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Abstract

Thermalization is one of the essential hypotheses in thermodynamics, which asserts that a
macroscopic system relaxes to a thermal equilibrium state characterized by a few thermody-
namic variables. The eigenstate thermalization hypothesis (ETH) gives a microscopic justifi-
cation of the thermalization and has been believed to hold for non-integrable quantum many-
body systems. Quantum many-body scar (QMBS), a new kind of ETH-violating mechanism,
refers to the phenomenon of non-integrable Hamiltonians having non-thermal eigenstates in
the middle of the spectrum.

From the viewpoint of quantum-classical correspondence, periodic orbits play an essen-
tial role in the QMBS. In the previous studies, a semiclassical dynamical system derived by
the time-dependent variational principle (TDVP) for the matrix product state (MPS) has been
discussed. However, the bond dimension of the MPS was very restricted, and there was no
extrapolation for the thermodynamic limit.

In this thesis, we solve this problem by developing an algorithm to search for periodic
orbits for a dynamical system obtained by TDVP for MPS with general bond dimensions. By
applying our algorithm to the PXP model, we find the existence of periodic orbits on a general-
bond-dimensional manifold. Our results also suggest that the periodic orbits are meaningful
in the infinite-bond-dimension limit. Furthermore, we point out that the non-thermal energy
eigenstates can be approximately reconstructed by taking their superposition. We quantita-
tively discuss the accuracy by evaluating the energy variance. This fact eliminates the arbitrari-
ness of a choice of a variational manifold and allows us to discuss QMBS more accurately and
mechanically from the semiclassical approximation and quantum-classical correspondence.
We expect this method to be applied to a broad class of many-body Hamiltonians exhibiting
QMBS and to contribute significantly to a deeper understanding of ETH and QMBS.
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1 | Introduction

Deriving thermodynamics, a macroscopic empirical law, from quantum mechanics, a micro-
scopic fundamental law, is one of the crucial challenges in physics. Thermalization is one of
the essential hypotheses in thermodynamics, which asserts that a macroscopic system relaxes
to a thermal equilibrium state characterized by a few thermodynamic variables.

In recent years, the thermalization of isolated quantum many-body systems has been stud-
ied in detail [1-5]. These researches have been motivated by the development of experimental
techniques in cold atom systems, which made it possible to observe the thermalization di-
rectly [6-9]. In a theoretical aspect, the eigenstate thermalization hypothesis (ETH) has been
reaffirmed and well investigated [1, 10-12].

ETH claims that the expectation values of local observables are indistinguishable between
the energy eigenstates and the microcanonical ensembles. It is known that ETH provides a
sufficient condition of thermalization [13, 14]. Since it is tough to prove ETH theoretically
for a specific model, verification of ETH has been done by numerical experiments by exact
diagonalization and finite-size scaling [15, 16].

As a result, it has been confirmed that ETH holds in most cases except integrable sys-
tems [1, 17-20] and strongly disordered many-body localized systems (MBL) [5, 21-26]. Such
ETH-violating systems have an extensive number of (quasi-)local conserved quantities, which
restrict the time evolution of the systems. Therefore, the system relaxes to a state called the
generalized Gibbs ensemble, which is characterized by a set of generalized temperatures cor-
responding to each conserved quantity [27-30].

On the other hand, it has been believed that ETH holds for non-integrable quantum many-
body systems which have no local conserved quantities except a few arising from global sym-
metry. However, T. Mori and N. Shiraishi showed that it is possible to construct a quantum
many-body model that is non-integrable and yet violates ETH [31, 32]. Through experiments
on cold atom systems, H. Bernien et al. discovered a non-integrable system called the PXP
model, which does not show thermalization but exhibits long-lived oscillations when the dy-
namics starts from some specific initial states [33]. The PXP model also has ETH-violating
eigenstates in the middle of the spectrum. A deep relationship among these models has been
discovered [34]. Such quantum many-body systems, non-integrable and containing a few
ETH-violating states, are called the quantum many-body scar (QMBS) [35-38] and have at-
tracted interest in recent years [39-66].

In QMBS, kinetic constraints play an important role. For example, the PXP model is de-
rived by taking the strong limit of the nearest-neighbor interaction called the Rydberg block-
ade [33, 67-71], in which atoms can excite only when both atoms in the neighboring sites
are in the ground state. It is also known that kinetic constraints can produce another kind of
ergodicity breaking. Fractons [72-74], quasiparticles with restricted motion, can shutter the
Hilbert space and make them into fragments [75-83]. This fragmentation phenomenon can
induce strong ergodicity breaking similar to MBL. These examples suggest that not only the
conserved quantities but also the dynamic constraints can affect the thermalization phenom-
ena.

Kinetic constraints affect the relaxation phenomena also in classical many-body systems.



Kinetically constrained models (KCMs), classical stochastic many-body models with constraints,
have been investigated in detail as models of glasses [84]. Grassy slow relaxation and jam-
ming transitions have been found in KCMs. Some quantum many-body models have been
derived inspired by KCMs, and anomalous thermalization has been discovered [85-92]. A
better understanding of the relationship between classical and quantum constraints will help
us understand thermalization deeply.

The quantum-classical correspondence becomes even more critical in QMBS since the
quantum (not many-body) scar, the origin of the name QMBS, is a quantum phenomenon
of a classically chaotic system [93, 94]. Let us quantize the Hamiltonian of a single-particle
classically chaotic system like a stadium billiard [95] and consider the motion of the wave
packet. The typical wave packet spreads over the whole space with time evolution and even-
tually reaches a uniform probability distribution. However, it has been discovered that there
are some peculiar initial states for which the wave packets exhibit extremely long-lived oscil-
lations, corresponding to unstable periodic orbits [96] of classical systems. This phenomenon
is related to a few special energy eigenstates with high probability density around the periodic
orbit.

Although the anomalous dynamics of the PXP model is similar to the quantum scar, it
is a non-trivial question of whether physical correspondence exists beyond mere analogy. In
order to answer this, it is necessary to derive the corresponding classical dynamical system for
the PXP model and to understand QMBS from the properties of the dynamical system. For
this task, the tensor-network-based approach has been very successful [36, 37, 97-100].

Tensor-network (TN) states are obtained by approximating the quantum many-body states
by a network of products of small tensors [101-103]. The matrix product state (MPS) is the
most fundamental TN state, and its properties have been investigated in great detail. TN has
been widely used in recent years both for numerical calculations and constructions of exact
solutions. Of course, TN states have played an essential role in the study of QMBS. In par-
ticular, many examples of exact scar states have been constructed by using MPS [43, 47, 53,
104].

TN state can also be used as a semiclassical approximation method to extract a dynamical
system from a quantum many-body system. Time-dependent variational principle (TDVP) [105-
109] is a numerical method to project the original quantum dynamics onto a manifold of
variational states. We can obtain semiclassical dynamics on the TN manifold by adopting
TDVP [110-115]. This method has been used to study quantum many-body chaos.

For example, the Lyapunov exponents of semiclassical dynamical systems on MPS have
been investigated for non-integrable and ETH satisfying one-dimensional quantum many-
body systems [116]. For the PXP model, several studies have pointed out the existence of peri-
odic orbits corresponding to the anomalous long-life oscillation in the MPS manifold, which
makes the correspondence between the single-particle scar and QMBS clearer.

The derivation of semiclassical dynamical systems using TDVP is applicable for general
variational states. One of the significant advantages of TN states is that the expressive ability
of the variational states can be controlled by a parameter called the bond dimension. Mak-
ing the bond dimension to unity corresponds to the mean-field approximation, and taking the
infinite bond dimension limit reproduces the original quantum dynamics in the thermody-
namic limit. It is essential to discuss the behavior in the thermodynamic limit by scaling the
bond dimension. Indeed, such an analysis has been done in previous studies dealing with
non-integrable systems [116, 117].

However, in the previous studies for the PXP model, the bond dimension of MPS was fixed
entirely to two since MPS was constructed by applying a matrix product operator (MPO) that
describes the kinetic constraints on the product state. In this thesis, we find and investigate
periodic orbits in the MPS manifold with general bond dimensions and solve this problem.



Chapter 1. Introduction

For this purpose, we use the TDVP algorithm conserving non-local symmetry represented by
MPO.

Compared to the analysis of the Lyapunov exponents, the search for periodic orbits in a
manifold is a difficult task, having blocked previous researchers. We have solved this problem
by using automatic differentiation [118-126] and continuous optimization on manifolds [122,
127]. These techniques have been actively studied in the context of machine learning in re-
cent years. Furthermore, we directly construct the anomalous eigenstates by superposition of
the obtained semiclassical periodic orbits. Then, we give a more precise interpretation of the
quantum-classical correspondence.

This thesis is organized as follows. First, in Chapter 2, we review the concepts of ETH
and QMBS. Although there are quite a few proposed models of QMBS and various physical
mechanisms behind them, we will concentrate our discussion on the PXP model and its back-
ground. In Chapter 3, we review the TDVP algorithm for the MPS. We also review in detail
the previous work in which quantum many-body chaos and QMBS were discussed by TDVP-
based semiclassical analysis. In Chapter 4, we discuss details of the algorithm that we use and
our results. In Chapter 5, we clarify the relations between periodic orbits and ETH-violating
eigenstates by eigenstate construction. Finally, in Chapter 6, we give a summary and discuss
prospects.






2 | Eigenstate Thermalization Hypothesis and
Quantum Many-Body Scar

In this chapter, we review the quantum many-body scar, mainly focusing on the PXP model.
In Section 2.1, we review the basics of the thermalization phenomena and its breaking in
quantum many-body systems. In Section 2.2, we introduce a quantum many-body scar, a new
type of counterexample of thermalization.

2.1 Thermalization of isolated quantum many-body system

In recent years, motivated by the experimental progress in cold atoms, theoretical descriptions
of thermalization in isolated quantum many-body systems have been greatly developed. We
review the basics about it in this section. In Section 2.1.1, we introduce the eigenstate thermal-
ization hypothesis (ETH), which gives a sufficient condition of thermalization. We give an ex-
act definition of ETH and discuss its consequences. In Section 2.1.2, we discuss the condition
for a quantum many-body system to satisfy ETH. ETH holds for a vast class of non-integrable
quantum many-body Hamiltonians. On the other hand, as a counterexample of ETH, quan-
tum integrable systems and many-body localized systems have been well investigated. Here,
we introduce the quantum many-body scar as a new type of ETH violating mechanism.

2.1.1 Eigenstate thermalization hypothesis

In quantum mechanics, thermal equilibrium states are characterized by density matrices like
microcanonical ensemble or canonical ensemble. On the other hand, the time evolution of
the pure state in an isolated quantum system is described by a unitary operator exp(—iH),
and the state is written as a time-dependent state vector. If any measurement of the system is
possible, we can distinguish between these states in any case.

In thermodynamics and statistical mechanics, we are only interested in local operators
and the sum of it like magnetization, density, and correlation. Thus, in the discussion of the
thermalization of quantum many-body systems, we consider the time evolution of the expec-
tation value of local operators. We divide the problem into two parts: (i) Does the expectation
value of any local operator exhibit the relaxation? (ii) Are the equilibrated values equal to the
thermal average?

Now, let us consider a quantum many-body Hamiltonian H and its spectral decomposition
H= Za E,|$.X¢|. We take an arbitrary local Hermitian operator O. Eigenstate thermaliza-
tion hypothesis (ETH) [1, 10-12], arguing all energy eigenstates in the middle of the spectrum
satisfy the following equation

($«lOldpg) = O(E)S45 + e SEV2f(E, w)Ry g, (2.1.1)

is known to be a sufficient condition of thermalization [4, 13]. Here, O(E) is a smooth function
of energy consistent with the prediction of canonical ensemble. In the second term, E denotes
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the average energy (E, + Eg)/2, w denotes the energy difference E, — Eg, S denotes the thermo-
dynamic entropy, and f denotes a size-independent smooth function exponentially decaying
with w. The last factor R, g is a random number with zero mean and unit variance. The first
term corresponding to the diagonal parts is called the diagonal ETH, while the second term is
called the off-diagonal ETH.

First, we consider question (i). We make the initial state |¢) a superposition of energy
eigenstates as |p) = Za Cx|Po)- Here, we assume that the energy eigenvalues are non-degenerated,
i.e.,Aoc # B = E4 # Eg. Under this assumption, the long-time average of the expectation value
of O can be written as

0= POIO©) = 3. chead G [Olbg) = 3l dul Olpe)- (2.12)
o, o

Here, non-diagonal terms vanish because of the oscillation. The right-hand side is called a
diagonal ensemble. The relaxation is characterized by the time fluctuation defined as

802 := (YOOPD) — 0P = 3 " crepe,cze BaER=ErENi(g 10]¢5)hs5]0ldby)-

a#By#S
(2.1.3)
By assuming non-resonance condition
Ey—Eg=E,—Es # 0= (., 8) = (¥,6), (2.1.4)
we can obtain
807 = ) leal’legPialOlgp)* < rgggl(cﬁalolcﬁdlz- (2.1.5)

o

By using the off-diagonal ETH in this equation, we can conclude that the time fluctuation is
exponentially small with respect to the system size in many cases. Thus, the off-diagonal ETH
is a sufficient condition of (i).

Hereafter, we assume that the energy variance of the initial state is small. Then, combining
the diagonal ETH and Eq. (2.1.2), we can conclude that the equilibrated value is nothing but
the thermal equilibrium value. This is the answer to (ii).

The diagonal ETH means that each energy eigenstate is equivalent to the canonical state
for any measurement of local observables. We consider a small subsystem X and its comple-
ment X¢. The diagonal ETH suggests that

e_BHX
TrXC[|¢O(X¢Ot|] ~ TrXC[;amc] ~ (2-1-6)

" Try[e-FHx]

holds for any small X. Here, Hy denotes a part of H acting on X. The density operator g,,.
denotes the microcanonical ensemble corresponding to the energy shell E, — AE < E < Eg,
where AE is large in the microscopic scale and small in the macroscopic scale. The effective
temperature 3 is determined by the energy E,. By taking the von Neumann entropy of this
equation, we can obtain a correspondence between entanglement entropy of the pure state
and the thermal entropy of the reduced density matrix. For highly excited states, 5 — 0 holds,
and the entropy of the right-hand side scales proportionally to the volume of X. Thus, ETH
predicts a volume law for the entanglement entropy of highly excited eigenstates.
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ETH Ergodicity Entanglement Level statistics

Non-integrable All Yes Volume Wigner-Dyson

QMBS Almost All Weak Volume/SubVolume Wigner-Dyson
Integrable Almost All No Volume/SubVolume Poisson
MBL No No Area Poisson

Table 2.1: Taxonomy of quantum many-body Hamiltonians.

