
Doctoral Dissertation
博士論文

Construction of
Exact Quantum Many-Body Scar States

(厳密な量子多体傷跡状態の構成)

A Dissertation Submitted for the Degree of Doctor of Philosophy
December 2021

令和3年12月博士(理学)申請

Department of Physics, Graduate School of Science,
The University of Tokyo

東京大学大学院理学系研究科物理学専攻

Naoyuki Shibata
柴田　直幸





LIST OF PUBLICATIONS

Journal Articles

[1] Naoyuki Shibata and Hosho Katsura, Dissipative spin chain as a non-Hermitian
Kitaev ladder, Phys. Rev. B 99, 174303 (2019).

[2] Naoyuki Shibata and Hosho Katsura, Dissipative quantum Ising chain as a non-
Hermitian Ashkin-Teller model, Phys. Rev. B 99, 224432 (2019).

[3] Naoyuki Shibata, Nobuyuki Yoshioka, and Hosho Katsura, Onsager’s Scars in Dis-
ordered Spin Chains, Phys. Rev. Lett. 124, 180604 (2020) [selected as Editors’ Sug-
gestion].

[4] Zongping Gong, Nobuyuki Yoshioka, Naoyuki Shibata, and Ryusuke Hamazaki,
Universal Error Bound for Constrained Quantum Dynamics, Phys. Rev. Lett. 124,
210606 (2020).

[5] Zongping Gong, Nobuyuki Yoshioka, Naoyuki Shibata, and Ryusuke Hamazaki,
Error bounds for constrained dynamics in gapped quantum systems: Rigorous re-
sults and generalizations, Phys. Rev. A 101, 052122 (2020).

[6] Naoyuki Shibata and Hosho Katsura, Quantum Ising chain with boundary de-
phasing, Progr. Theor. Exp. Phys. 2020, 12A108.

Others

[1] [Japanese] 桶作愛喜、柴田直幸、亀井健一郎、「粒子法を用いたミルククラウン現象
のシミュレーション」,スーパーコンピューティングニュース (東京大学情報基盤セン
タースーパーコンピューティング部門)、Vol. 18, No. 5 (2016).

[2] [Japanese] 柴田直幸、吉岡信行、桂法称、「量子の世界に「傷跡」を残す数理モデル
を無限に構成する方法を発見」、東京大学大学院理学系研究科・理学部プレスリリー

ス.

[3] [Japanese]柴田直幸、桂法称、「オンサーガーの残した傷跡—熱平衡化しない数理モ
デル—」、東京大学理学部ニュース2020年9月号.

i

https://doi.org/10.1103/PhysRevB.99.174303
https://doi.org/10.1103/PhysRevB.99.224432
https://doi.org/10.1103/PhysRevLett.124.180604
https://doi.org/10.1103/PhysRevLett.124.210606
https://doi.org/10.1103/PhysRevLett.124.210606
https://doi.org/10.1103/PhysRevA.101.052122
https://doi.org/10.1093/ptep/ptaa131
https://www.cc.u-tokyo.ac.jp/public/VOL18/No5/05.201609wakate-1.pdf
https://www.cc.u-tokyo.ac.jp/public/VOL18/No5/05.201609wakate-1.pdf
https://www.s.u-tokyo.ac.jp/ja/press/2020/6864/
https://www.s.u-tokyo.ac.jp/ja/press/2020/6864/
http://www.s.u-tokyo.ac.jp/ja/story/newsletter/page/7029/




ABSTRACT

The eigenstate thermalization hypothesis (ETH) is known as a plausible scenario
to explain thermalization of quantum systems, which states that all energy eigen-
states are locally indistinguishable from the microcanonical ensemble. Although

there is no rigorous proof, it is widely believed to hold for a large class of interacting sys-
tems, as evidenced by several numerical studies. Well-known exceptions are integrable
and many-body localized systems. In such systems, the existence of an extensive number
of conserved quantities or integrals of motions breaks ergodicity, and therefore the ETH
as well. Another class of ETH-violating systems is also reported, in which the Hilbert
space fractures into exponentially many disconnected subsectors.

Recently, a pioneering experiment in a Rydberg atom system revealed a mechanism
of non-thermal behavior distinct from the above three. In this system, most typical states
thermalize rapidly, whereas certain particular states do not for an anomalously long time.
These peculiar phenomena are referred to as quantum many-body scars (QMBS), since
they are reminiscent of one-body quantum scars. The experimental observation triggered
a number of theoretical studies on QMBS. In particular, an effective model of this ex-
periment, dubbed the PXP model, has been intensively studied. Another approach is to
construct models with perfect QMBS, whose exact expression can be written down and
perfect revivals in many-body quantum dynamics can be shown analytically. One of the
examples is the exact scar states in the Affleck-Kennedy-Lieb-Tasaki (AKLT) model. De-
spite such intensive studies on QMBS, its general framework and origin remain unclear.
Thus, we aim to expand the frontier of our understanding of these phenomena by provid-
ing a new family of analytically tractable QMBS models.

In this thesis, we propose a new class of exact QMBS models. The key to the construc-
tion is the Onsager algebra. While it was originally used to obtain exact solutions of the
two-dimensional classical Ising model, we apply it to the construction of QMBS models.
Our model has three remarkable features: (1) the scar states in our model are not prod-
uct states but have a finite area-law entanglement. That is, our scars are not trivially
ETH-violating states such as a vacuum state in the Fermi-Hubbard model. (2) Our model
can be straightforwardly generalized to one with an arbitrary integer or half-integer spin
quantum number. Scar states can also be generalized to multi-parameter ones. (3) We do
not impose translational invariance on our model. To the best of our knowledge, this is
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ABSTRACT

the first explicitly constructed example of the disordered QMBS model.
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NOTATIONS AND ACRONYMS

Notations

N := {0, 1, 2, . . . } set of natural numbers, i.e., non-negative integers
R set of real numbers
C set of complex numbers
i imaginary unit
π ratio of circumference of a circle to its diameter
e Euler’s number

δjk :=

1 j = k

0 j 6= k
Kronecker delta

δ(·) Dirac delta function
[a, b] := {x ∈ R | a ≤ x ≤ b} closed interval between a and b
(a, b) := {x ∈ R | a < x < b} open interval between a and b
[a, b) := {x ∈ R | a ≤ x < b} half-open interval between a and b

~
reduced Planck constant
(set equal to unity, unless mentioned otherwise)

Hj local Hilbert space at site j ∈ Λ

H :=
⊗

j Hj entire Hilbert space of the quantum system
Span{|ψ〉 ∈ H | C } Hilbert subspace spanned by |ψ〉 that satisfy the condition C

EndH set of endomorphisms or linear operators on H
KerP kernel of linear operator P
σαj (α = x, y, z) Pauli matrix at site j
S spin quantum number (for given S, dimHj = 2S + 1)
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NOTATIONS AND ACRONYMS

Acronyms

AKLT Affleck-Kennedy-Lieb-Tasaki
EE Entanglement Entropy
ETH Eigenstate Thermalization Hypothesis
GOE Gaussian Orthogonal Ensemble
LIOM Local Integrals Of Motion
MBL Many-Body Localization/Localized
MPO Matrix Product Operator
MPS Matrix Product State
OBC Open Boundary Condition
PBC Periodic Boundary Condition
QMBS Quantum Many-Body Scar/Scarred
RSGA Restricted Spectrum Generating Algebra
SGA Spectrum Generating Algebra
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1
INTRODUCTION

“To be, or not to be, that is the question.”
– William Shakespeare, Hamlet

Thermalization is such a ubiquitous phenomenon in macroscopic systems that we
observe it every day. However, understanding its origin at the microscopic level,
or from quantum mechanics, is far from established yet in spite of a long history

of research [1, 2]. Recent progress in quantum engineering enabled us to tackle this long-
standing problem experimentally. For instance, several experimental groups directly ob-
served thermalization in quantum many-body systems including ultracold atoms [3] and
superconducting qubits [4]. On the other hand, surprisingly, experimentalists also re-
vealed non-thermal behavior with, e.g., Bose gases [5–7], trapped ions [8], and Rydberg
atoms [9].

On the theoretical side, both analytical and numerical studies have been devoted to
explaining thermalization in quantum many-body systems. For example, several numer-
ical studies [2, 10–12] have captured thermalization in quantum many-body systems. As
an analytical approach, several studies have revealed a plausible scenario, namely, the
eigenstate thermalization hypothesis (ETH) [13–16]. In this Chapter, after presenting
preliminaries, we review ETH and several counterexamples to it. The main topic of the
thesis, quantum many-body scars (QMBS), is one of such counterexamples and will be
reviewed in detail in Chapter 2.

1.1 Preliminaries

1.1.1 Typicality

Theoretical approaches to explaining macroscopic behavior from the underlying micro-
scopic dynamics date back to Boltzmann [17]. While his studies were based on classical
mechanics, von Neumann carried this problem into quantum mechanics [18]. In 1929,
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CHAPTER 1. INTRODUCTION

he has already mentioned the concept that is now referred to as typicality [19–23]. Al-
though there are several variants to formulate typicality, here we refer to the typicality
statement by Refs. [14, 22]. Before doing so, we define our notations as follows:

• H : entire Hilbert space of a quantum system under consideration.

• H ∈ End(H) : Hamiltonian on H.

• |Ej〉 : normalized energy eigenstate of H with energy eigenvalue Ej , i.e., H |Ej〉 =

Ej |Ej〉.

• H[E−∆E,E) := Span{|Ej〉 ∈ H | Ej ∈ [E − ∆E,E)} : Hilbert subspace of H called an
energy shell with energy E and small energy width ∆E.

• D[E−∆E,E) := dimH[E−∆E,E) : dimension of the energy shell determined by [E −
∆E,E).

• ρ(mc)
[E−∆E,E)

:= P (H[E−∆E,E))/ dimH[E−∆E,E) : microcanonical ensemble with energy E
and energy width ∆E, where P (H[E−∆E,E)) is a projector onto H[E−∆E,E).

Let us consider a normalized pure state |ψ〉 ∈ H[E−∆E,E) drawn from the uniform distri-
bution on H[E−∆E,E). To be more precise, when |ψ〉 is written as a linear combination of
energy eigenstates

|ψ〉 =
∑
j

Ej∈[E−∆E,E)

cj |Ej〉 , (1.1)

the coefficients {cj} are chosen from the uniform distribution on the surface of the sphere
defined by ∑

j
Ej∈[E−∆E,E)

|cj |2 = 1. (1.2)

We denote by µ[C ] the probability of obtaining |ψ〉 satisfying the statement C under the
above measure. Then, one can prove that [14, 22]

µ
[∣∣∣〈ψ|O |ψ〉 − tr

(
Oρ(mc)

[E−∆E,E)

)∣∣∣ ≥ ε] ≤ ‖O‖2

ε2D[E−∆E,E)
, (1.3)

or roughly,

〈ψ|O |ψ〉 ' tr
(
Oρ(mc)

[E−∆E,E)

)
(1.4)

holds for an arbitrary bounded operator O. Here, ‖·‖ is the operator norm defined as

‖O‖ := sup
|ψ〉∈H
〈ψ|ψ〉=1

√
〈ψ|O†O |ψ〉. (1.5)

2



1.1. PRELIMINARIES

Thus, roughly speaking, typicality implies that almost all pure states are indistinguish-
able from the microcanonical ensemble as long as we look at the expectation value of
O.

One may think that thermalization is obvious from typicality, but it is not the case.
In a realistic experimental setup, we start with a very atypical initial state and observe
its quench dynamics. However, one cannot claim from typicality that an atypical initial
state becomes thermalized after a sufficiently long time [24]. In fact, it is known that, in
several systems discussed below, the expectation value of an observable for an evolved
pure state |ψ(t)〉 := e−iHt |ψ(0)〉 does not converge to that for the microcanonical ensemble
for a long time even if we choose an atypical but simple initial state |ψ(0)〉 [25]. To sum-
marize, typicality does not explain either the dynamics toward equilibrium or the reason
why a state eventually becomes thermalized in many systems but does not in several
exceptional systems.

1.1.2 Equilibration and thermalization

To understand the dynamics toward equilibrium, let us consider the simplest situa-
tion. We assume that each energy of the Hamiltonian H is not degenerate. For a generic
initial state |ψ(t = 0)〉 =

∑
j cj |Ej〉, the long-time average of the expectation value of an

observable O can be computed as

lim
T→∞

1

T

∫ T

0
〈O〉t dt := lim

T→∞

1

T

∫ T

0
〈ψ(t)|O |ψ(t)〉 dt =

∑
j

|cj |2 〈Ej |O |Ej〉 . (1.6)

Here, we explicitly use the assumption that Ej 6= Ek for j 6= k. This value equals the
expectation value for the time-averaged density matrix, or the diagonal ensemble [10, 26],
defined as

ρDE := lim
T→∞

1

T

∫ T

0
|ψ(t)〉 〈ψ(t)| dt =

∑
j

|cj |2 |Ej〉 〈Ej | . (1.7)

In other words, the time-averaged expectation value of any observable for an arbitrary
initial state converges to its diagonal ensemble expectation value

〈O〉DE := tr(OρDE) =
∑
j

|cj |2 〈Ej |O |Ej〉 . (1.8)

Thus, we can define a temporal fluctuation of an observable O as |〈O〉t − 〈O〉DE|. If the
temporal fluctuation is small enough, we can conclude that 〈O〉t converges, and thus the
system equilibrates. One can obtain the following upper bound on the temporal fluctua-

3



CHAPTER 1. INTRODUCTION

tion [27] under an additional assumption called the non-resonance condition1 [13, 14]:

lim
T→∞

1

T

∫ T

0
|〈O〉t − 〈O〉DE|2 dt ≤

‖O‖2

Deff
. (1.10)

Here, Deff is called the effective dimension defined as

Deff :=
1∑
j |cj |

4 . (1.11)

It is easily verified that 1 ≤ Deff ≤ dimH, and, roughly speaking, Deff represents the ef-
fective number of energy eigenstates that contribute to the initial state. Inequality (1.10)
ensures the relaxation to equilibrium if Deff of the initial state is sufficiently large, which
is typically true [14].

We have seen equilibration of 〈O〉t under rather realistic assumptions. However, this
is not the end of the story because the equilibrium value 〈O〉DE does not necessarily agree
with the thermal equilibrium value computed with a microcanonical ensemble. In other
words, we need to distinguish equilibration from thermalization [28]. The former means
that the time-averaged 〈O〉t reaches a constant value (up to small temporal fluctuations)
and has been proved in a rather generic setup. On the other hand, the latter means
that the time-averaged 〈O〉t coincides with the expectation value for a microcanonical
ensemble with energy 〈ψ(0)|H |ψ(0)〉. Then, a natural question is: what are necessary or
sufficient conditions for systems to thermalize? As seen in Sec. 1.2, the (strong) ETH is a
sufficient condition for thermalization of isolated quantum systems.

