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ABSTRACT

In this thesis, we perform the analyses related to the reproduction and measurements of

various fluids classified as a complex fluid having interesting properties, solid-like behavior, and

nonlinear viscosity, e.g., sauces, creams, and pastes from the perspective of micro or macro, by

effective use of the data-driven approach and the numerical simulation.

A wide variety of fluids can be seen around us in various fields and regions, such as food

production, daily commodities, biological body, and natural landscape. We make use of these in

our daily lives by measuring, reproducing, and understanding their physical property. There are

simple fluids with constant viscosity in the fluids around us, e.g., water and honey. However, some

fluids have more interesting properties. For example, viscosity nonlinearly changed depending

on the shear rate related to the flowing velocity (e.g., sauce, lubricant) and behaving like a solid

(e.g., cream, form). These characteristic phenomena, which are nonlinear viscosity and solid-

like behavior, are known to be due to some inclusion of internal elements such as colloids and

polymers in the fluid, and these fluids are categorized as complex fluids. We will focus on the

nonlinear viscosity and solid-like properties as the characteristic properties of complex fluids to

be analyzed and investigate the reproducing and measurements for these properties.

In analyzing the complex fluids, the parts that can be simplified and coarse-grained are

modeled and then reproduced using numerical simulation. On the other hand, when the internal

structure or mechanism is an unknown or a black box, a data-driven fitting approach is used.

In this thesis, these two approaches, the numerical simulation and the data-driven approach,

are smartly used for the target to be analyzed, we thus would like to obtain new knowledge

and methods for handling more complex fluids. It also aims to investigate the knowledge and

methodologies that can be applied to as broad a class of complex fluids as possible, rather than

limiting the class of fluids with certain internal elements, structures, and properties.

In the context of reproducing the solid-like behavior, we explored the limits of reproducing

the solid-like behavior of complex fluids and the uncleared physical behavior occurring around

them. It is well known that the existence of solid-like behavior, in a form and paste, is due to the

jamming transition phenomenon, which depends on the density of particles as internal elements

in the fluid. The Reversible-Irreversible (RI) transition, which is related to the reversibility

of particle trajectories in the oscillatory sheared system, has been reported to be qualitatively

different in the high-density and low-density regions, implying a connection with the jamming

phenomenon. In this thesis, a numerical simulation of a simple particle system as an athermal

colloidal suspension was performed under various density conditions around the jamming tran-

sition density and shear amplitude to obtain exhaustive data. We obtained a phase diagram

covering the intermediate density region for the RI transition and the relationship between the

RI transition and solid-like behavior from these data. We also observed the existence of non-

trivial RI transitions and nonlinear elastic behavior in the region below the jamming density,

indicating the existence of a richer physical property. In addition, we found that the RI transition

and solid-like behavior are related and can be described by the contact number reflecting the

mesoscopic structure of the particle system.

In the context of reproducing the nonlinear viscosity, we aim to find a method for reproduc-

ing and estimating the nonlinear viscosity of the complex fluid mixture, including various classes

of fluids mixture as possible, irrespective of the internal elements and the structure. From a

macroscopic perspective, we can consider the complex fluid with disorder internal elements as a

homogeneous fluid with a (nonlinear) flow curve representing the physical property of flowing.



We observed that the Harshall-Bulkley model could represent the flow curves of various pure

fluids and their mixtures. Hence, as a blending model that reproduces the physical properties of

mixtures, we considered a new model that reproduces the physical properties of mixtures from

the physical properties of individual pure fluids and the mixing ratio, which is closed by the pa-

rameters of the Harshall-Bulkley model. In order to consider the blending model, we introduced

the laws of blending and a general blending model satisfying these laws. Using a data-driven

approach, we chose the proposed model. We showed that the model exists that can qualitatively

reproduce the characteristic behavior of a mixture of various fluids combinations within the gen-

eral blending model. In addition, macroscopic simulations of mixtures were performed using our

proposed model and compared with real experiments to verify the effectiveness of our model.

In the context of measuring the complex fluid, we proposed a video-based measurement

method for conveniently measuring the flowing behavior of complex fluids that non-specialists

can use. Although fluids with various and rich properties are very familiar to us, the method

to measure with accurate them is not common because it requires a mechanical experimental

device called a rheometer, which is expensive and needs expert knowledge. A physical property

measurement corresponds to the inverse problem of the forward problem of reproducing a cer-

tain physical property. We interpret the existing video-based viscosity measuring method for

Newtonian as a method based on the numerical solution of the inverse problem by combining a

fluid simulation and optimization. Extending it to the complex fluids as the Herschel-Bulkley

model, we proposed a method for estimating and measuring the flow curve of various classes of

complex fluids from the experimental videos. In addition, we proposed a method to evaluate

effective experimental setups to capture the fluid video for estimation and to select new setups.

We validated the effectiveness of our method by using the artificial data and real data.
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Chapter 1

Introduction

1.1 Diverse fluid and application

We observe diverse fluids around us in different fields, such as food, daily products,

medical products, biological body, nature landscape, computer graphics. By measuring

the properties of fluids, elucidating their mechanisms, and reproducing them, we are

making use of these fluids in our daily lives [24]. Here are some practical examples.

Food is a typical example of fluid have various mechanical property and applica-

tion [89], For example, the production of ketchup, it is necessary to produce ketchup of

consistent quality every year, however, the properties of tomato puree, the raw material

for ketchup, are not constant, as they are affected by the climatic conditions in different

regions from year to year. Therefore, a mixture of several raw materials of tomato puree

is used to adjust the quality to be consistent year after year [6]. The mouthfeel of food,

such as ”thickness”, depends on the nonlinear fluid rheology [17]. In order to design the

easily swallowing food product for the people who are difficulty swallowing, the analysis

of flowing property is effective [68, 53].

It has been investigated how the texture and properties of creams and gels are af-

fected by their internal elements and components [30]. It is necessary to change the

components and elements that make up the fluid without changing the macroscopic

functional properties of the cream, such as ease of application. Therefore, it is neces-

sary to measure such functional quantities as physical quantities and design the internal

elements.

Since natural phenomena such as landslides and avalanches have a significant in-

fluence on the infrastructure of our daily lives, it is necessary to predict whether they

will occur and take countermeasures. By considering the geological landscapes as a

complex fluid (particle-fluid mixture), understanding and linking to the mechanism of

geological flow have been studied [41]. The analysis of the mechanism by which sedi-

ment yielding changes from a solid-like state to a fluid-like flowing state induced by an

external force, such as vibration or impulsive force, is used in methodologies for disaster

prediction [27, 36].

Fluids appear in various areas, and by understanding their properties, we can apply
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Chapter 1.3

them in our daily lives.

1.2 Having rich behavior of complex fluids

When we think of fluids, the first thing that comes to mind is a simple fluid, e.g., water

or honey that has a constant viscosity and can change shape and flow freely. However,

there are fluids that have richer properties [71]. For example, the viscosity of sauces in

food products and lubricating oils in industrial products is not constant but decreases

as the shear rate increasing. Foods such as margarine and jam, which are intended to be

spread on bread, is effectively used of this shear-thinning effect. On the other hand, the

fluid, e.g., dissolved corn starch at a constant rate, the viscosity will increase (rapidly)

as the shear rate increases. Thus, some fluid have nonlinear viscosity.

A Cream, paste, and sediment have solid-like behavior, retaining their shape when at

rest (under gravity) and exhibiting a reversible deformation response at small external

forces, but when a large external force or impulsive force is applied to the object, they

change their shape irreversibly and flow like a fluid.The mayonnaise and sauces can be

dipped in vegetables, which is an example of effective use of the fact that the sauce

adheres to the fluid.There are fluids that have solid-like properties.

These characteristic phenomena, which are nonlinear viscosity and solid-like behav-

ior, are known to be due to some inclusion of internal elements such as colloids and

polymers in the fluid, and these fluids are categorized as complex fluids. Although com-

plex fluids have a more variety of properties [24] other than we introduced above, we will

focus on the nonlinear viscosity and solid-like properties as the characteristic properties

of complex fluids to be analyzed and investigate the reproducing and measurements of

these properties.

1.3 Motivation and construction of the thesis

Our motivation; we do not desire to leave a fluid having complex structures and rich

properties unknown and unmanageable. In order to measure, analyze, and reproduce

such complex fluids, we handle the parts that can be modeled, internal elements modeling

colloidal sphere or polymer chain as microscopic, and perform numerical simulations to

this modeled system and exhaustive analyses. In contrast, data-driven fitting approaches

have been used to deal with areas where the structure or mechanism is a black box.

Even in the days of classical fluid mechanics, various insights and knowledge, such as the

relationship between flow velocity and flowing area and the properties related to viscosity,

were empirically derived from the accumulated data of observations and measurements

by hydraulic engineers [13]. We smartly use these two approaches, numerical simulation

and data-driven approach, for the target to be analyzed and obtain new insights and

methods for handling more complex fluid objects. We also aim to obtain a more general

understanding and methodologies that can be applied to as broad a class of complex
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Chapter 1.3

fluids as possible, rather than limiting to a class of fluids with specific structures and

properties.

For complex fluids, there is a method of constructing a model from a microscopic view

and reproducing macroscopic phenomena. On the other hand, explaining the phenomena

only from the macroscopic view may make it possible to deal with more complex fluids.

In this paper, we attempted to analyze a wide class of complex fluids by using the

two perspectives, macroscopic or microscopic, depending on the purpose and target.

The solid-like behavior is considered to be caused by jamming transition, which is a

critical phenomenon related to the density of internal elements [20]. For this reason, we

will perform a numerical simulation from a microscopic point of view to describe the

solid-like and related properties. In nonlinear viscosity, it was difficult to identify the

mechanism responsible for these properties because of various theories. We will treat

the nonlinear viscosity from a macroscopic point of view. Because various complex fluids

can be regarded as homogeneous systems regardless of their internal elements, and the

material properties can be interpreted as nonlinear flow curves.

In Chapter 2, we described general models and methodologies for understanding

the flowability of complex fluids from macroscopic and microscopic perspectives, and in

Chapter 3, we described the simulation methods used in this thesis and the experimental

device for measuring flowability.

In Chapter 4, we focused on the limit of reproducing solid-like behavior of complex

fluids. We explore how the transition phenomena (RI transition), which is implied to

relate to solid-like behavior, behave around the jamming transition density point by

exhaustive numerical calculations and constructing a phase diagram of RI transition.

The relationship between the mechanical behavior and the geometrical structure in the

vicinity is also investigated.

In Chapter 5, we focused on the nonlinear viscosity and the reproduction of its change

when various complex fluids are mixed. From a macroscopic point of view, we confirmed

that the flowability of various complex fluids and their mixtures can be represented by the

parameters of the Herschel-Bulkley model. Thus, we aimed to obtain a blending model

that can estimate the physical properties of mixtures from the the physical property of

pure fluids and their mixing ratios, using a data-driven approach.

In Chapter 6, we focused on the mismatch between the familiarity of various fluids

and the unfamiliarity of their measurement, thus we aimed to develop a method that

enables anyone to easily measure the physical properties of complex fluids. We proposed

a method for estimating the physical properties of complex fluids from a video, effectively

using of the fact that physical property measurements can be interpreted as inverse

problems, and it can be solved numerically by combining numerical simulation and

optimization.

In Chapter 7, we summarized and discussed these results
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Chapter 2

Background

2.1 Macroscopic perspective of complex fluid

Shear-thinning

Newtonian

Shear-thickening

Bingham

Sh
ea

r 
st

re
ss

Shear rate

Figure 2.1: The schematic figure of flow curve.

Water, as the simplest fluid is flowing smoothly and splashing, while honey is flowing

slowly and sticky. These differences can be characterized by viscosity, which is related

to fluid flow resistance. However, if we look at the fluids around us, we will see more

rich flowing behavior and property, e.g., sauces and creams in food products, foam

and toothpaste in household products. These fluids have the non-constant viscosity

dependent on flowing speed and keep their shape even when at rest.

From a macroscopic point of view, these flowing behavior of a fluid can be understood

as the relationship between the shear stress σs and shear rate γ̇, and this relationship is

represented as a flow curve; the function of shear stress against shear rate σs(γ̇) as shown

in Fig. 2.1. Viscosity (effective viscosity), a popular measure of the flow resistance of a

fluid, can be written σs(γ̇)/γ̇ as the shear stress divided by the shear rate 1.

The physical properties related to the flowing behavior of various fluids can be repre-

sented by this flow curve. In the simple fluid called a Newtonian fluid, the flow curve is

1This definition is for effective viscosity, but for convenience, we will use the term as viscosity.
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Chapter 2.1

a straight line passing through the origin; the viscosity is a constant irrespective of shear

rate, where the slope of the line shows a magnitude of viscosity. For example, water is

a less viscous fluid, honey and syrup is highly viscous fluid.

In practice, more fluids do not actually belong to this Newtonian fluid class. When

the flow curve is not a straight line, the viscosity is not a constant respective to the

shear rate and can be considered as having a nonlinear viscosity. A convex upward curve

indicates that the viscosity of the fluid decreases as the shear rate increases, this property

is known as the shear-thinning behavior, e.g., most of the sauce for food, lubricant,

paints. A convex downward curve indicates that the viscosity of the fluid increase as

the shear rate increases, this property is known as the shear-thickening behavior. One

of the famous examples is the oobleck which is a mixture of cornstarch and water.

If the flow curve does not pass through the origin and has a positive intercept, it takes

on a finite shear stress when the shear rate is zero, i.e., a certain finite shear stress is

required for the fluid starts to flow. This shear stress is called as a yield stress. This type

of flow curve indicates that the fluid has a solid-like property with a finite yield stress,

e.g., a form, cream, paste. Whether the fluid has a finite yield stress corresponds to the

solid-like behavior. When applied to a small shear stress (below the yield stress), these

materials behave like elastic materials, deforming in response to the load and recovering

to their resting state when the load is removed. On the other hand, if a large shear

stress (above the yield stress) is applied, the material yields and starts to flow. When

the load is removed, the material no longer recovers its shape.

A model of flow curve

The flowing property of various fluids can be represented by the flow curve showing the

relation between the shear stress and the shear rate. In practice, we use the rheometer

to measure the shear stress at various shear rates, and we obtain the flow curve as a

measurement point. Based on data and their fitting, several models that can represent

the flow curve are known. These models can fit the measured data with several model

parameters related to the flowing property [75].

The Newtonian model (2.1),

σs = ηN γ̇, (2.1)

represents the straight line passing through the origin and the Newtonian fluid, it has a

constant viscosity ηN irrespective of the shear rate.