2.1.2 ETH breaking in integrable systems

The relation between ETH and integrability is essential. It has been believed that the ETH
holds for a broad class of non-integrable quantum many-body systems. The results of numer-
ical calculations for several non-integral models strongly suggest the ETH [15, 16].

Conversely, integrable systems like a non-interacting system or a Bethe-ansatz solvable
system do not satisfy ETH. Almost all eigenstates satisfy the ETH in these systems, but not
all eigenstates. Such behavior is called the weak ETH and proved for a broad class of transla-
tional invariant quantum many-body systems [19, 128, 129]. The integrable system is mainly
characterized by the existence of an extensive number of conserved quantities and the Pois-
son statistics of its energy level spacing. In contrast, those of non-integrable systems obey the
Wigner-Dyson statistics.

Another counterexample of ETH is many-body localization (MBL) in the system with
strong disorder [5, 21-26]. MBL system also has conserved quantities called 1-bit and shows
Poisson level statistics. Integrable and MBL systems also violate thermalization, i.e., show
strong ergodicity breaking.

Non-integrable quantum many-body systems with quantum many-body scars (QMBS) are
a new type of ETH-violating system [35-38]. These models show characteristic relaxation
phenomena depending on the initial state, called weak ergodicity breaking. We discuss it
in the next section. The existence of QMBS means that non-integrability is not a sufficient
condition of ETH. In Table 2.1, we show the characters of each system.

2.2 Quantum many-body scar

In this section, we review the recent development of the theory of quantum many-body scars
(QMBS). Today, roughly speaking, QMBS is defined as the quantum many-body system which
violates ETH but is neither integrable nor many-body localized. Many models meeting this
definition have been found these days. Here, we avoid discussing the general theory of QMBS
and focus on the PXP model [104, 130-134].

The PXP model is one of the earliest models of QMBS. In the first place, the name of
QMBS comes from the analogy between the PXP model and quantum scar, a phenomenon of
the quantum system obtained by quantizing a classically chaotic dynamical system.

In Section 2.2.1, we introduce the PXP model Hamiltonian and discuss the detail like the
scarred eigenstate, weak ergodicity breaking, and periodic oscillation. In Section 2.2.2, we
discuss the relation between QMBS and quantum scar by using semiclassical approximation.

2.2.1 PXP model

The PXP model is a quantum many-body system that is non-integrable but breaks thermaliza-
tion. It was derived as an effective Hamiltonian of the Rydberg-atom system in experiments.
Here, we explain the derivation of the PXP model from the original experimental Hamiltonian
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for one-dimensional Rydberg-atom chains. The state at site i is either the local ground state
|O); or the excited state |@);. The Hamiltonian of the Rydberg-atom system can be written as

N

N
Ay = Y, (S 0X@I + [@XOl) — Alexel,) + 3 (¥ l@Xel ® [oxe)). (22D
j=1 i<j

where Q denotes the Rabi frequency, A denotes the detuning parameter, and V; o |i — j|°
denotes the van der Waals interaction. By taking the limit V' = V/;,; > Q and A = 0, we can
rewrite the Hamiltonian as

s = (0X01: @ 1@1811.1)+ 37 (0K, + 80D (222)

The first term, which counts the number of the adjacent excited state, is a dominant term of
this Hamiltonian. Here, let us consider the effective low-energy dynamics. The low-energy
subspace is the space without adjacent excitation. This phenomenon is called Rydberg block-
ade (RB) and represented by the projector

Prs = [ ()51 — [@XO|; @ |@X@];11). (2.2.3)
J
We can obtain the low-energy effective Hamiltonian by using this projector as

Hpxp = Prs (Z|OX.|i + |.Xo|i> Pre
i

(2.2.4)
= >.10X0lj—1 ® (|OX®|; + |®XOl)) ® |OXOlj41
J

We can check that the Hamiltonian of the PXP model is non-integrable and chaotic in the
aspect of level statistics [99]. However, this Hamiltonian does not satisfy ETH. Thus, this is a
new type of ETH violation with neither integrability nor disorder.

Scarred eigenstates

Here, we discuss the structure of the eigenstate of the PXP model Hamiltonian. In Fig. 2.1, we
show the scattering plot of the eigenstate obtained by the exact diagonalization of a finite-size
system.

In Fig. 2.1a, we show the comparison of the expectation value of a local operator. We
can see that almost all eigenstates have expectation values close to the one obtained from the
canonical ensemble. Here, the effective inverse temperature of the canonical ensemble is de-
termined by the energy E. In Ref. [132], it is also shown that the probability distribution of dif-
ferences of the expectation values between eigenstates adjacent in eigenvalue becomes narrow
around zero in the thermodynamic limit. The average of the differences decays with an expo-
nential with the system size. Thus, the eigenstates distributed around the canonical ensemble
prediction in Fig. 2.1a would concentrate in the thermodynamic limit. This phenomenon is
expected by the diagonal ETH. Simultaneously, we can see a band of special eigenstates away
from the blue line marked by red crosses even in the middle of the spectrum. We call these
exceptional eigenstates scarred eigenstates or scar states. The existence of scarred eigenstates
indicates that the strong ETH does not hold in the PXP model.

In Fig. 2.1b, we show the bipartite entanglement entropy (EE) of the eigenstates. We can
see that the EE of scarred eigenstates is smaller than that of non-scarred eigenstates. By using
finite-size scaling analysis, we can see that the EE of scarred eigenstates shows logarithmic
scaling with the system size instead of the volume law predicted by ETH.
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(@ ] %

Figure 2.1: Scattering plots of eigenstates of the PXP model obtained by exact diagonalization
of N = 30 system. Color scales denote the density of the eigenstates. (a) Comparison of ex-
pectation values of a local operator Z; = |@)X®|; — |OXO|; between the canonical ensembles
(blue line) and the eigenstates (dots). A series of special eigenstates with equal energy sepa-
ration, which we call scarred eigenstates, are indicated by crosses. (b) Bipartite entanglement
entropies of the eigenstates. (c) Overlaps with |Z,) state defined in Eq. (2.2.5). In (b) and (c),
scarred eigenstates are labeled by common integers 0, ..., 7. Reprinted figure with permission
from Ref. [132]. Copyright © (2018) by the American Physical Society.

We can also see the equal energy separation between the scarred eigenstates. This is an-
other essential point of QMBS. This “tower” structure breaks the non-resonance condition
defined in Eq. (2.1.4) and causes a long-life coherent oscillation.

Weak ergodicity breaking and periodic oscillation

This violation of ETH actually affects the relaxation dynamics of the PXP model. Now, we
define three kinds of product states as

|0) := 01020304 ...),  |Z2) = 101020304 ...), |Z3) = [@:0,@405...). (2.2.5)

As we can see in Fig. 2.1c, |Z,) states have a large overlap with the scarred eigenstates. In
Fig. 2.2, we show the time evolution of the expectation value of local operators with different
initial states |0) and |Z,). We can see the rapid relaxation towards the thermal value when
we take the initial state |0). In contrast, the system shows long-life oscillations from the ini-
tial state |Z,). We can see that non-local quantities like EE also show oscillating phenomena.
Although the EE has a slowly increasing term, its speed is very slow compared to typical quan-
tum many-body dynamics. In other words, this oscillation occurs in a low-entangled “classi-
cal” regime. This long-life oscillation is what was initially found in the Rydberg-atom exper-
iment [33]. These results suggest that the system violates thermalization only when starting
from some special initial states. Thus, this phenomenon is called weak ergodicity breaking in
contrast with strong (initial-state independent) ergodicity breaking occurs in integrable sys-
tems.
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Figure 2.2: Time evolutions of the PXP model with two kinds of initial states. Here S7 de-
notes (|@X®|; — |OXO|;)/2 and Q denotes the global energy scale. The Hamiltonian defined
in Eq. (2.2.4) is reproduced by taking Q = 2. Reprinted figure with permission from Ref. [99].
The expectation value shows the long-life oscillation only when the dynamics starts from the
special initial state |Z,), which has a large overlap with the scarred eigenstates. Copyright ©
(2018) by the American Physical Society.

2.2.2  Quantum scar and classical periodic orbits

The PXP model has two peculiar properties, long-lived periodic oscillations and a few non-
thermal eigenstates, which are related to each other by the large overlap with the special initial
state |Z,) and the scarred eigenstates. A similar relationship has been known in the research
of single-particle quantum chaos [135] as the quantum scar [93, 94, 136, 137]. The name of
quantum many-body scar originates from it.

Quantum scar is a phenomenon of the eigenstate properties of a single-particle quantum
system obtained by quantizing a chaotic system. Although almost all highly excited eigen-
states of this kind of system show the uniformly distributed probability distribution, we can
find a few exceptional eigenstates which have a high probability around the unstable periodic
orbits of the corresponding classical system. In the original paper on the quantum scar [93],
the author considered a free particle in the stadium billiards. We define the set of coordinates
in the billiards as Q. By canonical quantization, we can obtain its stationary-state Schrodinger
equation as

—?AY(q) = 1P(q), q € 0Q = P(q) =0. (2.2.6)

In Fig. 2.3, we show the probability distribution of the result of the Schrédinger equation.
We discretize the space into 200 X 100 and add a potential of 10° in the complement of Q to
emulate the boundary condition. We take two eigenstates from the middle of the spectrum.
Typically, the probability distribution of the eigenstate is uniformly distributed as in the upper
plot. However, we can find some special eigenstates with clear patterns like the lower plot.
The area with a high probability overlaps with the short-period periodic orbits of the original
classical system depicted by the green arrow. Thus, this phenomenon can be regarded as a
“scar” of classical periodic orbits on the quantum eigenstate.

We can see the analogy between quantum scar and the phenomenon of the PXP model,
existence of a few number of special eigenstates and the corresponding periodic phenomenon.
However, in contrast to the quantum scar of the single-particle system, where the correspond-
ing classical system is obtained by the # — 0 limit, there is no simple way to obtain the corre-
sponding classical system of the PXP model. Thus, it is a problem whether the QMBS can be
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. 10.02

— 0.0

Figure 2.3: Quantum scar in stadium billiard system. The upper plot is the probability distri-
bution of typical eigenstate obtained by solving Eq. (2.2.6). The lower plot is the probability
distribution of scar. The pattern in the scar overlap with the unstable periodic orbit of the
original classical system denoted by the green arrow.

understood in the same manner of the quantum scar. Here, we introduce previous researches
approaching this problem by deriving a semiclassical dynamical system from the quantum
Hamiltonian, following Ref. [99].
Let us consider a translational invariant product state with a two-site unit cell. Then, the
state can be written as
—i6

N
p({Blo.e: {Bloe)) = ) exp (i, |@X@];) exp (T“"uom + |oXO|,-)) oy, (@27
j=1

where y; = e/o if j is even/odd. Combining this state and the matrix product operator repre-
sentation of Pyp

5 |OXOl, |@Xe®[,\[IOXOl, |eXe| |OXOln |@X®|N
?RB_TrKIOXOG 0 1)(loxog 0 2)"'(loxom 0 )] (228)

we can obtain the matrix product states (MPS) parameterized by four parameters &, ,, 58/0 as

(IR EN)
_ oy [(cos@urlon  —ie®esin(G,/2) @), (cos(G./2)|0), —iesin(G/2)l@),) |
cos(6,/2)|0O) 0 cos(6./2)|0), 0
(2.2.9)
By using a gauge transformation, inserting a product of the invertible matrix and its inverse

XX~ between two sites, we can obtain another MPS representation which is normalized in
the thermodynamic limit

CEIR D)

=Tr [(Cos(@o/ 2)|0), —ie%osin(6,/ 2)|.>1) (COS(Ge/ 2)|0), —iei%esin(6,/ 2)|.>2> ]
B |Oh 0 |O)2 0
(2.2.10)

11



2.2. Quantum many-body scar

satisfying
[YABLAPD) = Pralp(O}, {1/ Pril {6}, {FD. (2.2.11)

All initial states defined in Eq. (2.2.5) can be represented in this form. Our goal is to derive
the equations of motion of the parameters 6./, and ¢./, that imitate the Schrodinger equation
and regard it as a semiclassical system corresponding to the PXP model.

For this purpose, we consider the Lagrangian introduced by Dirac [108]

L 199) = 519 — D19 — lHpxel). (2212)

where the corresponding Euler-Lagrange equation is the Schrodinger equation. We can obtain
the Lagrangian in terms of 6./, and ¢./, by substituting |({6}, {¢})) into Eq. (2.2.12). The
equations of motion of 6,,, and ¢/, are obtained by the Euler-Lagrange equation. This method
is called the time-dependent variational principle (TDVP) [105-109], since we consider the
quantum dynamics on a set of variational states parameterized by classical variables.

In the case of the PXP model, it holds that ¢ = 0 = gb = 0. Under this condition, the energy
expectation value of [)(8,,6,)) is always equal to zero, and & can be written as 8, = f(&,,6,)
and 6, = f(8,,6,) with

f(x,y) = 2(tan(y/2) sin(x/2) cos?(x/2) + cos(y/2)). (2.2.13)

The dynamics on the variational manifold
1060, 8,)) = F(Bur 8) 296 B} + F(8 0) [ 900 6,))  (2.2.14)
dt e’ ~Yo - e*vYo aee e’*v~Yo 0’ ve aeo e’*vYo .

is not perfectly equal to the true quantum dynamics —iHpyp|$(6e, 6,)). We define the differ-
ence between them as the error vector

) += 1960 60)) + Hold @, 6 (2215)

which characterizes the accuracy of the semiclassical dynamics that we obtained. The norm
of |y) per site is called quantum leakage [98-100].

In Fig. 2.4a, we show the flow plot of the dynamics of 6. Each point on the plane represents
a quantum state of the variational manifold, and the arrow means the trajectory obtained by
TDVP. We mark the initial states defined in Eq. (2.2.5) by dots. The intensity of the background
color denotes quantum leakage. The TDVP dynamics is accurate as long as the state is moving
in aregion with a small leakage, but it breaks down once it enters a region with a large leakage.

We can see the existence of a periodic orbit starting from |Z,) state. The existence of pe-
riodic orbits in the corresponding classical system is the key feature of the quantum scar of
the single-particle system. Thus, the periodic orbit in Fig. 2.4 suggests the correspondence
between the quantum scar and QMBS.

