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Abstract

The aim of this thesis is a detailed discussion of effects of the isospin symmetry breaking on ground-state
properties, especially the total energy and the neutron-skin thickness, of atomic nuclei systematically.

A proton and a neutron have quite similar properties apart from their charge; hence, it is often convenient
to regard these two particles as the two different states of a particle called “nucleon”. An auxiliary spin-like
quantum number to distinguish two states of a nucleon is called “isospin”, and the fact that a proton and a
neutron have quite similar properties is called isospin symmetry. It is also known that the nuclear interaction
has also isospin symmetry: The proton-proton, neutron-neutron, and proton-neutron (the total isospin 1)
nuclear interactions are almost the same. Accordingly, the isospin symmetry of atomic nuclei also holds
almost perfectly. For instance, the mirror nuclei pair have quite similar properties. Here, the mirror nuclei
pair is a pair of two atomic nuclei, one of which consists of Z protons and N neutrons and the other consists
of N protons and Z neutrons.

Nevertheless, the electromagnetic interaction and the tiny contribution of the isospin symmetry breaking
(ISB) terms of the nuclear interaction break the isospin symmetry of atomic nuclei: For example, the mass
of an atomic nucleus is different from that of its mirror nucleus. Such isospin symmetry breaking of atomic
nuclei have been highlighted, especially, these days. Despite the importance of the ISB terms of the nuclear
interaction, it has been often neglected in the nuclear structure calculation. This is because the effective
nuclear interaction, which is fitted to experimental data, is not accurate enough to discuss such small effects.
Therefore, first, it is important to estimate the contribution of the electromagnetic interaction to nuclear
properties, which, in principle, can be estimated exactly apart from the approximation introduced by many-
body calculation methods since the interaction is exactly known from the quantum electrodynamics.

In this thesis, I shall discuss such isospin symmetry breaking in atomic nuclei theoretically. A quantum
many-body method called mean-field calculation or density functional theory (DFT) is used since only this
method can be applied to the whole nuclear chart at this moment.

The electromagnetic interaction has not been treated accurately and the ISB terms of the nuclear in-
teraction have not been considered in nuclear DFT. Therefore, the electromagnetic interaction is treated as
accurately as possible. By using the knowledge in condensed matter physics, the Coulomb exchange energy
calculated with the Fock term is reproduced in a density functional framework. On top of it, the non-zero
spatial charge distributions of protons and neutrons are taken into account for the Coulomb energy. The
vacuum polarization for the Coulomb interaction and the electromagnetic spin-orbit interaction are also
considered. The finite-light-speed correction to the Coulomb interaction is also discussed independently.

On top of such an accurate treatment of the electromagnetic interaction, effects of the ISB terms of
the nuclear interaction are compared with those of the Coulomb interaction. Dependences of ground-state
properties of doubly-magic nuclei on the strengths of the ISB terms of the nuclear interaction are discussed.
Using these results, a novel method to pin down the strength of the charge symmetry breaking term of the
nuclear energy density functional is also proposed.
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Chapter 1

Introduction

It is known that atomic nuclei have almost the isospin symmetry, while its breaking is one of the important
topics. In order to explain the isospin symmetry of atomic nuclei and its breaking, in this chapter, a brief
introduction to the nuclear structure will be given.

1.1 Atomic Nuclei and Isospin

The atomic nuclei are composed of protons and neutrons, which interact with each other via the nuclear
and the electromagnetic interactions. Since the protons and the neutrons have similar properties except for
their charge, as shown in Table 1.1.1, both are called “nucleons” altogether and are regarded as two different
states of nucleons. In order to distinguish two states, a new auxiliary quantum number called “isospin” is
introduced. The isospin

t = (tx, ty, tz) =
1

2

((
0 1

1 0

)
,

(
0 −i

i 0

)
,

(
1 0

0 −1

))
(1.1.1)

is a spin-like SU (2) variable and protons and neutrons are assigned to the eigenvalue of tz as tz = −1/2 and
+1/2, respectively 1. The concept of the isospin can be extended to the quark model [9], other hadrons, and
atomic nuclei. Suppose an atomic nucleus is composed of Z protons and N neutrons. Using an algebra of
the angular momentum, the z-projection of the isospin of the atomic nucleus, Tz, is Tz = (N − Z) /2.

The Hamiltonian of the atomic nuclei is written as

H = −
A∑

j=1

ℏ2

2m
∆j +

∑
1≤j<k≤A

vnucl (rj , σj , τj , rk, σk, τk) +
∑

1≤j<k≤Z

vEM (rj , rk) , (1.1.2)

where rj , σj , and τj denote spatial, spin, and isospin coordinates of nucleon j, respectively 2, and vnucl and
vEM denote the nuclear and the electromagnetic interactions, respectively. Only the Coulomb interaction
vCoul = e2/ |rj − rk| is considered in vEM in most works. For simplicity, the nucleons are assumed to be point
particles, and accordingly, the neutrons do not feel the Coulomb interaction. The mass difference between
protons and neutrons are neglected. Therefore, the mass m in Eq. (1.1.2) is the average of nucleon mass
938.919MeV/c2. In addition, for simplicity, the non-relativistic scheme, i.e., the Schrödinger equation, is
used here.

As we shall discuss later, it is known that the nuclear interaction vnucl approximately conserves the
isospin, [vnucl,T ] ≃ 0, where T is the two-body total isospin operator T = t1 + t2. Hence, if there were
no Coulomb interaction, the atomic nuclei would have isospin symmetry. Due to the Coulomb interaction

1In particle or hadron physics, tz = +1/2 and −1/2 are, respectively, assigned to protons and neutrons, which one can relate
to their charge [1, 2] via the Nakano-Nishijima-Gell-Mann’s formula [3–6]. The convention in low-energy nuclear physics was
originally introduced by Heisenberg and Wigner [7, 8], in which the total isospins of Tz =

∑
j tzj of most stable nuclei become

positive. The history of the convention of the isospin is summarized in Ref. [C1].
2The isospin satisfies tj = 1

2
τj , where τj refers to the Pauli matrices for the isospin space (isospace). Similarly, the spin

satisfies sj = 1
2
σj , where σj refers to the Pauli matrices for the spin space. Because of the convention, hereinafter, τj and σj

are used, instead of tj and sj .
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CHAPTER 1. INTRODUCTION

Table 1.1.1: Properties of protons and neutrons.
Proton Neutron

Charge (e) +1 0

Spin J 1/2 1/2

Parity π + +

Isospin t 1/2 1/2

Isospin tz −1/2 +1/2

Internal quark structure uud udd

Mass (MeV/c2) [10] 938.2720813± 0.0000058 939.5654133± 0.0000058

and tiny contribution of the isospin symmetry breaking (ISB) terms of the nuclear interaction, the isospin
symmetry of the atomic nuclei are broken slightly, while Tz is still a good quantum number.

The Coulomb interaction between protons is repulsive, whereas the nuclear interaction is, in total, strongly
attractive. If there were not the Coulomb interaction, due to the Pauli principle, N = Z nuclei would be
stable in the whole nuclear chart. However, as Z increases, the Coulomb repulsion between two protons
contributes more significantly, and consequently, N > Z nuclei become stable in the heavy-mass region.

1.2 Nuclear Interaction

The nuclear interaction microscopically originates from the strong interaction in particle physics, i.e., gluon
exchanges between quarks of nucleons. The nuclear interaction in vacuum, which is determined with the
two-body bound state or two-body scattering experiments, is known to be different from that in medium.
Here, we focus on the two-body nuclear interaction in vacuum, while that in medium will be explained later.

The deuteron, which consists of a proton and a neutron, helps one to understand the two-body nuclear
interaction in vacuum. The ground state of the deuteron, which is the unique bound state of the two nucleon
systems, has the total spin 1, total isospin 0, and positive parity. Therefore, it is expected that the nuclear
interaction has a spin-isospin dependence and S = 1, T = 0 channel is expected to be attractive strongly.

In addition, the nuclear binding energy per nucleon is, in general, almost constant (≈ 8MeV) among the
whole nuclear chart, which suggests that the nuclear interaction should be short-range [11].

The two-body nuclear interaction in vacuum is required to satisfy the following condition:

1. Invariance under interchange of particles;

2. Invariance under spatial rotation;

3. Invariance under spatial translation;

4. Invariance under charge-parity-time reversal transformation (CPT theorem).

The last one is required by the quantum field theory [12]. In addition, the two-body nuclear interaction
satisfies the following condition almost perfectly:

5. Charge symmetry, i.e., two-body nuclear interaction between two protons and that between two neu-
trons are identical;

6. Charge independence, i.e., two-body nuclear interaction does not depend on the charges of nucleons.

Several forms of the two-body nuclear interaction in vacuum have been proposed, and one of the most
popular forms, called Argonne V14 (AV14) interaction [13], is

vAV14
nucl (rj , σj , τj , rk, σk, τk)

= v1 (rjk) + v2 (rjk) (τj · τk) + v3 (rjk) (σj · σk) + v4 (rjk) (σj · σk) (τj · τk)
+ v5 (rjk)Sjk + v6 (rjk)Sjk (τj · τk) + v7 (rjk)L · S + v8 (rjk)L · S (τj · τk)
+ v9 (rjk)L

2 + v10 (rjk)L
2 (τj · τk) + v11 (rjk)L

2 (σj · σk) + v12 (rjk)L
2 (σj · σk) (τj · τk)

+ v13 (rjk) (L · S)2 + v14 (rjk) (L · S)2 (τj · τk) , (1.2.1)

8



CHAPTER 1. INTRODUCTION

where L and S are, respectively, the two-body orbital and spin angular momentum operators,

Sjk = 3
(σj · rjk) (σk · rjk)

r2jk
− σj · σk (1.2.2)

is the tensor operator, rjk = rj −rk, and rjk = |rjk|. The rjk dependences of vj (rjk) are determined so that
two-body scattering and deuteron properties are reproduced. Here, σj · σk and τj · τk, respectively, become

σj · σk =

{
−3 for S = 0,

+1 for S = 1,
(1.2.3)

τj · τk =

{
−3 for T = 0,

+1 for T = 1.
(1.2.4)

The tensor interaction, which depends on Sjk, is specific to nuclear interaction and vanishes for the S = 0

state. Due to the existence of Sjk, the nuclear interaction does not conserve angular momentum. For
example, the deuteron contains both S-wave (L = 0) and D-wave (L = 2) components [14–16]. This tensor
interaction forms a spin-orbit mean field and plays crucial roles for nuclear structure, especially, the shell
structure and its evolution [17–23,A16,A17].

To satisfy the CPT theorem, the following combinations of parity, spin, and isospin are allowed for the
nuclear interaction:

• parity odd (L = 1, 3, 5, . . . ), spin singlet (S = 0), isospin singlet (T = 0),

• parity odd (L = 1, 3, 5, . . . ), spin triplet (S = 1), isospin triplet (T = 1),

• parity even (L = 0, 2, 4, . . . ), spin singlet (S = 0), isospin triplet (T = 1),

• parity even (L = 0, 2, 4, . . . ), spin triplet (S = 1), isospin singlet (T = 0).

The rjk dependence of the central (v1, . . . , v4), tensor (v5 and v6), spin-orbit (v7 and v8), L2 (v9, v10, v11,
and v12), and (L · S)2 (v13 and v14) interactions in the AV14 interaction are shown in Fig. 1.2.1. In order
to see the averaged total strength of each channel easily, the AV4’ interaction [24], in which all the terms
are projected effectively to the central force, is also shown. It is shown that the S = 0, T = 1 channel and
S = 1, T = 0 channel give strong attractive interactions.

Historically, this nuclear interaction was termed “exchange force”. The exchange force in this context
does not mean the interaction with exchanging particles. Instead, it means the exchange of the coordinate.
For example, the exchange force with respect to the spatial coordinate is vH (rjk)Pr, where

Prφ (rj , σj , τj , rk, σk, τk) = φ (rk, σj , τj , rj , σk, τk) . (1.2.5)

This exchange operator Pr is also extended to the spin and isospin, Pσ and Pτ , defined by

Pσ =
1 + (σ1 · σ2)

2
, (1.2.6)

Pτ =
1 + (τ1 · τ2)

2
, (1.2.7)

respectively. The nuclear interaction was classified into four parts [1]: non-exchange force called Wigner
force [25], spin-exchange force called Bartlett force [26], isospin-exchange force called Majorana force [27],
and spatial-exchange force called Heisenberg force [7], as

vnucl (rj , σj , τj , rk, σk, τk) = vW (rj , σj , τj , rk, σk, τk)

+ vB (rj , σj , τj , rk, σk, τk)Pσ

+ vM (rj , σj , τj , rk, σk, τk)Pτ

+ vH (rj , σj , τj , rk, σk, τk)PσPτ , (1.2.8)

where due to the Fermi statistics, PrPσPτ = −1 and accordingly Pr = −PσPτ holds. This classification is
rarely used recently to classify the nuclear interaction in vacuum, while this idea or even these names are
used for the nuclear interaction in medium.
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Figure 1.2.1: Radial dependence of central, tensor, spin-orbit, L2, and (L · S)2 interactions in the AV14
interaction [13]. For comparison, the AV4’ interaction [24] is also shown.

The nuclear interaction in vacuum can be described as the meson-exchange picture. Originally, Yukawa
introduced the π-meson-exchange picture [28] as an analogy to the photon-exchange picture of the electro-
magnetic interaction in quantum electrodynamics. This idea has been extended to the exchange of other
mesons lighter than nucleons, i.e., ρ, σ, and ω mesons, to explain the behaviour of the nuclear interaction.
Note that the σ meson has not been observed yet, while it is included to describe scalar-isoscalar type coupling
effectively, which originates, for instance, from the two-pion exchange process. These mesons have different
spins, parities, and isospins, as shown in Table 1.2.1, and accordingly, the complicated nuclear interaction can
be described. Microscopically, the nuclear interaction originates from the exchange of gluons between quarks
inside nucleons, and these exchange processes can be, effectively, described as meson exchanges [29, 30].
Although this meson-exchange theory is just an effective theory, it helps us to understand the behaviour
of the nuclear interaction [31]: The short-range repulsion (r ≲ 0.5 fm) is due to the Pauli principle and
the size of nucleons; the medium-range attraction (0.5 ≲ r ≲ 1.0 fm) is due to one-boson (except for pion)
exchanges [32, 33] and two-pion exchange [34]; the long-range tail (1.0 ≲ r ≲ 2.0 fm) is due to the one-pion
exchange [28].

It is also known that there exists interaction that can be described only by involving three nucleons but
cannot by using two nucleons. This interaction is called three-body interaction. The microscopic origin of
the three-body interaction has long been argued. One mechanism is called Fujita-Miyazawa type [35], where
the nucleon A emits a pion and the nucleon B absorbs it; then the nucleon B excites to the resonance excited
states called the ∆ baryon; after that, the nucleon B deexcites with emitting a pion; the pion is absorbed
by the nucleon C. This mechanism is shown schematically in Fig. 1.2.2. It is known that the three-body
interaction is crucial to describe nuclear structure and neutron star properties [36–38].

Recently, two novel methods to determine nuclear interaction microscopically have been proposed: chiral
effective field theory (ChEFT) [39, 40] and lattice quantum chromodynamics (LQCD) calculation [41–43].
In the former method, the nuclear interaction is described by using the pion exchange and point coupling,
which describes the heavier-meson exchange. The nuclear interaction can be, then, expanded by the series
of the order of meson-exchange processes, and finally, expressed by several coupling constants. The coupling

10



CHAPTER 1. INTRODUCTION

Table 1.2.1: Spin, parity, and isospin of mesons contributing to nuclear interaction.
Meson Charge (e) Spin Parity Isospin
π± ±1 0 − 1

π0 0 0 − 1

σ 0 0 + 0

ρ 0, ±1 1 − 1

ω 0 1 − 0

A
(Nucleon)

B
(Nucleon)

C
(Nucleon)

A B C

Δ

π

π

Figure 1.2.2: Schematic figure of the Fujita-Miyazawa type three-body nuclear interaction [35].

constants are determined to reproduce the experimental data [40]. In other words, the form, i.e., ansatz, of
the nuclear interaction is based on the effective field theory, while the way to determine the parameters is
the same as a conventional realistic one, like the AV14 bare interaction.

The latter, LQCD, is based on a totally different idea. To simulate nuclear interaction in vacuum, the four-
dimensional space-time is discretized into a lattice. Two nucleons are put on the lattice, where the nucleon
is represented as three quarks. Then, the quantum chromodynamics calculation is performed numerically.

The nuclear interaction derived by ChEFT has been applied to calculations for nuclear structure [44–47]
and neutron star properties [48]. In contrast, nuclear interaction obtained by the LQCD calculation has still
large numerical uncertainty and thus it has not been applied to the calculation of nuclear properties yet,
while it helps one to understand other hadron-hadron interactions [49–52].

1.3 Nuclear Matter

One of the simplest nucleon systems is the homogeneous nucleon gas, called “nuclear matter”. Similarly to
electronic systems, this homogeneous matter helps one to understand the properties of nuclear interaction
and provides a playground for testing many nuclear many-body calculation methods. In addition, as it is the
simplest model of the neutron star, calculation of nuclear matter properties provides a relation between the
mass and the radius of the neutron star [53], with combining the Tolman-Oppenheimer-Volkoff equation [54–
56]. Note that the Coulomb interaction is usually neglected in nuclear matter in order to focus on properties
of the nuclear interaction.

11
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Figure 1.3.1: Equation of state of symmetric nuclear matter and pure neutron matter as functions of the
density ρ. The symmetry energy is also shown as a function of the density ρ. The Skyrme interaction with
the SLy4 parameter set [58] is used. The dashed vertical line represents the saturation density.

The equation of state (EoS) of nuclear matter, i.e., energy density as a function of the density of nuclear
matter, is one of the most interesting topics. The EoS of symmetric nuclear matter (ρp = ρn = ρ/2) and
pure neutron matter (ρp = 0, ρn = ρ) are plotted in Fig. 1.3.1. In general, the EoS is expanded as

E (ρ, β)

A
=

E (ρ, 0)

A
+ Esym (ρ)β2 +O

(
β4
)
, (1.3.1)

where ρ = ρn + ρp is the total density and β = (ρn − ρp) / (ρn + ρp) is the isospin asymmetry. Due to the
isospin symmetry, E/A must be an even function of β, where the tiny contribution of the ISB terms of the
nuclear interaction introduces a term proportional to β [57,A6], which will be discussed later.

As seen in the figure, owing to the symmetry energy, symmetric nuclear matter is more stable than pure
neutron matter. This difference (Esym in Eq. (1.3.1)) is called the symmetry energy. This symmetry energy
is due to the Pauli principle and the strong attractive nature of the proton-neutron interaction. It is also
seen that the symmetric nuclear matter gives the minimum of E/A ≈ −16MeV at ρ0 ≈ 0.16 fm−3 called
saturation density, while the pure neutron matter does not give a minimum. This is due to the balance of
strong attractive interaction, the repulsive core, and the three-body repulsion.

Here, it is convenient to define several parameters related to EoS:

Esym (ρ) = J + L

(
ρ− ρ0
3ρ0

)
+

1

2
Ksym

(
ρ− ρ0
3ρ0

)2

+ . . . , (1.3.2)

E (ρ, 0)

A
= E0 +

1

2
K∞

(
ρ− ρ0
3ρ0

)2

+ . . . , (1.3.3)

where these two equations are the Taylor expansions around the saturation density. The saturation density
is defined as the density which gives P (ρ0, 0) = 0, where P is the pressure of nuclear matter defined by

P (ρ, β) = ρ2
∂

∂ρ

E (ρ, β)

A

≃ K∞

9ρ20
(ρ− ρ0) ρ

2 +

[
L

3ρ0
ρ2 +

Ksym

9ρ20
(ρ− ρ0) ρ

2

]
β2. (1.3.4)

Accordingly, ρ0 also satisfies
1

A

dE (ρ, 0)

dρ

∣∣∣∣
ρ=ρ0

= 0, (1.3.5)

i.e., it gives the minimum for E (ρ, 0) /A. Hence, the first-order term does not appear in Eq. (1.3.3).
These parameters are not directly measured from any experiment. Nevertheless, these values are fun-

damental quantities of nuclear interaction; hence, they can be extracted by using experimental observables.
For instance, the neutron-skin thickness, the difference between the neutron root-mean-square radius and the
proton one [59], and some excitation spectra [60–63] are related to the L parameter, and thus measurements
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of such parameters are devoted in many experimental facilities. Indeed, the L parameter is estimated by
using several experiments as shown in Fig. 1.3.2. In addition, since such parameters represent the behaviour
of EoS, neutron-star properties, especially, its mass-radius relation, is constrained by using such parameters
obtained by experiments or theory. For example, Fig. 1.3.3 shows the neutron-star mass-radius relation.

1.4 Nuclear Structure and Nuclear Mean Field

The nuclear binding energy was, firstly, successfully described by Weizsäcker and Bethe quantitatively, con-
cerning an atomic nucleus as a liquid drop with almost constant density ρ0 [109,110], in which no quantum
effect is taken into account. In contrast, several atomic nuclei with specific proton or neutron numbers, such
as Z or N = 8, 20, 28, 50, 82, and 126, called magic numbers, are known to be more stabilized. This is
because protons and neutrons form “shell structure”, and the shell is closed at magic numbers, for the same
reason as to why the noble gas atoms are stable and significantly low reactivity, and at the magic numbers,
there exist gaps called shell gaps.

The existence of this shell structure implies that atomic nuclei can be well described by using an inde-
pendent particle model, similarly to the atoms, despite the strong attractive interaction. The magic numbers
were also successfully described by the three-dimensional isotropic harmonic oscillator or square well poten-
tial with the strong spin-orbit interaction [111–113]. The spin-orbit interaction binds the j = l+1/2 orbitals
stronger, while j = l− 1/2 orbitals weaker in the atomic nuclei, whereas it behaves oppositely in the atoms.

The atomic nuclei whose proton and neutron numbers are both magic numbers, called doubly-magic
nuclei, are known much more stable than the other nuclei. This is explained by the Cooper pair between two
protons and that between two neutrons [114]. Protons or neutrons above the shell gap form pairs with the
angular momentum 0+. Accordingly, the ground states of all the nuclei with even Z and N , called even-even
nuclei, are 0+. In addition, the occupation probability of each orbital above the shell gap becomes a rational
number. The atomic nuclei which are not even-even nuclei have remaining one proton and/or one neutron,
which cannot form the like-particle Cooper pair. Eventually, such nuclei are less stable than the even-even
nuclei. The existence of the Cooper pair between a proton and a neutron and its effect on nuclear properties
have been argued but not yet settled [115–120].

At last, the shape of atomic nuclei is focused on. It is known that many atomic nuclei show “collective
deformation” in which not only valence nucleons but also all the nucleons participate in the deformation.
This collective deformation can be regarded as that the nuclear mean field itself is deformed.

Apart from the collective deformation, several different types of deformation are also known, such as core-
plus-one-nucleon deformation and cluster states. The former is the deformation of an atomic nucleus whose
configuration is the doubly-magic core plus one valence nucleon. The doubly-magic nuclei are spherical,
which will be explained later, and thus, it is expected that the deformation of the nucleus is due to the
valence nucleon. Nevertheless, the strong interaction between the core and the valence nucleon may induce
the core deformation, and accordingly, the deformation may be larger than the one-valence nucleon level [121–
125]. The latter is that the nucleons inside some atomic nuclei form α-particle clusters, and some neutrons
sometimes behave as electrons in covalent bonds [126–134,A14,A19].

To describe the deformation, the angle-dependent radius of an atomic nucleus is denoted by R (θ, φ),
which corresponds to the shape of the surface of the nucleus. The origin of the coordinate is the center of
mass of the nucleus. This R (θ, φ) can be expanded as

R (θ, φ) = R0

[
1 +

∞∑
l=2

l∑
m=−l

almY ∗
lm (θ, φ)

]
, (1.4.1)

where Ylm is the spherical harmonics. Neither l = 0 nor l = 1 component is considered in Eq. (1.4.1) because
l = 0 is absorbed in R0 and l = 1 corresponds to the shift of the center of mass at the first order. If one
focuses on the quadrupole deformation, Eq. (1.4.1) is reduced to

R (θ, φ) = R0

[
1 + β cos γY2 0 (θ, φ) +

β√
2
sin γY2+2 (θ, φ) +

β√
2
sin γY2−2 (θ, φ)

]
= R0

[
1 +

√
5

16
β
{
cos γ

(
3 cos2 θ − 1

)
+

√
3 sin γ sin2 θ cos 2φ

}]
(1.4.2)
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Figure 1.3.2: Estimation of the density dependence of the symmetry energy in the nuclear equation of state,
L, by using several experiments combined with theoretical estimation [48, 61–94]. The vertical line is the
lower limit of the L parameter obtained in Ref. [95]. This figure is taken from Ref. [A12].
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Figure 1.3.3: Neutron star mass (M) and radius (R) relation calculated from several nuclear equation of
states [58,96–99]. The mass is normalized with the solar massM�. Constraints from maximum mass observa-
tion using the Shapiro delay (MSP J0740+6620) [100,101], gravitational wave observation (GW170817) [102],
NICER (PSR J0030+ 0451) [103–105], X-ray burst [106], and causality [107] are shown. Constraint with an
empirical formula [108] and L parameter obtained by several recent nuclear experiments [73, 91, 92] are also
shown at the bottom right region. This figure is taken from Ref. [A12].

with β > 0 and 0 ≤ γ < 2π, where β = 0 corresponds to the spherical shape 3. If one is only interested in the
axial-deformed nuclei, possible values of γ are nπ/3 (n = 0, 1, . . . , 5). Then, β > 0 with γ = (2n+ 1)π/3

are identical to β < 0 with γ = 2nπ/3. Hence, if one defines the symmetric axis of the axial deformation as
z′ axis, Eq. (1.4.2) is simplified to

R (θ′, ϕ′) = R0

[
1 +

√
5

16π
β
(
3 cos2 θ − 1

)]
, (1.4.3)

where both negative and positive numbers of β are allowed.
Figure 1.4.1 shows the schematic figure of axial quadrupole deformation. It is known that more nuclei

show prolate deformation than oblate one, which may be due to the property of nuclear interaction, while it
is not completely unrevealed yet [135–139]. It is also known that the doubly-magic nuclei are spherical, since
all possible magnetic quantum numbers m for each orbital are occupied:

∑
m |Ylm (θ, ϕ)|2 = (2l + 1) /4π.

The origin of nuclear deformation has been discussed for a long time. It was shown that the proton-
neutron strong isoscalar (T = 0) interaction induces nuclear deformation [140]. Recently, we proved both
numerically and analytically in Ref. [A10] that even a neutron drop, a system in which neutrons are confined
to isotropic harmonic oscillator potential, can also be deformed, and such collective deformation occurs due
to the strong attractive interaction. Thus, it should also be noted that the central Coulomb potential is not
sufficient to describe the reason why isolated atoms are spherical, and the repulsive nature of the Coulomb
interaction is essential.

At last, a nucleon density distribution is revisited. Here, ρp and ρn denote the distributions of center-of-
mass of protons and neutrons, respectively. They correspond to that one regards protons and neutrons as
pointwise particles. Since the nuclear interaction is denoted as the interaction between pointwise nucleons,
ρp and ρn can be measured by using hadron (nucleon) scattering.

The charge density distribution ρch is also important, which can be measured by using the electron
scattering [141–146]. Since protons and neutrons are composite particles, they have internal structures, and

3In the other sections, β denotes the isospin asymmetry. Only in this section, β denotes the deformation parameter.
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Figure 1.4.1: Schematic figure of axial quadrupole deformation. This figure is taken from Ref. [A10].

accordingly, finite charge density distributions, as shown in Fig. 1.4.2, whose spatial integral corresponds
to the net charge. Therefore, these nucleon charge distributions must be taken into account for ρch, and
eventually, it can be calculated as [147,A18]

ρ̃ch (q) = ρ̃p (q) G̃Ep (q) + ρ̃n (q) G̃En (q) (1.4.4)

in the lowest order, where ρ̃ is the Fourier transform of ρ defined by

ρ̃ (q) =

∫
ρ (r) e−iq·r dr = 4π

∫ ∞

0

ρ (r)
sin (qr)

qr
r2 dr (1.4.5)

and G̃Eτ is the electric form factor of nucleon τ . The contribution of the magnetic form factor to ρ̃ch is the
higher-order with respect to the light speed c.

There are several definition of the Fourier transform. The electric form factor G̃Eτ is usually normalized
as G̃Ep (0) = 1 and G̃En (0) = 0. If the Fourier and the inverse Fourier transforms are, respectively, defined
by

f̃ (q) = C

∫
f (r) e−iq·r dr, (1.4.6)

f (r) =
(2π)

−3

C

∫
f̃ (q) eiq·r dq, (1.4.7)

where C may be 1, (2π)−3/2, or (2π)−3,

G̃Eτ (0) = C

∫
GEτ (r) dr (1.4.8)

holds. Since GEτ corresponds to the charge distribution of a nucleon τ , the right-hand side of Eq. (1.4.8)
should be C for τ = p and 0 for τ = n. Therefore, C = 1 is used in this thesis.

1.5 Isospin Symmetry Breaking of Nuclear Interaction

Up to now, the nuclear interaction is assumed to have the isospin symmetry. Hence, the nuclear interaction
between two protons, vpp, that between two neutrons, vnn, and that between a proton and a neutron with
the total isospin T = 1 channel, vT=1

pn , are assumed to be the same, while that between a proton and a
neutron with the total isospin T = 0 channel, vT=0

pn is not; vpp ≡ vnn ≡ vT=1
pn and vT=1

pn �≡ vT=0
pn .

However, in fact, the isospin symmetry of the nuclear interaction is slightly broken. The isospin symmetry
breaking (ISB) channel of the nuclear interaction is separated into two classes: the charge symmetry breaking
(CSB) and the charge independence breaking (CIB). The charge symmetry and the charge independence

16



CHAPTER 1. INTRODUCTION

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r2
G
E
τ
(r
)
(f
m
−
1 )

r (fm)

Proton

Neutron

Figure 1.4.2: Nucleon charge density distributions GEτ (r) as functions of r. Electric form factors G̃Eτ

proposed in Ref. [148] are used.

correspond to symmetry under the z → −z transformation and arbitrary rotation in the isospace, respectively.
The charge independence includes the charge symmetry, while the charge independence apart from the charge
symmetry is simply referred to as the charge independence in this thesis. Therefore, the CSB corresponds to
the fact that the proton-proton nuclear interaction is not the same as the neutron-neutron one, vpp ̸≡ vnn.
The CIB corresponds to the fact that proton-neutron nuclear interaction in T = 1 channel is not identical to
the nuclear interaction between the same particle. Due to the charge symmetry breaking, the CIB is defined
by vT=1

pn ̸≡ (vpp + vnn) /2.
These CSB and CIB nuclear interactions can be defined more precisely in the context of the meson

exchange. The two-body nuclear interaction, including the isospin symmetric part, is classified into four
classes [149–153].

Class I Nuclear interaction with charge and isospin independence, i.e., which satisfies
[
vIjk,T

]
= 0, whose

form is
vIjk ∼ a+ bτj · τk. (1.5.1)

Class II Nuclear interaction with charge symmetry which breaks charge independence, whose form is

vIIjk ∼ cTjk. (1.5.2)

Class III Nuclear interaction which breaks both charge independence and charge symmetry but is symmet-
ric under the interchange between particles j and k, whose form is

vIIIjk ∼ d (τzj + τzk) , (1.5.3)

which satisfies
[
vIIIjk ,T

2
]
= 0.

Class IV Nuclear interaction which breaks both charge independence and charge symmetry, and addition-
ally, satisfies

[
vIVjk ,T

2
]
̸= 0, whose form is

vIVjk ∼ e (τzj − τzk) + f (τj × τk)z . (1.5.4)

Here, Tjk is the isotensor operator defined by

Tjk = 3τzjτzk − τj · τk (1.5.5)

and T is the two-body total isospin operator defined by T = (τj + τk) /2. The CIB and CSB interactions
discussed above correspond to class II and class III, respectively.

The CIB (class II) interaction originates from the mass difference between charged pions π± and neutral
ones π0 [154,155] in the one- and two-pion exchange potentials. In contrast, the CSB (class III) one originates
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Figure 1.5.1: Radial dependence of the charge independence breaking (CIB) and charge symmetry breaking
(CSB) interactions in the AV18 interaction [167].

from the mass difference between protons and neutrons in the two-pion exchange potential and π0-η and ρ0-ω
mixings throughout the meson-exchange process which is mainly due to the electromagnetic interaction [156–
161].

The ISB of nuclear interaction has also been studied by using the chiral EFT [152, 162–165] and boson-
exchange picture [166]. Reference [162] proved by using the analysis of the QCD Lagrangian that the class I
interaction is strongest and the strength of the class (n+ 1) interaction is O (mπ/mρ) ≈ 1/5 of the class n

interaction, where mπ ≈ 140MeV/c2 and mρ ≈ 770MeV/c2 are, respectively, masses of π meson and ρ one
and mρ is chosen as a typical scale of the QCD.

The Argonne V18 (AV18) interaction, one of the most used bare realistic interactions constructed phe-
nomenologically to reproduce experimental data of nucleon scattering and the deuteron bound state, includes
ISB terms on top of the AV14 interaction shown in Eq. (1.2.1) [167] as

vAV18
nucl (rj , σj , τj , rk, σk, τk) = vAV14

nucl (rj , σj , τj , rk, σk, τk)

+ v15 (rjk)Tjk + v16 (rjk) (σj · σk)Tjk + v17 (rjk)SjkTjk

+ v18 (rjk) (τzj + τzk) , (1.5.6)

where the second and third lines correspond to the CIB and CSB interactions, respectively, and are shown
in Fig. 1.5.1. As seen in the figure, the CIB interaction for the spin-singlet channel is much weaker than the
isospin symmetric channel, such as the AV14, and the CIB interaction for the spin-triplet channel is further
weaker. The CSB interaction is around 30% of the CIB interaction. These strengths are consistent with the
analysis done by van Kolck [162]. Both the CIB and CSB central interactions are repulsive.

1.6 Work in This Thesis

The isospin symmetry breaking of the nuclear interaction is one of the fundamental topics toward under-
standing the nuclear interaction; hence, it has been studied theoretically for a long time [168–188]. If neither
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the ISB terms of the nuclear interaction nor the electromagnetic interaction existed, the isospin symmetry of
atomic nuclei would exactly hold. Consequently, the mirror nuclei pair have the same total energies and the
excitation spectra, and the proton (neutron) radius of the former is the same as the neutron (proton) radius
of the latter. Here, the mirror nuclei pair is a pair of two atomic nuclei, one of which consists of Z protons
and N neutrons, and the other consists of N protons and Z neutrons. In N = Z nuclei, the proton radius is
identical to the neutron radius. Also, T± = Tx ± iTy commutes with the Hamiltonian. Hence, if the ground
state of an atomic nucleus is denoted as |GS, Z, N⟩, multiplets |GS, Z, N⟩, T− |GS, Z, N⟩, T 2

− |GS, Z, N⟩,
. . . , and T

(N−Z)
− |GS, Z, N⟩ = |GS, N , Z⟩ have the same energy and the same total isospin T , while Tz is

different. This multiplet is called isospin multiplet.
In reality, both the ISB terms of the nuclear interaction and the electromagnetic interaction exist, isospin

symmetry of atomic nuclei is slightly broken. For instance, the mass difference of mirror nuclei and its
Okamoto-Nolen-Schiffer anomaly [189,190] is one of the long-standing problems related to isospin symmetry
breaking. If there are no ISB terms of the nuclear interaction, the mass difference of mirror nuclei origi-
nates from the Coulomb interaction. Nevertheless, it was pointed out in Refs. [189, 190] that the Coulomb
interaction is not enough to describe the difference. In particular, the mass difference of mirror nuclei is not
described well in the mean-field calculation with the electromagnetic interaction and the isospin symmetric
nuclear interaction, which is referred to as the Okamoto-Nolen-Schiffer anomaly [189,190]. Such topics have
long been paid attention to [157–160,168–172,189–191].

Two recent experiments related to nuclear properties of mirror nuclei done at the National Superconduct-
ing Cyclotron Laboratory (NSCL), Michigan State University, the United States [192] and at the Radioactive
Isotope Beam Factory (RIBF), RIKEN, Japan [193] should also be highlighted. In these experiments, it was
revealed that the ground state of 73Sr (Z = 38, N = 35) is revealed to be Jπ = 5/2−, while that of its mirror
73Br (Z = 35, N = 38) is Jπ = 1/2− [192], and 70Kr (Z = 36, N = 34) has a different shape from 70Se

(Z = 34, N = 36) [193].
The proton-skin thickness, i.e., the difference between the proton radius and the neutron one, of N = Z

nuclei [194], the mass difference between the ground state of an atomic nucleus |GS, N , Z⟩ and its analogue
state T− |GS, N , Z⟩, called isobaric analogue energy [84, 183, 195], and masses of isospin multiplet called
isospin multiplet mass equation [184,187,196–198] are also related to isospin symmetry breaking. It becomes
a hot topic again because experimental techniques have been developed rapidly and accordingly exotic nuclei,
especially, neutron-rich nuclei, have been synthesized and various properties have been measured precisely.

The isospin symmetry breaking of the nuclear interaction is also related to the flavour symmetry break-
ing of the quarks, i.e., the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [199, 200], which
represents the flavour symmetry of the quarks. If the CKM matrix is not unitary, it indicates that there
may be the fourth generation of quarks. The largest component of the CKM matrix, Vud, can be estimated
by using the half-lives of the superallowed β decay [174, 182, 201–205]. To extract Vud from the half-lives
of the superallowed β decay, the electromagnetic contribution and the ISB terms of the nuclear interaction
must be estimated properly. Thus, the study of the isospin symmetry breaking of the nuclear interaction has
indispensable to study not only for nuclear physics itself but also for particle physics.

