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Abstract

The equation of state (EoS) of the strongly-interacting cold and dense matter is a crucial ingre-
dient for studying extreme astrophysical objects and phenomena such as neutron stars, core-collapse
supernovae, neutron star binary mergers, etc. It also serves as an essential input for theoretical studies
of the finite-density region of quantum chromodynamics (QCD); in this region very little is known up
to now. The EoS of dense matter should be derived from QCD, but there are a plethora of technical
difficulties which prevent us from QCD-based ab initio calculations. Nevertheless, the QCD-based
calculation is still possible at high densities where the perturbative expansion in the strong coupling
constant makes sense. In the conventional perturbative QCD (pQCD) calculations, however, the re-
sults are known to be plagued by a large uncertainty originating from the ambiguity in the choice of
the renormalization scale. This scale variation uncertainty becomes larger as the density decreases, so
that we cannot utilize the pQCD calculation at the realistic density realized inside neutron stars. The
major driving force of this thesis is to lessen this scale variation uncertainty in the pQCD calculation.

To this end, we discuss the Hard Dense Loop (HDL) resummation at finite quark mass. In the
preceding works, Hard Thermal Loop (which is the high-temperature counterpart of the HDL) re-
summation is recognized to improve the convergence of the perturbative expansion. We employ the
HDL perturbation theory, which is one of the perturbative schemes to resum HDLs, and evaluate the
EoS of dense QCD matter using this theory with a hope to alleviate the scale variation uncertainty.
The finite bare quark mass is important for the quantitative construction of the EoS in realistic stellar
environments, where the β equilibrium and electric charge neutrality conditions are maintained.

The resummation in the quark sector has the effect of lowering the baryon number density, and the
EoS turns out to have much smaller uncertainty than the existing pQCD estimate. As a result, we can
plot our numerical results on top of the existing constraints on the EoS from neutron star observations;
our results favor smooth matching between the EoS from the resummed QCD calculation at high
density and the extrapolated EoS from the nuclear matter density region. We discuss in some detail
why the scale variation uncertainty is reduced, and write down the explicit condition for the reduction
of the uncertainty. We also point out that the speed of sound in our EoS slightly exceeds the conformal
limit; as the speed of sound is a measure for the stiffness of the EoS, surpassing the conformal limit
brings about the qualitative difference in the behavior of the EoS.
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Chapter 1

Introduction

In this work, we concern in specific the equation of state (EoS) of the strongly-interacting dense
matter, which is the relation between thermodynamic properties such as the pressure P, the tempera-
ture T , the baryon chemical potential µB, the mass density ρ, the energy density ε, etc. We perform the
ab initio calculation of the EoS [1] within the perturbative framework of Quantum Chromodynamics
(QCD) [2–6] taking into account what is called the Hard Thermal Loop resummation [7].

Our primary concern seems to be rather technical and in a limiting situation, but in fact, it can
influence a wide spectrum of research, and it will ultimately help us understand ourselves better. For
example, the concept of mass is closely related to the phase transition in QCD; most of the visible
universe is endowed with mass by the chiral symmetry breaking [8, 9]. Also, the recent multimes-
senger observation tells us that most of the rare metals around us including gold and platinum are
coming from mergers of neutron star binaries, which are stars with the highest baryon density in the
universe [10–12]. Interestingly enough, neutron stars are gold mines both in the literal and figurative
sense.

1.1 Motivation and outstanding issues

Unraveling the properties and the phase structure (see Fig. 1.1 for the conjectured phase diagram)
of dense matter subject to the strong interaction is a vital challenge in theoretical nuclear physics.
To accomplish this goal, QCD—the first-principles theory of the strong interaction—should be the
guiding principle. QCD has its own intrinsic scale ΛQCD ∼ 200 MeV that is adjusted, for instance,
by the experiment (see the following subsection for details). The strong interaction becomes relevant
when a matter is significantly compressed or heated up to the mass density or the temperature as high
as ΛQCD, namely, ρ ∼ Λ4

QCD or T ∼ ΛQCD in natural units. They are equivalent to ρ ∼ 1017 kg/m3 or
T ∼ 1012 K in the ordinary SI units.