We can see that the leakage along the periodic orbits is small compared to the other states.
It means that the dynamics starting from |Z,) stays on the low-entangled variational manifold
and oscillates for a long time. This is compatible with the result shown in Fig. 2.2. We show
the leakage of each point on the periodic orbit in Fig. 2.4b. On the other hand, the dynamics
starting from |0) goes to the large-leakage area immediately. It means that our TDVP-based
approximation rapidly collapses in this case. This is compatible with the thermalization. Since
no point in the variational manifold can represent a thermal equilibrium state, the state must
escape from the manifold to exhibit the thermalization.
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Figure 2.4: TDVP dynamics and leakage: (a) Stream plot of the TDVP dynamics. The back-

ground color map denotes the leakage. (b) Time evolution of the leakage along the periodic
orbit.
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2.2. Quantum many-body scar

TDVP (classical) Crossover Eigenstate (quantum)
Non-integrable Chaotic dynamics Already discussed Strong ETH
QMBS Periodic orbit This study Scarred eigenstates

Table 2.2: Target of the present thesis.

Although the TDVP-based approach presented in this section is a powerful method to de-
rive the corresponding classical system from a quantum many-body Hamiltonian, there is a
qualitative difference from the quantum-classical correspondence in single-particle quantum
mechanics. In single-particle systems, we can discuss the connection between the quantum
and classical mechanics by considering the limit of # — 0. However, the dynamical system
obtained in this section is defined on the artificial variational manifold, and it is difficult to
see a smooth connection with the original quantum mechanics.

To overcome this problem, we have to stop fixing the expressive power of the variational
manifold. The expressive power of the MPS is determined by a parameter called the bond
dimension. When the bond dimension is small, the quantum correlation characterized by en-
tanglement entropy is also small, and the state can be regarded as being in the classical regime.
In this case, the dynamics obtained by TDVP becomes highly nonlinear. As the bond dimen-
sion is increased, the TDVP dynamics approaches the true Schrédinger equation, which is lin-
ear. In the limit of infinite bond dimension, it perfectly reproduces the results of quantum me-
chanics. Hence, by analyzing the bond-dimension dependence, we can discuss the crossover
between the quantum and classical picture. For non-integrable quantum many-body systems,
this crossover has been investigated by TDVP for MPS in the previous study [116], which is
reviewed in Section 3.4. On the other hand, the variational state considered in this section is
always in a subset of the MPS with bond dimension two, since the state is derived by applying
the matrix product operator with bond dimension two onto the product state.

The fixed dimension of the variational manifold poses other problems as well. To see
the exciting behavior of continuous dynamical systems, including chaos, we need to consider
three or more spatial dimensions. In this sense, it is fair to say that the system that we have
considered here is too simple. There are approaches to deal with higher-dimensional mani-
folds by changing the size of the unit cell [98]. However, it is still a problem that the simplest
situation, relaxation from the |Z,) state, cannot be handled.

As depicted in Table 2.2, the aim of the present thesis is to discuss the periodic orbits in
larger bond dimensions and fill the gap between the classical and quantum picture of the
QMBS.

14



3 | Semiclassical Approximation of
Quantum Many-Body Dynamics

In this chapter, we review the time-dependent variational principle (TDVP), which enables us
to construct a semiclassical equation of motion systematically from a quantum Hamiltonian.
Combining it with the matrix product state (MPS) representation, we can obtain semiclassical
dynamics of a quantum many-body system in the thermodynamic limit. In Section 3.1, we
introduce the general formulation of TDVP based on the projection operator onto the tangent
space. In Section 3.2, we define MPS in the thermodynamic limit and its diagram represen-
tation. In Section 3.3, we describe the details of the TDVP algorithm for MPS. In Section 3.4,
we review previous studies that analyzed thermalization and quantum many-body chaos by
using TDVP for MPS.

3.1 Time-dependent variational principle

In this section, we introduce the time-dependent variational principle (TDVP) [105-109], a
generic method to derive semiclassical nonlinear dynamics from a quantum Hamiltonian. We
give a basic derivation based on the projection operator onto the tangent space in Section 3.1.1
and discuss the symmetries and conservation laws in Section 3.1.2.

3.1.1 TDVP derivation based on projection operator

Let us consider a set of quantum states {|{)(x))} parameterized by classical numbers x € RY.
For simplicity, we assume that the states |f)(x)) are normalized, i.e., ((X)|$(x)) = 1 holds. We
regard this set as a manifold M embedded in the total Hilbert space 7. Our goal is to obtain
X as a function of x, which defines the variational time evolution (d/dt)[p(x)) = x!|0;1%(x)) as
a good approximation of the true quantum dynamics described by the Schrédinger equation
i(d/dt)[yp) = H|¢p). In Section 2.2.2, we considered the Lagrangian

£(x,%) = Re((x)]ix!|073p(x)) — (P(X)|H[1h(x)) (3.1.1)

and used the Euler-Lagrange equation to obtain the equation of motion of x. It is called the
Dirac-Frenkel variational principle [109] since it can be regarded as a generalization of the
Dirac principle [108], a variational principle of quantum real-time dynamics with the follow-
ing Lagrangian

£ = Re(y)| (i% _ H) ). (3.1.2)

In this section, we introduce another derivation of TDVP based on a projector onto the
tangent space. We define the tangent vectors of M at [(X)) as |v;(X)) := |0;%(X)). The tangent
space is a linear subspace spanned by the tangent vectors: Ty)M := spang{|v;(x))}. We
define a projector onto TyM as Py 5 = 2|v;)GY Re(uj|, where GV is the inverse of the metric
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3.1. Time-dependent variational principle

—iHY)

Figure 3.1: A schematic picture of TDVP. The variational manifold M is parameterized by the
classical parameter x as M = {|{(x))}. We project the original quantum dynamics —iH|¢)
onto the tangent space T, M and obtain the dynamics X. |y) denotes the difference between
them.

gij = 2Re(v;|v)). By applying B ,ac onto the true quantum dynamics —iH|y), we obtain the
variational time evolution

%! = —2GY Re(u;[iH[p) = 2G" Im(vj|H|1). (3.1.3)

We depict a schematic picture of TDVP in Fig. 3.1. In this way, we obtain the time evolution
that minimizes the norm of local error vector [138]

d A
) = 319 +iAlY) (3.14)

by solving P " »ly) = 0. In Section 2.2.2, we called the norm of |y) the quantum leakage [98-
100]. It is called the McLachlan minimal error principle [107]. In contrast, the Dirac-Frenkel
variational principle is a result of P, M(idit — )|$) = B, xily) = 0. Although the difference
is only the complex factor i, these two principles can produce different results. In quantum
mechanics, states are defined as rays in the Hilbert space. The ray is defined as an equivalence
class of the Hilbert space corresponding to the equivalence relation ~ where |¢) ~ [0y 1o
3c € C\ {0} (J¢) = c|P)). However, the tangent space Ty M can ignore this structure since
the variational manifolds are defined by a set of state vectors parameterized by classical real
numbers. A variational manifold that reflects this structure is called a Kdhler manifold. We
can determine whether the variational manifold M is a Kéhler manifold by considering the

projection of the imaginary unit multiplication J* j= (vi|Pr ¢M1|UJ~>. When J? = —1p,p holds
corresponding to i? = —1, the variational manifold is a Kihler manifold. In this case, the

Dirac-Frenkel and McLachlan principles give the same results [105]. We can check that the
variational manifold considered in Section 2.2.2 is a Kdhler manifold.

If the parameterization is given by a complex holomorphic function, the corresponding
manifold becomes Kihler. In this case, we consider P WM = |vi>Gif<vj| instead where the
tangent space is defined as TyM := span{|0;(z))} and G is defined as the inverse of the Gram
matrix g;; = (v;|vj). The matrix product state (MPS), which we discuss in the next section, is
an example of this case [114].

3.1.2 Symmetries and conservation laws

In quantum dynamics, the expectation value of any symmetry generator, i.e., a Hermitian op-
erator A that commutes with H, does not change along the time evolution. This is a fundamen-
tal relationship between symmetry and conservation law. In the TDVP dynamics, the expec-
tation values of some of the symmetry generators, including the Hamiltonian itself, conserve.
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T,M
TyM

Figure 3.2: Enforcing conservation laws of TDVP.

However, the conservation is not guaranteed for all symmetry generators [105]. We illustrate
it schematically in Fig. 3.2, where the horizontal plane denotes a contour of the expectation
value (A) and the original dynamics —iH|y) denoted by the black arrow has no component
vertical to the contour. However, the projected vector P, wM(—iFI [$)) denoted by the orange
arrow has a finite component vertical to the contour. Roughly speaking, this is because the
contour and the tangent space are not parallel. Conversely, if A[)) does not have any vertical
component to TyM, (A) conserves in the TDVP dynamics.

We have two choices to obtain a TDVP dynamics conserving (A) The first one is to enlarge
the manifold to satisfy the conservation law. If A corresponds to important symmetry for
physics, any manifolds on which TDVP dynamics does not conserve (A) is an unnatural choice
in the first place. Therefore, enlarging manifolds can be regarded as an extension to a more
natural parameterization. However, there is no general guide to obtaining such an extended
manifold, and sometimes it is impossible to find it.

The second choice is to enforce the conservation laws by hand. In this approach, we con-
sider a submanifold of M defined as

M = {[p) € M = W|AIP) = (WPolAlpo)} (3.1.5)

instead of the original manifold M. As depicted in Fig. 3.2, the difference between B . A(—iH|D))
and PT¢ 57(—iH 1)) is parallel to the direction of the steepest decent of (A). This direction is
spanned by £ (A[y)) and P 5 (iA[3)). Thus, we can obtain the TDVP dynamics corre-
sponding to M by shifting B yv(—1H[Y)) along Br 5(Al9)) and Br, »((iA[$)). In this scheme,
we can obtain TDVP with conservation systematically. However, this shift may break the con-
servation laws of other essential quantities such as energy.

3.2 Matrix product state in the thermodynamic limit

In this section, we introduce the matrix product state (MPS) representation for one-dimensional
quantum many-body systems [101, 103, 139-144]. We also describe useful diagram represen-
tations. Each point of the lattice is labeled by integer i € [1,N] N Z, where N denotes the

system size. The local Hilbert space J(; at site i is spanned by local basis {|si>}f;=1. The total
Hilbert space is defined as H = ®fi1 ;. Any quantum state in J can be written as

d; dn N
Z Z Cs1pnnns sN®|Sj>, (3.2.1)
1 j=1

s1=1 SN=
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3.2. Matrix product state in the thermodynamic limit

where ¢ € C%X%dN js a rank-N tensor with an exponentially large number of elements with
the system size N. The fundamental idea of tensor networks (including MPS) is approximating
this tensor ¢ by the product of small rank tensors to reduce the number of parameters to a
polynomial of order N.

An MPS with open boundary conditions (OBC) is defined as

[P(A)) = Z (vL>i0A[1]§;,ilA[z]ff,i2 LAINTY. 11N<vR)lN®|s

Z lolllz 1N®|SJ (32.2)
= Zvi (HA[i]Sf) vilfs),

{s} i=1

where A[j] is a complex-valued rank-three tensor with dimensions D;_; X D; X d;, vi, and vg are
complex-valued vectors with dimensions Dy and Dy, respectively, A denotes the set of A[i] and
v. These D are called the bond dimensions, which control the expressive power of MPS. In the
second line in Eq. (3.2.2), we introduce a diagram representation of MPS, where rank-k tensors
are represented by nodes with k legs, each corresponding to a tensor index. Connected legs
in the diagram mean taking the summation of the corresponding indices. Sometime, we omit
to write ), s) and ®j|sj) explicitly in the diagram representation. The third line in Eq. (3.2.2)
denotes an abbreviated expression. We can similarly define an MPS with periodic boundary
conditions (PBC) by using this abbreviation as

N
[$(A)) = X Tr HA[i]Sfl Hs})- (323)
{s} i=1

The transfer operator plays a central role in calculating physical quantities from MPS. We
define the transfer operator J from a pair of tensors as

A:ZAS®BS= + , (3.2.4)

where B denotes the complex conjugate of B. We similarly define the transfer operator for a
pair of matrices X,Y € CDXD’ a5 JX = X ® Y. The only difference is the absence of the
summation Zs. We introduce the notation of matrices as

on which the transfer operator J5* acts as

i ®
[T 0], = D A pxiB? , (3.2.6)
skl j (B]
@ j
[(ylfA Z Bk 1yk lAl J . . (327)
skl (B}— i

We note that (y|x) = Tr[yx] holds. The notation |x) and (y| can be regarded as the notation
of the vectorization of matrices. Under this interpretation, the transfer operator is regarded
as the transfer matrix.
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Chapter 3. Semiclassical Approximation of Quantum Many-Body Dynamics

Physical quantities can be represented in terms of the transfer matrices. For example, the
inner product of two MPSs can be written as

(VLV” 1,7 1?[%] ‘VR\”I;Q) (OBC)

A)|P(A)) = . _
WPA)P(A)) Tr[Hi T/?[[iﬂ (PBC)

(3.2.8)

Any expectation value of the product of onsite operators ((A)|0;, ... ¢, [p(A)) can be obtained
Alj]
7,

by replacing Tapji in Eq. (3.2.8) by operator transfer matrices defined by

D AtoIALT @ ALj]". (3.2.9)
S,t

Next, we define the uniform MPS [110, 112, 114, 145] by letting all A[i] equal and taking
the N = oo limit as

(A) =Y. vi (HASi)le{sD, (3.2.10)

{s} iez

where A € CP*Pxd and v € CP. The uniform MPS is a good variational state for transla-
tion invariant state in the thermodynamic limit. Since the choice of boundary conditions and
boundary vectors v does not change the physics in this limit, we take OBC here. The corre-
spondence between A and [1(A)) is not one-to-one. For any ¢ € C \ {0} and X € CP*P s t.

detX # 0, AS and cXASX ! represent the same quantum state. We choose ¢ = 1/4/A;m(7:%)

for MPS to satisfy the normalization condition (3(A)|1(A)) = 1, where A;,; denotes the eigen-
value of the transfer matrix with the largest magnitude. Here, we assume that A;; is not
degenerate. This condition is called injectivity, which means that the state does not have a
long-range order. Hereafter, we always consider normalized and injective MPSs if not men-
tioned otherwise. The transformation A5 — XASX~! is called a gauge transformation. We
introduce gauge fixing conditions called canonical conditions, to remove these gauge degrees
of freedom. The left canonical condition is characterized by the equation

(1pxplZi* = (Lpxpl, (3.2.11)

where 1p,p denotes a D X D unit matrix. We can transform A to satisfy the left canonical
condition as A3 = \/_ lAS\/TI, where [ denotes a matrix with its vectorization being the domi-
nant left eigenvector (I|7;* = (I| and \/7 satisfies \/—lT\ﬁ = [. We introduce a special shape for
a node representing a left canonical tensor A;: —t>~. Similarly, we define the right canoni-
cal condition and special shape for the right canonical tensor A} = \/7_1AS\/7: ~}-, where
TA|r) = |r). We also introduce center-site tensor A%, = \ﬁAS\ﬁ: =~ and center bond ma-

trix C = \/7\/7 —~. With these, we define the left canonical MPS and two kinds of mixed
canonical MPS as

=Rl ([l =D

{s} i

=>v (HA?)A? (HA?%)VRHsD =

|

1

1

1
~
w
N
Ju—
[\
~

{s} i<j j<i
- ot (Tt e Tk vl =~
{s} i<j j<i
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3.3. TDVP for uniform MPS

Note that the position j does not change the state.
For a mixed canonical uniform MPS, any expectation value of on-site operator 0 can be
written in a compact local form as

(¥(A)|6:¥(A)) = (1pxp| [Z(ti|éi|si AL ® AL | 1pxp)- (3.2.13)

Sist

We can similarly obtain the expectation values of nearest-neighbor operators and so on. The
bipartite entanglement entropy of |p(A)) is defined as

D
8=-)Y c?Inc? <InD, (3.2.14)
i=1

where o; denotes the coefficients of the Schmidt decomposition, which are equal to the singu-
lar values of C.