For the nonlinear flow curve, the power-low model (2.2),

σs = ηP γ̇
nP , (2.2)

can fit the flow curve of power low behavior, this flow curve is linear in log-scale plot,

where a constant parameter ηP is related to the entire consistency and a nP is power
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Chapter 2.2

index (nP > 1.0 shows shear-thickening, nP < 1 shows shear-thinning, nP = 1 reduced

the Newtonian.)

For the fluid having solid-like property with a finite yield stress, The bingham model

(2.3), the Kason model (2.4) and the Herschel–Bulkley model (HB model) (2.5) are

known,

σs = σBY + ηB γ̇, (2.3)
√
σs = σCY + ηC

√
γ̇, (2.4)

σs = σHY + ηH γ̇nH . (2.5)

These models can describe the yielding behavior, but they differ in their representation

of the shear rate dependence of the flow. The Herschel–Bulkley model is more difficult

to parameterize accurately experimentally than the Bingham and Casson models [67],

but it is possible to fit a wide range of flow curve behaviors, and it reduces the bingham

model (when nH = 1), the power-low model (when σHY = 0), and the Newtonian model

(when nH = 1, σHY = 0). In the high shear region, Herschel–Bulkley model can most

well fit the flow curves of solid-like fluid foods such as ketchup, mustard, and apple

sauce [18]. Furthermore, it is known that Herschel–Bulkley model can represent a more

wide range of fluids, such as concrete [37], debris flow [70], and fabric-water [58].

As for Fig. 3.4, we show the measured data by using the cone-plate or parallel-plate

rheometer in (a) linear and (b) logarithmic scales. We can see many highly nonlinear

curves, i.e., non-Newtonian fluid; their apparent viscosity depends on the shear rate, and

it looks finite shear stress at a small shear rate in the logarithmic scale. In this thesis,

we basically use the Herschel–Bulkley model model as a convenient model that can fit

the fluid with a broad property of nonlinear viscosity and solid-like behavior.

2.2 Microscopic perspective of complex fluid

Figure 2.2: Schematic figures of a model of internal elements: (Left) colloidal suspension

system, (Right) polymer solution system.
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Chapter 2.2

In the field of rheology, the mechanism of changes in nonlinear viscosity and solid-

like behavior of fluids have been explained by modeling the internal components of the

fluids, and the characteristic behavior is reproduced and applied through the analysis

and numerical simulation of the modeled fluids.

The characteristic behavior, viscosity dependent on the shear rate, and solid-like

behavior such as shape retention at rest state, can be due to the fluid having various

internal elements complexities, e.g., particles and polymers dispersed and dissolved inside

the fluid. A interaction between the internal elements and the fluid causes flow resistance

related to viscosity. Moreover, each of the internal elements interacts with themselves

and builds the structure (elements aligning to the same orientation, each element linking,

and clustering) interacting with the fluid relating to the more rich fluid behavior [71].

Thus, its flow is characterized not only by the effects of its internal elements property but

also by the effects of the combination of those internal elements, which enriches the flow

behavior and the system. There are two main types of modeling of internal elements:

colloidal suspensions system, in which solid (solid-like) particles are suspended in a

fluid at a certain density, and polymer solutions system, in which polymers (particles

connected in chains) are dissolved in the fluid. For each case, the flowing behavior has

been discussed separately.

In the colloidal suspensions system, experiments and analyses have been conducted [64]

on the phenomenon that viscosity changes and increases when solid particles are mixed

and suspended in a background fluid, which is ideal viscous fluid, e.g., water. Einstein’s

viscosity equation [23] was derived analytically from considering the fluid flow around

the particles,

η = (1 +Beφ)η0, (2.6)

where η0 is the viscosity of background fluid, φ is a volume fraction of particles, Be

is the Einstein’s viscosity coefficient and Be = 2.5 is derived by the Einstein. Batcher

and Green extended this formula to the higher order of φ considering the contact of

colloidal particles [64], η = (1 + Beφ+ B1φ
2)η0, where the coefficients is B1 ∼ 5.2. For

colloidal suspension with the low-density volume fraction, the experimental results follow

Einstein’s viscosity equation (2.6), but in the more highly density colloidal suspension,

Krieger-Dougherty equation [52] that can fit the experimental data of viscosity was

proposed,

η =

(
1− φ

φJ

)−2.5φJ

, (2.7)

where φJ is the jamming transition density.

The φJ is known as the density at which the jamming transition occurs, where the

fluid starts to obtain the rigidity due to the close packing of particles. This jamming

phenomenon is caused by the solid-like behavior of the complex fluid, and shows a critical

behavior [20]. Jamming is considered to characterize the relationship between solid-like

and fluid flowing behavior on a wide range of scales, from a small scales such as forms

7



Chapter 2.3

and emulsions to a large scales such as sediments and avalanches [92]. Related to this

jamming phenomenon, hydrodynamic analysis [81] of the shear thickening, in which

the viscosity of a fluid increases rapidly depending on the shear rate, is performed. In

addition, the relationship between the experimental results and the theoretical equations

for flow behavior based on the density and size of the colloidal suspensions has been

studied [35]. We will consider the Jamming is the key of the solid-like behavior of

complex fluids and investigate in Section 4.

For an analysis using a model for polymer solutions, the polymer chain is described

as a certain number of beads (solid particles) connected by a spring [19]. Based on

calculating the Langevin equation, which corresponds to the equation of motion in the

fluid of a certain length of beads, the Rouse model was proposed to discuss the viscosity

and viscoelasticity of polymer solutions. The Rouse model does not consider entan-

glement, which is a many-body interaction with other polymers. De Gennes proposed

the reptation model [16] to consider and discuss the entanglement of polymers and the

mobility between polymers. Theoretical analysis and predictions of flow behavior and

viscoelasticity of polymer solutions based on the reptation model were presented by Doi

and Edwards [21, 22].

The existence of solid-like behavior, whether having elasticity, basically depends on

the density of internal elements in the fluid related to the jamming transition as a criti-

cal phenomenon. In contrast to the solid-like behavior, the cause of nonlinear viscosity

is considered various reasons due to the diversity of the internal elements; colloidal

friction, fraction, inter-particle structure [8, 97, 51], orientation and microstructure en-

tanglement [28, 48].

2.3 Approach to the more complex fluids in daily observed

Fluid that we observe in daily life, for example in the kitchen, we can see the various

food, and cooking them via pouring, mixing, baking. In those fluids and that of process,

the fluid internal elements and micro-structure is considered as more complex, e.g.,

existing colloids have various size and not spherical shapes as a fracture, thin cell, the

polymer chained not straight but more complicated, or co-existing the those polymers

and colloids. In addition, considering the fluid mixed with fluids have complex structure,

those of internal structure depending on the mixing rate may be unknown. Therefore,

it is not easy to represent them as micro models. Is it impossible to handle such a fluid,

predict its viscosity, and reproduce its flowing behavior for analysis and application?

We think that it is No, by considering these fluids from a different perspective, from a

macroscopic point of view, we can deal with them. An example is the production of

ketchup of quality control. A production company needs to control and produce ketchup

of the same quality (flowing property) at all times. However, several pastes of tomatoes

property, ingredient of ketchup, including various component such as broken soft sell,

cell wall, and fracture having different size and shape, depends on the processing [79]
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Chapter 2.3

and the climate and soil of the regions where it is cultivated [90]. In order to treat

such complex fluid, they consider these fluids from macroscopic property and make use

of the experimental data, By controlling and optimizing the combinations of pastes of

tomatoes with different properties and processing, they can obtain the desired material

properties [6].

As we described, even fluids have more complex and disordered system that seem

difficult can be handled by taking a macroscopic approach, considering it as a homoge-

neous fluid. Therefore, we believe that both microscopic and macroscopic approaches

are important for understanding and applying the complex fluids of characteristic prop-

erty. In Chapter 4, we will investigate the limit of the elastic property to approach the

reproducing of the solid-like behavior from microscopic behavior. In Chapter 5, we will

investigate the viscosity depending on the complex fluid mixing to approach the repro-

ducing of the nonlinear viscosity behavior from macroscopic behavior. In Chapter 6, we

will investigate a method to measure complex fluids conveniently by anyone to approach

the measuring the flowing behavior from macroscopic behavior.
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Chapter 3

Simulation and Measurement methods

3.1 Complex fluid Simulation method

We introduce the Material Point method (MPM) mainly for performing the simulation

for complex fluid used in this thesis at the Chapter 5, and the Chapter 6.

3.1.1 Material Point Method

Sulsky et al. [87, 88] extended Particle-In-Cell (PIC) method to handle solid by intro-

ducing continuum mechanics and plastic mechanics. PIC is a simulation method that

computes the hydrodynamic equation numerically with a hybrid technique, integrating

with Eulerian grid and Lagrangian particle. In continuum mechanics, the material is

considered continuum following continuity equation, dynamics is followed by Equation

of Motion, and material property is defined constitutive equation. These three equations

are called the governing equations, including the equations for fluids and elastic bodies.

We consider that MPM is a hybrid simulation method for continuum mechanics. Based

on continuum mechanics, particles track deformation gradient related to strain, which

can compute the elastic part of the constitutive equation directly. Dividing deformation

gradient into elastic and plastic parts introduced by mechanics of plasticity can represent

plastic behaviors and flow. Because of the hybrid technique, we can simulate the free-

surface dynamics, large deformation efficiently. These features of the MPM allow us to

solve efficiently the governing equations involving the representation of various types of

materials and phenomena; snow [84], powder as granular material [15, 32, 103, 49], form

and cream as viscoelastic fluid [74, 102, 25, 86], cloth and knitt [42], fracture [101, 99],

friction [54], surface tension [9], and phase transition [85, 9]. Simulating Multi-material

interacting has been investigated, treating a multi phase flow [31, 73, 5, 26], an inter-

acting and contact [40], and percolation [76]. Thanks to the capability of simulating

various types of material in a single simulation scheme, MPM can simulate their inter-

action, coupling, mixing easily. fluid-solid two-way coupling is developed [26].

In order to perform more accurately and efficiently, the integrator part is also in-

vestigated. Original MPM has a problem about relatively large numerical viscosity and

10
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dissipation caused by the hybrid method; information loss happens when the information

on grid and particle is transferred. APIC [43], and PolyPIC [29] solve this problem and

compute accurately by using the information of local velocity field when the information

on grid and particle transferred. Hu et al. [40] showed that MLS-MPM can uniformly

handle APIC and Poly-PIC on the single formulation.

To accelerate the calculating efficiency, Implicit time integration is adapted [25, 33].

Introducing Galerkin multigrid [95] GPU-based method has been investigated about

efficiently computation with a tremendously large number of particle and scale [32, 96].

Now, MPM is a powerful tool for reproducing various materials including complex fluid,

free-surface, accurate, efficient even on a large scale. MPM is used in not only computer

graphics but also the science field. There are several investigations about snow avalanche

with dynamic anticrack [34], and iceberg calving with large scale simulation [100].

3.1.2 Implementation of Material Point Method

m

Initial state(1)

(4) (5) (6)

(2) (3)Particle to Grid (P2G)

Grid to Particle (P2G)

Update grid velocity
via computing stress

Advection
(Grid deformation)

Strain update and
Grid initialization

v x
F b

p
n n

n n

n
p p

p p

m v x
F b
p
n+1 n+1

n+1 n+1

n+1
p p

p p

m v x
F b
p
n+1 L
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n
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p p

m vi i m vi i
n n n L

Figure 3.1: Schematic figure of material property updation via material point method.

In this thesis, we followed mainly the method of Sulsky et al. [87] and Yue et al. [102]

to perform a MPM simulation for Herschel-Bulkley fluid. Fig. 3.1 shows the entire

algorithm of material property integration. In addition, we applied APIC scheme [44]

to reduce the information loss especially during a rotational motion.

11



Chapter 3.1

Mass conservation and momentum conservation equations are

Dρ

Dt
+ ρ∇ · v = 0, (3.1)

ρ
Dv

Dt
= ∇ · σ + ρb (3.2)

where, ρ = ρ(x, t) is the mass density, v = v(x, t) = du(x,t)
dt is the velocity u is defined as

the displacement, and b is the external force (body force). Note that we consider these

equation in Lagrangian frame, thus the quantity x = x(X, t) is the current position

at time t started from X = x(X, 0). u = u(x, t) is also can be defined as u(x, t) =

x−X(x, t) (X(x, t) is inversed function of x).

Discretization of physical quantity on Grid and Particle

In order to solve these conservation equations, we discretized the physical quantity on

Particle and Grid. In the particle side of discretization (Fig. 3.1(1)), the mass density

can be written as a sum of point masses for representing particle located at xp(t) of time

t by using delta function δ(x)

ρ(x, t) =

Np∑
p=1

mpδ(x− xp(t)), (3.3)

where Np is the total number of point, mp is the particle mass fixed.

In the grid side of discritization (Fig. 3.1(2)), we prepare spacial nodes xi(t) and

standard nodal basis function Ni(x) as representation of computational grid. Using

spatial nodes xi(t) and nodal basis function Ni(x), the coordinate x can be written as

x =

Nn∑
i=1

xi(t)Ni(x), (3.4)

where Ni is the total number of point. By using nodes and basis function, other physical

quantities also can be written as

v =

Nn∑
i=1

vi(t)Ni(x). (3.5)

Therefore, we can discritize the physical quantity q(x, t) representing on the grid

qi(t) (denoted as i) by using grid node xi and nodal basis function Ni(x), and on the

particle position qp(t) (denoted as p) by using particle xp(t) and delta function as basis

function of particle.

Weak form

To apply the discrete formulation following standard Finite Element Method, we will

obtain the weak form of momentum conservation equation. We prepare the vector valued

12
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test function w(x, t), and multiplying Eq. (3.2) by test function w(x, t), integrating over

the entire of material Ω,

∫
Ω
ρw(x, t) · Dv

Dt
dx =

∫
Ω
ρw(x, t) · ∇ · σsdx+

∫
Ω
ρw(x, t) · bdx, (3.6)

where σs is specific stress ρσs = σ.

Integrating by part of the first item on the right-hand side, we obtain the weak form

of momentum conservation equation,∫
Ω
ρw(x, t) · Dv

Dt
dx =−

∫
Ω
ρ∇w(x, t) : σsdx+

∫
∂Ω

w(x, t) · (σ · n)ds

+

∫
Ω
ρw(x, t) · bdx, (3.7)

where n is unit normal vector on boundary, dx is the differential volume elements, and

ds is the differential surface elements. Note that it is assumed that test function is 0 on

the boundary.