1.2 Eigenstate Thermalization Hypothesis

Let us now introduce the ETH, a plausible scenario to explain thermalization in iso-
lated quantum systems. For simplicity, we consider lattice systems such as quantum spin
models and the Hubbard model. There are two types of ETH, namely, the strong ETH
and the weak ETH. The strong ETH states that all energy eigenstates are locally indis-
tinguishable from the microcanonical ensemble [13, 14, 29–31]:

〈Ej |O |Ej〉 ' tr
(
Oρ(mc)

[E−∆E,E)

)
for all |Ej〉 ∈ H[E−∆E,E), (1.12)

or more precisely [32],

max
j

e1≤Ej/V≤e2

∣∣∣〈E(V )
j

∣∣∣O ∣∣∣E(V )
j

〉
− tr

(
Oρ

(mc),(V )
[E−∆E,E)

)∣∣∣ V→∞−−−−→ 0. (1.13)

1The condition imposes no degeneracy of energy gaps: for any k, l,m, n,

Ek − El = Em − En ⇐⇒ (k = l & m = n) or (k = m & l = n). (1.9)

4



1.2. EIGENSTATE THERMALIZATION HYPOTHESIS

Here, O is any density of local and macroscopic operator, V is the number of lattice
sites, and

∣∣∣E(V )
j

〉
and ρ

(mc),(V )
[E−∆E,E) are an energy eigenstate and the density operator of

a microcanonical ensemble with V , respectively. The condition for the energy density,
e1 ≤ Ej/V ≤ e2, should be taken in the middle of the energy spectrum, since some pe-
culiar behaviors may occur for the ground state or low-lying excited states (see also the
footnote of the definition of QMBS in Sec. 2.1.1). Note that Eq. (1.12) is different from
Eq. (1.4); the former is the condition for energy eigenstates, whereas the latter is for a
randomly chosen state from H[E−∆E,E). Although there is no rigorous proof of the strong
ETH, it is widely believed to hold for a large class of interacting systems, as evidenced
by several numerical studies [2, 10–12]. On the other hand, the weak ETH states that
almost all energy eigenstates are locally indistinguishable from the microcanonical en-
semble [14–16, 31], or more precisely, for any ε > 0,

ProbH[E−∆E,E)

[∣∣∣〈E(V )
j

∣∣∣O ∣∣∣E(V )
j

〉
− tr

(
Oρ

(mc),(V )
[E−∆E,E)

)∣∣∣ > ε
]
V→∞−−−−→ 0. (1.14)

Here, we introduce a notation ProbH[E−∆E,E)
[C ] := ntrue[C ]/dimH[E−∆E,E) as a “prob-

ability”2 that statement C is true with respect to the uniform distribution on |Ej〉 ∈
H[E−∆E,E), where ntrue[C ] is the number of energy eigenstates |Ej〉 ∈ H[E−∆E,E) which
satisfy C . Note that the weak ETH allows the existence of athermal states, although the
number of them should be much smaller than that of thermal states. The weak ETH was
proved for generic translationally invariant short-range interacting systems [16].

Now, let us see that thermalization of an isolated quantum system can be shown when
the strong ETH holds. Eqs. (1.8) and (1.12) leads to

tr
(
Oρ(mc)

[E−∆E,E)

)
' 〈O〉DE. (1.15)

We have also seen that the time-averaged 〈O〉t converges to 〈O〉DE. Therefore, we con-
clude that the time-averaged 〈O〉t agrees with tr

(
Oρ(mc)

[E−∆E,E)

)
, which is the definition of

thermalization.
However, it is known that several systems to be discussed below do not thermalize,

which implies that the strong ETH does not hold for all systems. Moreover, some systems
violate the weak ETH as well. While there are two types of violation, namely, violation of
the strong ETH and that of the weak ETH, in this thesis, we use “violation of the ETH”
in the sense of that of the strong ETH, unless otherwise stated.

2We use these terminology and notation according to several papers [16, 31], but we are afraid that the
terminology is confusing, and thus some care has to be taken. Here, “probability” does not mean the
probability with respect to the uniform distribution onH[E−∆E,E), as discussed in Sec. 1.1.1. Instead, we
just check if statement C is true for each of {|Ej〉 | Ej ∈ [E − ∆E,E)}, which is just a (countable) set
of vectors and not the Hilbert subspace H[E−∆E,E) = Span{|Ej〉 | Ej ∈ [E − ∆E,E)}. We then define
ProbH[E−∆E,E)

[C ] as the ratio of ntrue[C ] to D[E−∆E,E) = |{|Ej〉 | Ej ∈ [E −∆E,E)}|. It is important
to note that, when some energy levels are degenerate, ntrue[C ] may depend on the choice of orthogonal
eigenstates {|Ej〉}.
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CHAPTER 1. INTRODUCTION

1.3 Violation of ETH

In this section, let us see several counterexamples to the ETH, namely, integrable
systems, many-body localized (MBL) systems, and systems with Hilbert space fragmen-
tation. While a QMBS system is also a counterexample to the ETH, it will be defined in
Chapter 2 as their complement, i.e., as an ETH-violating system that is not integrable,
many-body localized, or fragmented.

1.3.1 Integrable systems

Roughly speaking, the ETH violation in integrable systems can be understood as fol-
lows. In an integrable system, there are an extensive number (typically O(L) for the
system size L) of conserved quantities [33], which means that a state at any time t > 0

remembers information at time t = 0 forever. On the other hand, we expect that thermal
equilibrium does not depend on the details of the initial states but only on a small number
of local and macroscopic conserved quantities such as the total energy and the number of
particles. This discrepancy implies the lack of thermalization in integrable systems.

The above discussion might be naive and phenomenological, but several studies [11,
25, 26, 34–37] indeed revealed an atypical behavior in integrable systems. Here, let us
review Ref. [37] as a pedagogical example. The authors in Ref. [37] studied the one-
dimensional XXZ model in one dimension with/without next-nearest neighbor hopping
and interactions described by the following Hamiltonian:

HXXZ :=
1

1 + λ
(H0 + λW ), (1.16)

H0 :=

L∑
j=1

(
−b†jbj+1 − bjb†j+1 + njnj+1

)
, (1.17)

W :=
L∑
j=1

(
−b†jbj+2 − bjb†j+2 + njnj+2

)
. (1.18)

Here, b†j and bj are creation and annihilation operators of hard-core bosons, satisfying

[bj , b
†
k] = [bj , bk] = [b†j , b

†
k] = 0 (j 6= k), (1.19)

{bj , b†j} = 1, (bj)
2 = (b†j)

2 = 0, (1.20)

L is the number of sites, and we impose the periodic boundary condition (PBC), i.e., bL+1 =

b1, bL+2 = b2, hence translational invariance. The original XXZ chain described by H0 is a
well-known integrable model, which can be solved by the Bethe ansatz [38, 39]. The next-
nearest neighbor hopping and interaction term W , however, breaks the integrability of
the system, so λ ≥ 0 can be interpreted as a degree of integrability breaking. Then, they

6



1.3. VIOLATION OF ETH

investigated the scaling of

Dout/D := ProbH[E−∆E,E)

[∣∣∣〈Ej |O |Ej〉 − tr
(
Oρ(mc)

[E−∆E,E)

)∣∣∣ > ε
]
,

with respect to the system size L for various λ and a certain O. In our notations, Dout and
D are defined as

Dout := ntrue

[∣∣∣〈Ej |O |Ej〉 − tr
(
Oρ(mc)

[E−∆E,E)

)∣∣∣ > ε
]

and

D := dimH[E−∆E,E),

respectively. They found that

1. when λ = 0, Dout/D decays exponentially, but the number of those athermal states
Dout increases exponentially.

2. when λ > 0, Dout/D seems to decay double-exponentially. It suggests that Dout = 0

for sufficiently large L since D grows just exponentially.

Their results imply that non-integrable systems obey the strong ETH, but integrable
ones do not. On the other hand, the weak ETH is valid for both integrable and non-
integrable systems, which is consistent with the proof of the weak ETH with translational
invariance [15, 16, 31].

Breakdown of thermalization in nearly integrable systems is also observed experi-
mentally. In Ref. [5], the authors observed the dynamics of a trapped one-dimensional
Bose gas, which can be described as a Tonks–Girardeau gas [40, 41], a hard-core limit
c→∞ of the Lieb-Liniger model [42, 43] with the Hamiltonian

HLL := − 1

2m

N∑
j=1

∂2

∂x2
j

+ 2c
∑

1≤j<k≤N
δ(xj − xk), (1.21)

in the anharmonic trap (see also Fig. 1.1). Here, N is the number of bosons. The system
was initially prepared in a momentum superposition with ±2~k, where k is the wavevec-
tor of the 1D lattice light. Then, they monitored the spatial distribution of a Bose gas
and observed its robust oscillations for a long time. This atypical behavior illustrated the
experimental realization of a Lieb-Liniger model with pointlike interactions and the ab-
sence of thermalization in a nearly integrable system. They called the experiment a quan-
tum Newton’s cradle since it is reminiscent of a classical one as illustrated in Fig. 1.1.

7



CHAPTER 1. INTRODUCTION

a b

Figure 1.1: a. Classical and b. quantum Newton’s cradles. Figure b. represents the
schematic dynamics of the clouds of atoms in a 1D anharmonic trap. Figures reproduced
with permission from Ref. [5], Springer Nature Ltd.

1.3.2 Many-body localized systems

As mentioned above, the weak ETH is proved for generic translationally invariant
short-range interacting systems. Then, it is a natural question to ask whether the ETH
holds in the absence of translational invariance.

Systems in the presence of strong disorder can exhibit localization, which was first
proposed by Anderson [44]. Although Anderson originally studied single-particle local-
ization, such localization can occur even in interacting systems, which is now referred
to as many-body localization (MBL) [45–48]. The spin-1/2 Heisenberg chain in a random
magnetic field3 with the Hamiltonian [45, 50, 51]

HrfH :=
∑
j

(
Sxj S

x
j+1 + Syj S

y
j+1 + SzjS

z
j+1 + hjS

z
j

)
(1.22)

is a prototypical example of MBL systems. Here, hj are independent random variables
from a uniform distribution on [−h, h], and h is a disorder strength. Extensive numerical
studies [45, 50, 51] captured the MBL transition at the critical disorder strength h = hc

and the violation of the weak ETH in the MBL phase. Here, let us see how to characterize
the MBL phase and why the MBL system fails to thermalize.

Level-spacing statistics have been frequently used to distinguish non-integrable sys-
tems from integrable ones, and it can also be used to differentiate extended and localized
phases. Let E0 ≤ E1 ≤ · · · ≤ Ej ≤ . . . be energy levels in ascending order, ∆Ej := Ej+1−Ej
gaps between the consecutive energy levels, and 〈∆E〉 an average of ∆Ej , i.e.,

〈∆E〉 :=
1

N

N −1∑
j=0

∆Ej ,

3The model is equivalent to that of interacting spinless fermions with the random chemical potential [49]
via the Jordan-Wigner transformation.
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1.3. VIOLATION OF ETH

where N is the number of ∆Ej ’s. It is known [52–55] that the normalized energy-level
spacings sj := ∆Ej/〈∆E〉 obey the Wigner-Dyson distribution with the probability density
function

PWD(s) :=
π

2
se−πs

2/4 (1.23)

for chaotic systems described by the random matrix theory of the Gaussian orthogonal
ensemble (GOE), and the Poisson distribution with the probability function

PP(s) := e−s (1.24)

for integrable systems. The ratio of adjacent level spacings (also known as the r value) [56,
57]

〈r〉 :=

〈
min(∆Ej ,∆Ej+1)

max(∆Ej ,∆Ej+1)

〉
=

1

N − 1

N −2∑
j=0

min(∆Ej ,∆Ej+1)

max(∆Ej ,∆Ej+1)
(1.25)

is often used for quantitative detection of distribution statistics; 〈r〉WD = 4−2
√

3 ' 0.536...

for the Wigner-Dyson distribution, and 〈r〉P = 2 ln 2 − 1 ' 0.386 for the Poisson distribu-
tion. In Refs. [45, 51], they found that 〈r〉 is close to 〈r〉WD when h is small enough and
changes toward 〈r〉P as h increases4, which suggests the transition of level statistics. The
similarity between the level statistics of integrable systems and that of strongly disor-
dered systems are apparently surprising. On one hand, integrable systems are in general
fine-tuned and not robust to any small perturbations. On the other hand, strongly disor-
dered systems apparently seem chaotic with a random external field.

Another characteristic of the MBL phase is anomalously low entanglement entropy
(EE), which measures quantum entanglement. The von Neumann EE of a normalized
state |φ〉 with respect to a bipartition of the system into subsystems A and Ā is defined as

SA := − tr(ρA ln ρA), (1.26)

where ρA := trĀ |φ〉 〈φ| is a reduced density matrix of region A. We expect that thermal
states should have the volume-law EE (with the size of subsystem A), since SA essen-
tially corresponds to the thermodynamic entropy of subsystem A [14]. In Ref. [51], they
compared the averaged EE of highly excited eigenstates in the extended phase with that
in the MBL phase and found quantitative differences of the EE scalings between the two
phases: the volume-law scaling for the extended phase and the area-law scaling for the
MBL phase. Their results imply that even the weak ETH is violated in the MBL phase
since the EE is averaged over different highly excited eigenstates.

4The model is integrable when h is exactly 0, and will not show the Wigner-Dyson distribution. Thus, here
we consider small but nonzero h in an extended phase.
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CHAPTER 1. INTRODUCTION

The reason why MBL systems fail to thermalize is in fact similar to that for integrable
systems: there are an extensive number of local integrals of motions (LIOMs). They were
first phenomenologically introduced [58, 59] and shortly afterward constructed rigorously
for the random transverse field and random exchange Ising model [60, 61]. Here, we
outline the main idea of LIOMs. We expect that the Hamiltonian in the MBL phase can
be rewritten in terms of localized pseudospins {τ j} as

H = E0 +
∑
j

τ zj +
∑
j,k

Jj,kτ
z
j τ

z
k +

∑
j,k,l

Jj,k,lτ
z
j τ

z
k τ

z
l + · · · , (1.27)

and a localized pseudospin τ zj at site j is constructed only by neighboring spins:

τ zj = σzj +
∑
k,l

∑
α,β=x,y,z

cα,βj,k,lσ
α
k σ

β
l + · · · . (1.28)

Here, σαk := 2Sαk is a standard Pauli matrix at site k, and interaction strength Jj,k,l,...

between pseudospins and coefficients c are expected to decay exponentially with the dis-
tance between site j and other sites. Note that the phenomenological Hamiltonian (1.27)
is classical, i.e., only consists of τ zj ; however, τxj and τyj never appear. Thus the Hamilto-
nian is diagonalized by the set of eigenvalues ±1 for each LIOM τ zj . The intuition behind
Eq. (1.27) is that the Hamiltonian should be written in terms of such localized conserved
charges {τ zj } since there is no transport in the fully localized regime [59]. From this phe-
nomenological view, one can see that the existence of LIOMs yields a long-time memory
of the initial state, which results in the lack of thermalization.