At such a high density or temperature, quarks and gluons, which are the elementary degrees of
freedom of the strong interaction and are usually confined inside hadrons, can be liberated. In fact,
from the inception of QCD, Collins and Perry have pointed out that the asymptotically-free nature

1
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Fig. 1.1: Hypothetical QCD phase diagram.

of QCD [13, 14] allows for free quarks at sufficiently high densities [15] (see also Ref. [16] for the
MIT bag model analysis and Ref. [17] for the earlier discussion based on quark model before QCD).
Similarly, the deconfinement of quarks and gluons also occurs at high temperatures [18] (see also
Ref. [19] for the earlier discussion in which the author coined the notion of limiting temperature, the
deconfinement temperature in the modern sense).

In reality, however, it is difficult to reach such a high density on Earth. This is because of the repul-
sive core in the nuclear force between nucleons; the nuclear force, or a residual effect of the strong in-
teraction on nucleons [20], is attractive at long range (∼1–2 fm) and repulsive at short range (. 0.5 fm).
The long-range attraction binds the nucleons together forming a nucleus, and the combined effect with
the short-range repulsion leads to the saturation of density inside a nucleus. The saturation density is
ρ0 ' 2.7 × 1017 kg/m3 when expressed in terms of the mass density, and n0 ' 0.16 (nucleons)/fm3 in
the baryon number density nB. Unless we inject tremendous energy to overcome the repulsive core,
we cannot reach the density above the saturation density ρ0 or n0.

Nevertheless, we can actually find such strongly interacting high-density matter in various extreme
circumstances such as the astrophysical systems and the terrestrial facilities of heavy-ion colliders.
The former systems include cores of neutron stars, neutron star binary mergers as well as core-collapse
supernovae. Gravity pulls matter together in these environments so that the density can reach up
to several times n0. In the latter facilities such as the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN, we collide heavy
nuclei at very high energies, so that the created matter—what is usually called the quark-gluon plasma
(QGP)—reaches high density at collision center and is heated up simultaneously. These extreme
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environments have been the major impetus for studying high-density QCD matter.

It is worthwhile emphasizing here the difference between the stellar matter and the usual nuclear
matter with respect to the weak interaction. Neutrons undergo the β-decay as well as the inverse
electron capture process owing to the large Fermi surface of neutrons, so that these two processes
balance and the β-equilibrium is reached, i.e., n � p + e− + ν̄e. In addition, the stellar matter is
electrically neutral, so that chargeless neutrons are favored over positively-charged protons; a proton’s
charge is compensated by leptons. In such a way, large isospin imbalance µI > 0 is induced (see the µI-
axis and the blue shaded region with a caption “Neutron stars” in Fig. 1.1). We thus have to consider
the asymmetric nuclear matter, which has always the positive pressure and no density saturation.
The symmetry energy is a parameter that governs the difference between the EoS of pure neutron
(asymmetric) nuclear matter and that of symmetric matter.

Meanwhile, on the theory side, model studies point out exciting possibilities such as a first-order
chiral phase transition and the associated critical endpoint(s) in the finite density region [21–25], and
the color superconductivity, which is the superconducting states of quarks, with the various patterns of
pairing [26–30] (see also Ref. [31] for the comprehensive review). Especially the critical point search
is now under an extensive experimental investigation [32–34]. Also, based on the large-Nc limit of
QCD, McLerran and Pisarski posited the existence of high-density yet confined matter, contrary to the
idea of Collins and Perry [35]; quark degrees of freedom can come into play albeit the confinement,
so this new regime of the matter is named Quarkyonic—a portmanteau word of quark and baryonic.
Furthermore, an interesting possibility of a pion condensation is in the finite-µI and µB = 0 region [36].
Based on these speculations, we depict the hypothetical QCD phase diagram in Fig. 1.1.

Despite all these efforts of scrutinizing the high-density matter both in the experimental/observational
and theoretical aspects, very little is confirmed about the QCD phase structure up to now: (i) the
liquid-gas transition of symmetric nuclear matter [37], (ii) the QGP generation at high tempera-
tures [38], (iii) the quadrant-shape curve of the chemical freeze-out [39], whose shape is consistent
with the QCD phase transition [40], and (iv) the crossover-type transition for thermal QCD at pseudo-
critical temperature Tpc ' 154 MeV and µB = 0 [41–43]. Aside from the (i) liquid-gas transition, all
this knowledge are about the region at T > 0 and µB � T ; there the high-quality experimental data
and the precise lattice-QCD Monte Carlo calculations are available.