The nuclear density functional theory (DFT) [206–209] is one of the strong methods toward discussion for
such topics, where the nuclear DFT will be explained in detail in Sec. 2.3. At this moment, the nuclear DFT
is only the method that can be applied to the whole nuclear chart [210]. The accuracy of the nuclear DFT
is governed by the accuracy of the nuclear energy density functional (EDF), i.e., the effective interaction in
medium. Improvement of the accuracy of the nuclear interaction in medium, in other words, the nuclear
EDF, is also an important topic in nuclear physics. As will be discussed in Sec. 2.3, most nuclear EDFs have
been derived with fitting to experimental data. The root-mean-square deviation between masses obtained
theoretically using one of the most widely used EDFs, the SLy4 EDF [58], and experimental masses is
4.80MeV [211] and that by the recent one, the UNEDF0, is 1.45MeV [212]. In contrast, those of empirical
mass formulae [213, 214] and the recent technique of machine learning [215, 216] predict masses of atomic
nuclei within the order of 100 keV accuracy. In addition, to study nucleosynthesis in the universe, such as
the r-process [217–219], masses and half-lives of atomic nuclei of the more exotic region, particularly more
neutron-rich nuclei, than measured are required precisely. For example, masses with 100 keV accuracy is
required to study the r-process path [220].

To improve the accuracy of a nuclear EDF, first, what is known should be estimated and subtracted
precisely as much as possible, since the nuclear EDF is fitted to experimental data. Here, what is known is
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the electromagnetic interaction. Estimation of the electromagnetic interaction will help one to evaluate the
ISB terms of the nuclear EDF as well, since the isospin symmetry breaking of nuclear properties originates
from both the Coulomb interaction and the ISB terms of the nuclear EDF; hence, to isolate effects originating
from the ISB terms of the nuclear interaction from the experimental data, effects originating from the
electromagnetic interaction is needed to be subtracted properly. Nevertheless, treatment of the Coulomb
interaction in nuclear DFT has not been accurate enough, compared to the condensed matter DFT; the
Coulomb LDA exchange EDF (the Hartree-Fock-Slater approximation) is used or the Coulomb exchange
term is even neglected.

Motivated by the improvement of the nuclear EDF and by the study of the isospin symmetry breaking of
atomic nuclei, we shall develop an accurate treatment of the Coulomb interaction in nuclear DFT in Chap. 3.
First, by using knowledge of DFT in condensed matter physics—the generalized gradient approximation
(GGA)—, the density gradient effect will be taken into account for the Coulomb exchange EDF in order
to reproduce the Coulomb exact Fock energy. This is the first attempt of the GGA exchange EDF to the
nuclear structure calculation. On top of it, higher-order correction to the electromagnetic interaction is
discussed: the finite spatial charge distribution of nucleons, the vacuum polarization, the electromagnetic
spin-orbit interaction, and the finite-light-speed correction to the Coulomb interaction. Since EDFs are
written in terms of densities, instead of single-particle orbitals, the charge distribution of nucleons, which is
implemented in form factors, can be easily considered. Some works have considered the charge distribution of
nucleons, while it will be shown later that the effect is not taken into account properly. As will explain later,
the vacuum polarization and the electromagnetic spin-orbit interaction have been introduced in Ref. [183],
while we shall firstly show their systematic behaviours. It will also be shown that the mass difference of
the mirror nuclei pair 48Ca and 48Ni can be reproduced by considering the density gradient in the Coulomb
exchange EDF, the nuclear finite-size effect, the vacuum polarization, and the electromagnetic spin-orbit
interaction, as well as the ISB terms of the nuclear interaction.

In Chap. 4, we shall compare the effect of the Coulomb interaction and the ISB terms of the nuclear
interaction on nuclear properties related to the isospin symmetry breaking, the neutron-skin thickness and
the mass difference of mirror nuclei. It will be shown that the CSB term of the nuclear interaction affects
nuclear properties appreciably, while the CIB term affects only slightly or even does not affect. Since the
accurate treatment of the electromagnetic interaction is achieved in this thesis, a comparative study between
the electromagnetic interaction and the ISB terms of the nuclear interaction on nuclear properties is shown
at the first time. It will also be shown that the ISB terms of the nuclear interaction affect the estimation of
the L parameter of the nuclear EoS approximately in 10MeV. We shall also show that the isospin symmetric
terms of the nuclear EDF do not affect the dependence on the CSB strength on nuclear properties: This fact
leads to a way to pin down the strength of the CSB term of the nuclear EDF using the ab initio calculation
results.

In order to discuss such topics, Chap. 2 will provide the theoretical framework of this thesis: the density
functional theory. At last, Chap. 5 is devoted to the conclusion of this thesis and perspectives.
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Chapter 2

Theoretical Framework

The many-body systems of nucleons—the atomic nuclei—and the many-body systems of electrons—the
atoms, molecules, and solids—share common properties, such as “magic numbers” and “noble gases” emerging
from the shell closure [221,222]. Accordingly, similar calculation methods for electronic systems are also used
for nuclear systems, although there is also a significant difference due to the difference of the interaction and
the existence of external potential. Particularly, owing to the simpleness of the Coulomb interaction, many
calculation methods have been developed accurately. Many properties of atoms, molecules, and solids can
be approached experimentally; hence, the validity and the accuracy of many-body calculation methods have
been understood well, and more calculation methods have been developed.

In this chapter, we shall explain the theoretical framework of this thesis, density functional theory. First,
density functional theory for electronic systems are introduced, and then its application to nuclear physics
is explained.

2.1 Quantum Many-Body Problems

All the things surrounding us are composed of atoms; an atom is composed of the atomic nucleus and many
electrons; an atomic nucleus is composed of many protons and many neutrons. Electrons of atoms, molecules,
and solids and protons and neutrons of atomic nuclei obey the Schrödinger or Dirac equation. Such systems,
composed of many fermions, are referred to as “quantum many-body problems” altogether. Since properties
of atoms, molecules, and solids are mainly determined by the “motion” of electrons, i.e., by the so-called
electronic structure, and those of atomic nuclei are determined by the “motion” of nucleons—protons and
neutrons—, it is indispensable to solve quantum many-body problems to understand such properties.

The Hamiltonian of the quantum many-body problems, in general, reads

H = −
N∑
j=1

ℏ2

2mj
∆j +

N∑
j=1

Vext (rj) +
∑

1≤j<k≤N

vint (rj , rk) , (2.1.1)

where mj and rj are the mass and the spatial coordinate of the particle j, ∆j is the laplacian acting on
rj , N is the total number of the particles, Vext is the external field, and vint is the two-body interaction.
For simplicity, we consider the non-relativistic Schödinger equation and Vext and vint depend only on spatial
coordinates. Furthermore, only the two-body interaction is considered here, while, in nuclear physics, it is
known that the three-body interaction is indispensable to describe excitation spectra of the light nuclei [24,
35]. If one regards Eq. (2.1.1) as the Hamiltonian for the electronic systems, the motions of ions (atomic
nuclei) are not considered in the Hamiltonian and are treated classically, which is called Born-Oppenheimer
approximation [223]. Hereinafter, xj abbreviates the combination of the spatial coordinate rj , the spin
coordinate σj , and in some cases, the isospin τj .

In principle, once the ground-state wave function Ψgs of Eq. (2.1.1), which satisfies

HΨgs (r1, r2, . . . , rN ) = EgsΨgs (r1, r2, . . . , rN ) , (2.1.2)

is obtained, all the ground-state properties can be calculated. However, in practice, it is difficult to solve the
eigenvalue problem [Eq. (2.1.2)] even numerically. Therefore, efficient methods are needed to obtain Egs and
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Ψgs or the ground-state density ρgs defined by

ρgs (r) =
∑
j

∫
Ψ∗

gs (r1, r2, . . . , rN ) δ (r − rj)Ψgs (r1, r2, . . . , rN ) drj

= N

∫
Ψ∗

gs (r, r2, . . . , rN )Ψgs (r, r2, . . . , rN ) dr2 dr3 . . . drN . (2.1.3)

Historically, just several years after the discovery of the Schrödinger equation in 1926 [224–228], effi-
cient methods to solve quantum many-body problems, for instance the Thomas-Fermi model [229, 230] and
the Hartree-Fock theory [231–236], were developed for the calculation of atomic structure. In the former
approach, a many-body fermionic system is treated as an interacting Fermi gas without considering an equa-
tion of motion of each particle. Since in the homogeneous Fermi gas in an L×L×L cubic with the periodic
boundary condition, a single-particle orbital can be written as a plane wave L−3/2eik·r, the kinetic energy
reads

T0 (n) = − ℏ2

2m
2L−3

∑
j

∫
e−ik·r ∆ eik·r dr

=
ℏ2

2m

2

V

∑
j

k2V

=
2ℏ2

2m

(
L

2π

)3 ∫
k<kF

k2 dk

=
2ℏ2

2m

(
L

2π

)3

4π

∫ kF

0

k4 dk

=
2ℏ2

2m

(
L

2π

)3
4π

5
k5F

=
ℏ2

2m

k5F
5π2

V, (2.1.4)

where kF is the Fermi momentum and V = L3 is the volume of the cubic. Here, n is the homogeneous density
and satisfies

n =
2

V

∑
j

e−ik·reik·r

=
2

V

∑
j

1

=
2

V

(
L

2π

)3 ∫
k<kF

dk

=
1

3π2
k3F, (2.1.5)

where the factor 2 appeared in the first line is due to the spin degeneracy 1. Accordingly, Eq. (2.1.4) reads

T0 (n) =
ℏ2

2m

35/3π4/3

5
n5/3V =

3h2

10m

(
3

8π

)2/3

n5/3V. (2.1.6)

In the Thomas-Fermi approximation, the kinetic energy density is approximated as the same of the homo-
geneous system with the same local density, which reads

TTF [ρ] =

∫
T0 (ρ (r))

V
dr

=
3h2

10m

(
3

8π

)2/3 ∫
[ρ (r)]

5/3
dr, (2.1.7)

where ρ is the particle-number density of the system. The external potential energy simply reads

Eext [ρ] =

∫
Vext (r) ρ (r) dr. (2.1.8)

1Since n is a constant number in contrast to ρ (r), the symbol n is used instead of ρ to distinguish two.
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The interaction energy is treated classically within the Hartree approximation

EH [ρ] =
1

2

∫∫
vint (r, r

′) ρ (r) ρ (r′) dr dr′. (2.1.9)

This approach allows one to obtain the ground-state density distribution ρgs easily by minimizing the Thomas-
Fermi total energy with respect to the density ρ. Owing to this simplicity, it has been widely used not
only in condensed matter physics but also in nuclear physics [237–239] and astrophysics [240–242]. It is
also used to study the stability of atoms or molecules mathematically [243, 244]. It was, however, claimed
that the Thomas-Fermi approach cannot describe the shell structure of atoms and the molecular binding
properly [245].

In the latter approach—the Hartree-Fock theory—, the ground-state wave function Ψgs is approximated to
the Slater determinant Φ0 to satisfy the Pauli exclusion principle. The Slater determinant Φ0 gives the exact
ground-state wave function if the interaction does not exist; vint ≡ 0. In the Hartree-Fock approximation,
single-particle orbitals of the Slater determinant are determined from the variation of the expectation value
of H; that is,

δ
⟨Φ0|H|Φ0⟩
⟨Φ0|Φ0⟩

= 0. (2.1.10)

This equation leads to the so-called Hartree-Fock equation for the single-particle orbitals φj in the Slater
determinant;[

− ℏ2

2mj
∆+Vext (r) + VH (r)

]
φj (r)−

∫
VF (r, r′)φj (r

′) dr′ = εjφj (r) , (2.1.11)

VH (r) =

∫
vint (r, r

′) ρ (r′) dr′, (2.1.12)

VF (r, r′) =
∑
k

vint (r, r
′)φ∗

k (r
′)φk (r) , (2.1.13)

where VH and VF are, respectively, called Hartree and Fock potentials and εj is the single-particle energy.
The ground-state energy in this approximation reads

Egs ≃ EHF
gs =

∑
j∈occ

εj −
1

2

∫ VH (r) ρ (r) dr −
∑
j∈occ

∫∫
VF (r, r′)φ∗

j (r)φj (r
′) dr dr′

 . (2.1.14)

It had been applied to practical calculations for light atoms [246, 247]. Since the motion of particles is
treated quantum mechanically, the shell structure of atoms can be reproduced, in contrast to the Thomas-
Fermi approximation. Nevertheless, the Hartree-Fock approximation cannot reproduce chemical reactions
accurately due to the lack of correlation effects [248–257]. For instance, motions of the other electrons may
affect the electron, which is included only via the Fock term of the effective potential in the single-particle
Hamiltonian [Eq. (2.1.11)]. The Fock term represents the interaction for the same spin; hence an effect of
the other electrons with the opposite spin lacks.

To consider the many-body correlations in quantum many-body problems properly, numerous many-
body methods have been proposed. Such methods are mainly classified into two: the wave function methods
and density functional theory (DFT). The formers are, in short, methods providing the ground-state wave
function Ψgs directly by diagonalizing the Hamiltonian with some approximations and truncations. In the
configuration interaction method, one of the wave function methods, the ground-state wave function Ψgs

is expanded by using Slater determinants with several-particle excitations [258–260]. The coupled-cluster
method, which was originally developed in the context of nuclear physics, is a more sophisticated method
to take into account Slater determinants with many-particle excitations [261, 262]. Other methods based
on many-body perturbation theory [263] and the quantum Monte Carlo method [264, 265] are also of this
group. It is known that the wave function methods, in general, provide accurate ground-state energy and
wave function, while huge numerical cost is required and therefore it is difficult to apply to larger systems,
such as solids and heavy atomic nuclei.

In contrast, the latter method—DFT—is based on a totally different idea than the wave function meth-
ods [266–268]. The ground-state energy can be written as a functional, called energy density functional
(EDF), of the ground-state density, and one can obtain the ground-state energy and density by minimizing
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the EDF. To take into account the effect of quantum mechanics, i.e., shell structure, the Slater determinant
is used for the ground-state wave function. In short, owing to the introduction of the EDF and the Slater
determinant, the numerical cost is much less than wave function methods, and consequently, DFT can be
applied to larger systems; nonetheless, the Hohenberg-Kohn theorem [266], a key theorem of DFT, guarantees
that DFT, in principle, provides the exact ground-state energy and density. The next section will be devoted
to the introduction of DFT.

2.2 Density Functional Theory

In this section, key ideas of DFT will be explained. In principle, “DFT” refers to a theory in which the energy
is described by a functional of the density, and thus the Thomas-Fermi approximation can also be classified
as one of the DFTs. However, in practice, DFT mostly refers to the theory based on the Hohenberg-Kohn
theorem [266], which is the key theorem of DFT, and the Kohn-Sham scheme [267], which is a practical
implementation of DFT.

2.2.1 Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem is composed of two parts: Theorems 2.2.1 and 2.2.2.

Theorem 2.2.1 (Hohenberg and Kohn [266]). Assume the two-body interaction is given and the ground
state is not degenerate. There is the one-to-one correspondence between the ground-state density ρgs and
the external potential Vext.

The Schrödinger or Dirac equation guarantees that once the external potential Vext is given, the ground-
state wave function can be uniquely determined, and consequently, the ground-state density can also be
uniquely determined unless the ground state is degenerate. Theorem 2.2.1 claims that, conversely, once the
ground-state density ρgs is given, the external potential which gives the density can be uniquely determined.

Theorem 2.2.2 (Hohenberg and Kohn [266]). The ground-state energy Egs can be expressed by using the
“universal functional F ”, whose form is determined only by vint but independent of Vext,

Egs = inf
ρ

[
F [ρ] +

∫
Vext (r) ρ (r)

]
. (2.2.1)

Proof. First, Theorem 2.2.1 will be proved. Let V1 and V2 be two external potentials which give the same
ground-state density ρgs. Here, V1 and V2 are assumed to be intrinsically different; that is, V1 − V2 is not a
constant function and, accordingly, Ψ1 and Ψ2 differ from each other. The Hamiltonian corresponding to Vj

is denoted by Hj = T + Vj + vint and its ground-state energy and normalized wave function are denoted by
Ej and Ψj ;

Ej = ⟨Ψj |Hj |Ψj⟩ .

The variational principle leads to an inequality

E1 = ⟨Ψ1|H1|Ψ1⟩ < ⟨Ψ2|H1|Ψ2⟩ . (2.2.2)

Since H1 can be rewritten as H1 = H2 − V2 + V1, the right-hand side of Eq. (2.2.2) can be calculated as

⟨Ψ2|H2 − V2 + V1|Ψ2⟩ = E2 +

∫
[V1 (r)− V2 (r)] ρgs (r) dr. (2.2.3)

Thus, one obtains

E1 < E2 +

∫
[V1 (r)− V2 (r)] ρgs (r) dr. (2.2.4)

Similarly, one also obtains

E2 < E1 +

∫
[V2 (r)− V1 (r)] ρgs (r) dr. (2.2.5)

The second term of the right-hand side of Eq. (2.2.4) is non-zero. Hence, comparing Eqs. (2.2.4) and (2.2.5),
one obtains

E1 + E2 < E1 + E2, (2.2.6)
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which is a contradictory inequality. Thus, the assumption is wrong and there is the only one unique external
potential which provides the given ground-state density.

The ground-state energy reads

Egs = inf
{Ψ}

⟨Ψ|T + vint + Vext|Ψ⟩ (2.2.7)

= inf
{Ψ}

[⟨Ψ|T + vint|Ψ⟩+ ⟨Ψ|Vext|Ψ⟩]

= inf
{ρ}

inf
{Ψρ}

[⟨Ψρ|T + vint|Ψρ⟩+ ⟨Ψρ|Vext|Ψρ⟩]

= inf
{ρ}

inf
{Ψρ}

[
⟨Ψρ|T + vint|Ψρ⟩+

∫
Vext (r) ρ (r) dr

]
= inf

{ρ}

[
inf
{Ψρ}

⟨Ψρ|T + vint|Ψρ⟩+
∫

Vext (r) ρ (r) dr

]
, (2.2.8)

where Ψρ is a trial wave function whose density is a given density ρ. In other words, the ground-state energy,
which satisfies the variational principle, can be calculated by minimizing the total energy by changing the
wave function which gives the density ρ first, and then minimizing it further by changing the density ρ, instead
of changing the wave function Ψ directly [Eq. (2.2.7)]. Theorem 2.2.1 guarantees this two-step minimization.
The universal functional F is defined by

F [ρ] = inf
{Ψρ}

⟨Ψρ|T + vint|Ψρ⟩ . (2.2.9)

Note that these two theorems had been proposed in the original paper by Hohenberg and Kohn [266],
while the proof shown above was proposed later by Levy [269, 270], and it was further given rigorously by
Lieb [271]. Theorem 2.2.1 was also extended to degenerate ground states [272]: Let Ψjk be a ground-state
wave function given by the external potential Vj and Ψj =

∑
k cjkΨjk. Then, one can apply the same proof

of Theorems 2.2.1 and 2.2.2. Also, it should be noted that this proof has been rederived to using the Legendre
transformation [273] in a more rigorous formalism.

Here, one question arises. Can an arbitrary function of the spatial coordinate f (r) be a density? Can
each f (r) have a corresponding external potential? Such problems were already proposed in Ref. [266].
In the proof of Theorem 2.2.1, it is implicitly assumed that the density ρ is a solution of the Schrödinger
equation. It is also obvious that there must be some conditions for a function f ; for instance,

∫
f (r) dr

must be an integer number, otherwise the total particle number becomes a rational number.
The N -representability is a set of conditions in which a function f can be a density. The conditions are

the following [274]:

1. A function f must be semi-positive definite,

f (r) ≥ 0 for all r. (2.2.10)

2. The integral over the space of a function f must be an integer number,∫
f (r) dr = N ∈ N. (2.2.11)

3. A function f must be smooth, ∫ ∣∣∣∇√f (r)
∣∣∣2 dr < ∞. (2.2.12)

If one assumes that the ground-state wave function is described by the Slater determinant, the ground-state

kinetic energy density reads
∑

j |∇φj (r)|2 =
∣∣∣∇∑j φj (r)

∣∣∣2, while the ground-state density is
∑

j |φj (r)|2.
Therefore, the last point can be understood that the kinetic energy must be finite. Mathematically, the idea
of Hohenberg-Kohn universal functionals has been extended for N -representable functionals rigorously called
Levy-Lieb functional [269,271].
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The V -representability is whether an arbitrary function f can be a solution of the many-body Schrödinger
equation. It was proved in Ref. [274] any N -representable function satisfies the V -representability; how-
ever, the exact condition for the V -representability is yet unknown. Meanwhile, by using the N - and
V -representabilities, the Hohenberg-Kohn theorem claims that any N -representable function has a corre-
sponding external potential. A schematic figure of these repreesntabilities is shown in Fig. 2.2.1.

2.2.2 Kohn-Sham Scheme

The Hohenberg-Kohn theorem guarantees that there is the exact universal functional F for a given interaction
vint. Nevertheless, it does not tell us how to determine F or how to derive ground-state properties using F .
The simplest way to derive the ground-state density is just performing variation of Eq. (2.2.1):

0 =
δ

δρ

[
F [ρ] +

∫
Vext (r) ρ (r) dr

]
=

δF [ρ]

δρ
+ Vext (r) . (2.2.13)

However, Eq. (2.2.13) does not provide any quantum mechanical properties, such as shell structure of atoms,
similarly to the Thomas-Fermi approximation.

To overcome this problem, Kohn and Sham introduced an idea of orbitals, similarly to the Hartree-
Fock approximation [267], and this method is referred to as the Kohn-Sham scheme. In this scheme, the
ground-state wave function is assumed to be the Slater determinant,

Φgs
0 (r1, r2, . . . , rN ) =

1√
N !

∣∣∣∣∣∣∣∣∣
φ1 (r1) φ1 (r2) · · · φ1 (rN )

φ2 (r1) φ2 (r2) · · · φ2 (rN )
...

...
. . .

...
φN (r1) φN (r2) · · · φN (rN )

∣∣∣∣∣∣∣∣∣ , (2.2.14)

and accordingly, the ground-state density can be written as

ρ (r) =
N∑
j=1

|φj (r)|2 , (2.2.15)

where the single-particle orbitals are assumed to be orthonormal,∫
φ∗
j (r)φk (r) dr = δjk. (2.2.16)

Furthermore, the universal functional F is divided into three parts;

F [ρ] = TKS + EH [ρ] + Exc [ρ] , (2.2.17)

where TKS is the Kohn-Sham kinetic energy defined by

TKS = −
N∑
j=1

ℏ2

2mj

∫
φ∗
j (r)∆φj (r) dr, (2.2.18)

EH is the Hartree EDF defined by Eq. (2.1.9), and Exc is just remaining part called the exchange-correlation
EDF. Since the Kohn-Sham kinetic energy TKS is not an explicit functional of ρ, it is not expressed as TKS [ρ]

here 2. The exchange-correlation EDF is sometimes divided further into two parts: the exchange EDF Ex

and the correlation one Ec. It should be noted that EH is exactly known if the interaction is known, but Exc

is not. Approximations of Exc will be discussed in the next section, and, in this section, it is assumed that
Exc is exactly known.

Then, the total EDF can be written as

E [ρ] = −
N∑
j=1

ℏ2

2mj

∫
φ∗
j (r)∆φj (r) dr +

∫
Vext (r) ρ (r) dr +

1

2

∫∫
vint (r, r

′) ρ (r) ρ (r′) dr dr′ + Exc [ρ] .

(2.2.19)
2By using the inverse Kohn-Sham method, which will be explained later, ρ uniquely determines the Kohn-Sham effective

potential VKS and VKS uniquely determines TKS. Therefore, in principle, TKS is a functional of ρ.
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Performing variation of Eq. (2.2.19) with respect to a single-particle orbital φ∗
j with the constraint Eq. (2.2.16)

δ

δφ∗
j

[
E [ρ]−

N∑
k=1

εjk

(∫
φ∗
j (r)φk (r) dr − δjk

)]
= 0, (2.2.20)

one obtains

− ℏ2

2mj
∆φj (r) + Vext (r)φj (r) +

∫
vint (r, r

′) ρ (r′)φj (r) dr
′ +

δExc [ρ]

δφ∗
j

∣∣∣∣∣
ρ=ρ(r)

= εjkφk (r) . (2.2.21)

Using
δExc [ρ]

δφ∗
j

=
δExc [ρ]

δρ

δρ

δφ∗
j

=
δExc [ρ]

δρ
φj (2.2.22)

and the orthonormal condition [Eq. (2.2.16)], which leads to εjk = 0 for j ̸= k and εjk = εj for j = k,
Eq. (2.2.21) becomes the Kohn-Sham equation[

− ℏ2

2mj
∆+VKS (r)

]
φj (r) = εjφj (r) , (2.2.23)

where the Kohn-Sham effective potential VKS reads

VKS (r) = Vext (r) +

∫
vint (r, r

′) ρgs (r
′) dr′ + Vxc (r) , (2.2.24)

Vxc (r) =
δExc [ρ]

δρ

∣∣∣∣
ρ=ρgs(r)

, (2.2.25)

and the effective Hamiltonian hKS = − ℏ2

2mj
∆+VKS (r) is sometimes referred to as the Kohn-Sham effective

Hamiltonian. If the Hartree and exchange-correlation EDFs are treated altogether as EHxc [ρ] = EH [ρ] +

Exc [ρ], Eq. (2.2.24) reads

VKS (r) = Vext (r) + VHxc (r) , (2.2.26)

VHxc (r) =
δEHxc [ρ]

δρ

∣∣∣∣
ρ=ρgs(r)

=

∫
vint (r, r

′) ρgs (r
′) dr′ +

δExc [ρ]

δρ

∣∣∣∣
ρ=ρgs(r)

. (2.2.27)

The ground-state energy reads

Egs = E [ρgs]

=
N∑
j=1

τj +

∫
Vext (r) ρgs (r) dr +

1

2

∫∫
vint (r, r

′) ρgs (r) ρgs (r
′) dr dr′ + Exc [ρgs] (2.2.28)

=
N∑
j=1

εj −
1

2

∫∫
vint (r, r

′) ρgs (r) ρgs (r
′) dr dr′ −

∫
Vxc (r) ρgs (r) dr + Exc [ρgs] (2.2.29)

=
N∑
j=1

εj −
∫

VHxc (r) ρgs (r) dr + EHxc [ρgs] (2.2.30)

=
1

2

N∑
j=1

(εj + τj) +
1

2

∫
Vext (r) ρgs (r) dr + Erea, (2.2.31)

where τj and Erea are the single-particle kinetic energy and the rearrangement term defined by

τj = − ℏ2

2mj

∫
φgs∗
j (r)∆φgs

j (r) dr, (2.2.32)

Erea = EHxc [ρgs]−
1

2

∫
VHxc (r) ρgs (r) dr, (2.2.33)
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respectively. We have shown several expressions of the ground-state energy. Equations (2.2.28) and (2.2.29)
are widely used in quantum chemistry and condensed matter physics. Equation (2.2.30) is the same as
Eq. (2.2.29), but the Hartree and exchange-correlation terms are treated altogether to see how the interaction
term behaves in the ground-state energy. Equation (2.2.31) is popular neither in quantum chemistry nor in
condensed matter physics but in nuclear physics, where the second term of the right-hand side is zero in
atomic nuclei, which are self-bound systems. The rearrangement term Erea vanishes if EHxc is a quadratic
function of ρ like the Hartree energy.

Solving Eqs. (2.2.15), (2.2.23), and (2.2.24) self-consistently, one obtains the exact solution of the ground-
state energy and density. This procedure can qualitatively be understood as follows: The ground-state
wave function of the non-interacting system with the effective external potential VKS is exactly the Slater
determinant, whose single-particle orbitals obey the Kohn-Sham equation [Eq. (2.2.23)]. Therefore, by
using Exc (or EHxc), the real system (interaction vint, potential Vext) is mapped into the fictitious system
(interaction 0, potential VKS), as shown in Fig. 2.2.1. Since the Kohn-Sham equation [Eq. (2.2.23)], at the
same time, satisfies the variational principle with respect to ρ, and consequently, this ρgs is the minimizer
of Eq. (2.2.1) [275]. Using the Schrödinger equation, Vext determines ρgs uniquely; the Hohenberg-Kohn
theorem guarantees that ρgs determines VKS uniquely. Hence, the mapping from Vext to VKS is also unique.

It should also be emphasized that, up to now, there is no approximation, and thus, the ground-state
energy and density are exact, as long as Exc is exactly known. Indeed, this does not mean that the ground-
state wave function obtained by the Kohn-Sham scheme is exact. Therefore, physical quantities obtained
by the ground-state Kohn-Sham wave function, i.e., its expectation values, are not guaranteed to be exact.
In addition, the physical meaning of the single-particle energies εj has not been known rather than the
Lagrange multiplier, while it is also known that εj and φj often describe physical observables well [276].
Janak’s theorem [277] claims that the partial derivative of E [ρ] with respect to the occupation probability
of the orbital j is equal to εj and the theorem is the counterpart of Koopman’s theorem in the Hartree-Fock
approximation [278].

2.2.3 Energy Density Functionals in Electronic Systems

In the previous section, it was assumed that Exc is known exactly. However, practically, it is necessary to
approximate Exc even for the simple Coulomb interaction. In this section, several standard approximations
are explained.

Following the idea of the Thomas-Fermi approximation, a plausible ansatz is that Exc can be written as

Exc [ρ] ≃
∫

εxc (ρ (r) , |∇ρ (r)| , . . .) ρ (r) dr, (2.2.34)

where the exchange-correlation energy density (energy par particle) εxc depends only on the density ρ and
its derivatives at the local coordinate r. This ansatz is also reasonable in view of the effective (Kohn-Sham)
potential since the exchange-correlation potential only depends on the local coordinate r;

Vxc (r) ≃ εxc (ρ (r) , |∇ρ (r)| , . . .) + ρ (r)
dεxc (ρ, |∇ρ| , . . .)

dρ

∣∣∣∣
ρ=ρ(r)

. (2.2.35)

Real system (Vint 6≡ 0)

Fictitious system (Vint ≡ 0)

External Potential

Vext

Exact wave func.

Ψgs

Density

ρgs

Kohn-Sham Potential

VKS

Kohn-Sham wave func.

Φgs
0 (Slater det.)

V -representability N-representability

V -representability N-repre
sentab

ility

VKS (r) = Vext (r) +
δEHxc[ρ]

δρ

Figure 2.2.1: Schematic figure of the Kohn-Sham scheme. In the non-interacting fictitious system, N - and
V -representabilities exactly hold.
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Along this direction, the possible lowest-order approximation is that εxc only depends on the density ρ;

Exc [ρ] ≃ ELDA
xc [ρ] =

∫
εLDA
xc (ρ (r)) ρ (r) dr. (2.2.36)

This approximation is called local density approximation (LDA). In the next level, εxc depends on the
gradient density |∇ρ| as well as the density ρ;

Exc [ρ] ≃ EGGA
xc [ρ] =

∫
εGGA
xc (ρ (r) , |∇ρ (r)|) ρ (r) dr. (2.2.37)

This approximation is called generalized gradient approximation (GGA). Approximations beyond the GGA
have also been discussed; Perdew and Schmidt summarized this idea as “Jacob’s ladder”, the original of which
is a ladder an angel uses in Jacob’s dream appeared in the Old Testament (a part of the bible) [279]. The
Jacob’s ladder in DFT is shown in Fig. 2.2.2, which shows that approximation should be improved step-by-
step with considering higher-order terms step-by-step to achieve the chemical accuracy (accuracy of 0.1 eV
level), where the LDA and the GGA are the first and second steps, respectively.

Hereinafter, in this subsection, the Hartree atomic unit me = ℏ = e2 = 4πε0 = 1 is used, where me is the
mass of electrons. In the electronic systems, the interaction is just the Coulomb interaction, and thus the
Hartree EDF is known exactly as

EH [ρ] =
1

2

∫∫
ρ (r) ρ (r′)

|r − r′|
dr dr′. (2.2.38)

Here, we focus on the exchange and correlation EDF.

Local Density Approximation

First, we focus on the LDA Exc. It is known that the LDA Exc gives the exact exchange-correlation energy
for the homogeneous electron gas, since |∇ρ| and differential of the higher orders of ρ vanish.

The exchange energy density in the LDA is formulated analytically. The exchange energy originates from
the Fock term in the Hartree-Fock approximation;

EF = −1

2

occ∑
j, k

δσσ′

∫∫
φ∗
j (r)φ

∗
k (r

′) vint (r, r
′)φj (r

′)φk (r) dr dr
′, (2.2.39)

where
∑occ

j, k is the summation over the occupied states and σ and σ′ are the spin associated with the total
coordinate x and x′, respectively. Here, we assume the homogeneous electron gas in a cubic with the edge
length L. A single-particle orbital of the homogeneous electron gas is a plane wave L−3/2eik·r, where the
wave number k satisfies k = 2π

L (n1, n2, n3) with integer numbers n1, n2, and n3. Substituting plane waves
to Eq. (2.2.39), one obtains

EF = −2

2

1

L6

occ∑
j, k

∑
σ σ′

∫∫
1

|r − r′|
e−ik′·re−ik·r′

eik·reik
′·r′

dr dr′, (2.2.40)

where the factor 2 comes from
∑

σ σ′ δσ σ′ . Using

2

L3

∑
j∈occ

e−ik·r′
eik·r ≃ 2

L3

(
L

2π

)3 ∫
k<kF

eik·(r−r′) dk

=
1

4π3

∫ 2π

0

∫ π

0

∫ kF

0

eik|r−r′| cos θk2 sin θ dk dθ dφ

=
2π

4π3

∫ kF

0

2 sin (k |r − r′|)
k |r − r′|

k2 dk

=
k3F
π2

sin (kF |r − r′|)− (kF |r − r′|) cos (kF |r − r′|)
(kF |r − r′|)3

(2.2.41)
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LDA
(Depend on    )

GGA
(Depend on                 )

meta-GGA
(Depend on                      )
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occupied states
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all the states

Hartree Level

Chemical Accuracy

ρ, |∇ρ|

ρ, |∇ρ|, t

ρ

Figure 2.2.2: Jacob’s ladder in density functional theory, which was originally proposed by Perdew and
Schmidt [279].
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and the following relation between the homogeneous density n and the Fermi momentum kF, n = k3F/
(
3π2
)

[Eq. (2.1.5)], one obtains Eq. (2.2.40) as

EF = − 1

L6

∑
j, k

∫∫
1

|r − r′|
e−ik′·re−ik·r′

eik·reik
′·r′

dr dr′

≃ −1

4

∫∫
1

|r − r′|

[
k3F
π2

sin (kF |r − r′|)− (kF |r − r′|) cos (kF |r − r′|)
(kF |r − r′|)3

]2
dr dr′

= −1

4

∫∫
k6F
π4

1

R

(
sin t− t cos t

t3

)2

dr dr′

= −1

4

∫∫
k6F
π4

1

R

(
sin t− t cos t

t3

)2

dr dR′

= −π

∫∫
k6F
π4

1

R

(
sin t− t cos t

t3

)2

R2 dr dR

= −π

∫∫
k4F
π4

(sin t− t cos t)
2

t5
dr dt

= −3

4

(
3

π

)1/3

n4/3V, (2.2.42)

where R = r − r′ and t = kF |r − r′| = kFR. Accordingly, the LDA exchange EDF reads

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
[ρ (r)]

4/3
dr. (2.2.43)

In contrast to the LDA exchange energy, the analytic form of the correlation energy is unknown even in
the LDA. Only asymptotic behaviours of high-density and low-density limits are known. The high-density
limit was obtained by Gell-Mann and Brueckner [280] using the technique of the Feynman diagram as

εLDA
c (rs, ζ = 0) → 0.0311 log rs − 0.0480 (rs → 0), (2.2.44)

where rs and εLDA
c are, respectively, the Wigner-Seitz radius and the correlation energy density in the LDA

defined by

rs =

(
3

4πρ

)1/3

(2.2.45)

and
ELDA

c [ρ] =

∫
εLDA
c (rs (r) , ζ = 0) ρ (r) dr. (2.2.46)

Here, ζ is the spin polarization, which will be discussed later, and ζ = 0 means the spin-unpolarized system.
In the low-density limit, the electron gas forms the body-centered cubic known as the Wigner crystal [281,282]
and its correlation energy is proportional to 1/rs.

Modern correlation energy densities in the LDA, εLDA
c , are based on the correlation energy for the

homogeneous electron gas obtained numerically by Ceperley and Alder by using the diffusion Monte Carlo
(DMC) calculation [283]. In this calculation, only εc for several rs (usually rs = 1, 2, 5, 10, 20, 50, and
100Bohr) were obtained, while to perform a practical DFT calculation, εc for arbitrary rs is needed. Thus,
interpolation functions were proposed. Parametrizations by Vosko, Wilk, Nusair (VWN) [284], Perdew
and Zunger (PZ81) [285], and Perdew and Wang (PW92) [286] have been widely used. Their forms are,
respectively,

εVWN
c (rs, ζ = 0) = A

{
log

x2

X (x)
+

2b

Q
arctan

Q

2x+ b
− bx0

X (x0)

[
log

(x− x0)
2

X (x)
+

2 (b+ 2x0)

Q
arctan

Q

2x+ b

]}
(2.2.47)

with x =
√
rs, X (x) = x2 + bx + c, Q =

√
4c− b2 A = 0.0310907, x0 = −0.10498, b = 3.72744, and

c = 12.9352,

εPZ81
c (rs, ζ = 0) =

{
A log rs +B + Crs log rs +Drs (rs < 1Bohr),

γ/
(
1 + β1

√
rs + β2rs

)
(rs ≥ 1Bohr),

(2.2.48)
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with A = 0.0311, B = −0.0480, C = 0.0020, D = −0.0116, γ = −0.1423, β1 = 1.0529, and β2 = 0.3334, and

εPW92
c (rs, ζ = 0) = −2A (1 + α1rs) log

1 + 1

2A
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2s

)
 , (2.2.49)

with A = 0.031091, α1 = 0.21370, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382, and β4 = 0.49294. Here, A in
these three parametrizations and B in PZ81 are determined to reproduce the behaviour of high-density limit
[Eq. (2.2.44)].