3.3 TDVP for uniform MPS

In this section, we discuss the TDVP algorithm for the uniform MPS [110-115]. In Section 3.3.1,
we consider the time derivative of the uniform MPS. In Section 3.3.2, we introduce numeri-
cal integration techniques to obtain accurate time evolution. In Sections 3.3.3 and 3.3.4, we
discuss the symmetry and leakage of TDVP for MPS.

3.3.1 Time derivative

To consider the tangent vector, we take the left canonical form and take the derivative with
respect to A;, as

g8 = Y B 55y (TT4t )59 TT4% Jweltsh. @3
k a(14L)k

J s i<j j<i
where k denotes the three tensor indices of A;. It can be regarded as the parameterization

of the tangent vector by the tensor B € CP*P*d, We can obtain the time derivative of A; by
solving

(A5 AL)) = By ae(—iH[H(A))) (3:32)

where P, WM denotes the projection operator onto the tangent space.

Let us discuss the details of the projector P, WM The derivative shown in Eq. (3.3.1) suggests
that the dimension of the tangent space is that of the tensor B. However, since the gauge
transformation B® — B’ + A} X — XA} for VX € CP*P does not change the tangent vector
|¢), the true degrees of freedom is D X D Xd — D X D = D X D X (d — 1). To avoid the over-
parameterization, we impose a gauge fixing condition (1 DxD|ZJ}3AL = 0. Under this condition,
we can derive a good parameterization of B. We consider an orthogonal basis of the null
space of (A)s,r = (A, = = denoted as ¥, € CP*PU-D Here, AV, = 0and
VIV = 1p@-1yxp(a—1) hold. We define Vi € CP*PW@-Dxd by reshaping ¥, and let it be
denoted by a diagram —£>~. We note that the index going out from the right has D(d — 1)
degrees of freedom, not D. The tensor V7, satisfies the following properties:
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Chapter 3. Semiclassical Approximation of Quantum Many-Body Dynamics

We consider parameterization of the tangent space based on V; as BS(X) = Vi XC~!, where
X € CPU-DXD_ Now we can rewrite Eq. (3.3.1) as

BB =3 v (H Aii) vixc (HA%)vRHs»

Jj {s} i<j j<i
- %% (I at) v T vt
j s} i<j j<i
Now let us consider the Gram matrix gyx = (¢(4; B(Y))|$(A; B(X))). Since (1 DxD|TVfL =0

and (1py Dlj;llfL = 0, it can be written as

(3.3.4)

VX
gvx = |ZI(lpxplH, ¥ 1pxp)

=1Z|(1p@-1xp(d—1) % [1pxp) (3.3.5)
= |Z| Te[Y'X],
where |Z| is the notation of the divergent term in the thermodynamic limit corresponding to
the system size. The last form is proportional to the Euclidean inner product of the vectorized

matrices X and Y. Thus, by using this parameterization, we can ignore calculating the inverse
of g, and the projector onto the tangent space can be written as

DD I

<
7 )| G e Gaa

i—1 i i+1

(3.3.6)

To obtain the expression in the last line, we use the relation between A; and V; depicted by

the following diagram:
:] - 637

Now, we consider the vector P . a(—=iH)[p(A)). Let us define Hg acting on A¢ and C to
satisfy the following diagrams:

DO
H
- @;ﬁi SOOI 6as)

DO
H
- Qﬁjﬁi= SO @< (639)
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3.3. TDVP for uniform MPS

Then, we obtain

B DAY = —1 3 T vy (HA%) HaAe) (HAS;) wlish

J {s} i<j j<i
SD»RA 1§ ) TRy )
J s} i<j J<i
: i ; Sj - i
SROWRA |y ) [CREREEVRES | § o) PR

j st i<j j<i

(3.3.10)
We thereby arrive at the time derivative of A; as
Ay = —i(He(Ac)Y — AT H(C))C. (33.11)

Let us consider the detail of Hg. In general, if H can be represented in the form of a matrix
product operator, we can obtain a simple form of H.. Hereafter, for simplicity, we assume that
the Hamiltonian is the sum of nearest-neighbor interactions as H = Zi h;;+1. We shift the

origin of the energy to zero as h — h — (ﬁ) Let us define the infinite boundary conditions L
and R. We introduce L, and R, defined as

Lyl = s |Rp) = , (3.3.12)

where the rectangles denote 1 — <fz> The infinite boundary conditions [146] are defined as

(Ll = Lnl DT R = D (TS Ry). (3.3.13)
n=0 n=0

We can obtain them without calculating the infinite summation because L and R satisfy the
following linear equations:

(LI = T2 +1CCHUpxpl) = Ll (A= T5% + [1pxp)CTCPIR) = R (33.14)

To derive the equation of (L], let us consider eigendecomposition of jXL‘L:

D2 D2
Tt = Y )l = 1CCH) Apxpl + Y. Audr)(l, (3.3.15)
i=1 i=2
where [;, i, and 4; satisfy

G = 2l T = 4R, W) =8 > A 2232 .,

(3.3.16)
ll = 1D><D’ n= CCT, A’l =1.
Since (Ly|n) = (h — (h)) = 0 holds, we can consider
0 D? D? 1
2 G = 1CCH)ApxpD)™ = 3 AUl = 3, = I = 1 =T (3.3.07)
n=0 i=2 n i=2 t
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Chapter 3. Semiclassical Approximation of Quantum Many-Body Dynamics

instead of the infinite summation in Eq. (3.3.13), where P denotes the pseudo-inverse (the
Moore-Penrose inverse). We can calculate the multiplication of the pseudo-inverse matrix on
(Ly| by solving the linear equation defined in Eq. (3.3.14) since the equations

1 1
A, 2
|CCH)(Apwpl + 1= T3t |CCHApxpl + i, = WIMU]

L

D (3.3.18)
= |CCM)(1pxpl + D, =Wl -
i=2 t

_ t _ qAL\P
= |CCT)(Apxpl + (1 =I5 )

and (L, |CCT) = 0 hold. We can derive the linear equation of |R) in a similar way.
By combining the infinite boundary conditions and the diagrams in Egs. (3.3.8) and (3.3.9),
we obtain the local form of H, as follows:

~(HalA}- = DO+ ;g+E; +—O-®)- (3.3.19)

=1+ +— R (3.3.20)

3.3.2 Numerical integration

The simplest way to calculate the real-time dynamics of a uniform MPS is the Euler method:
calculating A; by Eq. (3.3.11) at each time step and updating the state as A;, — A + StA,,
where 5t denotes a small time step. However, this update conserves the canonical condition
only in the first order of &¢. Thus, we have to re-canonicalize the state at each time step. As
we discussed at the end of Section 3.2, we can obtain the canonical form of MPS by solving a
dominant eigenvalue problem of the transfer matrix.

In this algorithm, we have to consider the inverse of matrices cL \ﬁ 1, and \/;7_1 to calcu-
late A; by using Eq. (3.3.11) and to canonicalize the state. However, matrix inverse calculation
can cause large numerical errors. Here, we construct an inverse-free algorithm to obtain pre-
cise results. In the inverse-free algorithm, instead of calculating A; explicitly, we consider
Ac = —iHu(Ac) and C == —iH(C). First, we update Ac and C as Ac — A = A +StAc and
C — C’ = C + §tC. Then, we obtain the updated A} € S; by solving minimization problem
of A — AL.C||, where S; = {A € CP*PXd : (15, |7 = (1pxpl|}- We can solve this optimiza-
tion problem by using the Singular Value Decomposition (SVD) or the QR decomposition. The
SVD-based algorithm gives an exact result in principle. We define (A¢) (), = (Ac)] , and con-
sider its SVD A¢(C")T = USVT. Then, (A1) ,5),r = (A1)}, is obtained as Aj, = UV, However,
¥ can contain very small values near the machine precision since Z is approximately equal to
the square of singular values of an almost normalized matrix C’. It makes the numerical cal-
culation unstable. On the other hand, the algorithm based on the QR decomposition gives a
better result without this problem. The QR-based algorithm gives the exact resultin the 5t — 0
limit. Here, we consider the QR decompositions A¢ = Qg.R,:, and (€)' = QcryiR(cny»
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3.3. TDVP for uniform MPS

where Q4. and Q(¢ry+ are unitary matrices and R 5, and Rcry+ are upper triangle matrices. We
take the signs of the diagonal elements of R 4. and Rcryt positive to make the decomposition
unique. The approximated A is obtained as Qar.Qcryt-

The QR decomposition is also helpful to obtain the canonical form of the uniform MPS

without using matrix inversion. First, we prepare some initial matrix X(® and consider QR

decomposition ﬁgl g) e (O)AS as A® = A x®. By repeating this process after replacing

X0 by X@ until XO ~ X @+ holds, we obtain a pair of X and A, satisfying XA = A; X <
XAX~! = A}, where A satisfies the left canonical condition. This iteration converges because
we consider the unique QR decomposition by fixing the signs of diagonal elements. We can
also obtain the dominant eigenvector as X7X. We can obtain Ay similarly by considering the
LQ decomposition instead.

In many cases, the solutions obtained by the Euler method are not accurate enough. Al-
though we can improve the accuracy by using the higher-order Runge-Kutta method, unphys-
ical solutions that violate important properties such as the energy-conservation law can be ob-
tained. We can improve the results by using a symplectic integrator for Hamiltonian systems.
However, it is difficult to apply it to TDVP for MPS because there is no simple separation be-
tween the kinetic term and the potential term in the Lagrangian. Instead, we use a symmetric
integrator to obtain accurate energy-conserving results. In the simple Euler method, time-
reversal symmetry breaks in the second order of 6t, i.e., Ay (t) and A} (¢) are not equivalent to

St —5t
each other if A] (¢) is obtained by the following time step: A; (¢) E+—l> AL (t+8t) p— AL(t). In
uler uler

~ ~ —5t/2
symmetric integration, we obtain the midpoint A; (¢ + 8t/2) satisfying A; (t +5t/2) — AL(t)

+6t/2
and calculate A, (t + 5t/2) T A;(t + 8t). In this scheme, we obtain results satlsfylng the

time reversal symmetry. To obtain the midpoint, we use an iterative algorithm. As a starting

point, we calculate the time evolution over +45¢/2 by the Euler method denoted as A; — AL(O).

Next, we calculate the backward time evolution over —dt/2 from it and define it as A(L ). Then,

we calculate AA(O) =A; — (0) and its norm. If the norm is under the threshold, we adopt

:4:( ) as A;. If not, we update AL( . AL(O) AA(LO) and calculate A( ) again. Repeating this

process until convergence, we finally obtain A; .

3.3.3 Symmetry

In TDVP for MPS, it is guaranteed to conserve the expectation values of any local symme-
try generators, i.e., Hermitian operators satisfying [H ,A] =0and A = Zi d;, where @; acts
on J(; [112]. This is a great advantage of the TDVP algorithm over the other MPS-based al-
gorithms, such as the time-dependent density matrix renormalization group [147] and the
time-evolving block decimation [148]. In many cases, physically important symmetries are
written in this local form.

On the other hand, the conservation of non-local symmetry is not guaranteed. Thus, we
have to consider the conservation enforcing technique discussed in Section 3.1.2 for systems
with important non-local symmetry. For example, in the studies of QMBS, the importance of
non-local deformed symmetry denoted by a matrix product operator, such as Py defined in
Eq. (2.2.3), has been pointed out [65].

3.3.4 Leakage

The quantum leakage of TDVP is defined as the norm of the error vector defined in Eq. (3.1.4).
In TDVP for the MPS with the nearest-neighbor interacting Hamiltonian, we can obtain a
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Chapter 3. Semiclassical Approximation of Quantum Many-Body Dynamics

simple local form for the error vector [149]. Similarly to V;, we consider V; € CPd-1)xDxd

e % A 14 .
satisfying % *|1pxp) = [p@-nxp@-1) and F2*[1pxp) = Ta*[1pxp) = 0. By using V; and
Vg, the identity operator of the Hilbert space can be written as

1 = |9Xy| + Fryac Zi:___ S R

vy DD | @ DD ||,

(3.3.21)

. . . . . . . A - . A
The infinite sum in the second line vanishes in calculating (1-P 3 aohi|P) for Visince (1pyp T, L=

0 and JI}?R|1 pxp) = 0. Thus, the error vector can be written as
7)== Bryp) (i) = =i 3, --—— >4 > B <<l (33.22)
! i i+1

where B is depicted by the diagram

]
o <
{ B F=—p" < (3.3.23)

Since (1 DxD|Z4]f v = 0and %?ARll pxp) = 0 hold for any A’ € CP*P*d the inner product of
|y) can be written as

==

17y = 1ZI(Apxp|TF [1pxp)- (3.3.24)

In the case of conservation enforcing TDVP discussed in Section 3.1.2, 4, is shifted by a
tensor A} . For this case, we can obtain the error vector by considering a shift —iB — —iB +
ALAL

3.4 Chaos and thermalization in semiclassical dynamics

In this section, we introduce previous studies that used TDVP for the uniform MPS to study
thermalization and quantum many-body chaos [116, 117].
In these studies, the one-dimensional Ising model with longitudinal and transverse fields

H =) Jofof, + h*cf + h*d}* (34.1)

i
has been investigated. Here, o denotes the Pauli operator. This model is known to be non-
integrable for finite h” and integrable for zero h?. Because of the simplicity and the tunability

of the integrability, many studies about quantum many-body thermalization have been carried
out for this model [15, 150-152].
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3.4. Chaos and thermalization in semiclassical dynamics

In Ref. [117], long-time dynamics of this model up until the thermalization was calcu-
lated by TDVP for MPS. In general, an MPS-based real-time simulation requires exponen-
tially large bond dimensions with the time because of the linear growth of the entanglement
entropy [153]. On the other hand, the late-time dynamics near the thermalization should be
characterized by emergent classical hydrodynamics since the thermal state is characterized
by local observables, as we show in Section 2.1.1. In Ref. [117], the chaotic semiclassical dy-
namics obtained by TDVP for MPS was shown to be a good approximation of the emergent
hydrodynamics. This is because the TDVP dynamics is chaotic and conserves all local sym-
metries. They calculated the real-time evolution with several bond dimensions and checked
the convergence. If we focus on the time evolution of the entanglement entropy, it does not
converge with increasing bond dimension. It grows linearly with time and saturates around
the maximum value proportional to the log of the bond dimensions. However, the time evo-
lution of classical quantities like local observables and energy transport converged well for a
small bond dimension around D = 4.