Finally, we briefly review experiments on MBL. The first experimental observation
of MBL was carried out in one-dimensional interacting ultracold fermions in a quasi-
random optical lattice [62], which can be described by the Hamiltonian

H = −J
∑
j,σ

(c†jcj+1 + h.c.) + ∆
∑
j,σ

cos(2πβj + φ)nj,σ + U
∑
j

nj,↑nj,↓. (1.29)

Here, c†j and cj are creation and annihilation operators for fermions at site j with spin
state σ =↑, ↓, nj,σ := c†j,σcj,σ is the number operator at site j, J is the tunneling amplitude
between neighboring lattice sites, β is the ratio of lattice periodicities, φ is phase offset, ∆

is disorder strength, and U is the onsite interaction energy. They measured the imbalance
between the number of atoms on even (Ne) and odd (No) sites

I :=
Ne −No

Ne +No
. (1.30)

In the initial state, all atoms were placed only on even sites, so I ' 1. When disorder
strength ∆ is small enough, I quickly relaxed to zero. On the other hand, for stronger
disorder, it remained a nonzero stationary value for a long time, which implies that the
system keeps a memory of the initial state.

10



1.3. VIOLATION OF ETH

Another experiment was reported in Ref. [8]. Using trapped 171Yb+ ions, they exper-
imentally investigated a long-range transverse field Ising model with disorder described
by the Hamiltonian

H =
∑
j<k

Jj,kσ
x
j σ

x
k +

B

2

∑
j

σzj +
∑
j

Dj

2
σzj . (1.31)

Here, σx,zj are the Pauli matrices at site j, Jj,k is the coupling strength between spins at
sites j and k, B is a uniform effective transverse field, and Dj is a site-dependent random
transverse field. The coupling Jj,k is tuned to decay algebraically as Jj,k ∝ Jmax/|j − k|α

with Jmax ' 2π and α ' 1.13. The random transverse field Dj can also be tuned and were
randomly sampled from a uniform distribution on [−W,W ], with disorder strength W .
Preparing the Néel state |ψ0〉 = |↑↓↑↓ . . .〉 along the z direction as the initial state, they
measured the time evolution of expectation value 〈σzj 〉 and the (normalized) Hamming
distance

D(t) :=
1

2
− 1

2L

∑
j

〈ψ0|σzj (t)σzj (0) |ψ0〉 , (1.32)

which is, roughly speaking, the proportion of flipped spins at time t. They observed ther-
mal/athermal behaviors in the absence/presence of disorder:

• 〈σj〉 decays quickly to zero without disorder, while it keeps a non-vanishing value
for a long time with stronger W .

• D(t) reaches to 0.5 in the absence of disorder. On the other hand, it becomes smaller
even for a long time as W is increased.

These results clearly capture the features of MBL and agree well with the theoretical
prediction.

1.3.3 Hilbert space fragmentation

The above two counterexamples to the ETH, integrable systems and MBL systems,
have local conserved quantities or integrals of motions, which essentially cause the lack
of ergodicity5. Other systems can exhibit non-ergodic behaviors due to the Hilbert space
fragmentation into exponentially many disconnected sectors that cannot be labeled by
local quantities. One of such examples is the one-dimensional t-Jz model described by the
Hamiltonian [63–65] with the open boundary condition (OBC)

Ht-Jz := −t
L−1∑
j=1
σ=↑,↓

(
c̃j,σ c̃

†
j+1,σ + c̃j+1,σ c̃

†
j,σ

)
+ Jz

L−1∑
j=1

SzjS
z
j+1, (1.33)

5The notion of ergodicity in quantum mechanics is not as clear as in classical mechanics [1, 18]. However,
here we roughly mean by ergodicity that the system forgets the details of the initial state.
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with the number of sites L. Here, c̃j,σ are dressed fermionic operators with the hard-core
constraint and can be written with standard fermionic operators cj,σ as c̃j,σ := cj,σ(1 −
c†j,−σcj,−σ). Due to the constraint, the dimension of each local Hilbert space is three. We
refer to these three local states as |0〉 , |↑〉, and |↓〉, where 0 stands for the empty site and
↑ (↓) for the site occupied by a fermion with the up-spin (down-spin) index. The spin
operator Szj can be written in terms of dressed fermions as Szj := (c̃†j,↑ c̃

†
j,↓)(σ

z/2)(c̃j,↑ c̃j,↓)
T,

where σz is the standard Pauli matrix.
There are two local conserved quantities, namely, the number of fermions NF :=∑
j(nj,↑ + nj,↓) and the total spin Sztot :=

∑
j(nj,↑ − nj,↓)/2, where nj,σ := c̃†j,σ c̃j,σ is the

number operator at site j. In addition to these, the model possesses nonlocal conserved
quantities. One can see that the sequences of local states from which 0 are omitted remain
unchanged6 due to the hard-core constraint and the absence of Sxj S

x
j+1 or Syj S

y
j+1 terms.

Thus, the model has the nonlocal conserved quantities defined as

qk :=
L∑
j=1

Pkj Szj , (1.34)

where Pkj is the projection operator onto the Hilbert subspace where the k-th fermion is
exactly on site j. In the case of k = 1, it reduces to a simpler form:

q1 =
L∑
j=1

[
j−1∏
k=1

(1− nk)

]
Szj . (1.35)

These nonlocal conserved quantities make the Hilbert space split into exponentially many
disconnected subsectors. To be more precise, for a given NF, there are 2NF distinct sub-
sectors determined by the pattern of ↑ and ↓, and thus the total number of connected
components is

L∑
NF=0

2NF = 2L+1 − 1. (1.36)

Figure 1.2 represents the connectivity of the Hilbert space by interpreting Ht-Jz as an
adjacent matrix of the graph, each vertex of which corresponds to the product state of
|0〉 , |↑〉, and |↓〉.

Hilbert space fragmentation yields nonergodicity, which leads to a violation of the
ETH. Such an atypical behavior is also captured by computing an expectation value. In
Ref. [65], they numerically calculated the expectation value of SzL/2SL/2+1 for every eigen-
state and expected that the width of its distribution would scale as L−1/4. This scaling is
even slower than that of integrable systems, which is typically L−1/2 [31, 36]. From these
results, they concluded the violation of the ETH.

6Such a constraint also appears in the one-dimensional infinite-U Hubbard model [66].
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1.3. VIOLATION OF ETH

Figure 1.2: A visualization of Hilbert space fragmentation of the t−Jz model with L = 6.
Each vertex denotes the product state of |0〉 , |↑〉, and |↓〉 such as |0 ↑↑↓ 0 ↓〉. Since the order
of ↑ and ↓ does not change, |0 ↑↑↓ 0 ↓〉 does not connect with, for example, |0 ↑↓↑ 0 ↓〉. This
constraint splits the Hilbert space into 2L+1 − 1 (= 127 in the L = 6 case) disconnected
subsectors.

Another example of Hilbert space fragmentation is the one-dimensional spin-1 dipole-
conserving model described by the following Hamiltonian [67] with the OBC:

H3 := −
l−1∑

j=−l+1

[
S+
j−1(S−j )2S+

j+1 + S−j−1(S+
j )2S−j+1

]
. (1.37)

Here, we assume that the number of sites L = 2l + 1 is odd and label each site j =

−l,−l + 1, . . . , l − 1, l, and S±j is a spin raising/lowering operator of S = 1 at site j. This
model has two local conserved quantities; the U(1) charge Q and the dipole moment P
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Figure 1.3: Defects and nonlocal conserved quantities of the dipole-conserving model H3.
Green circles denote the defects, the charge sign of which is the same as that of the left
one. The total number and pattern of defects are conserved by H3. In addition, the dipole
moment P̂k within each region (indicated by the brackets) between two subsequent defects
is also conserved. Figure reproduced with permission from Ref. [65], American Physical
Society.

defined as

Q :=

l∑
j=−l

Szj , P :=

l∑
j=−l

jSzj . (1.38)

Besides these, the number and pattern of defects defined below are conserved in this
model. Let us denote the Sz basis with eigenvalues +1, 0, and −1 as |+〉, |0〉, and |−〉,
and refer to them as a positive charge, an empty site, and a negative charge, respec-
tively. Then, a defect is defined as a charge that has the same sign as the one on its left
with empty sites ignored (see also Fig. 1.3). Moreover, one can see that the dipole mo-
ments within the region between two subsequent defects are also conserved. Due to the
existence of such nonlocal conserved quantities, the Hilbert space is fragmented into expo-
nentially many subsectors, which yields several peculiar behaviors such as non-vanishing
autocorrelator for a long time, the wide distribution of the eigenstate expectation value,
and anomalously low EE of eigenstates [67]. Intriguingly, this model was experimentally
realized in the tilted Fermi-Hubbard chain [68], and non-ergodic behaviors were observed
directly.

Before finishing this section, we remark the apparent discrepancy between the ab-
sence of thermalization in the above systems and the rigorous proof that the weak ETH
holds for generic translationally invariant short-range interacting systems. Since we im-
pose the OBC on Ht-Jz and H3, their translational invariance is not perfect, but we expect
that macroscopic behaviors do not depend on boundary conditions. In fact, non-ergodic
behavior was also captured under the PBC [65]. Then, one may think that Ht-Jz and H3

are counterexamples of the proof of the weak ETH. This apparent contradiction stems
from the ambiguity of the choice of eigenstates. The Hamiltonians Ht-Jz and H3 have
many exponentially degenerate eigenvalues due to their fragmentation, and thus a set
of orthogonal eigenstates is not unique. However, it depends on the choice of eigenstates
whether each eigenstate is thermal or not. The rigorous results on the weak ETH [16, 31]
claim that there exists a set of orthogonal eigenstates almost all of which are thermal. In
general, such eigenstates can be superpositions of states each of which lives in a differ-
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ent disconnected subsector. In other words, the proof of the weak ETH, for now, can not
rule out the possibility of the existence of anomalously many athermal states when the
Hamiltonian has exponentially degenerate eigenstates.

1.4 Summary of the Chapter and Outline of the Thesis

We have briefly reviewed the existence/absence of thermalization in various quantum
many-body systems from both theoretical and experimental points of view and introduced
the theoretical plausible scenario called the ETH. Although the ETH is believed to be
valid in a large class of quantum many-body systems, its violations have been intensively
studied theoretically and also observed experimentally. We have focused on the three
kinds of counterexamples to the ETH, namely, integrable systems, MBL systems, and
systems with Hilbert space fragmentation.

Recently, another distinct class of ETH-violating systems called the quantum many-
body scars (QMBS) have attracted much attention since the first experimental observa-
tion [9]. The initial observation stimulated a number of theoretical studies on QMBS, but
its general framework and origin remain unclear. Our motivation is to clarify them and
gain a better understanding of QMBS by constructing analytically tractable models.

The organization of the thesis is as follows. In Chapter 2, we review QMBS with sev-
eral previous works from both theoretical and experimental sides. First, we look through
the pioneering experiment performed in Ref. [9] and introduce an effective model as an
idealization of the experimental setup. We see that this model has an exact QMBS state
written as a matrix product state. Then, we focus on other exact results on QMBS, namely,
the systematic construction of QMBS Hamiltonians by embedding athermal states into
the middle of the energy spectrum and a particular algebraic structure of scar states
appearing in some models, providing their concrete examples.

In Chapter 3, we propose a new construction of exact QMBS models. In particular, we
study an S = 1/2 spin chain model as the simplest case of our construction. We explicitly
write down the exact QMBS states and explain how to construct the QMBS Hamiltonian.
We show several numerical results, including the level-spacing statistics, eigenstate ex-
pectation values of observables, a half-chain bipartite EE, and dynamics of the fidelity
and EE. We also provide an analytical evaluation of EE of QMBS states. All of these
results clearly illustrate characteristics of QMBS.

In Chapter 4, we generalize our model constructed in Chapter 3 via the Onsager alge-
bra. First, we briefly review the Onsager algebra and introduce a one-dimensional model
that possesses the Onsager symmetry. Then, we provide the generalized construction of
our QMBS Hamiltonian to higher spin S or multi-parameter scar states. We also show
several numerical results parallel to those in Chapter 3, which demonstrate the validity
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of our generalized construction.
Finally, a summary of the thesis is given in Chapter 5. Some supplemental materials

are provided in Appendices.

16



C
H

A
P

T
E

R

2
QUANTUM MANY-BODY SCARS

“Scars can come in handy. I have one myself above my left knee
that is a perfect map of the London Underground.”
– J. K. Rowling, Harry Potter and the Philosopher’s Stone

In this Chapter, we review quantum many-body scars (QMBS). Before going through
its details, let us briefly mention a historical context (see also, e.g., Refs. [69, 70]).
According to Ref. [71], the word “scar” seems to have first appeared in Ref. [72],

in which Heller studied a quantum analog of the billiard problem. The classical billiard
model describes the dynamics of a single particle inside a stadium potential. The collision
between the particle and the boundary of the stadium is elastic, so the kinetic energy
of the particle is conserved. It was proved [73] that, for a large class of stadium shapes,
including the Bunimovich stadium consisting of a rectangle and capped two semicircles,
the motion of the particle is almost surely ergodic, i.e., the averaged distribution of the
particle for a long enough time is uniform over the whole stadium. However, there also
exist non-ergodic and periodic trajectories, although the measure of such trajectories is
zero. In Ref. [72], Heller investigated the quantum version of the billiard problem and
found that certain eigenfunctions have an imprint of the classical periodic trajectories. To
be precise, the wave function of a scarred state concentrates around a classical periodic
trajectory (see also Fig. 2.1). He called this imprint of the classical periodic trajectory
“scar”.

While Ref. [72] studied the one-body quantum system, it is a natural question to ask
whether generalization of quantum scars to many-body interacting systems is possible
or not. It took over 30 years until the pioneering experiment in the Rydberg atom sys-
tem [9] revealed the validity of such generalization. We then start this Chapter with this
experiment and its effective model.
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(a) (b)
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Figure 2.1: Eigenstate wavefunctions with the n-th smallest energy inside the Buni-
movich stadium defined as a union of the square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and the two
semi-circles (x − 1)2 + y2 ≤ 1 (x ≥ 1) and (x + 1)2 + y2 ≤ 1 (x ≤ −1). Here, the x (y)-
axis is a horizontal (vertical) one, and we impose the Dirichlet boundary condition that
makes wavefunctions vanish at the boundary. Dashed lines indicate contours of the wave
functions. For (a) n = 199 (or other typical highly excited eigenstates), the wavefunction
looks complicated, whereas, for (b) n = 200, the wavefunction looks much “simpler” and
has a high amplitude around the classical periodic trajectory. Heller called such simple
wavefunctions “scars” from the classical periodic trajectory.