Furthermore, recently, two other methods have been applied to obtain the correlation energy density: One
is based on the second-order Møller-Plesset many-body perturbation theory (MP2) [263,287] and the other is
based on the functional-renormalization-group aided density functional theory (FRG-DFT) [288,289,A7,A9].
The former provides the simple form of εLDA

c as

εMP2
c (rs, ζ = 0) = a log

(
1 +

b

rs
+

c

r2s

)
. (2.2.50)

The parameters a, b, and c are obtained to reproduce the high-density limit as a = (log 2− 1) /
(
2π2
)
and

b = c = 27.4203609 [290], or to reproduce both the high-density limit and DMC calculation obtained by
Ceperely and Alder [283] as a = (log 2− 1) /

(
4π2
)
, b = 21.7392245, and c = 27.4203609 [291]. The latter—

FRG-DFT—provides εLDA
c for numerous values of rs thanks to the low numerical cost of the FRG-DFT, and

accordingly, the DFT calculation without using interpolation function of εc is available [A9]. Reference [A9],
nevertheless, provides the PZ81-like εc based on the correlation energy of the homogeneous electron gas
obtained by the FRG-DFT, as with A = 0.0311, B = −0.0480, C = 0.00173055, D = −0.0100569, γ =

−0.175617, β1 = 1.67669, and β2 = 0.348219. The detail of the FRG-DFT will be given in Sec. 2.2.4.
Figure 2.2.3(a) shows correlation energy densities discussed above as functions of the Wigner-Seitz radius

rs and Fig. 2.2.3(b) shows relative differences εc obtained by the PZ81. In principle, the VWN, PZ81, and
PW92 functionals are expected to provide identical εc since these three functionals are fitted to the same
data obtained by the DMC. Reference [A9] found that the error due to the fitting, i.e., difference among the
VWN, PZ81, and PW92, is just a quarter of the error due to the original data, i.e., difference between DMC
results and FRG-DFT ones, around rs ≲ 10 a.u., relevant density region in many atoms and many solids.

At last of this part, the spin dependence of the exchange and correlation energy densities in the LDA is
discussed. The extended version of the LDA is called local spin density approximation (LSDA). First, the
spin polarization ζ is defined by

ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

=
ρ↑ − ρ↓

ρ
, (2.2.51)

where ρ = ρ↑+ρ↓ is the total density. The exchange EDF in the LSDA can be calculated with the spin-scaling
relation as

ELSDA
x [ρ↑, ρ↓] = −3

8

(
3

π

)1/3 ∫
[2ρ↑ (r)]

4/3
dr − 3

8

(
3

π

)1/3 ∫
[2ρ↓ (r)]

4/3
dr

= −3

8

(
3

π

)1/3 ∫ {
(1 + ζ)

4/3
+ (1− ζ)

4/3
}
[ρ (r)]

4/3
dr. (2.2.52)

Here, the spin-unpolarized and spin-polarized exchange energy densities are, respectively,

εLDA
x (rs, ζ = 0) = −3

4

(
3

π

)1/3

[ρ (r)]
1/3

, (2.2.53)

εLDA
x (rs, ζ = 1) = −3

4

(
3

π

)1/3

[2ρ (r)]
1/3

, (2.2.54)

and the LDA exchange energy density for arbitrary spin polarization reads

εLDA
x (rs, ζ) = εLDA

x (rs, ζ = 0) + fx (ζ)
[
εLDA
x (rs, ζ = 1)− εLDA

x (rs, ζ = 0)
]
, (2.2.55)

where the spin-dependent function fx (ζ) is

fx (ζ) =
(1 + ζ)

4/3
+ (1− ζ)

4/3 − 2

2
(
21/3 − 1

) . (2.2.56)
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Figure 2.2.3: (a) Correlation energy density εc of PZ81 [285], VWN [284], PW92 [286], Chachiyo [290],
rev-Chachiyo [291], and FRG-PZ [A9] parametrizations shown as functions of the Wigner-Seitz radius rs.
For comparison, correlation energy density calculated by using the diffusion Monte Carlo (DMC) [283]
and the FRG-DFT [A9] are also shown. (b) Relative differences from εc obtained by the PZ81, ∆εc =(
εc − εPZ81

c
)
/εPZ81

c are shown as functions of rs. Results for the VWN, PW92, and DMC calculation are
also shown in inset.

For the correlation energy density, εLDA
c (rs, ζ = 1) can be obtained as the same way as εLDA

c (rs, ζ = 0),
while the interpolation function fc (ζ) is still unknown. Hence, the interpolation function for the exchange
energy density fx (ζ) [Eq. (2.2.56)] is practically used for fc (ζ) as well [292]. Recently, Yokota and I noticed
by using the FGR-DFT that fc (ζ) for the LDA correlation energy density may depend on the Wigner-Seitz
radius rs [A11].

Generalized Gradient Approximation

One-level higher approximation of the LDA is the GGA, in which the dependence on density gradient |∇ρ|
is taken into account for the exchange-correlation energy density εxc. It is known that the LDA Exc cannot
describe some stable structures of even simple crystals, such as iron (ferromagnetic phase with the body-
centered cubic structure), whereas the GGA Exc can [293, 294]. Owing to such success, the GGA Exc is
nowadays widely used in condensed matter physics. In contrast to the LDA, there is no obvious criterion
which εGGA

xc must satisfy, except the trivial one; εGGA
xc must be identical to εLDA

xc in the case of |∇ρ| = 0.
Thus, different GGA functional assumes different criteria, while many GGA functionals give similar results.

Most GGA exchange and correlation energy densities are written as

εGGA
x (ρ, |∇ρ|) = εLDA

x (ρ, ζ)F (ρ, s, ζ) , (2.2.57)

εGGA
c (ρ, |∇ρ|) = εLDA

c (ρ, ζ) +H (ρ, t, ζ) , (2.2.58)
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where s and t are dimensionless density gradients

s =
|∇ρ|
2kFρ

=
|∇ρ|

2 (3π2)
1/3

ρ4/3
, (2.2.59)

t =
|∇ρ|

2φ (ζ) ksρ
, (2.2.60)

Here, ks =
√
4kF/ (πaB) is the Thomas-Fermi wave number, aB = 4πε0ℏ2/

(
mee

2
)
is the Bohr radius, which

is unity in the Hartree atomic unit, and φ (ζ) =
[
(1 + ζ)

2/3
+ (1− ζ)

2/3
]
/2 is the spin-scaling factor. The

factor F is called enhancement factor.
Here, we introduce how F and H in GGA functionals are determined. The parametrization by Perdew,

Burke, and Ernzerhof (PBE) [295] is taken as an example. The forms of F and H are, respectively,

FPBE (s) = 1 + κ− κ

1 + µs2/κ
, (2.2.61)

HPBE (ρ, t, ζ) =
e2

aB
γ [φ (ζ)]

3
log

[
1 +

β

γ
t2

(
1 +A (ρ, ζ) t2

1 +A (ρ, ζ) t2 + [A (ρ, ζ)]
2
t4

)]
, (2.2.62)

where

A (ρ, ζ) =
β

γ

[
exp

(
−aBε

LDA
c (ρ)

e2γ [φ (ζ)]
3

)
− 1

]−1

, (2.2.63)

β ≈ 0.066725, γ = (1− log 2) /π2, κ = 0.804, and µ = β
(
π2/3

)
≈ 0.21951. These functional forms and

parameters are determined to satisfy the following conditions [295,296].

1. The trivial condition that εGGA
xc must be identical to εLDA

xc in the case of |∇ρ| = 0, i.e., F (0) = 1 and
H (ρ, 0, ζ) = 0.

2. In the limit of t → 0, H satisfies H → e2

aB
β [φ (ζ)]

3
t2, which comes from the sum rule of the correlation

hole
∫
h∦ (r, r + u) du = 0 and was derived in Ref. [297].

3. In the limit of t → ∞, H should satisfy εGGA
c → 0, i.e., H → −εLDA

c .

4. In the high-density limit with uniform scaling λ → ∞ with ρ (r) → λ3ρ (λr), εc should satisfy εc →
const. [298].

5. In the uniform scaling ρ (r) → λ3ρ (λr), EGGA
x should satisfy EGGA

x
[
λ3ρ (λr)

]
= λEGGA

x [ρ (r)], which
comes from the sum rule of the exchange hole

∫
h∥ (r, r + u) du = −1 and was derived in Ref. [299].

6. The spin-dependence of the exchange functional should obey EGGA
x [ρ↑, ρ↓] = 1

2E
GGA
x [2ρ↑] +

1
2E

GGA
x [2ρ↓].

7. The exchange functional should obey the Lieb-Oxford bound [300–302]

Ex [ρ] ≥ Exc [ρ] ≥ −1.679e2
∫

[ρ (r)]
4/3

dr. (2.2.64)

8. In the limit of s → 0, the LDA linear response should be recovered, and thus Fx (s) → 1 + µs2

(µ = βπ2/3).

Combining conditions 2 and 8, one can find

εGGA
xc (ρ, |∇ρ|) → εLDA

xc (ρ) +O
(
|∇ρ|3

)
(2.2.65)

at |∇ρ| → 0 limit.
The exchange hole h∥ (r1, r2) is defined by [272]

h∥ (r1, r2) = −
∑

σ=↑, ↓

∣∣∣∑Nσ

j=1 φ
∗
jσ (r1)φjσ (r2)

∣∣∣2
ρσ (r1)

, (2.2.66)
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Figure 2.2.4: GGA enhancement factors F of the B88 [308], PW91 [309], PBE [295], and PBEsol [306] as
functions of the dimensionless density gradient s.

where Nσ is the number of electrons with the spin σ, N = N↑ +N↓, ρσ (r) =
∑Nσ

j=1 |φjσ (r)|2 is the density
for the spin σ. The correlation hole h∦ (r1, r2) is defined by the remaining part of the exchange-correlation
hole h (r1, r2) [303–305];

h∦ (r1, r2) = h (r1, r2)− h∥ (r1, r2) , (2.2.67)

where h (r1, r2) is determined to satisfy

εexactxc (r) =
1

2

∫
h (r, r′)

|r − r′|
dr′ (2.2.68)

with the exact exchange-correlation energy density εexactxc .
It is known that the PBE often overestimates the lattice constant of crystals. To overcome such problems,

a modified version of the PBE functional named “PBEsol” was also proposed [306], in which µ = 10/81 ≈
0.1235 [307] is used instead. For these two functionals, κ is determined to satisfy the mathematical Lieb-
Oxford bound and thus robust, while µ is rather flexible.

There are also several widely used GGA EDFs. In this thesis, the detailed derivations of the other
GGA EDFs are out of the scope; forms of two widely used ones, the B88 [308] and the PW91 [309], are,
nonetheless, shown below to compare them with the PBE EDF, which will be used in this work. The B88
exchange enhancement factor is written as

FB88 (s) = 1 +
4β

3

(π
6

)1/3 [
2
(
3π2
)1/3

s
]2

1 + 6β
[
2 (3π2)

1/3
s
]
sinh−1

[
2 (3π2)

1/3
s
] , (2.2.69)

while the gradient correction to the correlation EDF is not considered, i.e., H ≡ 0. Here, β is the fitting
parameter, and in the original paper [308], β = 0.0042 was used to reproduce the Hartree-Fock calculation
of the noble-gas atoms.

The PW91 exchange and correlation correction terms, F and H, are written, respectively, as

FPW91 (s) =
1 + 0.19645s sinh−1 (7.7956s) +

(
0.2743− 0.1508e−100s2

)
s2

1 + 0.19645s sinh−1 (7.7956s) + 0.004s4
, (2.2.70)

HPW91 (ρ, t, ζ) = [φ (ζ)]
3 β2

2α
log

[
1 +

2α

β

t2 +A (ρ, ζ) t4

1 +A (ρ, ζ) t2 + [A (ρ, ζ)]
2
t4

]

+ ν

[
Cc (rs)− Cc (0)−

3

7
Cx

]
[φ (ζ)]

3
t2 exp

[
−100 [φ (ζ)]

4 k2s
k2F

t2
]
, (2.2.71)

where α = 0.09, β = νCc (0), ν = (16/π)
(
3π2
)1/3, and

A (ρ, ζ) =
2α

β

[
exp

(
−2αεLDA

c (ρ, ζ)

g3β2

)
− 1

]−1

(2.2.72)
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Figure 2.2.5: Ratio of the GGA correction to the correlation energy, H, to the LDA correlation energy, εLDA
c ,

of the PBE functional [295] as functions of the dimensionless density gradient t.

Here,

Cxc (rs) = 10−3 2.568 + ars + br2s
1 + crs + drs + 10br3s

(2.2.73)

with a = 23.266, b = 7.389 × 10−3, c = 8.723, and d = 0.472 was derived by Rasolt and Geldart [310],
Cx = −0.001667, and Cc (rs) = Cxc (rs)− Cx.

Figure 2.2.4 shows the B88, PW91, PBE, and PBEsol GGA exchange enhancement factors F as functions
of the dimensionless density gradient s. Figure 2.2.5 shows ratios of the gradient corrections of the PBE
GGA correlation energy density H to the LDA correlation energy, H/εLDA

c , as functions of the dimensionless
density gradient t.

Although several approximation methods, such as the LDA and the GGA, have been proposed, even the
way to estimate the systematic error of approximations has not been known yet. Moreover, the strategy to
achieve accurate EDFs is still under discussion [311, 312]. Indeed, for example, it is known that, despite the
success of the GGA EDF for the reproduction of the iron crystal structure, GGA EDFs often overestimate
lattice constants of crystals and bond lengths of molecules, while the LDA EDF reproduces nicely [272].
Thus, using a GGA EDF is one of the standards in DFT calculations, while the LDA EDF is still used.

2.2.4 Novel Methods toward Energy Density Functional

In this section, two novel approaches to obtain EDFs, especially Exc, are discussed. Thanks to the rapid
development of machine learning (including neural network) techniques, there have been several attempts
to obtain Exc by using such techniques [313–320], which is out of the scope of this thesis. Instead, here,
although they are not a central idea of this thesis, two different methods will be introduced: approaches
based on functional renormalization group and based on an inverse problem. The former is based on a
technique of quantum field theory, while the latter is based on one-to-one correspondence discussed in the
Hohenberg-Kohn theorem with assuming that some ground-state densities ρgs are known.

Effective Action Formalism

One starts from the classical action of the system S in the imaginary-time formalism

Sλ

[
φ,φ†] = ∫∫ φ† (τ + ε, r)

[
ℏ
∂

∂τ
− ℏ2

2m
∆

]
φ (τ, r) dr dτ

+

∫∫∫∫
φ† (τ + ε, r)φ† (τ ′ + ε′, r′) vλ (τ, τ

′, r, r′)φ (τ, r)φ (τ ′, r′) dr dτ dr′ dτ ′, (2.2.74)

where vλ is the scaled two-body interaction defined by

vλ (τ, r, τ
′, r′) = λδ (τ − τ ′) vint (r, r

′) (2.2.75)
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and ε and ε′ are positive infinitesimal numbers which satisfy ε′ > ε. The partition function Z in the
two-particle point irreducible formalism [321,322] can be calculated as

Zλ [J ] =

∫∫
exp

(
−Sλ

[
φ,φ†]+ ∫∫ J (τ, r) ρ (τ, r) dτ dr

)
DφDφ† (2.2.76)

under the path-integral formalism [12, 323], where ρ (τ, r) = φ† (τ + ε, r)φ (τ, r) is the density and J is the
external potential. The effective action Γ, which includes quantum fluctuations, can be calculated with the
Legendre transformation of Wλ [J ] = logZλ [J ] as

Γλ [ρ] =

∫∫
Jsup, λ [ρ] (τ, r) ρ (τ, r) dτ dr −Wλ [Jsup, λ [ρ]] , (2.2.77)

where Jsup, λ satisfies
δWλ [J ]

δJ (τ, r)

∣∣∣∣
J=Jsup, λ

= ρ (τ, r) . (2.2.78)

There is an exact relation between the effective action Γλ=1 [ρ] and the total EDF E [ρ] [322]

E [ρ] = lim
β→∞

Γλ=1 [ρ]

β
, (2.2.79)

where β is the inverse temperature. Hence, once the effective action Γλ=1 is calculated, one can obtain the
total EDF E [ρ] accordingly. One of the techniques to calculate Γλ=1 is the functional renormalization group
(FRG) [324]. The effective action of λ = 0 can be calculated easily since it corresponds to the non-interacting
system. Once one finds λ dependence of Γλ, i.e., ∂Γλ [ρ] /∂λ called flow equation, solving the differential
equation with respect to λ, one can obtain Γλ=1 [ρ]. The differential equation of Γλ, i.e., the flow equation,
is difficult to be solved since it is a functional differential equation and a closed form of Γλ. Hence, an
approximation is, in practice, further introduced to solve it. The second-order vertex expansion, i.e., the
Taylor expansion around the ground-state density, is usually adopted, which leads to hierarchical differential
equations that can be solved numerically.

For instance, the flow equation for the homogeneous electron gas reads [A7,A9]

∂Γλ [ρ]

∂λ
=

1

2

∫∫∫∫
∂

∂λ
vλ (τ, r, τ

′, r′)
{
[ρ (τ, r)− nbg] [ρ (τ

′, r′)− nbg]

+ Γ
(2)−1
λ [ρ] (τ + ε′, r, τ ′, r′)− ρ (τ, r) δ (r − r′)

}
dr dτ dr′ dτ ′, (2.2.80)

where Γ
(2)−1
λ [ρ] is defined to satisfy∫∫

Γ
(2)−1
λ [ρ] (τ + ε, r, τ ′′, r′′)

δ2Γλ [ρ]

δρ (τ ′′, r′′) δρ (τ ′, r′)
dr′′ dτ ′′ = δ (τ − τ ′) δ (r − r′) . (2.2.81)

Here, nbg = 3/
(
4πr3s

)
is the density of the background (positive) ions to keep the system neutral and is the

same as that of the homogeneous electron gas. With introducing the vertex expansion, Γλ [ρ] is written as

Γλ [ρ] = Γλ [ρgs, λ] + µλ

∫
[ρ (τ, r)− ρgs, λ (τ, r)] dτ dr

+
∞∑

n=2

∫
· · ·
∫

δnΓλ [ρgs, λ]

δρ (τ1, r1) . . . δρ (τn, rn)


n∏

j=1

[ρ (τj , rj)− ρgs, λ (τj , rj)]

 dr1 dτ1 . . . drn dτn, (2.2.82)

where ρgs, λ is the ground-state density at λ and µλ is the chemical potential chosen to satisfy ρgs, λ=0 (τ, r) ≡
nbg and ∂ρgs, λ (τ, r) /∂λ ≡ 0.

This method had been proposed by Polonyi and Sailer [325] and was applied to several zero- and one-
dimensional toy models of with finite number of particles with short-range interaction [326–328] and one-
dimensional homogeneous nuclear matter [288]. It was also applied to calculate excited states of a one-
dimensional system [329]. Recently, we applied this method to the two- and three-dimensional homogeneous
electron gases to obtain LDA correlation EDFs [A7,A9], and extended to the spin-polarized systems to obtain
fc (ζ) given in Eq. (2.2.56) for the LDA correlation EDF [A11].
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Inverse Approach

Suppose that the ground-state densities of some systems are already known by using, for instance, experiments
or wave function methods. The Hohenberg-Kohn theorem for the non-interacting system guarantees that
once ρgs is known, the effective potential VKS for the system can be, in principle, calculated exactly. Indeed,
such an inverse method was proposed and tested in the 1990s [330–333]. However, after that, this method,
called inverse Kohn-Sham (IKS) method, was adopted to discuss an accuracy of an exchange-correlation EDF
or discussed to improve the numerical method [334]. It was also applied to nuclear system [335]. Recent
progresses are summarized in Ref. [336].

Recently, we proposed in Ref. [A8] that this IKS method can be used to improve a known exchange-
correlation EDF, which is assumed to have enough accuracy, combined with the density functional pertur-
bation theory (DFPT) [337]. In this method, called “IKS-DFPT”, the exact ground-state energy Eexact

gs is
expressed by using two ways as follows:

Eexact
gs = T exact

KS +

∫
Vext (r) ρ

exact
gs (r) dr + Eexact

Hxc
[
ρexactgs

]
, (2.2.83)

Eexact
gs =

∑
j∈occ

εexactj + Eexact
Hxc

[
ρexactgs

]
−
∫

δEexact
Hxc

[
ρexactgs

]
δρ (r)

ρexactgs (r) dr, (2.2.84)

where ρexactgs is the exact ground-state density, which is assumed to be known, and Eexact
Hxc is the exact Hartree-

exchange-correlation EDF, which we shall derive in this method. Here, it should be noted that T exact
KS and

εexactj can be derived from ρexactgs by using the IKS method. Since the known functional ẼHxc is assumed to
be good enough and accordingly the density derived by using this functional, ρ̃gs, is also expected to be good
enough, deviation from the exact ones is assumed to be small enough and treated perturbatively;

Eexact
Hxc [ρ] = ẼHxc [ρ] + λE

(1)
Hxc [ρ] +O

(
λ2
)
, (2.2.85)

ρexactgs (r) = ρ̃gs (r) + λρ(1)gs (r) +O
(
λ2
)
, (2.2.86)

φexact
j (r) = φ̃j (r) + λφ

(1)
j (r) +O

(
λ2
)
. (2.2.87)

Here, φ̃j and φ
(1)
j are assumed to be orthogonal. Equation (2.2.83) can be rearranged to

Eexact
gs = T exact

KS +

∫
Vext (r) ρ̃gs (r) dr + ẼHxc [ρ̃gs]

+ λ

∫
Vext (r) ρ

(1)
gs (r) dr + λE

(1)
Hxc [ρ̃gs] + λ

∫
δẼHxc [ρ̃gs]

δρ (r)
ρ(1)gs (r) dr +O

(
λ2
)

= T̃KS +

∫
Vext (r) ρ̃gs (r) dr + ẼHxc [ρ̃gs]

+ λ

∫
Vext (r) ρ

(1)
gs (r) dr + λE

(1)
Hxc [ρ̃gs] + λ

∫
δẼHxc [ρ̃gs]

δρ (r)
ρ(1)gs (r) dr

− λℏ2

2m

∫ [
φ
(1)∗
j (r)∆ φ̃j (r) + φ̃∗

j (r)∆φ
(1)
j (r)

]
dr +O

(
λ2
)

= Ẽgs + λE
(1)
Hxc [ρ̃gs] +O

(
λ2
)

(2.2.88)

since the kinetic energy satisfies

T exact
KS =

∑
j

∫
φexact∗
j (r)

(
− ℏ2

2m
∆

)
φexact
j (r) dr

=
∑
j

∫
φ̃∗
j (r)

(
− ℏ2

2m
∆

)
φ̃j (r) dr − λℏ2

2m

∫ [
φ
(1)∗
j (r)∆ φ̃j (r) + φ̃∗

j (r)∆φ
(1)
j (r)

]
dr +O

(
λ2
)
.

(2.2.89)
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and

− ℏ2

2m

∫ [
φ
(1)∗
j (r)∆ φ̃j (r) + φ̃∗

j (r)∆φ
(1)
j (r)

]
dr +

∫
Vext (r) ρ

(1)
gs (r) dr +

∫
δẼHxc [ρ̃gs]

δρ (r)
ρ(1)gs (r) dr

= − ℏ2

2m

∫ [
φ
(1)∗
j (r)∆ φ̃j (r) + φ̃∗

j (r)∆φ
(1)
j (r)

]
dr

+

∫
Vext (r)

[
φ
(1)∗
j (r) φ̃j (r) + φ̃∗

j (r)φ
(1)
j (r)

]
dr

+

∫
δẼHxc [ρ̃gs]

δρ (r)

[
φ
(1)∗
j (r) φ̃j (r) + φ̃∗

j (r)φ
(1)
j (r)

]
dr

=

∫ [
φ
(1)∗
j (r) h̃KSφ̃j (r) + φ̃∗

j (r) h̃KSφ
(1)
j (r)

]
dr

= ε̃j

∫ [
φ
(1)∗
j (r) φ̃j (r) + φ̃∗

j (r)φ
(1)
j (r)

]
dr = 0, (2.2.90)

where h̃KS = − ℏ2

2m ∆+ṼKS is the Kohn-Sham effective Hamiltonian for the known EDF. Equation (2.2.84)
can be rearranged to

Eexact
gs =

∑
j

εexactj + ẼHxc
[
ρexactgs

]
−
∫

δẼHxc
[
ρexactgs

]
δρ (r)

ρexactgs (r) dr

+ λE
(1)
Hxc

[
ρexactgs

]
− λ

∫
δE

(1)
Hxc

[
ρexactgs

]
δρ (r)

ρexactgs (r) dr +O
(
λ2
)
. (2.2.91)

Combining Eqs. (2.2.88) and (2.2.91), one obtains

∑
j

εexactj + ẼHxc
[
ρexactgs

]
−
∫

δẼHxc
[
ρexactgs

]
δρ (r)

ρexactgs (r) dr − Ẽgs

= λE
(1)
Hxc [ρ̃gs] + λ

∫
δE

(1)
Hxc

[
ρexactgs

]
δρ (r)

ρexactgs (r) dr − λE
(1)
Hxc

[
ρexactgs

]
, (2.2.92)

where the left-hand side can be calculated, and thus, in principle, one can derive λE(1)
Hxc. The master equation

[Eq. (2.2.92)] is the functional equation and thus it is, in practice, difficult to solve. Hence, in Ref. [A8], the
form of λE(1)

Hxc was assumed, and it was benchmarked that it reproduces less than 1% error.
The IKS-DFPT was further applied to nuclear DFT [A15]. It is expected to work more efficiently, since

the LDA part can be constrained to the homogeneous nucleon gas, called nuclear matter, while the other
part can also be constrained with respect to the symmetry.

2.3 Nuclear Density Functional Theory

In this section, it is discussed how to obtain the ground state of the Hamiltonian [Eq. (1.1.2)]. There are
several methods to solve this Hamiltonian, which can be divided into several classes: ab initio methods, shell
model calculation, nuclear density functional theory, and others.

In short, the ab initio methods refer to the wave function methods with the bare nuclear interaction, such
as the Green’s function Monte Carlo calculation [338–343], the no-core shell model calculation [44,344–348],
the self-consistent Green’s function calculation [349–354], the lattice effective field theory [355–360], and
the Brueckner-Hartree-Fock calculation [176, 361–365]. Here, the bare nuclear interaction is the nuclear
interaction in vacuum, which can be determined from nucleon scattering experiments and the bound state
of deuterons. Since in these methods the bare interaction is explicitly treated, it is expected that there is
no approximation for nuclear interaction. However, due to the numerical costs and the accuracy of the bare
nuclear interaction, only light-mass atomic nuclei or doubly-magic nuclei can be calculated.

The nuclear shell model corresponds to the configuration interaction method with the frozen core ap-
proximation [366,367]. In this calculation, nucleons in the doubly-magic core are not taken into account for
the calculation, and only the valence nucleons are considered. The Hamiltonian for these valence nucleons is
diagonalized by using the Slater determinants, where the particle-hole excitations of these valence nucleons
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are also limited only to several major shells. Since the active space is limited, the effective nuclear interaction
should be used, instead of the bare one. If one considers a different active space, one is supposed to use a dif-
ferent effective interaction, while effective interactions can be derived from the bare interaction [45,47,368].
The configuration interaction method, in general, requires huge numerical costs; thus, the number of nu-
cleons one can consider in the active space is also limited. Therefore, this method can be applied up to
medium-heavy or, at most, heavy nuclei.

In contrast to the above two methods, the mean-field approximation or density functional theory can be
applied to all the atomic nuclei [87, 206–208, 369]. In the nuclear mean-field theory, the ground-state wave
function is calculated by the Hartree-Fock approximation. Since the bare nuclear interaction is strongly at-
tractive, the medium effect is so strong. Consequently, the Hartree-Fock calculation with the bare interaction
does not give proper results. Instead, the effective nuclear interaction is used for vnucl in the Hamiltonian. In
order to incorporate the in-medium effect, it is assumed that the effective interaction has density dependence.
As a result, the Hartree-Fock equation becomes the density-dependent Hartree-Fock equation or even the
Kohn-Sham equation in DFT; thus, the Hartree-Fock or mean-field calculation in nuclear physics is now
frequently called as DFT. Relation between the effective interaction in nuclear DFT and the bare nuclear
interaction has not been clear yet. On top of nuclear DFT calculation, the pairing correlation can be consid-
ered for even-even nuclei, where such calculation is called Hartree-Fock plus BCS or Hartree-Fock-Bogoliubov
calculation [209,370].

Here, it should be noted that, in contrast to the condensed matter DFT, since the atomic nuclei are
self-bound systems, there is no external potential. Therefore, in principle, the Hohenberg-Kohn theorem
does not hold because the translation symmetry is not broken. Nevertheless, it is known that the nuclear
DFT practically works well, and the extension of the Hohenberg-Kohn theorem to the self-bound systems,
where the translation symmetry is broken, has been discussed in Refs. [371–373]: Thus, it is expected that
the nuclear Hartree-Fock and density functional theories are applicable to nuclear structure calculation 3.
The remaining part of this section is devoted to the detailed discussion of the nuclear Hartree-Fock and
density functional theories.

Effective Interaction

There are several kinds of effective interactions used in nuclear density functional theory: the Skyrme [374,
375], the Gogny [376], and the Michigan three-range Yukawa (M3Y) [377, 378] type interactions in non-
relativistic schemes.

The Skyrme interaction, which will be used in this thesis and explained in detail below, is the most
widely used effective interaction in nuclear DFT. As will be explained later, the Skyrme interaction directly
leads to the corresponding EDF; hence, the Skyrme interaction itself is also frequently referred to as the
Skyrme EDF. The form of the effective interaction is the delta-function type zero-range interaction, which
was derived by using the low-momentum expansion of the nuclear interaction in medium [374]. Thanks to the
form of the interaction, the Skyrme EDF only depends on the local density and its derivative; as a result, the
calculation cost is quite low and thus systematic investigation on the whole nuclear chart can be done rather
easily [211]. In contrast to the Skyrme type, the forms of the Gogny and the M3Y type effective interactions
are the Gaussian and Yukawa type finite-range interactions, respectively. Consequently, the numerical cost
is larger than the Skyrme type, while some long-range behaviours such as nuclear reaction and fission can
be described well [379].

The relativistic version of the nuclear DFT, called covariant density functional theory (CDFT) [380,381],
is also a widely used but rather different idea. One starts from the Lagrangian with the meson exchange. To
incorporate the in-medium effect, non-linear terms for meson fields is introduced or density dependence is
introduced in the coupling constant between meson and nucleon. Then, the Hamiltonian for the systems is
constructed by the Legendre transformation of the Lagrangian. The CDFT is divided into two classes further:
relativistic mean-field (RMF) and relativistic Hartree-Fock (RHF) calculations. In the RMF calculation, only
the Hartree term is considered; in the RHF calculation, both the Hartree and Fock terms are considered.

3If they were not applicable or their approximations were not enough, in practice, many properties could not be reproduced.
As mentioned, modern nuclear EDFs reproduce experimental nuclear masses within several MeV root-mean-square deviations,
which is evidence that the nuclear DFT works well. If one regards the following calculation method as the nuclear Hartree-Fock
calculation, instead of the nuclear DFT, the Hohenberg-Kohn theorem is not needed, and thus, one need not pay attention to
the collapse of this theorem.
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All the EDFs contain several parameters, which are constrained by using experimental data of charge
radii and binding energies of several nuclei, as well as the nuclear matter properties given theoretically. Since
the available experimental data are limited to the stable nuclei or unstable nuclei not far from the stable
nuclei, EDFs usually give similar results for stable nuclei, while different EDFs often give different results for
exotic nuclei. In addition, nuclear properties are related to properties of nuclear EoS around the saturation
density; thus, EoSs obtained by EDFs are quite similar around the saturation density, while they deviate
above saturation density [382]. An ab initio EDF, i.e., an EDF whose parameters are determined without
referring to any experimental data, is desired to overcome such problems [383–387].

Skyrme Interaction

The Skyrme interaction proposed in 1958 [374] is based on the low-momentum expansion up to the second
order since the nuclear interaction is short-range and, consequently, it is expected that the momentum
dependence is weak. This Skyrme interaction consists of two-body interaction and three-body interaction,
where the three-body interaction is assumed to be the point coupling;

vSky3 (r1, r2, r3) = t3δ (r1 − r2) δ (r2 − r3) , (2.3.1)

whose Hartree-Fock expectation value is identical to

ṽSky3 (r1, r2) =
t3
6
(1 + Pσ) δ (r1 − r2) ρ

(
r1 + r2

2

)
. (2.3.2)

Accordingly, the modern Skyrme effective interaction is written as

vSky (r1, r2) = t0 (1 + x0Pσ) δ (r1 − r2)

+
t1
2
(1 + x1Pσ)

[
k†2δ (r1 − r2) + δ (r1 − r2)k

2
]
+ t2 (1 + x2Pσ)k

† · δ (r1 − r2)k

+
t3
6
(1 + x3Pσ) δ (r1 − r2)

[
ρ

(
r1 + r2

2

)]α
+ iW0σ · k† × δ (r1 − r2)k, (2.3.3)

where the last term corresponds to the spin-orbit interaction and k = ∇1 − ∇2. The parameters α, tj ,
xj (j = 0, 1, 2, and 3), W0, and W ′

0 are determined to reproduce nuclear EoS obtained by other methods,
especially, Ref. [388], and nuclear binding energies and charge radii for selected nuclei. In the original Skyrme
interaction, α and x3 were set to 1 and 0, respectively, while in the modern Skyrme interaction, α and x3

are treated as fitting parameters as the other parameters.
The Hartree-Fock calculation was firstly performed in early 1970s [389,390], and its systematic application

to both spherical and axially deformed nuclei was done in 1972 [375, 391]. The Hartree-Fock expectation
value for the modern Skyrme interaction reads [392,393]

EH (r) =
t0
2

(
1 +

x0

2

)
[ρ (r)]

2
+

t3
12

(
1 +

x3

2

)
[ρ (r)]

α+2

+
1

4

[
t1

(
1 +

x1

2

)
+ t2

(
1 +

x2

2

)]
ρ (r) t (r)

− 1

16

[
3t1

(
1 +

x1

2

)
− t2

(
1 +

x2

2

)]
ρ (r)∆ ρ (r)

− 1

16
(t1x1 + t2x2) [J (r)]

2
+

W0

2
ρ (r)∇ · J (r) , (2.3.4)

Ex (r) = − t0
2

(
1

2
+ x0

){
[ρn (r)]

2
+ [ρp (r)]

2
}
− t3

12

(
1

2
+ x3

)
[ρ (r)]

α
{
[ρn (r)]

2
+ [ρp (r)]

2
}

− 1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
[ρn (r) tn (r) + ρp (r) tp (r)]

+
1

16

[
3t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]
[ρn (r)∆ ρn (r) + ρp (r)∆ ρp (r)]

+
1

16
(t1 − t2)

{
[Jn (r)]

2
+ [Jp (r)]

2
}
+

W ′
0

2
[ρn (r)∇ · Jn (r) + ρp (r)∇ · Jp (r)] , (2.3.5)

Enucl [{ρ}] =
∫ [

EH (r) + Ex (r)
]
dr, (2.3.6)
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where the particle density ρτ , the kinetic density tτ , and the current density Jτ for the nucleon τ (τ = p, n)
read

ρτ (r) =
∑
j∈occ

|φjτ (r)|2 , (2.3.7)

tτ (r) =
∑
j∈occ

|∇φjτ (r)|2 , (2.3.8)

Jτ (r) =
∑
j∈occ

φ∗
jτ (r)σ ×∇φjτ (r) , (2.3.9)

respectively, and φjτ (r) is the spatial part of a single-particle orbital of nucleon τ . The total densities are
denoted as ρ (r) = ρp (r) + ρn (r), t (r) = tp (r) + tn (r), and J (r) = Jp (r) + Jn (r). Here, EH and Ex

correspond to Hartree and exchange Skyrme energy densities, respectively, and are functionals of ρτ , tτ , and
Jτ , which are simply referred to as {ρ} altogether. It should be noted that, in condensed matter physics,
an energy density refers to energy per particle, while in nuclear physics, an energy density refers to energy
per volume. In the original Skyrme interaction given in Eq. (2.3.3), the isoscalar and isovector spin-orbit
strengths, W0 and W ′

0, are identical, i.e., W0 = W ′
0; however, to describe charge radii of isotopic chain better,

W0 ̸= W ′
0 was introduced in Ref. [394], and now this treatment is rather popular.

Combining with Enucl shown in Eq. (2.3.6) and the EDF for the electromagnetic interaction EEM, one
obtains the total interaction functional

Eint [{ρ}] = Enucl [{ρ}] + EEM [{ρ}] , (2.3.10)

which corresponds to EHxc in the Kohn-Sham equation [Eqs. (2.2.26) and (2.2.27)]. Hence, solving the
Kohn-Sham equation with Eint, one can obtain the ground-state wave function and density.

In most works, only the Coulomb interaction is considered for the electromagnetic interaction, and ac-
cordingly, EEM is composed of two parts: Coulomb Hartree [Eq. (2.2.38)] and exchange EDFs, ECH [ρch] and
ECx [ρch]. Here, it should be noticed that the Coulomb interaction is interaction between charge of particles.
Therefore, the arguments of ECH and ECx are charge density distribution ρch, instead of proton density
distribution ρp. Since charge of protons and neutrons are +1 and 0, respectively, ρch is almost identical to
ρp, while there is still a difference as shown in Eq. (1.4.4). This difference will be focused on in Sec. 3.4.

