2 mq (y) — img (y()) +iv1/2 + 72/2>
0 0

oL G ST Y | RS N S
/dey/dez SO0y — =) mo (y) mo (2)

+e* G (2 — y) (my (y) my (2) +mo (y) my (2)] |+)
—= [(mo (dL/2))* + (ma (dL/2))? + (mo (dL/2))*] (dL)* €% |+) . (D.60)

l\DI}—t

From the above results, we have
1
tr (dL) ~1—1i(mo— E +1iv3/2) (dL) — 5 (mg 4+ mi +m3) (dL)*. (D.62)

Similarly, for a left-moving incident wave e~'** |—) that enters the system from the right, rg (dL)

and tr, (dL) are given as

rr (dL) >~ —i(my — img + i1 /2 + 72/2) dL, (D.63)
tL(dL) ~ 1 —i(mg— E —iy3/2) (dL) — % (m3 +m? +m3) (dL)”. (D.64)

Thus, we have

(Ir (dL)[") =2 (1 + p2) dL, (D.65)
(It (AL)[*) = 1 =2 (p11 + p2 — 73/2) (D.66)
(Irr (dL)|*) = 2 (111 + 2) dL, (D.67)
([te (dL)[*) =1 = 2 (11 + o + 73/2) (D.68)
In the absence of non-Hermiticity (i.e., 7; = 0), we indeed have
(fre (dL)[*) + (|tr (dL) ) = (|rr (dL)|*) + (|te (dL)[*) = 1, (D.69)

which means conservation of currents; however, it is broken by non-Hermiticity ~3. In the
following, we define the mean free path ¢ by

L 1
: dT, ie, l(i=———. (D.70)

(re (dL)]*) = (Jra (dL)*) = 2 (111 + 1)

Now, we consider combining the system of length L and the thin slice of length dL. Using
Eq. (D.53), as well as
ltr (dL)|” ~ 1+ v3dL — (m? + m2) (dL)* (D.71)

and

|1 —rr (dL)ry, (L)|_2 ~ 1+ 24/ Ry [(m1 + 72/2) sinpr, — (mg — 71/2) cos pr ] dL
+ [m? (4sin® g, — 1) +m3 (4cos® pr, — 1)] Ry, (dL)*  (D.72)
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with r, = \/Rpe¥t, we have

T 2 {2V B m + /2 sinien, — (s = 1/2) cos 1) + 70 } L
+ {m} [(4sin® o, — 1) Ry, — 1] + m3 [(4cos® o1, — 1) R, — 1] } (dL)*. (D.73)

This leads to
(dTR) T (1—-Ry) ((dTw)*) 2T3R
dL l ’ dL. 0
and the higher moments vanish to the first order in dL. Here, the ensemble average is taken for
given Ty and Ry, in two steps, first averaging over the attached thin slice m; and then averaging
over the phase ¢, of the reflected wave. Since ¢y, is assumed to be independently and uniformly
distributed over [0, 27], the equations

(cosr) = (sinpr) =0, (cos” gr) = (sin® pr) = 1/2 (D.75)
are used. We have similar scaling equations also for Ty, by reversing the sign of the non-
Hermiticity 3. Moreover, using Eq. (D.54), we have

(@dRy) (- R)”  ((dRy)’) _2R,(1—Ry)*

dL l ’ dL l ’
and the same scaling equations for Rg.
In the obtained scaling equations (D.74) and (D.76), non-Hermiticity appears solely through
the 73 terms. By contrast, the 7 and 7, terms just shift the phase of the waves and have no
influence on the conductances. Consequently, when we define Ty and 71, by

TR = G_WBLTR, TL = €+73LTL, (D??)