We will discritize the weak form on particle by substituting Eq. (3.3) into Eq. (3.7),

following
∫
Ω q(x, t)δ(x− xp(t))dx = q(xp(t), t),

∑
p=1

mpw(xp(t), t) ·
Dv(xp(t), t)

Dt
=−

∑
p=1

mp∇w(x, t)|x=xp : σs(xp(t), t)

+

∫
∂Ω

w(x, t) · (σ · n)ds+
∑
p=1

mpw(xp(t), t) · b. (3.8)

Substituting the physical quantities and test function represented by grid node, v =∑Nn
i=1 vi(t)Ni(x),w =

∑Nn
i=1wi(t)Ni(x), b =

∑Nn
i=1 bi(t)Ni(x). Eq. (3.8) at time tn (a

superscript of n denote a quantity at time tn) can be written as

∑
i=1

wn
i ·
∑
j=1

mn
i,j

Dvn
j

Dt
=−

∑
i=1

wn
i

∑
p=1

mp∇Ni(x)|x=xp · σs,n
p (3.9)

+
∑
i=1

wi · τni +
∑
i=1

wi · bn,i, (3.10)

where mn
i,j =

∑
p1
mpNi(x

n
p )Nj(x

n
p ) is the mass matrix, σs,n

p = σs(xn
p , t

n) is the specific

stress at particle, τni =
∫
∂ΩNi(x)(σ(x, t

n) · n)ds is the discrete applied traction, bni =∑
p=1mpNi(xp)b(x

n
p , t

n) is the discretized specific external force.

The Eq. (3.9) should satisfies the any components of test function wn
i at time tn,

thus this discretized weak form of momentum conservative equation reduced to

∑
j=1

mn
i,j

Dvn
j

Dt
=−

∑
p=1

mp∇Ni(x)|x=xp · σs,n
p + τni + bni . (3.11)
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This Eq. (3.11) can be considered as discritized equation of motion to update velocity at

the grid node i. In practice (in order to avoid calculating a inverse of the mass matrix),

instead of a mass matrix, we use a lumped mass matrix where each raw component is

grouped into diagonal components,

mk
i =

∑
p=1

mpNi(x
k
p), (3.12)

and the Eq. (3.11) can be rewritten by lumped mass matrix as

mn
i

Dvn
i

Dt
=−

∑
p=1

mp∇Ni(x)|x=xp · σs,n
p + τni + bni . (3.13)

The nodal velocity Lagrangian update denoted tL (Fig. 3.1(3)) is

vL
i = vn

i − 1

mn
i

∑
p=1

mp∇Ni(x)|x=xp · σs,n
p +

τni
mn

i

+
bni
mn

i

. (3.14)

Particle to Grid and Grid to Particle Transfer

We introduce the APIC data transfer scheme [44] to prevent the loss of information. As

the Grid to Particle transfer (Fig. 3.1(4)), the nodal quantity such as velocity vn
i transfer

into the particle quantity vn
p by using standard basis function Ni(x),

vn
p =

∑
i=1

vn
i Ni(xp). (3.15)

On the other hand, as the Particle to Grid transfer by using lumped mass matrix,

vn
i =

1

mi

∑
p=1

mp(v
n
p +Cn

p,i)Ni(xp), (3.16)

where Cn
p,i = Bn

p (D
n
p )

−1(xi − xn
p ) is APIC correction term [44], each term is Dn

p =∑
i=1Ni(x

n
p )(xi − xn

p )(xi − xn
p )

T , Bn+1
p =

∑
i=1Ni(x

n
p )v

L
i (xi − xn

p ).

Constitutive model

We compute the stress term through the constitutive equation. We followed Yue et

al. [102] to apply the Herschel–Bulkley fluid, reproducing the shear-dependent viscosity

and yielding behavior. As a hyperelastic stored (or strain) energy density function

W = Wv(J) +Ws(b
e
), Wv(J) is the volumetric term, Ws(b

e
) is the shear term,

Wv(J) =
1

2
κ

[
1

2
(J2 − 1)− ln J

]
, (3.17)

Ws(b
e
) =

1

2
µ(Tr[b

e
]− 3), (3.18)
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where κ and µ are the bulk and the shear modulus, J = det(F), and b
e
= det(be)−1/3be =

J−2/3be is the volume preserving left-Cauchy Green tensor. We can obtain the Kirchhoff

stress tensor from this hyperelastic energy density function,

τ =
∂W

∂Fe
FeT =

κ

2
(J2 − 1)I+ µ dev[b

e
]. (3.19)

In the Eq. (3.19), the right hand side of the first term is the volumetric part of response

related to such as a pressure, and the second term is deviatric part of response related

to such as shear stress. We have used dev[x] = x− Tr[x]
3 I, and I denotes the 3×3 Identity

tensor. The Kirchhoff tensor is related to the Cauchy stress via σ = τ/J .

In order to introduce the shear plasticity, we use the von-Mises yield condition [83, 69]

to define the limits of the elastic regime,

Φ(s) = s−
√

2

3
σHY ≤ 0, (3.20)

where s = ∥s∥F is the magnitude of shear part of the Kirchhoff stress tensor ( ∥ · ∥F
denotes the Frobenius norm ) as s = dev[τ ] = µ dev[b

e
], and σHY is a yield stress as

the yield condition. This means that the material behaves elastic under the condition

Φ(s) ≤ 0, and if exceed the Φ(s) > 0, the part of the strain violating the von-Mises yield

condition can be considered as a plastic strain.

The update of the elastic part of the left Cauchy-Green tensor is given by ḃe =

Lbe + beLT +Lvbe , where L = ∇v = ḞF−1 is the spatial velocity gradient and, the last

part Lvbe is the Lie derivative of be along the velocity field. Lbe + beLT corresponds to

the change in the total strain due to the velocity field, and the Lie derivative corresponds

to the change in the plastic strain considering the plastic part of deformation gradient,

i.e., the plastic flow that can be considered fluid flow. The Lie derivative is given by

Lvbe = −2
3 Tr[b

e]γ̇ŝ (see Simo and Hughes [83]). γ̇ is the flow rate or a scalar strain

rate, and ŝ is the flow direction (ŝ = s/s its normalized form). This flow rule is objective

and can be derived by applying the principle of maximum plastic dissipation to the

stored energy function (3.17) and the yield condition (3.20) [82]. By rewriting the

Herschel–Bulkley model as a function of the strain rate, we obtain the following rule for

the flow rate:

γ̇(s) = max

(
0,

(
Φ(s)

ηH

))1/nH

. (3.21)

The specific implementation of this flow-rule based strain update follows the return

mapping algorithm presented in Yue et al. [102]. The strain, first, is updated as the

elastic material, and if the shear stress exceeded, the strain will correct to satisfy the

flow rule and von-Mises yield condition. The implicit strain update as the elastic material

can be written as

b̄e,pre = f̄n+1b̄e,nf̄n+1 T , (3.22)
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where fn+1 = I+∆t∇vn. If the shear stress given by b̄e,pre satisfied with the von-Mises

yield condition, the plastic flow does not occur. In the case of the shear stress exceed,

the strain will correct. As an implementation, in order to satisfy the yield conditions

and flow rule, the corrected shear stress is given by the solution of the formula,

η
1/nH

H (sk+1 − spre) + 2µ̃∆t

(
spre −

√
2

3
σHY

)1/nH

= 0, (3.23)

where µ̃ = 1
3Tr[b̄

pre]. If the ηH = 0 or nH = 1, the corrected stress is given as

sn+1 = spre −

spre −
√

2
3σHY

1 + ηH
2µ̃∆t

 . (3.24)

We obtain the sn+1 and the strain update with corrected strain,

b̄n+1 =
1

µ
sn+1 +

1

3
Tr[b̄pre]I, (3.25)

where sn+1 = sn+1ŝpre.

According to this implementation, The deformation gradient tensor Fn and the elastic

part of the left Cauchy-Green tensor b̄e,n is updated to the FL, b̄e,L and the stress is

computed on each particle.

Material Point Update

According to computing the stress and update the strain following the constitutive model

and its implementation, we obtain the updated velocity at vL
i the node and each strain

tensor FL
p , b̄

e,L
p . Each velocity at the particle position xn

p corresponding to the updated

particle velocity is interpolated by the nodal basis function,

vL
p = vL(xn

p ) =
∑
i=1

vL
i Ni(x

n
p ) (3.26)

= vn
p +∆t

∑
i=1

Dvn
i

Dt
Ni(x

n
p ). (3.27)

During the velocity updated at Lagrangian step, the entire material will deform

(Fig. 3.1(5)). According to the deformation of node grid at the Lagrangian step, the

particle position is also moving due to the velocity at the xn
p interpolating by the nodal

basis function,

xL
p = xn

p +∆t
∑
i=1

vL
i Ni(x

n
p ). (3.28)

We obtain the updated material position and velocity at tn+1,

xn+1
p = xL

p , (3.29)

vn+1
p = vL

p . (3.30)

The strain property is also updated after the velocity update (Fig. 3.1(6)).
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3.2 Fluid Measurement Methods

3.2.1 Over view of fluid measurement

In order to measure the fluid flowing property, we use the rheometer. A rotational

rheometer is an appropriate method when measuring the unknown material flowing

behavior first [59, 61]. The advantage of this method is that it can reproduce a Couette

flow parallel to the direction of rotation. From the torque of the fixture and the rotation

speed, the relation between shear stress and shear rate of the fluid can be determined.

Each point of the flow curve can be measured directly by controlling the torque and

rotation velocity. There are three main types of rotational rheometers: coaxial cylinder,

cone-plate, and parallel-plate [59]. In this thesis, we used the cone-plate and parallel-

plate rheometer introduced in Section 3.2.2.

The cone-plate rheometer is most suitable for measuring the flow curve of including

non-Newtonian fluids because the shear stress and shear rate can be derived from the

torque and rotational velocity without assuming a model of the flow curve. However, this

rheometer have limitation to measure fluids that may contain small diameter particles,

because the distribution of particles near the tip of the cone may become non-uniform

and disturb the Couette flow. The parallel-plate can handle this limitation by adjusting

the gap size but cannot reproduce uniform shear rate flow and assuming model. The

Coaxial cylinder with a narrow gap is also suited for measuring non-Newtonian fluid,

but the method does not apply to fluids containing large particles due to the narrow-gap

limitation. This method can be scaled up to adapt to fluids containing large particles

such as concrete [37]; note that assuming velocity distribution across the gap is linear

with a narrow gap coaxial cylinder. In order to measure these complex fluids more

accurate, Coussot et al. [11] use the large-scaled coaxial cylinder for natural coarse sus-

pension. Flow fields of wide gap coaxial cylinder are analyzed to measure concrete [37],

fabric-flow [58].

Other types of rheometers are also investigated [61]. A capillary rheometer measures

the pressure exerted on the fluid flowing through the tube, assuming steady Hagen-

Poiseuille flow, and obtains the relation of shear strain and shear stress, especially the

high shear rate region. Ball-Falling is a measurement of the velocity of a sphere moving

in a fluid under gravity, assuming the flow past a sphere. It is a simple setup and has

been used for viscosity measurement.

It is not always necessary to obtain a flow curve or a viscosity to know the flowing

property of a fluid. If we just want to compare the consistency of different fluids,

there are simpler measurement methods applying for even complex fluids. Bostwick

meter and Adams rheometer measure a length of spread from a certain initial shape by

gravity. It can measure high viscous fluid containing some solid material such as tomato

paste. A flow cup is a method that measures the time it takes for the fluid from a

cup with a hole for fluid flowing out to compare and measure the consistency [61]. The
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rotating vane rheometer has been used to measure the torque and rotational velocity

corresponding flow resistance for the various complex fluids. Vane geometry can be

adaptively chosen depending on the material to be measured [61]. From the results

of these experimental devices, several methods have been investigated for obtaining the

apparent viscosity of Bostwick measurement [62] or model parameter of the flow curve for

Brookfield rheometer [98]. However, their accuracy depends on the measured material

and is unclear [4, 63].

3.2.2 Cone- and Parallel-plate measurement

θ
h

H

T

(a) (b)y y

zz

l
Ωvel

torque T
cone geometry

mounting plate mounting plate

specimen specimen

plate geometry
torque

Ωvel

c

p
c

c

Figure 3.2: Illustrating the cone-plate (a) and parallel-plate rheometer (b).

In this thesis, we use a cone- and parallel-plate experimental device to measure the

flow curve. We introduce the cone and parallel plate measurements [59].

In these measurement methods, as shown in Fig. 3.2, the fluid to be measured is

sandwiched between the flat platform at the bottom pace and a cone or parallel plate

instrument at the top, and cone or parallel plate rotates at a certain angular velocity

Ωvel. We measure the angular velocity Ωvel and the torque Ttorque generated at that time.

The fluid is assumed to have the Couette flow along the direction of rotation of the cone-

or parallel-plate, and from the hydrodynamic equations, the relationship between the

shear rate γ̇ and the shear stress σs is derived from the measured Ωvel and Ttorque [59].

For the cone-plate rheometry, we assume that θc is sufficiently small and stationary

Couette flow occurring to the rotational direction. The rotational speed at the r = lc

is sc = lcΩvel. The height from mounting plate to cone geometry is hc = lc tan(θc), and

the rotational speed can be written as the sc = hcΩvel
tan(θc)

. Following to the Couette flow

assuming (due to the θc is very thin; 0.5 or 1.0), the flow velocity towards the rotational

direction is linear according to the height, the shear rate is γ̇ = sc
hc

= Ωvel
tan(θc)

as constant

form. For the parallel-plate rheomety, the height from the mounting plate to the plate

geometry is constant Hp. Like the cone-plate rheometry, let consider the shear rate in

this case. The rotational speed at the r = lp is sp = lpΩvel, and the shear rate can be
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written as the γ̇ =
sp
Hp

=
lpΩvel

Hp
, which is not constant depending on the radial length lp.

Therefore, when we measure the unknown fluid, which may have highly shear dependent

viscosity, we may first use the cone-plate rheometry [61, 59]. However, the cone-plate

rheometry has a limitation for the fluid containing some particle inclusion because the

inclusion may directory contact the geometry close to the edge region and disturb the

steady Couette flow. The accuracy of the measured flow curve depends on the validity

of the assumptions of the fluid flow field; in the rotational rheometer assuming Couette

flow, the measured flow curve is less accurate if reproducing flow in measuring is depart

from assumed Couette flow due to the influence of fluid complexity such as containing

solid particle. Therefore, the appropriate device geometry settings (such as cylinder

radius, gap size, cone angle) to produce the assumed flow have been investigated, and

established [61], which is a limitation of methods.