The EoS obtained by the Skyrme interaction reads
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where β = (ρn − ρp) /ρ, i.e., ρn = (1 + β) ρ/2, ρp = (1− β) ρ/2, tn = 3
(
3π2
)2/3

ρ
5/3
n /5, and tp =

3
(
3π2
)2/3

ρ
5/3
p /5. Accordingly, EoS parameters J , L, Ksym, and K∞ read [395]
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L =
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Ksym = −2
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K∞ = −6
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respectively. The pressure of nuclear matter is

P (ρ, β) = ρ2
∂

∂ρ
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The saturation density ρ0 satisfies

2

5

ℏ2

2m

(
3π2

2

)2/3

ρ
5/3
0 +

3

8
t0ρ

2
0 +

1

16

(
3π2

2

)2/3

[3t1 + t2 (5 + 4x2)] ρ
8/3
0 +

t3
16

(α+ 1) ρα+2
0 = 0. (2.3.17)

The Skyrme effective interaction or EDF was justified from the point of view of DFT. As in most EDFs for
electron systems, it is assumed that the EDF only depends on local densities. It can be rather justified than
the Coulomb systems since the nuclear interaction is short-range in contrast to the Coulomb interaction [396–
398]. Here, several densities are defined as follows: the particle density ρτ , the kinetic energy density tτ , the
spin density sτ , the momentum density jτ , the spin-current tensor Jµντ , the vector density of the kinetic
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energy Tτ [396], respectively, defined by

ρτ (r) =
∑
j∈occ

∑
σ=±1

|φjτ (r, σ)|2 , (2.3.18)

tτ (r) =
∑
j∈occ

∑
σ=±1

|∇φjτ (r, σ)|2 , (2.3.19)

sτ (r) =
∑
j∈occ

∑
σ, σ′=±1

φ∗
jτ (r, σ

′)φjτ (r, σ) ⟨σ′|σ̂|σ⟩ , (2.3.20)

jτ (r) =
∑
j∈occ

∑
σ=±1

1

2i

[
φ∗
jτ (r, σ)∇φjτ (r, σ)− φjτ (r, σ)∇φ∗

jτ (r, σ)
]
, (2.3.21)

Jµντ (r) =
∑
j∈occ

∑
σ, σ′=±1

1

2i

[
φ∗
jτ (r, σ

′)∇µφjτ (r, σ)− φjτ (r, σ)∇µφ
∗
jτ (r, σ

′)
]
⟨σ′|σ̂ν |σ⟩ , (2.3.22)

Tτ (r) =
∑
j∈occ

∑
σ, σ′=±1

[
∇φ∗

jτ (r, σ
′) · ∇φjτ (r, σ)

]
⟨σ′|σ̂|σ⟩ . (2.3.23)

Here, ρτ , tτ , and Jµντ are symmetric under the time-reversal transformation, while sτ , jτ , and Tτ are
antisymmetric, and the spin-orbit density J is defined by Jλτ =

∑
µν ελµνJµντ , where ελµν is the Levi-Civita

symbol. Because the Hamiltonian must have the time-reversal symmetry, the combination of these densities
are limited. The following form comprises the Skyrme EDF;

Eq
nucl (r)

= Cden
q [ρq (r)]

2
+ Cdden

q ρq (r)∆ ρq (r) + Ckin
q ρq (r) tq (r) + Ccur

q [Jq (r)]
2
+ CSO

q ρq (r)∇ · Jq (r)

+ Cspin
q [sq (r)]

2
+ Cdspin

q sq (r) ·∆ sq (r) + Cvkin
q sq (r) · Tq (r)C

mom
q [jq (r)]

2
+ Cdmom

q sq · [∇× jq (r)] ,

(2.3.24)

where the first and second lines consist of the time-even and time-odd densities, respectively, and q = 0 and
1, respectively, mean isoscalar and isovector, where these densities are defined by, for instance, ρq=0 = ρn+ρp
and ρq=1 = ρn − ρp. The coefficients Cq can also depend on densities with time-even combination, while
the Skyrme EDF corresponds to that only Cden

q and Cdden
q have ρ dependences. The relation between Cq in

Eq. (2.3.24) and the parameters of the Skyrme EDF is shown in Ref. [397].
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Chapter 3

Accurate Treatment of Electromagnetic
Interaction

In this chapter, the treatment of the electromagnetic interaction in the nuclear DFT is improved to estimate
the electromagnetic contribution to total energies as accurately as possible. First, the generalized gradient
approximation is applied to the nuclear DFT. Then, the higher-order contributions are considered.

3.1 Current Status of Coulomb Energy Density Functional in Nu-
clear Density Functional Theory

In the nuclear DFT, the ground-state energy can be written as

Egs [ρp, ρn] = TKS + Enucl [ρp, ρn] + EEM [ρch] , (3.1.1)

where TKS is the Kohn-Sham kinetic energy defined by Eq. (2.2.18), Enucl is the nuclear EDF, and EEM is the
electromagnetic EDF. In most works, only the Coulomb interaction is considered; EEM [ρch] = ECH [ρch] +

ECx [ρch], where ECH and ECx are, respectively, the Coulomb Hartree and exchange EDFs. The Coulomb
Hartree EDF can be defined and calculated without any ambiguity by Eq. (2.2.38). The Coulomb exchange
EDF is expected to reproduce the Coulomb exact-Fock energy defined by Eq. (2.2.39) if one neglects the size
(charge distribution) of nucleons; nevertheless, the Coulomb LDA EDF [Eq. (2.2.43)] is usually used for ECx

due to the numerical cost, or it is sometimes even neglected. For example, most Skyrme EDFs, such as the
SLy4 and SLy5 EDFs [58], are fitted to the experimental data with the Coulomb LDA exchange energy, while
the SKX EDF [175], one of the Skyrme EDFs, is fitted to the experimental data without considering the
Coulomb exchange energy with an assertion that the Coulomb exchange energy is cancelled with the nuclear
CSB energy by coincidence, and accordingly, the fitting error was reduced, although it is not a physically
well-based treatment.

As discussed in Sec. 2.3, the nuclear EDF Enucl is given by the fitting to the experimental data, where
the ISB terms of the nuclear interaction are not considered. The difference between ECx calculated by the
LDA and that by the exact-Fock energy is expected to be absorbed in Enucl. Thus, in total, Egs is expected
to reproduce the experimental data within a relatively small difference. However, if one is interested in
phenomena related to the isospin symmetry breaking, such differences may not be discussed appropriately,
since most part, which is determined by Enucl, is cancelled.

Therefore, in this section, the accuracy of the electromagnetic EDF in nuclear DFT is improved as much as
possible, with borrowing the idea of DFT for electronic systems. Then, one will be able to discuss phenomena
related to isospin symmetry breaking more precisely. In addition, the expression using the density, instead
of single-particle orbitals, has an advantage for taking into account the effect of the nucleon form factors,
which will be explained later.

Sections 3.2 and 3.3 are devoted to Coulomb GGA exchange EDFs. Since the Coulomb LDA exchange
EDF depends only on the local density ρp (r), following the Jacob’s ladder in DFT [Fig. 2.2.2], the den-
sity gradient |∇ρ (r)| should be taken into account as the next step in order to improve the accuracy. In
Sec. 3.2, several Coulomb GGA exchange EDFs used in DFT for condensed matter physics are tested using
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experimental charge density distribution to see how large the EDF dependence is. In Sec. 3.3, we attempt a
Coulomb GGA exchange EDF to the self-consistent DFT calculation for atomic nuclei. We take the Perdew-
Burke-Ernzerhof parametrization of the Coulomb GGA (GGA-PBE) exchange EDF [295] as an example. We
adjust a parameter to reproduce the exact Coulomb Fock energy in nuclear DFT.

In Secs. 3.4 and 3.5, higher-order contributions than the Coulomb interaction with assuming protons
as point particles are taken into account. Possible corrections are spatial charge distributions of nucleons
and higher-order correction to the Coulomb interaction. In the former, contributions are divided into two
parts: electric form factors and magnetic ones, where the contribution of the magnetic form factors corre-
spond to the electromagnetic spin-orbit interaction. In the latter, the next-leading order corrections to the
Coulomb interaction in terms of the coupling constant α are the finite-light-speed correction to the Coulomb
interaction called Breit correction, the vacuum polarization, the self-energy, and the two-photon exchange
interaction [167, 399] 1. It is known that the self-energy gives a non-negligible contribution to the atomic
spectra, i.e., electronic structures of atoms, while the mass of protons Mp is so heavy that it may be negligible
in atomic nuclei. The two-photon exchange interaction is 1/Mp weaker than the vacuum polarization [167];
hence it is not considered. Therefore, the electric and magnetic form factors of nucleons, the vacuum polar-
ization, and the Breit correction on nuclear properties will be taken into account. First, in Sec. 3.4, effects
of the nucleon form factor on the Coulomb energy, which will be referred to as the finite-size effect, and the
vacuum polarization of the Coulomb interaction will be considered in EEM

2. In Ref. [191], it was estimated
how large the electric form factor of protons, vacuum polarization, and the electromagnetic spin-orbit in-
teraction affect the isobaric analogue energy; hence, the corrections considered in Sec. 3.4 are the same as
Ref. [191], apart from the electric form factor of neutrons.

In Sec. 3.5 the Breit correction will be considered independently on top of the Coulomb LDA EDF,
while corrections considered in Sec. 3.4 is not considered. Since the GGA EDF of the Breit correction
is, at this moment, impossible to apply to nuclear DFT calculation, as will be discussed, the Coulomb-
Breit LDA exchange EDF will be used. The Coulomb interaction is the electromagnetic interaction in
which the speed of light is assumed to be infinity, i.e., it is the instantaneous electromagnetic interaction.
Therefore, once one considers the finite light speed, the correction to the Coulomb interaction appears, which
is called Breit correction [402–404]. This correction is non-negligible in the electronic structure of super-heavy
atoms [405,A13]. We shall test how large the Breit correction affects nuclear ground-state properties, which
will be discussed at the LDA level.

Since parameters of nuclear EDFs are determined to reproduce the experimental data after subtracting
the Coulomb contributions, which is usually estimated by the Coulomb LDA, the nuclear EDF implicitly
includes the effect of the correction discussed in this chapter. However, throughout this chapter, the nuclear
EDF is not refitted to experimental data. Instead, it will be discussed how large such corrections are without
comparing them to experimental data. Only one exception is the comparison to the experimental value of the
mass difference of a mirror nuclei pair because contributions of the nuclear EDF are cancelled with each other
due to the isospin symmetry. Since it is still under discussion how to estimate the systematic uncertainty of
nuclear EDF, the accuracy of nuclear EDF will not be discussed; the statistical uncertainty may be able to
be discussed [63], while its contribution is expected to be smaller than the statistical uncertainty; hence it is
not considered, either.

Note that Secs. 3.2, 3.3, 3.4, and 3.5 are based on Refs. [A1], [A2], [A3], and [A5], respectively.

3.2 Preliminary Test of Coulomb Exchange Energy Density Func-
tional in Generalized Gradient Approximation

Before applying the Coulomb GGA exchange EDF to self-consistent nuclear DFT, we perform a simple
survey on which GGA EDFs can be applied. Coulomb exchange energies of the selected nuclei are estimated
by using the charge density distribution ρch measured experimentally [144], where sum-of-Gaussian fittings
are used for ρch. As discussed above, the Coulomb exchange EDF in nuclear DFT is expected to reproduce
the Coulomb exact-Fock energy, if the nucleon finite size is neglected. Figure 3 of Ref. [406] showed the Z

1In the AV18 bare nuclear interaction, all these corrections including finite-size effects are considered when the electromagnetic
contribution is removed from experimental data [167].

2The effect of the vacuum polarization is expected to be already subtracted in the nucleon form factors [400,401]. Hence, it
is also expected that there is no double counting.
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dependence of the relative error of the Coulomb exchange energy calculated by using the Coulomb LDA to
that by the exact-Fock term. Thus, if the Coulomb GGA exchange EDF can reproduce the curve, it indicates
that the Coulomb GGA exchange EDF may be applicable to nuclear DFT.

In general, with all the physical constants shown explicitly, the Coulomb LDA and GGA exchange EDF
is written as

ECx [ρ] = −3

4

e2

4πε0

(
3

π

)1/3 ∫
[ρ (r)]

4/3
F (s (r)) dr. (3.2.1)

Here, the enhancement factor F and the density gradient s are dimensionless. Thus, enhancement factors
F given in Eqs. (2.2.61), (2.2.69), and (2.2.70) are invariant with respect to units taken. Note that the
enhancement factor F for the LDA is the constant function, FLDA ≡ 1. The B88, PW91, PBE, and PBEsol
GGA exchange EDFs are tested as examples.

Calculated Coulomb direct and exchange energies for the selected nuclei are shown in Table 3.2.1. Panels
(a) and (b) of Fig. 3.2.1 show the relative difference between the exchange energy calculated by using the
Coulomb LDA and that by the Coulomb GGA,

∆ECx =
EGGA

Cx − ELDA
Cx

EGGA
Cx

, (3.2.2)

as functions of Z and A, respectively. Panel (b) of Fig. 3.2.1 is quite similar to Fig. 3 of Ref. [406]. Hence,
it can be concluded that the Coulomb GGA exchange EDF, in general, reproduces the Coulomb exact-Fock
energy quite nicely. In addition, all the GGA EDFs give similar results and the deviation among these is less
than 2%, although the Coulomb GGA enhancement factors deviate from each other at s ≳ 4 as shown in
Fig. 2.2.4.

In order to understand such behaviour, Fig. 3.2.2 shows the charge density ρch and its dimensionless
density gradient s for 208Pb obtained in Ref. [144] are plotted as functions of r. In the central region
(0 ≤ r ≲ 5 fm), ρch is almost constant, and accordingly s ≃ 0. Therefore, the LDA and the GGA give almost
the same energy density εxF at this region. In the surface region (5 ≲ r ≲ 8 fm), ρch rapidly decreases and
accordingly s increases. Nonetheless, the value of s ranges 0 ≤ s ≲ 4, in which all the GGA enhancement
factors give the similar value. Therefore, the LDA and the GGA give different energy densities, while these
GGA EDFs give almost the same. In r ≳ 8 fm, s diverges, but ρch is almost zero, and thus, this region does
not contribute to the Coulomb exchange energy. As a result, the LDA and the GGA give different Coulomb
exchange energy, while the GGA exchange EDFs give no significant difference and there is no criterion to
choose. Hence, in this work, we shall use the GGA-PBE EDF for self-consistent calculation, since it is the
most widely used EDF in condensed matter physics and its form is the simplest among them.

The reason why ∆ECx is a decreasing function with respect to Z (or A) is also related to this analysis.
The ratio of the surface region to the whole density in light nuclei is larger than that in heavy nuclei. Since
only the surface region gives a significant difference of the LDA and the GGA. The relative differences of
the Coulomb exchange energy calculated by the LDA is larger in light nuclei, and decreases as Z (or A)
increases.

3.3 Modification of Coulomb Exchange Energy Density Functional
in Generalized Gradient Approximation for Nuclear Structure
Calculation

The previous section shows that the Coulomb GGA exchange EDF may reproduce the Coulomb exact-Fock
energy more accurately than the Coulomb LDA one. The numerical cost of the Coulomb exact-Fock energy
[Eq. (2.2.39)] is proportional to N4 with the number of particles N , while the numerical cost of the Coulomb
GGA exchange energy is proportional to N3 [272].

In the nuclear DFT calculation, finite-range interaction, such as the Gogny interaction, can be used, as
well as zero-range interaction. However, due to the numerical cost, DFT calculation with the finite-range
interaction can be performed only with the basis expansion so far. In principle, the basis expansion method
with a complete orthonormal basis can reproduce any functions, while, in practice, due to the numerical
cost, the number of bases is limited. As a result, the basis expansion is not enough to calculate properties of
exotic nuclei, for instance, halo nuclei. In order to calculate such nuclei, the calculation with spatial mesh
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Table 3.2.1: Coulomb exchange energies calculated by the B88, PW91, PBE, and PBEsol GGA exchange
EDF and experimental charge density distribution. For comparison, Coulomb Hartree energies and the
Coulomb exchange energies calculated by the LDA EDF are also shown. All the data are shown in MeV.
This table is taken from Ref. [A1].

Nuclei Coulomb Hartree
Coulomb Exchange

LDA B88 PW91 PBE PBEsol
4He 1.5177 −0.6494 −0.7150 −0.7290 −0.7281 −0.7030
12C 9.4807 −1.9615 −2.0770 −2.1088 −2.1048 −2.0562
16O 15.4092 −2.6375 −2.7727 −2.8119 −2.8065 −2.7484
40Ca 75.7443 −7.0874 −7.3189 −7.3947 −7.3814 −7.2774
48Ca 75.6828 −7.1129 −7.3485 −7.4198 −7.4087 −7.3051
58Ni 136.6040 −10.2823 −10.5706 −10.6623 −10.6471 −10.5167
116Sn 356.4989 −18.4107 −18.8105 −18.9417 −18.9188 −18.7361
124Sn 352.4883 −18.2437 −18.6441 −18.7726 −18.7506 −18.5691
206Pb 810.3373 −30.3764 −30.9124 −31.0875 −31.0566 −30.8113
208Pb 808.5319 −30.3080 −30.8436 −31.0223 −30.9904 −30.7439
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Figure 3.2.1: Relative difference between the exchange energy calculated by using the Coulomb LDA and
that by the Coulomb GGA, ∆ECx, as functions of (a) Z and (b) A, respectively. This figure is taken from
Ref. [A1].
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Figure 3.2.2: Charge density ρch and its dimensionless density gradient s for 208Pb obtained in Ref. [144] as
functions of r.

is often performed [407], while the numerical cost increases as the number of meshes increases. Accordingly,
the numerical cost is larger than the basis expansion method, and, in such calculation, it is still difficult to
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use finite-range interactions. Therefore, numerically efficient and accurate methods to treat the Coulomb
exchange energy are still demanded.

In the previous section, we have shown that all the selected Coulomb GGA exchange EDF give similar
results. Hence, here, we apply the Coulomb GGA-PBE exchange EDF to nuclear DFT calculation. The
enhancement factor of the Coulomb GGA-PBE exchange EDF is Eq. (2.2.61). It includes two parameters, κ
and µ. As discussed in Sec. 2.2.3, κ is determined to satisfy the Lieb-Oxford bound and thus it must be kept
in any system. On the contrary, µ is determined by using the linear response in the slowly-varying limit,
while a criterion to fix µ is rather arbitrary. Indeed, it is known that the PBEsol EDF, whose µ is different
from the original PBE one, reproduces properties of solids better. With considering these facts, in order to
reproduce the Coulomb exchange energy calculated by using the exact-Fock term more precisely in nuclear
DFT, µ is multiplied by λ as

Fλ-PBE (s) = 1 + κ− κ

1 + λµs2/κ
(3.3.1)

and we shall find the proper value of λ.

3.3.1 Numerical Setup

The self-consistent Skyrme Hartree-Fock calculation is performed by using the code skyrme_rpa [408],
where the Coulomb GGA-PBE exchange EDF is implemented in this work. The SAMi EDF [409] is used for
the nuclear part Enucl in Eq. (3.1.1), whose parameters are shown in Table 4.3.1 in Chap. 4.

The pairing interaction is not considered and the spherical symmetry is assumed since we shall calculate
only doubly-magic nuclei. In order to calculate the radial wave function, a mesh with an interval 0.1 fm in
0 ≤ r ≤ 15 fm is used. The difference between ρp and ρch is not considered in the self-consistent calculations,
i.e., ECH [ρch] + ECx [ρch] is approximated to ECH [ρp] + ECx [ρp], as usual.

For comparison, the Coulomb exchange energy calculated by the exact-Fock term [Eq. (2.2.39)] is also
performed. Hereinafter, Eq. (2.2.39) is referred to as the exact-Fock term and the Coulomb exchange energy
calculated with Eq. (2.2.39) is referred to as the exact-Fock energy. A perturbation method proposed in
Ref. [85] is used to calculate it. In other words, the self-consistent calculation is performed within the
Coulomb LDA EDF first, and the difference between the Coulomb LDA exchange energy and the Coulomb
exact-Fock energy is taken into account perturbatively for the single-particle energies, and accordingly, the
total energy, as

ε̃j = εj +

[∫∫
φ∗
j (r)VF (r, r′)φj (r

′) dr dr′ −
∫

φ∗
j (r)V

LDA
Cx (r)φj (r) dr

]
= εj −

e2

2

∑
k

∫∫
φ∗
k (r

′)φk (r)

|r − r′|
φj (r

′)φ∗
j (r) dr dr

′ +
e2

2

(
3

π

)1/3 ∫
[ρp (r)]

1/3
φj (r)φ

∗
j (r) dr,

(3.3.2)

Ẽtot = Etot +
∑
j

(ε̃j − εj) . (3.3.3)

3.3.2 Systematic Analysis

Table 3.3.1 shows Coulomb exchange energies of doubly-magic nuclei calculated by using the Coulomb GGA-
PBE exchange EDF with λ = 1.00 (original), 1.25, and 1.50. For comparison, Coulomb exchange energies
calculated by using the Coulomb LDA and the exact-Fock term are also shown. Panels (a) and (b) of
Fig. 3.3.1 show the relative difference between the exchange energy calculated by using the Coulomb LDA
and that by the Coulomb GGA,

∆ELDA
Cx =

EGGA
Cx − ELDA

Cx

EGGA
Cx

, (3.3.4)

as functions of Z and A, respectively. Panels (c) and (d) of Fig. 3.3.1 show the relative error of the exchange
energy calculated by using the Coulomb LDA to that by the exact-Fock term,

∆Eexact
Cx =

EGGA
Cx − Eexact

Cx

EGGA
Cx

, (3.3.5)
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Table 3.3.1: Coulomb exchange energies ECx for the doubly-magic nuclei calculated with the LDA and
Coulomb GGA-PBE exchange EDFs compared with exact-Fock energies. All the data are shown in MeV.
This table is taken from Ref. [A2].

Nucleus LDA Exact-Fock
GGA-PBE

λ = 1.00 λ = 1.25 λ = 1.50
4He −0.627 −0.732 −0.701 −0.712 −0.722
16O −2.854 −3.088 −3.038 −3.067 −3.094
40Ca −7.558 −7.980 −7.879 −7.933 −7.982
48Ca −7.458 −7.812 −7.774 −7.826 −7.873
100Sn −19.768 −20.429 −20.347 −20.446 −20.537
132Sn −18.804 −19.446 −19.359 −19.452 −19.537
208Pb −31.265 −32.090 −32.013 −32.140 −32.256
310126 −48.304 −49.305 −49.266 −49.432 −49.585

as functions of Z and A, respectively. It is seen that, in general, the Coulomb GGA-PBE exchange EDF
reproduces the exact-Fock energy less than 5% error, as expected in the previous section; the error of
|∆Eexact

Cx | obtained by the original (λ = 1.00) Coulomb GGA-PBE exchange EDF ranges between 0.5–4.5%,
which corresponds to 30–100 keV. As λ increases, the Coulomb GGA-PBE exchange EDF gives more closer
results to the exact-Fock energy. Eventually, λ = 1.25 gives better results on the medium-heavy and heavy
nuclei region, and λ = 1.50 gives better results on the light nuclei region.

As discussed in the previous section, the significant difference of the Coulomb GGA exchange energy is
due to the surface region. If one assumes that all the nuclei have similar density distribution, the proton
density is approximately Z/A of the total density. Figure 3.3.2 shows ∆Eexact

Cx as a function of Z/A. The
calculation performed in this section is self-consistent, and thus, it is not simple as discussed just above.
However, in the heavy nuclei, as Z/A increases, ∆Eexact

Cx increases slightly. Thus, a reason why λ ≥ 1.25

reproduces the Coulomb exact-Fock energy in atomic nuclei may be that the parameter µ may have a density
dependence.

Hereinafter, λ = 1.25 is used for all the calculation in nuclear DFT since we focus on systematic behaviour
in especially, medium-heavy and heavy mass regions.

3.3.3 Detailed Analysis of 208Pb

Next, we shall perform a detailed analysis of a specific nucleus. Here, 208Pb is taken as an example. The
proton single-particle energies are shown in Table 3.3.2. It is seen that the exact-Fock term gives single-
particle orbitals bound deeper approximately by 100–500 keV, while the Coulomb GGA-PBE exchange EDF
gives similar single-particle energies to the Coulomb LDA EDF.

In order to understand this difference, the Coulomb exchange potential VCx obtained by the Coulomb LDA
and the Coulomb GGA are shown in Fig. 3.3.3(a). The relative difference between the exchange potential
obtained by the Coulomb LDA and that by the Coulomb GGA,

∆VCx =
V GGA
Cx − V LDA

Cx

V GGA
Cx

, (3.3.6)

is shown in Fig. 3.3.3(b). It is seen that VCx obtained by the Coulomb GGA-PBE EDF shows the significant
difference at the surface region, while both the Coulomb LDA and GGA give the similar values of VCx at the
central region. Because VCx is just a small part of the total potential, this difference is tiny compared to the
total potential. Accordingly, single-particle energies do not change drastically. Indeed, Fig. 3.3.4(a) shows
the proton and neutron density distributions, ρp and ρn. These densities obtained by the Coulomb GGA do
not show any visible difference from those obtained by the Coulomb LDA. As seen in Fig. 3.3.4(b), in which

∆ρτ =
ρGGA
τ − ρLDA

τ

ρGGA
τ

(τ = p, n) (3.3.7)

are plotted, there is a difference between ρp obtained by the Coulomb LDA and that by the Coulomb GGA
EDF at the surface region, while it is just 0.2%. Since the Coulomb interaction does not affect neutrons, ρn
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Figure 3.3.1: Relative difference between the exchange energy calculated by using the Coulomb LDA and
that by the Coulomb GGA, ∆ELDA

Cx , as functions of (a) Z and (b) A, respectively. The same but for ∆Eexact
Cx

are also shown in panels (c) and (d). This figure is taken from Ref. [A2].
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Figure 3.3.2: Relative difference between the exchange energy calculated by using the Coulomb LDA and
that by the Coulomb GGA, ∆Eexact

Cx , as functions of Z/A.

changes because of the change of ρp. Therefore, ∆ρn is approximately one order of magnitude smaller than
∆ρp. Note that τ = p and n, respectively, indicate an equation for protons and that for neutrons.

In short, it is concluded that the Coulomb GGA-PBE exchange EDF gives more accurate Coulomb
exchange energy, while it does not change single-particle energies or density distribution significantly.
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Table 3.3.2: Single-particle energies for protons in 208Pb calculated by using the LDA and PBE-GGA
Coulomb exchange EDFs. Those from the exact-Fock calculation [85] are also shown. All the data are
shown in MeV. This table is taken from Ref. [A2].

.

Orbital Exact-Fock [85] LDA GGA-PBE (λ = 1.25)
1s1/2 −45.501 −44.980 −44.983

1p3/2 −39.863 −39.387 −39.390

1p1/2 −39.574 −39.107 −39.111

1d5/2 −32.903 −32.482 −32.485

1d3/2 −32.209 −31.815 −31.817

2s1/2 −28.899 −28.509 −28.507

1f7/2 −25.045 −24.692 −24.693

1f5/2 −23.648 −23.353 −23.353

2p3/2 −19.702 −19.411 −19.406

2p1/2 −18.906 −18.626 −18.621

1g9/2 −16.605 −16.338 −16.336

1g7/2 −14.175 −14.019 −14.017

2d5/2 −10.411 −10.255 −10.246

2d3/2 −8.897 −8.846 −8.837

3s1/2 −7.813 −7.673 −7.660

1h11/2 −7.802 −7.663 −7.658
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Figure 3.3.3: (a) Coulomb exchange potentials VCx for 208Pb calculated by using the LDA and GGA-PBE
(λ = 1.25) EDFs as functions of r. (b) Relative difference between the Coulomb exchange potential for 208Pb

calculated by using the GGA-PBE EDF and that by using the LDA EDF, ∆VCx, as a function of r. This
figure is taken from Ref. [A2].
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Figure 3.3.4: (a) Proton and neutron density distributions for 208Pb calculated by using the LDA and
GGA-PBE (λ = 1.25) EDFs as functions of r. (b) Relative difference between proton and neutron density
distributions for 208Pb calculated by using the GGA-PBE EDF and that by using the LDA EDF, ∆ρτ , as
functions of r. This figure is taken from Ref. [A2].
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3.4 Finite-Size Effects of Nucleons and Vacuum Polarization

In the previous section, the Coulomb GGA-PBE exchange EDF with λ = 1.25 reproduces the exact-Fock
energy within a relatively small difference, under the point-particle approximation, i.e., assumption of ρch ≡
ρp. On top of this, the finite-size effects of nucleons, i.e., the difference between ρch and ρp, are taken
into account for the self-consistent calculation of the nuclear DFT. The vacuum polarization, i.e., electron-
positron pair creation in the photon-exchange process between two protons, is also taken into account, where
the Feynman diagram of the vacuum polarization is shown in Fig. 3.4.1. Although it is the higher-order
correction to the Coulomb interaction, and the Coulomb interaction itself has just a small contribution to
the total energy, it was shown in Refs. [191, 410] that the vacuum polarization may not be neglected to the
total energy. Because of the vacuum polarization, the electromagnetic EDF EEM now reads

EEM [ρch] = ECH [ρch] + ECx [ρch] + EVP [ρch] , (3.4.1)

where EVP is the EDF for the vacuum polarization.
Electromagnetic spin-orbit interaction is also considered. This is due to the magnetic interaction between

nucleon spins and the Coulomb mean-field. More precisely, a nucleon moves in the charge density distribution,
i.e., Coulomb mean-field. On the frame of a moving nucleon, this charge density distribution moves and
generates a magnetic field. The spin of the nucleon interacts with this magnetic field, which can be regarded
as the spin-orbit interaction. This effect can also be understood as an effect of the magnetic form factors of
nucleons. This effect is approximately 100 keV or less, and thus it will be considered perturbatively.

3.4.1 Theoretical Framework

Finite-Size Effects of Nucleons

Since both protons and neutrons have finite charge density distribution as shown in Fig. 1.4.2, the charge
density distribution of an atomic nucleus ρch is expressed by using Eq. (1.4.4). Nonetheless, in usual nuclear
DFT, ρch is approximated to ρp throughout the self-consistent calculation. In some works, such as Ref. [411],
this difference has been partly considered, but it is not complete.

In order to take into account the finite-size effects properly, first, Eq. (1.4.4) is written in the real space.
Using the definition of convolution

(f ∗ g) (r) =
∫

f (r′) g (r − r′) dr′ (3.4.2)

and a useful relation

f̃ (q) g̃ (q) =

∫
(f ∗ g) (r) e−iq·r dr (3.4.3)

p+

p+

p+

p+

γ γ

e−

e+

Figure 3.4.1: Feynman diagram of vacuum polarization.
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from Eq. (1.4.4), one obtains

ρch (r) = (ρp ∗GEp) (r) + (ρn ∗GEn) (r)

=

∫
ρp (r

′)GEp (|r − r′|) dr′ +
∫

ρn (r
′)GEn (|r − r′|) dr′, (3.4.4)

where GEτ is the inverse Fourier transform of a nucleon electric form factor G̃Eτ , which corresponds to the
charge density distribution of a single nucleon.

Equation (2.2.27) gives the Kohn-Sham effective potential. In the case of nuclear physics, substituting
Eint [ρp, ρn] = Enucl [ρp, ρn] + EEM [ρch] into Eq. (2.2.27), one obtains

Veffτ (r) =
δEnucl [ρp, ρn]

δρτ (r)
+

δEEM [ρch]

δρτ (r)
. (3.4.5)

The electric form factor does not play any role in the first term, effective potential due to nuclear EDF. The
chain rule of the functional derivative

δ

δf (r)
=

∫
δg (r′)

δf (r)

δ

δg (r′)
dr′ (3.4.6)

must be considered to the second term of Eq. (3.4.5). Combining Eqs. (3.4.4) and (3.4.6), one gets

VEMτ (r) =
δEEM [ρch]

δρτ (r)

=

∫
δEEM [ρch]

δρch (r′)

δρch (r
′)

δρτ (r)
dr′

=

∫
δEEM [ρch]

δρch (r′)
GEτ (|r′ − r|) dr′

=

∫
δEEM [ρch]

δρch (r′)
GEτ (|r − r′|) dr′. (3.4.7)

For convenience, VEM is defined by

VEM [ρ] (r) =
δEEM [ρ]

δρ (r)
. (3.4.8)

Under the point-particle approximation ρch ≡ ρp, i.e., normal treatment, the effective Coulomb potential
reads

VEMp (r) = VEM [ρp] (r) , (3.4.9)

VEMn (r) = 0. (3.4.10)

If the finite-size effects are taken into account fully, the effective Coulomb potential now reads

VEMτ (r) =

∫
VEM [ρch] (r

′)GEτ (|r − r′|) dr′

= (VEM [ρch] ∗GEτ ) (r) . (3.4.11)

It should be emphasized that, because of GEn ̸≡ 0, neutrons are also affected by the effective Coulomb
potential. This is because a neutron has its internal charge distribution, which interacts with the Coulomb
interaction. The finite-size effects treated with this formula will be referred to as “self-consistent finite-size
effects”. Note that the effective Coulomb potential with finite-size effects which were used in several previous
works, such as in Ref. [411], reads

VEMp (r) = VEM [ρch] (r) , (3.4.12)

VEMn (r) = 0. (3.4.13)

This finite-size effects will be referred to as “conventional finite-size effects”.
In order to understand the finite-size effects on the Coulomb effective potential, the Coulomb Hartree

EDF with assuming the spherical symmetry is taken as an example:

EEM [ρch] =
e2

2

∫∫
ρch (r) ρch (r

′)

|r − r′|
dr dr′

=
e2

2

∑
τ, τ ′

∫∫∫∫
ρτ (r

′′) ρτ ′ (r′′′)

|r − r′|
GEτ (|r − r′′|)GEτ ′ (|r′ − r′′′|) dr dr′ dr′′ dr′′′. (3.4.14)
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Under the point-particle approximation ρch ≡ ρp the effective Coulomb potential reads

VEMp (r) = e2
∫

ρp (r
′)

|r − r′|
dr′, (3.4.15)

VEMn (r) = 0. (3.4.16)

The effective Coulomb potential with conventional finite-size effects reads

VEMp (r) = e2
∫

ρch (r
′)

|r − r′|
dr′

= e2
∑
τ

∫∫
ρτ (r

′′)

|r − r′|
GEτ (|r − r′′|) dr′ dr′′, (3.4.17)

VEMn (r) = 0. (3.4.18)

The effective Coulomb potential with self-consistent finite-size effects reads

VEMτ (r) = e2
∫∫

ρch (r
′)

|r′′ − r′|
GEτ (|r − r′′|) dr′ dr′′

= e2
∑
τ ′

∫∫∫
ρτ ′ (r′′′)

|r′′ − r′|
GEτ (|r − r′′|)GEτ (|r′ − r′′′|) dr′ dr′′ dr′′′. (3.4.19)

Two GEτ appear in Eqs. (3.4.14) and (3.4.19), which is because two particles take part in the interaction.
In the potential with conventional finite-size effects [Eq. (3.4.17)], it is assumed that one nucleon has a finite
size, while the other is a point particle.

In principle, the exchange interaction appears between two protons and between two neutrons only, and
it does not appear between a proton and a neutron. If Eq. (3.4.4) is directly substituted into ρch appearing
in the Coulomb exchange EDF, such as Eq. (2.2.43), the proton-neutron Coulomb exchange interaction may
be taken into account. However, the neutron finite-size effect is tiny and its dominant contribution is to the
Coulomb Hartree energy. Indeed, the absolute value of the neutron finite-size effect on the Coulomb exchange
energy in 208Pb is just 0.09 keV, while it on the Coulomb Hartree one is more than 1MeV. Therefore, for
the sake of simplicity, Eq. (3.4.4) is used for both the Coulomb Hartree and exchange EDFs.

Vacuum Polarization

The effective potential for the vacuum polarization is known as the Uehling potential [412], which was
originally adopted for electronic structures of atoms. This effective potential describes the electron-positron
pair creation between an electron and the Coulomb potential caused by the charge density distribution ρch.
Since the charge of a proton is the opposite sign of that of an electron, the Uehling potential used in this
work also has the opposite sign to the original one, which reads [412]

VVP (r) =
2

3

αe2

π

∫
ρch (r

′)

|r − r′|
K1

(
2

λ̄e
|r − r′|

)
dr′, (3.4.20)

where

K1 (x) =

∫ ∞

1

e−xt

(
1

t2
+

1

2t4

)√
t2 − 1 dt, (3.4.21)

α ≈ 1/137 is the fine-structure constant, and λ̄e = ℏ/ (mec) ≈ 386.2 fm is the reduced Compton wavelength
of electrons. Accordingly, the EDF for the vacuum polarization, EVP, is

EVP [ρch] =
1

2

∫
ρch (r) VVP (r) dr. (3.4.22)

Under the spherical symmetry, Eq. (3.4.20) becomes [413]

VVP (r) =
2αe2λ̄e

3r

∫ ∞

0

[
K0

(
2

λ̄e
|r − r′|

)
−K0

(
2

λ̄e
|r + r′|

)]
ρch (r

′) r′ dr′, (3.4.23)
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where

K0 (x) = −
∫ x

−∞
K1 (x

′) dx′

=

∫ ∞

1

e−xt

(
1

t3
+

1

2t5

)√
t2 − 1 dt. (3.4.24)

As the self-consistent finite-size effects on the effective Coulomb potential, in principle, those for the
Uehling potential should also be considered. However, this Uehling potential is just a tiny correction for VEM,
and the finite-size effects on the Uehling potential is expected to be further tiny. Hence, VVP [Eq. (3.4.23)]
is directly applied only to protons, which corresponds to the conventional finite-size effects.

Electromagnetic Spin-Orbit Interaction

The electromagnetic spin-orbit interaction is taken into account by using the first-order perturbation theory.
The correction is [414]

∆εi =
ℏ2c2

2m2c4
xi

〈
l̂i · ŝi

〉∫ ∞

0

[ui (r)]
2

r

dVC (r)

dr
dr

=
ℏ2c2

2m2c4
xi

[
ji (ji + 1)− li (li + 1)− 3

4

] ∫ ∞

0

[ui (r)]
2

r

dVC (r)

dr
dr, (3.4.25)

where VC is the Coulomb potential derived by using Eq. (3.4.8), rui (r) is the radial part of a single-particle
orbital, l̂i and ŝi are, respectively, its orbital and spin angular-momentum operators, and li and ji are,
respectively, the azimuthal quantum number and total angular momentum. The quantity xi is the g factor
minus charges as

xi =

{
gp − 1 for protons,

gn for neutrons,
(3.4.26)

where −1 appears due to the charge. Here, for simplicity, VC ≡ VC [ρp] is used.

3.4.2 Simple Estimations of Systematic Behaviours

In order to understand the systematic behaviours, these corrections to the total energy are estimated by
using a simple ansatz. The proton density distribution is assumed to be a hard sphere:

ρp (r) =

{
ρp0 r < Rp,

0 r > Rp,
(3.4.27)

where ρp0 is the saturation density of protons,

ρp0 =
1

2
ρ0 ≈ 0.08 fm−3. (3.4.28)

The radius of the proton distribution Rp is determined to satisfy

ρp0 =
3Z

4πR3
p

, (3.4.29)

which leads to

Rp =

(
3Z

4πρp0

)1/3

. (3.4.30)

This is just a simple estimation; hence the point-particle approximation is used unless we consider the
finite-size effect.