= Tr — (D.74)

(D.76)

the transfer amplitudes Ty and 7T}, and the reflection amplitudes Ry, and Ry are described by the
conventional Fokker-Planck equation (DMPK equation) for Hermitian systems. In particular,

the average conductance G* and the typical conductance G™P are given as [Dor82, MPKSS,
Bee97, Beel |

& @

= = HAF (L)) ~ e B (L) — o), (D.78)
G. G,
Gor = (08 G/Ge) — =L/t (D.79)
Ge
where G. is the conductance quantum, and f is the following slowly-varying function [Abr81]:
2 [ tanht 2,2
== t ey, D.80
/(@) 7r /0 cosht ‘ ( )
Thus, the conductances of the original non-Hermitian system are given as
Gav
GI: ~ el 1/40L (D.81)
Gop
GRC = el1=1/0L (D.82)
Gav
GI; ~ (-1 1/40L (D.83)
Gop
GLC — e(T-1/OL, (D.84)
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Either Gr or G, diverges for sufficiently strong non-Hermiticity as a signature of the unidi-
rectional delocalization. For ~3 > 0, for example, the transition point at which the typical
conductance Ggp from the left to the right begins to diverge is given by

1
V3 =Y = Z (D85)

Around this transition point, the conductance exhibits the critical behavior

G — G,
9= el oy — . (D56)

D.4.2 Classes AI and AI'

Symmetry imposes constraints on systems and can change the universality of localization transi-
tions. Non-Hermitian Hamiltonians in class Al respect time-reversal symmetry. In the presence
of time-reversal symmetry defined by
m.h Tt = h, (D.87)
the non-Hermitian terms i(v/2) 7, and i(y2/2) 7, in Eq. (D.55) disappear. Still, the non-
Hermitian term i(~3/2) 7, is allowed to be present, which leads to the unidirectional delocal-
ization. Thus, the universality of the localization transitions in class Al is the same as that in
class A.
On the other hand, when non-Hermitian Hamiltonians belong to class AI' (orthogonal class)

and respect reciprocity defined by
.hiTt =h, (D.88)

the non-Hermitian term i(v3/2) 7, in Eq. (D.55) disappears. Consequently, the unidirectional
delocalization is forbidden and the conductances for L > ¢ are given as

GaV Gav

GR = FL ~ e kA (D.89)
typ typ

GGL _ _% _ Lt (D.90)

The universality of the non-Hermitian localization in class AI' is the same as the Hermitian
counterpart.

D.4.3 Classes AII and AII'

An important feature of class AIl (symplectic class) in Hermitian systems is Kramers degener-
acy. This Kramers-pair structure survives even in non-Hermitian systems: eigenstates with real
eigenenergy form Kramers pairs in class AIl [KHG'19], whereas generic eigenstates with com-
plex eigenenergy form Kramers pairs in class AII' [KSUS19]. This difference in the Kramers-pair
structure makes a difference in the universality of localization transitions, as described below.
It is also notable that the transmission eigenvalues are not generally degenerate in the presence
of non-Hermiticity, whereas they form Kramers pairs in Hermitian systems in class All.
We investigate a non-Hermitian continuum model

h = (10, + Aoy + iv03/2) 7. + mo () + my (x) 7o, (D.91)
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which respects time-reversal symmetry
(oyT2) R* (Jmi)_l =h (D.92)

and hence belongs to class AlIl. Here, Pauli matrices o;’s describe the internal degrees of freedom
such as spin, while 7;’s describe the valley degrees of freedom. The non-Hermitian terms such as
i(73/2) 0472, 1(723/2) 0y T2, and i(733/2) 0,7, are forbidden because of time-reversal symmetry.
In a similar manner to class A, the reflection and the transmission matrices of a thin slice of
the system are given as

ry (dL) = rg (dL) = —imqdL, (D.93)
tr (AL) =1 —i(mg — E + Ao, + iv03/2) dL — % (m3 +m3) (dL)*, (D.94)
tL(dL) =1—i(mg— E — Ao, —ivo3/2) dL — % (ma +m3) (dL)*. (D.95)
Thus, we have
5 bl (4L rl (@L)]) = 3 {ox rm (L) 7 (4)]) = (D.96)
% (tr [tn (dL) £ (L)) = 1 — (% - 703) dL. (D.97)
% (tr [ty (dL) tTL (dL)]) =1-— (% + 703) dL, (D.98)

with the mean free path ¢ = 1/2u,. Similarly to class A, one of (tr[tg (dL)tk (dL)]) and
(tr [tr, (dL) t] (dL)]) is amplified by non-Hermiticity vo3 and the other is attenuated. Hence, the
same scaling equations [i.e., Egs. (D.74) and (D.76)] describe the probability distribution of the
conductances, and either of the conductances Gg and Gy, is amplified by non-Hermiticity os.
Thus, the unidirectional delocalization is realized in the same manner as class A.