2.1 Experiment and Effective Model

2.1.1 First experimental observation

The quantum many-body scars were first observed by Lukin’s group in the Rydberg
atom system [9], in which cold neutral 87Rb atoms were arranged into arrays and their
dynamics were governed by the Hamiltonian

HRyd :=
Ω

2

∑
j

σxj +
∑
j<k

Vjknjnk. (2.1)

Here, each atom can be seen as an effective two-level system with the ground state |g〉
and the Rydberg state |r〉. The Pauli matrix σxj := |g〉j 〈r| + |r〉j 〈g| at site j describes the
coupling between |g〉 and |r〉 with Rabi frequency Ω, , nj := |r〉j 〈r| is a projector onto
the Rydberg state at site j, and Vjk denotes the repulsive van der Waals interaction be-
tween Rydberg states at sites j and k that scales as ∼ R−6

jk with the distance Rjk of two
atoms. In this experiment, they observed peculiar behaviors of the particular initial state
|Z2〉 := |rgrg · · ·〉. They observed that oscillations of states between |Z2〉 and the com-
plementary state |Z′2〉 := |grgr · · ·〉 persist for a long time. They also measured the time
evolution of the domain-wall density1 and observed robust oscillations of it. In addition,
they compared these results with the ones computed from a thermal ensemble. More

1Here, they defined the domain wall as two neighbouring atoms in the same state, which is different from
its usual definition in, e.g., the ferromagnetic Ising model.
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2.1. EXPERIMENT AND EFFECTIVE MODEL

specifically, they estimated effective temperature from the experiment and computed the
expectation values of observables in the canonical ensemble at the corresponding temper-
ature. They found significant differences between the experimentally measured results
and the ones computed in the canonical ensemble, from which they deduced that the |Z2〉
state is not thermal.

Such non-thermal behavior of QMBS is distinct from the ETH violations discussed
in Chapter 1 in the following sense. First, the system has no local conserved quanti-
ties except the total energy, which implies the system is surely non-integrable. Second,
the system is homogeneous and disorder-free, which rules out the possibility of MBL.
Third, HRyd is “connected” when regarded as an adjacent matrix in the way explained in
Sec. 1.3.3, and thus the Hilbert space is not fragmented. Conversely, we can define QMBS
as their complement, and here we adopt the following definition:

A QMBS model is one that exhibits non-thermal behavior, or more precisely,
that has highly excited but ETH-violating eigenstates2, even though it is not
integrable, many-body localized, or fragmented (disconnected).

2.1.2 PXP model

On the theoretical side, an effective model for this system has attracted much atten-
tion since the experiment. This model is referred to as the PXP model [78, 79] described
by the Hamiltonian

HPXP :=
∑
j

Pj−1XjPj+1, (2.2)

where Xj = |g〉j 〈r|+ |r〉j 〈g|, and Pj := 1−nj = |g〉j 〈g| is a projector onto the ground state
at site j, prohibiting simultaneous excitations of neighboring atoms |. . . rr . . .〉. Such con-
straint is called the Rydberg blockade [80]. The effective Hamiltonian HPXP is obtained
from HRyd under the assumption of Vj,j+1 � Ω � Vj,j+2, i.e., in the case where the van
der Waals interactions are strong enough between neighboring atoms but are negligi-
ble between ones that are further apart. Note that the van der Waals interaction decays
more rapidly than, e.g., the Coulomb interaction that scales as ∼ R−1 with the distance R.
Thus, it is a relatively short-range interaction, and we can take only neighboring Rydberg
blockade into account by tuning the parameters.

In a series of papers (Refs. [78, 79]), they captured several peculiar behaviors of |Z2〉;
much slower EE growth than that of other states such as |gggg . . .〉, long oscillations of
the expectation value of the local correlation function 〈ZjZj+1〉 (Zj := |r〉j 〈r| − |g〉j 〈g|),

2It is known that EE of ground states and low-lying excited states of gapped Hamiltonians with local
interactions can obey the area law in general [74–77]. We rule out such a peculiar situation at zero
temperature by focusing on eigenstates in the middle of the energy spectrum.
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anomalously low-entangled eigenstates in the middle of the energy spectrum, and per-
sistent revivals of the fidelity |〈Z2(t)|Z2(0)〉|2 :=

∣∣〈Z2(0)| eiHPXPt |Z2(0)〉
∣∣2. They also found

that the level-spacing statistics agrees well with the Wigner-Dyson distribution, and thus
concluded that such non-thermal behaviors do not stem from integrability.

In Ref. [81], Lin and Motrunich found the exact scar state in the PXP model that can
be written as a matrix product state (MPS). Here, we impose PBC3, assume that the
number of sites L is even, and combine two neighboring sites into one block site. Due to
the Rydberg blockade, only three states |O〉 := |gg〉, |R〉 := |gr〉, and |L〉 := |rg〉 are allowed
at each block. Then, the Hamiltonian can be rewritten in terms of block states as

HPXP =

L/2∑
j=1

[(|R〉 〈O|+ |O〉 〈R|)j ⊗ (1− |L〉 〈L|)j+1 + (1− |R〉 〈R|)j ⊗ (|L〉 〈O|+ |O〉 〈L|)j+1]

=

L/2∑
j=1

(|R〉 〈O|+ |O〉 〈R|+ |L〉 〈O|+ |O〉 〈L|)j

−
L/2∑
j=1

[(|OL〉+ |RO〉) 〈RL|+ |RL〉 (〈OL|+ 〈RO|)]j,j+1.

(2.3)

Let us observe that the state4

|ψS〉 := tr
(
A1A2 · · ·AL/2

)
, Aj =

(√
2 |R〉 − |O〉
|O〉 −

√
2 |L〉

)
j

(2.4)

is an exact eigenstate of HPXP with eigenvalue 0. One can see from

AjAj+1 =

(
2 |RR〉 − |OO〉 −

√
2 |RO〉+

√
2 |OL〉√

2 |OR〉 −
√

2 |LO〉 − |OO〉+ 2 |LL〉

)
j,j+1

(2.5)

that the |ψS〉 satisfies the Rydberg constraint between neighboring blocks, i.e., |RL〉 never
appears. In addition, any local states on two consecutive blocks are orthogonal to |OL〉+

3The exact scar MPS for OBC can also be constructed with slight modifications at the boundaries [81].
4This representation is equivalent to

|ψ〉 =
∑

s1=R,O,L

· · ·
∑

sL/2=R,O,L

tr
(
A

[s1]
1 · · ·A[s1]

L/2

) ∣∣s1 . . . sL/2

〉
where A

[R]
j =

(√
2 0

0 0

)
, A

[O]
j =

(
0 −1
1 0

)
, A

[L]
j

(
0 0

0 −
√

2

)
,

which is commonly used as well.
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|RO〉. Thus, the second term in Eq. (2.3) acts on |ψS〉 as 0, which leads to

HPXP |ψS〉 =

L/2∑
j=1

(|R〉 〈O|+ |O〉 〈R|+ |L〉 〈O|+ |O〉 〈L|)j tr
(
A1A2 · · ·AL/2

)
=

L/2∑
j=1

tr
(
A1 · · ·Aj−1FjAj+1 · · ·AL/2

)
,

where

Fj :=

( √
2 |O〉 − |R〉 − |L〉

|R〉+ |L〉 −
√

2 |O〉

)
j

. (2.6)

It is important to note

Fj =
1√
2

(σxAj − Ajσ
x), (2.7)

where the Pauli matrix σx acts on the auxiliary space. It immediately leads toHPXP |ψS〉 =

0 with the cyclic property of the trace. This state is a highly excited state, since HPXP

anticommutes with
∏
j Zj , and therefore the energy spectrum is symmetric around zero

energy. Nevertheless, |ψS〉 is an MPS and thus has the area-law EE, so it indeed violates
the ETH.

2.2 Other Exact QMBS Models

In the previous section, we saw that the PXP model has exact scar states. In this
section, we review other important exact results on QMBS.

2.2.1 Shiraishi-Mori construction

In Refs. [32, 82], Shiraishi and Mori proposed a systematic construction of QMBS
Hamiltonians before the Rydberg experiment and subsequent theoretical works on the
PXP model. The recipe for the construction is quite simple. Given a target Hilbert sub-
space HS spanned by low-entangled states {|ψS,k〉}k, find a set of operators {Pj} that
satisfy ⋂

j

KerPj = HS. (2.8)

Operators Pj can be taken as projectors onto the orthogonal complement H⊥S , but not
necessarily5. Then, for arbitrary local Hermitian operators hj , the scarred Hamiltonian

5The construction is sometimes called the “projector embedding” [69] according to their original papers.
However, as we will see below, it can be straightforwardly generalized to other operators than projectors,
so here we call it the “Shiraishi-Mori construction”.
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CHAPTER 2. QUANTUM MANY-BODY SCARS

is constructed as the sum of P †j hjPj . One can also add an additional Hermitian operator
H ′ that satisfies [H ′, Pj ] = 0 for any j, and the constructed scarred Hamiltonian is

HS :=
∑
j

P †j hjPj +H ′. (2.9)

It follows from

Pj(HS |ψS,k〉) = PjH
′ |ψS,k〉 = H ′Pj |ψS,k〉 = 0 (2.10)

that HS is invariant under the action of HS. Therefore, unless H ′ induces so strong cou-
pling between |ψS,k〉 thatHS gets thermal, eigenstates of HS onHS also have low EE. Nev-
ertheless, for general hj , eigenstates in HS are embedded into the middle of the energy
spectrum, and HS is non-integrable. Therefore, HS can be called a QMBS Hamiltonian.

Let us see a concrete example of the Shiraishi-Mori construction. We start with a
frustration-free Hamiltonian called the Majumdar-Ghosh model [83, 84], which is an S =

1/2 spin chain model with the Hamiltonian

HMG :=
L∑
j=1

P
S=3/2
j−1,j,j+1. (2.11)

Here, PS=3/2
j−1,j,j+1 is a projector onto the subspace where the total spin of the three sites

j − 1, j, and j + 1 is 3/2, or more explicitly,

P
S=3/2
j−1,j,j+1 :=

2

3
(Sj−1 · Sj + Sj · Sj+1 + Sj−1 · Sj+1) +

1

2
, (2.12)

and we impose PBC, i.e., S0 := SL,SL+1 := S1, and assume that the number of sites L is
even. The Majumdar-Ghosh model has the two unique ground states

|ψS,1〉 :=

L/2⊗
j=1

(|↑↓〉 − |↓↑〉)2j−1,2j√
2

, (2.13)

|ψS,2〉 :=

L/2⊗
j=1

(|↑↓〉 − |↓↑〉)2j,2j+1√
2

. (2.14)

Note that these two states have area-law EE, since they can be written as MPSs with
bond dimension 1 or 2:

|ψS,1〉 =
(
|↑〉 |↓〉

)
1

(
|↓〉
− |↑〉

)
2

· · ·
(
|↑〉 |↓〉

)
L−1

(
|↓〉
− |↑〉

)
L

(2.15)

|ψS,2〉 = tr

((
|↓〉
− |↑〉

)
1

(
|↑〉 |↓〉

)
2
· · ·

(
|↓〉
− |↑〉

)
L−1

(
|↑〉 |↓〉

)
L

)
(2.16)
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One can embed these states into the middle of the spectrum of HS by setting hj as, for
example, the XYZ interaction between nearest and next-nearest neighboring spins:

hj =
∑

α=x,y,z

[
Jα1 (Sαj−1S

α
j + Sαj S

α
j+1) + Jα2 (Sαj−2S

α
j + Sαj S

α
j+2)

]
. (2.17)

They numerically confirmed that all states except |ψS,k〉 are thermal, and thus the model
is surely non-integrable.

2.2.2 Restricted spectrum-generating algebra

Several results on exact QMBS, including spin chain models [85–87] and η-pairing
scars in the Hubbard-like model [88, 89], can be explained by the concept called the
spectrum-generating algebra (SGA) [69, 90] or the dynamical symmetry [91] in the re-
stricted subspace. Here, we focus on the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [92–
94], which is a celebrated S = 1 spin chain model, in particular, in the context of the
symmetry protected topological phases [95–98]. Even though the model is non-integrable,
one can write down the exact unique ground state as an MPS. Recently, other exact highly
excited but low-entangled eigenstates were found [99–101]. Thus, it turned out that the
AKLT model is also a good example of exact QMBS models, although it would not be ex-
pected in the original context to support Haldane’s conjecture [102, 103]. Here, we will
see these scar states in a simpler way [104].

The Hamiltonian of the S = 1 AKLT model is defined as

HAKLT :=

L∑
j=1

PS=2
j,j+1, (2.18)

where PS=2
j,j+1 is a projector onto the subspace where the total spin of neighboring spins at

site j and j + 1 is 2, and we impose PBC and assume that the number of sites L is even.
The projector PS=2

j,j+1 can be written in terms of spin operators as

PS=2
j,j+1 =

1

24
(Sj + Sj+1)2

[
(Sj + Sj+1)2 − 2

]
=

1

3
+

1

2
Sj · Sj+1 +

1

6
(Sj · Sj+1)2.

(2.19)

It is known that the ground state |G〉 of the AKLT model is unique and can be written as
an MPS:

|G〉 := tr(A1 · · ·AL), (2.20)

where

Aj =

(
|0〉 −

√
2 |+〉√

2 |−〉 − |0〉

)
j

, (2.21)
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and |+〉 , |0〉, and |−〉 are eigenstates of Sz with eigenvalues +1, 0, and −1, respectively.
Let us denote the two-site state at sites j and j + 1 with the total spin Stot and the total
Sz component mtot as |Stot,mtot〉〉j,j+1, which can be written in terms of the Sz basis as
follows:

|2, 2〉〉 = |++〉

|2, 1〉〉 =
1√
2

(|+0〉+ |0+〉) |1, 1〉〉 =
1√
2

(|+0〉 − |0+〉)

|2, 0〉〉 =
1√
6

(|+−〉+ 2 |00〉+ |−+〉) |1, 0〉〉 =
1√
2

(|+−〉 − |−+〉) |0, 0〉〉 =
1√
3

(|+−〉 − |00〉+ |−+〉)

|2,−1〉〉 =
1√
2

(|0−〉+ |−0〉) |1,−1〉〉 =
1√
2

(|0−〉 − |−0〉)

|2,−2〉〉 = |−−〉 .

One can easily see HAKLT |G〉 = 0 from

AjAj+1 =

(
|00〉 − 2 |+−〉 −

√
2 |0+〉+

√
2 |+0〉√

2 |−0〉 −
√

2 |0−〉 −2 |−+〉+ |00〉

)
j,j+1

(2.22)

=

(
−
√

2|1, 0〉〉 −
√

3|0, 0〉〉 2|1, 1〉〉
−2|1,−1〉〉

√
2|1, 0〉〉 −

√
3|0, 0〉〉

)
j,j+1

. (2.23)

Since PS=2
j,j+1 is positive semi-definite, so is HAKLT, and thus one can verify that |G〉 is

indeed a ground state, although its uniqueness is nontrivial.
In fact, (Q+)k |G〉 (k = 1, 2, . . . , L/2) are exact excited states with eigenvalues 2k, where

Q+ :=
L∑
j=1

(−1)j(S+
j )2. (2.24)

To see this, it suffices to show that

exp
(
−αQ+

)
H exp

(
αQ+

)
|G〉 = 2αQ+ |G〉 (2.25)

holds for arbitrary α ∈ C. It is because comparing the coefficients of αn in both sides of

H exp
(
αQ+

)
|G〉 = 2αQ+ exp

(
αQ+

)
|G〉 ,

one can obtain

H(Q+)k |G〉 = 2k(Q+)k |G〉 . (2.26)

To prove Eq. (2.25), it is important to note that the series expansion of the exponential
operator is finite:

exp
(
αQ+

)
=

L∏
j=1

exp
[
(−1)jα(S+

j )2
]

=
L∏
j=1

[
1 + (−1)jα(S+

j )2
]
.