The Coulomb Hartree potential is

V point
CH (r) = e2

∫
ρp (r

′)

|r − r′|
dr′

=

Ze2

2Rp

(
3− r2

R2
p

)
r < Rp,

Ze2

r r > Rp,
(3.4.31)
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and thus the Coulomb Hartree energy is

Epoint
CH =

1

2

∫
ρp (r) V

point
CH (r) dr

=
3e2

5

Z2

Rp

=
3e2

5

(
4πρp0
3

)1/3

Z5/3

≃ 0.60Z5/3 MeV. (3.4.32)

The Coulomb exchange energy is

Epoint
Cx = −3e2

4

(
3

π

)1/3 ∫
[ρp (r)]

4/3
dr

= −3e2

4

(
9

4π2

)1/3
Z4/3

Rp

= −3e2

4

(
3ρp0
π

)1/3

Z

≃ −0.46ZMeV. (3.4.33)

Next, the finite-size effects on the Coulomb energy are considered. The superscript “point” means energies
calculated without any finite-size effect (the point-particle approximation); “p-fin” means those only with the
proton finite-size effect; “pn-fin” means those with the proton and neutron finite-size effects. Since the finite-
size effects are just tiny corrections, those for the Coulomb Hartree energy are only discussed here. The
charge radius of an atomic nucleus can be calculated as [98]

R2
ch ≃ R2

p +
〈
r2p
〉
+

N

Z

〈
r2n
〉
, (3.4.34)

where Rch and Rp are, respectively, the charge and proton radii of the nucleus, and
〈
r2τ
〉
is the mean square

radius of a nucleon τ . The relativistic corrections for Rch is neglected here. The Coulomb Hartree energy
with the finite-size effects reads

Efinite
CH =

3e2

5

Z2

Rch
. (3.4.35)

If one estimates the proton finite-size effect on the total energy, which corresponds to neglecting
〈
r2n
〉
in

Eq. (3.4.34), one obtains

Ep-fin
C − Epoint

C ≃ Ep-fin
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5
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p +
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〉 − 1

Rp


≃ −

3e2
〈
r2p
〉

10

Z2

R3
p

= −
2πe2ρp0

〈
r2p
〉

5
Z

≃ −0.11ZMeV, (3.4.36)
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where EC is the total Coulomb energy. The contribution of the neutron finite-size effect is

Epn-fin
C − Ep-fin

C ≃ Epn-fin
CH − Ep-fin

CH

=
3e2

5
Z2

(
1

Rpn-fin
ch

− 1

Rp-fin
ch

)

=
3e2

5
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 1√
R2

p +
〈
r2p
〉
+ N

Z ⟨r2n⟩
− 1√

R2
p +

〈
r2p
〉
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≃ −
3e2
〈
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〉

10

NZ(
R2

p +
〈
r2p
〉)3/2

≃ −
3e2
〈
r2n
〉

10

NZ

R3
p

= −
2πe2ρp0

〈
r2n
〉

5
N

≃ 0.010N MeV. (3.4.37)

Here,
〈
r2p
〉
= 0.73666 fm2 and

〈
r2n
〉
= −0.07222 fm2 obtained by Ref. [148] are used. Note that

〈
r2n
〉
< 0

means that neutrons have negative effective charge.
The contribution of the vacuum polarization to the total energy reads

EVP =
1

2

∫
ρch (r) VVP (r) dr
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The first term of the integral in Eq. (3.4.38) is estimated as∫ Rp
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the second term reads∫ Rp
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where t̃ = t/λ̄e. Combining Eqs. (3.4.38)–(3.4.40),∫ Rp

0
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≃ 0.0070R5
p MeV. (3.4.41)

is obtained. Finally, Eq. (3.4.38) is estimated as

EVP ≃ 2π (ρp0)
2 2αe2λ̄e

3
× 0.0070R5

p MeV

≃ 0.0047Z5/3 MeV. (3.4.42)

These simple estimations are consistent with Refs. [191, 410], while A−1/3, which is related to the radius,
is now replaced by Z−1/3 since the hard sphere distributions of protons and neutrons are assumed to be
identical and accordingly, the radius is proportional to Z−1/3 as well.

3.4.3 Systematic Analysis

Next, the systematic calculation is performed. The numerical conditions are the same as in Sec. 3.3. As
proposed in Sec. 3.3, the GGA-PBE Coulomb exchange EDF with λ = 1.25 is used for ECx other than it is
specified that the Coulomb LDA EDF is used.

First of all, total binding energies, proton radii, and neutron radii of the selected doubly-magic nuclei are
shown in Tables 3.4.2, 3.4.3, and 3.4.4, respectively. The columns labelled “LDA” and “GGA” refer to the
results calculated without the finite-size effects; the columns labelled “p-fin” and “pn-fin”, respectively, refer to
the results calculated with the proton and proton-neutron finite-size effects on top of the GGA; the column
labelled “All” refers to the results calculated with the vacuum polarization on top of the proton-neutron
finite-size effects; the column labelled “All+EMSO” refers to the results calculated with the electromagnetic
spin-orbit interaction on top of the proton-neutron finite-size effects and the vacuum polarization. For
comparison, results calculated with the SAMi-ISB EDF [183], which includes the isospin symmetry breaking
effects of the nuclear interaction, on top of “All + EMSO”, calculation are also shown. The detail of the
SAMi-ISB EDF will be discussed in the next chapter. These labels are summarized in Table 3.4.1.

Figure 3.4.2 shows the ratio of the Coulomb total energy calculated with and without nucleon finite-size
effects. The proton finite-size effect decreases the Coulomb energy, while the neutron finite-size effect slightly
increases the Coulomb energy. This is because the proton finite-size effect makes ρch dilute and broadened,
while the neutron finite-size effect makes ρch dense and shrunken, as can be seen in Eq. (3.4.34). As seen
in Table 3.4.2, the proton finite-size effect contributes to the total energy in −0.584MeV, −1.803MeV, and
−8.224MeV for 16O, 48Ca, and 208Pb, respectively, and the neutron finite-size effect does in +0.065MeV,
+0.245MeV, and +1.232MeV, respectively. The desired accuracy of the nuclear EDF is around 100 keV

or even less, especially for the application to the calculation of nucleosynthesis in the universe [216, 220].
Hence, even the neutron finite-size effect is non-negligible in heavy nuclei compared to the desired accuracy.
Tables 3.4.3 and 3.4.4 show that the proton finite-size effect makes proton radii smaller approximately in
0.005 fm and the neutron finite-size effect makes them larger approximately in 0.0005 fm in medium-heavy
and heavy nuclei. The importance of these changes will be discussed in Chap. 4.

The vacuum polarization contributes to the total energy in +0.087MeV, +0.396MeV, and +3.694MeV

for 16O, 48Ca, and 208Pb, respectively. Although the vacuum polarization is the higher-order contribution
to the Coulomb interaction, it is not negligible in heavy nuclei. In contrast to the total energy, it is seen in
Tables 3.4.3 and 3.4.4 that proton radii change by the order of 0.001 fm and neutron radii change by less
than 0.0001 fm.

The electromagnetic spin-orbit interaction does not contribute to the total energy in the spin-saturated
nuclei, i.e., nuclei with all the j> and j< orbitals pairs are occupied, while in the spin-unsaturated nuclei,
such as 208Pb, a few dozen of keV. The electromagnetic spin-orbit interaction does not show any systematic
behaviour, since it depends on shell structures.
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Table 3.4.1: Abbreviation of the methods used in this thesis.
LDA GGA p-fin pn-fin All All+ EMSO ISB

Coulomb exchange LDA GGA GGA GGA GGA GGA GGA
Finite-size effects None None p pn pn pn pn

Vacuum polarization None None None None Yes Yes Yes
EM spin-orbit None None None None None Yes Yes
Enucl SAMi SAMi SAMi SAMi SAMi SAMi SAMi-ISB
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Figure 3.4.2: Ratios of the Coulomb energy calculated with and without finite-size effects as functions of (a)
Z and (b) A, respectively. This figure is taken from Ref. [A3].

Before closing this section, the systematic behaviours discussed in the previous section are numerically
confirmed. The contributions of these corrections are fitted to

E = aZb, (3.4.43)

where only the neutron finite-size effect is fitted to

E = aN b. (3.4.44)

Here, the Coulomb Hartree energies calculated by using “LDA” in Table 3.4.1 are used for fitting. Contri-
butions of the finite-size effects and the vacuum polarization are defined by the difference between the total
energy calculated with and that without these effects; in other words, the contribution of the proton finite-size
effect corresponds to the difference between the total energy obtained by “GGA” and that by “p-fin”, that of
the neutron finite-size effect corresponds to the difference between the total energy obtained by “p-fin” and
that by “pn-fin”, and that of the vacuum polarization corresponds to the difference between the total energy
obtained by “pn-fin” and that by “All”.

The fitted values are shown in Table 3.4.5. As can be seen, the values of a and b are compatible with those
obtained in the previous section. In short, the proton finite-size effect is approximately five times smaller than
the Coulomb exchange energy; the neutron finite-size effect is approximately one-order magnitude smaller
than the proton finite-size effect with the opposite sign. The vacuum polarization is proportional to Z5/3,
while the Coulomb exchange energy and the proton finite-size effect are proportional to Z; hence, in the light
nuclei, the vacuum polarization is much smaller than the proton finite-size effect, while it becomes larger in
heavy nuclei.

As seen in Table 3.4.2, the ISB terms of the nuclear interaction give a larger contribution to the total
energy than the precise treatments of the Coulomb interaction in light nuclei. The precise treatments of
the Coulomb interaction, such as the proton finite-size effects and the vacuum polarization, give a larger
contribution than the ISB terms of the nuclear interaction in heavy nuclei. The detail will be discussed in
Chap. 4.
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Table 3.4.2: Total energies for the selected doubly-magic nuclei. The treatment of the Coulomb interaction
is precisified step by step, as shown in Table 3.4.1. For more detail, see the text. All the data are shown in
MeV. This table is taken from Ref. [A3].

Nucleus LDA GGA p-fin pn-fin All All+ EMSO ISB
4He −27.526 −27.612 −27.675 −27.668 −27.660 −27.660 −29.386
16O −130.480 −130.693 −131.277 −131.212 −131.125 −131.125 −135.035

40Ca −347.085 −347.458 −349.363 −349.158 −348.754 −348.754 −354.618
48Ca −415.615 −415.981 −417.784 −417.539 −417.143 −417.004 −418.648
48Ni −352.639 −353.115 −356.085 −355.836 −355.124 −355.331 −351.046

100Sn −811.664 −812.338 −817.924 −817.332 −815.536 −815.590 −812.031
132Sn −1103.088 −1103.733 −1108.462 −1107.719 −1106.044 −1105.993 −1105.103
208Pb −1636.615 −1637.485 −1645.709 −1644.477 −1640.783 −1640.725 −1639.780
310126 −2131.415 −2132.537 −2145.544 −2143.665 −2136.400 −2136.340 −2134.405

Table 3.4.3: Proton radii for the selected doubly-magic nuclei. The treatment of the Coulomb interaction is
precisified step by step, as shown in Table 3.4.1. Since the electromagnetic spin-orbit interaction is considered
perturbatively and thus it does not change radii, “All + EMSO” is not shown. For more detail, see the text.
All the data are shown in fm.

Nucleus LDA GGA p-fin pn-fin All ISB
4He 1.9213 1.9222 1.9205 1.9206 1.9207 1.9008
16O 2.6483 2.6481 2.6447 2.6449 2.6451 2.6334

40Ca 3.3895 3.3890 3.3842 3.3845 3.3850 3.3763
48Ca 3.4359 3.4354 3.4313 3.4316 3.4320 3.4030
48Ni 3.7022 3.7015 3.6944 3.6948 3.6956 3.7417

100Sn 4.4351 4.4343 4.4278 4.4283 4.4292 4.4344
132Sn 4.6782 4.6775 4.6726 4.6731 4.6739 4.6638
208Pb 5.4616 5.4609 5.4549 5.4555 5.4567 5.4452
310126 6.2859 6.2851 6.2781 6.2788 6.2806 6.2685

Table 3.4.4: Same as Table 3.4.4 but for neutron radii.
Nucleus LDA GGA p-fin pn-fin All ISB

4He 1.9149 1.9151 1.9148 1.9149 1.9149 1.8774
16O 2.6250 2.6249 2.6241 2.6243 2.6244 2.5904

40Ca 3.3424 3.3422 3.3408 3.3411 3.3413 3.3091
48Ca 3.6111 3.6109 3.6096 3.6100 3.6101 3.6190
48Ni 3.4118 3.4114 3.4092 3.4096 3.4098 3.3689

100Sn 4.3522 4.3518 4.3491 4.3495 4.3499 4.3385
132Sn 4.8890 4.8887 4.8867 4.8872 4.8875 4.8833
208Pb 5.6083 5.6079 5.6052 5.6059 5.6064 5.5986
310126 6.3631 6.3627 6.3593 6.3600 6.3608 6.3522

Table 3.4.5: Parameters a and b for Eq. (3.4.43). For the neutron finite-size effect, Eq. (3.4.44) is used instead
of Eq. (3.4.43). This table is taken from Ref. [A3].

a (MeV) b

Direct Coulomb (LDA) 0.528757 1.6692

Exchange Coulomb (LDA) −0.390342 1.0009

Exchange Coulomb (GGA) −0.368013 1.0103

Proton Finite Size −0.0757012 1.0640

Neutron Finite Size 0.00706328 1.0620

Vacuum Polarization 0.00354808 1.5765
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3.4.4 Detailed Analysis of 208Pb

We shall perform a detailed analysis of 208Pb. The proton and neutron single-particle energies are shown
in Table 3.4.6. The proton finite-size effect, the neutron finite-size effect, and the vacuum polarization
change the proton single-particle energies approximately −250–−150 keV, +10–+30 keV, and +80–+100 keV,
respectively, while even with this change, the order of the single-particle energies does not change. Since
the neutron has no charge, these corrections to the Coulomb energy are not expected to change the neutron
single-particle energies. Indeed, even the neutron finite-size effect changes these energies only a few or dozen
keV, while its order is the same as the proton finite-size effect on proton single-particle energies. In contrast,
the spin-orbit interaction changes proton j> orbitals and neutron j< orbitals bound deeper, while proton j<
orbitals and neutron j> orbitals bound shallower. Although its effect is less than 100 keV, it changes the
order of single-particle energies, especially near the Fermi energy.

The Coulomb potential for protons and neutrons, VCp and VCn, and the vacuum polarization potential
for protons are shown in Fig. 3.4.3(a). It can be seen the vacuum polarization correction for protons VVP

is also repulsive as VCp, while their strengths are two orders of magnitude or more smaller than VCp. The
Coulomb potential for neutrons VCn is rather complicated that it is repulsive in the internal region, whereas
it is attractive in the surface region, although it is much weaker than even VVP. In order to understand
how the finite-size effects and the vacuum polarization affect the Coulomb potential, the relative difference
between the Coulomb potential for protons obtained by the precise treatments of the Coulomb interaction,
V precise
Cp , and that by the Coulomb LDA, V LDA

Cp ,

∆VCp =
V precise
Cp − V LDA

Cp

V precise
Cp

, (3.4.45)

is also shown in Fig. 3.4.3(b). It is seen that the Coulomb potential obtained by the GGA-PBE shows the
significant difference at the surface region, while the finite-size effects shows the significant difference at the
central region. This may be because ρch (r) < ρp (r) holds at the central region, and accordingly, the absolute
value of the Coulomb Hartree potential, which dominates in VCp, also gives smaller at the central region. The
effective potential of the vacuum polarization, i.e., the Uehling potential given in Eq. (3.4.23), is short-range
interaction due to K1. Therefore, its effect is appreciable in the central region. Since the finite-size effects
and the vacuum polarization change VCp in the central region, they also change the single-particle energies
more than the GGA. However, VCp is small compared to the nuclear effective potential, and hence it does not
change the single-particle energies or density drastically. Indeed, Fig. 3.4.4 shows the change of the proton
density distribution ∆ρp defined by Eq. (3.3.7). Because of the change of VCp at the central region, the
finite-size effects and the vacuum polarization gives non-zero ∆ρp at the central region, while its value is less
than 0.5%. In the surface region, |∆ρp| is enhanced while ρp itself is quite small, and thus it does not give
a significant difference.

In short, it is concluded that the nucleon finite-size effects and the vacuum polarization are non-negligible
for the total energy, especially in the heavy nuclei, and sometimes for the single-particle energies, while it
does not change density distributions significantly.

3.4.5 Mass Difference of Mirror Nuclei

Before closing this section, the method proposed in this section is applied to calculate the mass difference of
a mirror nuclei pair. In principle, since the finite-size effects and the vacuum polarization give, in total, a
contribution to the total energy in more than 1MeV, the parameters of Enucl should be refitted. Therefore,
the total energies given above cannot be used for comparison with experimental data, while it is still useful
to understand how such effects contribute to total energies and densities. Nonetheless, the mass difference
of mirror nuclei can be used for comparison with experimental data, since, in principle, the contribution of
Enucl vanishes.

The mirror nuclei are the pair of two atomic nuclei, one of which is composed of Z protons and N neutrons,
while the other is composed of N protons and Z neutrons, for instance, 48Ca (20 protons and 28 neutrons)
and 48Ni (28 protons and 20 neutrons). If neither the Coulomb interaction nor the ISB terms of the nuclear
interaction exist, the masses of these two nuclei must be identical. However, in reality, both the Coulomb
interaction and the ISB terms of the nuclear interaction exist, and accordingly, the masses of two nuclei are
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Table 3.4.6: Single-particle energies of 208Pb. The treatment of the Coulomb interaction is precisified step
by step, as shown in Table 3.4.1. For more detail, see the text. All the data are shown in MeV.

Orbital LDA GGA p-fin pn-fin All All+ EMSO ISB
π1s1/2 −44.980 −44.983 −45.253 −45.229 −45.123 −45.123 −42.870

π1p3/2 −39.387 −39.390 −39.640 −39.618 −39.519 −39.537 −37.737

π1p1/2 −39.107 −39.111 −39.360 −39.338 −39.239 −39.202 −37.243

π1d5/2 −32.482 −32.485 −32.711 −32.692 −32.598 −32.635 −31.392

π1d3/2 −31.815 −31.818 −32.042 −32.023 −31.930 −31.875 −30.361

π2s1/2 −28.509 −28.507 −28.724 −28.707 −28.610 −28.610 −27.576

π1f7/2 −24.692 −24.693 −24.893 −24.877 −24.789 −24.842 −24.180

π1f5/2 −23.353 −23.353 −23.550 −23.535 −23.448 −23.376 −22.380

π2p3/2 −19.411 −19.406 −19.597 −19.582 −19.492 −19.509 −19.055

π2p1/2 −18.626 −18.621 −18.809 −18.795 −18.705 −18.670 −18.195

π1g9/2 −16.338 −16.336 −16.511 −16.498 −16.415 −16.483 −16.357

π1d7/2 −14.019 −14.017 −14.184 −14.172 −14.091 −14.004 −13.557

π2d5/2 −10.255 −10.246 −10.413 −10.401 −10.316 −10.350 −10.374

π2d3/2 −8.846 −8.837 −8.999 −8.988 −8.904 −8.854 −8.841

π3s1/2 −7.673 −7.660 −7.822 −7.811 −7.726 −7.726 −7.824

π1h11/2 −7.662 −7.658 −7.808 −7.797 −7.719 −7.800 −8.121

ν1s1/2 −59.291 −59.298 −59.364 −59.343 −59.328 −59.328 −54.587

ν1p3/2 −52.953 −52.960 −53.011 −52.992 −52.982 −52.966 −48.798

ν1p1/2 −52.656 −52.662 −52.712 −52.693 −52.683 −52.715 −48.808

ν1d5/2 −45.375 −45.380 −45.416 −45.399 −45.392 −45.362 −41.843

ν1d3/2 −44.744 −44.749 −44.781 −44.765 −44.759 −44.805 −41.755

ν2s1/2 −41.962 −41.965 −41.993 −41.978 −41.971 −41.971 −38.918

ν1f7/2 −36.904 −36.907 −36.927 −36.913 −36.910 −36.865 −34.035

ν1f5/2 −35.702 −35.704 −35.716 −35.704 −35.702 −35.763 −33.673

ν2p3/2 −32.094 −32.094 −32.105 −32.093 −32.090 −32.076 −29.930

ν2p1/2 −31.344 −31.344 −31.352 −31.341 −31.339 −31.368 −29.612

ν1g9/2 −27.863 −27.863 −27.867 −27.857 −27.856 −27.799 −25.636

ν1g7/2 −25.791 −25.790 −25.783 −25.774 −25.776 −25.849 −24.798

ν2d5/2 −22.277 −22.275 −22.271 −22.262 −22.263 −22.235 −20.861

ν3s1/2 −19.959 −19.957 −19.948 −19.940 −19.941 −19.941 −18.992

ν2d3/2 −20.843 −20.841 −20.831 −20.823 −20.825 −20.867 −20.244

ν1h11/2 −18.533 −18.532 −18.521 −18.514 −18.516 −18.447 −16.871

ν1h9/2 −15.306 −15.303 −15.277 −15.271 −15.276 −15.361 −15.377

ν2f7/2 −12.672 −12.668 −12.651 −12.645 −12.648 −12.609 −11.844

ν2f5/2 −10.622 −10.618 −10.594 −10.590 −10.594 −10.647 −10.971

ν3p3/2 −9.859 −9.855 −9.835 −9.830 −9.833 −9.820 −9.509

ν1i13/2 −9.150 −9.147 −9.124 −9.120 −9.124 −9.046 −7.922

ν3p1/2 −9.063 −9.059 −9.037 −9.032 −9.036 −9.061 −9.165

different from each other. This difference is called the mass difference of mirror nuclei. It was pointed out in
the 1960s [189,190] that the Coulomb interaction is not enough for explaining this difference, which is called
“Okamoto-Nolen-Schiffer anomaly”, or sometimes called “Nolen-Schiffer anomaly” simply. This anomaly has
been a long-standing problem.

Here, we shall study the mass difference between 48Ca and 48Ni. It has been pointed out that the ISB
terms of the nuclear interaction is indispensable for explaining this anomaly, and thus, here the SAMi-ISB
EDF [183] is adopted 3. The detailed discussion of the ISB interaction will be given in the next chapter,
while in this section, the interaction is just used. Table 3.4.7 shows the total energies of 48Ca and 48Ni

3Note that the original parameter set of the SAMi-ISB EDF shown in Ref. [183] was used in the original paper [A3], while
the “precise” parameter set shown in Sec. 4.3 is used in this thesis. The detail of the difference between two parameter sets is
shown in Ref. [A6].
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Figure 3.4.3: (a) Coulomb potential for protons and neutrons and vacuum polarization potential for protons
as functions of r. To enhance visibility, the Coulomb potential for neutrons and the vacuum polarization
potential for protons are scaled by 500 and 100, respectively. (b) Relative difference between the Coulomb
potential for protons in 208Pb calculated by the precise treatments and that by the LDA EDF, ∆VCp, as
functions of r.
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Figure 3.4.4: Relative difference between the proton density distributions for 208Pb calculated by the precise
treatments and that by the LDA EDF, ∆ρp, as functions of r.

calculated with the Coulomb LDA or the precise Coulomb treatment (All + EMSO) and with the original
SAMi EDF or the SAMi-ISB one. For comparison, calculations with all the corrections but the conventional
finite-size effects are also shown as “(All)”. The experimental data given by Atomic Mass Evaluation (AME)
in 2003 [415], in 2016 [416, 417], and in 2020 [418, 419] are also shown. It is shown that the conventional
treatment, i.e., calculation without ISB terms or any corrections to the Coulomb interaction (SAMi & LDA),
gives approximately 4.5MeV difference compared with AME2016 data, and the ISB terms of the nuclear
interaction (SAMi-ISB & LDA) reduces the difference to 1.5MeV. The precise treatment (SAMi-ISB &
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Table 3.4.7: Mass difference of the mirror nuclei pair 48Ca and 48Ni calculated with the Coulomb LDA or
all the corrections to the Coulomb interaction (All + EMSO) for the Coulomb interaction and the SAMi
or SAMi-ISB EDF for the nuclear interaction. Here, “(All) + EMSO” and “All + EMSO” show the results
by the conventional finite-size effects and the present self-consistent finite-size effects, respectively. For
“[All]+ EMSO”, see the text. All units are in MeV. This table is taken from Ref. [A3].

EDF 48Ca 48Ni Difference
SAMi & LDA −415.6148 −352.6388 62.9760

SAMi & (All)+ EMSO −416.2855 −354.0639 62.2216

SAMi & [All]+ EMSO −417.0038 −355.3334 61.6703

SAMi & All+ EMSO −417.0041 −355.3307 61.6734

SAMi-ISB & LDA −417.2186 −348.4383 68.7803

SAMi-ISB & (All)+ EMSO −417.9084 −349.8219 68.0865

SAMi-ISB & [All]+ EMSO −418.6604 −351.0761 67.5844

SAMi-ISB & All+ EMSO −418.6476 −351.0464 67.6012

AME2003 [415] −415.991 −347.1 68.9

AME2016 [416,417] −416.0009 −348.7 67.3

AME2020 [418,419] −416.0012 −347.3 68.7

All + EMSO) further reduces the difference to 0.3MeV. Therefore, once both the precise treatment of the
Coulomb interaction and the ISB terms of the nuclear interaction are considered at the same time, the
Okamoto-Nohlen-Schiffer anomaly for the 48Ca-48Ni pair is overcome, while the ISB terms of the nuclear
interaction are not enough to solve it. Note that 48Ni is not used for the fitting of the parameters of the
SAMi nor the SAMi-ISB EDF.

Compared with the results obtained by the conventional finite-size effects (SAMi-ISB & (All) + EMSO),
two different finite-size effects gives a difference of 0.5MeV. Hence, in order to discuss quantities related
to isospin symmetry breaking, the self-consistent treatment of the finite-size effects is indispensable, as well
as the GGA, the vacuum polarization, the electromagnetic spin-orbit interaction, and the ISB terms of the
nuclear interaction. It should be noted that the experimental data was updated to AME2020 data, and
AME2020 data is close to the “SAMi-ISB & LDA” data rather than the “SAMi-ISB & All + EMSO” data.
However, the SAMi and SAMi-ISB were originally fitted to the AME2003 and AME2016, respectively. Hence,
once the nuclear part of EDF is refitted to AME2020 data, this difference may be remedied. If one uses
other EDFs, such as the SLy4 EDF [58], instead of the SAMi or the SAMi-ISB EDF, its tendency that the
ISB terms and the precise treatments of the Coulomb interaction reduce the deviation from the experimental
data, while raw values of ∆Etot are different 4.

Table 3.4.7 also shows results with “[All]”, in which the self-consistent calculation to obtain the single-
particle orbitals and densities is performed under the conventional finite-size effects, while the total energies
are calculated with EC [ρch]. In other words, calculation without any finite-size effect, the conventional finite-
size effects shown as “(All)” in the table, the intermediate treatment shown as “[All]”, and the self-consistent

4For example, ∆Etot of “SLy4 & LDA”, “SLy4 & All + EMSO”, “SLy4-ISB & LDA”, and “SLy4-ISB & All + EMSO” are,
respectively, 63.4171, 62.0848, 71.4169, and 70.1398MeV, where, in the SLy4-ISB, the SLy4 EDF is used for the EIS, while
the SAMi-ISB EDF is used for the ISB part ECIB + ECSB, which is not, although, guaranteed to reproduce any experimental
properties.
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finite-size effects shown as “All” are summarized as follows:

No finite-size effect
VCHp (r) =

∫
ρp (r

′)

|r − r′|
dr′, VCHn (r) = 0,

ECH =
1

2

∫
VCHp (r) ρp (r) dr =

1

2

∫∫
ρp (r) ρp (r

′)

|r − r′|
dr dr′,

Conventional finite-size effects “(All)”
VCHp (r) =

∫
ρch (r

′)

|r − r′|
dr′, VCHn (r) = 0,

ECH =
1

2

∫
VCHp (r) ρp (r) dr =

1

2

∫∫
ρch (r) ρp (r

′)

|r − r′|
dr dr′,

Intermediate treatment “[All]”
VCHp (r) =

∫
ρch (r

′)

|r − r′|
dr′, VCHn (r) = 0,

ECH =
1

2

∫∫
ρch (r) ρch (r

′)

|r − r′|
dr dr′,

Self-consistent finite-size effects “All”
VCHτ (r) =

[∫
ρch (r

′)

|r − r′|
dr′
]
∗GEτ (r) =

∫∫
ρch (r

′)

|r′′ − r′|
GEτ (|r − r′′|) dr′ dr′′,

ECH =
∑
τ

1

2

∫
VCHτ (r) ρτ (r) dr =

1

2

∫∫
ρch (r) ρch (r

′)

|r − r′|
dr dr′,

where, for the sake of simplicity, the Coulomb Hartree potential VHτ and the Coulomb Hartree energy are
shown as examples. In the conventional finite-size effects, the self-consistency between the Coulomb EDF
EC [ρch] and the Coulomb potential VCτ is broken, while the total energy is calculated straightforwardly
from the potential; in the intermediate treatment, the total energy is not calculated straightforwardly as
well. Comparing among results “(All)”, “[All]”, and “All”, it is found that the effect of GEτ for the Coulomb
potential is quite small, while the difference between ρp and ρch for both VC and EC is significant. Al-
though the intermediate treatment reproduces the total energy obtained by the self-consistent finite-size
effects, the calculation procedure, in principle, breaks the self-consistency and indeed, because of this brak-
ing self-consistency, the calculation procedure, i.e., calculation code, becomes complicated. Hence, one is
recommended to use the self-consistent finite-size effects.

At last, it should be noted that the experimental data shown in Table 3.4.7 are −1 times the binding
energy. In principle, the mass difference should be calculated by using the difference of the mass excess,
instead of the difference of the binding energy, where the mass excess and the binding energy of an atomic
nucleus with Z protons and N neutrons, respectively, read

∆(Z,N) = M (Z,N)− (Z +N)u, (3.4.46)

B (Z,N) = ZmH +Nmn −M (Z,N) (3.4.47)

with the atomic mass unit u = M (6, 6) /12 and the masses of the nucleus M (Z,N), hydrogen atoms mH,
and neutrons mn. Nevertheless, here, the binding energy is used since the calculated total energy corresponds
to −1 times the binding energy.

3.5 Finite-Light-Speed Correction to Coulomb Interaction

In the previous sections, apart from the vacuum polarization, the Coulomb interaction was used for the
electromagnetic interaction, while its calculation accuracy was improved as much as possible. The Coulomb
interaction, which is the lowest-order with respect to 1/c of the electromagnetic interaction, is instantaneous
and the next-leading-order term is known as the Breit correction [402–405]. This correction is also referred
to as the finite-light-speed correction or the relativistic correction. In the electronic structure of atoms, it is
known that the Breit correction between electrons contributes more than the vacuum polarization between
electrons and atomic nuclei [420].
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In this section, the contribution of the Breit correction to nuclear properties is investigated. The LDA
exchange EDF for the Breit correction has been known [421], and results with this EDF are compared with
those with the Coulomb LDA EDF. The purpose of this section is to see whether the relativistic correction is
larger than the vacuum polarization, and thus, the LDA exchange EDF is enough for this purpose. In atomic
DFT, it is pointed out in Ref. [A13] that the contribution of the Breit correction to total energies is almost
the same magnitude but opposite direction to effects of the density gradient in the heavy atoms. Therefore,
it is interesting to see whether, in atomic nuclei, the contribution of density gradient to total energies is
comparable to that of the Breit correction. Note that a relativistic extension of the GGA-B88 exchange
EDF has been proposed [422], while the dependence on the density gradient was treated with the original
form. It may be important to check the dependence on the density gradient for the Coulomb interaction is
applicable to the Breit correction, especially in nuclear DFT. Moreover, in order to make a fair comparison
to calculation only with the Coulomb interaction, first, parameters of the original B88 exchange EDF should
be adjusted for atomic nuclei, as we did with the PBE exchange EDF. Hence, the relativistic LDA exchange
EDF is used in this work, instead of the relativistic extension of the GGA-B88 exchange EDF.

3.5.1 Theoretical Framework

The next-leading-order interaction with respect to 1/c in the Coulomb gauge is the Breit correction

vBreit (rj , rk) = −

[
cαj · cαk

2c2rjk
+

(cαj · rjk) (cαk · rjk)
2c2r3jk

]
, (3.5.1)

where α is 4× 4 matrix defined by

α =

((
O2 σx

σx O2

)
,

(
O2 σy

σy O2

)
,

(
O2 σz

σz O2

))
(3.5.2)

with the Pauli matrices σx, σy, and σz and the 2 × 2 zero matrix O2. The Foldy-Wouthuysen-Tani trans-
formation [423–426] of the Dirac Hamiltonian H = TD + vCoul + vBreit leads to the Breit correction in the
non-relativistic scheme ṽBreit, which reads [427,428]

ṽBreit (rj , sj , rk, sk)

= −πℏ2e2

M2c2
δ (rjk)−

e2

2M2c2
pj ·

[
1

rjk
+

rjkrjk
r3jk

]
· pk

− 8πℏ2e2

3M2c2
δ (rjk) sj · sk − ℏ2e2

M2c2
sj ·

[
3rjkrjk
r5jk

− 1

r3jk

]
· sk +

ℏ2e2

M2c2
1

r3jk
sj · [rjk × (2pk − pj)] , (3.5.3)

where TD is the Dirac kinetic operator, M is the mass of particles, and pj is the momentum of the par-
ticle j. The first term corresponds to the Darwin term for the Coulomb interaction, which is related to
Zitterbewegung [399]; the second term corresponds to the retardation of the Coulomb interaction; the re-
maining terms are the spin-orbit and the spin-magnetic interactions [427–429]. In this section, the Coulomb
interaction and the Breit correction are considered for proton-proton electromagnetic interaction, where the
point-particle approximation is assumed. Hence, the electromagnetic EDF EEM is the LDA Coulomb-Breit
one, i.e., EEM [ρp] = ECH [ρp] + ECx [ρp] + Etot

Breit [ρp]. The argument of EEM is ρp, instead of ρch, since the
point-particle approximation is used, i.e., the finite spatial charge distributions of nucleons are neglected.

The Breit Hartree and exchange EDFs are [421,A13]

EH
Breit [ρp] = − πℏ2e2

2M2c2

∫
[ρp (r)]

2
dr, (3.5.4)

Ex
Breit [ρp] = +

3πℏ2e2

2M2c2

∫
[ρp (r)]

2
dr, (3.5.5)

respectively. Accordingly, the total correction is

Etot
Breit [ρp] = EH

Breit [ρp] + Ex
Breit [ρp]

= +
πℏ2e2

M2c2

∫
[ρp (r)]

2
dr. (3.5.6)
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Figure 3.5.1: (a) Energy densities of Etot
Breit, E

H
Breit, and Ex

Breit as functions of the proton density ρp. Here,
ρ0 = 0.16 fm−3 is the saturation density. For comparison, the Coulomb LDA exchange energy density is also
plotted. (b) Ratio of Etot

Breit to ELDA
Cx as a function of ρp. This figure is taken from Ref. [A5].

Figure 3.5.1(a) shows the energy densities (energy per volume) of the Breit total EDF Etot
Breit, the Breit

Hartree EDF EH
Breit, and the Breit exchange EDF Ex

Breit as functions of ρp. For comparison, the Coulomb LDA
exchange EDF ELDA

Cx is also plotted. Figure 3.5.1(b) shows the ratio Etot
Breit/ELDA

Cx as a function of ρp. InN = Z

nuclei, the proton density distribution at the central region is approximately ρp (r) ≈ ρ0/2 ≈ 0.08 fm−3.
Hence, the Breit correction to the total energy is expected to be approximately −4% of the Coulomb
exchange energy, i.e., approximately 300 keV for 40Ca.

3.5.2 Simple Estimations of Systematic Behaviours

In order to understand the systematic behaviours, these corrections to the total energy are estimated by
using the simple ansatz, as Sec. 3.4.2. The proton density distribution is assumed to be the hard sphere
[Eq. (3.4.28)]. Then, the Breit Hartree and exchange correlation energies read

EH
Breit = −π (ℏc)2 e2

2 (Mc2)
2 ρ

p
0Z

≃ −0.0080ZMeV, (3.5.7)

Ex
Breit = +

3π (ℏc)2 e2

2 (Mc2)
2 ρp0Z

≃ +0.024ZMeV. (3.5.8)
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Accordingly, the total correction is estimated as

Etot
Breit = EH

Breit + Ex
Breit

= +
π (ℏc)2 e2

(Mc2)
2 ρp0Z

≃ +0.016ZMeV. (3.5.9)

Compared with the estimations for the Coulomb Hartree and exchange energies [Eqs. (3.4.32) and
(3.4.33)], the absolute value of the Breit energy is 30 times smaller than the Coulomb exchange energy,
which is consistent with the estimation shown in Fig. 3.5.1.

In atoms, the Breit correction between electrons is the leading order correction to the Hamiltonian; the
vacuum polarization to the Coulomb potential is the next leading order to the Breit correction. On the
contrary, in the nuclear structure of atomic nuclei, comparing Eqs. (3.4.42) and (3.5.9), one can conclude
that the Breit correction between protons is comparable to the vacuum polarization between protons in light
nuclei, while the former is approximately one order of magnitude smaller to the latter in heavy nuclei.

3.5.3 Systematic Analysis

Next, the systematic calculation is performed. The numerical conditions are the same as in Sec. 3.3.
Table 3.5.1 shows the ground-state energies of the selected nuclei calculated with the Breit correction.

For comparison, those calculated only by using the Coulomb LDA exchange EDF and those with both the
Breit correction and the vacuum polarization are also shown. It can be seen that contribution of the Breit
correction to the total energy is 0.072MeV, 0.195MeV, and 0.813MeV for 16O, 48Ca, and 208Pb, respectively,
while that of the vacuum polarization is 0.090MeV, 0.401MeV, and 3.711MeV, respectively 5. As expected
in the previous section, in light nuclei, two contributions are the same order, while in heavy nuclei, the
vacuum polarization dominates.