By contrast, a different type of non-Hermitian delocalization appears in class AIIT. We
investigate a non-Hermitian continuum model

h = (10, + Aoy, +1(7v33/2) 0.) 7o + mo () + my (x) 7o, (D.99)

which respects reciprocity
(oy72) BT (0ym) ' = H (D.100)

and hence belongs to class AII'. In contrast to class All, the non-Hermitian term i (7v33/2) 0.7,
is allowed to be present, whereas i(v3/2) 7, is forbidden. In this case, the reflection and the
transmission matrices of a thin slice are given as

ri(dL) = rg (dL) = —imydL, (D.101)
tr (dL) =1 —1i(mo— E + Aoy +1(7s3/2) 0.) dL — % (m3 +m?) (dL)*, (D.102)
b (L) = 1—i(mo— F — Aoy — i (153/2) 02) dI, — % (m? + m?) (dL)?, (D.103)
which lead to
L ftxlrn (d2) o] (D)) = & (e (L) v ()] = 2, (D.104)
% (tr [tr (dL) th (dL)]) = % (tr [t (AL) €] (dL)]) = 1 — d7L. (D.105)
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In contrast to classes A and AIl, non-Hermiticity ~33 disappears in these equations. Never-
theless, it leads to non-Hermitian delocalization with the bidirectional nature instead of the
unidirectional one. To see this bidirectional delocalization, we perform the polar decomposition

tr = Un (\/5_4 \/OT_) (D.106)

with a unitary matrix Ug, and consider incremental changes of the transmission eigenvalues 7',
and T_. Here, because of reciprocity, the other transmission matrix ¢y, is

_ (VT 0
= oytro ! = (ayUng1)< ! JTT) (D.107)

and hence the transmission eigenvalues are identical. Then, noticing
Ul (L) [tR (L+dL)t) (L + dL)} Ur (L)

_(VTe(L) 0 tr (dL) t} (dL) T(L) 0

we have the scaling equations

dTy
Ty

= <2m1 Ry, siny, £ 733> dL +m7 [(4sin® ¢, — 1) Ry, — 1] (dL)?. (D.109)

Therefore, non-Hermiticity 733 amplifies one of the transmission eigenvalues and attenuates the
other. For L > ¢, the conductances are given as

GR _ GL _ (hssl-1/40L
R _L D.110
e e , ( )
G‘gp Giyp
— — ellmal=1/0L D.111
== ( )

Consequently, the eigenstates are bidirectionally delocalized for sufficiently strong 733 in con-
trast to both classes A and AII. This bidirectional delocalization originates from the Kramers-
pair structure in class AII': when one eigenstate of a Kramers pair is delocalized toward one
direction, the other is delocalized toward the opposite direction. This is to be contrasted
with the Kramers-pair structure in class AIl, in which both eigenstates of a Kramers pair are
delocalized toward the same direction.

D.4.4 Classes AIII and AIIIf

Chiral or sublattice symmetry enables the delocalization of zero modes even in Hermitian
systems, accompanied by Dyson’s singularity [Dys53]. This delocalization results from the
constraint

ST (E)=S(-E) (D.112)

on unitary scattering matrices S (F) due to chiral or sublattice symmetry. In fact,
ST(0) = S (0) (D.113)

is respected for the zero modes and the reflection matrices become Hermitian, i.e.,

rl=r, rh=rr (D.114)
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Then, the phases of the reflection matrices are confined to be 0 or 7w, which contrasts with the
standard classes. Consequently, the zero modes are delocalized even in one dimension and the
conductances for L > ¢ are given as [BMSA98, BEGMO00]

av P
(é ~\/20/7L, ~ e VBL/mE (D.115)