(2.27)
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Then, it can be verified straightforwardly that

exp
(
−αQ+

)
PS=2
j,j+1 exp

(
αQ+

)
|G〉 = tr(A1 · · ·Aj−1Mj,j+1Aj+2 · · ·AL), (2.28)

where

Mj,j+1 := (−1)j4α

(
|2, 2〉〉 0

|2, 1〉〉 −|2, 2〉〉

)
= (−1)jα[(S+

j )2 − (S+
j+1)2]AjAj+1.

(2.29)

Therefore, one obtains

exp
(
−αQ+

)
H exp

(
αQ+

)
|G〉 =

L∑
j=1

tr(A1 · · ·Aj−1Mj,j+1Aj+2 · · ·AL)

=

 L∑
j=1

(−1)jα[(S+
j )2 − (S+

j+1)2]

 tr(A1 · · ·AL)

= 2αQ+ |G〉 .

In this way, Eq. (2.25) is proved.
Since |G〉 has area-law EE and Q+ is just the sum of local operators, we expect that

(Q+)k |G〉 also have low EE. In fact, it can be shown that EE of (Q+)k |G〉 is bounded by
∼ ln(L) [100].

The above structure of scars is formalized as the restricted spectrum generating alge-
bra (RSGA) [89, 90]. The Hamiltonian H0 is said to have a SGA or a dynamical symmetry
when it satisfies [105]

[H0, Q
†] = ωQ† (2.30)

with a certain operator Q†. The η operator [106–108] in the Fermi-Hubbard model is one
of the examples:

[HF-Hub, η
†] = (U − 2µ)η†, (2.31)

where

HF-Hub :=
∑
σ=↑,↓

−t∑
〈r,r′〉

(c†r,σcr′,σ + h.c.)− µ
∑
r

nr,σ

+ U
∑
r

nr,↑nr,↓ (2.32)

is a Fermi-Hubbard Hamiltonian on a d-dimensional cubic lattice, r stands for each site,
〈r, r′〉 denotes nearest-neighboring sites, c†r,σ and cr,σ are fermionic creation and annihila-
tion operators at site r, and

η† :=
∑
r

eiπ·rc†r,↑c
†
r,↓, (2.33)
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with π = (π, π, . . . , π). On the other hand, in the AKLT model, such an algebraic relation
does not hold in the entire Hilbert space but in the restricted scarred subspace:

([HAKLT, Q
+]− 2Q+)W = 0, (2.34)

where

W = Span{(Q+)k |G〉 | k = 0, 1, . . . , L/2}. (2.35)

In general, the Hamiltonian H is said to exhibit a RSGA when it satisfies

([H,Q†]− ωQ†)W = 0, (2.36)

with a certain operator Q†. Here, ω is an interval of scar states’ energies, and W ( H is
a Hilbert subspace that is invariant under Q†, i.e., Q†W ⊂ W. Remind that the algebraic
relation [H,Q†] = ωQ† does not necessarily hold in the full Hilbert space. In other words,
Q† is not associated with the entire symmetry of H but a rather “partial” symmetry which
is valid only in the subspace W. Then, given an energy eigenstate |ψS〉 ∈ W with eigen-
value E0, one can obtain the tower of scar states (Q†)k |ψS〉 with eigenvalue E0 + kω. If
|ψS〉 is low-entangled, then (Q†)k |ψS〉 is also expected to be low-entangled and thus ather-
mal. However, the whole Hamiltonian does not have such a simple structure and can be
decomposed as [69]

H = Hscar ⊕Hthermal, (2.37)

where Hscar acts onW and Hthermal acts onW⊥.

2.3 Summary of the Chapter and Motivation of Our Work

We have reviewed QMBS with a brief historical context. In particular, we have looked
through the pioneering experiment that directly observed QMBS features and its effective
model called the PXP model. We have also reviewed the previous theoretical works on
exact QMBS models, namely, the Shiraishi-Mori construction and the RSGA, providing
their concrete examples.

Despite intensive studies including those discussed above, most of the exact QMBS
models were limited to particular classes. For example, in most models, the dimension of
the local Hilbert space is at most two or three. In addition, most models assume transla-
tional invariance. Therefore, it is a natural and important question to ask whether one
can construct QMBS models under more general conditions, such as models with the
higher local dimension or inhomogeneous ones.

Motivated by this question, in the following Chapters, we will propose a new family of
QMBS models that are analytically tractable and also easy to generalize. The key to the
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construction of our model is the so-called Onsager algebra, which originally appeared in
obtaining the exact solution of the two-dimensional classical Ising model [109]. In Chap-
ter 3, we will discuss the simplest case of our model, i.e., the S = 1/2 spin chain model
with a one-parameter family of scar states. In Chapter 4, we will generalize it to higher
S and multi-parameter scar states.
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3
QUANTUM MANY-BODY SCARRED MODEL WITH S = 1/2

“Looking forward to things is half the pleasure of them.”
– L. M. Montgomery, Anne of Green Gables

In this Chapter, we propose a spin model with exact QMBS states. Our strategy
for constructing a scarred model is as follows. We start with integrable spin chain
models that themselves cannot be called QMBS models due to their integrability.

Focusing on a certain operator, we can find appropriate perturbations that destroy the
integrability but leave particular low-entangled states to be still eigenstates.

Our models have three remarkable features:

1. Scar states in our model are not product states but do have a finite sub-volume
entanglement. In other words, our scars are not trivially ETH-violating states such
as a vacuum state in the Fermi-Hubbard model.

2. Our models are easy to generalize to those with an arbitrary integer or half-integer
spin quantum number S and multi-parameter scar states.

3. We do not impose translational invariance on our models. To the best of our knowl-
edge, this is the first explicitly constructed example of such disordered QMBS mod-
els.

Although the Onsager algebra plays an important role to construct our model, the
simplest S = 1/2 case can be understood without knowledge of it. Thus, we focus on the
simplest case in this Chapter, and relegate the details of the Onsager algebra and the
generalization of our models to Chapter 4.
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CHAPTER 3. QUANTUM MANY-BODY SCARRED MODEL WITH S = 1/2

3.1 Model

3.1.1 Unperturbed Hamiltonian and symmetry

We start with the S = 1/2 XX spin chain model described by the Hamiltonian [110,
111]

H2 :=
L∑
j=1

(
S+
j S
−
j+1 + S−j S

+
j+1

)
. (3.1)

Here, L is the number of sites and assumed to be even, and S±j are raising/lowering
operators acting on the local Hilbert space Hj ' C2 at site j as

S+
j =

(
0 1

0 0

)
j

, S−j =

(
0 0

1 0

)
j

. (3.2)

We also impose PBC, i.e., S±L+1 := S±1 . The subscript 2 of H denotes the dimension of the
local Hilbert space at each site and is to be generalized to arbitrary n ∈ N in the next
Chapter. It can be easily verified that H2 commutes with the U(1)-charge Q defined as

Q :=

L∑
j=1

Szj , Szj =

(
1/2 0

0 −1/2

)
j

, (3.3)

since [Q,S±j ] = ±S±j . In addition to Q, one can find another operator Q+ defined as

Q+ :=

L∑
j=1

(−1)j+1S+
j S

+
j+1, (3.4)

which also commutes with H2. From [H2, Q
+] = 0 and the fact that the ferromagnetic

state |⇓〉 :=
⊗L

j=1 |↓〉 is an eigenstate of H2 with eigenvalue 0, one can see that (Q+)k |⇓〉
(k = 1, . . . , L/2) are also eigenstates of H2 with eigenvalue 0 1.

3.1.2 Perturbation and scarring

The XX chain itself is integrable, and thus it cannot be called a QMBS model. Let
us try to find appropriate perturbations that destroy the integrability of H2 but leave
(Q+)k |⇓〉 to be still eigenstates. The Hamiltonian of our QMBS model can be written as

HS,2 := H2 +Hpert + h

L∑
j=1

Szj , (3.5)

where the last term describing an external field is added to break the degeneracy among
(Q+)k |⇓〉.

1Q+ |⇓〉 is known as a singular state in the context of the Bethe ansatz for the Heisenberg chain [112–115].
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To find such perturbations, it is important to note that (Q+)k |⇓〉 have no overlap with

|↓↑↓〉 and
|↓↑↑〉+ |↑↑↓〉√

2
(3.6)

over three consecutive sites. It is because Q+ raises adjacent spins and creates a bi-
magnon with momentum k = π, and thus the above two states cannot appear in (Q+)k |⇓〉.
This fact can also be verified in an elegant way. Let us consider an (unnormalized) coher-
ent state

|ψ(β)〉 := exp
(
β2Q+

)
|⇓〉 , (3.7)

which of course belongs to Span
{
|⇓〉 , Q+ |⇓〉 , . . . , (Q+)L/2 |⇓〉

}
. It is important to note that

terms S+
j S

+
j+1 in Q+ commute each other and that the series expansion of the exponential

operator is finite. Then one can obtain the matrix product operator (MPO) representation
of exp

(
β2Q+

)
as follows:

exp
(
β2Q+

)
=

L∏
j=1

exp
[
(−1)j+1β2S+

j S
+
j+1

]

=

L∏
j=1

[
1 + (−1)j+1β2S+

j S
+
j+1

]

=
(

1 βS+
1

)( 1

βS+
2

)(
1 −βS+

2

)( 1

βS+
3

)
. . .
(

1 −βS+
L

)( 1

βS+
1

)
= tr(C1C2 · · ·CL), (3.8)

where

Cj =

(
1 (−1)j+1βS+

j

βS+
j 0

)
(3.9)

is a 2 × 2 matrix with entries in EndHj . Therefore, the coherent state is exactly written
as an MPS:

|ψ(β)〉 = tr(A1A2 · · ·AL), (3.10)

where

Aj =

(
|↓〉 (−1)j+1β |↑〉
β |↑〉 0

)
j

(3.11)

is a 2 × 2 matrix with entries in Hj (see also Fig. 3.1.) This MPS representation reveals
that particular spin configurations over three consecutive sites never appear in |ψ(β)〉. To
be specific, it is easily verified that

A2j−1A2jA2j+1 =

(
|↓↓↓〉 − β2(|↓↑↑〉 − |↑↑↓〉) β |↓↓↑〉+ β3 |↑↑↑〉

β |↑↓↓〉 − β3 |↑↑↑〉 β2 |↑↓↑〉

)
2j−1,2j,2j+1

, (3.12)
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Figure 3.1: A graphical representation of an MPS for the coherent state.

and that any matrix elements of Eq. (3.12) are orthogonal to

|↓↑↓〉 and
|↓↑↑〉+ |↑↑↓〉√

2
, (3.13)

as we expected. The same conclusion follows from the spin configurations in A2jA2j+1A2j+2

as well. Therefore, we consider the following perturbation up to three-body interactions:

Hpert =

L∑
j=1

{
c

(1)
j |↓↑↓〉 〈↓↑↓|

+
c

(2)
j

2
(|↓↑↑〉+ |↑↑↓〉)(〈↓↑↑|+ 〈↑↑↓|)

+c
(3)
j [|↓↑↓〉 (〈↓↑↑|+ 〈↑↑↓|) + (|↓↑↑〉+ |↑↑↓〉) 〈↓↑↓|]

}
j−1,j,j+1

.

(3.14)

Note that HS,2 does not have U(1) symmetry when c
(3)
j 6= 0. It is likely that the pertur-

bation makes HS,2 non-integrable for generic c(i)
j , which will be confirmed in the next

section.

Several remarks are in order. First, we emphasize that the translational invariance is
not assumed for HS,2. To the best of our knowledge, such models have not been explicitly
constructed before this work2. Second, our model falls into the category of QMBS mod-
els induced by the RSGA discussed in Sec. 2.2.2. One can see that Eq. (2.36) holds for
H = HS,2, Q

† = Q+, ω = 2h, and W = Span{(Q+)k |⇓〉 | k = 0, . . . , L/2}. Third, here we
introduced a one-parameter coherent state, but it can be easily generalized to a multi-
parameter one using higher Onsager-algebra elements to be discussed in the next Chap-
ter. Fourth, our model can be mapped to a fermionic model via the Jordan-Wigner trans-
formation. See Appendix A for its details.

2The exact scar states in the AKLT model with OBC were discussed in Refs. [99, 100]. However, it is
almost translationally invariant, i.e., translationally invariant in the bulk.
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Figure 3.2: Comparison between level-spacing statistics of HS,2 in (a) the nearly inte-
grable case and those in (b) the generic case. (a) All the spectrum or (b) the middle half
of the spectrum are used to obtain the statistics. In the left panel (a), very small pertur-
bations c(1)

j are introduced to break the degeneracy. The parameters and the symmetry
sector used are indicated in the figure, where T denotes the lattice translation and P
denotes the spatial inversion. The probability density function of the Wigner-Dyson dis-
tribution PWD(s) = (π/2)se−πs

2/4 and the Poisson distribution PP(s) = e−s are shown for
comparison. One can clearly see that the level-spacing statistics obey the Poisson distri-
bution in (a) and the Wigner-Dyson distribution in (b).

3.2 Results

3.2.1 Level-spacing statistics

As mentioned in Chapter 2, we should distinguish QMBS models from integrable or
MBL ones. To confirm that our model is neither integrable nor in the MBL phase, we
compute the level-spacing statistics of HS,2 by exact diagonalization in the particular case
where c(1)

j , c
(2)
j , and c(3)

j are chosen randomly from [−1, 1]. Here, we use the same notations
for the level-spacing statistics as in Sec. 1.3.2, so let us briefly summarize these notations
and well-known facts. Let E0 ≤ E1 ≤ · · · ≤ Ej ≤ · · · be eigenenergies of HS,2 in ascending
order, ∆Ej := Ej+1−Ej gaps between consecutive energy levels, and 〈∆E〉 the average of
∆Ej . The normalized energy level spacings sj := ∆Ej/〈∆E〉 are known to obey the Wigner
Dyson distribution for non-integrable systems and the Poisson distribution for integrable
or MBL systems [45, 51–55]. The r value 〈r〉 := 〈min(∆Ej ,∆Ej+1)/max(∆Ej ,∆Ej+1)〉 is
used for quantitative detection of distribution statistics; 〈r〉WD ' 0.536... for the Wigner-
Dyson distribution, and 〈r〉P ' 0.386... for the Poisson distribution [56, 57]. In Fig. 3.2, one
can clearly see that the level-spacing statistics agree well with the Poisson distribution
in the nearly integrable case (a), whereas the Wigner-Dyson distribution in the generic
case (b). The r value of (b) 〈r〉 ' 0.5313... is also close enough to that of the Wigner-Dyson
distribution. Therefore, we can deduce that our QMBS model is neither integrable nor in
the MBL phase.
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Figure 3.3: Expectation values of
∑L

j=1 |↓↑↓〉j−1,j,j+1 〈↓↑↓| for all energy eigenstates with

energy E. Here, we set L = 14 and h = 1.0, and perturbation parameters c(1)
j , c

(2)
j , and

c
(3)
j are randomly chosen from [−1, 1]. The color scale for each dot indicates the density

of data points. The values for scar states (Q+)k |⇓〉 (k = 0, . . . 7) marked by red circles are
exactly 0, and well separated from those for other typical states.