3.2.3 Laboratory device and Herschel–Bulkley fitting

rotating 
geometry

specimen

(a) (b)

Anton-Paar Modular Compact 
Rheometer MCR 92

Figure 3.3: The rheometer device we use, (a) is the entire device, (b) is the rotating part

and platform of the rheometer. This figure is the reuse of the published article [66].

We use a laboratory device, rheometer (Anton-Paar Modular Compact Rheometer

MCR 92, Fig. 3.3) that can cone-plate and parallel-plate measurement by switching the

geometry. We measured various fluid-like food as the available and common complex

fluids containing widely class of flowing behavior. The measured data is dotted curves

as shown in Fig. 3.4. We can see the various types of the dotted curve, and most of

the curve is nonlinear. These linear and nonlinear flow curves can be fitted by the

Herschel–Bulkley model given by σs = σHY + ηH γ̇nH .

We employed the fitting by solving the following minimization problem per each
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Sauce nH ηH [Ba · snH ] σHY [Ba] geometry temperature

Ho 0.997 173.91 4.06× 10−6 Cone 19.27◦C

My 0.442 305.23 708.13 Cone 19.0◦C

Os 0.903 98.19 4.70× 10−6 Cone 18.39◦C

Ke 0.524 34.04 271.86 Parallel 19.71◦C

Hc 0.456 28.51 81.14 Parallel 19.22◦C

Cm 0.782 70.89 10.27 Parallel 19.02◦C

Ms 0.447 53.96 109.20 Parallel 19.18◦C

To 0.518 37.51 37.43 Parallel 19.02◦C

Sr 0.396 122.66 143.44 Parallel 18.3◦C

Ch 0.809 59.56 28.39 Cone 18.63◦C

Ti 0.629 172.15 349.87 Parallel 19.27◦C

Oy 0.62 16.14 26.48 Parallel 18.8◦C

Bb 0.48 92.85 165.57 Parallel 18.59◦C

Wo 0.928 0.12 0.16 Parallel 19.02◦C

Table 3.1: We show the fitted Herschel–Bulkley parameter in the Fig. 3.4, the unit form

is (CGS), where Ba = 0.1Pa; Ho : honey of SEVEN & i PREMIUM, My : Mayonnaise

of Kewpie, Os : Oligosaccharide syrup of SEVEN & i PREMIUM, Ke : Ketchup of

KAGOME, Hc : Hot chilli sauce of GOLDEN MOUNTAIN, Cm : Sweetened condensed

milk of Morinaga Milk, Ms : Mustard of S&B, To : Japanese pork cutlet sauce of Bull-

Dog, Sr : Sriracha hot chilli sauce of Flying Goose Brand, Ch : Chocolate syrup of

Morinaga, Ti : Sweat bean sauce of LEE KUM KEE, Oy : Oyster sauce of SEVEN &

i PREMIUM , Bb : BBQ sauce of McDonald ’s Japan, Wo : Worcestershire sauce of

Bull-Dog.

material:

(σHY , ηH , nH) = argminσ′
HY ,η′H ,n′

H

Nsample∑
i=1

∥∥∥∥∥σ′
HY + η′H

˜̇γ,i
n′
H − σ̃s,i

σ̃si

∥∥∥∥∥
2

, (3.31)

where Nsample is the number of different strain rate samples in the measurements, ˜̇γ,i

and σ̃s,i are the strain rate and stress of the i-th sample. Note that the error is measured

in the relative sense, to account for the fact that both the strain rate and stress of our

interest range several orders of magnitude; we want to have good fit for both high and low

strain rate regimes. We show the material parameters obtained from our measurements

and fitting in Table 3.1.
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Figure 3.4: The measured data (dotted) listed on the Table 3.1 and fitting curve (solid

line) of various fluid-like food as the available and common complex fluids containing

widely class of flowing behavior. This figure is the reuse of the published article [66].
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Exploring the transition behavior related to the

reproducing solid-like phenomena with

exhaustive numerical simulation

This chapter is based on the publication: Classification of the reversible–irreversible

transitions in particle trajectories across the jamming transition point, Soft Matter,

Volume 15, Issue 38, August 2019 [65].

4.1 The density dependent RI transition behavior

γ
So� Colloid

Irreversible (IR)

large

small

Reversible (R)

(1) (2) (3)
0

γ0

Figure 4.1: Illustrating the schematic picture of reversibility and irreversibility.

Some of the various complex fluids around us have solid-like properties, e.g., Mayo,

toothpaste, shaving form. The jamming transition phenomenon is the key to understand-

ing this solid-like behavior [92]. In order to approach the elastic property via jamming

22



Chapter 4.1

phenomena, we focused on the athermal colloidal system as a disordered system of a

complex fluid. As following jamming phenomena, the limit of reproducing the solid-like

property depends on the density of colloidal suspension, especially crossing the jamming

transition density φJ, the physical property changing critically. As the low density under

the φJ, the system behaves as a fluid and flow. On the other hand, the high density over

the φJ, the system shows a solid-like behavior as a jammed system, which can resist the

small shear stress with deforming reversibly, whereas applying the large shear stress, the

system flow and the trajectory of the internal element are irreversible and diffusive.

As a phenomenon related to the qualitative change in physical properties across the

φJ, the reversibility of colloidal particles under the oscillatory shear and its behavior

changes are known. Recently, studies have been focused on the microscopic reversibility

of the constituent particles and their corresponding macroscopic behavior in colloidal

dispersion systems under cyclic shear. The reversibility of particles in the fluid is related

to the non-equilibrium phase transitions from the elastic amorphous phase to the plas-

tic and flowing phase, and the reversibility depends on the particle density, especially

jamming transition density. Fig. 4.1 shows the reversible and irreversible of oscillatory

sheared colloidal system schematically. When the cyclic shear strain amplitude is small,

each particle will return to its original position every one cycle (or several cycles), finding

optimal trajectories (reversible trajectory) after sufficient oscillatory shear cycles. On

the other hand, the amplitude exceeds a certain critical threshold; the particles will not

return anymore because their trajectories are diffusive (irreversible trajectory). This

transition is know to as the Reversible-Irreversible (RI) transition [39, 38].

This RI transition has been investigated mainly in two different density regimes, low

and high density. Pine et al. and Corte et al. [72, 10] have shown that the RI transition

occurs in a system of low-density colloidal suspensions. It was shown that when the shear

strain amplitude exceeds a certain critical value, a continuous transition to irreversibil-

ity occurs due to the loss of reversibility caused by collisions between particles during

periodic shear and hydrodynamic interactions that destabilize the particle trajectories

during one cycle.

In the case of soft particles, it is known that particle trajectory can be reversible if

the shear amplitude is smaller than a certain critical amplitude, even when the density

is higher than the jamming transition density φJ trajectories will be complexly colliding

with several particles during a cycle. Interestingly, at the high densities region, the RI

transition shows a discontinuous transition; when the shear amplitude exceeds the critical

value, the number of particles taking irreversible trajectory takes on a discontinuous finite

value [50, 46, 91].

Therefore, the RI transitions are qualitatively different since they are continuous and

discontinuous transitions at low and high densities. This qualitative change is related to

jamming and the limit of elastic properties; however, few cases have been investigated

in the density region between high and low density. Thus this relation is also not clear.
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Recently, Schreck et al. [80] have studied the RI transition in a wide range of densities

below φJ and strains. They defined the reversible phase as two separate phases; point-

reversible phase and loop-reversible phase. In the point-reversible phase, the particles

will find the particle configuration, which does not collide during the oscillatory cycles.

In the loop-reversible phase, the trajectories of the particles are highly non-affine due

to the colliding but reversibly come back to the original position after every (or several)

cycle(s). On the other hand, the relationship between the rheological properties and the

particle configurations slightly below φJ is investigated by Vinutha et al. [93, 94], who

found that the stationary configurations of the frictionless particles under quasistatic

uniform shear are analogous to those of the shear-jammed frictional particles. These

results suggest that the nature of the RI transition at the intermediate density region is

very rich and can not be described as a mere extrapolation from the low-density region.

Related results in three dimensions are presented [14].

- Corte[2008]

- Kawasaki[2016]
- Knowlton[2014]

?
φ φ

γ

J

0

～ ～
～ ～

Continuous
 RI transition

R

R

IR

IR

Discontinuous
 RI transition

Low

High
<∆r(T)>

∆r(T)

Figure 4.2: Illustrating the schematic picture for our purpose. RI transitions are known

to be qualitatively different continuous and discontinuous transitions at low and high

densities. These result illustrate schematic as color map ∆r(T ) is the one-cycle displace-

ment, and the color shows the amplitude of ∆r(T ); blue is ∆r(T ) ∼ 0, i.e., green and

red is ∆r(T ) > 0 ,i.e., Reversible state (R). The RI transition behavior are investigated

the low and high density limit, However the research of intermediate density region,

especially around φJ are a few. Therefore, we investigate the these intermediate region

by using the exhaustive numerical simulation and grasp the big picture of transitions.

Fig. 4.2 shows the our purpose schematically. We investigate these RI transition

behavior around φJ by exhaustive numerical simulations with broad particle densities

across the φJ and shear strains, and we will make the phase diagram of RI transition to
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grasp the big picture of transitions. Based on the phase diagram, we search for changes

in mechanical properties and the presence of structures that characterize them.

4.2 Athermal soft colloidal suspension system

Athermal soft colloidal suspensions are modeled by a two-dimensional system of particles

interacting with a harmonic mutual potential. The system is a equimolar binary mixture

of frictionless particles with two different particle sizes (the size ratio is σL : σS = 1.4 : 1)

to avoid the crystallization [92], and a jamming transition density φJ = 0.842 [57]. For

this system, simulations of cyclic oscillatory shearing were performed with two different

protocols. The particles are driven by the overdamped equations with Stokes’ drag force

with the finite-frequency oscillating shear protocol. The equation of motion is given by

ζs

[
dri
dt

− γ̇(t)yi(t)ex

]
+
∑
j

∂U(rij)

∂ri
= 0, (4.1)

U(rij) =
ε

2
(1− rij/σij)

2Θ(σij − rij), (4.2)

where ζs is a friction constant, rij = |ri−rj | is the interparticle distance between the i-th

and j-th particles, ex = (1, 0) is the direction of the shear, and γ̇(t) is the shear rate. We

use the interaction potential as U(rij), where ε is an energy scale, and σij = (σi + σj)/2

is the interparticle distance at contact, Θ(x) is a Heaviside step function. We defined

σS, τ0 = σ2
Sζsε, and each unit of length, time, energy, stress is ε3.

An oscillatory deformation followed a Lees-Edwards periodic boundary condition,

and the time evolution of shear stain is γ(t) = γ0[1− cos(ωt)], where γ0 is the amplitude

of the imposed shear strain and ω = 2π/T is the oscillation frequency. In this finite shear

protocol, The oscillation period T is mainly T = 104τ0 choosing sufficiently large. We

set an initial particle configuration as a random distribution at t = 0 and used the semi-

implicit Euler’s algorithm to solve Eq. (4.1). The time-step is ∆t = 0.1; We have checked

that using a higher-order discretization algorithm, such as the Heun method, does not

change the results [1]. This is because the simulation is performed slowly enough with

overdamped equations of motion to suppress the accumulation of rounding errors. Note

that the velocity Verlet method used in micro-canonical molecular dynamics simulations

is not applicable in our simulations because this system is fully overdamped. We use

the system size of L = 20 in these results; we have checked that using a larger system

size L = 40 does not qualitatively change the results. The maximal simulation time is

tsim = 4000T . We perform at least five times independent simulations in each of the

parameters sets (φ, γ0) to improve the statistics; the bracketing symbol ⟨· · · ⟩ is used for

describing an ensemble averages of variables discussed below.
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4.3 Result and Discussion

4.3.1 Dynamics and phase diagram

The RI transition is characterized by the averaged particle displacements for one cycle

∆r(t, T ).

∆r(t, T ) =
1

N

N∑
j=1

|rj(t+ T )− rj(t)|. (4.3)

This is a quantitative characterization of the reversibility of particle trajectories and is

often used as an order parameter for RI transitions. If the system is in a reversible state,

∆r(t, T ) ∼ 0, and in an irreversible state, it will take on a finite value. In this thesis,

the system is considered to be in a reversible state when ∆r(t, T ) < 10−6.

Dynamics of ∆r(t, T )

As we discuss below, we have confirmed that when T is sufficiently large, the frequency

dependence of ∆r(t, T ) and phase diagram is small.

Fig. 4.3(a) shows the results for low densities φ = 0.703, far below φJ. At γ0 ≲ 0.40,

the displacement relaxes exponentially to zero. As γ0 increases, the relaxation slows

down and eventually reaches an irreversible state with finite ∆r(t, T )’s following to a

power-law tail (light blue line).

Fig. 4.3(b) shows the results for high densities φ = 0.901, far above φJ. In this

region, the relaxation behavior is qualitatively different from that of the low-density

region. ∆r(t, T ) takes a finite value (irreversivle state) in the beginning, but after a

certain number of cycles, it discontinuously drops to zero entering a reversible state.

It takes almost constant value until dropping down, insensitive to γ0. ∆r(t, T ) has a

finite value at first, starting from the irreversible state with a finite value. However,

the relaxation time in the irreversible state increases sharply with increasing γ0 and

eventually exceeds the time window of our simulation at γ0 ≈ 0.14. The previous study

has shown that γ0 ≈ 0.14 where the relaxation time diverges matches with the yielding

transition point γY at which the system loses the elasticity and starts flowing [46]. Note

that multi-period reversible; particles come back to their original positions only after

several cycles (two or three), are observed at high densities region. In this thesis, we do

not include multi-period data.

The results for intermediate densities between the low and high densities are sur-

prisingly rich. Fig. 4.3(c) shows the results at φ = 0.750 below φJ. If the γ0 is small,

the relaxation behavior of ∆r(t, T ) is qualitatively the same as those at φ = 0.703 and

it decays exponentially. As γ0 increases, ∆r(t, T ) starts developing the power-law tails.