Figure 3.5.2 shows the relative difference between the exchange energy calculated by using the Coulomb
or Coulomb-Breit LDA, ELDA

Cx , and that by the Coulomb GGA, EGGA
Cx ,

∆ECx =
ELDA

Cx − EGGA
Cx

EGGA
Cx

, (3.5.10)

as functions of A, where ECx includes the Coulomb interaction only for “Coulomb”, while it include the
both Coulomb interaction and the Breit correction for “Coulomb-Breit”. It is shown that |∆ECx| of both
the Coulomb interaction and the Coulomb-Breit one becomes smaller as A increases, and they reach the
constant value at A ≈ 100, while the difference between ∆ECx of the Coulomb interaction and that of the
Coulomb-Breit one is almost independent of A. This behaviour is consistent with the same comparison
in the relativistic Hartree-Fock calculation [430, 431], where the Coulomb GGA exchange energy, which is
expected to reproduce the Coulomb exact-Fock energy, corresponds to Eq. (4) in Ref. [431]. The correction
of the density gradient to the total energy, which are discussed in Sec. 3.4.3, is −0.212MeV, −0.367MeV,
and −0.870MeV for 16O, 48Ca, and 208Pb, respectively. Therefore, it can also be concluded that the Breit
correction and the density gradient effect are opposite to each other and the former is smaller in light nuclei,
while its absolute value is comparable to the latter in heavy nuclei. It is pointed out in Ref. [A13] that,
in heavy atoms, since the density of atoms gets larger, the density gradient effect on the total energy is
comparable with the absolute value of the Breit correction. In the case of atomic nuclei, the profile of the
proton density does not change much, while central density is proportional to Z/A, which decreases in heavy
nuclei, in contrast to atoms. Nevertheless, two effects become of comparable order. This may be because
the density gradient effect decreases rapidly as Z or A increases, as shown in Fig. 3.3.1, while Z/A does not
decrease rapidly, e.g., it is still approximately 0.4 in 208Pb. Hence, the ratio

∣∣Etot
Breit/ELDA

Cx

∣∣ does not change
drastically. Therefore, the mechanism of this behaviour in atomic nuclei is different from that in atoms.
Meanwhile, in both cases, as Z increases, the Breit correction and the density gradient effect become of
comparable order. Thus, it is indispensable to consider both effects on the Coulomb EDF, i.e., construct the
Coulomb-Breit GGA exchange EDF without empirical fitting.

5The tiny difference between vacuum polarization contributions shown in Sec. 3.4.3 and those shown here is due to the tiny
difference between ρp calculated with “the Coulomb GGA, the finite-size effects, and the vacuum polarization” and “the Coulomb
LDA, the Breit correction, and the vacuum polarization”. The tiny difference will not affect the discussion.
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At last the Breit correction is fitted to aZb as in Sec. 3.4.3. We obtain

Etot
Breit ≃ 0.0115Z0.972 MeV, (3.5.11)

which is compatible with the simple analysis [Eq. (3.5.9)].

3.5.4 Detailed Analysis of 208Pb

We shall perform a detailed analysis of 208Pb. The proton single-particle energies are shown in Table 3.5.2.
The Breit correction changes them by proton single-particle energies merely by 10–25 keV, while the vacuum
polarization changes approximately 100 keV. The Breit correction itself makes the Coulomb repulsion weaker.
The effective mean-field (Kohn-Sham) potential of the Breit correction is, nonetheless, repulsive-like potential.
This is because the retardation (the second term of Eq. (3.5.3)) does not contribute to the Hartree potential,
and eventually, the exchange potential, which makes the original interaction weaker effectively, is stronger
than the Hartree potential.

At last, the relative difference between the proton density distributions of 208Pb and that calculated by
using the LDA, ∆ρp defined by Eq. (3.3.7), are shown in Fig. 3.5.3. It is seen that at the central region
(r ≲ 6 fm), the Breit correction does not change the density, while it changes slightly at the surface region
(6 ≲ r ≲ 8 fm). However, the change is less than that of the vacuum polarization, even which changes ρp
just slightly, compared to the finite-size effects discussed in Fig. 3.4.4. Thus, it can be safely concluded that
neither the Breit correction nor the vacuum polarization changes significantly ρp.

3.6 Short Summary

In this chapter, we introduced the precise treatment of the Coulomb interaction to nuclear DFT. In Sec. 3.2,
four types of the Coulomb GGA exchange EDFs, B88, PW92, PBE, and PBEsol, were used to calculate
Coulomb exchange energies with the experimental charge density distribution. We found that the Coulomb
GGA exchange EDF reduces the error of the Coulomb exchange energy compared to the exact-Fock energy,
while these four EDFs do not give a significant difference.

In Sec. 3.3, the Coulomb GGA-PBE exchange EDF was taken as an example and was applied to the self-
consistent calculation of nuclear DFT. We found that once the parameter of the GGA-PBE exchange EDF,
µ, is multiplied by 1.25, it reproduces the Coulomb exact-Fock energy within 100 keV error. It was also found
that the Coulomb GGA-PBE exchange EDF gives almost the same single-particle energies and densities as
the Coulomb LDA one since the Coulomb GGA-PBE exchange EDF changes the Coulomb potential only in
the surface region.

In Sec. 3.4, on top of the Coulomb GGA exchange EDF, the finite-size effects of nucleons, i.e., the non-zero
spatial charge distribution of nucleons, and the vacuum polarization were taken into account for nuclear DFT.
In addition, the electromagnetic spin-orbit interaction was also considered perturbatively. It was found that
neutrons are also affected by the Coulomb interaction once the finite-size effects of nucleons are taken into
account, which was missing in the finite-size effects in the previous works. The proton and neutron finite-size
effects and the vacuum polarization contribute to the total energy of 208Pb in −8.2MeV, +1.2MeV, and
+3.7MeV, respectively, which are non-negligible compared to the desired accuracy (0.1MeV). By using all
these treatments together with the isospin symmetry breaking terms of the nuclear interaction, the mass
difference of the mirror nuclei pair 48Ca and 48Ni can be described within 300 keV difference.

In Sec. 3.5, the finite-light-speed correction to the Coulomb interaction, called Breit correction, was
considered in the LDA. It was found that its contribution to the total energy reaches approximately 0.8MeV

in 208Pb, which is less than the vacuum polarization, while it may not be negligible compared to the desired
accuracy. Its correction is almost the same absolute value but the opposite sign to the correction due to the
density gradient.
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Figure 3.5.2: Relative difference between the exchange energy calculated by using the Coulomb or Coulomb-
Breit LDA and that by the Coulomb GGA EDF as functions of A. This figure is taken from Ref. [A5].

Table 3.5.1: Ground-state energies calculated with the Breit correction (“Coulomb-Breit”). For comparison,
those calculated with the Coulomb LDA (“Coulomb”) and with both the Breit correction and the vacuum
polarization (“C.-B. & Vacuum Pol.”) are also shown. All units are in MeV. This table is taken from
Ref. [A5].

Nuclei Coulomb Coulomb-Breit C.-B. & Vacuum Pol.
4He −27.5263 −27.5134 −27.5050
16O −130.4800 −130.4084 −130.3188

40Ca −347.0848 −346.8798 −346.4702
48Ca −415.6148 −415.4201 −415.0190
48Ni −352.6388 −352.3274 −351.6077

100Sn −811.6641 −811.0990 −809.2893
132Sn −1103.0881 −1102.6076 −1100.9215
208Pb −1636.6149 −1635.8023 −1632.0911
310126 −2131.4146 −2130.1539 −2122.8658

Table 3.5.2: Single-particle energies of 208Pb calculated with the Breit correction (“Coulomb-Breit”). For
comparison, those calculated with the Coulomb LDA (“Coulomb”) and with both the Breit correction and
the vacuum polarization (“C.-B. & Vacuum Pol.”) are also shown. For more detail, see the text. All the data
are shown in MeV. This table is taken from Ref. [A5].

Orbital Coulomb Coulomb-Breit C.-B. & Vacuum Pol.
π1s1/2 −44.980 −44.955 −44.849

π1p3/2 −39.387 −39.363 −39.263

π1p1/2 −39.107 −39.084 −38.984

π1d5/2 −32.482 −32.460 −32.366

π1d3/2 −31.815 −31.793 −31.700

π2s1/2 −28.509 −28.489 −28.392

π1f7/2 −24.692 −24.672 −24.584

π1f5/2 −23.353 −23.333 −23.246

π2p3/2 −19.411 −19.393 −19.302

π2p1/2 −18.626 −18.608 −18.518

π1g9/2 −16.338 −16.320 −16.237

π1g7/2 −14.019 −14.002 −13.920

π2d5/2 −10.255 −10.240 −10.155

π2d3/2 −8.846 −8.832 −8.748

π3s1/2 −7.673 −7.658 −7.574

π1h11/2 −7.663 −7.648 −7.569
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Figure 3.5.3: Relative difference between proton density distributions for 208Pb calculated by the precise
treatments and that by the LDA EDF, ∆ρp, as functions of r.
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Chapter 4

Isospin Symmetry Breaking on
Ground-State Properties

In this chapter, the ISB terms of the nuclear interaction are introduced in the nuclear DFT. First, effects of
the ISB terms of the nuclear interaction on the nuclear EoS are discussed. Then, effects of the electromagnetic
interaction and that of the ISB terms of the nuclear interaction on nuclear properties are discussed. At last,
a novel method to determine the CSB strength of a nuclear EDF is proposed.

4.1 Current Status of Isospin Symmetry Breaking Terms of Nuclear
Interaction in Nuclear Density Functional Theory

In Sec. 1.5, it was explained that the isospin symmetry of the nuclear interaction is slightly broken. Since
both the electromagnetic interaction and the ISB terms of the nuclear interaction break the isospin sym-
metry of atomic nuclei, experimentally measured isospin symmetry breaking originates from both. In the
previous section, the electromagnetic interaction is treated in nuclear DFT as accurately as possible. In this
chapter, the effects of the ISB terms of the nuclear interaction and the electromagnetic interaction on nuclear
properties, i.e., sensitivity studies, are discussed.

The ISB terms of the nuclear interaction have been neglected in nuclear DFT. It was proposed in Ref. [175]
that neglecting the Coulomb exchange EDF reduces the chi-square deviation from experimental values, which
is mainly caused by the binding energy of 48Ni. According to Ref. [177], this is because the Coulomb exchange
energy and contribution of the CSB terms to the total energy cancel with each other, while it is an accidental
consequence with no microscopic reason for that. Following Refs. [175,177], one of the mass formulae, named
HFB-15 [432], also neglects the Coulomb exchange term to expect the cancellation between the Coulomb
exchange energy and the CSB energy.

Recently, the ISB terms have been considered explicitly on top of the Skyrme density functional theory
by Roca-Maza et al. [183, 433–436], by Bączyk et al. [185, 187, 188], and by Dong et al. [184, 186, 437, 438],
while in most of these works, the Coulomb exchange EDF is still treated in the LDA, and the fundamental
study on comparison with the electromagnetic and ISB interactions has not been done yet. Thus, in this
thesis, such fundamental studies will be focused on.

In this chapter, the Skyrme-like CSB and CIB interactions are considered. If one considers the power
counting proposed in Ref. [162], the CSB interaction is the next-leading order of the CIB interaction. If one
only considers the fact that the scattering lengths of the proton-proton interaction vpp, the neutron-neutron
interaction vnn, and the T = 1 channel of the proton-neutron interaction vT=1

pn are different [167], the CIB
and CSB interactions are, respectively, defined simply as

vCIB ≡ vpp + vnn
2

− vT=1
pn , (4.1.1)

vCSB ≡ vnn − vpp. (4.1.2)

In this chapter, we take the latter definition, and thus the CIB and CSB interactions are in the same order.
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In Sec. 4.2, the general form of the Skyrme-like CIB and CSB interactions are considered, which are
extensions of the original (isospin symmetric) Skyrme interaction given in Eq. (2.3.3). In Secs. 4.3 and 4.4,
only the s-wave of the Skyrme-like CIB and CSB interactions are considered, which corresponds to the t0 term
in Eq. (2.3.3). In Sec. 4.3, their effects on nuclear properties are compared with the effects of the Coulomb
interaction. The parameters u0, s0, z0, and y0 determined in Ref. [183] is used, where the definitions of these
parameters will be given later; in Sec. 4.4, the way to pin down the CSB strength s0 with using ab initio
calculation will be proposed.

Note that Secs. 4.2 and 4.3 are based on Ref. [A6] and Sec. 4.4 is based on Ref. [A4]. Not to make
confusion, the isospin symmetric part of the nuclear EDF and its energy density will be referred to as EIS

and EIS, respectively, which were simply referred to with the subscript “nucl” in the previous section.

4.2 Isospin Symmetry Breaking Energy Density Functional

In order to construct the ISB EDF on top of the Skyrme EDF, first, the Skyrme-like ISB interactions are
considered. As discussed in Sec. 1.5, the class IV nuclear interaction is known to be much weaker than the
whole nuclear interaction; hence, it will not be considered. The classes II and III nuclear interactions, i.e.,
CIB and CSB, respectively, are considered here. The CIB and CSB operators shown in Sec. 1.5 are denoted
by T12 = 3τz1τz2 − τ1 · τ2 and τz1 + τz2, respectively. The second term of T12 is, indeed, the isoscalar and
does not break any isospin symmetry, while the first term of T12 breaks charge independence. Actually, some
papers use T12, while some papers use τz1τz2 simply. Hence, here, the CIB operator is denoted in the general
form by aτ1τ2 + bτz1τz2. Then, the expectation values of the CIB and CSB operators are

⟨ij|aτ1τ2 + bτz1τz2|ij⟩ =


−3a− b T = 0,

a+ b T = 1, pp or nn,

a− b T = 1, pn,

(4.2.1)

⟨ij|aτ1τ2 + bτz1τz2|ji⟩ =

{
a+ b T = 1, pp or nn,

0 otherwise,
(4.2.2)

⟨ij|τz1 + τz2|ij⟩ = ⟨ij|τz1 + τz2|ji⟩ =


−2 i = p, j = p,

+2 i = n, j = n,

0 otherwise,

(4.2.3)

respectively.
Section 4.2.1 is devoted to the derivation of the Skyrme-like ISB EDF. In Sec. 4.2.2, it will be shown that

there is no criterion nor advantage to choose the specific form of the CIB operator, in the point of view of
the pion exchange and the nuclear EoS.

4.2.1 Skyrme Isospin Symmetry Breaking Energy Density Functional

The Skyrme interaction is the leading and the next-leading orders of the effective interaction with respect to
the momentum expansion. Hence, extending the Skyrme interaction to the ISB terms is not only just the
extension of the Skyrme formalism but also the general idea to extend the effective interaction to the ISB
terms. The Skyrme-like two-body ISB interactions are proposed as follows [183,185,188,A6]:

vCIB
Sky (r1, r2) =

{
u0 (1 + z0Pσ) δ (r1 − r2)

+
u1

2
(1 + z1Pσ)

[
k†2δ (r1 − r2) + δ (r1 − r2)k

2
]
+ u2 (1 + z2Pσ)k

† · δ (r1 − r2)k
}

× (aτ1 · τ2 + bτz1τz2) , (4.2.4)

vCSB
Sky (r1, r2) =

{
s0 (1 + y0Pσ) δ (r1 − r2)

+
s1
2
(1 + y1Pσ)

[
k†2δ (r1 − r2) + δ (r1 − r2)k

2
]
+ s2 (1 + y2Pσ)k

† · δ (r1 − r2)k
}

× τz1 + τz2
4

, (4.2.5)

76



CHAPTER 4. ISOSPIN SYMMETRY BREAKING ON GROUND-STATE PROPERTIES

which are analogues of the isospin-symmetric Skyrme interaction [Eq. (2.3.3)]. The spin-orbit term (an
analogue of W0 term in Eq. (2.3.3)) is not considered since the ISB terms are just corrections to the two-
body interaction, while the spin-orbit term gives just a small contribution compared to the other terms. In
addition, the three-body term (an analogue of t3 term in Eq. (2.3.3)) is not considered since the three-body
ISB interaction is not discussed yet even in the bare interaction. Accordingly, referring to the Skyrme energy
density for the isospin symmetric case [Eqs. (2.3.4) and (2.3.5)], the Skyrme ISB energy density reads

EH
CIB (r) =

u0

2

(
1 +

z0
2

)
(a+ b) (ρn − ρp)

2
+

1

4

[
u1

(
1 +

z1
2

)
+ u2

(
1 +

z2
2

)]
(a+ b) (ρn − ρp) (tn − tp)

− 1

16

[
3u1

(
1 +

z1
2

)
− u2

(
1 +

z2
2

)]
(a+ b) (ρn − ρp) (∆ ρn −∆ ρp)

− 1

16
(u1z1 + u2z2) (a+ b) (Jn − Jp)

2
, (4.2.6)

Ex
CIB (r) = −u0

2

(
1

2
+ z0

)
(a+ b)

(
ρ2n + ρ2p

)
− 1

4

[
u1

(
1

2
+ z1

)
− u2

(
1

2
+ z2

)]
(a+ b) (ρntn + ρptp)

+
1

16

[
3u1

(
1

2
+ z1

)
+ u2

(
1

2
+ z2

)]
(a+ b) (ρn ∆ ρn + ρp ∆ ρp)

+
1

16
(u1 − u2) (a+ b)

(
J2
n + J2

p

)
, (4.2.7)

EH
CSB (r) =

s0
4

(
1 +

y0
2

) (
ρ2n − ρ2p

)
+

1

8

[
s1

(
1 +

y1
2

)
+ s2

(
1 +

y2
2

)]
(ρntn − ρptp)

− 1

32

[
3s1

(
1 +

y1
2

)
− s2

(
1 +

y2
2

)]
(ρn ∆ ρn − ρp ∆ ρp)−

1

32
(s1y1 + s2y2)

(
J2
n − J2

p

)
, (4.2.8)

Ex
CSB (r) = −s0

4

(
1

2
+ y0

)(
ρ2n − ρ2p

)
− 1

8

[
s1

(
1

2
+ y1

)
− s2

(
1

2
+ y2

)]
(ρntn − ρptp)

+
1

32

[
3s1

(
1

2
+ y1

)
+ s2

(
1

2
+ y2

)]
(ρn ∆ ρn − ρp ∆ ρp) +

1

32
(s1 − s2)

(
J2
n − J2

p

)
. (4.2.9)
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Accordingly, the nuclear EoS [Eq. (2.3.11)] becomes

ESkyrme

A
(ρ, β)

=
EIS

Skyrme

A
(ρ, β)

+
u0

2

(
1 +

z0
2

)
(a+ b)β2ρ

+
1

4

3

5

(
3π2

2

)2/3 [
u1

(
1 +

z1
2

)
+ u2

(
1 +

z2
2

)]
(a+ b)β

(1 + β)
5/3 − (1− β)

5/3

2
ρ5/3

− u0

2

(
1

2
+ z0

)
(a+ b)

1 + β2

2
ρ

− 1

4

3

10

(
3π2

2

)2/3 [
u1

(
1

2
+ z1

)
− u2

(
1

2
+ z2

)]
(a+ b)

(1 + β)
8/3

+ (1− β)
8/3

2
ρ5/3

+
s0
4

(
1 +

y0
2

)
βρ+

1

8

3

10

(
3π2

2

)2/3 [
s1

(
1 +

y1
2

)
+ s2

(
1 +

y2
2

)] (1 + β)
8/3 − (1− β)

8/3

2
ρ5/3

− s0
4

(
1

2
+ y0

)
βρ− 1

8

3

10

(
3π2

2

)2/3 [
s1

(
1

2
+ y1

)
− s2

(
1

2
+ y2

)]
(1 + β)

8/3 − (1− β)
8/3

2
ρ5/3

≃

{
3

5

ℏ2

2m

(
3π2

2

)2/3

ρ2/3 +
1

8
[3t0 − (a+ b)u0 (1 + 2z0)] ρ

+
3

80

(
3π2

2

)2/3

[3t1 + t2 (5 + 4x2)− (a+ b) (u1 (1 + 2z1)− u2 (1 + 2z2))] ρ
5/3 +

t3
16

ρα+1

}

+

{
1

8
s0 (1− y0) ρ+

1

20

(
3π2

2

)2/3

(s1 (1− y1) + 3s2 (1 + y2)) ρ
5/3

}
β

+

{
1

3

ℏ2

2m

(
3π2

2

)2/3

ρ2/3 − 1

8
[t0 (1 + 2x0)− 3 (a+ b)u0] ρ

− 1

24

(
3π2

2

)2/3

[3t1x1 − t2 (4 + 5x2)− (a+ b) (u1 (4− z1) + u2 (8 + 7z2))] ρ
5/3

− 1

48
t3 (1 + 2x3) ρ

α+1

}
β2, (4.2.10)
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where EIS
Skyrme/A is the EoS given in Eq. (2.3.11). Consequently, EoS parameters J , L, Ksym, and K∞ read

J =
1

3

ℏ2

2m

(
3π2

2

)2/3

ρ
2/3
0 − 1

8
[t0 (1 + 2x0)− 3 (a+ b)u0] ρ0

− 1

24

(
3π2

2

)2/3

[3t1x1 − t2 (4 + 5x2)− (a+ b) (u1 (4− z1) + u2 (8 + 7z2))] ρ
5/3
0

− 1

48
t3 (1 + 2x3) ρ

α+1
0 , (4.2.11)

L =
2

3

ℏ2

2m

(
3π2

2

)2/3

ρ
2/3
0 − 3

8
[t0 (1 + 2x0)− 3 (a+ b)u0] ρ0

− 5

24

(
3π2

2

)2/3

[3t1x1 − t2 (4 + 5x2)− (a+ b) (u1 (4− z1) + u2 (8 + 7z2))] ρ
5/3
0

− 1

16
t3 (1 + 2x3) (α+ 1) ρα+1

0 , (4.2.12)

Ksym = −2

3

ℏ2

2m

(
3π2

2

)2/3

ρ
2/3
0

− 5

12

(
3π2

2

)2/3

[3t1x1 − t2 (4 + 5x2)− (a+ b) (u1 (4− z1) + u2 (8 + 7z2))] ρ
5/3
0

− 3

16
t3 (1 + 2x3)α (α+ 1) ρα+1

0 , (4.2.13)

K∞ = −6

5

ℏ2

2m

(
3π2

2

)2/3

ρ
2/3
0

+
3

8

(
3π2

2

)2/3

[3t1 + t2 (5 + 4x2)− (a+ b) (u1 (1 + 2z1)− u2 (1 + 2z2))] ρ
5/3
0

+
9

16
t3α (α+ 1) ρα+1

0 , (4.2.14)

respectively. The pressure of nuclear matter is

P (ρ, β) ≃

{
2

5

ℏ2

2m

(
3π2

2

)2/3

ρ5/3 +
1

8
[3t0 − (a+ b)u0 (1 + 2z0)] ρ

2

+
1

16

(
3π2

2

)2/3

[3t1 + t2 (5 + 4x2)− (a+ b) (u1 (1 + 2z1)− u2 (1 + 2z2))] ρ
8/3

+
t3
16

(α+ 1) ρα+2

}

+

{
1

8
s0 (1− y0) ρ

2 +
1

12

(
3π2

2

)2/3

(s1 (1− y1) + 3s2 (1 + y2)) ρ
8/3

}
β

+

{
2

9

ℏ2

2m

(
3π2

2

)2/3

ρ5/3 − 1

8
[t0 (1 + 2x0)− 3 (a+ b)u0] ρ

2

− 5
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(
3π2

2

)2/3

[3t1x1 − t2 (4 + 5x2)− (a+ b) (u1 (4− z1) + u2 (8 + 7z2))] ρ
8/3

− 1

48
(α+ 1) t3 (1 + 2x3) ρ

α+2

}
β2. (4.2.15)

The equation which the saturation density ρ0 satisfies [Eq. (2.3.17)] also changes as

2

5

ℏ2

2m

(
3π2

2

)2/3

ρ
5/3
0 +

1

8
[3t0 − (a+ b)u0 (1 + 2z0)] ρ

2
0

+
1

16

(
3π2

2

)2/3

[3t1 + t2 (5 + 4x2)− (a+ b) (u1 (1 + 2z1)− u2 (1 + 2z2))] ρ
8/3
0 +

t3
16

(α+ 1) ρα+2
0 = 0.

(4.2.16)
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4.2.2 Isospin Symmetry Breaking Contribution to Nuclear Equation of State

This section is devoted to the ISB contribution to the nuclear EoS. Before going the discussion of the nuclear
EoS, three forms of CIB operator—the simple form τz1τz2, the isotensor form T12 = τ1 · τ2 − 3τz1τz2, and
the general form aτ1 ·τ2− bτz1τz2—are compared. These three forms are widely used [153,165,174,183,185].
The CIB term originates from the mass difference between neutral pions π0 and charged ones π±, whose
masses are denoted by mπ0 and mπ± , respectively. The one-pion exchange potential reads [28,29]

vOPEP (mπ, q) ∼ − (σ1 · q) (σ2 · q)
m2

π + q2
τ1 · τ2, (4.2.17)

where mπ is the averaged pion mass. If the mass difference between neutral pions and charged ones is
explicitly considered, the difference between the one-pion exchange potential propagated by the neutral pion
π0 and that by the charged pion π± reads

vOPEP (mπ0 , q)− vOPEP (mπ± , q)

∼ − (σ1 · q) (σ2 · q)
m2

π0 + q2
τz1τz2 +

(σ1 · q) (σ2 · q)
m2

π± + q2
τ+1 τ−2 + τ−1 τ+2

2

= − (σ1 · q) (σ2 · q)
m2

π0 + q2
τz1τz2 +

(σ1 · q) (σ2 · q)
m2

π0 −∆m2
π + q2

τ+1 τ−2 + τ−1 τ+2
2

= − (σ1 · q) (σ2 · q)
m2

π0 + q2
τz1τz2 +

(σ1 · q) (σ2 · q)
m2

π0 + q2
m2

π0 + q2

m2
π0 −∆m2

π + q2
τ+1 τ−2 + τ−1 τ+2

2

= − (σ1 · q) (σ2 · q)
m2

π0 + q2
τz1τz2 +

(σ1 · q) (σ2 · q)
m2

π0 + q2

(
1 +

∆m2
π

m2
π0 −∆m2

π + q2

)
τ+1 τ−2 + τ−1 τ+2

2

= − (σ1 · q) (σ2 · q)
m2

π0 + q2
τ1 · τ2 +

(σ1 · q) (σ2 · q)
m2

π0 + q2
∆m2

π

m2
π0 −∆m2

π + q2
τ+1 τ−2 + τ−1 τ+2

2

= − (σ1 · q) (σ2 · q)
m2

π0 + q2
τ1 · τ2 +

(σ1 · q) (σ2 · q)
m2

π0 + q2
∆m2

π

m2
π0 −∆m2

π + q2
(τ1 · τ2 − τz1τz2) , (4.2.18)

where ∆m2
π = m2

π0 −m2
π± . The second term corresponds to the CIB term. Therefore, a = 1 and b = −1 is

derived from the one-pion exchange potential.

Since the ISB contributions to nuclear EoS in the case of the zero-range interaction are shown before, here,
the ISB contributions to nuclear EoS in the case of a finite-range interaction are considered with referring to
the nuclear EoS for isospin symmetric finite-range interactions [439]. The Gogny interaction [376] is taken
as an example. The original Gogny interaction contains only the isospin symmetric part vISG , whose form
is [376]

vISG (r1, r2) =
2∑

j=1

(
W IS

j +BIS
j Pσ −HIS

j Pτ −M IS
j PσPτ

)
exp

(
− r212
µIS2
j

)

+ t (1 + xPσ) δ (r12)

[
ρ

(
r1 + r2

2

)]α
+ iW0σ · k† × δ (r12)k, (4.2.19)

where r12 = r1 − r2 and r12 = |r12|. The Gogny interaction is extended to the ISB terms as follows:

vCIB
G (r1, r2) =

2∑
j=1

(
WCIB

j +BCIB
j Pσ

)
exp

(
− r212
µCIB2
j

)
(aτ1 · τ2 + bτz1τz2) , (4.2.20)

vCSB
G (r1, r2) =

2∑
j=1

(
WCSB

j +BCSB
j Pσ

)
exp

(
− r212
µCSB2
j

)
τz1 + τz2

4
. (4.2.21)

Here, Heisenberg (Pτ ) and Majorana (PσPτ ) terms are neglected since the isospin exchange in the ISB terms
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is rather complicated. Accordingly, the CIB and CSB contributions to the nuclear EoS are, respectively,

ECIB

A
=

a+ b

2π1/2

2∑
j=1

1

p2Fp + p2Fn

×

{
2WCIB

j +BCIB
j

6
µCIB3
j

(
p3Fp − p3Fn

)2 − WCIB
j + 2BCIB

j

µCIB3
j

[
F
(
pFpµ

CIB
j

)
+ F

(
pFnµ

CIB
j

)]}
,

(4.2.22)

ECSB

A
=

1

4π1/2

2∑
j=1

1

p2Fp + p2Fn

×

{
2WCSB

j +BCSB
j

6
µCSB3
j

(
p6Fn − p6Fp

)
−

WCSB
j + 2BCSB

j

µCSB3
j

[
F
(
pFnµ

CSB
j

)
− F

(
pFpµ

CSB
j

)]}
,

(4.2.23)

where
F (x) =

1

x3

[
e−x2 (

x2 − 2
)
+ 2− 3a2 +

√
πx3 erf (x)

]
(4.2.24)

and erf is the error function
erf (x) =

2√
π

∫ x

0

e−t2 dt. (4.2.25)

The isotensor operator has an advantage in that its eigenvalue for T = 0 state is zero. The operator
τ1 ·τ2− τz1τz2, i.e., a = 1 and b = −1, has an advantage that it originates from the pion-exchange formalism,
while it also has a disadvantage that all the CIB contribution vanishes.

Therefore, in general, any form of the CIB operator does not have a strong advantage, while the difference
of these operators is absorbed in the isospin symmetric part. Thus, whichever form is chosen, nothing changes,
in principle. Hereinafter, the simple form τz1τz2/2, i.e., a = 0 and b = 1/2, will be used for the CIB operator.

4.3 Sensitivity Studies on Coulomb and Isospin Symmetry Breaking
Terms of Nuclear Interactions

4.3.1 Numerical Setup

As in Chap. 3, the self-consistent Skyrme Hartree-Fock calculation is performed by using the code
skyrme_rpa [408]. The pairing interaction is not considered and the spherical symmetry is assumed,
since we shall calculate only doubly-magic nuclei. In order to calculate the radial wave function, a mesh with
an interval 0.1 fm in 0 ≤ r ≤ 15 fm is used.

Electromagnetic Part

For the electromagnetic part EEM, we start from the Hartree-Fock-Slater approximation of the Coulomb
interaction, i.e., the Coulomb LDA exchange EDF for ECx with EVP ≡ 0 and EEMSO ≡ 0, together with the
point-particle approximation ρch ≡ ρp. On top of this, the precise treatments of the Coulomb interaction
proposed in Chap. 3, i.e., the GGA, the proton finite-size effect, the neutron finite-size effect, and the vacuum
polarization, are introduced step by step. The abbreviations “NoEx”, “LDA”, “GGA”, “p-fin”, “pn-fin”, and
“All” are used for

ENoEx
EM = ECH [ρp] , (4.3.1)

ELDA
EM = ECH [ρp] + ELDA

Cx [ρp] , (4.3.2)

EGGA
EM = ECH [ρp] + EGGA

Cx [ρp] , (4.3.3)

Ep-fin
EM = ECH

[
ρp-finch

]
+ EGGA

Cx

[
ρp-finch

]
, (4.3.4)

Epn-fin
EM = ECH

[
ρpn-finch

]
+ EGGA

Cx

[
ρpn-finch

]
, (4.3.5)

EAll
EM = ECH

[
ρpn-finch

]
+ EGGA

Cx

[
ρpn-finch

]
+ EVP

[
ρpn-finch

]
, (4.3.6)
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respectively, as denoted in Table 3.4.1. Here, ECH, ELDA
Cx , EGGA

Cx , and EVP denote the Coulomb Hartree,
the Coulomb LDA exchange, the Coulomb GGA exchange, and the vacuum polarization EDFs, respectively.
Here, the Coulomb GGA-PBE exchange EDF with λ = 1.25 is used for EGGA

Cx . The charge densities ρp-finch
and ρpn-finch are defined by

ρ̃p-finch (q) = G̃Ep

(
q2
)
ρ̃p (q) , (4.3.7)

ρ̃pn-finch (q) = G̃Ep

(
q2
)
ρ̃p (q) + G̃En

(
q2
)
ρ̃n (q)

= ρ̃ch (q) , (4.3.8)

the former and the latter of which, respectively, correspond to the charge density with only proton finite-size
and both proton and neutron finite-size effects. On top of “All”, we consider the electromagnetic spin-orbit
term EEMSO perturbatively, which is abbreviated as “All + EMSO”.

Nuclear Part

As for the nuclear interaction, when the ISB terms are not considered, the SAMi EDF [409] or the SAMi-J
EDF family [80] is adopted, while the SAMi-ISB EDF [183] is adopted when we consider the ISB terms. The
SAMi EDF is a Skyrme EDF without ISB terms, whose parameters are determined to reproduce:

1. the binding energies of 40Ca, 48Ca, 90Zr, 132Sn, and 208Pb;

2. the charge radii of 40Ca, 48Ca, 90Zr, and 208Pb;

3. the spin-orbit splittings of proton 1g and 2f levels in 90Zr and 208Pb;

4. the Landau-Migdal parameters at saturation density are fixed to G0 = 0.15 and G′
0 = 0.35.

Here, the Landau-Migdal parameters are related to the particle-hole interaction derived by the second func-
tional derivative of the Hamiltonian density with respect to the density, whose definitions are left for Ref. [440].

It is known that the SAMi EDF gives a better description of spin-isospin properties, such as the isobaric
analogue resonance. The SAMi-J EDF family is constructed to the same criteria as the SAMi EDF, while its
symmetry energy J is changed by hand to study the symmetry energy dependence of nuclear properties. The
parameters of the SAMi-J family are shown in Table 4.3.1. Accordingly, the symmetry parameter L is also
changed. The values of J and L for the SAMi EDF and the SAMi-J EDF family are shown in Table 4.3.2.

The SAMi-ISB EDF is a similar EDF with the SAMi EDF, while all the parameters, including the CIB
and the CSB parameters u0 and s0, are fitted altogether. Only the lowest-order (s-wave) ISB terms are
considered, i.e.,

vCIB
Sky (r1, r2) = u0 (1 + z0Pσ) δ (r1 − r2)

τz1τz2
2

, (4.3.9)

vCSB
Sky (r1, r2) = s0 (1 + y0Pσ) δ (r1 − r2)

τz1 + τz2
4

. (4.3.10)

Accordingly, the EDFs for CIB and CSB terms, respectively, reads

ECIB [ρp, ρn] =
u0 (1− z0)

8

∫ {
[ρn (r)]

2
+ [ρp (r)]

2
}

dr − u0 (2 + z0)

4

∫
ρn (r) ρp (r) dr, (4.3.11)

ECSB [ρp, ρn] =
s0 (1− y0)

8

∫ {
[ρn (r)]

2 − [ρp (r)]
2
}

dr, (4.3.12)

where y0 and z0 are fixed to −1 in order to choose the spin-singlet (S = 0) channel. On top of the criteria
of the SAMi EDF, these parameters are determined to reproduce:

5. the difference between EoS of symmetric nuclear matter calculated by using the Brueckner-Hartree-Fock
calculation with AV18 (with all the ISB) and that with AV14 (without any ISB);

6. the isobaric analog energy of 208Pb, i.e., the difference between the energy of T+

∣∣GS (208Pb)
〉
and that

of
∣∣GS (208Pb)

〉
.
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Table 4.3.1: Parameters of nuclear EDFs used in this thesis. The column labelled “J2 term” shows whether
an EDF includes terms proportional to J2 (or J2

τ ) terms in Eqs. (2.3.4) and (2.3.5). It is shown in Ref. [A6]
that inclusion of higher order digits sometimes changes total energies in several hundred keV or even several
MeV; hence, higher order digits are shown for SAMi, SAMi-J family, and SAMi-ISB EDFs.

EDF Ref. t0 (MeV fm3) t1 (MeV fm5) t2 (MeV fm5) t3 (MeV fm3+3α)
SAMi [409,A6] −1877.746 475.5856 −85.20021 10219.58

SAMi-ISB [183,A6] −2098.25926057 394.74785380 −136.42542569 11995.53445425

SAMi-J27 [80] −1876.09248747 481.08696436 −75.70694486 10184.55799817

SAMi-J28 [80] −1870.30493361 476.24730879 −84.16554935 10177.74833404

SAMi-J29 [80] −1862.57379772 471.27736305 −92.75732183 10161.14697600

SAMi-J30 [80] −1853.89031724 466.11918413 −101.44789804 10139.48620155

SAMi-J31 [80] −1844.27720624 460.72707670 −110.20019054 10112.38573844

SAMi-J32 [80] −1833.82867579 455.05556386 −118.96632705 10079.73609044

SAMi-J33 [80] −1822.72219560 449.07889064 −127.70223044 10041.98183482

SAMi-J34 [80] −1811.23828845 442.79531241 −136.37494217 10000.27971787

SAMi-J35 [80] −1799.52785064 436.22855422 −144.97201879 9955.44893745

SLy4 [58] −2488.91 486.82 −546.39 13777.0

SLy5 [58] −2484.88 483.13 −549.40 13763.0

SkM* [441] −2645.0 410.0 −135.0 15595.0

EDF x0 x1 x2 x3 α

SAMi 0.3197176 −0.5319419 −0.0137857 0.6883226 0.2561388

SAMi-ISB 0.24191448 −0.17115663 −0.47023944 0.32083902 0.22330040

SAMi-J27 0.48223516 −0.55796747 0.21306627 1.00219029 0.25463434

SAMi-J28 0.37750965 −0.53458574 0.00738936 0.79593525 0.25756335

SAMi-J29 0.23683612 −0.51022743 −0.16371407 0.52396994 0.26095431

SAMi-J30 0.10253195 −0.48490711 −0.30801242 0.26024444 0.26456747

SAMi-J31 −0.02370875 −0.45860777 −0.43125103 0.00764843 0.26837237

SAMi-J32 −0.14068697 −0.43132816 −0.53761676 −0.23166347 0.27231589

SAMi-J33 −0.24900560 −0.40306823 −0.63028346 −0.45865169 0.27633327

SAMi-J34 −0.34917314 −0.37382403 −0.71170996 −0.67399136 0.28034532

SAMi-J35 −0.44390823 −0.34355719 −0.78386127 −0.88242707 0.28432299

SLy4 0.834 −0.344 −1.000 1.354 0.16666667

SLy5 0.778 −0.328 −1.000 1.267 0.16666667

SkM* 0.09 0.0 0.0 0.0 0.16666667

EDF W0 (MeV fm5) W ′
0 (MeV fm5) s0 (MeV fm3) u0 (MeV fm3) y0 z0 J2 term

SAMi 137.0603 42.32571 0.0 0.0 0 0 Yes
SAMi-ISB 294.78455088 −367.38585650 −26.3 25.8 −1 −1 Yes
SAMi-J27 81.93712451 180.37249880 0.0 0.0 0 0 Yes
SAMi-J28 114.40184753 105.18198737 0.0 0.0 0 0 Yes
SAMi-J29 150.86952848 20.19905357 0.0 0.0 0 0 Yes
SAMi-J30 185.74392820 −60.95480119 0.0 0.0 0 0 Yes
SAMi-J31 216.87450141 −133.57040757 0.0 0.0 0 0 Yes
SAMi-J32 241.82278955 −192.32693655 0.0 0.0 0 0 Yes
SAMi-J33 259.33599380 −234.96445838 0.0 0.0 0 0 Yes
SAMi-J34 269.45212910 −261.61292885 0.0 0.0 0 0 Yes
SAMi-J35 273.60818500 −275.62529456 0.0 0.0 0 0 Yes
SLy4 123.0 123.0 0.0 0.0 0 0 No
SLy5 126.0 126.0 0.0 0.0 0 0 No
SkM* 130.0 130.0 0.0 0.0 0 0 No
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Table 4.3.2: The saturation density ρ0, the symmetry energy J , and its slope L of the SAMi EDF and the
SAMi-J EDF family. This table is taken from Ref. [A6].