3.2.2 ETH violation in observables

The ETH implies that if two energy eigenstates are close in energy, then expecta-
tion values of any local observables for them should also be close. Here, let us see them
in our model to illustrate athermal features. Figure 3.3 shows the expectation values
of
∑L

j=1 |↓↑↓〉j−1,j,j+1 〈↓↑↓| for all energy eigenstates. One can see that expectation val-
ues for typical states form a curve with small fluctuation, while those for scar states
(Q+)k |⇓〉 (k = 0, . . . 7) marked by red circles are exactly 0 and separated from them. This
clearly demonstrates the ETH violation of our model.

3.2.3 Entanglement entropy

As discussed in Sec. 1.3.2, the von Neumann EE is one of the measures of quantum
entanglement. Let us recall the definition and what we expect for its scaling. With respect
to a bipartition of the system into subsystems A and Ā, the von Neumann EE of |φ〉 for A
is defined as

SA := − trA(ρA ln ρA), (3.15)

where ρA := trĀ(|φ〉 〈φ|) is the reduced density matrix of region A. In the following, we
focus on the half-chain bipartite von Neumann EE and take sites j = 1, 2, . . . , L/2 to be
region A.

The strong ETH states that all energy eigenstates are thermal, which implies that
these energy eigenstates have the volume-law entanglement [14] (see also Sec. 1.3.2).
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Figure 3.4: Half-chain bipartite EE as a function of energy E for L = 14 and h = 1.0. The
color scale for each dot indicates the density of data points. (Q+)k |⇓〉 (k = 0, . . . , L/2)
are marked by red solid circles. Perturbation parameters are chosen randomly as
c

(1)
j , c

(2)
j , c

(3)
j ∈ [−1, 1].

Figure 3.4 shows half-chain bipartite EE for every energy eigenstate as a function of
energy. One can clearly see a general feature of QMBS: most states in the bulk of the
energy spectrum have large EE that is expected to obey a volume law, whereas atypical
states (Q+)k |⇓〉 have anomalously small EE marked by red circles 3. We also investigate
scalings of half-chain bipartite EE of thermal states and scar states with respect to the
system size L, as shown in Fig. 3.5. Here, blue and orange dots indicate the highest EE of
thermal states and that of scar states (Q+)k |⇓〉 (k = 0, . . . , L/2) for given L, respectively.
We can see that the EE of thermal states obeys a volume law, whereas that of scar states
obeys a sub-volume law.

In Sec. 3.1.2, we derived the MPS representation of the coherent state |ψ(β)〉. Since the
bond dimension, i.e., the dimension of the auxiliary space, of each matrix Aj is 2, |ψ(β)〉
has area-law EE. In the presence of an external field, however, not |ψ(β)〉 but (Q+)k |⇓〉
is an eigenstate of HS,2, so let us evaluate the EE of (Q+)k |⇓〉. For simplicity, we assume
that L is a multiple of 4 and impose the OBC for Q+ only here. Although our model is
valid only under the PBC, we expect that the boundary condition does not matter for the
scaling of the EE. In addition, we apply to Q+ the unitary transformation to obtain

U †Q+U =
L−1∑
j=1

S+
j S

+
j+1. (3.16)

3The presence of excited eigenstates in integrable models that have area-law instead of volume-law en-
tanglement has been pointed out early in Ref. [116].
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Figure 3.5: Finite-size scalings of half-chain bipartite EE with respect to the system size
L. For given L, blue and orange dots indicate the highest EE of all energy eigenstates and
that of scar states (Q+)k |⇓〉 (k = 0, . . . , L/2), respectively. The green dashed line denotes
the Page value SPage = (L/2) ln 2 − 1/2 defined below in Eq. (3.34), and the red line is
ln(L/2 + 1) in Eq. (3.31), the upper bound for EE of scar states under the OBC. One can
clearly see that EE of thermal states represented by blue dots agree well with SPage, hence
the volume-law scaling, whereas that of scar states scales as O(lnL), i.e., the sub-volume-
law scaling. Perturbation parameters are chosen randomly as c(1)

j , c
(2)
j , c

(3)
j ∈ [−1, 1].

Here, the unitary transformation

U :=
L∏
j=1

j≡1,2 mod 4

σzj = σz1 ⊗ σz2 ⊗ 13 ⊗ 14 ⊗ · · · ⊗ σzL−3 ⊗ σzL−2 ⊗ 1L−1 ⊗ 1L (3.17)

is just a product of single-site rotations, and hence the EE of (Q+)k |⇓〉 equals to that of
(U †Q+U)k |⇓〉. It is important to note that (U †Q+U)k |⇓〉 can be written as the following
MPS up to a constant factor:

(U †Q+U)k |⇓〉 ∝ |ξ(k)〉 :=
∑

s1,...,sL=↑,↓
〈〈0|M [s1]

1 · · ·M [sL]
L |2k〉〉 |s1 . . . sL〉 , (3.18)

where

(
M

[↓]
j

)
αβ

=

δαβ α: even

0 α: odd
=

1 + (−1)α

2
δα,β,

(
M

[↑]
j

)
αβ

= δα+1,β (α, β = 0, 1, . . . , 2k)

(3.19)
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Figure 3.6: A graphical representation of M [l]
j and an example of possible bond index

configurations with L = 8, k = 3. Solid lines denote |↑↑〉j,j+1 = S+
j S

+
j+1 |↓↓〉j,j+1 of adjacent

two sites. One can see that the bond index runs from left to right as if it counts the number
of up-spins.

is (2k + 1) × (2k + 1) matrices, and 〈〈0| and |2k〉〉 denote the boundary indices of the
auxiliary space. One has to be careful with 0-based indexing here. Figure 3.6 may help
you understand this representation. Since M [l]

j does not depend on site j, we omit it in
the following.

The numerical result suggests that the most entangled state of (Q+)k |⇓〉 is (Q+)L/4 |⇓〉,
i.e., a half-filling state. Thus, let us examine |ξ(L/4)〉 in detail. The Schmidt decomposition
of |ξ(L/4)〉 is obtained by rewriting it as

|ξ(L/4)〉 =

L/2∑
l=0

∣∣∣φ̃A,l〉⊗ ∣∣∣φ̃Ā,l〉 , (3.20)

where ∣∣∣φ̃A,l〉 :=
∑

s1,...,sL/2

〈〈0|M [s1] · · ·M [sL/2]|l〉〉
∣∣s1 . . . sL/2

〉
, (3.21)

∣∣∣φ̃Ā,l〉 :=
∑

sL/2+1,...,sL

〈〈l|M [sL/2+1] · · ·M [sL]|L/2〉〉
∣∣sL/2+1 . . . sL

〉
. (3.22)

To calculate the normalization factors of
∣∣∣φ̃A,l〉 and

∣∣∣φ̃Ā,l〉, let us define the transfer
matrix

E(α,γ)(β,χ) :=
∑
s=↑,↓

(
M [s]

)
αβ

(
M [s]

)∗
γχ

=
1 + (−1)α

2

1 + (−1)γ

2
δαβδγχ + δα+1,βδγ+1,χ. (3.23)

Each normalization factor is

〈
φ̃A,l

∣∣∣φ̃A,l〉 = (EL/2)(0,0)(l,l) and
〈
φ̃Ā,l

∣∣∣φ̃Ā,l〉 = (EL/2)(l,l)(L/2,L/2),
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and in fact can be written as (see Appendix B)

(EL/2)(0,0)(l,l) = cl :=



L/2− l/2
l/2

 l: evenL/2− (l + 1)/2

(l − 1)/2

 l: odd

, (3.24)

(EL/2)(l,l)(L/2,L/2) = cL/2−l. (3.25)

Therefore, Eq. (3.20) reads

|ξ(L/4)〉 =

L/2∑
l=0

√
clcL/2−l |φA,l〉 ⊗

∣∣φĀ,l〉 , (3.26)

where

|φA,l〉 :=

∣∣∣φ̃A,l〉√〈
φ̃A,l

∣∣∣φ̃A,l〉 and
∣∣φĀ,l〉 :=

∣∣∣φ̃Ā,l〉√〈
φ̃Ā,l

∣∣∣φ̃Ā,l〉 (3.27)

form an orthonormal set for region A and Ā, respectively. Remarkably, the normalization
factor of |ξ(L/4)〉 has a simple expression with the help of a generalized Vandermonde
identity derived in Ref. [117]:

〈ξ(L/4)|ξ(L/4)〉 =

L/2∑
l=0

clcL/2−l =

(
(3/4)L

L/4

)
=: N . (3.28)

Finally, we obtain a closed formula for the half-chain bipartite EE SA of (Q+)L/4 |⇓〉 ∝
|ξ(L/4)〉:

SA = −
L/2∑
l=0

clcL/2−l

N
ln
clcL/2−l

N
. (3.29)

Next, let us see how SA scales with respect to L. One can obtain an upper bound of SA by
Gibbs’ inequality [118]

−
∑
l

pl ln pl ≤ −
∑
l

pl ln ql, (3.30)

which holds for any probability distributions {pl} and {ql} with equality if and only if
pl = ql for all l. By taking pl = clcL/2−l/N and ql = 1/(L/2 + 1), we obtain

SA ≤ −
L/2∑
l=0

clcL/2−l

N
ln

(
1

L/2 + 1

)
= ln(L/2 + 1) = O(lnL). (3.31)

Therefore, one can conclude that the EE of (Q+)k |⇓〉 does not obey a volume law.
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Figure 3.7: Fidelity dynamics with L = 10, h = 1.0, and c
(1)
j , c

(2)
j , c

(3)
j chosen randomly

from [−1, 1]. Perfectly periodic revivals can be seen in the case where the initial state is a
coherent state, whereas for other typical states the fidelity decreases very quickly to 0.

3.2.4 Dynamics

The dynamics is also studied to illustrate the feature of the QMBS more explicitly.
First, let us consider the dynamics of the coherent state. For the initial coherent state
|ψt=0(β)〉 = |ψ(β)〉, it is obvious from the construction of HS,2 that

|ψt(β)〉 = e−iHS,2t |ψ(β)〉 = e−ihQt |ψ(β)〉 = eihLt/2
∣∣∣ψ(e−ihtβ)

〉
. (3.32)

Although the coherent state does evolve, it returns to itself with period T = π/h, since∣∣ψ(eiπβ)
〉

= |ψ(β)〉. We emphasize that this revival is perfect, and thus the coherent state
never thermalizes.

We show in Fig. 3.7 the numerical results of the fidelity dynamics with several initial
states |φ〉 defined by

F (t) := |〈φ(t)|φ(0)〉| =
∣∣〈φ| eiHS,2t |φ〉

∣∣. (3.33)

When the initial states are coherent states, we can see perfectly periodic revivals of their
fidelity. However, if the system starts from other generic states, its fidelity decreases
rapidly to 0.

We also calculate the dynamics of the half-chain bipartite EE shown in Fig. 3.8 with
the same setup as Fig. 3.7. It is easy to see that the coherent state does not gain entan-
glement, since HS,2 acts on |ψ(β)〉 as if it is just an external field, i.e., a non-interacting
term (see Eq. (3.32)). On the other hand, EE of the initial product state |↑↓↑↓ . . .〉 grows
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soon and saturates near the Page value [119] of a random state

SPage =
L

2
ln 2− 1

2
. (3.34)

From these numerical results on dynamics of the fidelity and EE, we confirm that typical
states thermalize rapidly, whereas scar states never thermalize and violate ergodicity.
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Figure 3.8: Dynamics of the half-chain bipartite EE with the same setup as Fig. 3.7. Initial
coherent states have constant EE, while that of |↑↓↑↓ . . .〉 grows rapidly and saturates
near the Page value denoted by the black dashed line. The EE of the random initial state
almost remains at the Page value from the beginning to the end.

3.3 Summary of the Chapter

We have demonstrated the construction of our QMBS model in the simplest S = 1/2

case. We have begun with the integrable Hamiltonian H2 and the operator Q+ that com-
mute with each other. We then have explicitly written down the coherent state associated
with Q+ as an MPS and found appropriate perturbation terms by observing local states
at consecutive sites. We have illustrated various unusual behaviors in our model, provid-
ing both numerical and analytical results. The level-spacing statistics of the model obey
the Wigner-Dyson distribution, and thus we have deduced that such peculiar behaviors
are not due to integrability or MBL. Expectation values of an observable and EE have
clearly distinguished scar states from other typical states. We have also investigated the
dynamics of the fidelity and EE for several initial states. These results clearly illustrate
the non-thermal behavior of scar states that are distinct from other thermal states. We
emphasize that translational invariance is not needed in our model. To the best of our
knowledge, this is the first explicitly constructed example of a disordered QMBS model.
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Before closing our discussion, several remarks are in order. First, Onsager scar states
(Q+)k |⇓〉 can be prepared in a Markovian open quantum system. By taking jump opera-
tors that annihilate the coherent state, the decoherence-free subspace for this Lindblad
dynamics is spanned by (Q+)k |⇓〉. Thus, these Onsager scar states are steady states and
can be obtained through this Markovian dynamics with arbitrary initial states. Second,
for the S = 1/2 case, our coherent state and the ground state of the quantum lattice gas
model studied in Ref. [120] are closely related to each other. In our coherent state, let us
define bond variables for each bond between site j and j+1 by bj,j+1 = (S+

j S
−
j )(S+

j+1S
−
j+1).

Each bj,j+1 takes 0 or 1, but one can easily see that adjacent bond variables bj−1,j and
bj,j+1 can never be 1 simultaneously. The configuration of bj,j+1 corresponds to the ground
state of the model in Ref. [120] by identifying bj,j+1 = 1 ↔ |↑〉j and bj,j+1 = 0 ↔ |↓〉j .
It is an open question whether we can apply similar identification to higher-spin cases
discussed in the next Chapter.
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4
GENERALIZATION OF MODEL

“I often wonder why the whole world is so prone to generalise.”
– Agatha Christie, The Murder at the Vicarage

In this Chapter, we generalize our model constructed in Chapter 3 to higher S models
or multi-parameter scar states. Before going into the details, let us briefly summa-
rize our strategy for constructing generalized QMBS models (see also Table 4.1.)