To better understand the finite-density region, a reliable—that is, model-independent and QCD-
based—evaluation of the EoS of the dense matter is an urgent issue. It serves as an indispensable
input for theoretical studies, e.g., for revealing the interior of neutron stars and for facilitating the
core-collapse supernova simulations, to mention a few. Also, we are aware of the importance of the
EoS by making an analogy to classical physics, in which the van der Waals type EoS plays an essential
role in describing the realistic gas (see Ref. [44] for the modernized quantum formulation, and, e.g.,
Ref. [45] for its application to neutron star physics). In a more general sense, the significance of
the EoS is not merely the problems which it solves, but the issues which it raises: for example, the
above-mentioned QCD crossover transition has been recognized through the EoS calculations on the
lattice at µB = 0 [41–43].
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We are thus in need of the QCD-based EoS, but it is only available at limited ranges of densities
at the moment: (a) ab initio methods using the nuclear force derived from Chiral Effective Theory
(χEFT) with controlled uncertainty estimates [46–54] (see Ref. [55] for a recent review) at low-
density range of nB ∼ 1–2 n0, and (b) perturbative QCD (pQCD) calculations [56–64] (see Ref. [65]
for a recent review) at asymptotically high densities of nB & 50 n0. The intermediate density region
around 2–10 n0, which is relevant for the neutron star studies, still lacks reliable QCD-based calcula-
tions. Currently, the most advanced first-principles approach to QCD is the Monte-Carlo simulation
of QCD on the lattice, but the lattice-QCD application to finite density systems is terribly hindered
by the notorious sign problem (see the following subsection for details). This is why dense matter
studies, especially in the context of neutron stars, still rely on phenomenological EoS constructions:
(a) rather ab initio approaches based on the phenomenological nuclear interaction [66, 67] near the
saturation density, (b) estimates employing the Skyrme interactions [68], (c) the relativistic mean-
field theories [69], (d) the functional renormalization group with the chiral mean field model [70],
etc. These phenomenological constructions cannot extrapolate up to the intermediate density region,
as they cannot avoid the infamous problems such as the hyperon puzzle [71,72] and the superluminal
speed of sound violating causality [66], that is, the EoS is either too soft or stiff.

Therefore in this work, we take an alternative yet QCD-based approach: the pQCD calculation
with resummation. As it is based on the first-principles theory, we are free from such infamous
problems. It will be the central topic of this work, and we present the results based on this method
(see Sec. 1.3 for the brief summary).

1.2 Quantum chromodynamics and resummations

As we have emphasized the virtue of QCD-based approaches in the previous subsection, let us
now step back and recall some rudiments to better understand our results.

Quantum chromodynamics: The Lagrangian of QCD is given by

LQCD = −
1
2

tr(FµνFµν) +

Nf∑
f =1

ψ̄ f (iγµDµ − m f )ψ f , (1.1)

where the field strength tensor is Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν] of the gluon field Aµ; it is endowed
with a triple-valued charge called color. So Aµ is matrix valued, i.e., Aµ = Aa

µt
a with ta being the

generator of SU(3). The covariant derivative is defined as Dµ ≡ ∂µ − igAµ, describing the minimal
coupling between the gluon and quark field ψ f with coupling strength g.

At the classical level, Eq. (1.1) is scale invariant in the chiral limit m f → 0. Upon quantization,
however, the scale invariance is violated via the trace anomaly [73], which generates a dynamical
dimensionful scale parameter ΛQCD even for the pure gauge sector. This phenomenon is commonly
referred to as dimensional transmutation.



1.2 Quantum chromodynamics and resummations 5

The upshot of the dimensional transmutation is that the running coupling constant of QCD, αs =

g2/(4π), becomes a function of the renormalization scale Λ̄. Throughout this work, we employ the
two-loop formula for the running coupling constant, which is

αs(Λ̄) =

1 − 2β1

β2
0

ln2
(
Λ̄2/Λ2

MS

)
ln

(
Λ̄2/Λ2

MS

)  4π

β0 ln
(
Λ̄2/Λ2

MS

) , (1.2)

where

β0 ≡
11
3

Nc −
2
3

Nf , (1.3)