C C

In the following, we consider the influence of non-Hermiticity on the delocalization due to chiral
or sublattice symmetry.
We investigate a non-Hermitian continuum model

h = —i1,0, +1(11/2) 7 + ma (z) 7, (D.116)

which respects chiral symmetry
rhit = —H. (D.117)

T

Notably, the non-Hermitian term i(7y3/2)7, in Eq. (D.55) is not allowed because of chiral
symmetry. The nonunitary scattering matrix Syz, (F) of a thin slice of this system is given as

AT (dL) t1, (dL)

Sar (E) = (tR (dL) rgr(dL)
(g + 71/2) dL 1+iEdL —m2 (dL)* /2
= . 9 2 . (D.118)
1+iEdL —m3 (dL)" /2 — (mg —m/2)dL

Despite S;L (E) Sy (E) # 1, this nonunitary scattering matrix becomes Hermitian for zero
modes (i.e., £ = 0). An incremental change of the transmission amplitude Ty for these zero
modes is

dT;
T—R ~ =2 (may — 71/2) v/ Ry, (cos ¢r) dL +mj [(4cos® g1, — 1) Ry, — 1] (dL)>. (D.119)
R

Since the phase @y, of ry, is assumed to be independently and uniformly distributed over {0, 7},
we have

(cosr) = (singr) =0, (cos® ) = (sin® ¢r) = 1, (D.120)
and hence )
(dTw) _ Ta(1- 3RL)7 ((dTr)) _ 4T1%RL. (D.121)
dL l dL 14
Similarly, an incremental change of the moments of the reflection amplitude Ry, is
(dBu) (1= Ru)(1—3Ry)  ((dR)") _4RL(1—Ru)” (D.122)

dL l ’ dL l

In these scaling equations, non-Hermiticity 7, is not relevant to the transmission or the reflection

amplitude. Thus, the conductances for the zero modes are given by Eq. (D.115), and the

universality of non-Hermitian localization in class AIII is the same as the Hermitian counterpart.

On the other hand, non-Hermiticity changes the universality of Anderson localization in
class AIII". We investigate a non-Hermitian continuum model

h = (—i0, +1v3/2) 7 + ma (x) 7y, (D.123)
which respects sublattice symmetry

mhr = —H. (D.124)
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In contrast to chiral symmetry, the non-Hermitian term i (+y3/2) 7, is allowed even in the presence
of sublattice symmetry. Consequently, the unidirectional delocalization is possible in a manner
similar to class A, and the conductances are given as

G* 20 1L GWP +ysL—/8L/ml
~ a2 -~ . D.12
G wL ¢ G ¢ ( )

D.5 Non-Hermitian localization on lattices

D.5.1 Hatano-Nelson model (class A)
We investigate the Hatano-Nelson model [HN96, HN97, HN9S|

: 1 RAVE I VY st i
H = ; {_5 [(J + 5) CL+1Cn + <J — 5) cilcnﬂ} + mnc:flcn} (D.126)

with J, v, m, € R. Here, the disordered potential m,, is uniformly distributed over [T /2, W/2]
with W > 0. The localization lengths as a function of the disorder strength W are shown in
Fig. 6.2 (a) in Chap. 6, and those as a function of non-Hermiticity v are shown in Fig. D.1 (a).
For v > 0, the right localization length &g diverges at a critical point W = W, or v = 7,
whereas the left localization length &, remains finite. This is a signature of the unidirectional
delocalization and is consistent with the two-parameter scaling theory of conductances for
continuum models. The phase diagram is shown in Fig. D.1 (b).