The key is the so-called Onsager algebra, which originally appeared in obtaining the ex-
act solution of a two-dimensional classical Ising model [109]. We start with spin chain
models with the Onsager symmetry introduced recently [121]. Although they cannot be
called QMBS models due to their integrability, by focusing on a certain Onsager-algebra
element, we can add appropriate perturbations that destroy the integrability but leave
particular low-entangled states to be still eigenstates. Our generalized QMBS models
again turn out to be classified as those by the RSGA.

Table 4.1: Comparison between the original HamiltonianHn and the scarred Hamiltonian
HS,n.

Hn
+Hpert−−−−→ HS,n

integrable Yes No

Onsager symmetry Yes Partially (RSGA)

In Sec. 4.1, we will briefly summarize the Onsager algebra and introduce unperturbed
Hamiltonian with the Onsager symmetry. Next, we will see how to find appropriate per-
turbations in Sec. 4.2. Then, we will show several analytical and numerical results in
Sec. 4.3.
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4.1 Onsager Algebra and Clock Models with Onsager
Symmetry

4.1.1 Onsager algebra

We first briefly introduce the Onsager algebra. The two-dimensional classical Ising
model reduces to the one-dimensional quantum Ising model described by the following
Hamiltonian

HQI = −h
L∑
j=1

σzj − J
L∑
j=1

σxj σ
x
j+1 =: −hQQI − JQ̂QI, (4.1)

which is called the quantum-classical correspondence [122]. Here, we impose the PBC,
i.e., σxL+1 := σx1 . One can find that the above QQI and Q̂QI satisfy the Dolan-Grady rela-
tion [123–125]

[Q̂QI, [Q̂QI, [Q̂QI, QQI]]] = 16[Q̂QI, QQI],

[QQI, [QQI, [QQI, Q̂QI]]] = 16[QQI, Q̂QI],
(4.2)

which is known as a necessary and sufficient condition to generate the Onsager algebra.
In Onsager’s original notation, A0 := QQI and A1 := Q̂QI generate An and Gn which obey

[Am, An] = 4Gm−n,

[Am, Gn] = 2Am−n − 2Am+n,

[Gm, Gn] = 0.

(4.3)

4.1.2 Self-dual U(1)-invariant clock model with Onsager symmetry

In Ref. [121], the authors found a series of clock models that respects the Onsager
symmetry with the Hamiltonian

Horig,n := i
L∑
j=1

n−1∑
a=1

1

1− ω−a
[
(2a− n)

(
τaj + (σ†jσj+1)a

)

+

n−1∑
b=1

1− ω−ab

1− ω−b
(
τaj (σ†jσj+1)b + (σ†jσj+1)bτaj+1

)] (4.4)

under the PBC, i.e., σL+1 = σ1, τL+1 = τ1. Here, ω := e2πi/n is one of the n-th roots of unity,
L is the number of sites, and n is the dimension of each local Hilbert space Hj ' Cn, and
hence the total Hilbert space is H =

⊗L
j=1Hj ' CnL . The operators σj and τj act on Hj as

σ =


0 1

. . . . . .
0 1

1 0

 , τ =


1

ω
. . .

ωn−1

 , (4.5)
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and they satisfy

σnj = τnj = 1, (4.6)

σ†j = σn−1
j , τ †j = τn−1

j , (4.7)

σjτj = ωτjσj , σjτk = τkσj (j 6= k). (4.8)

One can easily see from Eq. (4.4) that Horig,n is self-dual, i.e., invariant under the
duality transformation

τ̃j = σ†jσj+1 (j = 1, . . . , L− 1), τ̃L = σ†L, σ̃j =
L∏
k=1

τk (4.9)

up to boundary terms. In addition, Horig,n is U(1)-invariant, i.e., commutes with the U(1)

charge Qorig:

Qorig :=

L∑
j=1

Szj =

L∑
j=1

n−1∑
a=1

1

1− ω−a
(τj)

a, (4.10)

where Sz = diag ((n− 1)/2, (n− 3)/2, . . . ,−(n− 1)/2). This symmetry becomes clear by
rewriting Horig,n as

Horig,n = i

L∑
j=1

n−1∑
a=1

1

1− ω−a
[
(2a− n)τaj + n(S+

j S
−
j+1)n−a − n(S−j S

+
j+1)a

]
. (4.11)

Here, we define

S+
j := σj

(
1− 1

n

n−1∑
a=0

τaj

)
=


0 1

. . . . . .
0 1

0 0


j

, S−j := (S+
j )†, S±L+1 := S±1 (4.12)

which satisfy [Qorig, S
±
j ] = ±S±j , and hence [Qorig, Horig,n] = 0. Note that S± are not stan-

dard spin raising/lowering operators and do not obey the SU(2) commutation relation,
i.e., [S+, S−] 6∝ Sz (except for the n = 2 or 3 case), and the model does not have SU(2)

symmetry.
Due to the self-duality, Horig,n also commutes with Q̂orig, the dual of Qorig defined as

Q̂orig :=

L∑
j=1

n−1∑
a=1

1

1− ω−a
(σ†jσj+1)a. (4.13)

Note that [Q̂orig, Horig,n] = 0 holds exactly even though the duality transformation has
some subtleties at boundaries. Remarkably, Qorig and Q̂orig satisfy the Dolan-Grady rela-
tion

[Q̂orig, [Q̂orig, [Q̂orig, Qorig]]] = n2[Q̂orig, Qorig],

[Qorig, [Qorig, [Qorig, Q̂orig]]] = n2[Qorig, Q̂orig].
(4.14)
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Therefore, Qorig and Q̂orig generate the Onsager algebra, and every Onsager-algebra el-
ement commutes with Horig,n. To see this, it is illuminating to decompose Q̂orig into the
sum of three terms as

Q̂orig = Q0
orig +Q+

orig +Q−orig, (4.15)

where each term is defined as

Q0
orig :=

L∑
j=1

n−1∑
a=1

1

1− ω−a
[
(S−j S

+
j+1)a − ω−a(S+

j S
−
j+1)a

]
, (4.16)

Q+
orig :=

L∑
j=1

n−1∑
a=1

1

1− ωa
(S+
j )a(S+

j+1)n−a, Q−orig := (Q+
orig)†. (4.17)

One can easily verify

[Qorig, Q
0
orig] = 0, [Qorig, Q

±
orig] = ±nQ±orig, (4.18)

and this immediately leads to

[Qorig, Q̂orig] = n(Q+
orig −Q

−
orig),

[Qorig, [Qorig, Q̂orig]] = n2(Q+
orig +Q−orig),

[Qorig, [Qorig, [Qorig, Q̂orig]]] = n3(Q+
orig −Q

−
orig).

Therefore,

[Qorig, [Qorig, [Qorig, Q̂orig]]] = n2[Qorig, Q̂orig],

and then self-duality requires

[Q̂orig, [Q̂orig, [Q̂orig, Qorig]]] = n2[Q̂orig, Qorig].

In this way, the Dolan-Grady relation Eq. (4.14) holds.

4.1.3 Unitary transformation of Horig,n

AlthoughHorig,n is not symmetric under spatial inversion, one can obtain the inversion
symmetric Hamiltonian up to boundaries by the unitary transformation:

H̃n :=U †Horig,nU (4.19)

=−
L∑
j=1

n−1∑
a=1

1

2 sin(πa/n)

{
n(−1)a

[
(S̃+
j S̃
−
j+1)a + (S̃−j S̃

+
j+1)a

]
+ (n− 2a)ωa/2τaj

}
, (4.20)
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where

U := exp

iπ

(
1 +

1

n

) L∑
j=1

jSzj

, (4.21)

S̃±j := S±j (j = 1, . . . , L), S̃±L+1 := (−1)Lω±L/2S±1 . (4.22)

Although the boundary condition in H̃n is twisted, let us define untwisted Hamiltonian
Hn under the PBC:

Hn := −
L∑
j=1

n−1∑
a=1

1

2 sin(πa/n)

{
n(−1)a

[
(S+
j S
−
j+1)a + (S−j S

+
j+1)a

]
+ (n− 2a)ωa/2τaj

}
. (4.23)

The simplest n = 2 case reduces to the S = 1/2 XX chain model discussed in Chapter 3,
and the n = 3 case is known as a particular case of the Fateev-Zamolodchikov model [126,
127]. One can verify that Hn commutes with transformed Qrorig (r = 0,±) defined as

Q0 :=
L∑
j=1

n−1∑
a=1

(−1)a

sin(πa/n)

[
(S−j S

+
j+1)a − (S+

j S
−
j+1)a

]
, (4.24)

Q± :=

L∑
j=1

n−1∑
a=1

(−1)(n+1)j+a

sin(πa/n)
(S±j )a(S±j+1)n−a, (4.25)

when L is even or n is odd. Therefore, we henceforth assume that L is even.
We denote by |p〉 (p = 0, 1, . . . , n − 1) the eigenstate of Sz with eigenvalue p − (n −

1)/2. The ferromagnetic state |⇓〉 := ⊗Lj=1 |0〉 is the eigenstate of Hn with eigenvalue
L
∑n−1

a=1 a cot(πa/n). Since [Q+, Hn] = 0, (Q+)k |⇓〉 are also eigenstates1 of Hn with the
same eigenvalue.

4.2 Generalized Scarred Model

4.2.1 n > 2 case

Let us now generalize our QMBS Hamiltonian written as

HS,n := Hn +Hpert + h

L∑
j=1

Szj (4.26)

to that of higher n in a parallel way to Chapter 3. First, let us define an (unnormalized)
coherent state

|ψ(β)〉 := exp
(
βnQ+

)
|⇓〉 . (4.27)

1It seems not so trivial to determine kmax such that (Q+)kmax |⇓〉 6= 0 and (Q+)k |⇓〉 = 0 for k > kmax. Due
to Q ≤ L(n − 1)/2, Q |⇓〉 = −L(n − 1)/2, and [Q,Q+] = nQ+, one can see kmax ≤ bn−1

n
Lc. However, we

have confirmed that kmax = bn−1
n
Lc does not always hold.
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Similarly to the n = 2 case, exp(βnQ+) can be written as an MPO:

exp
(
βnQ+

)
= tr(C1C2 · · ·CL), (4.28)

where, for 0 ≤ k, l ≤ n− 1 (0-based indexing),

(Cj)kl =


(βS+

j )k (l = 0)

(−1)(n+1)j+(n−l)

sin[π(n− l)/n]
(βS+

j )n+k−l (l 6= 0)

, (4.29)

or more explicitly,

Cj =



1
(−1)(n+1)j+(n−1)

sin[π(n− 1)/n]
(βS+

j )n−1 (−1)(n+1)j+(n−2)

sin[π(n− 2)/n]
(βS+

j )n−2 · · · (−1)(n+1)j+1

sin[π/n]
(βS+

j )

βS+
j 0

(−1)(n+1)j+(n−2)

sin[π(n− 2)/n]
(βS+

j )n−1 · · · (−1)(n+1)j+1

sin[π/n]
(βS+

j )2

(βS+
j )2 0 0 · · · (−1)(n+1)j+1

sin[π/n]
(βS+

j )3

...
...

...
. . .

...

(βS+
j )n−2 0 0 · · · (−1)(n+1)j+1

sin[π/n]
(βS+

j )n−1

(βS+
j )n−1 0 0 · · · 0



.

(4.30)

Therefore, the coherent state can be written as an MPS:

|ψ(β)〉 = tr(A1A2 · · ·AL), (4.31)

where for 0 ≤ k, l ≤ n− 1,

(Aj)kl =



βk |k〉 (l = 0)

(−1)(n+1)j+(n−l)βn+k−l

sin[π(n− l)/n]
|n+ k − l〉 (k + 1 ≤ l ≤ n− 1)

0 (otherwise)

, (4.32)

or more explicitly,

Aj =



|0〉
(−1)(n+1)j+(n−1)βn−1

sin[π(n− 1)/n]
|n− 1〉

(−1)(n+1)j+(n−2)βn−2

sin[π(n− 2)/n]
|n− 2〉 · · ·

(−1)(n+1)j+1β

sin[π/n]
|1〉

β |1〉 0
(−1)(n+1)j+(n−2)βn−1

sin[π(n− 2)/n]
|n− 1〉 · · ·

(−1)(n+1)j+1β2

sin[π/n]
|2〉

β2 |2〉 0 0 · · ·
(−1)(n+1)j+1β3

sin[π/n]
|3〉

...
...

...
. . .

...

βn−2 |n− 2〉 0 0 · · ·
(−1)(n+1)j+1βn−1

sin[π/n]
|n− 1〉

βn−1 |n− 1〉 0 0 · · · 0


.

(4.33)
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One can then find appropriate perturbations by examining local states on consecutive
sites. In the case of n = 3, for example, the following states have no overlap with the
coherent state:

|010〉 , |020〉 , |110〉 , |110〉 , |011〉 , |111〉 ,
1

2
(|012〉+ |021〉+ |120〉+ |210〉), 1√

2
(|012〉 − |120〉), 1√

2
(|021〉 − |210〉),

1

2
(|022〉 − |112〉 − |211〉+ |220〉), 1

2
(|022〉+ |112〉 − |211〉 − |220〉),

1

2
√

2
(|022〉+ |112〉+ 2 |121〉+ |211〉+ |220〉),

1√
3

(|122〉+ |212〉+ |221〉). (4.34)

By using these, we can construct a perturbation term Hpert, which breaks U(1) symmetry
in general. For a general n, it is easily verified that |0 p 0〉 (p = 1, . . . , n−1) does not appear
in |ψ(β)〉.

4.2.2 Multi-parameter coherent state

We can also generalize the coherent state to the multi-parameter one. Let us see this
in the case of n = 2. One can find Onsager-algebra elements

Q+
l :=

L∑
j=1

(−1)j+1S+
j

j+l−1∏
k=j+1

Szk

S+
j+l. (4.35)

Q+
1 corresponds to Q+ in Chapter 3. Then, we can construct a multi-parameter coherent

state with Q+
l ’s:

|ψ(β1, . . . , βm)〉 := exp

(
m∑
l=1

β2
l Q

+
l

)
|⇓〉

=

[
m∏
l=1

exp
(
β2
l Q

+
l

)]
|⇓〉 .

(4.36)

Here, the second line follows from [Q+
k , Q

+
l ] = 0. Note that this state does not have overlap

with ∣∣∣∣∣∣↓ . . . ↓︸ ︷︷ ︸
m

↑ ↓ . . . ↓︸ ︷︷ ︸
m

〉
(4.37)

over (2m + 1) consecutive sites. Thus, we can construct a QMBS Hamiltonian by adding
a perturbation term

∑L
j=1 cj |↓ . . . ↓↑↓ . . . ↓〉j−m,...,j+m 〈↓ . . . ↓↑↓ . . . ↓|. As a more exotic sit-

uation than that in the one-parameter case, we have O(Lm) scar states written as(∏m
l=1(Q+

l )kl
)
|⇓〉, where kl ∈ N.
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4.3 Results

4.3.1 n = 3 case

Here, as a demonstration of generalization to higher n, we show several results in the
n = 3, or S = 1, case. In this case, the unperturbed Hamiltonian H3 and the Onsager-
algebra element Q+ are

H3 =
√

3
L∑
j=1

[
S+
j S
−
j+1 + S−j S

+
j+1 − (S+

j S
−
j+1)2 − (S−j S

+
j+1)2 − (Szj )2 +

2

3

]
, (4.38)

Q+ =
2√
3

L∑
j=1

S+
j (S+

j − S
+
j+1)S+

j+1. (4.39)

Let us check in a parallel way to Chapter 3 that our generalized model for n = 3 possesses
the characteristic features of QMBS.