β1 ≡
17
3

N2
c − Nf

N2
c − 1
2Nc

−
5
3

Nf , (1.4)

and Nc and Nf are the number of colors and flavors, respectively. They are the first two coefficients of
the QCD beta function:

∂

∂ ln Λ̄2

(
α(Λ̄)
4π

)
≡ β(αs) = −β0

(
αs

4π

)2
− β1

(
αs

4π

)3
+ O(α4

s) , (1.5)

and −β0 < 0 means the asymptotic freedom [13, 14]. Here the scale parameter arising from the
dimensional transmutation is denoted as ΛMS, which is the MS renormalization point. We will fix
ΛMS = 378 MeV throughout, following the treatment of Ref. [60]. This value gives the αs(Λ̄ =

2 GeV) = 0.2994, which was the best experimental value at the time when Ref. [60] was published;
we will use the slightly old value because we want to compare our results with those of Ref. [60].

Sign problem in lattice-QCD: The most dependable calculations of QCD thermodynamics come
from lattice-QCD, but the finite-density region is currently out of reach due to the sign problem. We
will explain how it arises in the presence of the chemical potential µ following the explanations in
Refs. [74, 75]. In lattice-QCD, we use Monte-Carlo method to calculate the partition function in the
Euclidean path integral formulation:

Z =

∫
DUDψ̄Dψe−S E =

∫
DUe−S G detM(µ) , (1.6)

where we understand U = eiagA as a link variable and a as a lattice spacing. The Euclidean action S E

of QCD is given by

S E = S G +

∫ 1/T

0
dτ

∫
x

ψ̄M(µ)ψ, M(µ) = γE
µ Dµ + m + µγE

4 , (1.7)

with S G, τ, and γE
µ being the gauge part of the QCD action, the imaginary time, and the Euclidean

gamma matrices, respectively.
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Fig. 1.2: Deep inelastic scattering. (a) Kinematics of deep inelastic electron scattering in the parton
from a proton; (b) Resummation of the gluon ladder diagram. This type of “handbag” diagram
combined with the cutting rule gives the total cross section.

The Dirac determinant detM(µ) in Eq. (1.6) becomes complex when µ is finite. The complex
Dirac determinant ruins the importance sampling algorithm in the Monte Carlo simulation of the
lattice QCD. It is due to the Metropolis step in the algorithm; in this step, we compare the proba-
bility weight of the different gauge link configuration, ρ(U) ∼ e−S G detM(µ), so that the complex
determinant does not make sense.

If µ = 0, one can explicitly calculate that the Dirac matrixM fulfills the γ5-pseudo Hermiticity,

M†(0) = γ5M(0)γ5 . (1.8)

It leads to the real and positive Dirac determinant: detM(0) ≥ 0. So that lattice-QCD is applicable at
µ = 0. When µ , 0, however, this relation is modified toM†(µ) = γ5M(−µ∗)γ5 and thus leads to the
complex Dirac determinant: detM(µ) ∈ C.

We note in passing that by introducing the isospin chemical potential µIτ3 (τ is the isospin ma-
trix) instead of µ, we can obtain the sign-problem free theory. This is because we find the same
relation to Eq. (1.8) by replacing γ5 with γ5τ1 [36], so that the isospin chemical potential µI can be
simulated on lattice (see, e.g., Ref. [76] for the recent results). Generally speaking, Eq. (1.8) is an ex-
ample of the pseudo Hermiticity. This notion is frequently discussed in the context of non-Hermitian
physics [77], e.g., the PT symmetry such that γ5 is replaced with the parity or time-reversal symme-
tries in Eq. (1.8) [78].

Resummation: In this thesis, our focus is on the improvement of the perturbation calculation of
QCD thermodynamics by using the technique called resummation. Resummation is the modernized
technique to improve the perturbative calculation in quantum field theories [79]. The progress in per-
turbation theory is not only in increasing a number of loops in Feynman diagrams giving a few powers
of αs, but also in taming large quantities; they are usually of the forms of single and double logarithms,
and occur for each power of αs. Taming large quantities entails resumming the perturbation series.