In [116], the Lyapunov exponent and the Kolmogorov-Sinai (KS) entropy [154], the sum
of the positive Lyapunov exponents of TDVP for MPS, were investigated for several bond di-
mensions. They obtained a scaling relation between the bond dimension and the KS entropy.
They also derived a scaling relation between the saturated entanglement entropy and the bond
dimension. They speculated the relationship between the KS entropy, the bond dimension,
and the increase rate of entanglement entropy. By combining them, they obtained a differ-
ential equation of the entanglement entropy. The resulting differential equation can explain
the crossover between the initial entanglement growth described by semiclassical chaos with
strong nonlinearity and the late-time entanglement growth obtained by many-body chaos the-
ory like the ETH.

In both researches, the scaling analysis of the bond dimension occupies an important po-
sition. In general, the extrapolation of the bond dimension is necessary to obtain accurate
results with the uniform MPS in the thermodynamic limit. This kind of extrapolation has
been studied well in the field of the ground-state calculation [155-157].
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4 | Numerical Exploration of Periodic Orbits

In this chapter, we explain our algorithm to explore periodic orbits in uniform MPS manifolds
and show the results. In Section 4.1, we introduce the objective of our exploration. In Sec-
tion 4.2, we describe the strategy and details of our algorithm. In Section 4.3, we show the
obtained result and discussions.

4.1 Objective

As we saw in Section 2.2.2, the analysis of the quantum-classical correspondence in QMBS
based on TDVP for MPS plays a significant role in understanding QMBS in depth. However,
as emphasized in Section 3.4, to properly understand the thermodynamic limit behavior with
this approach, extrapolation of the bond dimension is necessary. Previous studies of QMBS
have lacked this perspective. Our research aims to fill this gap. For this purpose, as a first
step, we investigate the properties of periodic orbits in semiclassical dynamical systems ob-
tained by TDVP for uniform MPS manifold with general bond dimensions. The first obstacle
of this study is the difficulty in finding periodic orbits in the manifolds with large bond dimen-
sions. Large dimensions of manifolds make it impossible to draw flow diagrams or Poincaré
maps, which help us find periodic orbits manually with human eyes and have been used in
the previous studies of the PXP model discussed in Section 2.2.2. Thus, we have to construct
an algorithm to mechanically find periodic orbits in the MPS manifold. To show the validity
of our method, we apply it to the PXP model.

4.2 Strategy of exploration

In the study of chaotic dynamical systems, researchers have found efficient algorithms to find
periodic orbits numerically [158-160]. These algorithms are designed for dynamical systems
in flat spaces like the Lorenz system in R3. In these algorithms, we consider the time-evolution
function from x, with time T denoted by f(T,X,) and try to solve x, = f(T,x,). Since it is
impossible to obtain the exact formula of f, we consider linearization of f around (T, x,) and
solve it approximately. Since the result does not indicate an accurate periodic orbit at this
time, we repeat this step until convergence and obtain the final result. This method is called
the Newton-Raphson-Mees algorithm. However, we cannot simply apply this method to our
problem. In TDVP for MPS, we have to consider a curved manifold with gauge degrees of
freedom. Because of the unitary gauge degrees of freedom, A, # f(T,Ap) can hold even
when Ay and f(T, Ay) denote the equivalent state even after gauge fixing.

To overcome this difficulty, we consider the optimization problem instead. We define a cost
function cost(A, T) as the difference between |)(A(0))) and |p(A(T))) where |p(A(t))) denotes
a trajectory satisfying A(0) = A obtained by TDVP. The initial state A and the period of orbits
T are obtained so as to minimize the cost function. We can avoid the problem caused by gauge
degrees of freedom by defining the gauge-invariant cost function. This optimization-based
approach has another advantage. Time evolution and energy optimization of MPS have been
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4.2. Strategy of exploration

investigated extensively so far. We can divert the knowledge of optimization algorithms for
the MPS by considering our problem as an optimization problem. However, a lot of ingenuity
is required to make this approach actually work. In this section, we discuss them.

In Section 4.2.1, we discuss the relation between the dynamics of the PXP model in the
constrained and unconstrained Hilbert space. In Section 4.2.2, we introduce a subspace of
MPS with zero energy expectation value. In Section 4.2.3, we discuss the concrete formulation
of the distance between two MPSs. In Sections 4.2.4 and 4.2.5, we introduce two important
concepts of numerical optimization, a continuous optimization on Riemannian manifolds and
automatic differentiation. In Section 4.2.6, we will discuss how to prepare the initial state of
the optimization.

4.2.1 Time evolution in projected space

In our exploration, we consider states with unit cells of two sites. Thus, we regard two adja-
cent sites as a single site as |O@); := |0),i_1 ® |@),;. The local Hilbert space J(; of this paired
site is defined as #; := span{|00);, |0®);, |®0);}, where the adjacent excitation |@®); is ex-
cluded because of the constraint Pyz. We rewrite the Hamiltonian of the PXP model defined
in Eq. (2.2.4) to the nearest neighbor interacting Hamiltonian as

2N

Hpxp = ), |OXO|j—1 ® (|OX@|; + |@XOl;) ® |[OXOlj1
Jj=1
N

= 2,(|OOXO®|; + |O@XOOl;) ® (|OOXOO;+1 + [OOXO®|;1) 42.1)
= 2.

-
1l

+ (JOOXOO|; + |@OX®0|;) ® (|]OOX®O|;1; + |@OXOO]i41)
N
= Z ﬁi,i+1’
i=1

where j denote the index of the original site and i denote that of the redefined one. We also
rewrite the projection operator Py defined in Eq. (2.2.3) as

2N
Prg = H(ij,j+1 - |@Xe|; ® |@X®|1)
J=1 (4.2.2)

_ . [T7(1-10®%0e|; [oeXoe|;
=T H( |00X0O; |oo><oo|l-)

The projected Hilbert space of Pyg cannot be considered as the product of local Hilbert spaces
since the pattern [O@); ® |@0);, is eliminated. On the other hand, an MPS represents a state
of the total Hilbert space ®i H;. Thus, we have to fill this gap to obtain the TDVP dynamics
on the projected Hilbert space.

There are two strategies to obtain the dynamics on the projected Hilbert space by using
TDVP for MPS. The first idea is to replace the variational manifold {|})(A))} by the projected
one {Prp|(A))/ || Prsl(A))||}, where [p(A)) denotes the ordinary uniform MPS. The previous
study we discussed in Section 2.2.2 can be regarded as the D = 1 case of this strategy. The
problem of it is that the numerical calculation based on this idea is inefficient and hard to
apply for large D. In ordinary TDVP for MPS, we can skip calculating the inverse of the Gram
matrix defined in Eq. (3.3.5) by considering the parameterization B(X) of the tangent vector,
which makes the Gram matrix proportional to the identity matrix. We can no longer use this
technique for the projected variational manifold and have to calculate the inverse of the Gram
matrix explicitly in each time step. It makes the calculation very inefficient and unstable.
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Chapter 4. Numerical Exploration of Periodic Orbits

Therefore, we adopt the other approach in this study. In the exact quantum mechanics of
the PXP model, if the time-dependent state |()(t)) satisfies the Schrodinger equation, Prg|1h(t))
also satisfies it, owing to the linearity of the quantum mechanics and the commutation rela-
tion [P, Hpxp] = 0. The second strategy is based on this fact. First, we consider the TDVP
dynamics [p(A(t))) defined on the total Hilbert space ®i}[i. As we mentioned, the total
Hilbert space contains the patterns with the adjacent excitation |O@)|@0). We note that this
pattern cuts the Hamiltonian Hpyp into two independent parts as

Hpyp(... |0@)|00)|0®)| @0)|@0)|00)...)

A " 4.2.3
= Hpxp(... |0@)|00)|0®)) ® Hpxp(|@0)|@0)|00) ...), ( )

since ﬁi,i+1|00>i|00)i+1 = 0 holds. After that, we obtain the dynamics on the projected
Hilbert space as Prp|p(A(t))). In this approach, we can skip the calculation of the Gram ma-
trix.

The problem of the second approach is that the norm of Pgg|p(A(t))) is not conserved in
the ordinary TDVP dynamics as discussed in Section 3.3.3. It makes the analysis in Chapter 5
very complicated. This is because the projection operator Py is a non-local operator repre-
sented as the matrix product operator. Here, we can use the conservation law enforcing dis-
cussed in Section 3.1.2 to overcome this problem. As we already mentioned, the enforcement
of conservation laws may cause a violation of energy conservation. In our case, by considering
zero-energy subspace as we discuss in Section 4.2.2, we can guarantee energy conservation.
Although the second approach seems less natural than the first one, it is efficient and works
well for large bond dimensions.

4.2.2 Zero-energy subspace

In the previous study reviewed in Section 2.2.2, we consider the zero-energy subspace of the
variational manifold by fixing the phase factor ¢ = 0. In the same manner, we consider the
zero-energy subspace of the MPS manifold and restrict our optimization in it. To obtain the
zero-energy subspace, we define a local unitary operator R; acting on unit cell i as

R; :== |0OX0O0|; —ijo@XO®|; — i|@OXe0|; (4.2.4)

and define a state with tilde as
[9) = RI1p) = [ [ Ril)- (4.2.5)
i
We define the transformed Hamiltonian Jpyp as the sum of local operators fi,i+11
Joxp = Z Jijr1 = iRHppRT = Z éiRi+1l’Ali,i+1é;er+1~ (4.2.6)
1 1

The equation of motion of |1} can be written as

|$> = —Joxp|) (4.2.7)
by considering
Ry + iHpxp|th)) = |$> + iR ApypRT[$) = |$> + Joxpl) = 0. (4.2.8)

We note that all matrix elements of j are real:

Jiir1 = (JOOXO®|; — |0@XO0];) ® (JOOXOO|i41 + |[OGXO®|;41)

4.2.9
+(J0OXOO); + [80X®0]) ® (|00 @Ol 1 — |8O¥OO:11). (4-29)
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Now, let us consider the following relation:
<¢|ﬁPXP|¢> = —i<$|fPXP|’$>- (4.2.10)

The left-hand side is surely real. Here, we assume that ) is described by uniform MPS with
tensor A € RPXP>3_ Then, the right-hand side is pure imaginary because all the elements of
|} and Jpyp are real. By combining these results, we can conclude (|H (1) = (P|Jpxp|9h) = 0
in this case.

Thus, hereafter we consider the manifold of real-valued uniform MPS and consider the
dynamics Eq. (4.2.7).

4.2.3 Cost function

The objective function of our optimization is defined as cost(A(0), T) := d(A(0), A(T)), where
d denotes a distance-like function satisfying d(A,A") > 0 and d(4,A") = 0 & [p(A)) ~ [Pp(A")).
Here, A(T) is obtained by the TDVP equation. The problem is how to choose the function d.
The simplest way is to consider the inner product

WBA)PA)) = Tr[( Tz ON] & A (TZHN. (4.2.11)

In the thermodynamic limit, (¢)(A")|(A)) takes a finite value only when |/1LM(JX,“)| = 1. Thus,
we can define the distance function as

d(A,A") = —In|A (T (4.2.12)
Finally, we use this simple cost function in our optimization.
In the present study, we also consider other distance functions that are more sensitive to
the difference. We assume that the two tensors A and A’ are left canonical and related by the
gauge transformation as

(1pxplZi® = ApxplTit = (pxpl, UAU' =4, (4.2.13)

where U is proportional to some unitary matrix. Then, we can obtain U by solving the domi-
nant eigenvalue problem because of the following equation:

-1 !
U1 = (pxplTa? AV Y = (IpwplTgt ¥ = (pxpl %Y = (U. (4.2.14)
Therefore, for given A and A’, we define a distance-like function as follows:
dg(A,A) = |[UA - A'U|| (4.2.15)

where U is obtained by solving the dominant eigenvalue problem of :(4’,4. Note that the choice
of the norm is arbitrary. The unitarity of U defined as

(4.2.16)

, uut 1
d“AA)=M| IRDH

U |1pxoll

is also useful to measure the difference. We use d; and d,, with the Frobenius norm to verify
the recurrence of our results.
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Chapter 4. Numerical Exploration of Periodic Orbits

4.2.4 Continuous optimization on a Riemannian manifold

Here, we use a matrix form of tensor A5, = Aj,. The optimization problem we have to
solve can be written as a constrained optimization problem

minimize cost(A4,T) subjectto ATA = 1pyp, (4.2.17)
AcR3DxD
TeR>¢
where R”€ denotes {x € R : x > ¢} with small positive ¢ to eliminate the trivial result
cost(A,0) = 0. The set of matrices satisfying 474 = 1p,p can be regarded as a Riemannian
matrix manifold called the Stiefel manifold St(3D, D). Thus, we can rewrite our optimization
problem as an unconstrained optimization problem
minimize cost(A, T). (4.2.18)
(A,T) € St(3D,D)xR>¢

When a continuous function is defined on a manifold, we can use continuous optimization al-
gorithms on the Riemannian manifold, which have been well investigated in recent years [161-
165].