4.3.1.1 Level-spacing statistics

To verify the non-integrability, we compute the level-spacing statistics. Figure 4.1
shows the level-spacing statistics of HS,3 with all possible perturbations consisting of
states in Eq. (4.34). One can see that the result of our model agrees well with the Wigner-
Dyson distribution. Therefore, we can conclude that HS,3 is also non-integrable.

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 4.1: Level-spacing statistics in the middle half of the spectrum of HS,3 with L = 8,
and h = 1.5. All possible perturbations consisting of states in Eq. (4.34) are included. The
result is in good agreement with the Wigner-Dyson distribution.
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4.3.1.2 Entanglement entropy

Figure 4.2 shows half-chain bipartite EE for every energy eigenstate as a function
of energy. In (a), one can see other low EE states besides (Q+)k |⇓〉. In particular, EE of
several states is exactly ln 2. In fact, these are one-magnon states lying on the Hilbert
subspace

Hone-mag := Span{|1222 . . . 22〉 , |2122 . . . 22〉 , |2212 . . . 22〉 , . . . , |2222 . . . 21〉}. (4.40)

One can easily verify that if we do not use the last one of Eq. (4.34) for perturbation terms,
then Hpert vanishes on Hone-mag. These one-magnon scars, however, disappear when Hpert

includes terms using the last one, as shown in (b).

E

E

4

3

2

1

0
－20 －15 －10 －5 0 5 10 15

dense

sparse

dense

sparse

4

3

2

1

0
0 10 20－10－20

(a)

(b)

Figure 4.2: Half-chain bipartite EE as a function of energy E for n = 3, L = 8, h = 1.5.
Color scale for each dot indicates the density of data points. (Q+)k |⇓〉 are marked by red
solid circles. In (a), perturbations are chosen not to destroy one-magnon scars indicated by
the red dashed circle. A green dashed line indicates ln 2. In (b), all possible perturbations
are added, and then one-magnon states are no longer eigenstates.
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4.3.1.3 Dynamics

Here, we show numerical results of the dynamics of the fidelity (Fig. 4.3) and EE
(Fig. 4.4) in the case of n = 3. One can clearly see similar behaviors to the n = 2 case, that
is, perfect revivals of the fidelity and unchanged EE for coherent states. Such behaviors
of coherent states are distinct from those of other typical states, for which the fidelity
rapidly decays to 0 and EE grows and saturates quickly to the Page value

SPage = (L/2) lnn− 1/2 (here n = 3). (4.41)

The perfect fidelity revivals of the coherent state follow from

|ψt(β)〉 = e−iHSt,n |ψ(β)〉 ∝ e−ihQt |ψ(β)〉 ∝
∣∣∣ψ(e−ihtβ)

〉
(4.42)

and
∣∣ψ(ω−1β)

〉
= |ψ(β)〉, and hence the revival period T = 2π/(nh), which is consistent

with numerical results shown in Fig. 4.3. The steady EE is explained in the same way
as the n = 2 case: all terms in HS,n act on |ψ(β)〉 as a constant except for h

∑L
j=1 S

z
j

and thus no entanglement is generated for |ψ(β)〉. These results are summarized as fol-
lows. The system typically forgets the initial state through the dynamics and eventually
thermalizes. In contrast, coherent states consisting of scar states (Q+)k |⇓〉 are trapped
in a perfectly periodic orbit in the Hilbert subspace and never thermalize. These results
clearly demonstrate the validity of the construction of our QMBS model even for the n = 3

case.

t

0 2 4 6 8

random
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Fidelity dynamics with n = 3, L = 6, h = 1.5, and randomly chosen pertur-
bation terms. The coherent states have perfect revivals with period 2π/(nh) ' 1.4. On
the other hand, for other typical states such as |012012〉 and a randomly chosen state, the
fidelity decays to 0 rapidly.
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random

t

0 2 4 6 8

0.0
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Figure 4.4: Dynamics of the half-chain bipartite EE with the same setup as Fig. 4.3. The
Page value denoted by the black dashed line for n = 3 is SPage = (L/2) ln 3− 1/2.

4.3.2 Multi-parameter coherent state

Next, we demonstrate the two-parameter coherent state with S = 1/2. Using Q+
1 and

Q+
2 , we can construct a two-parameter coherent state

|ψ(β1, β2)〉 := exp
(
β2

1Q
+
1

)
exp
(
β2

2Q
+
2

)
|⇓〉 . (4.43)

Similarly to the one-parameter case, this two-parameter coherent state can be written as
an MPS state, since exp

(
β2

1Q
+
1

)
exp
(
β2

2Q
+
2

)
can be written as an MPO:

exp
(
β2

1Q
+
1

)
exp
(
β2

2Q
+
2

)
= tr(D1 . . .DL), (4.44)

where

Dj =



(
1 β1S

+
j

β1S
+
j 0

)
⊗

(
1 β2S

+
j

β2S
+
j 0

)
⊗

(
1 0

0 −Szj

)
(j : odd)

(
1 −β1S

+
j

β1S
+
j 0

)
⊗

(
1 0

0 Szj

)
⊗

(
1 β2S

+
j

β2S
+
j 0

)
(j : even)

(4.45)

is an 8 × 8 matrix with entries in EndHj . The MPS representation of |ψ(β1, β2)〉 tells us
that the coherent state has an overlap with neither

|00100〉 nor
|00101〉 − |10100〉√

2
. (4.46)
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0 5 10－5－10
0
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dense

sparse

Figure 4.5: Half-chain bipartite EE for n = 2, L = 14, h = 1.0 with perturbations con-
sisting of states in Eq. (4.46). Green dashed lines denote exact eigenvalues −7,−5, . . . , 7
of scar states (Q+

1 )k1(Q+
2 )k2 |⇓〉. There seem to exist other scar states, but we have not

identified them yet.

Then, adding the perturbation made from these states, we can construct a QMBS Hamil-
tonian in a similar way. Figure 4.5 shows the EE of this model. One can see much more
anomalously low-entangled states than those in Fig. 3.4. Scar states (Q+

1 )k1(Q+
2 )k2 |⇓〉 are

on the green dashed lines, but there seem to be other low-entangled states. It is an open
question whether we can identify these other scar states in a simple way such as MPSs.

4.4 Summary of the Chapter

We have generalized the QMBS model constructed in Chapter 3 to higher S models
and multi-parameter scar states, making full use of the Onsager algebra. First, we have
introduced the Onsager symmetric Hamiltonian Hn with the dimension n of the local
Hilbert space at each site. Focusing on certain Onsager-algebra elements, we have con-
structed generalized coherent states that can have multiple parameters. We have seen
that these generalized coherent states can also be written as MPS, and then we have
added appropriate perturbation terms to Hn to make the Hamiltonian non-integrable but
particular low-entangled states still eigenstates. We then checked the validity of these
generalized models in a parallel way to Chapter 3, such as the level-spacing statistics,
EE, and dynamics. Through these results, we have found more exotic situations than the
simplest case. In the n = 3 case, we have seen that additional one-magnon scar states can
emerge with a particular perturbation. In the case where we considered higher Onsager-

54



4.4. SUMMARY OF THE CHAPTER

algebra elements with multi-parameter coherent states, we found that much more scar
states of the order of O(Lm) (m ≥ 2) can arise than if we take into account only one
Onsager-algebra element, in which case the number of scar states is the order of O(L).
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5
SUMMARY

“The conclusion of things is the good. The good is, in
other words, the conclusion at which all things arrive.”

– Haruki Murakami, 1Q84

In this Chapter, we summarize our results in the thesis and provide an outlook. We
have constructed a new class of QMBS models without translational invariance. The
key to the construction of our model was the Onsager algebra. Although it was orig-

inally used to solve exactly the two-dimensional classical Ising model, we have utilized it
for constructing exact QMBS models. We have started with the Hamiltonian Hn, which
respects the Onsager symmetry, and certain Onsager-algebra elements Q+

l that commute
with Hn. While Hn is integrable, we added particular perturbations that break the in-
tegrability but keep a tower of several states generated by Q+

l still eigenstates of the
perturbed Hamiltonian HS,n.

In Chapter 3, we have studied the simplest n = 2 or S = 1/2 case in details. The level-
spacing statistics clearly obey the Wigner-Dyson distribution, which implies that HS,2 is
indeed non-integrable. Nonetheless, scar states exhibit atypical behaviors, which were
captured by eigenstate expectation values of an observable and half-chain bipartite EE.
Moreover, the dynamics of the fidelity and EE were calculated for scar states and other
typical states. Both results indicated that coherent states cannot escape from the scarred
subspace and never thermalize, whereas other typical states rapidly get thermal.

In Chapter 4, we have investigated the generalized case, i.e., higher n models and
multi-parameter coherent states. Similarly to Chapter 3, we have captured an ather-
mal behavior from EE of eigenstates. In addition, we found intriguing situations that
did not appear in the simplest case. For higher n, we have shown that additional scar
states may emerge from the one-magnon subspace. For the multi-parameter generaliza-
tion with higher Onsager-algebra elements, we have seen more scar states of the order of
O(Lm) (m ≥ 2) than the one-parameter case where there are just O(L) scar states.

Our work suggests a number of future research directions. The unperturbed Hamil-
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tonian has an infinite number of Onsager-algebra elements commuting with each other.
This implies that one could extend our construction to various models. One of such exam-
ples is Floquet scars [128–130], which violate the Floquet version of ETH (Floquet-ETH).
In addition, generalizations of the Onsager algebra have been discussed [131, 132], so one
might be able to construct QMBS models using such generalized Onsager algebras. An-
other direction is an experimental implementation of Onsager’s scars. In Ref. [133], the
authors mention the link between scars appearing in a certain effective Rydberg model
and Onsager’s scars in the n = 2 case. Then, it will be interesting to consider experimental
realizations of Onsager’s scars for n > 2.
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FERMIONIC ONSAGER’S SCARS

In Chapter 3, we have constructed the S = 1/2 spin model with QMBS states. Here,
we derive a fermionic QMBS model via the Jordan-Wigner transformation. Spin
operators can be rewritten in terms of fermionic creation/annihilation operators a†j

and aj as

S+
j = exp

(
iπ

j−1∑
k=1

nk

)
a†j , S

−
j = exp

(
iπ

j−1∑
k=1

nk

)
aj , S

z
j = nj −

1

2
. (A.1)

Here, nj := a†jaj is the number operator at site j, and a†j and aj satisfy {aj , a†k} = δjk.
Then, the unperturbed Hamiltonian H2 is recast as

H2 =

L−1∑
j=1

(a†jaj+1 + a†j+1aj)− (−1)F (a†La1 + a†1aL), (A.2)

where F :=
∑L

j=1 nj is the total number of fermions, and thus (−1)F represents the
fermionic parity, which commutes with H2. One can see that the boundary condition of
H2 for fermions is periodic in the odd-parity sector and anti-periodic in the even-parity
sector.
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The perturbation terms can also be rewritten in terms of fermions as

L∑
j=1

c
(1)
j |↓↑↓〉j−1,j,j+1 〈↓↑↓| =

L∑
j=1

c
(1)
j (1− nj−1)nj(1− nj+1) (A.3)

L∑
j=1

c
(2)
j

2
(|↓↑↑〉+ |↑↑↓〉)j−1,j,j+1(〈↓↑↑|+ 〈↑↑↓|)

=
L−1∑
j=2

c
(2)
j

2

[
(nj+1 − nj−1)2nj − a†j+1njaj−1 − a†j−1njaj+1

]

+
c

(2)
1

2

[
(n2 − nL)2n1 − (−1)Fa†2n1aL − (−1)Fa†Ln1a2

]
+
c

(2)
L

2

[
(n1 − nL−1)2nL + (−1)Fa†1nLaL−1 + (−1)Fa†L−1nLa1

]
.

(A.4)

Thus, our QMBS Hamiltonian corresponds to a fermionic model with correlated hop-
ping [134–136] up to boundary terms. The U(1)-breaking perturbation term

L∑
j=1

c
(1)
j c

(3)
j [|↓↑↓〉 (〈↓↑↑|+ 〈↑↑↓|) + (|↓↑↑〉+ |↑↑↓〉) 〈↓↑↓|]j−1,j,j+1 (A.5)

also breaks the parity (−1)F symmetry, and as a result, it contains non-local terms when
it is mapped to fermionic operators.

We also consider untwisted fermionic QMBS model, since under PBC, i.e., aL+1 = a1,

H ′2 :=
L∑
j=1

(a†jaj+1 + a†j+1aj) (A.6)

Q′+ :=

L∑
j=1

(−1)j+1a†ja
†
j+1 (A.7)

commute each other.
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DERIVATION OF EQ. (3.24)

In this appendix, we derive Eq. (3.24)

(EN )(0,0)(l,l) = cl :=



N − l/2
l/2

 l: evenN − (l + 1)/2

(l − 1)/2

 l: odd

,

where

E(α,γ)(β,χ) =
1 + (−1)α

2

1 + (−1)γ

2
δαβδγχ + δα+1,βδγ+1,χ (0 ≤ α, β, γ, χ ≤ N), (B.1)

and we assume that N = L/2 is even and 0 ≤ l ≤ N . The formula of (EN )(l,l)(N,N) is
also obtained in a similar way. The key to the derivation is that computing (EN )(0,0)(l,l)

is mapped to counting the number of lattice paths on the lattice shown in Fig. B.1.
Each path is from (0, 0) to (N, l) with up-steps (1, 1) (↗) and horizontal steps (1, 0) (→),
but no horizontal steps on odd y lines are allowed. One can see that the first term
[(1 + (−1)α)/2][(1 + (−1)γ)/2]δαβδγχ in Eq. (B.1) corresponds to →, and the second term
δα+1,βδγ+1,χ to↗. In the case of even l, each path reads a sequence that consists of l× ↗
and (N − l)× → under the restriction that the number of consecutive↗ ’s should be even.
Thus, by introducing

=⇒:=↗↗, the number of such lattice paths reduces to the number
of combination of l/2×

=⇒ and (N − l)× →, resulting in cl in the case of even l. When l

is odd, the last step of every path should be ↗ because → are prohibited on odd y lines.
Therefore, (EN )(0,0)(l,l) equals the number of lattice paths from (0, 0) to (N − 1, l − 1), i.e.,
the number of combination of (l − 1)/2×

=⇒ and (N − l)× →.
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Figure B.1: The lattice and an example of lattice paths on it regarding computing
(EN )(0,0)(l,l). Each path is from (0, 0) to (N, l) with l up-steps ↗ and (N − l) horizontal
steps→, but any horizontal steps on odd y lines are prohibited.
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