The nature of the unidirectional delocalization is understood by the GL (1)-gauge transfor-
mation (imaginary-gauge transformation in Ref. [HN96, HN97, HN98]). With the new fermion
operators by the GL (1)-gauge transformation

fo=ee,, fl=evd (heQ), (D.127)
the Hamiltonian reads
o 1 T\ -0t f TN et g o7
=S A5 [+ 3) e Badur (1-F) i) omafidn} D)
Here, choosing 6 such that
T\ -6 _ A W
(7+ 2) e = (1 2) e = J, (D.129)
ie.,
1 J+7/2 - 2
0=—-1 = 2 2 D.1
jlos (75202). T=yr =2, (D.130)

we have the Hermitian Anderson model
- j AT A AT A AT A~
H=3, D) <fn+1fn + fnfn+1> + M fofnl - (D.131)

Thus, the localization lengths of the Hatano-Nelson model are

1 1

G=(E"+0), G=(&"-90), (D.132)
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Figure D.1: Localization transition in the Hatano-Nelson model (L = 5000, = 1.0, £ = 0).
Each datum shows the average over 1000 samples. (a) Localization length. For v > 0, the
right localization length diverges at a transition point 7 = 7., whereas the left localization
length remains finite. The transition points (dotted lines) are 7. = 0.325 (W = 2.0), 7. = 1.23
(W = 4.0), and 7. = 1.77 (W = 5.0). (b) Phase diagram. The red solid curve shows the
numerically obtained phase boundary. For sufficiently small v and W, the phase boundary is
given as W = y/12J~ (black dotted curve). Reproduced from Fig. S1 of Supplemental Material
of Ref. [KR21]. Copyright 2021 by the American Physical Society.

where & is the localization length of the Hermitian Anderson model in Eq. (D.131). For v > 0

(v < 0), the localization length &g (&) diverges at v = v, such that &' = |0 (7.)|. Around this
critical point, we have
1

£~ oy =7l (D.133)
16" () (7 = )
For sufficiently weak disorder, we have
2
P L (D.134)
2(J2 — E?)

When m,, is uniformly distributed over [—W/2,W/2], we have (m2) = W?/12. Then, the
critical point is given as
w2
ol = w5 D.135
el = (D.135)

for the band center £ = 0. This is consistent with the results for the continuum model, as well
as the numerical result in Fig. D.1 (b).

D.5.2 Non-Hermitian Anderson model with random gain or loss
(class AI')

Non-Hermitian Hamiltonians H in class Alf (orthogonal class) respect reciprocity defined by
THT = [t (D.136)
with an antiunitary operator 7. When 7T is complex conjugation, reciprocity means

JE = Jy, M= M,. (D.137)

n
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Figure D.2: Localization lengths in non-Hermitian disordered systems on one-dimensional lat-
tices with reciprocity (L = 5000, = 1.0, £ = 0). Each datum shows the average over 1000
samples. (a) Non-Hermitian Anderson model with random gain or loss (class AI'). For all
the types of Hermitian and non-Hermitian disorder, no transition occurs and the universality
class is the same. The dotted line shows ¢ = 24.J2/W?2. (b) Symplectic Hatano-Nelson model
(class AII'; 4 = 1.0,A = 0.1). In contrast to the Hatano-Nelson model without symmetry
protection, both right and left localization lengths diverge at a transition point W, = 3.39 (red
solid curve). Because of the reciprocity-protected nature of the delocalization, even a small
reciprocity-breaking perturbation A = 0.01 destroys the delocalization (black dotted curve).
Reproduced from Fig. S2 of Supplemental Material of Ref. [KR21]. Copyright 2021 by the
American Physical Society.

Consequently, we have
{L=Er, |det My,| = [det Mg,| = 1, (D.138)

which imposes
&L =Er < 00 (D139)

and forbids delocalization even in the presence of non-Hermiticity.
In particular, we investigate the non-Hermitian Anderson model with random gain or loss

. J/. L
i = Z {_5 <CL+lcn + CLCTLJrl) + (M + i) CLCn} (D.140)

with J, m,, v, € R. We here consider the following three types of disorder:
e real disorder (m, € [-W/2,W/2], v, = 0)
e imaginary disorder (m,, =0, v, € [-W/2,W/2])
e complex disorder (m,,, v, € [-W/2,W/2])