Before discussing the optimization on the manifold, we briefly review the continuous op-
timization on the flat Euclid space [166]. We consider an objective function f : R" — R to
minimize. The steepest-decent method is a fundamental method for obtaining the minimum
of f numerically. First, we take some initial point x, € R" and calculate f(x,) and V f(x,).
We define the steepest-decent direction dy as dy = —V f(X()/||Vf(Xo)|- Then, we define a
single argument function gy(a) := f(xq+ad,). Ideally, we solve the one-argument minimiza-
tion @y = argmin  go(r) and obtain the updated point X, = X, + aod,. In practice, we try to
numerically obtain ¢, making the decrease g(0) — g(«,) large enough. This step is called line
search. Because of the definition of gy(a), 0 > g;(0) holds and g,(0) > gy(«) is guaranteed
for enough small a > 0. However, a too-small value of a makes the optimization inefficient.
On the other hand, a too large value of o may not satisfy g,(0) > g,(«). Some heuristic condi-
tions, such as the Armijo condition, Wolfe condition, and Goldstein condition, are known to
check that « is large enough and not too large. A typical strategy to determine « is called the
backtracking method: take a large « first and check the condition. If the condition holds, we
adopt it as «y. If the condition does not satisfy, we reduce « to pa with 0 < p < 1, and check
the condition again. After obtaining ¢y, we update the point as x; = x + ayd, and go to the
next iteration. Once x;, satisfies ||V f(x)|| < € with given threshold €, we stop the iteration.

Although the idea of the steepest descent method is simple and fundamental for contin-
uous optimization, the convergence becomes slow for ill-conditioned cases; in other words,
the case of the contour line of the objective function around the extrema becomes thin as de-
picted in Fig. 4.1. We can overcome this problem by using the conjugate-gradient (CG) method
or the (quasi-)Newton method. If we can efficiently calculate the Hessian of f, the Newton
method can be a good choice. In the Newton method, we approximate the objective function
by the second-order Taylor expansion and calculate the minimum point of the polynomial.
In each step, we would have to calculate the inverse of the Hessian. Both the CG method
and the quasi-Newton method have been developed to skip the calculation of Hessian and its
inverse. In the CG method, we determine the search direction d; by approximating the New-
ton method’s update direction combining d;_;, Vf(x;_;), and Vf(x;). In the quasi-Newton
method, on the other hand, we approximate the inverse of Hessian by a positive definite ma-
trix obtained from the previous gradients and the search directions. The Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is a well-known method to approxi-
mate the positive definite matrix in the quasi-Newton method. In the L-BFGS method, we
record only m recent gradients and search directions and discard the oldest one as the itera-
tion proceeds.
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Figure 4.1: Schematic picture of gradient decent algorithms for ill-conditioned cases. A

dashed line denotes the steepest-decent method. In the CG method and the L-BFGS method,
the search direction is corrected to the direction to the minimum point as a solid line.

Next, let us consider the continuous optimization on a Riemannian manifold. On a Rie-
mannian manifold, we can define the distance between two points by considering the metric.
A geodesic y,(t) of the manifold M is defined as a curve on the manifold that connects given
two points x, = 1(0) and x; = (1) with the smallest distance. It is a counterpart of a
straight line in the Euclid space. We can define the geodesic on the manifold from the initial
point x, and the velocity vector v, = ,(0) defined on the tangent space of the initial point. A
point transport along this geodesic is called the exponential map as x; = expxo(vo) depicted
in Fig. 4.2. In the continuous optimization on the Riemannian manifold, we replace the line
search on Euclid space by the search along the geodesic with the exponential map. By this
replacement, we can generalize the steepest-descent algorithm to the manifold. We note that
the geodesic depends on the choice of metric. In the CG or L-BFGS method, we use the infor-
mation of the gradients and the search directions in the previous steps to determine the next
search direction. However, the directions and gradients are defined as the tangent vector on
different points of manifold. Thus, we have to consider the transport of the tangent vector
to generalize the CG or L-BFGS methods. If two points x; and x; on the manifold are con-
nected by a curve y, we can consider a parallel transport of the tangent vector along the curve
F>]c/0—> x,- The CG and L-BFGS algorithms on the manifold are defined by considering a parallel
transport along a geodesic.

In some cases, the calculation of exponential maps and parallel transports becomes ineffi-
cient. A retraction R, (v) is an approximation of an exponential map that behaves similar to
the exponential map up to the first order. A vector transport 7, is defined as an approxima-
tion of parallel transport. These approximations are often used to solve real-world problems.
We depicted the schematic pictures of retraction and vector transport in Fig. 4.2.

Application of optimization in Riemannian manifolds to the isometric tensor network
states, including a canonical form of MPS, has been actively discussed in recent years [122,
127]. To implement these algorithms, we used the package OptimKit.jl [167].

4.2.5 Automatic differentiation

In the continuous optimization method discussed in Section 4.2.4, we would have to know the
gradients of the cost functions. In our case, the cost function is defined through numerical
dynamics. Thus, it is impossible to write down an explicit form of the gradient. In such a case,
one of the simplest choices is to use the numerical differentiation that estimates the derivatives
by the finite-difference calculation. However, the accuracy and efficiency of numerical differ-
entiation are not sufficient for our optimization. The time evolution in the present simulation
is a combination of a considerable number of simple tensor operations such as contraction,
multiplication, QR decomposition, and solving linear equations. Since we know the differen-
tiation rules of each operation, we can mechanically obtain the derivative in principle. This
dependency structure of elemental functions is called the computational graph. By using the
chain rule of differentiation, we can obtain a computational graph of the gradient system-
atically. This method is called symbolic differentiation, implemented in various computer
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Chapter 4. Numerical Exploration of Periodic Orbits

Figure 4.2: Schematic picture of retraction and vector transport

algebra systems such as Mathematica, MATLAB, and SymPy [168]. However, it is impractical
to use symbolic differentiation to obtain a gradient of the complicated cost function in the
present problem, since the computational graph of the gradient becomes huge. To carry out
the optimization, we only need to know the value of the gradient, not the symbolic expression.
In the automatic differentiation (AD) method [169], we calculate the gradient by combining
the chain rule and the differential rules of elemental functions as well as the symbolic dif-
ferentiation. However, in contrast to the symbolic one, we transform a computer program
corresponding to the cost function into a program that calculates its gradient.

There are two kinds of implementation of AD, the forward mode and the backward mode.
If the input parameter dimension is larger than the output dimension, the backward mode
is more efficient. Since this is a typical situation in machine learning using neural networks,
a number of high-performance AD libraries have been developed as open-source machine
learning frameworks; Pytorch [170], TensorFlow [171], Jax [172], and Zygote.jl [173].

As an example, let us consider a function J(F(G(x), H(x)),I(x)) € R, where x and the
output of F, G, H, I can be arrays or sets of arrays. For simplicity, we denote the value of each
function by a small letter as g = G(x) and f = F(g, h). We define the adjoint form as ¥ :=
8J/3%¢. Here obviously J = 1 holds. When the set of values (y, ... , i) depends on x,

aJ ayl _ ayl
X = Z 5 ax = Z Vi, (4.2.19)

holds. In other words, X is obtained by the vector-Jacobian product of its children. Our pur-

pose is to obtain X = dJ/0x. In the backward mode AD, we define differentiation rule of func-

tion z = Z(x) as a functional that returns a function calculating the vector-Jacobian product
Zyipx] defined as

. .0z
Zyiplx](2) = Iy (4.2.20)
In our example, first we calculate j and record the intermediate values f, g, h,i. Since the

children of x are g, h, i, it holds that

dg -oh .0

X=g5.+ ha—x + ia—x = Gyp[x1(@) + HyjplxX](R) + Ly [x](D). (4.2.21)
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Furthermore, (g, h) = F,;,[(g, h)]1(f) holds since f is the only child of the pair (g, k). Similarly,
(f,0) = Jupl(F> DIC J) = Jiipl(fs D](1) holds. By using these equations in the reverse direction,
we can calculate the value of X = 0J/dx. Zygote.jl, an AD library for the programming lan-
guage Julia [174], realizes the backward AD by the compile-time transformation of the pro-
gram. In the simulation in the present thesis, we use Zygote.jl for evaluating the gradient of
our cost function.

The application of AD is one of the currently most debated issues in tensor-network com-
munity. In appendix A, we present the differentiation rules needed for tensor-network algo-
rithms, including TDVP.

4.2.6 Initial state preparation

Since gradient-based methods can easily be stacked at a local minimum of the cost function,
it is necessary to prepare a good initial state near the global minimum. In our problem, we
can use the result of the restricted D = 2 MPS discussed in Chapter 2. We use this state as the
initial state of the optimization in the general D = 2 MPS manifold.

Note that preparing an initial state with larger bond dimensions is not very straightfor-
ward. MPS with bond dimension D can be regarded as an MPS with bond dimension D + AD
naturally. However, it is nontrivial to obtain canonical D + AD MPS from D MPS denoted
by {A;,Agr,Ac, C}. We use the method called the subspace expansion for this purpose [145,
175, 176]. Here, we consider B ) (r,1) = Blsrt defined in Eq. (3.3.23) and its SVD B ) (1) =
Zx U1,5),xZx Ve (r,r)- We assume that the singular value X is ordered in descent order. Then,
we can obtain D X AD X d tensor U}, and AD X D X d tensor V{3, by restricting x from 1 to AD.
Then, we can obtain the mixed canonical MPS with bond dimension D + AD

S

A = < Ay U ) s = <A§< 0D><AD>
Oapxp  OaDxaAD V®  OapxaD

However, this enlarged MPS is not optimal for the initial state since this state is singular, i.e., C
is non-invertible. Thus, we first calculate the time evolution for a while as depicted in Fig. 4.3.
Here, we consider the pseudo-inverse of C instead of the inverse. Thus, the time is the param-
eter of the initial state.

é:( ¢ ODXAD). (4.2.22)
Oapxp  OaDxaAD

4.3 Numerical results

We have succeeded in finding periodic orbits in the cases D = 2,3,4. In Section 4.3.1, we
compare the optimization algorithms and different ways of preparing initial states. In Sec-
tion 4.3.2, we discuss the properties of the periodic orbits that we obtained.

4.3.1 Optimization

First, we show the results of our optimization. In Fig. 4.4, we compare four optimization al-
gorithms. As a benchmark problem, we consider optimization of the cost function for the
D = 3 manifold. The result suggests that the L-BFGS method with enough large history size
is optimal for our problem. The steepest-descent method does not converge in a reasonable
number of steps. The CG method, which is roughly equivalent to m = 1 L-BFGS, converges
but takes more steps. By comparing the L-BFGS method with m = 10 and m = 100, the latter
makes the convergence more than twice faster. In the case m = 100, the number of steps until
convergence is smaller than the history size. From this benchmark result, we decided to use
the L-BFGS method with history size m = 100. This history size m = 100 is relatively larger
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Chapter 4. Numerical Exploration of Periodic Orbits

Figure 4.3: Schematic picture of optimization and initial-state preparation. We start from a
periodic orbit in Mp, a uniform MPS manifold with bond dimension D. We regard a state in
this orbit as a state in M p . Ap by using the subspace-expansion method. Then, we perform the
real-time evolution in Mp, p for a while and obtain the initial state of the optimization. By
repeating this process and obtaining a series of periodic orbits, we can approach an authentic
periodic orbit in the total Hilbert space J<.
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Figure 4.4: A comparison of convergence in optimizing the cost function of D = 3 uniform
MPS using L-BFGS algorithms (with memory size 10 and 100), the CG algorithm, and the
steepest-descent algorithm from a similar initial state. The initial state is prepared as follows:
First, we choose a point on the periodic orbit in D = 2 and regard it as a state in D = 3 uniform
MPS manifold by using subspace expansion. After that, the state is evolved in D = 3 manifold
in one period of the original D = 2 periodic orbit.

than the well-known results in continuous optimization study, for which it is said that m < 10
is sufficient in general cases. One possible reason for this discrepancy is the dependence on
the benchmark problems. In continuous optimization studies, researchers consider cost func-
tions with huge degrees of freedom, for which the memory usage of the algorithm becomes
a bottleneck. In our problem, the dimension of the manifold is not that large. Instead, we
require high accuracy since our final purpose is to solve the equation cost(A, T) = 0.

In Fig. 4.5, we show the dependence of the optimization on the initial states. Here, we
consider the optimization in D = 4, a more difficult task than the previous benchmark. We
can see a strong dependence on the length of the time evolution after subspace expansion. We
have not found a good heuristic method for determining the length of the time evolution in
general cases. In the following, we try a grid search to obtain a good initial condition of the
optimization.

We consider that the difficulty of preparing initial states is the reason why the optimization
for D > 4 is not successful so far. One possible solution to this problem is using a more robust
algorithm against local minima.

4.3.2 Periodic orbits

In our optimization, we succeeded to obtain periodic orbits in the uniform MPS manifolds
with bond dimension D = 2, 3,4.

In our TDVP calculation, there are several numerical parameters corresponding to the ac-
curacy of the time evolution. The first one is the step number of the time evolution. We start
the optimization with 5000 time steps. It corresponds to 8t = T/5000 ~ 4.7/5000 ~ 0.001. Af-
ter the cost function becomes smaller than the computer epsilon of double-precision floating-
point number € ~ 2.2 x 1076, we make the number of time steps twice larger. This change
makes the evaluated cost a finite value smaller than 1071°. We enlarged the step number
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Figure 4.5: Comparison of convergence in optimizing the cost function of D = 3 uniform MPS
using L-BFGS algorithm with memory size 100 from various initial states. The initial states
are prepared as follows: First, we choose a point on the periodic orbit in D = 2 and regard it
as a state in D = 4 uniform MPS manifold using subspace expansion. After that, the state is
evolved in the D = 4 manifold in n times of the period of the original periodic orbit Tin D = 2
wheren € [1,7] N N.

Fig. 2.4 D=2 D=3 D=4

1.517 ~ 4.7438 4.7357 4.7259 4.7272

Table 4.1: Periods of periodic orbits.

as 10000 — 20000 — 40000 — 50000 and obtained converged results for each. The re-
sult of 50000 step is adopted as the final result. To verify the result, we calculated the cost
of the obtained result with 100000 to 500000 steps and checked that the results behave non-
monotonically with the step number and the values were sufficiently small around 10714, It
suggests that we were not able to make the result more accurate by making the step number
larger. The other parameter is the threshold of symmetric integration and canonicalization
defined in Section 3.3.2. We take these values ¢ X \/ﬁ where ¢ denotes the computer ep-
silon.

Now, let us discuss the physical properties of the periodic orbits that we obtained. In
Table 4.1, we show their periods. These values are smaller than the value of the previous
study and seem to converge around T = 4.73. The time evolution of the probabilities of the
single-site measurement, i.e., the expectation values of |[OOXOO|, |O@XO®| and |@OX®O|,
is shown in Fig. 4.6. These curves also well converge already in D = 4.

In the previous study [99] reviewed in Section 2.2.2, we considered the variational mani-
fold parameterized by two real parameters. This manifold is a submanifold of the MPS man-
ifold with D = 2. In this case, the periodic orbit goes through the |Z,) state exactly. In this
section, we consider the MPS manifolds with the greater expressive power even in the case of
D = 2. Thus, the periodic orbits that we obtained do not go through the |Z,) exactly but pass
by it.