The relaxation time increases and eventually becomes larger than the simulation win-

dows. As γ0 increases further, however, this trend is reversed and the relaxation time

becomes shorter. In other words, the system shows the reentrant behavior. After this

reentrance such as γ0 = 0.30, the relaxation behavior qualitatively changes and becomes
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Figure 4.3: The time evolution of the averaged one-cycle displacement ∆r(t, T ) in several

densities from low to high density across the φJ. We performed a single simulation for

various strain amplitudes γ0: (a) At φ = 0.713, far blow than the jamming transition

density φJ. For γ0 < 0.40, the ∆r(t, T ) continuously drops to zero. (b) At φ = 0.713,

far above than the φJ. For γ0 < 0.14, the ∆r(t, T ) discontinuously drops to zero. (c)

At φ = 0.750, below the φJ. For γ0 < 0.22, the ∆r(t, T ) continuously drops to zero.

For γ0 ∼ 0.22 the ∆r(t, T ) shows irreversible state for the full simulation time. For

γ0 > 0.22, we can observe that irreversible state reentrance to the reversible state, the

∆r(t, T ) semi-discontinuously drops to zero. (d) At φ = 0.831, slightly below the φJ,

we can observe the transition, For γ0 < 0.30, the ∆r(t, T ) semi-discontinuously drops to

zero. This figure is the reuse of the published article [65].

similar that observed above φJ (Fig. 4.3(b)); it quickly decays to a plateau, stays there

for a long time, and then abruptly and discontinuously drops to zero. Contrary to the

results at φ > φJ, the heights of the plateau increase continuously and the relaxation

time shortens as γ0 increases comparing γ0 = 0.30 with γ0 = 0.40. This reentrant tran-

sition of the relaxation time below φJ is already reported by Schreck et al. [80]. We will

analyze geometrical properties of these phases in the later section.

Fig. 4.3(d) is the result at φ = 0.831, slightly below φJ. In this region, we again

observe the exponential relaxation of ∆r(r, T ) at very small γ0, such as (γ0 = 0.1).

However, as γ0 increases, the relaxation time barely increases and develops a plateau

with finite height, whose behavior is more similar to what has been observed above φJ

(Fig. 4.3(a)), i.e., it decays rapidly to a plateau and then relaxes abruptly and step-wise

to zero. For γ0 ≳ 0.3, ∆r(t, T ) remains constant in our simulation windows, suggesting

that the system entered the irreversible state. It is interesting to observe a qualitatively
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similar behavior to that above φJ even in the unjammed phase. We will show that the RI

transition observed in this density regime is closely related to the mechanical response

(yielding) in the Section 4.3.2.

The phase diagram of IR
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Figure 4.4: We show the phase diagram of RI transition on the parameter space of

(φ, γ0) by plotting the ensemble average of one-cycle displacement at the stationary state

∆r∞(T ). In order to enhance the small values visibility, we used the 1 + log∆r∞(T )/6

as we define the color map. The blue region is the reversible state (PR means the

point-reversible state, LR means the loop-reversible state) where the order parameter is

∆r∞(T ) = 0 (or more precisely ∆r∞(T ) < 10−6). The green and red (please see the color

column) region is the irreversible state (IR); especially the red means the largest value

of ∆r∞(T ) = 1 (if the value ∆r∞(T ) > 1, clamp to ∆r∞(T ) = 1 for the visualization).

This figure is the reuse of the published article [65].

We performed the simulation to obtain the ∆r(t, T ) on the various parameter set of

(φ, γ0). As the order parameter of RI transition, we use the value of ∆r∞(T ); we define

the ∆r∞(T ) is the ensemble average of ∆r(t = 4000T, T ) judging the system reached

the stationary state if becomes ∆r(t, T ) independent of time. Note that the diffusion

constant D is an alternative candidate of the order parameter. In Ref. [46], it is shown

that the position of the RI transition is not affected by the choice of the order parameters

if the period-doubling data are excluded.
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The color map in Fig. 4.4 shows the phase diagram of RI transition from widely

parameter space (φ, γ0). In order to enhance the visibility of the small values, we used

the 1 + log∆r∞(T )/6 as we defined the color map. We drew the blue as the reversible

region where the order parameter is ∆r∞(T ) = 0 (or more precisely ∆r∞(T ) < 10−6).

We drew the green and red (please see the color column) as the irreversible region;

especially the red means the largest value of ∆r∞(T ) = 1 (if the value ∆r∞(T ) > 1,

clamp to ∆r∞(T ) = 1 for the visualization). In order to draw this figure, we simulated

the system for the range of 0.7 ≤ φ ≤ 1.0 and 0 ≤ γ0 ≤ 1.0 for grid points separated

by δφ = 0.05 and δγ0 = 0.05 for most cases. The finer grid sizes of δφ = 0.01 and

δγ0 = 0.02 are used in the vicinity of the phase boundaries. This phase diagram reflects

the dynamic properties of ∆r(t, T ) observed in Fig. 4.3.

We will look at this phase diagram in four density regions 1): φ < 0.72, 2): 0.72 ≤
φ < 0.80, 3): 0.80 ≤ φ < 0.90, 4): 0.9 < φ. In 1): φ < 0.72, lowest density region,

we observed the continuous RI transition from the point-reversible to the irreversible

state, gradually changing from blue to green as γ0 increases. It reflects the Fig. 4.3(a)

of φ = 0.703 results.

In contrast 4): 0.9 < φ, highest density region above the φJ, we observe a discontin-

uous RI transition from the loop-reversible to the irreversible state, suddenly changing

from blue to red as γ0 increases. The transition phase boundary line is almost constant

on the γ0 = 0.15 over the all density φJ. The abrupt change of the colors at γ0 = 0.15 is

a consequence of a sudden and discontinuous increase of ∆r∞(T ) [46], it also reflects the

Fig. 4.3(b) of φ = 0.901 results. The transition boundary is not exactly constant. As φ

is decreased from above, it is slightly bent upward around φ ≈ 0.9 and then downward

as φJ is approached, before it turns upward sharply at the edge at φ = φJ.

In 3): 0.80 ≤ φ < 0.90, the density region below the jamming transition density

φJ, the discontinuous transition from the loop-reversible to the irreversible state still

presents, and its behavior will change interestingly. The transition boundary from blue

to red rises upward sharply at φ < φJ. The presence of the discontinuous transition

below φJ is also observed in Ref. [80]. In the large γ0 limit, this RI transition line

seems to diverge at φ ≈ 0.8. Note that this value is very close to the random loose

packing density where the particles would undergo the mechanical transition if there is an

interparticle frictional force. This result is reminiscent of the finding that configurations

of the sheared frictionless spheres are similar to those of the shear jammed system of

the frictional spheres reported in Ref. [93]. As for the values of ∆r∞(T ) at φ < φJ,

we will show the birds eye’s view of ∆r∞(T ) near φJ in the Fig. 4.5. We can observe

a discontinuity of the RI transition on both sides across the φJ, but ∆r∞(T ) tends to

vanish at the φ = φJ, while the transition boundary is still unchanged. It is because the

resolution of the parameters is too low and assessing the critical behavior of ∆r∞(T ) at

φJ exactly is challenging due to a subtle interplay of the criticalities of the jamming and

RI transitions [55, 12]. We shall revisit this issue in future work.
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∆r   (T)∞

0

Figure 4.5: The bird’s-eyes view of the phase diagram near φJ plotting ∆r∞(T ) as a

function of φ and γ0. We can observe the ∆r∞(T ) discontinuously drops to zero at

slightly below and above φJ. This figure is the reuse of the published article [65].

In 2): 0.72 ≤ φ < 0.80, the low density region below φJ, the behavior of the RI

transition is also interesting. Most noticeably, there is a “peninsula” of the irreversible

phase below φJ (i.e., the green peninsula like region surrounded by the blue region),

where ∆r∞(T ) is finite (green) in the low density and small γ0 region, surrounded by

the reversible states (blue). It reflects the reentrant behavior as shown in Fig. 4.3(c).

This region is surrounded by the two phase boundaries on the low γ0 boundary side and

upper boundary side. We found that the RI transition across the lower boundary side is

continuous from the point-reversible to the irreversible state, whereas it is the discontin-

uous transition from the irreversible to the loop-reversible state at the upper boundary

side. As the density increases, the upper and lower boundaries tend to converge to zero

around φJ. The phase boundaries of the irreversible phase, especially upper boundary, is

jerky and blurred due to very large sample-to-sample fluctuations of ∆r∞(T ). One may

be tempted to consider this irreversible peninsula is a meta-stable state which vanishes

in the large time limit (t → ∞) or in the AQS limit (T → ∞). However, this phase is

unexpectedly stable and survives in the AQS limit simulation results [65].

Instead of the order parameter ∆r∞(T ), one can employ the relevant time scales

as the order parameters to draw the phase diagram. The phase boundaries are drawn

as the points at which the time scales diverge. Note that there are two types of time

scales in our systems depending on the nature of the RI transitions. If the transition is

continuous, as we observe at low densities, ∆r∞(T ) is well described by an exponential
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function from which one can define the relaxation time τR. To define τR, we use an

empirical function given by

∆r(t, T ) = ∆r0
e−t/τR

tδ
, (4.4)

where ∆r0 ≡ ∆r(t = 0, T ) [10]. On the other hand, if the transition is discontinuous,

∆r∞(T ) develops a plateau. There are initial relaxations towards the plateau and the

final abrupt drops from the plateau to the reversible phase. We refer to the time scale

of the latter process as the life time τL in order to discriminate the relaxation time τR of

the initial relaxation. The relaxation time τR is obtained by fitting by the generalized

expression of Eq. (4.4) given by

∆r(t, T ) = (∆r0 −∆rs)
e−t/τR

tδ
+∆rs, (4.5)

where ∆rs is the plateau value. On the other hand, we define the life time τL as the

time at which ∆r(τL, T ) drops to 10−6.

The Fig. 4.6 (a) and (b) are the phase diagram as the color map of the averaged values

of τL and τR. The region above φJ is not shown because it is identical to that for ∆r∞(T ).

In the vicinity of the phase boundary occurring the continuous RI transition, the iso-τL

line coincides with the iso-τR line due to the continuous nature of the transition. On

the other hand, near the reentrant transition, the two time scales are decoupled. While

the region where τL > 4000T (yellow colored region in Fig. 4.6 (a)) matches with the

irreversible peninsula in the Fig. 4.4, The large τR ridge only exists along the reentrant

line as shown in Fig. 4.6 (b). These results support the existence of a peninsular region

of the peninsula like irreversible phase and bolsters that the phase boundaries of the

peninsula of the irreversible phase is delineated by the continuous transition at small

γ0’s and discontinuous transition at large γ0’s. Schreck et al. [80] have demonstrated

that this diverging time scale separates the reversible phase into the two distinct phases;

the point-reversible phase where the one-cycle trajectory is completely affine-like and the

loop-reversible phase where it is not. Our results suggest that there exist a (meta-)stable

irreversible phase between the point- and loop-reversible phase.

4.3.2 The mechanical response depending of the density

The macroscopic mechanical responses, elasticity and plasticity, can be regarded as re-

lated to the reversibility or irreversibility of the system. The particle can take a reversible

trajectory with respect to the displacement of the system, which corresponds to an elas-

tic response. On the contrary, if the particle takes an irreversible trajectory and the

particle trajectory diffuses, which corresponds to the occurring plastic flow in the sys-

tem. The result of this is that the discontinuous RI transition line coincides with the

yield transition line. We compute the shear stress σxy from the simulation of simple

unidirectional shear with a constant strain rate γ̇ given by

σxy =
1

2L2

∑
j,k

xjkyjk
r2jk

∂U

∂rjk
. (4.6)
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Figure 4.6: The color plot of (a) averaged lifetime of irreversible trajectories τL　 (the

times ∆r(τL, T ) drops to 10−6 and system become the reversible state), and (b) the

averaged relaxation time τR defined by Eq. (4.5). The both color map clearly shows the

existence of peninsula-like region. This figure is the reuse of the published article [65].

Fig. 4.7 is the strain (γ) dependence of σxy at γ̇ = 10−5 for various φ below φJ to verify

the mechanical response. The stress-strain curves are averaged over 1000 independent

initial configurations, which are generated by the AQS oscillatory shear simulations

at γ0 = 1.0 for each packing fraction. The stress-strain curve grows linearly. This

indicates that the shear stress responds linearly to the displacement, corresponding to

the elastic property of the system. When γ exceeds a certain value, it is the yielding

transition point γY, the stress-strain curve becomes a plateau and does not vary with

displacement, indicating that the elastic property is lost and plastic flow is occurred due

to the yielding transition. At each density below φJ, the presence of elastic and plastic

regimes has been confirmed. Interestingly, the yielding transition point γY increases

when φ decreases, and it matches with the discontinuous transition line as shown in

Fig. 4.8 of white dots. This behavior is very similar to that observed experimentally in

athermal colloidal suspensions below the glass transition point [60]. We can observe the

more rich property in the elastic regime in the small strain region. Following the log-log

plot of that stress-strain curve in Fig. 4.7(b), the curve is not linear against the elastic

response, fitted by σ ∝ γae . The nonlinear region can be divided into two regions by the

fitting parameters: ae = 0.5 and ae = 1.3. For the ae = 0.5, this is reminiscent of the

softening of stress observed above φJ. For the ae = 1.3, This is again analogous with
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Figure 4.7: (a) is the stress-strain curves of near φJ from the simulation of simple

unidirectional shear with a finite constant strain rate γ̇ = 10−5. The region where the

σxy grows linearly shows elastic behavior, and the region where the σxy is constant shows

yielding. we can observe the elastic and yielding behavior even in the below φJ (b) is

the same as the (a) but at small γ’s in the log-log plot. we can observe the nonlinear

elastic region where the shear stress is proportional to the γ0.5 and γ1.3. This figure is

the reuse of the published article [65].

the findings reported above φJ.

4.3.3 The relation between RI transition, mechanical property, and meso-

scopical structure

The reversibility or irreversibility of a system is qualitatively determined as a result of

the contact or collision of the respective particles. How collisions and contacts occur
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Figure 4.8: The iso-Z lines superimposed on the phase diagram shown in Fig. 4.4, square

dots are the point that we observed yielding transition from steady shear simulation given

by Fig. 4.7. The Z = 0 line agree with the continuous RI transition line from point

reversible to irreversible. The Z = 1 line almost agree with the reentrant RI transition

line from irreversible to loop reversible. The Z = 3, which the contact number related to

the Z = d+1 can make the system stabilize if the particle have the friction force, agree

with the discontinuous RI transition slightly below φJ. we plotted the yielding point as

the white dot on the phase diagram given by the stress-strain curve. Some parts of this

diagram are reused from published articles [65].

depends on the configuration of the particles reflecting the density and sheared state.