Figure D.2 (a) shows the localization length £ as a function of the disorder strength W. For
all the types of Hermitian and non-Hermitian disorder, ¢ remains finite even for small W, and
no delocalization occurs. Moreover, & gets smaller in proportion to W =2 in the same manner
as the Hermitian case. These results are consistent with the scaling theory of conductances for
continuum models, which demonstrates that the universality of the non-Hermitian localization
transitions in class AI' is the same as the Hermitian counterpart.
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D.5.3 Symplectic Hatano-Nelson model (class AII)

We investigate a symplectic (reciprocal) generalization of the Hatano-Nelson model

A Ir, VoL . L vo. . R R .
H = Z {—5 [c:rﬁl <J + 5 1Aax> Cn + CL <J - + 1Aax> cn+1] + CL (m,, + ho.) Cn}
(D.141)

with J, v, A,m,,h € R. For h = 0, the Hamiltonian respects reciprocity, i.e.,
(0,K) H (0,K)" = H (D.142)

with complex conjugation &, and hence belongs to class AII'. As a result of reciprocity, the
left localization length &, coincides with the right localization length £g. On the other hand, a
magnetic field h # 0 breaks reciprocity. The disordered potential m,, is uniformly distributed
over [—W /2, W /2] with W > 0.

The localization lengths as a function of the non-Hermiticity v are shown in Fig. 6.2 (b)
in Chap. 6, and those as a function of the disorder strength W are shown in Fig. D.2(b).
In contrast to the original Hatano-Nelson model without symmetry protection, both left and
right localization lengths diverge at a critical point, which is consistent with the bidirectional
delocalization predicted by the scaling theory of conductances for continuum models. As a
consequence of the reciprocity-protected nature of the delocalization, even a small reciprocity-
breaking perturbation h # 0 vanishes the delocalization. Although &, is different from &g in
the absence of reciprocity, no appreciable difference can be seen for such a small perturbation
as h = 0.01 considered in Figs. 6.2 (b) and D.2 (b).

The nature of the bidirectional delocalization is understood by the following SL (2)-gauge
transformation

- 67n9 0 . T 6110 0

e

With the new fermion operators fn and fj“ the Hamiltonian without the magnetic field (i.e.,
h = 0) reads

R 1T e—(n-‘rl)@ 0 B yo, ) en@ 0 R
H = Z {—5 {f;[ﬂ ( 0 e(n+1)9) V! <J+ - 1A0w> V ( 0 e_ne) In

R e—ne 0 - yo, ) €(n+1)6 0 . o
+f:7[ ( 0 ene V ! (J - T + 1A0z> V 0 67(n+1)9 fn+1 + mnf;gfn .
(D.144)

Let us choose V' such that it diagonalizes J + vo,/2 — iAoy, i.e.,

e <J + 7% - iAax> V= <J v %2)2 - & 0 ) . (D.145)

J = (/27 - A?

Then, the Hamiltonian reads

o34 [ (7O
+fT(69(J_\/(7/2)27—A2)
! 0

e’ (J - \/(70/2)27—A2)> Jn
o0 (J + \/(07/2)27—A2)) fn+11 +mnﬁifn} . (D.146)
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Furthermore, let us choose # such that it satisfies

e™? (J +1/(v/2)% - A2> = ¢f (J —\/(v/2)* - A2) = J, (D.147)

ie.,

9:110g Ty - A : j:\/ﬁ—(v/2)2+A2. (D.148)
P2 -

Consequently, the Hamiltonian reduces to the Hermitian Anderson model
- j AT A AT A AT ~
H=3, D) <fn+1fn + fnfn+1> +mnfofn g - (D.149)

Thus, the localization length of the reciprocal Hatano-Nelson model is given as

=& =(&"—|Re(®)]) ", (D.150)

where & is the localization length of the Hermitian Anderson model in Eq. (D.149). As can
be seen from Eq. (D.148), Re(0) is zero for |y| < 2|A|, which leads to the plateau of the
localization length in Fig. 6.2 (b) in Chap. 6. Importantly, the above SL (2)-gauge transfor-
mation is inapplicable in the presence of reciprocity-breaking perturbations, which forbids the
bidirectional delocalization.
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