In Fig. 4.7, we show the time evolution of the quantum leakage. Compared to Fig. 2.4b,
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Probability

Figure 4.6: Time evolutions of the probabilities of the single-site measurement, i.e., the ex-
pectation values of |[OOXOO|, |0O@XO®| and |@OX@O]|, of periodic orbits that we found in
D = 2,3,4: (left) probabilities of [1(t)). (right) probabilities of Pgg|h(t))/ | Pralb()]-

1.5x 1073

1x1073

(yOly()/N

5x107% |

Figure 4.7: Time evolutions of leakages per unit-cell size calculated by Eq. (3.3.24) for periodic
orbits that we found in D = 2, 3, 4. Dashed lines denote the leakages of the original states |1)(¢))
and solid lines denote those of the projected states Prg|(1))/||Prplb()].

they take smaller values by a few orders of magnitude. Comparing the results of D = 2 and
D = 4, we can see the decrease of the leakage in many moments. This result suggests the
existence of a periodic orbit without leakage in D — o0. On the other hand, we can see that
the orbit in D = 2 gives the smallest leakage at some moments around ¢t = 2. To discuss
the decrease of leakage, we have to consider some integrated values of them. In the previous
study, the simple integral fOT dey/{y()|y(t))/N had been discussed. In Chapter 5, we show
that the weighted integral of leakage as a characteristic of each orbit and show the decrease.
The leakage in the D = 3 orbit looks larger than the others. One possible reason for it is the
parity of the bond dimension. In the calculation of the ground state, the results can become
worse by increasing the bond dimension, if the increased dimension is incompatible with the
symmetry. We infer that this kind of non-monotonic behavior is easy to occur in a small D
region as we consider. Although the entanglement entropy depicted in Fig. 4.8 also shows the
non-monotonic behavior, we can say the results converge here.

Finally, we show the time evolution of the Schmidt coefficients in Fig. 4.9. The Schmidt
coefficients converge in order from larger to smaller as the bond dimension increase. This
result suggests that we already captured the essential part of the periodic orbit in the D — oo
limit.
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Figure 4.8: Time evolutions of von Neumann bipartite entanglement entropies for periodic
orbits we found in D = 2, 3,4. Dashed lines denote leakages of the original states |(¢)) and
solid lines denote those of the projected states Prg|())/[|PrslP())]l-
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Figure 4.9: Time evolutions of Schmidt coefficients for periodic orbits we found in D = 2, 3, 4.
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5 | Scarred Eigenstate as a Superposition of

Periodic Orbits

In this chapter, we consider the relation between the scarred eigenstates discussed in Chapter 2
and the semiclassical periodic orbits we discovered in Chapter 4. In Section 5.1, we construct
an approximate eigenstate by considering a superposition of periodic orbits. We calculate
the energy variance of the obtained states to discuss the accuracy of the approximation. In
Section 5.2, we calculate the bipartite entanglement entropy of the obtained eigenstates to
verify that they are scarred eigenstates. In Section 5.3, we note the finite-energy eigenstates
with superposition and its “tower” structure.

5.1 Superposition of periodic orbits

In this section, we consider a superposition of periodic orbits defined as

T T N
W) := f dt (b)) = f de ) Tr HAL(t)Si]HS}). (5.1.1)
0 0

{s} i=1

As shown below, |¥) and Pyg|¥) can be regarded as approximations of the energy eigenstate
of Hpyxp. If the TDVP dynamics perfectly coincides with the true quantum dynamics, i.e.,
—iHpyp|(2)) = (d/dt)[3p(¢)) holds, |¥) should be the zero-energy eigenstate of Hpyp because

R T . T 4
Hpol¥) = i f dt (=iFlp) (D) = i f at S19(0) = i) —iPO) =0. (5,12
0 0

We note that [1(0)) and [)(T)) are equal including global phase factor since ((¢)|Hpxp|$p(£)) =
0holds for our case. The other state Pyg|¥) is also the zero-energy eigenstate since [Prg, Hpxp] =
0 holds.

However, for the case of finite bond dimension, a finite error exists between the TDVP
dynamics and the true quantum dynamics. We already define the error vector |y(t)) as

YO) = S90) + B (0. (513)

In this case, |¥) is no-longer an exact eigenstate, but an approximation of it. The accuracy of
this approximation can be estimated by the energy variance

T2 o s i T
(‘I’|<]PIII}|,XIPP>|‘P) _ <W|(1HPX§;,(|JIPXP)|IP> = <IPTW> // dedu (y()|y(u)) (5.1.4)
0
(¥ Pr)Hixp(Prsl¥)) _ (®|(iHpxp)Prp(—iHpxp)|¥) 3 1 T R
(P Pr) Prsl®) (¥|Prp|P) (W] Py ) ffo dedu (y()| Prply(w)-

(5.1.5)
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5.1. Superposition of periodic orbits

In the rest of this section, we derive the asymptotic form of these variances in the thermody-
namic limit.

As discussed in Section 3.3.4, since Hpyp is the sum of nearest-neighbor interactions, |y(t))
in the thermodynamic limit can be represented as

N-1 N
(D) = 2 T9 3 Tr| Bty »2C(t)™ [HAL(t)SiH l{s}), (5.1.6)
j=0 {s} i=3

where T denotes one unit-cell translation operator and B is defined in Eq. (3.3.23). Here,
(leDUAfA = 0 satisfies for any tensor A and (y(t)|y(t)) = N(1pxp|Ji|1pxp) holds in the
thermodynamic limit.

To discuss the denominator of the Eq. (5.1.4), we consider A;y(Ay(t), AL (w)), the eigen-

value of transfer matrix j;f(ﬁg) with the largest magnitude. It holds that A; (A (¢),AL(£) =1
and A; (A (t), AL (1)) < 1 because of the normalization. To consider series expansion

Mm@, ALt +€) =1+ AD (e + 1D ()2 + .., (5.1.7)

we use the perturbation theory of non-Hermitian matrix [177]. We denote the eigenvalues
and eigenvectors of a non-Hermitian matrix X € C% as

X[n) = Ailn), - (GIX =40l Glp) =61y 1l > |4a] 2 |45] = ... (5.1.8)

and define the projector 2’ and the reduced resolvent S as

d
1
P=n)l|, 8§=) ——In)L|. (5.1.9)
|1 1| Z;Al_)[i|l)(l|

Then, the non-Hermitian perturbation theory says

LX 4+eXx®D 42X 4 ) - 1,(X)
= e Tr[XWP] + &2 (Tr[XP2] + Tr[XxWSXD2]) + ... (5.1.10)
= e(lIXDR) + & ((LIXPDNr) + U IXDSXDR)) + ...

AL2

By substituting X = ffL,X(l) = TA"EL,X(Z) = 7, " and using (lllﬂjL = 0, we derive AV =

0and A® = ([ |JA’§L |n)/2. We remove A; by considering the time derivative of (I; |I4’3L|n)
ST = IR + QT + GG + GG =0 (L
and substituting (I;| = (1pxpl, (1] = 0, and |) = |CCT) as
(W17 m) = —(L]74Hm) = —(UT I, (5.1.12)
By defining

a(t) = =A2(t) = (Ipupl T4 el 1pxp)/2 (5.1.13)
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Figure 5.1: Time evolutions of a(t) defined in Eq. (5.1.13).
the denominator of the variance defined in the Eq. (5.1.4) can be calculated as
T N
(P|w) = /f dedu Tr [(5’3@3’) ]
0
T
~ ]t e vy
0
T
Nf dtfd& exp (Nlog(1 — a(t)8t%)) (5.1.14)
0

T
~f dtfdétexp (—=Na(t)st?)
0

T - — T /
- / _ -1/2
./0. dt Na(D) /0‘ dt a(t)="=.

Because AV has a finite value only around ¢ & u, we can estimate the numerator of the variance
as

T
(|| %) ~ f dt OO f 45t exp (~Na(1)512)

0
T
-z f dt (Ol O)a(t) 1 (5.1.15)
N 0

T
T
N5 [ Ul a1
0

By combining these results, we can estimate the energy variance of the state |¥) per unit cell
in the thermodynamic limit.

To calculate the norm and energy variance of Prg|¥), we have to use a little trick. Let us
remember that the projection operator Py can be represented in terms of the matrix product
operator (MPO) as

Fap= Tr[H(WjJRB)Si’ti]|{S}X{t}| - Tr[H(l pivisad {8:?8::)] (51.16)
s L i : l
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*[:

Figure 5.2: Diagram representation of tangent-vector transformation to make the left canoni-
cal form.

The MPS representation of the projected state Prg|1h)/[|Prs|)|| is given by a tensor A(t) de-
fined as

ALOIWEL 1y (e ¢ —ZW, DAL, (5.1.17)
AWl AWy, ]

A(t) = = .
VAnAOWs,D [ AW, D)

(5.1.18)

Here, A m(AL(0)[Wp, ]) is time independent since (JSRB> conserves in our algorithm. We make

" — _ 1 _ ~
A left canonical as A; = \/_ lA\/_l , where [ denotes a dominant left eigenvector of J- ;%- We can
obtain the time derivative of A; as

~ . ~_1
ALt = VIO, VT . (5.1.19)
(AL OW, 1)

. = . . - A . =
However, this tensor A; does not satisfy the canonical condition (1pyp|T” A"LL = 0. Since A +

XA} — A X for any matrix X gives the same tangent vector, we can transform A; to satisfy the
canonical condition. This transformation can be depicted as Fig. 5.2.

We can apply a similar transformation for B, defined as

B(t)[ (l l’) (r, r’) Z ) W’ c’ B(t) (C(t) l)c r (5.1.20)
. ﬁ(B(t)[Wgs OV
B(t)> = T AW D) (5.1.21)

. . B . . - .
to make it satisfy (1pyp|J” Ax= 0 for any tensor X. Here we use the two-site gauge invariance:

Bt and B + XAk — A3 X! gives a same |y) for any tensor X. See the Fig. 5.3 for more details.
Thus, we can calculate the energy variance of Prg|¥) as well as [¥).

In Table 5.1, we show the integrated values of the periodic orbits that we obtained. We can
see the decrease of the energy variance between D = 2 and D = 4.

As the end of the section, we verify the asymptotic expansions defined in Egs. (5.1.14)
and (5.1.15) by comparing with finite-size results. We already know the MPO representation
of Prp. General locally interacting Hamiltonian also has MPO representation [178-184]. In
the case of periodic boundary conditions (PBC), MPO of nearest-neighbor interaction H =
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A I
kﬁb; k,;, Tﬁ

Figure 5.3: Diagram representation of residual-vector transformation to make the left canon-
ical form.

1 (W[Hxp|¥)

N (¥|w)
|¥) 5.55029 X 10™*  7.07532x 107* 4.23941 x 10~
Prz|¥) 4.59314 x 10~*  4.76534 x 10~* 3.43175x 10~*

Table 5.1: Energy variances of the superposition.

Zl ) zk IX(k)Yl(fl) is given by

1 0o X .. X iy
N N-1 Y’i(l) Yi(l)
Tr[H Wﬁl =Tr : 0 0 :
i i1 | p®) P
o XM .. X% i 0
1 1
(5.1.22)

Thus, we can calculate (¥|¥), (‘P|J3RB|‘I’) (9| H34p| W), and (| PrgHzpPrs|¥) for finite N by

taking integral " dtdu of Tr[(7; (u) DN and Tr(; A(LLS)[W])N Iwith Wy Wz andWs_ pa 5.
defined as
(WI:II%XP)E?Z',)’(V’V/) = (WHPXP) ( HPXP)l, r! (5123)
Wpy it ey = W e (Wi i (Wi, Dl (5.1.24)

In Fig. 5.4, we show the norm of |¥) in the finite-size system calculated by the first line of
Eq. (5.1.14) and compare it to the asymptotic form defined in the last line of Eq. (5.1.14). We
also show the difference between the energy variance in finite-size systems defined in the first
line of Eq. (5.1.15) and the asymptotic form defined in the last line of Eq. (5.1.15) in Fig. 5.5.

5.2 Bipartite entanglement entropy

Our main claim is that |¥) corresponds to the scarred eigenstate. To clarify it, we calculate
Rényi bipartite entanglement entropy (EE) of |¥) and show the sub-volume law of it. As we
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Figure 5.4: Difference between the asymptotic form defined in the last line of Eq. (5.1.14) and
the result for the finite-size systems obtained by the first line of Eq. (5.1.14) for the periodic
orbit with bond-dimension D = 2 without projection Pyg. The original trajectory was obtained
by TDVP algorithm with 50000 time steps (6t =~ 9.5 x 10~%). In numerical calculation of the
first line of Eq. (5.1.14), we use rectangular integration with step width At = 10 X &t (solid
line) and At = 500 X &t (dashed line). The result suggest At = 500 X St is small enough to
obtain accurate result for N $ 10°.
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Figure 5.5: Difference between the asymptotic form defined in the last line of Eq. (5.1.15) and
the result for the finite-size systems defined in the first line of Eq. (5.1.15) for the periodic orbit
with bond dimension D = 2 without projection Pyg. The original trajectory was obtained by
TDVP algorithm with 50000 time steps (5t ~ 9.5 X 10~#). In numerical calculation of the first
line of Eq. (5.1.15), we use rectangular integration with step width At = 10 x &t.
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Chapter 5. Scarred Eigenstate as a Superposition of Periodic Orbits

discussed in Section 2.1.1, eigenstates that satisfy ETH show the volume-law EE, and the sub-
volume law means the violation of ETH.
At the beginning, we consider the Rényi-2 EE. We divide the system into two parts as

T
) o= f dP(0)) = f A T @ ()
0

(5.2.1)
f dt% EDPW [
where [ ) and |g) are defined as
IN/2]

L) = 19O =D, | T ] Asi(t)l I{s}L)s (5.2.2)

{sh L i=1 i,i
[br(®);) = [Pr(t)(j,jn)) = Z H Asl(t)] [{s}r)- (5.2.3)

{s}z Li=[N/2] i1

J'sj

We define the partial trace of |¥) as

- TrR[|qJ><qJ|]=/detduC:|: ’ mm; (5.2.4)
L e

The Rényi-2 bipartite EE 8, is defined in terms of

N[ ) (5.2.5)
_______________ fAL(t) 2 -
T C 7AW 3
N N/
= AL(w) 2
/:[/Z dtdudvdw %L(Lv)u z__
C . J ] 'y N )
el '--T—L v) 2 2
L N | ApL(w)
TAL(w)7 N
AL(t)
as
Tr[6}]
82= = > 12 (5.2.6)
’ Tr[6 12