In order to characterize the particles configurations related to the mesoscopic structure,

we introduce the contact number Z of respective adjacent particles, which is known as

the characterize the Jamming phenomena [92, 20]. A contact between particle i-th and

j-th is defined when the particle distance rij is smaller than the aij ≡ (σi + σj)/2. We

compute the Zi counting the number of contact particles to i−th particle as satisfying

the rij ≤ aij , and we obtain the Z by averaging Zi over the total particle.

Fig. 4.8 shows the iso-Z lines on the phase diagram. We have confirmed that the RI

transition can be characterized by the contact number Z. We observed the Z = 4 line

(light blue solid line) is vertically on the φ ∼ φJ density line. It is expected the Maxwell’s

stability criterion [92], Z = 4 = 2d, where d is the number of the dimension. It also

corresponds to the contact number occurring in the jamming transition with frictionless

particles. The Z = 5 line is also a vertical line and on the higher density region from
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φJ. For Z = 1 to Z = 3, these iso-Z lines behave differently. They tend to converge

towards below φJ as γ0 goes to 0, and are not parallel. Interestingly, we can observe

that the Z = 3 line (orange solid line) corresponds to the discontinuous RI transition

line by color changing from blue to red below φJ density region. The contact number

Z = d+1, is known as the specific contact number on the sheared particle system. As γ0

increase, Z = 3 lines reaches φ ≈ 0.80, which are known to be the random loose packing

density. The Z = 1 line matches the continuous RI transition from point-reversible state

to irreversible state, this implies that the first contact happened in oscillatory shear, and

the system became irreversible.

4.4 Summary and conclusions

We have observed very rich phases and mechanical behaviors investigating the RI tran-

sition over a wide range density, especially below the φJ, and also show that it can be

characterized by the contact number.

In the low density region much below φJ, there is a continuous transition from the

point-reversible phase to the irreversible phase when γ0 is increased at a fixed density.

In the density region slightly larger than that density, as γ0 is increasing, we observed a

continuous transition from point-reversible to irreversible, and discontinuous transition

from irreversible to loop-reversible occurs, irreversible phase is spread like a peninsula

from around φJ. Interestingly, the discontinuous phase transition from loop-reversible

to irreversible is observed in not only high density region but also slightly below φJ. In

the slightly below φJ, The system is completely stress-free in the AQS limit and thus

the yielding transition is absent. However, the mechanical properties are encoded in the

sheared particles configurations even below φJ, we observed finite shear stress and the

yielding behaviors as the strain rate γ̇ increase in the simple shear situation. The yielding

transition and RI transition points almost correspond even below φJ. In addition, we

found the nonlinear elastic response, at the small strains, proportional to γ0.5 and γ1.3.

This implies the jamming criticality which controls mechanical and rheological behaviors

near φJ survive below φJ.

The macroscopic behavior of the system, the reversibility and mechanical property,

is the result of the sheared particles configuration and structure. The contact number

Z can explain these behaviors nicely; several iso-Z lines correspond to the RI transition

lines. The Z = 1 line related to the occurring first contact correspond to the continuous

RI transition from point-reversible to irreversible state. The Z = 3 = d + 1, which the

contact number can make the system stabilize if the particles have friction, agrees with

the discontinuous RI transition slightly below φJ.

It is well known that mechanical properties change as the particle density becomes

φJ, and the system obtains the solid-like behavior above φJ. However, in these results

from the quite simple model (frictionless and athermal colloidal model) by performing the

exhaustive numerical simulation, qualitative changes of RI transition related to elasticity
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and plasticity due to the jamming were observed even when densities are below φJ under

the shear conditions. It indicates that the phenomena caused by the density of particle

inclusion in the complex fluid are more diverse around the φJ. In addition, we observe

that the RI transition corresponds to the yielding transition and the contact number

reflected the mechanical property and the internal structure. It implies the possibility

of characterizing and controlling these behaviors by using the contact number reflecting

the particle configuration.
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Building a model to reproduce the nonlinear

viscosity of mixtures with a data-driven approach

This chapter is based on the publication: Mixing Sauces: A Viscosity Blending Model

for Shear Thinning Fluids, ACM Transactions on Graphics, Volume 38, Issue 4, July

2019 [66].

5.1 Mixture fluid behavior and representation

Pure Honey Pure MayoHalf-Half mixture

Figure 5.1: The pure honey (left), the pure mayo (right), the half-half mixture of them

(middle). Both pure materials flow slowly and show stagnant behavior. However, the

mixture looks flowing smoothly and has less viscous. Our motivation is to reproduce

the material property of various mixtures, including the unintuitive behavior, from pure

material property and mixing ratio. This figure is the reuse of the published article [66].

We focus on nonlinearly changing the viscosity in the mixing as an appreciative

part of reproducing the complex fluids. The complex fluid viscosity is nonlinear (shear

dependent), but also the viscosity changing behavior in the mixing is also nonlinear. The

materials around us usually exist as a mixture of different constituents. For example,

in cooking, we mix various fluid-like foods to make sauces, e.g., with the combination

of ketchup and mayo, we can make aurora sauce. Each of the constituents of such
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a mixture can be Newtonian or nonlinear viscosity. In Fig. 5.1, we show a captured

footage of extruding the pure material and half-half mixture from the nozzle to the

slope. The pure materials, honey, and mayo look high viscous and stagnant behavior. In

contrast, the mixture exhibits a profoundly less viscous flow behavior compared to each

fluid’s edge. As the mixing ratio varies, the mixed material exhibits nonlinear viscosity

changing and shows intriguing and nonintuitive behaviors.

In this chapter, the question is whether there is a way to describe and reproduce

the material properties of such mixtures, not only for a particular combination but

for a broader class of materials. This question looks difficult from the microscopic

perspective because the internal elements of various complex fluids have various disorder

systems, and their mixture is also quite disordered or unknown anymore. Therefore, we

treat this question from the macroscopic perspective, and these fluids and mixtures

are considered a homogeneous, which material property can be characterized by the

flow curve. Because of the availability and the accuracy in the measurements of the

materials, we limit the scope of our target to shear-thinning fluids of fluid-like foods,

and we assume the thermostatic cases without chemical reactions. We seek the way of

describing and reproducing of the blended material behavior as a change of flow curve.

A possible approach representing the mixing is to perform an exhaustive measuring

and to have a database for all possible material mixtures. However, this approach would

result in a combinatorial explosion of measurements. We thus pursue the viscosity blend-

ing model for describing the blended material property with the property of each pure

constituent and their mixing ratios as the input. By using this approach, the measuring

we need is only pure materials, and we can handle the mixture at the continuous mixing

ratio.

5.1.1 Empirical viscosity blending in Newtoninan fluids

There are several known blending models to describe the viscosity of Newtonian fluids or

the effective viscosity of Non-Newtonian fluids that have nonlinear viscosity at specific

shear rate γ̇s for mixing, all of which take the form of (5.25); F (η) = αF (ηA) + (1 −
α)F (ηB).

The linear blending is the most simple equation, F (x) = x:

η = αηA + (1− α)ηB. (5.1)

The Arrhenius equation [3] is a multiplicative blending model with the choice of F (x) =

ln(x):

ln η = α ln ηA + (1− α) ln ηB, (5.2)

it can be written as η = ηαAη
1−α
B . With the reciprocal function F (x) = 1/x, we recover

the Bingham equation [45, 7]:

η−1 = αη−1
A + (1− α)η−1

B , (5.3)
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with the choice of the one-thirds power, F (x) = x1/3, we recover the Kendall and Monroe

model [47]:

η1/3 = αη
1/3
A + (1− α)η

1/3
B , (5.4)

and with the choice of F (x) = 14.534 ln(ln(x + 0.8)) + 10.975, we recover the Refutas

method [2]:

η = exp

(
exp

(
αη̃A + (1− α)η̃B − 10.975

14.534

))
− 0.8, (5.5)

where η̃∗ = 14.534 ln(ln(η∗ + 0.8)) + 10.975 for ∗ = A,B. We note that the Refutas

equation can be well approximated by η−0.384 = αη−0.384
A +(1−α)η−0.384

B with a relative

error less than 0.7%.

The calculated viscosity of an intermediate mixing ratio 0 < α < 1 satisfies η = ηA =

ηB when they have the same viscosity ηA = ηB, irrespective of the choice of α. And

for ηA ̸= ηB, a sublinear property η < αηA + (1 − α)ηB (i.e., smaller than the linear

estimate), as can be seen from the inset.

There is an outside of the class of the blending form F (η) = αF (ηA)+ (1−α)F (ηB),

we will show the Lederer and Roegiers’ model [56, 77] as for its example given by

ln η =
xA

xA + βxB
ln ηA +

βxB
xA + βxB

ln ηB, (5.6)

where xA and xB are the volume fractions of the materials A and B, respectively, and β

is an empirical parameter. Because the mixing ratio α is related to xA and xB via

α =
xA

xA + xB
=

1

1 + xB/xA
, (5.7)

Using this α, Eq. (5.6) can be rewrite as

ln η =
α

α+ β(1− α)
ln ηA +

(
1− α

α+ β(1− α)

)
ln ηB. (5.8)

Writing H(α;β) = α
α+β(1−α) , we see that the Lederer and Roegiers’ model belongs to

the following class:

F (η) = H(α;β)F (ηA) + (1−H(α;β))F (ηB), (5.9)

which is a generalized version of (5.25). Now the question is whether the empirical

parameter β in (5.9) can be chosen independently from the pair of materials A and B.

If not, this means the model needs to be tuned per each combination, which could be

hard to design.
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Figure 5.2: The measured flow curves of mixture in (a) and (b). Dots are measured data

and solid lines are fitted line. We can observe the solid lines fitted to the Herschel–Bulkley

model can nicely agree with the measured data of mixture. (a) Flow curve of the mixtures

of honey (Ho) and mayo (My) with various mixing ratios α = 0.0, 0.1, 0.2, ..., 1.0 (each

color from blue to red corresponds to the each α). The gray vertical line shows the

shear rate (22s−1) at the intersection of the flow curves of pure mayo and honey. We

can observe the effective viscosity of the mixture is lower than that of the pure one by

looking at the shear stress on the gray line. (b) Flow curves for various combinations of

mixtures. This figure is the reuse of the published article [66].

5.2 Flow curve behavior of mixture materials

Following the Section 2.1, the fluid flowing behavior can represent the relation between

the shear stress and shear rate, i.e., flow curve. Now we consider how changes the flowing

behavior of the mixture of fluids, which have linear or nonlinear viscosity as a changing

of flow curve. We use the rheometer (Anton-Paar Modular Compact Rheometer MCR

92, see the Section 3.2.3) to measure the flow curves.

We measured the flow curve for mixed materials in Fig. 5.2. The Fig. 5.2(a) shows

the results of mixtures of honey and mayo with various mixing ratios and those fitted

to the Herschel–Bulkley model, Upon the measurements, we prepared the substances by

stewing each of them with a fixed amount of time (40 times), for not only the mixtures

but also the pure materials.

An interesting point of the flow curves of the mixture is that the shear stresses of the

mixtures of various mixing ratios are smaller than those of the pure materials at the shear

rate of 22s−1 (the gray line in Fig. 5.2(a)), where the shear stresses of the pure materials

coincide. In other words, the effective viscosities of the two pure materials coincide at

the point, but those of their mixtures are lower. The reduction in the viscosity in this

example is almost an order of magnitude, and it cannot be ignored (as we demonstrated

at the nozzle experiment in Fig. 5.1). We also performed measurements several times,

and the flow curves were more or less the same.
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Several conventional viscosity blending models [3, 45, 7, 47, 2] introduced previous

section are known. As we described later at the Section 5.1.1, those models have the

general blending form (5.25) : F (η) = αF (ηA)+(1−α)F (ηB), where α is the mixing ratio,

ηA and ηB are the viscosities of the two constituents, and F is an invertible function that

depends on the model. All of these models fail to reproduce the characteristic behavior

of the mixture, which is a decrease in the effective viscosity. Because if the viscosity

are same as ηA = ηB, their predictions all provide η = ηA = ηB, irrespective of the

choice of α and F . Therefore, we are faced with the fact that a mixing model that only

considers the effective viscosity and mixing ratio cannot reproduce the characteristic

behavior observed in plots and in real footage. This point implies the necessity for a

blending model that extends to our target of a complex fluid.

Fig. 5.2(b) shows several measurements of other mixtures and the corresponding

fittings. From the measured dotted data and fitted solid line, we can see that the

flowing behavior of the mixtures can also be nicely fitted by the Herschel-Bulkley model

as well. This shows that the material property of our target, pure fluid and mixture,

can be described by the Herschel-Bulkley parameter, regardless of the differences in

their internal elements. Hence, we will consider constructing our blending model that is

closed in the space of the Herschel-Bulkley model and reproduce the measured data of

the mixture.

5.3 Blending model for the mixture of complex fluid

We need a new blending model that can represent the mixture of complex fluid inside

the Herschel–Bulkley parameter space from known pure material parameters and mixing

ratio.

However, such a model is not an arbitrary function that uses pure material properties

and mixing ratio as arguments. There are several laws that should be satisfied for a model

to represent mixing. For example, when the α = 0 or α = 1, the model reduce the pure

material. When three different fluids are mixed, the properties of the mixture should

be constant irrespective of the order of mixing. Therefore, we will look for a form of

a blending model that can be applied in terms of what laws should be satisfied with

respect to the operation of mixing.

5.3.1 The formulation of the blending model

For the sake of simplicity, we assume that the blending process is both mass and volume

conserving. Mathematically, we characterize a substance S by its mass m and a set of

material parameters M , i.e., S := (m,M). A blending model defines how a substance

SC can be represented by its constituents, for instance. For instance SA and SB, defining
the operator ⊗, we have SC = SA ⊗ SB. We ask that a blending model satisfies a set of

consistency properties.
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In the field of chemistry, Rusin [78] introduced five such properties for octane numbers

blending and introduced the mass conservation as an option (he called it additivity). He

also showed that when we have the five properties, together with the additivity and the

uniqueness in the decomposition, the blending operator ⊗ admits a general functional

form (5.25).

Thus, our design of the nonlinear viscosity blending model is to make a particular

choice of the functional form.

5.3.2 Laws of blending

Following the five properties about the mixing of Rusin [78] and the mass conservation,

We consider the following six laws of blending; (1) Commutative law, (2) Distributive

law, (3) Zero law, (4) Associative law, (5) Identity law, and (6) Mass conservation law.