EDF ρ0 (fm−3) J (MeV) L (MeV)
SAMi-J27 0.1595 27.000 30.000

SAMi-J28 0.1587 28.000 39.742

SAMi-J29 0.1579 29.000 51.604

SAMi-J30 0.1571 30.000 63.178

SAMi-J31 0.1563 31.000 74.368

SAMi-J32 0.1555 32.000 85.101

SAMi-J33 0.1548 33.000 95.407

SAMi-J34 0.1542 34.000 105.307

SAMi-J35 0.1537 35.000 114.954

SAMi 0.1587 28.126 43.558

SAMi-noISB 0.1613 30.827 50.095

SAMi-ISB 0.1597 31.434 52.362

Table 4.3.3: List of nuclear EDFs used in this thesis. Here, the SAMi-noISB refers EIS of the SAMi-ISB
EDF. The parameters of the all EDFs shown here are summarized in Table 4.3.1. As for the SAMi-J family,
x refers to 27, 28, . . . , 35.

EDF EIS ECIB ECSB

SAMi SAMi None None
SAMi-noISB SAMi-noISB None None
SAMi-CIB SAMi-noISB u0 = 26.3MeV fm3 None
SAMi-CSB SAMi-noISB None s0 = −25.8MeV fm3

SAMi-ISB SAMi-noISB u0 = 26.3MeV fm3 s0 = −25.8MeV fm3

SAMi-Jx SAMi-Jx None None
SLy4 SLy4 None None
SLy5 SLy5 None None
SkM* SkM* None None

Criterion 5 constrains u0. Eventually, the parameters of the SAMi-ISB EDF are given in Table 4.3.1. Because
all the parameters are fitted altogether, the parameters for EIS in the SAMi-ISB EDF are different from those
in the SAMi EDF, as one can see in Table 4.3.1. Not to make any confusion, EIS for the SAMi-ISB EDF is
called the SAMi-noISB EDF. These abbreviations are summarized in Table 4.3.3.

In this chapter, in order to see how the CIB term affects nuclear properties, on top of the SAMi-noISB
EDF, the CIB strength u0 is gradually changed from 0MeV fm3 to 50MeV fm3 with keeping the CSB strength
s0 = 0MeV fm3. Also, to see the effects of the CSB term, on top of the SAMi-noISB EDF, the CSB strength
−s0 is gradually changed from 0MeV fm3 to 50MeV fm3 with keeping the CIB strength u0 = 0MeV fm3.

Before closing this section, let me discuss the parameters y0 and z0. There are two Skyrme ISB EDF other
than the SAMi-ISB EDF: One is by Bączyk et al. [185, 187] and the other is by Dong et al. [184, 437, 438].
Both works consider only the s-wave interaction similar to the SAMi-ISB EDF. The former uses y0 = z0 = 0

and the isotensor operator (a = 1 and b = 3) for the CIB operator with the Hartree approximation; the
latter uses y0 = z0 = 1, while the Wigner interaction is not considered, i.e., vISB ∼ Pσ. In the case of the
CSB interaction, whichever approximation is used, the Hartree approximation or the Hartree-Fock one, y0
only gives a scaling of s0 since the density dependence of EH

CSB and that of Ex
CSB are identical. In the case

of the CIB interaction, if one uses the Hartree approximation, z0 gives a scaling of u0 and does not change
any results; if one uses the Hartree-Fock approximation, z0 gives a difference. The CIB Fock energy density,
Ex
CIB, is the isospin symmetric, and thus this difference can be absorbed fully in the IS Fock energy density

Ex
IS.
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4.3.2 Neutron-Skin Thickness

The neutron-skin thickness ∆Rnp is defined by the difference between the neutron radius Rn and the proton
one Rp,

∆Rnp := Rn −Rp, (4.3.13)

where Rτ (τ = n, p) is the root-mean-square radius

R2
τ =

∫
ρτ (r) r

2 dr. (4.3.14)

It is known that neutron-skin thickness predicted by EDFs are strongly correlated to the symmetry parameter
L associated with the EDFs [59,442,443]. This is because Rp obtained by EDFs are almost identical because
of fitting protocols, while Rn are not; hence, different EDF gives different Rn. As shown in Eq. (1.3.4),
the pressure is proportional to L in the lowest order, and larger pressure makes neutron distribution extend
more. Accordingly, larger L gives larger Rn and therefore ∆Rnp. Indeed, Ref. [59] shows that ∆Rnp has a
strong linear correlation with L.

Coulomb Effects on Neutron-Skin Thickness

First, we shall show how the different treatment of the Coulomb interaction affects the neutron-skin thickness.
In order to see the L dependence of ∆Rnp, the SAMi EDF and the SAMi-J EDF family are used to calculate
∆Rnp of 16O, 40Ca, 48Ca, 48Ni, and 208Pb. The different Coulomb treatments shown in Eqs. (4.3.1)–(4.3.6)
are used, and the ISB terms are not considered. The obtained ∆Rnp are fitted to

∆Rnp = a+ bL, (4.3.15)

where fitting parameters are shown in Table 4.3.4. Panels (a) of Figs. 4.3.1–4.3.5 show the ∆Rnp as functions
of L, and panels (b) show deviations from ∆Rnp calculated with the Coulomb LDA. In Figs. 4.3.3 and 4.3.5,
experimental data and their error for 48Ca (0.168+0.025

−0.028 fm [444]) and 208Pb (∆Rnp = 0.211+0.054
−0.063 fm [73],

0.283 ± 0.071 fm [92], and the reanalyzed data of PREX-II experiment ∆Rnp = 0.190 ± 0.020 fm [94]) are
shown as vertical arrows. The experimental value of ∆Rnp for 40Ca is ∆Rnp = −0.010+0.022

−0.023 fm [444], which
is not shown in Fig. 4.3.2 due to the range.

In N = Z nuclei, if neither the Coulomb interaction nor the ISB terms of the nuclear interaction are
considered, ρn ≡ ρp and Rn = Rp, i.e., ∆Rnp = 0, holds for whatever value of L due to the isospin
symmetry. Once the Coulomb interaction is considered, because of the Coulomb repulsion, the proton
density distribution extends. Accordingly, ∆Rnp becomes negative, which means N = Z nuclei have proton
skins. Since non-zero ∆Rnp in N = Z nuclei originates from the Coulomb interaction, ∆Rnp hardly depends
on L, and the order of b is, indeed, 10−5 MeV fm−1, which is two orders of magnitude smaller than N > Z

nuclei.
In N > Z nuclei, even if only the isospin symmetric nuclear interaction is considered, i.e., neither the

Coulomb interaction nor the ISB terms of the nuclear interaction are considered, Rn can be larger than Rp,
for instance, Rn = 3.594 fm and Rp = 3.380 fm for 48Ca, and ∆Rnp depends on properties of the nuclear
interaction, such as L. If one sees the mirror nuclei pair, such as 48Ca and 48Ni, ρp (ρn) of an atomic nucleus
is identical to ρn (ρp) of its mirror nucleus. Hence, the neutron-skin thickness has the same absolute value
but with the opposite signs. Once the Coulomb interaction is considered, ρp extends slightly, while ρn hardly
changes. As a result, ∆Rnp, i.e., a and b, for 48Ni deviates from −∆Rnp, i.e., −a and −b, for 48Ca slightly.

It can also be found that different treatments of the Coulomb interaction give almost the same L depen-
dence, i.e., b, while the absolute value of a changes slightly. As discussed in Chap. 3, different treatments of
the Coulomb interaction gives the similar ρp and ρn, and gross structures of ρp and ρn are mainly determined
by EIS. Therefore, the absolute value of Rp, and consequently ∆Rnp, change by less than 0.01 fm due to
the different treatment of the Coulomb interaction, while ρn, i.e., Rn, does not change, and accordingly a

changes. In addition, different treatment of the Coulomb interaction mainly changes the surface region of
ρp. It was shown in Ref. [445] that the surface structure of the density hardly changes the L dependence of
∆Rnp. Consequently, b does not change.

Next, we focus on the change of a in more detail. The Coulomb exchange interaction effectively makes
the Coulomb repulsion weaker. Therefore, once the Coulomb exchange interaction is neglected (see NoEx),
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Table 4.3.4: Parameters a and b in Eq. (4.3.15). See the text for more detail. This table is taken from
Ref. [A6].

Nuclei Coulomb a (fm) b (MeV fm−1)
16O NoEx −0.029353 0.00001469

LDA −0.023886 0.00001274

GGA −0.023782 0.00001283

p-fin −0.021061 0.00001097

pn-fin −0.021098 0.00001192

All −0.021278 0.00001192
40Ca NoEx −0.053942 0.00003132

LDA −0.048232 0.00002847

GGA −0.048001 0.00002903

p-fin −0.044467 0.00002712

pn-fin −0.044467 0.00002712

All −0.044879 0.00002843
48Ca NoEx 0.104330 0.00144605

LDA 0.108463 0.00144801

GGA 0.108747 0.00144866

p-fin 0.111525 0.00144897

pn-fin 0.111554 0.00144857

All 0.111254 0.00144857
48Ni NoEx −0.238189 −0.00129505

LDA −0.229357 −0.00130689

GGA −0.229163 −0.00130595

p-fin −0.223682 −0.00131776

pn-fin −0.223767 −0.00131670

All −0.224293 −0.00131690
208Pb NoEx 0.069984 0.00167210

LDA 0.073847 0.00168003

GGA 0.074152 0.00168124

p-fin 0.077225 0.00168631

pn-fin 0.077268 0.00168528

All 0.076585 0.00168461

the Coulomb repulsion becomes effectively stronger and thus ρp extends. Accordingly, Rp becomes larger;
that is, ∆Rnp becomes smaller. Even if the Coulomb exchange EDF is changed from LDA to GGA, both Rp

and Rn change in a similar order, as discussed in Chap. 3. Hence, ∆Rnp hardly changes. The proton finite-
size effect makes the Coulomb repulsion weaker. Thus, ρp shrinks, and accordingly, Rp becomes smaller. In
contrast, the vacuum polarization makes the Coulomb repulsion stronger. Thus, ρp extends, and accordingly,
Rp becomes larger. As discussed in Chap. 3, the proton finite-size effect and the vacuum polarization change
Rn less than Rp. Hence, they change ∆Rnp larger and smaller, respectively.

The neutron finite-size effect is quite small. Thus, it does not matter for discussion of ∆Rnp, while its
behaviour can be understood as follows: Once the neutron finite-size effect is considered, neutrons are also
affected by the Coulomb interaction. In order to discuss the effect of the neutron finite size on ∆Rnp, the
effective charge formalism is introduced to implement the finite-size effect simply. Here, the effective charge
of protons and neutrons are denoted by eeffp > 0 and eeffn < 0, respectively, where the negative effective
charge of neutrons comes from the fact that the mean-square radius of neutron charge distribution is negative.
Since the neutron effective charge is negative, proton-neutron attractive interaction is induced. Therefore, it
seems that ∆Rnp can become smaller. However, at the same time, ρch shrinks, and accordingly, VCp becomes
larger, i.e., the Coulomb potential for protons becomes more repulsive than only with the proton finite-size
effect, as shown in Fig. 3.4.3. The Coulomb potential for neutron VCn is also repulsive in the internal region,
while it is attractive in the surface region, as seen in Fig. 3.4.3(a). Eventually, the Coulomb potential for
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Figure 4.3.1: (a) Neutron-skin thickness ∆Rnp of 16O as functions of L calculated by using different treat-
ments of the Coulomb interaction. (b) Difference between neutron-skin thickness and that calculated with
the Coulomb LDA. This figure is taken from Ref. [A6].

neutron makes ρn extended and Rn larger. Therefore, the neutron-finite size effects on ∆Rnp is complicated,
while, in total, the change of ∆Rnp due to the neutron finite-size effect is invisible.

At last, we shall estimate how large different treatments of the Coulomb interaction affect the estimation
of L value by using ∆Rnp in 208Pb. Since the linear correlation is almost perfect (r ≈ 1.000), uncertainty due
to the fitting is neglected. The PREX-II value of ∆Rnp = 0.283±0.071 fm [92] is taken as an example. If one
uses the Coulomb LDA exchange EDF, the estimated value of L is L = 124± 42MeV by using Eq. (4.3.13)
and Table 4.3.4, while if one considers all the corrections to the Coulomb interaction, the estimated value
of L is L = 123 ± 42MeV. Therefore, the treatment of the Coulomb interaction does not matter for the
estimation of L.

87



CHAPTER 4. ISOSPIN SYMMETRY BREAKING ON GROUND-STATE PROPERTIES

−0.058

−0.056

−0.054

−0.052

−0.050

−0.048

−0.046

−0.044

−0.042

−0.040

−0.038

∆
R
n
p
(f
m
)

NoEx

LDA

GGA

p-Fin

pn-Fin

All

(a)
40
Ca SAMi

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

30 40 50 60 70 80 90 100 110 120

∆
R
n
p
−
∆
R
L
D
A

n
p

(f
m
)

L (MeV)

(b)

Figure 4.3.2: Same as Fig. 4.3.1 but for 40Ca.
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Figure 4.3.3: Same as Fig. 4.3.1 but for 48Ca. The experimental data of ∆Rnp (0.168+0.025
−0.028 fm [444]) is also

shown as a vertical arrow.
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Figure 4.3.4: Same as Fig. 4.3.1 but for 48Ni.
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Figure 4.3.5: Same as Fig. 4.3.1 but for 208Pb. The experimental data of ∆Rnp (∆Rnp = 0.211+0.054
−0.063 fm [73],

0.283 ± 0.071 fm [92], and the reanalyzed data of PREX-II experiment ∆Rnp = 0.190 ± 0.020 fm [94]) are
also shown as vertical arrows.
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Comparison between Coulomb and Isospin Symmetry Breaking Interactions

Next, two isospin symmetry breaking effects—the Coulomb interaction and the ISB terms of the nuclear
interaction—are compared. Figures 4.3.6–4.3.10 show ∆Rnp of the selected nuclei calculated with the SAMi,
SAMi-noISB, SAMi-CIB, SAMi-CSB, and SAMi-ISB EDFs and with the proposed treatment of the Coulomb
interaction. In order to see results more effectively, ∆Rnp of 40Ca, 48Ca, and 208Pb calculated without the
Coulomb exchange (NoCx), with the Coulomb LDA (LDA), and with all the precise treatments of the
Coulomb interaction (All) are also shown in Table 4.3.5.

In N = Z nuclei, the SAMi-noISB and SAMi EDFs give almost the same ∆Rnp, while the SAMi-ISB EDF
gives different values. Since EoS properties of SAMi-noISB are different from those of SAMi. As a result,
ρn and ρp given by the SAMi can be different from those given by the SAMi-noISB. However, as discussed
in the previous section, in N = Z nuclei, ∆Rnp is mainly formed by the Coulomb interaction and does not
depend on L. Therefore, the SAMi-noISB and SAMi EDFs give almost the same ∆Rnp. In contrast, the
SAMi-ISB EDF gives smaller ∆Rnp in N = Z nuclei, because of the existence of the ISB terms, which forms
∆Rnp due to the same mechanism as the Coulomb interaction. Its effect is approximately 0.02 fm, which is
mainly due to the CSB term. The CIB contribution to ∆Rnp in 40Ca is 0.0002 fm, which is one order of
magnitude smaller than the dependence on the treatment of the Coulomb interaction.

In N > Z nuclei, the SAMi-noISB EDF gives a larger ∆Rnp than the SAMi EDF. This may be because
the SAMi-noISB EDF gives a larger L than the SAMi EDF. The difference of L is approximately 6.5MeV,
and the corresponding differences of ∆Rnp are approximately 0.01 fm in 48Ca and 208Pb, which is much
smaller than the difference between ∆Rnp obtained by the SAMi EDF and that by the SAMi-noISB EDF.
The further difference may be due to other EoS (or EDF) properties, such as J , which can also be different
due to the indirect effect of the ISB terms. In 48Ni, the behaviour is opposite to 48Ca, which is also discussed
above.

Comparing results obtained by the SAMi-noISB and SAMi-ISB EDFs, in both N > Z and N < Z

nuclei, one can find that the ISB terms decrease ∆Rnp by 0.02–0.05 fm, where both the CSB and CIB terms
contribute to ∆Rnp. In N > Z nuclei, the CIB contribution makes ∆Rnp larger, while the CSB one makes it
smaller; in N < Z nuclei, both the CIB contribution and CSB one make it smaller. The CIB contributions
to ∆Rnp in 48Ca and 208Pb are approximately 0.005 fm, which are the same order of magnitude but slightly
larger than the dependence on the treatment of the Coulomb interaction. In contrast, the CSB contributions
to ∆Rnp in 48Ca and 208Pb are approximately −0.03 fm, which are much larger than the dependence on the
treatment of the Coulomb interaction. A more detailed discussion of ISB terms will be given later.

In 16O, 40Ca, 48Ca, and 48Ni, dependences on the treatment of the Coulomb interaction, even the existence
of the Coulomb exchange term, of ∆Rnp are much smaller than that of the ISB terms. Only the exception
is 208Pb: ∆Rnp obtained by the SAMi-ISB EDF without the Coulomb exchange term (NoEx) has almost
the same value as that by the SAMi EDF with the Coulomb LDA exchange term (LDA); ∆Rnp obtained
by the SAMi-ISB EDF with the Coulomb LDA or GGA exchange term (LDA or GGA) without finite-
size effect is almost the same value as that by the SAMi EDF with finite-size effects (p-fin or pn-fin). In
Refs. [175,177,432], it was claimed that the Coulomb exchange term is mainly cancelled with the CSB term
of the nuclear interaction (or further correction of the Coulomb interaction). According to Figs. 4.3.6–4.3.10,
this cancellation sometimes holds, such as in 208Pb, while usually does not hold. Therefore, such treatment
with expecting such cancellation is not appropriate for general calculation.

Isospin Symmetry Breaking Terms and Neutron-Skin Thickness

At the last of this subsection, dependences on the ISB terms of ∆Rnp are discussed. Figures 4.3.11–4.3.15
show dependences on the CSB strength −s0 and CIB one u0 on the neutron-skin thickness ∆Rnp for the
selected nuclei, where the SAMi-noISB EDF is used for EIS and the Coulomb LDA EDF is used for the
Coulomb interaction. For comparison, ∆Rnp calculated with the SAMi is shown as an empty arrow; that
with the SAMi-ISB, i.e., the SAMi-noISB with s0 = −26.3MeV fm3 and u0 = 25.8MeV fm3, is shown as a
filled arrow. The CSB and CIB dependences of ∆Rnp are fitted to

∆Rnp = c+ d (−s0) , (4.3.16)

∆Rnp = e+ fu0, (4.3.17)
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Table 4.3.5: Neutron-skin thickness ∆Rnp of 40Ca, 48Ca, and 208Pb and mass difference of the mirror nuclei
pair 48Ca and 48Ni, ∆Etot, calculated by using SAMi-ISB EDF without Coulomb exchange term (NoCx),
with Coulomb LDA (LDA), or with full Coulomb treatment (All) without ISB term, only with CSB term,
only with CIB term, and with all ISB terms. For comparison, ∆Rnp and ∆Etot calculated with the SAMi
EDF are also shown. This table is taken from Ref. [A6].

EIS SAMi SAMi-noISB
EISB No ISB No ISB CIB CSB All ISB

40Ca Rp (fm) NoCx 3.3971 3.3644 3.3762 3.3770 3.3886

LDA 3.3895 3.3568 3.3686 3.3694 3.3810

All 3.3850 3.3522 3.3639 3.3648 3.3763

Rp (fm) NoCx 3.3444 3.3130 3.3250 3.3003 3.3126

LDA 3.3424 3.3108 3.3228 3.2982 3.3104

All 3.3413 3.3096 3.3215 3.2970 3.3091

∆Rnp (fm) NoCx −0.0527 −0.0514 −0.0512 −0.0767 −0.0760

LDA −0.0471 −0.0460 −0.0458 −0.0712 −0.0706

All −0.0437 −0.0426 −0.0424 −0.0678 −0.0672
48Ca Rp (fm) NoCx 3.4421 3.3945 3.4067 3.4014 3.4134

LDA 3.4359 3.3881 3.4003 3.3951 3.4070

All 3.4320 3.3840 3.3962 3.3910 3.4030

Rn (fm) NoCx 3.6131 3.6244 3.6399 3.6071 3.6226

LDA 3.6111 3.6221 3.6376 3.6050 3.6203

All 3.6101 3.6209 3.6363 3.6037 3.6190

∆Rnp (fm) NoCx 0.1710 0.2299 0.2332 0.2057 0.2092

LDA 0.1752 0.2340 0.2373 0.2099 0.2133

All 0.1781 0.2369 0.2401 0.2127 0.2160
208Pb Rp (fm) NoCx 5.4692 5.4396 5.4591 5.4386 5.4578

LDA 5.4616 5.4318 5.4512 5.4309 5.4500

All 5.4567 5.4269 5.4463 5.4260 5.4452

Rn (fm) NoCx 5.6117 5.6059 5.6330 5.5776 5.6046

LDA 5.6083 5.6021 5.6291 5.5739 5.6008

All 5.6064 5.6000 5.6269 5.5718 5.5986

∆Rnp (fm) NoCx 0.1425 0.1663 0.1739 0.1390 0.1468

LDA 0.1467 0.1703 0.1779 0.1430 0.1508

All 0.1497 0.1731 0.1806 0.1458 0.1534
48Ca-48Ni 48Ca Etot (MeV) NoCx −408.1636 −414.3409 −405.5041 −418.6020 −409.7030

LDA −415.6148 −421.8979 −413.0343 −426.1437 −417.2186

All −417.0041 −423.3531 −414.4749 −427.5868 −418.6476
48Ni Etot (MeV) NoCx −341.7722 −349.4207 −340.8851 −346.1802 −337.6926

LDA −352.6388 −360.2735 −351.6879 −356.9761 −348.4383

All −355.3307 −362.9521 −354.3332 −359.6170 −351.0464

∆Etot (MeV) NoCx 66.3915 64.9202 64.6190 72.4218 72.0104

LDA 62.9760 61.6243 61.3465 69.1677 68.7803

All 61.6734 60.4010 60.1418 67.9699 67.6012
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Figure 4.3.6: Comparison of ∆Rnp for 16O calculated by using the SAMi, SAMi-noISB, SAMi-CIB, SAMi-
CSB, and SAMi-ISB EDFs and with several treatments of the Coulomb interaction. This figure is taken from
Ref. [A6].
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Figure 4.3.7: Same Fig. 4.3.6 but for 40Ca.

respectively. The parameters c, d, e, and f are shown in Table 4.3.6. Since their correlations are almost
perfect (r ≈ 1.000) and their uncertainties are quite small, we do not show their uncertainties.

In N = Z nuclei, the CIB term of the nuclear interaction does not change ∆Rnp, while it increases ∆Rnp

in N > Z nuclei. The change of ∆Rnp, i.e., f , in 48Ni has almost the same absolute value but the opposite
sign to that in its mirror nuclei 48Ca. In contrast, the CSB term decreases ∆Rnp in all the selected nuclei,
and the values of d are quite similar among the selected nuclei. In addition, d is 100 times (in N = Z nuclei)
or 5–10 times (in N ̸= Z nuclei) larger than the change due to the CIB term, f .

In order to understand this behaviour, first, the CSB two-body interaction is considered. The CSB
two-body interaction for proton-proton (pp), proton-neutron (pn), and neutron-neutron (nn) are

vppCSB (r) = +
|s0|
2

(1− Pσ) δ (r) , (4.3.18)

vpnCSB (r) = 0, (4.3.19)

vnnCSB (r) = −|s0|
2

(1− Pσ) δ (r) , (4.3.20)
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Figure 4.3.8: Same Fig. 4.3.6 but for 48Ca.
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Figure 4.3.9: Same Fig. 4.3.6 but for 48Ni.

respectively (s0 < 0). As |s0| becomes larger, the repulsive vppCSB and attractive vnnCSB become stronger. Hence,
ρp extends and ρn shrinks more, i.e., Rp and Rn become, respectively, larger and smaller. Consequently,
∆Rnp becomes smaller.

The pp, pn, and nn CIB two-body interactions are

vppCIB (r) = +
u0

2
(1− Pσ) δ (r) , (4.3.21)

vpnCIB (r) = −u0

2
(1− Pσ) δ (r) , (4.3.22)

vnnCIB (r) = +
u0

2
(1− Pσ) δ (r) , (4.3.23)

respectively (u0 > 0). As u0 becomes larger, the repulsive vppCIB and vnnCIB and attractive vpnCIB become stronger.
Thus, it is rather difficult to understand the behaviour by using the two-body interaction. Instead, here, the
effective potential of the CIB interaction is considered. The effective CIB potentials for protons and neutrons
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Figure 4.3.10: Same Fig. 4.3.6 but for 208Pb.

read

VCIBp (r) =
δECIB [ρp, ρn]

δρp (r)

=
u0

2
ρp (r)−

u0

4
ρn (r) , (4.3.24)

VCIBn (r) =
δECIB [ρp, ρn]

δρn (r)

=
u0

2
ρn (r)−

u0

4
ρp (r) , (4.3.25)

respectively. In the case of N = Z nuclei, ρp ≡ ρn approximately holds; hence, VCIBp ≡ VCIBn ≡ u0ρp/4 also
approximately holds. This fact leads to that as u0 becomes larger, both ρp and ρn extend and accordingly
both Rp and Rn become larger. Their changes are almost the same, and accordingly, its difference, i.e.,
∆Rnp, hardly changes. In contrast, in the case of N > Z nuclei, in general ρp (r) < ρn (r) holds, and
consequently,

VCIBn (r)− VCIBp (r) =
3u0

4
[ρn (r)− ρp (r)] > 0 (4.3.26)

holds. This means that the repulsive CIB potential for neutron is stronger than the CIB potential for protons,
or the CIB potential for proton can be even attractive. Therefore, as u0 becomes larger, ρn extends more
and Rn becomes larger, while ρp extends less than ρn, or even shrinks, and Rn becomes larger but less than
Rp, or even smaller. As a result, ∆Rnp becomes larger as u0 becomes larger. In the case of 48Ni, all the
discussion for 48Ca holds but with opposite direction.

As shown in Table 4.3.5, the difference between ∆Rnp calculated without ISB and that only with CSB
is almost the same as the difference between ∆Rnp calculated only with CIB and that with all ISB. This
means that the CIB and CSB interactions are not entangled with each other on ∆Rnp.

At last, we shall estimate how large ISB terms of the nuclear interaction affects the estimation of L value
using ∆Rnp in 208Pb. Since the linear correlation is almost complete (r ≈ 1.000), uncertainty due to the
fitting is not considered. If −s0 or u0 independently changes by 10MeV fm3, ∆Rnp changes by −0.010 fm

and +0.003 fm, which corresponds to −6.1MeV and +1.7MeV in L, respectively. If the SAMi-ISB strengths
for s0 and u0, s0 = −26.3MeV fm3 and u0 = +25.8MeV fm3, are taken as examples, ∆Rnp changes by
−0.0195 fm in total, and accordingly, L changes by −11.6MeV if one uses Eq. (4.3.15) and values shown in
Table 4.3.4. Indeed, Eq. (4.3.15) and its parameters shown in Table 4.3.4 do not include any effects of the
ISB terms. Once effects of the ISB terms are considered for the fitting, Table 4.3.4, especially the parameter
a, may change. In addition, the L parameter itself also includes the effect of the CIB term, while it does not
include the effects of the CSB term. Hence, it is indispensable to find a simple quantity that can characterize
EoS properties and include both CIB and CSB terms, and find such a correlation. This remains for a future
perspective.
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Table 4.3.6: Parameters c, d, e, and f in Eqs. (4.3.16) and (4.3.17). This table is taken from Ref. [A6].
Nuclei ISB c or e (fm) d or f (MeV−1 fm−2)

16O CSB −0.023145 −0.00087127

CIB −0.023168 0.00000455
40Ca CSB −0.045923 −0.00096055

CIB −0.045986 0.00000927
48Ca CSB 0.233945 −0.00091309

CIB 0.233977 0.00012818
48Ni CSB −0.344227 −0.00109382

CIB −0.344459 −0.00017291
208Pb CSB 0.170209 −0.00103236

CIB 0.170300 0.00029200
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Figure 4.3.11: Dependences on CSB and CIB strength, −s0 and u0, of ∆Rnp of 16O on top of the SAMi-
noISB EDF and the Coulomb LDA exchange EDF. The neutron-skin thickness ∆Rnp calculated with the
SAMi and SAMi-ISB EDFs are shown in empty and filled arrows, respectively. This figure is taken from
Ref. [A6].
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4.3.3 Masses of Mirror Nuclei

In this subsection, we shall discuss the mass difference of a mirror nuclei pair. Here, the 48Ca-48Ni pair is
taken as an example, and ∆Etot is defined by ∆Etot = ECa-48

tot −ENi-48
tot . Figure 4.3.16 shows the dependences

of ∆Etot on treatments of the Coulomb interaction calculated with the SAMi, SAMi-noISB, SAMi-CIB,
SAMi-CSB, and SAMi-ISB EDFs. For comparison, the experimental data taken from AME2020 [418, 419]
is also shown, where it is calculated by using the binding energies as discussed in Sec. 3.4.5. In order to see
results more effectively, ∆Etot calculated without the Coulomb exchange (NoCx), with the Coulomb LDA
(LDA), and with all the precise treatments of the Coulomb interaction (All) are also shown in Table 4.3.5.

Apart from the existence of the Coulomb exchange term, the dependence on the treatment of the Coulomb
interaction of ∆Etot ranges approximately 1MeV, while that of the ISB terms is approximately 7.2MeV

derived from results obtained by the SAMi-noISB and that by the SAMi-ISB. The difference between ∆Etot

obtained by the SAMi and that by the SAMi-ISB is approximately 5.8MeV. Therefore, the ISB effect on
∆Etot is larger than the Coulomb one, while its direction is opposite, and even the difference between ∆Etot

obtained by the Coulomb LDA and that by the precise treatment of the Coulomb interaction is non-negligible
compared to the desired accuracy. Among these contributions, as shown in Table 4.3.5, the CSB contribution
is the most dominant and approximately 7MeV, whereas the CIB one is approximately 0.3MeV, which is
a quarter of the dependence on the treatment of the Coulomb interaction. In addition, by comparing the
result obtained by the SAMi-noISB and that by the SAMi, it is concluded that the refitting effect is also
non-negligible.

References [175,177,432] claimed that the Coulomb exchange term is mainly cancelled with the CSB term
of the nuclear interaction (or further correction of the Coulomb interaction). Comparing ∆Etot obtained
with the SAMi or SAMi-noISB without the Coulomb LDA with that with the SAMi-ISB with the Coulomb
LDA, one can find that such cancellation does not hold, and their differences are more than 1MeV. For
example, ∆Etot calculated by using the SAMi-ISB with the Coulomb LDA and by using the SAMi-ISB
with all the Coulomb terms are, respectively, 68.7803MeV and 67.6012MeV, while those by using the SAMi
without the Coulomb exchange EDF and by using the SAMi-noISB without the Coulomb exchange EDF
are, respectively, 66.3915MeV and 64.9202MeV. Such difference is larger than the target accuracy, and
therefore, such treatment with expecting such cancellation is not proper for general calculation.

Next, to see how the ISB terms affect ∆Etot, on top of the SAMi-noISB EDF, the CIB strength u0

is gradually changed from 0MeV fm3 to 50MeV fm3 with the CSB strength s0 fixed to 0MeV fm3, or the
CSB strength −s0 is gradually changed from 0MeV fm3 to 50MeV fm3 with the CIB strength u0 fixed to
0MeV fm3. The result is shown in Fig. 4.3.17: Their results are fitted to the linear function, which are,
respectively,

∆Etot = −61.625 + 0.01083u0, (4.3.27)

∆Etot = −61.625− 0.28677 (−s0) . (4.3.28)

It can be seen that ∆Etot depends on the CSB strength −s0, while scarcely depends on the CIB strength
u0. To explain this behaviour, proton and neutron density distributions of mirror nuclei are considered. If
neither the Coulomb interaction nor the ISB terms of the nuclear interaction are considered, ρCa-48

p ≡ ρNi-48
n

and ρCa-48
n ≡ ρNi-48

p hold. Substituting them into Eqs. (4.3.11) and (4.3.11), one obtains

ECa-48
CSB = ECSB

[
ρCa-48
p , ρCa-48

n

]
=

s0 (1− y0)

8

∫ {[
ρCa-48
n (r)

]2 − [ρCa-48
p (r)

]2}
dr

= −s0 (1− y0)

8

∫ {[
ρNi-48
p (r)

]2 − [ρNi-48
n (r)

]2}
dr

= −ENi-48
CSB , (4.3.29)

ECa-48
CIB = ECIB
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Figure 4.3.16: Comparison of the mass difference of the mirror nuclei pair 48Ca and 48Ni calculated with
the SAMi, SAMi-noISB, SAMi-CIB, SAMi-CSB, and SAMi-ISB EDFs and with several treatments of the
Coulomb interaction. The experimental data taken from AME2020 [418, 419] is also shown. This figure is
taken from Ref. [A6].
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the SAMi and SAMi-ISB EDFs are shown in empty and filled arrows, respectively. The experimental data
taken from AME2020 [418,419] is also shown. This figure is taken from Ref. [A6].

Consequently,

ECa-48
CSB − ENi-48

CSB =
s0 (1− y0)

4

∫ {[
ρCa-48
n (r)

]2 − [ρCa-48
p (r)

]2}
dr

=
s0 (1− y0)C

4
, (4.3.31)

ECa-48
CIB − ENi-48

CIB = 0, (4.3.32)

with a constant number C > 0. Therefore, the CSB contributes to ∆Etot, and its effect is proportional to
−s0, while the CIB does not contribute to ∆Etot. In reality, due to the existence of the Coulomb interaction
and the ISB terms of the nuclear interaction, ρCa-48

p (ρCa-48
n ) is slightly different from ρNi-48

n (ρNi-48
p ), and

hence, ∆Etot slightly depends on u0.
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4.4 Ab Initio Determination of Isospin Symmetry Breaking Terms
of Skyrme Energy Density Functional

As discussed in Chap. 1, ab initio determination of the strength of the Skyrme EDF has been highly desired
for a long time. Here, an ab initio EDF means that all the parameters of an EDF, as well as its EDF form,
are determined only by referring to the theoretical (ab initio) calculation, while parameters of all the EDFs
have been determined by referring to experimental data, as well as ab initio calculation of nuclear matter
EoS.

A possible method to pin down the parameters of EDFs is using microscopic methods discussed in
Sec. 2.2.4, while it is still difficult to apply these methods to nuclear systems, especially, for pinning down
tiny parts. A method to pin down parameters of EDFs proposed here is, instead, combining ab initio cal-
culations and phenomenological EDFs. As discussed in Sec. 4.3, the coupling constant of the CIB term of
the SAMi-ISB EDF, u0, was determined by referring to the Brueckner-Hartree-Fock calculation, one of the
ab initio calculation methods, of symmetric nuclear matter with and without the CIB term of the nuclear
interaction. In contrast, the coupling constant of the CSB term of the SAMi-ISB EDF, s0, was not deter-
mined theoretically, but instead, with referring to the experimental data on the isobaric analogue energy of
208Pb. In this section, we shall propose a way to pin down s0 by using the ab initio calculation.

In order to pin down s0, it is important to find observables that are sensitive to s0. The ab initio
calculation is difficult to calculate the isobaric analogue energy of 208Pb because the numerical cost is too
heavy and both the CSB and CIB terms may affect it. In the previous section, we have shown that the
neutron-skin thickness ∆Rnp and the mass difference of the mirror nuclei pair ∆Etot strongly depend on
the strength of the CSB term of the nuclear interaction. In contrast, ∆Rnp of N = Z nuclei and ∆Etot are
insensitive to the CIB term of the nuclear interaction, and ∆Rnp of N ̸= Z nuclei depend on the CIB term,
but weaker than the CSB term. Thus, instead of the isobaric analogue energy, we propose a method to pin
down s0 using ∆Rnp and ∆Etot. Here, 48Ca and 208Pb are taken as examples for ∆Rnp and the 48Ca-48Ni
pair is taken for ∆Etot. At this moment, the coupled-cluster method with the bare nuclear interaction
obtained by the chiral effective interaction has been applied to 48Ca [446] and even 100Sn [447] and the
self-consistent Green’s function method has been applied to Xe (Z = 54) isotopes [353]. Thus, 48Ca and 48Ni

can be calculated by using some ab initio methods. Moreover, 208Pb has not been able to be calculated by
using any ab initio method at this moment, while it is desired to be calculated in the near future since it is
a doubly-magic nucleus. Results for 16O, 40Ca, and 48Ni are shown in Appendix A.

In order to see whether the s0 dependence is affected by an EDF for EIS, the SAMi [409], SLy4 [58],
SLy5 [58], and SkM* [441] EDFs are used for EIS. The CIB term is not considered to keep their EDF
properties at most. Also, the SAMi-noISB EDF without CIB term (referred to as “SAMi-noISB”) and with
CIB term (referred to as “SAMi-CIB”) are used. On top of these EDFs, the CSB term is gradually introduced
with −s0 = 0MeV fm3 to 50MeV fm3. For the electromagnetic part EEM, the most general treatment is
used, which corresponds to “LDA” in the previous section. Therefore, EEM [ρp] = ECH [ρp] +ECx [ρp], where
ECx is the Coulomb LDA exchange EDF.