We already derived the asymptotic form of Tr[4; | = (¥|¥) in Section 5.1. As well as the energy
variance, EE of |¥) in the thermodynamic limit can be calculated as a weighted integral of EE

of the integrand |i(t)). Since it holds that (ijL)N 2 5 |cCH)(Apxpl, the Rényi-2 EE of |1(t))
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5.2. Bipartite entanglement entropy
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Figure 5.6: Schematic picture of the Rényi-2 entanglement entropy of the left canonical uni-
form MPS in the thermodynamic limit.

is equal to Tr[(C(t)C(t)")?]? as depicted in Fig. 5.6. Then, we can estimate Tr[4?] as
Tr[6f] ~ M Tdtdudvdw TE[(C(OC(E)N)2] (At, w)A(w, V)AW, w)A(w, 1)
0
~ f ' de Tr[(C(H)C()1)?]? '[// détdst’dst”
0
Xp (-NaT(t)(atZ + (81" — 80)% + (5 — 81" + 5t’2)) (5.2.7)

T 1 20T 3/2
- f de Tr[(COC@ NP5 (Nam)

_ (271.)3/2

T
> N—3/2 f dt Tr[(C(H)C())*]2a(t)~3/2,
0

where we introduce 8t := u —t, 6t := v —t,and 6t” := w — t and use u — v = ¢ — §t’ and
v—w = &t' — &t”. Finally, we obtain the asymptotic form of EE as

52 2m)V2 fT dr Tr[(CCh)?]2a—32
8, =—In ;Frr[['fL]]z = %lnN—ln( o — i 2) Fa (5.2.8)
AL (/7 dta-112)
It is straightforward to generalize this derivation for Rényi-a EE
1 Trlpf]
8q=7——1In T (5.2.9)
for integers a > 2. As well as Eq. (5.2.7), the numerator is estimated as
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Chapter 5. Scarred Eigenstate as a Superposition of Periodic Orbits

where we use the matrix form

202 . 2 -1 .
St + ( D (St — 5ti)2> +68t3, ,="t5t|-1 . |6t (5.2.11)

i=1
and its determinant
2 -1

-1 | = 2a. (5.2.12)

Finally, we obtain the asymptotic form

T (24
Tr[6, % ~ <\/£ f dta(t)—1/2> (5.2.13)
0

2a0—-1
Qm) 2
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The first term is the logarithmic term in the system size. This term is independent of the
choice of a. It suggests that the von Neumann EE also has the same logarithmic term since the
von Neumann entropy can be regarded as the &« — 1 limit of the Rényi entropy. In the previous
study [132], the logarithmic correction of the von Neumann EE of the scarred eigenstates of
the PXP model is estimated as § ~ 0.48 In N by the finite-size scaling. Our result is compatible
with it.

The second term is a weighted integral of the Rényi-a EE of each point along the periodic
orbit. To show that the EE of |¥) satisfies the sub-volume law, it is necessary to check that this
term converges to the O(1) value in the limit D — oo. In Fig. 5.7, we show the results of this
term for various « for the periodic orbits that we obtained. For each «, the result converges
already in D = 4. The value of this constant term of the von Neumann EE can be discussed
by taking extrapolation of & — 1, but it is difficult to determine how to take this limit from
Fig. 5.7. This is an important future work.

Finally, we verify that the asymptotic form of the Rényi EE is correct. In Fig. 5.8, we show
the comparison of Rényi-2 EE between the last line of Eq. (5.2.7) and the finite-size result.
The plot suggests that the difference vanishes in the thermodynamic limit.

and

2a-1

N L deTH(C(O)CH) N Pal)”

1
—InN
2n+

5.3 Tower of scarred eigenstates
The other important feature of the scarred eigenstates is the “tower” structure of it. In this
section, we depict that this structure can be reproduced by the superposition with a phase

factor.
We define |¥;) with k € Z as

T 27ki
W) = f dte T (). (5.3.1)
0
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5.3. Tower of scarred eigenstates
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Figure 5.7: Rényi-a entanglement entropies of the superpositions |¥) (dashed lines) and
Prg|¥) (solid lines).
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Figure 5.8: Difference between the asymptotic form defined in the last line of Eq. (5.2.7) and
the result for the finite-size systems calculated by the last line of Eq. (5.2.5) for the periodic
orbit with bond dimension D = 2 without projection Pyy. The original trajectory was obtained
by TDVP algorithm with 50000 time steps (6t =~ 9.5 x 10~%). In numerical calculation of the
last line of Eq. (5.2.5), we use rectangular integration with step width At = 500 X &t to reduce
the computational cost. Fig. 5.4 suggests this At is small enough to obtain good results for
N 5 10°%
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Chapter 5. Scarred Eigenstate as a Superposition of Periodic Orbits

If the TDVP dynamics is perfect, | ¥} ) is an energy eigenstate with energy 27k/T:

27ki

T .
ool = i f dr e (o)
0

T 1 2wki

— i) - o) -1 [ e ) (532)
0

= ZLTkl‘Pk>-

Thus, we can construct the scarred eigenstates with finite energy in the same manner of the
zero-energy one. The relation between the spacing of the eigenvalues and the period is also
compatible with the previous study [132]. It is also possible to obtain the asymptotic forms of
them. Aslong as k = O(1) holds, the asymptotic forms are equal to those of the zero-energy
eigenstate |¥).

By using quantum mechanics, when the energy eigenstates with equal energy intervals
exist, we can construct the initial state corresponding to the periodic dynamics by taking a
superposition of them [35, 133]. Therefore, the results in this chapter can be regarded as the
reproduction of the quantum result by the semiclassical analysis with TDVP. Thus, it suggests
the adequacy of the aim of our research to investigate the quantum-classical correspondence
of QMBS through the analysis of the bond-dimension dependence, which we depicted in Ta-
ble 2.2.
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6 | Conclusion

In the present thesis, we developed a generic method of investigating periodic orbits in the
semiclassical dynamics obtained by the time-dependent variational principle (TDVP) for the
matrix product state (MPS). We applied this method to the PXP model, a typical model of
the quantum many-body scar (QMBS), and found periodic orbits in general bond dimensions.
Furthermore, we showed that the characteristic structure of eigenstates in QMBS can be re-
produced by a combination of the classical picture based on TDVP and the analysis of the
bond-dimensional dependence.

In Chapter 2, we reviewed the basics of the theory of thermalization in isolated quantum
many-body systems and introduced the important concept of the eigenstate thermalization
hypothesis (ETH). We introduced the QMBS, a new mechanism of ETH and ergodicity break-
ing, and emphasized the importance of the quantum-classical correspondence. In Chapter 3,
we reviewed the TDVP algorithm and its application to the MPS. We introduced the method of
enforcing conservation laws in the TDVP algorithm and its importance for QMBS problems.
We also reviewed the previous studies investigating the quantum many-body thermalization
problems with TDVP for MPS. We indicated the importance of the extrapolation of bond di-
mensions.

In Chapter 4, we proposed a numerical method to obtain periodic orbit in a semiclassical
manifold defined by the uniform MPS. The basic idea is simple, solving the optimization prob-
lem to find the perfect recurrence, but there are many obstacles to carrying it out in practice.
In Section 4.2.2, we construct a zero energy subspace parameterized by real-valued MPS. In
Sections 4.2.4 and 4.2.5, we introduced two important concepts of the numerical calculation:
continuous optimization on a Riemannian manifold and automatic differentiation. The re-
search of these concepts has been evolved significantly in recent years, inspired by machine
learning and artificial intelligence development. Importing these outstanding achievements
is an essential theme of computational physics. In Section 4.3, we revealed the usefulness of
the developed method by finding periodic orbits of the PXP model.

In Chapter 5, we approximately reproduced the characteristic structure of the scarred
eigenstate of the PXP model from the periodic orbits that we obtained. This reproduction be-
comes more accurate as the bond dimension increases. Therefore, in the limit of the infinite
bond dimension, it should come down to the purely quantum picture based on the eigenstates.
Thus, in understanding QMBS in a semiclassical picture, we can regard the bond dimension
as a parameter that determines the strength of the quantum nature, like the Planck constant
in the discussion of the single-particle quantum scar.

An important prospect of the present study is to obtain a quantitative understanding of
the analogy between the bond dimension in QMBS and the Planck constant in the single-
particle quantum scar. It would enable us to apply extensive knowledge on single-particle
quantum chaos to the study of thermalization and QMBS. For this purpose, we have to find
periodic orbits with bond dimensions larger than four and perform a quantitative analysis of
the bond-dimensional dependence. It will require further improvements to the algorithm.

As shown in the main text, the proper operation of our optimization depends heavily on
the choice of the initial state. Aslong as we use the gradient method, the risk of being trapped
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in a locally optimal solution remains large. We can consider using other algorithms to avoid
this problem, such as simulated annealing, optimization based on Bayesian estimation, and
neural network-based algorithms.

To handle larger bond dimensions, it would be necessary to estimate the accuracy of the
numerical integration. In this thesis, we estimated it by varying the width of the time step
and checking the convergence of the results. However, as the bond dimension increases, the
errors caused by matrix operations may become non-negligible. It would be crucial to estimate
the source and magnitude of the error by comparing the results with validated numerics or
multiple-precision arithmetic.

Our analysis focused only on the periodic orbits and did not deal with what was happening
outside of them. However, to discuss the stability against perturbations, it is essential to know
the properties of the semiclassical dynamical system outside of the periodic orbit. It would be
necessary to develop a framework to discuss it. We also did not discuss the uniqueness of the
periodic orbit. Understanding their statistical properties would also be essential if there are
multiple periodic orbits.

It is important to note that our method is adaptable to general many-body Hamiltoni-
ans, including non-integrable and integrable systems. Despite that the importance of the
quantum-classical correspondence in QMBS has been widely pointed out, concrete semiclas-
sical dynamical systems have been constructed only for the PXP model and its variants. It
contrasts with the fact that many methods have been developed to construct new kinds of
QMBS. We hope to deeply understand QMBS and the thermal equilibration problem of non-
integrable systems by applying our method to more general models. The versatility of our
method also allows us to analyze experimental Hamiltonians that are not idealized for theo-
retical analysis.
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A | Reverse-Mode Differential Rules for
Tensor Network Algorithm

In this appendix, we introduce the forms of vector-Jacobian products of tensor operations that
are needed to make the TDVP algorithm differentiable.

A.1 Matrix decomposition

Differential rules for QR decomposition, symmetric eigenvalue decomposition, and SVD have
been discussed in Ref. [126]. These rules have already been implemented for major AD li-
braries [170, 171, 173, 185]. However, sometimes, the implementation for complex-valued
matrices is lacking. The detailed derivation of the complex SVD can be found in Ref. [186].

Many AD libraries have functions to add user-defined differentiation rules and test the
rules by comparing with the results of the numerical differential method. However, we have
to test the rule of complex SVD carefully. Let us assume the SVD of a complex square matrix
M is given as M = UXVT, where U and V are unitary matrices and  is a real-valued diagonal
matrix. Since Z is diagonal,

UzVT = (Udiag(e', %2, ... ))x(V diag(e'?1, e'%2, ... )T (A.1.1D)

holds for any set of real numbers {¢;}. Since the right-hand side also fulfills the definition
of SVD, this equation means that the complex SVD has a continuous degree of freedom of
phases. Thus, to test the differentiation rule of the complex SVD, we have to define some real-
valued function that is invariant with respect to the phase factor and compare the results of
its derivative between AD and numerical differentiation.

A.2 Einstein summation

Any tensor contraction written by the Einstein summation can be written as a combination
of tensor reshaping and matrix-matrix multiplication. Thus, we can use the reverse-mode
differential rule of matrix-matrix multiplication

C = matmul(4,B) :=AB = matmul,,[(4,B)](C) = (CB',A'C). (A.2.1)

However, it is more efficient to use the differentiation rule of the Einstein summation itself.
We consider the function defined by the Einstein summation

By =bA, A% As )= D, [[ADa, (A.2.2)
(Uiai)\b i

where a and b denote the symbols of the tensor indices. For example, by taking a; = (i, j),
a, = (j, k), and b = (i, k), b denotes the matrix-matrix multiplication as

b(A1L Ak = D (AD; (A k- (A.2.3)
J
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Under this notation, the vector-Jacobian product of this function can be written as

byipl (A1, Az, As, ... )I(B) = ( Z By, H(A?)ai, Z By H(A’f)ai, ) . (A24)
(U; apub\ay i#1 (U; apub\a; i#2

By using this form, we can optimize the contraction order for the reverse mode calculation
with some optimization algorithm [187].

A.3 Dominant eigenvalue problem of transfer matrices

The differential rule of general dominant eigenvalue problem of non-Hermitian matrices has
been introduced in Ref. [123]. If the matrix is given as a transfer matrix defined in Eq. (3.2.4),
we can calculate the differentiation without explicitly constructing the transfer matrix. This
formula helps in combining with the matrix-free solver such as Arpack [188].

First, we consider the dominant eigenvectors [ and r and eigenvalue A:

fAB =LY = UFA=21, FTAN=Ar, Ar)=uwu (A.3.1)

Here, we assume the eigenvalue 1 is non-degenerate. Then, the differential rule can be written
as

FuplABIA L) = (% AU'Brt —I'BE — £,Brf, FlAr—IAE — glAr), (A.3.2)

where (IAr); . denotes = Zx y li xA% y1y,j and &s are defined as the result of the following:

[75 = 2+ IDA[IED + InA] = [T, (A.3.3)
[(&+ F AT -2+ DA = ¢ (A.3.4)

These calculations are similar to those of the infinite boundary conditions defined in Eq. (3.3.14).
Note that we have to consider some gauge-invariant functions to test the implementation and
the complex SVD.

A.4  Orthogonal basis of null space

An orthogonal basis of the null space of a full rank matrix A € F"*" (m < n)isdenotedby N €
F*(n=m) satisfying AN = 0and NTN = L(n—m)x(n—m)> Where I denotes R or C. N is calculated
by the full SVD, decompose A into ULV, where U € U(m), T = [diag(cy, ... » ) Omx(n—m)] €
R™" and V € U(n). We can consider V is joined by two semi-unitary matrices 1| € F"™"™
and V4 € F™("=m) a5 vV = [|5]. Then, V; is nothing but N.

We can find the definition of the reverse-mode differential rule of full SVD in Ref. [189].
We can check that no new terms originate from the complex differential. The differentiation
rule of the null space is obtained as

nullspacevjp[A](N) = —Udiag(1/ay, .., 1/om)V1TNNT. (A4.1)

Note that we have to use a function invariant under the transformation N — Nu where u €
U(n — m) to test this rule.
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