(1) Commutative law states that the left and right hand sides of the operator ⊗ are

interchangeable, or equivalently, that blending SA to SB and blending SB to SA should

result in the same substance:

(mA,MA)⊗ (mB,MB) = (mB,MB)⊗ (mA,MA). (5.10)

(2) Distributive law states that multiplying the masses of the constituents with the

same factor k will result in a substance with the mass scaled in the same factor k but

without changing the material property, i.e., if the following equation holds for k = 1,

then it holds for any positive k > 0:

(kmA,MA)⊗ (kmB,MB) = (kmC ,MC). (5.11)

(3) Zero law states that mixing a substance of positive mass (mA > 0) with any

material of zero mass (mB = 0) has no effect:

(mA,MA)⊗ (0,MB) = (mA,MA). (5.12)

(4) Associative law states that an application of a sequence of blending operations

would result in the same substance, regardless of the (associative) order of the operations:

((mA,MA)⊗ (mB,MB))⊗ (mC ,MC)

= (mA,MA)⊗ ((mB,MB)⊗ (mC ,MC)) . (5.13)

Together with the commutative law, the associative law states that the result of the

mixing does not depend on the path (or order) of blending. This is considered to be

a natural characteristic we would ask physically, especially in the absence of chemical

reactions.

(5) Identity law states that mixing two substances with the same material would result

in a substance with the identical material and the summed total mass:

(mA1,MA)⊗ (mA2,MA) = (mA1 +mA2,MA). (5.14)
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(6) Mass conservation law, in the case of a closed system without nuclear reactions,

it is natural to ask in closed system:

(mA,MA)⊗ (mB,MB) = (mA +mB,MC). (5.15)

5.3.3 General blending model satisfying the laws of blending

Combining the mass conservation law (5.15) with the distributive law (5.11), setting

k = 1
mA+mB

, and letting α = mA
mA+mB

, we have

(α,MA)⊗ (1− α,MB) = (1,MC), (5.16)

where α represents the mixing ratio. Eq. (5.16) implies that the mixed material MC

can be represented as a map G of just mixing ratio α and material MA, MB:

MC = G(α,MA,MB). (5.17)

As we expected, the laws of blending can be recasted as a set of laws on G. The

commutative law can be recasted as:

G(α,MA,MB) = G(1− α,MB,MA). (5.18)

The distributive law is already incorporated to the form of G, through the usage of the

mixing ratio (rather than mass) as the first argument. The zero law can be recasted as,

α = 0 or α = 1:

G(0,MA,MB) = MB, (5.19)

G(1,MA,MB) = MA. (5.20)

The associative law can be recasted as:

G

(
mA +mB

mA +mB +mC
,G

(
mA

mA +mB
,MA,MB

)
,MC

)
=G

(
mA

mA +mB +mC
,MA,G

(
mB

mB +mC
,MB,MC

))
. (5.21)

The identity law can be recasted as, MA = MB = M :

G(α,M ,M) = M . (5.22)

The family of G

The family G of this map G is a general function space of blending that includes the

standard linear blending model L ∈ G:

MC := L(α,MA,MB) = αMA + (1− α)MB, (5.23)
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as well as the multiplicative blending model X ∈ G:

MC := X(α,MA,MB) = Mα
A ⊙M

(1−α)
B , (5.24)

where ⊙ indicates the componentwise multiplication, and the power is defined in a

componentwise manner as well. Rusin [78] pointed out a general class of the family G
in the form:

MC = G(α,MA,MB) := F−1(αF (MA) + (1− α)F (MB)), (5.25)

where F is an arbitrary invertible map that preserves the dimensionality of the material

parameters.

In fact, setting F to the identity map I(M) = M , and I = I−1, it recover the linear

blending model (5.23),

MC = I−1(αI(MA) + (1− α)I(MB)) (5.26)

= αMA + (1− α)MB. (5.27)

With the componentwise logarithmic map F (M) = logM , F−1(M) = eM , we recover

the multiplicative blending model (5.24),

MC = eα log(MA)+(1−α) log(MB) (5.28)

=
(
elog(MA)

)α
⊙
(
elog(MB)

)1−α
(5.29)

= Mα
A ⊙M1−α

B . (5.30)

5.4 Our nonlinear blending model

Now, our aim is to find the map F (M) generate the blending model that can represent

material blended from a wide variety of material properties, which are described by the

three Hershel-Bulkley parameters (ηH ,nH ,σHY ) as its arguments. We used the data-

driven fitting approach to find the map F (M) from the measured data. We show

later that by blending the three parameters in a nonlinear way, it becomes possible to

reproduce the characteristic behavior shown in Fig. 5.1 that are impossible to describe

when only considering blending for effective viscosity (i.e., the blending of viscosity for

each particular shear rate).

5.4.1 Data-driven approach to obtain the model

Our viscosity blending model F̂ reproduce the estimated material parameters (η̂H , n̂H , σ̂H)

at mixing ratio α,

F̂

 η̂H

n̂H

σ̂HY

 = αF̂

 ηH,A

nH,A

σHY,A

+ (1− α)F̂

 ηH,B

nH,B

σHY,B

 , (5.31)
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where MA = (ηH,A, nH,A, σHY,A)
⊤ and MB = (ηH,B , nH,B , σHY,B)

⊤ are constituents,

(·)⊤ means transpose. We expect that the estimated parameters and the estimated

flow curve match the fitted parameter and estimated flow curve from measured data

of mixture at mixing ratio α, then we used the data of measured flow curves for five

combinations of materials: mayo / honey, oyster sauce / honey, mayo / Japanese pork

cutlet sauce, BBQ sauce / Mustard, and Worcestershire sauce / Japanese pork cutlet

sauce.

As we seek the F̂ reproducing the limited number of measured data of mixtures,

In order to construct our model that can reproduce the measured flow curve from the

limited number of material samples, we limit the search space for the F map with three

steps, rather than adopting a general form and fully making use of optimizations, which

is an interesting future direction.

We start from 1) finding a function that works to blend the yield stress alone. Because

the yield stress σHY is the only parameter related to the elasticity (it describes minimum

shear stress when the fluid starts to flow and the limit of the elastic regime). The yield

stress especially shows up at the low shear rate end of the flow curve. In concrete,

we assume the following form for calculating the blended σHY,M from that of the two

constituents σHY,A and σHY,B :

σp
HY,M = ασp

HY,A + (1− α)σp
HY,B , (5.32)

where p is a parameter that we are going to seek. Note that it reduces to the multi-

plicative blending: σHY,M = σα
HY,Aσ

(1−α)
HY,B when p → 0. By changing p, we computed the

relative and absolute error between the estimated and the measured (fitted) values of

σY,M . As in Fig. 5.3(a), both errors produce negative p as the result of searching. But

since having a value of p < 0 would cause undefined σY,M if one of σHY,A and σHY,B is

zero, We adopted p = 0 as the value closest to the negative value 2 3.

Next step 2), we are going to look at the high shear rate end, the flow curve in

the logarithmic plot appears to be straight, with the slope characterized by the power

parameter nH . Thus, we try to find a function for solely blending the nH parameter. In

particular, we choose the following function space

nq
H,M = αnq

H,A + (1− α)nq
H,B . (5.33)

Like we did for the yield stress, we tested both relative and absolute errors between the

estimated and the measured (fitted) values of nH . As following the Fig. 5.3(b), q = 0.6

gives the smallest relative error, and q = 1.4 gives the smallest absolute error. For now,

we keep both q = 0.6 and q = 1.4 for further inspection.

2We note that by making use a high-end machinery for more accurate measurements for the low shear

rate regime would enable a finer inspection, which we leave as a future work.
3We did not use water as one of the constituents, as its nearly zero viscosity behavior at low shear

rate regime turns out to be extremely hard to measure using our current device.
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Figure 5.3: (a) The relative errors (orange line) and absolute errors (blue line) in pre-

dicting σHY,M vs the parameter p. (b) The relative errors (orange line) and absolute

errors (blue line) in predicting nH,M vs the parameter q. This figure is the reuse of the

published article [66].

Finally, 3), we seek a way to estimate the ηH parameter for a mixture. We found

that by taking the nH parameter into account, we can nicely obtain the characteristic

behavior in the ηH parameter that was observed from the measurements. We consider

the F map with a parameter p (p → 0) and q in the 1) and 2), it has the form

F̂ ((ηH , nH , σHY )
⊤) = (η

f(nH)
H , nq

H , lnσHY )
⊤, (5.34)

where f(nH) is a parameter related to ηH taking nH into account as a polynomial.

For the space of f(nH), we tested the three forms a + bnH + cn2
H , a/nH + b + cnH ,

and a/n2
H + b/nH + c. We enforced f(1) = c so that our model reduces to one of the

four empirical viscosity blending models (c = −1 for Bingham, c = −0.384 for Refutas,

c = 1 for linear, and c = 1/3 for Kendall and Monroe). Because we have q = 0.6 and

q = 1.4 from step 2), in total, we now have 24 candidates. For each of these cases, we

considered both the absolute and relative errors in the estimated stress and optimized

for the parameters a, b, and c. Then from these results, we first discarded models that

gave absolute errors larger than 100%. This resulted in discarding the cases c = 1 and

c = 1/3, as well as the form a/nH+b+cnH . Then, we selected the one with the smallest

relative error for the rest of the models. This resulted in q = 1.4 and the following form

for f :

f(nH) = 0.12− 3.2nH + 2.7n2
H . (5.35)

As following the result through, finally, we obtained the map

F̂ ((ηH , nH , σHY )
⊤) = (η

0.12−3.2nH+2.7n2
H

H , n1.4
H , lnσHY )

⊤. (5.36)

We will confirm this our blending model generated by F̂ in a later results Section 5.5.
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: measured data

Figure 5.4: We show the flow curve to valid our blending model for several combination of

mixture (a)∼(e), the measured data is shown in dots and the estimation is shown in solid

line. blue and red correspond to the flow curve of pure constituents and green correspond

to half-half blending. Our model qualitatively and nicely captures the characteristic

behavior. This figure is the reuse of the published article [66].

5.5 Result and Discussion

We chose a blending model that can represent measured complex fluid mixtures among

the general blending function derived from the mixing law using a data-driven approach,

and we confirm the obtained model with flow-curve. In addition, we also validate the

results by comparing real footage with the simulations.

5.5.1 Our blending model comparing the flow curve

We obtained our blending model given by the map F̂ with our data-driven approach.

Using our model, we can estimate the Herschel–Bulkley parameters for the mixtures

respective α we tested in an average of 55% absolute error.

In Fig. 5.4(a)∼(e), we compare the estimated flow curve with measured flow-curve,

the dots show the measured data, and solid green lines show the estimated of the mixture

at α = 0.5 (red and blue are pure materials). We can observe the solid green line

qualitatively agree with the dots. In Fig. 5.4(b), Mayo and Honey mixture, we can

see that our model can describe the characteristic behavior of the viscosity decreasing

since the estimated green line passes under the intersection of the curves of the pure

materials. In Fig. 5.4(c), Honey and Oyster sauce mixture, the measured data shows

that the green and blue dots line are close together and intersect at the small shear

rate region. Our model can also describe this behavior. Considering that our tested
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materials cover different types of rheological properties, including polymers, suspensions,

and nearly Newtonian, we conclude that this is a nice approximation as the first step

toward nonlinear blending.

5.5.2 Validation by simulation and real footage

We conduct experiments to observe how fluid flowing, using the nozzle to extrude the

fluid on the slope; this experimental setup has been chosen to reproduce easily for the

simulation. We loaded the specimen into a syringe and attached a silicone tube to it as

for Fig. 5.5 (a). The other tip of the tube is attached to a 3D printed nozzle head for

position alignment. In Fig. 5.5 (b) shows entire experimental apparatus. The syringe

is pumped using a gear mechanism (manipulated by hand) for better control of the

speed. The extruded specimen will fall onto a slanted aluminum plate. We use the

first-generation iPhone SE camera to record the footage. The specimens are prepared

by mixing two materials in the ratios 0% : 100%, 25% : 75%, 50% : 50%, 75% : 25%,

and 100% : 0%, for different combinations of materials.

Then, we also replicated the nozzle and slope setup in our simulation, and we perform

the MPM simulation on that setup to compare the results of the real footage 4. In our

simulation, the parameters for the pure materials, i.e., 0% : 100% and 100% : 0%,

are taken from the measurements using our rheometer, and those for the mixtures are

computed via our blending model using the mixing rate and the parameters for the pure

materials.

(a) (b)

Figure 5.5: We shows the equipment for the nozzle experiment. (a) Our specimens to

be extrude is prepared in syringes (b) The fluid in the syringe is pumped using a gear

mechanism and transported to the nozzle above on the slope. We use the iPhone SE

1st generation for the footage recording. This figure is the reuse of the published article

[66].

4All the simulations were run on an Amazon EC2 instance (c5-18xlarge, 72 cores of Intel (R) Xeon

(R) Platinum 8124M 3GHz CPU). The code is parallelized using OpenMP, and each simulation used 12

cores. We did not intensively optimize our code. The number of material points in the simulation ranges

around 100,000, and each frame (in 50 fps) took about 2 to 15 minutes.
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Nozzle experiment in a binary mixture

We first performed tests for the combination of mayo and honey. As shown in Fig. 5.6(A)(a),

the mixture of mayo and honey shows a much smoother flow, as opposed to the pure

materials, which look less viscous and stack near the nozzle. This behavior is nicely

captured using our model as shown in Fig. 5.6(A)(d), and cannot be captured as shown

in Fig. 5.6(A)(b) and (c). (b) is a result of using a linear blending model. (c) shows the

blending by initializing the material points using randomized binary labels (for mayo

and honey) and computing the stress by summing up the per-particle stress computed

using parameters for the pure materials (we call the latter a standard MPM in the se-

quel). Fig. 5.6(B) shows the pixel length from the fluid edge to bottom with each times

of each mixtures 75 : 25, 50 : 50, 25 : 25 Fig. 5.6(B) shows the pixel length from the

liquid edge to the bottom at each time for 75 : 25, 50 : 50, and 25 : 25 mixtures as an

evaluation for reference. The red dots is length from real footage, the blue dots is from

linear blending result, and the orange dots is from our blending model results. We can

observe that orange dots line nicely agrees with the red dots line.