Figures 4.4.1 and 4.4.2 show the neutron-skin thickness for 48Ca and 208Pb, respectively. Their data are
fitted to ∆Rnp = a − bs0, where these fitting parameters are shown in Table 4.4.1. It is seen that all the
EDFs show almost the same s0 dependences, b, although their absolute values a are different. The average
values of b and their standard deviations, b and ∆b, are shown in Table 4.4.2. It is seen that b deviates less
than 4% around the average value b. Therefore, once ∆Rnp calculated with and without the CSB term of
the nuclear interaction, denoted, respectively, as ∆R

w/ CSB
np and ∆R

w/o CSB
np , are obtained by using the ab

initio calculation, the CSB strength in the Skyrme interaction, s0, can be obtained as

s0 = −∆R
w/ CSB
np −∆R

w/o CSB
np

b
(4.4.1)

within 4% uncertainty.
Figure 4.4.3 shows the mass difference of mirror nuclei pair 48Ca and 48Ni. Their data are also fitted to

∆Etot = a − bs0, where these parameters are also shown in Table 4.4.1. It is seen that all the EDFs show
almost the same s0 dependences, b, although their absolute values a are different, as ∆Rnp. As shown in
Table 4.4.2, it is seen that b deviates with less than 6% uncertainty around the average value b. Therefore,
once ∆E

w/ CSB
tot and ∆E

w/o CSB
tot are obtained by using the ab initio calculation, the CSB strength in the
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Table 4.4.1: Fitting parameters of ∆Rnp = a−bs0 for 48Ca and 208Pb and ∆Etot = a−bs0 for the 48Ca-48Ni
pair. This table is taken from Ref. [A4].

EDF
48Ca 208Pb ∆Etot

a (fm) b (×10−3 MeV fm4) a (fm) b (×10−3 MeV fm4) a (MeV) b (fm−3)
SLy4 +0.1535 −0.9807 +0.1595 −1.0525 −63.4143 −0.3234

SLy5 +0.1605 −0.9907 +0.1622 −1.0591 −63.1975 −0.3192

SkM* +0.1551 −1.0002 +0.1686 −1.1138 −63.4399 −0.3220

SAMi +0.1752 −0.9615 +0.1466 −1.0800 −62.9755 −0.3133

SAMi-noISB +0.2339 −0.9131 +0.1702 −1.0324 −61.6251 −0.2868

SAMi-CIB +0.2372 −0.9075 +0.1778 −1.0255 −61.3474 −0.2826

Table 4.4.2: Averaged values of the fitting parameter b for ∆Etot and ∆Rnp. Standard deviations of b are
also shown as ∆b. Columns entitled “only with four EDFs” show b and ∆b calculated only with SAMi, SLy4,
SLy5, and SkM* EDFs. This table is taken from Ref. [A4].

with All EDFs only with four EDFs
b ∆b ∆b/

∣∣b∣∣ (%) b ∆b ∆b/
∣∣b∣∣ (%)

∆Etot (fm−3) −0.3079 0.0167 5.437 −0.3195 0.0039 1.216

∆Rnp (48Ca) (10−3 MeV−1 fm4) −0.9589 0.0364 3.795 −0.9833 0.0144 1.460

∆Rnp (208Pb) (10−3 MeV−1 fm4) −1.0605 0.0297 2.805 −1.0764 0.0239 2.219

Table 4.4.3: Same as Table 4.4.2 but calculated without the Coulomb interaction.
with All EDFs only with four EDFs

b ∆b ∆b/
∣∣b∣∣ (%) b ∆b ∆b/

∣∣b∣∣ (%)
∆Etot (fm−3) −0.3272 0.0184 5.619 −0.3399 0.0046 1.359

∆Rnp (48Ca) (10−3 MeV−1 fm4) −0.9704 0.0361 3.718 −0.9945 0.0141 1.417

∆Rnp (208Pb) (10−3 MeV−1 fm4) −1.1454 0.0340 2.972 −1.1623 0.0297 2.552
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Figure 4.4.1: CSB strength −s0 dependence of the neutron-skin thickness ∆Rnp of 48Ca calculated with
several EDFs. The value obtained by the SAMi-ISB EDF is shown as cross symbol. This figure is taken from
Ref. [A4].

Skyrme interaction, s0, can be obtained as

s0 = −∆E
w/ CSB
tot −∆E

w/o CSB
tot

b
(4.4.2)
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Figure 4.4.2: Same as Fig. 4.4.1 but of 208Pb.
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Figure 4.4.3: CSB strength −s0 dependence of the mass difference of the mirror nuclei pair 48Ca and 48Ni

calculated with several EDFs. The value obtained by the SAMi-ISB EDF is shown as cross symbol. The
experimental data taken from AME2020 [418,419] is shown as the horizontal dashed line. This figure is taken
from Ref. [A4].

within 6% uncertainty.
The existence of the Coulomb interaction does not alter the conclusion. The Coulomb interaction breaks

the isospin symmetry of atomic nuclei; hence it can make a deviation from the linear correlation. However,
even if the Coulomb interaction is considered, as shown in Figs. 4.4.1–4.4.3, the linear correlation is good
enough (r ≈ 1.000). In addition, even if the Coulomb interaction is neglected, b and ∆b change only slightly,
as shown in Table 4.4.3.

As seen in Table 4.4.2 and Figs. 4.4.1–4.4.3, the SAMi-noISB and the SAMi-CIB give slightly different
results to the other normal Skyrme EDFs. In the SAMi-ISB EDF, all the parameters of EIS, ECIB, and ECSB

are fitted altogether. Hence, properties of EIS of the SAMi-ISB EDF, i.e., the SAMi-noISB EDF, are affected
by the ISB terms of the nuclear interaction, although EIS itself does not break the isospin symmetry. For
instance, the symmetry energy of EIS is affected as discussed in Sec. 4.2.1. Consequently, properties of the
SAMi-noISB EDF may differ from the other normal EDFs, such as the SAMi, SLy4, SLy5, and SkM* EDFs.
Hence, b obtained by the SAMi-noISB EDF is slightly different.

Comparing results obtained by the SAMi-noISB, SAMi-CIB, and the other EDFs, one can discuss whether
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the ISB effect can be considered perturbatively. Since the fitting criteria of the SAMi-ISB and the SAMi are
the same except for the existence of the ISB terms, the difference of b obtained by these EDFs originates from
the existence of the ISB terms. Here, b obtained by the SAMi, SAMi-noISB, and SAMi-CIB are denoted
by bSAMi, bSAMi-noISB, and bSAMi-CIB, respectively. The parameter bSAMi corresponds to the CSB strength
determined perturbatively, while bSAMi-noISB and bSAMi-CIB correspond to the CSB strength determined by
refitting. Since bSAMi-CIB/bSAMi ranges from 0.90 to 0.95, perturbative consideration of the CSB strength
may change s0 by 5–10%. Comparing bSAMi-noISB and bSAMi-CIB, one can see the effect of the order of the
refitting; the former corresponds to that the CSB term is fitted first, and the latter corresponds to that the
CIB term is fitted first. Since bSAMi-CIB/bSAMi-noISB is 0.99, the order of the determination of s0 and u0 does
not affect their parameters.

At last, it should be noted that if ab initio calculation with various CSB strength gives results deviating
from the linear correlation, it may indicate that higher-order terms of the Skyrme CSB interaction, i.e., s1
and s2 terms, are not negligible, or even the three-body term is not negligible. If s0 obtained by ∆Rnp differs
substantially from that by ∆Etot, it may also be evident that this model is not proper.

4.5 Short Summary

In this chapter, it was compared that the effects of the isospin symmetry breaking (ISB) terms of the nuclear
interaction on the neutron-skin thickness, ∆Rnp, and the mass difference of mirror nuclei, ∆Etot, with those
of the Coulomb interaction. The ISB terms of the nuclear interaction can be further divided into two parts:
the charge independence breaking (CIB) and the charge symmetry breaking (CSB).

It was found that the CSB contributes to ∆Rnp and ∆Etot significantly. In contrast, the CIB does not
contribute to ∆Rnp for N = Z nuclei or ∆Etot; it contributes to ∆Rnp for N < Z nuclei in the same
direction as the CSB contribution, while that for N > Z nuclei in the opposite direction. The absolute value
of the contribution of the CIB term to ∆Rnp for N ̸= Z nuclei is smaller than that of the CSB, and it is
comparable to the difference between ∆Rnp obtained by the Coulomb LDA exchange EDF and that by the
precise treatment of the Coulomb interaction. For instance, the CSB contribution to ∆Etot of the 48Ca-48Ni
pair is approximately 7.5MeV, while the difference between ∆Etot obtained by the Coulomb LDA exchange
EDF and that by the precise treatment of the Coulomb interaction is approximately 1MeV, and the CIB
contribution to ∆Etot is approximately 0.3MeV. In addition, once the ISB terms of the nuclear interaction
are considered, the estimation of an EoS parameter L using ∆Rnp of 208Pb changes approximately 10MeV.

It should be noted that the CSB contributions to ∆Rnp and ∆Etot are much larger than the CIB ones,
while the bare CIB interaction is much stronger than the CSB one. Therefore, it is important to find
quantities that are sensitive to the CIB interaction.

Using the fact that ∆Rnp and ∆Etot are sensitive to the CSB strength, we also proposed the novel method
to pin down the CSB strength combined with the ab initio calculations with and without the CSB term.
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Chapter 5

Conclusion and Perspectives

This thesis consists of two parts: A precise treatment of the Coulomb interaction is developed in the context of
the nuclear density functional theory (DFT), especially the Skyrme DFT; effects of the Coulomb interaction
and the isospin symmetry breaking (ISB) terms of the nuclear interaction on the neutron-skin thickness
and the mass difference of a mirror nuclei pair are compared. The spherical symmetry is assumed and the
pairing correlation is not considered; thus, doubly-magic nuclei are chosen to study their effects. The nuclear
interaction is known to have almost perfect isospin symmetry. Consequently, the atomic nuclei also have
perfect isospin symmetry if neither the Coulomb interaction nor the ISB terms of the nuclear interaction are
considered; however, the Coulomb interaction and the ISB terms of the nuclear interaction break the isospin
symmetry of the atomic nuclei. In order to discuss the ISB terms of the nuclear interaction properly, the
Coulomb interaction has to be treated precisely.

If protons are assumed to be point particles, the Coulomb exchange energy density functional (EDF) is
expected to reproduce the Fock energy [Eq. (2.2.39)], which will be referred to as the exact-Fock energy.
However, in nuclear DFT, the local density approximation (LDA), whose energy density is approximated to
that for homogeneous systems, has been used in most works. The effect of the density gradient is taken into
account for the Coulomb exchange EDF by using the generalized gradient approximation (GGA), which is
widely used in condensed matter physics. Modifying one of the parameters of the Perdew-Burke-Ernzerhof
parametrization of the Coulomb GGA exchange EDF, one can reproduce the Coulomb exchange energy
calculated with the exact-Fock energy within an error of 100 keV.

Since protons and neutrons have finite spatial charge distribution, the charge density distribution ρch is
different from the proton density distribution ρp. Because the Coulomb interaction is the interaction between
charges of particles, not protons themselves, the Coulomb EDF should be written in terms of ρch instead of ρp.
This difference, so-called finite-size effects of nucleons, is considered on top of the Coulomb GGA exchange
EDF. Using the chain rule of the functional derivative, it is found that the Coulomb potential for neutrons
does not vanish. It should be noted that the finite-size effects on the Coulomb effective potential were taken
into account in several works, e.g., in Ref. [411], while it is found that this is incomplete: The electric form
factors of nucleons are missing in the effective Coulomb potential, and consequently, neutrons are not affected
by the Coulomb interaction. As a result, the mass difference of the mirror nuclei shows still a difference from
the experimental data of more than 500 keV. On top of the finite-size effects, the vacuum polarization for
the Coulomb potential, i.e., an electron-positron creation through the virtual photon exchange, is considered
by using the Uehling effective potential, and the electromagnetic spin-orbit interaction is also considered
perturbatively.

It is found that the proton finite-size effect, the neutron finite-size effect, and the vacuum polarization
affect the total energy, respectively, by −580 keV, +60 keV, and +90 keV in 16O, by −1800 keV, +240 keV,
and +400 keV in 48Ca, and by −8220 keV, +1230 keV, and +3690 keV in 208Pb. The proton and neutron
finite-size effects are proportional to Z and N , respectively, while the vacuum polarization is proportional
to Z5/3, and hence, in the light nuclei, the vacuum polarization is negligible, while it is non-negligible in the
heavy nuclei, compared to the desired accuracy (100 keV).

The finite-light-speed effect of the Coulomb interaction, the Breit correction, is also considered in the
LDA on top of the Coulomb LDA exchange EDF. In atomic systems, the Breit correction of the electron-
electron Coulomb interaction is the leading order of the relativistic correction and is more dominant than the
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vacuum polarization of the Coulomb potential formed by the atomic nucleus. In contrast, in nuclear systems,
it is found that the vacuum polarization of proton-proton Coulomb interaction is more dominant than the
Breit correction of the proton-proton Coulomb interaction. It is also fond that its difference is a comparable
absolute value to but the opposite sign with the difference between the Coulomb exchange energy obtained
by the LDA and that by the GGA, which is the same as in atomic systems.

Physical quantities related to the isospin symmetry breaking are discussed with the precise treatment
of the Coulomb interaction—the GGA, the nucleon finite-size effects, the vacuum polarization, and the
electromagnetic spin-orbit interaction—and the ISB terms of the nuclear interaction. The Skyrme-type ISB
terms are used for the latter, and their parameters were determined in Ref. [183]. The ISB terms are further
divided into two parts, the charge independence breaking (CIB) and the charge symmetry breaking (CSB).
In principle, once the Coulomb interaction is taken into account precisely, the parameters of the nuclear
EDF should be refitted. However, if one focuses on properties related to the isospin symmetry breaking,
most part of the isospin symmetric part of the nuclear interaction is cancelled out, and hence it can be
discussed properly even without refitting. In this thesis, the mass difference ∆Etot of the mirror nuclei and
the neutron-skin thickness ∆Rnp are taken as examples. Here, ∆Etot and ∆Rnp for N = Z nuclei are zero if
neither the Coulomb interaction nor the ISB terms of the nuclear interaction are considered, and hence they
are suitable to discuss the isospin symmetry breaking; ∆Rnp for N > Z nuclei is widely used to discuss the
symmetry energy, especially its parameter L, and thus it is good to see whether such discussion is affected
by the Coulomb interaction and the ISB terms of the nuclear interaction.

It is found that the Coulomb interaction does not change the L dependence of ∆Rnp and changes the
absolute value of ∆Rnp less than 0.01 fm. This may be because different treatment of the Coulomb interaction
changes the surface region of the density distribution, while it has been known in Ref. [445] that properties of
the surface region do not change the L dependence of ∆Rnp. The CSB term of the nuclear interaction affects
∆Rnp significantly. The CIB term affects ∆Rnp of only N ̸= Z nuclei, whose amount is less than the effect of
the CSB term and is comparable with the difference between ∆Rnp obtained by the Coulomb LDA exchange
EDF and that by the precise treatment of the Coulomb interaction. In contrast, in the N = Z nuclei, the
effect of the CIB term is one order of the magnitude smaller than the difference between ∆Rnp obtained by the
Coulomb LDA exchange EDF and that by the precise treatment of the Coulomb interaction. In addition, if
the CSB or CIB strengths change 10MeV fm3, estimation of L using 208Pb changes approximately −6.1MeV

and 1.7MeV, respectively. If one assumes the CSB and CIB strengths obtained by the SAMi-ISB EDF, the
estimated value of L changes, in total, in 11.6MeV.

The ISB terms of the nuclear interaction change ∆Etot of the 48Ca-48Ni pair more than 5MeV, but
there is still more than 1MeV difference. The precise treatment of the Coulomb interaction further reduces
the difference to 0.3MeV. It should be noted here that the conventional finite-size effects on the Coulomb
interaction have still missed part, and if the conventional one is used, the difference is reduced to 0.8MeV

only. The CSB term affects ∆Etot, while the effect of the CIB term affects ∆Etot is even less than the
difference between ∆Etot obtained by the Coulomb LDA exchange EDF and that by the precise treatment
of the Coulomb interaction.

References [175, 177, 432] claimed the cancellation between the CSB energy and the Coulomb exchange
energy. In this thesis, it is found that this cancellation does not hold in the neutron-skin thickness ∆Rnp or
the mass difference of the mirror nuclei ∆Etot, in general. Therefore, both the CSB term and the Coulomb
exchange term (and even further precise treatments) must be treated properly.

Using the fact that ∆Rnp and ∆Etot are sensitive to the CSB strength while its dependence hardly
depends on the choice of the isospin symmetric part of the nuclear EDF, we propose the way to determine
the CSB strength of the Skyrme-like ISB effective interaction. Once ∆Rnp or ∆Etot with and without the
CSB interaction are calculated by using ab initio methods, using the linear correlation between the CSB
strength of the Skyrme-like effective interaction and ∆Rnp or ∆Etot, one can determine the CSB strength.
Another possible method to pin down the ISB strengths may be using the knowledge of the covariant density
functional theory (CDFT), which starts from the QCD Lagrangian, while the ISB effects have not been taken
into account for CDFT yet and thus it is not available up to now.

The CIB interaction is approximately ten times stronger than the CSB interaction in vacuum. In contrast,
in this thesis, it is found that ∆Etot and ∆Rnp are sensitive to the CSB interaction, while they are insensitive
to the CIB interaction. In order to discuss the contribution of the CIB interaction to nuclear properties, it
is important to find nuclear properties which are sensitive to the CIB interaction.
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In this thesis, the spherical symmetry is assumed and the pairing correlation is not considered. Hence,
only doubly-magic nuclei are used for discussion, while most nuclei are not doubly-magic nuclei. In order
to discuss effects of the Coulomb interaction and the ISB terms of the nuclear interaction on properties of
other atomic nuclei, these two should be implemented to numerical codes of the Hartree-Fock-Bogoliubov
calculation without assuming the spherical symmetry. Especially, it is known that the Coulomb interaction
enhances the nuclear deformation [448, A10]; hence, it is interesting to see whether the precise treatment
changes nuclear shapes. However, to discuss such small effects, other corrections should also be considered
carefully; for instance, it is known that the pairing correlation changes charge radii and the spin-orbit
contribution non-negligibly [449,A18].

So far, only the leading term (s-wave) is considered for the ISB terms of the Skyrme-like interaction,
since the ISB terms are just correction terms to the nuclear interaction. Once ab initio calculations with
gradually changed ISB strengths are available, it will be able to discuss whether this assumption is proper.
Not only to determine the CSB strength of the Skyrme-like interaction but also to discuss the validity of
the assumption, ab initio calculation with the various ISB strength is indispensable, while it has not been
available yet.

To see effects of the precise treatment of the Coulomb interaction and the ISB terms of the nuclear
interaction on other nuclear properties, first of all, the isospin symmetric term of the nuclear EDF should be
refitted, since even the finite-size effects on the Coulomb interaction is non-negligible in heavy nuclei. Once
the nuclear EDF is refitted, it should be interesting to calculate properties of excited states in order to see
the isobaric multiplet mass equation and isobaric analogue states. Calculation of the half-lives of β decays,
including decays with 0+ → 0+ called the superallowed one, is also interesting [182,201–205] since it has been
used to estimate a matrix element of the Cabibbo-Kobayashi-Maskawa matrix related to the standard model
and the flavour symmetry of the quarks. To perform such calculation precisely, restoration of the symmetry
which is broken due to the independent-particle (mean-field) approximation [450] should also be considered,
which introduces fictitious isospin impurity [202,203,451–453,A20].

It is also discussed how large the ISB terms of the nuclear interaction affect the estimation of the L

parameter of the nuclear equation of state using ∆Rnp. In this thesis, it was simply estimated that first
how large ∆Rnp is changed once the ISB terms are introduced, and then how large L changes due to the
change of ∆Rnp. However, in principle, L itself also includes the effect of the CIB term, and hence the L

dependence of ∆Rnp may change once ISB terms are introduced. In addition, the strength of the CSB term
affects ∆Rnp, but L does not include the effect of the CSB term. Therefore, a quantity that includes effects
of both the CSB and CIB strength and their sensitivity to ∆Rnp, should be found in order to discuss effects
of the ISB terms on ∆Rnp properly. It should also be mentioned that the analysis to obtain ∆Rnp from
the parity-violating asymmetry did not consider the ISB terms [92], while the ISB terms may affect such
analysis.

The proposed method to pin down the CSB strength of the nuclear EDF is a method that uses a quantity
sensitive to a specific channel (or symmetry). Thus, this method may be applicable to other terms of the
nuclear EDF or even EDFs for electronic systems.

Effects of the Coulomb correlation on the total energy is also an interesting topic. The correlation energy
is defined by the difference between the exact total energy and the Hartree-Fock one. In electronic systems,
since there is only the Coulomb interaction, which is known exactly, the correlation energy EDFs have been
derived theoretically, as discussed in Chap. 1. In contrast, in nuclear systems, there are both the Coulomb
and nuclear interactions, and consequently, the correlation energy originates from both interactions; hence
the correlation energy originating from the Coulomb interaction, in short, the “Coulomb correlation energy”,
is not well-defined. In addition, the nuclear EDF is obtained by fitting to the experimental data, and
thus the Coulomb correlation energy may be implicitly included in the nuclear EDF. Indeed, the Coulomb
correlation energy discussed in Refs. [454, 455] is even the opposite sign to that calculated by using the
Coulomb correlation EDF widely used in electronic systems [A1]. To achieve more accurate calculations
related to the isospin symmetry breaking, construction and even the definition of the Coulomb correlation
energy in nuclear physics are indispensable.
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Supplemental Data for Sec. 4.4

In this appendix, first, the CSB strength −s0 dependence of the neutron-skin thickness ∆Rnp of 16O, 40Ca,
and 48Ni with several EDFs are shown in Figs. A.1.1, A.1.2, and A.1.3, respectively, to show the discussion
in Sec. 4.4 holds for other nuclei. The fitting parameters of a and b in Eq. (4.3.15) are shown in Table A.1.1.

As seen in the figures, it is shown that s0 dependence of the neutron-skin thickness ∆Rnp is still universal
among these tested EDFs also in 16O, 40Ca, and 48Ni. Therefore, the discussion given in Sec. 4.4 holds not
only in 48Ca and 208Pb but also other doubly-magic nuclei.

Tables A.1.2 and A.1.3 shows the same results but calculation without the Coulomb interaction. The
neutron-skin thickness, ∆Rnp, of N = Z nuclei and the mass difference of the mirror nuclei, ∆Etot, are
exactly zero if the Coulomb interaction is not considered. Therefore, ∆Rnp of 16O and 40Ca and ∆Etot

are, respectively, fitted to ∆Rnp = −bs0 and ∆Etot = −bs0, instead. These averaged values are shown in
Tables A.1.4 and A.1.5.

Table A.1.1: Same as Table 4.4.1 but for 16O, 40Ca, and 48Ni.

EDF
16O 40Ca 48Ni

a b a b a b

SLy4 −0.0248 −0.8884 −0.0475 −0.9604 −0.2675 −1.1005

SLy5 −0.0251 −0.9000 −0.0480 −0.9700 −0.2769 −1.1225

SkM* −0.0251 −0.8842 −0.0493 −0.9893 −0.2710 −1.1125

SAMi −0.0233 −0.8542 −0.0470 −0.9640 −0.2901 −1.1165

SAMi-noISB −0.0231 −0.8713 −0.0459 −0.9605 −0.3442 −1.0938

SAMi-CIB −0.0230 −0.8585 −0.0457 −0.9475 −0.3486 −1.0987

Table A.1.2: Same as Tables 4.4.1 and A.1.1 but calculated without the Coulomb interaction. In N = Z

nuclei, the results are fitted to ∆Rnp = −bs0, instead.

EDF
16O 40Ca 48Ca 48Ni 208Pb

b b a b a b a b

SLy4 −0.8823 −0.9483 +0.1917 −0.9913 −0.1917 −1.0071 +0.2679 −1.1351

SLy5 −0.8944 −0.9594 +0.1994 −1.0035 −0.1994 −1.0185 +0.2717 −1.1411

SkM* −0.8743 −0.9715 +0.1942 −1.0102 −0.1941 −1.0249 +0.2839 −1.2105

SAMi −0.8438 −0.9458 +0.2141 −0.9731 −0.2140 −0.9956 +0.2608 −1.1624

SAMi-noISB −0.8629 −0.9454 +0.2718 −0.9255 −0.2717 −0.9538 +0.2781 −1.1145

SAMi-CIB −0.8498 −0.9307 +0.2747 −0.9187 −0.2747 −0.9469 +0.2853 −1.1087
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Table A.1.3: Fitting parameters of ∆Etot = a− bs0 for the results with the Coulomb interaction and those
of ∆Etot = −bs0 for the results without the Coulomb interaction. This table is taken from Ref. [A4].

EDF
Coulomb LDA No Coulomb

a (MeV) b (fm−3) b (fm−3)
SLy4 −63.4143 −0.3234 −0.3440

SLy5 −63.1975 −0.3192 −0.3397

SkM* −63.4399 −0.3220 −0.3435

SAMi −62.9755 −0.3133 −0.3325

SAMi-noISB −61.6251 −0.2868 −0.3039

SAMi-CIB −61.3474 −0.2826 −0.2998

Table A.1.4: Same as Table 4.4.2 but for ∆Rnp of 16O, 40Ca, and 48Ni calculated with the Coulomb LDA
EDF.

with All EDFs only with four EDFs
b ∆b ∆b/

∣∣b∣∣ (%) b ∆b ∆b/
∣∣b∣∣ (%)

∆Rnp (16O) (10−3 MeV−1 fm4) −0.8761 0.0163 1.863 −0.8817 0.0169 1.917

∆Rnp (40Ca) (10−3 MeV−1 fm4) −0.9653 0.0127 1.313 −0.9709 0.0111 1.148

∆Rnp (48Ni) (10−3 MeV−1 fm4) −1.1075 0.0104 0.937 −1.1130 0.0080 0.723

Table A.1.5: Same as Table A.1.4 but calculated without the Coulomb interaction.
with All EDFs only with four EDFs

b ∆b ∆b/
∣∣b∣∣ (%) b ∆b ∆b/

∣∣b∣∣ (%)
∆Rnp (16O) (10−3 MeV−1 fm4) −0.8679 0.0177 2.040 −0.8737 0.0187 2.136

∆Rnp (40Ca) (10−3 MeV−1 fm4) −0.9502 0.0127 1.334 −0.9562 0.0102 1.064

∆Rnp (48Ni) (10−3 MeV−1 fm4) −0.9912 0.0303 3.059 −1.0115 0.0112 1.106
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Figure A.1.1: Same as Fig. 4.4.1 but of 16O.

108



APPENDIX A. SUPPLEMENTAL DATA FOR SEC. 4.4

−0.100
−0.095
−0.090
−0.085
−0.080
−0.075
−0.070
−0.065
−0.060
−0.055
−0.050
−0.045

0 5 10 15 20 25 30 35 40 45 50

40Ca

∆
R
n
p
(f
m
)

−s0 (MeV fm3)

SLy4
SLy5
SkM*
SAMi

SAMi-noISB
SAMi-CIB
SAMi-ISB

Figure A.1.2: Same as Fig. 4.4.1 but of 40Ca.
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Figure A.1.3: Same as Fig. 4.4.1 but of 48Ni.
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Appendix B

Abbreviation List

Abbreviations used in this thesis are shown in Table B.1.1.

Table B.1.1: Abbreviations used in this thesis.
Abbreviation Meaning
AME Atomic mass evaluation
AV14 / AV18 Argonne v 14 or 18 interactions
CDFT Covariant density functional theory
ChEFT Chiral effective field theory
CIB Charge independence breaking
CKM Cabibbo-Kobayashi-Maskawa
CSB Charge symmetry breaking
DFPT Density functional perturbation theory
DFT Density functional theory
EDF Energy density functional
EM Electromagnetic
EMSO Electromagnetic spin-orbit interaction
EoS Equation of state
Exp Experimental data
ext External potential
FRG-DFT Functional-renormalization-group aided density functional theory
GGA Generalized gradient approximation
GS Ground state
HF Hartree-Fock
HK Hohenberg-Kohn
Hxc Hartree-exchange-correlation
IKS Inverse Kohn-Sham
int Interaction
IS Isospin symmetry or isospin symmetric
ISB Isospin symmetry breaking
KS Kohn-Sham
LDA Local density approximation
LQCD Lattice QCD
p-fin Proton finite-size effect
pn-fin Proton-neutron (all) finite-size effect
PBE Perdew-Bruke-Ernzerhof
QCD Quantum chromodynamics
QED Quantum electrodynamics
xc Exchange-correlation
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Appendix C

Symbol List

Symbols used in this thesis are shown in Tables C.1.1 and C.1.2.

Table C.1.1: Symbols used in this thesis (1).
Symbols Meaning Definition
A Mass number
E [ρ] Total EDF Eq. (2.2.19)
EBreit Breit EDF Eq. (3.5.6)
EH

Breit Breit Hartree EDF Eq. (3.5.4)
Ex

Breit Breit exchange EDF Eq. (3.5.5)
Ec Correlation eneregy (or EDF)
EC Coulomb EDF
ECH Coulomb Hartree EDF
ECx Coulomb exchange EDF Eq. (3.2.1)
EEM Electromagnetic EDF
Eext External potential energy Eq. (2.1.8)
EF Exact-Fock energy Eq. (2.2.39)
Egs Ground-state energy Eq. (2.1.2)
EH Hartree energy (or EDF) Eq. (2.1.9)
EHxc Hartree-Exchange-correlation EDF
Enucl Nuclear EDF
Erea Rearrangement energy Eq. (2.2.33)
Esym Symmetry energy Eq. (1.3.1)
EVP Vacuum polarization EDF Eq. (3.4.22)
Ex Exchange energy (or EDF)
ELDA

x Exchange EDF in LDA Eq. (2.2.43)
Exc Exchange-correlation EDF
EH = EH

IS Skyrme Hartree energy density Eq. (2.3.4)
Ex = Ex

IS Skyrme exchange energy density Eq. (2.3.5)
EH
CIB Skyrme CIB Hartree energy density Eq. (4.2.6)

Ex
CIB Skyrme CIB exchange energy density Eq. (4.2.7)

EH
CSB Skyrme CSB Hartree energy density Eq. (4.2.8)

Ex
CSB Skyrme CSB exchange energy density Eq. (4.2.9)

F GGA enhancement factor E.g. Eq. (3.3.1)
F Kohn-Sham universal functional Eq. (2.2.9)
f̃ Fourier transform of f Eq. (1.4.5)
G̃Eτ Electric form factor (τ = p for protons, n for neutrons)
H Hamiltonian
J , L, Ksym, E0, K∞ EoS parameters Eqs. (1.3.2) & (1.3.3)
N Neutron number
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Table C.1.2: Symbols used in this thesis (2).
Symbols Meaning Definition
Pσ Spin exchange operator Eq. (1.2.6)
Pτ Isospin exchange operator Eq. (1.2.7)
rs Wigner-Seitz radius Eq. (2.2.45)
s Dimensionless density gradient Eq. (2.2.59)
Sjk Tensor operator Eq. (1.2.2)
T Total isospin
t Isospin Eq. (1.1.1)
T± Isospin ladder operator
Tjk Isotensor operator Eq. (1.5.5)
TKS Kohn-Sham kinetic energy Eq. (2.2.18)
tτ Kinetic energy density Eq. (2.3.8)
VC Coulomb effective potential
V τ
eff Effective potential for nucleon τ Eq. (3.4.5)

Vext External potential
VEM Electromagnetic effective potential See Sec. 3.4.1
VHxc Hartree-exchange-correlation potential Eq. (2.2.27)
VKS Kohn-Sham effective potential Eq. (2.2.24)
VVP Vacuum polarization effective potential Eq. (3.4.23)
Vxc Exchange-correlation potential Eq. (2.2.25)
vBreit Breit correction Eq. (3.5.1)
ṽBreit Non-relativistic reduction of vBreit Eq. (3.5.3)
vCIB CIB term of nuclear interaction Eq. (4.1.1)
vCSB CSB term of nuclear interaction Eq. (4.1.2)
vint Interaction (general)
vnucl Nuclear interaction
vnn Neutron-neutron interaction
vT=t
pn Proton-neutron interaction (T = t channel)
vpp Proton-proton interaction
vSky Skyrme interaction
vCIB
Sky CIB term of Skyrme nuclear interaction Eq. (4.2.4)
vCSB
Sky CSB term of Skyrme nuclear interaction Eq. (4.2.5)
VEM Electromagnetic effective potential See Sec. 3.4.1
Z Proton number
β Isospin asymmetry
∆Etot Mass difference of the mirror nuclei pair 48Ca and 48Ni

∆Rnp Neutron-skin thickness
∆εj Correction of EMSO for εj Eq. (3.4.25)
εc Correlation energy density
εj (Kohn-Sham) Single-particle energy Eq. (2.2.23)
εx Exchange energy density
ρ0 Saturation density Eq. (1.3.5)
ρch Charge density Eq. (1.4.4)
ρgs Ground-state density Eq. (2.1.3) or (2.2.15)
ρn Neutron density
ρp Proton density
σ = (σx, σy, σz) Pauli matrices for spin
τ = (τx, τy, τz) Pauli matrices for isospin
Φ0 Slater determinant
φj (Kohn-Sham) Single-particle orbital Eq. (2.2.23)
Ψgs Ground-state wave function Eq. (2.1.2)
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Experimental Techniques Related to
This Thesis

In this chapter, experimental techniques referred to in this thesis will be explained briefly: masses, charge
radii or densities, and neutron-skin thickness.

Data obtained by the Atomic Mass Evaluation (AME) [415–419] are used for experimental values of
binding energies in this thesis. Some experimental techniques provide absolute values of masses, while some
provide relative values, i.e., mass differences from a neighbouring nucleus. Combining these all data, the
AME provides absolute values of masses of all the measured nuclei [214, 456]. The methods which provide
absolute values of masses are, for instance, using time-of-flight [457,458], storage rings [459–462], and penning
traps [463]. All these methods are based on the fact that the cyclotron frequency is proportional to 1/M ,
where M is the mass of an atomic nucleus [214, 464]. In these methods, ∆M/M is expected to be 10−5 or
smaller, where ∆M is an experimental error [214]. In contrast, in the indirect measurements, Q-values of
decays, i.e., energies of emitted particles in nuclear decays, are used.

The charge density distribution ρch of an atomic nucleus is obtained by using the elastic scattering of
an electron [141–143, 145, 146, 465, 466]. Under the one-photon exchange approximation, in the case of the
doubly-magic nuclei, the ratio of the experimental cross section to that of the point charge corresponds
to the form factor, i.e., the Fourier transform of ρch. In the case of the open-shell nuclei, the magnetic
form factors of nucleons also contribute. Indeed, higher-order corrections to the one-photon exchange also
contribute to the cross section, while these effects are extracted [400,401]. Calculating the root-mean-square
radius of ρch, one can obtain the charge radius Rch. Charge radii can also be measured by using the laser
spectroscopy of atoms [467–474]. In laser spectroscopy, only isotope shifts, i.e., differences of the charge
radii from a neighbouring nucleus, are obtained, while isotope shifts of many unstable nuclei have also
been obtained [475], in contrast to the electron scattering. In both methods, obtained Rch are so accurate;
experimental error is the order of 0.001 fm in the stable nuclei, which is 0.1% error or less.

Once Rch is obtained, using Eq. (3.4.34) 1, one can obtain the root-mean-square radius of the proton
distribution Rp. Since the charge radius of protons is also known precisely [10] and contributions of the
charge radius of neutrons and the magnetic radii of nucleons to Rch are quite small [476,A18], Rp can also
be obtained quite precisely.

In order to calculate the neutron-skin thickness ∆Rnp, the neutron root-mean-square radius Rn is also
needed. In contrast to Rp, it cannot be measured by using the electromagnetic probe. Instead, hadronic
probes, for instance, polarized-proton scattering [73,444,477], have been used. However, the nuclear interac-
tion induces the model dependence in the analysis. Accordingly, experimental errors and uncertainty of Rn

are large.
Another method to measure Rn is the parity-violating electron scattering [78,92,93]. In this method, the

spin-polarized electron beam is used, and the ratio of the cross section of an up-spin electron to that of a
down-spin electron, (σ↑ − σ↓) / (σ↑ + σ↓), is measured. It is known that this parity-violating asymmetry is
related to the weak charge density of an atomic nucleus. Since the weak charge of neutrons is approximately

1Equation (3.4.34) considers G̃Eτ only, while effects of G̃Mτ on Rch are discussed in Refs. [476,A18]. Effects of G̃Mτ is so
small that it does not affect the conclusion in this thesis, unless one compares Rch of spin unsaturated nuclei to experimental
data.
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−1 whereas that of protons is almost zero [478], the weak charge density ρwk is almost the same as −ρn. In
principle, the parity-violating asymmetry does not include model dependence. However, in order to obtain
enough accuracy, a longer beam time is required. Accordingly, ρ̃wk of only a few points of the momentum
transfer q can be obtained [78,92]. Therefore, ρwk itself has not been able to be obtained. Consequently, to get
Rwk, Rn, and ∆Rnp, the model-dependent analysis is needed to be introduced [78,92]. Reference [92] claimed
that the experimental error was small enough that ∆Rnp = 0.283 ± 0.071 fm. However, a reanalysis done
by another group using the same data of the parity-violating asymmetry gave ∆Rnp = 0.19 ± 0.02 fm [94].
Therefore, the systematic error induced by theoretical models seems to be quite large. Also, it should be
mentioned that as mentioned in Chap. 5, the ISB terms may affect the analysis to obtain Rwk, Rn, or ∆Rnp

from the parity-violating asymmetry, while they have not been considered yet.
Considering these situations discussed above, masses M and charge radii Rch, and accordingly proton

radii Rp, are assumed to be accurate enough and their experimental errors are expected to be smaller than
the theoretical uncertainties. Hence, experimental errors are not considered in this thesis. In contrast,
experimental errors of neutron radii Rn, and accordingly the neutron-skin thickness ∆Rnp, may be larger
than theoretical uncertainties. Accordingly, these errors are considered in this thesis.
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