Fig. 5.7(A)(a)∼(d) shows the result of the test for the combination of mayo and

Japanese port cutlet sauce. Like the combination of honey and mayo, the mixed materi-

als flow smoothly. Our model, as shown in (d), can also capture this behavior, whereas

the linear blending model and a standard MPM simulation with randomized material

labels cannot, as shown in (b) and (c). As shown in Fig. 5.7(B), we can observe that

orange dots line more agree with the red dots line.

Then, we performed tests for the combination of oyster sauce and honey in Fig. 5.8(a)-

(d). Again, we observe that with linearly blended material parameters or a standard

MPM simulation with randomized material labels, the flows of the intermediate mixing

ratios are much slower than the footage. Our nonlinear blending model provides smooth

flow. We also observed a mismatch between the simulated and captured examples for

the 50 : 50, 75 : 25 % blend, and pure oyster sauce. We believe this is due to the

lack of surface tension in our simulation (surface tension was not incorporated into our

MPM simulation). The pure oyster sauce flowed down the slope without spreading in

the transverse direction, whereas the simulated one did due to the absence of surface

tension. Since the main focus was to treat viscosity, let the incorporation of surface

tension be as future work. The result of Fig. 5.7(B) reflect this mismatch, however, we

can observe that the orange dots line more agree than blue dots line with the red dots

line.

Nozzle experiment in a mixture of three

Our proposed model satisfies the law of mixtures, i.e., it satisfies distributive law. There-

fore, for more than two mixtures, our model is valid, without the undesired dependence

of the properties of the mixture on the order of mixing.

We tested if our model could be applied to a mixture of the three materials, such
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(b)
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(A) The caputerd footage of mayo (ho) and honey sauce at 0.5s
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 (P
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Real Footage
Linear blending
Our model

Real Footage

75:25 mixture 50:50 mixture 25:75 mixture

Linear blending
Our model

Real Footage
Linear blending
Our model

(B) The length (Pixels) from edge to bottom vs times

Figure 5.6: (A) Nozzle experiment in a binary mixture of Honey and Mayo. (a) the

result of captured real footage. (b): the result of using a linear blending model. (c): the

blending by by initializing the material points using randomized binary labels (for mayo

and honey) and computing the stress by summing up the per-particle stress computed

using parameters for the pure materials (we call the latter a standard MPM in the

sequel). (d): using our non-linear blending model. This figure is the reuse of the

published article [66]. (B) We also shows the pixel length from the fluid edge to bottom

with each times of each mixtures 75 : 25, 50 : 50, 25 : 25.

as mustard, mayo, and honey. The space of the mixture forms a triangle as in Fig. 5.9.

The experimental settings of the real experiments follow the previous section. In our

simulation, the material parameters of the mixtures are estimated from only the three

pure materials, and our model works well for this mixture of three materials.
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(a)

(b)

(c)

(d)

(A) The caputerd footage of mayo (ho) and Japanese pork cutlet sauce at 0.5s

le
ng

th
 (P

ix
el

s)

second (s) second (s) second (s)

75:25 mixture 50:50 mixture 25:75 mixture

Real Footage
Linear blending
Our model

Real Footage
Linear blending
Our model

Real Footage
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(B) The length (Pixels) from edge to bottom vs times

Figure 5.7: (A) We observe the flow behavior of mixtures of mayo (My) and Japanese

pork cutlet sauce (To). (a) A captured footage of the mixtures with various mixing

ratios. (b) MPM simulation using linearly blended material parameters. (c) A standard

MPM simulation with randomized material labels. (d) MPM simulation with our non-

linear blending model. our non-linear blending model can qualitatively capture the flow

behavior of real footage by looking at the edge positions of the fluid. This figure is the

reuse of the published article [66]. (B) We also shows the pixel length from the fluid

edge to bottom with each times of each mixtures 75 : 25, 50 : 50, 25 : 25.

5.5.3 Our model limitation

There are several limitations and future directions of our model. First, we have not

considered the blending of elasticity; In our simulation to compare, we assumed all the

materials have a same bulk modulus κ = 106Pa, and a same shear modulus µ = 105Pa.

Second, the accuracy for nH < 0.4, nH ≥ 1.0, and the case of extremely low and

high shear rates need further investigation. We also point out that the identity rule

and the associative rule may not always hold from the perspective of rheology (e.g.,
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(a)

(b)
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Figure 5.8: (A) We observe the flow behavior of mixtures of Honey (ho) and Oyster

sauce (Oy). (a) A captured footage of the mixtures with various mixing ratios. (b)

MPM simulation using linearly blended material parameters. (c) A standard MPM

simulation with randomized material labels. (d) MPM simulation with our non-linear

blending model. This figure is the reuse of the published article [66]. (B) We also shows

the pixel length from the fluid edge to bottom with each times of each mixtures 75 : 25,

50 : 50, 25 : 25.

suspension flows with different particle distributions). But the fact that the model can

nicely represent the captured flow curve is an encouraging fact, implying that our F map

is a good approximation. A ‘second order’ binary mixture model might be interesting

as a follow up work to improve the accuracy.

5.6 Summary and conclusions

We found the flow curve of the various fluid-like foods and their mixture as several classes

of complex fluid can be nicely fitted by Herschel–Bulkley model, i.e., the Herschel-
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captured fottage
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mustard honey

1:4:0 0:4:1

2:3:0 1:3:1 0:3:2
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4:1:0 3:1:1 2:1:2 1:1:3 0:1:4

4:0:1 3:0:2 2:0:3 1:0:4

Figure 5.9: Nozzle experiment in mixture of three different materials, mustard : mayo

: honey, the result of each is placed in a triangle. Left: simulated with our nonlinear

blending model. Right: captured footage from our experiment. This figure is the reuse

of the published article [66].

Bulkley parameter can characterize the material property of them. By studying the

mixing law, which mathematically formulation of the several conditions in the mixing

process, we introduce the general blending model. We applied the Herschel–Bulkley

parameter to the general blending model, and we chose and constructed the nonlinear

viscosity blending model that can reproduce the measured mixture data as a data-driven

fitting approach. Our model can nicely capture intriguing and unintuitive behavior, such

as the mixture of honey and mayo. Besides the immediate benefit of our research on

simulating dynamical mixing of multiple fluids (e.g., for cooking), our model can provide

a nice initial guess for the material property of an unmeasured mixture with known

parameters, and can represent the various mixture of complex fluids having a quite

different underlying microscopic structure (emulsions, polymers, colloidal suspensions,

etc.), this is also interesting because whether the model satisfies the mixing law exists is

not trivial.

Our method via the general blending model and data-driven fitting approach has

potentially wider application than what we have covered in this thesis. We emphasize

that this methodology is also effective in acquiring the blending model for the wider or

specific targets. If we have the pure and mixture measuring data for the targets, we will

obtain the model that satisfies the mixing law. Therefore, the measuring data of flow

curves is necessary and important, and the necessity of the rheometer as a measuring

device is considered as the limitation. In general, a rheometer with a practical accuracy
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(like ours) is expensive (50k) and time-consuming, so the acquisition of the data of flow

curve is one of the problems. We treat this problem in Chapter 6.
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Video-based convenient measurement method

for complex fluid by solving the inverse problem

via a simulation

本章については，5年以内に雑誌等で刊行予定のため、非公開。
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Conclusion

Simulation and data-driven approaches are used to analyze and propose practical appli-

cations for the reproduction and measurement of a wide class of complex fluids.

In Chapter 4, we explored the limits of reproducing the solid-like properties of com-

plex fluids and the unclear physical behavior around the limit. The solid-like behavior

of fluid are related to the jamming transition phenomenon, which phenomenon is a

qualitative change of the from fluid-like to solid-like state depending on the density

of the internal elements. We will focus on the density dependence, especially around

the jamming transition density φJ, of the Reversivle-Irreversivle (RI) transition relating

the particle trajectory under the oscillatory shear, which may be related to the jam-

ming phenomena. In order to investigate this, we use the athermal colloidal system

with oscillatory sheared, which is a simple model that can reproduce and investigate

these phenomena and the RI transition behavior numerically. In particular, there are

few studies that have investigated the behavior of the RI transition across the jamming

transition density in detail, and the relationship between the transition behavior, me-

chanical properties such as elastic, and particle structure is unclear. Thus, we investigate

these issues by conducting exhaustive numerical simulation at various particle densities

and shear amplitudes. As a result, a phase diagram of the RI transition around the

jamming transition density in a colloidal particle system with shear is obtained. Based

of this phase diagram, we observed that there are richer physical phenomena than we

expected around the Jamming transition density region, such as the non-trivial RI tran-

sition below φJ and the nonlinear elastic region, and that RI transition can be related

to the yilding transition (changing solid-state to fluid-state by applying shear) and the

contacts number reflecting the particle structure.

In Chapter 5, to reproduce the nonlinear viscosity of complex fluids, we aim to

find a method for reproducing and estimating the nonlinear viscosity of the mixture of

complex fluid. In this thesis, we want to reproduce the mixing of various classes of fluids

irrespective of the internal elements and the structure. Therefore, from a macroscopic

point of view, we investigated the possibility of methods and techniques to handle the

reproduction of mixtures by only using the macroscopic property. We observed that
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the flow curves, which represent the flowing behavior, can characterize the various fluids

and their mixtures by the Harshall-Bulkley model. Hence, we consider a blending model

closed by the parameters of the Harshall-Bulkley model, which reproduces the physical

properties of the mixture from the pure fluids and the mixing ratio. We introduce

laws of blending as an axiomatic system, which is a mathematical formulation of the

condition satisfying the process of mixing and define the family of function that satisfies

this laws of blending as a general blending model. By using the data-driven fitting

approach, we chosen the blending model that can reproduce the mixture data among

the general blending model. The acquired model was shown to be capable of reproducing

the characteristic behavior complex fluid mixtures, and we also validate the effectiveness

of our model by comparing macroscopic fluid simulations with actual experiments video.

In Chapter 6, we proposed a video-based measurement method for conveniently mea-

suring the flowing behavior of complex fluids that can be used by non-specialists. Al-

though fluids with various and rich properties are very familiar to us, the method to

measure with accurate them is not common because it requires a mechanical experimen-

tal device called a rheometer, which is expensive 50k dollars (our rheometer) and needs

expert knowledge. For more effective modeling and understanding of complex fluids, it

is necessary to collect more data of various class of complex fluids, and this convenient

measurement methods encourage this. Physical property measurement corresponds to

the inverse problem of the forward problem of reproducing a certain physical property.

We interpret the existing video-based viscosity measuring method for Newtonian as a

method based on the numerical solution of the inverse problem by combining a fluid

simulation and optimization. Extending it to the complex fluids as Herschel–Bulkley

model, we proposed a method for estimating and measuring the flow curve of various

classes of complex fluids from the experimental videos. In addition, by introducing a

similarity structure of physical properties, we proposed a method to evaluate effective

experimental setups to capture the fluid video for estimation and to propose new se-

tups. These proposed methods were tested on artificial data and real experimental data.

First, the effectiveness of the proposed setup was verified by using a toy model with

the velocity field of the Hagen-Poiseuille flow as the input instead of a fluid video. Sec-

ondly, we used an artificial fluid video given by two-dimensional simulation as an input

to verify whether it is possible to estimate the flow curve of a complex fluid from a fluid

video. Finally, we confirmed the effectiveness of the proposed method by comparing the

results of estimation from the real experimental video with the measured data via the

rheometer.

The results of this thesis show that the appropriate use of numerical simulation and

data-driven methods can provide effective methods and new insights for complex fluids

that are apparently difficult to reproduce or measure by analysis. Comprehending the

effectiveness of these approaches will give us more options for various approaches to

complex fluids and systems, and consequently expect to enable us to understand and
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apply complex fluids from various perspectives and viewpoints.
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324(2):289–306, 1906.

62



[24] Randy H Ewoldt and Chaimongkol Saengow. Designing complex fluids. Annu.

Rev. Fluid Mech., January 2022.

[25] Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. Silly rubber: an implicit

material point method for simulating non-equilibrated viscoelastic and elastoplas-

tic solids. ACM Transactions on Graphics, 2019.

[26] Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and

Chenfanfu Jiang. IQ-MPM: an interface quadrature material point method for non-

sticky strongly two-way coupled nonlinear solids and fluids. ACM Transactions on

Graphics, 2020.

[27] Behrooz Ferdowsi, Michele Griffa, Robert A Guyer, Paul A Johnson, Chris Marone,

and Jan Carmeliet. Acoustically induced slip in sheared granular layers: Appli-

cation to dynamic earthquake triggering. Geophys. Res. Lett., 42(22):9750–9757,

November 2015.

[28] S Förster, M Konrad, and P Lindner. Shear thinning and orientational ordering

of wormlike micelles. Phys. Rev. Lett., 94(1):017803, January 2005.

[29] Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. A

polynomial particle-in-cell method. ACM Transactions on Graphics (Proc. of SIG-

GRAPH Asia 2017), 36(6):222:1–12, 2017.

[30] C. Gallegos and J.M. Franco. Rheology of food, cosmetics and pharmaceuticals.

Curr. Opin. Colloid Interface Sci., 4(4):288–293, August 1999.

[31] Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis,

and Chenfanfu Jiang. Animating fluid sediment mixture in particle-laden flows.

ACM Transactions on Graphics (Proc. of SIGGRAPH 2018), 37(4):149:1–11, 2018.

[32] Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel,

and Chenfanfu Jiang. Gpu optimization of material point methods. ACM Trans-

actions on Graphics (Proc. of SIGGRAPH Asia 2018), 37(6):254:1–12, 2018.

[33] Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and

Joseph M. Teran. Optimization integrator for large time steps. IEEE Transactions

on Visualization and Computer Graphics, 21(10):1103–1115, 2015.

[34] Johan Gaume, Theodore F. Gast, Joseph Teran, Alec van Herwijnen, and Chen-

fanfu Jiang. Dynamic anticrack propagation in snow. Nature Communications,

9:3047:1–10, 2018.

[35] D. B. Genovese, J. E. Lozano, and M. A. Rao. The rheology of colloidal and

noncolloidal food dispersions. Journal of Food Science, 72(2):11–20, 2007.

63



[36] Alexander L Handwerger, Alan W Rempel, Rob M Skarbek, Joshua J Roering,

and George E Hilley. Rate-weakening friction characterizes both slow sliding and

catastrophic failure of landslides. Proc. Natl. Acad. Sci. U. S. A., 113(37):10281–

10286, September 2016.

[37] G. Heirman, L. Vandewalle, D. Van Gemert, and Ó. Wallevik. Integration approach
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Appendix A

Appendix

6章に関連する内容であり，5年以内に雑誌等で刊行予定のため、非公開。
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