One of the renowned example of resummation is the Dokshitzer–Gribov–Lipatov–Altarelli–Pairsi
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(DGLAP) evolution equation [80–82] of parton distribution functions (PDFs), qi(x,Q2), in the deep
inelastic scattering (DIS). The kinematics of DIS experiments are shown in Fig. 1.2 (a): we de-
fine the photon virtuality as Q2 ≡ −q2 and x is the longitudinal fraction of the incoming proton
momentum carried by the struck parton1. The PDF qi(x,Q2) expresses the probability that in the
collision with scale Q2 the proton contains a parton of specie i with the longitudinal fraction x. The
DGLAP equation describes the slight violation of the Bjorken scaling, which comes from the QCD
correction with a ln Q2 dependence. The Bjorken scaling is Q2-independence of the structure func-
tion F2(x,Q2), i.e., F2(x,Q2) → F2(x). The structure function is given by the sum of the PDFs
F2(x,Q2) = x

∑
i e2

i qi(x,Q2). The ln Q2 dependence comes into play by considering the emission
of an additional parton with a large transverse momentum kT (see Fig. 1.2 (b) middle diagram); the
probability of this emission is proportional to

∫ Q2

αs
dk2

T
k2

T
∼ αs ln Q2. Although αs is small, the extra

parton production αs ln Q2 ∼ 1 is large because of ln Q2, and thus we need resummation.

Let us turn back to the DGLAP equation to illustrate how resummation works. The DGLAP
equation is

∂

∂ ln Q2 qi(x,Q2) = αs

∑
j

Pi← j

( x
ξ

)
⊗ q j(ξ,Q2) , (1.9)

where Pi← j(x/ξ) is the splitting kernel from the parton specie j to i [82], and ⊗ is the convolution with
respect to ξ. The solution to this equation is

q(x,Q2) ∼ eαs ln Q2
=

∞∑
n=0

fn(x)
(
αs ln Q2

)n

, (1.10)

with fn(x) being a coefficient function. This corresponds to resummation of the all-order ladder
diagrams as shown in Fig. 1.2 (b); we show the ladder diagrams with n extra parton emissions. All
these diagrams contribute equally in pQCD, and the DGLAP equation handles them on the same
footing. In this way, the perturbative correction is resummed into the PDF.

Similarly, there are varieties of resummations of large logarithms in the pQCD: Balitsky–Fadin–
Kuraev–Lipatov (BFKL) [83–86] and Gribov–Levin–Ryskin–Mueller–Qiu (GLR–MQ) [87,88] equa-
tions, associated with the single and double logarithms ln(1/x) and ln Q2 ln(1/x), respectively. Also,
Balitsky–Kovchegov (BK) [89,90] and Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner
(JIMWLK) [91–97] equations resum the effect from the background gauge field; they dictate the non-
linear phenomenon of the gluon saturation [87], which lead to the appearance of the new dynamical
scale Qs in QCD [98] (see Refs. [99, 100] for the recent comprehensive textbook and review). More-
over, the concept of resummation is widespread; for example, the random phase approximation [101]
is also a sort of resummation; Gell-Mann and Brueckner showed that it is sum of ring diagrams to
infinite order [102].

1Strictly speaking, the Bjorken xBj = Q2/(2p · q), which is measured in the experiment, and the longitudinal fraction
x are different. Nevertheless, they match in the naive parton model, and the difference can be quantified by the pQCD.
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Hard thermal loops: The main focus of this work is the Hard Thermal Loop (HTL) resummation,
or its high-density counter part Hard Dense Loop (HDL) resummation (we will use these terms in-
terchangeably hereafter). In the thermal field theory calculations, theory usually has two parameters,
which are the temperature T and the coupling constant g. So the energy scales can be divided into at
least two scales: hard scale with momentum k ∼ T and soft scale with k ∼ gT . This separation of
scale is crucial in HTLs. HTL specifically refers to the loop integral with a loop momentum of the
hard scale; it will give out the dominant T 2-dependent part only, because the loop integral is quadratic
divergent, but it is effectively cut off with T by the Bose-Einstein/Fermi-Dirac distribution in thermal
field theory calculations.

Historically speaking, the necessity of resummation has been recognized through the problem the
gluon damping rate in thermal QCD. The gluon damping rate γg is proportional to the imaginary part
of the gluon self-energy, and has the form γg = Cg2T/(8π). The problem was that 1-loop calculations
gave gauge-dependent answers, i.e., the constant C would differ according to the gauge choice [103]
(which was later proved to be a gauge-independent quantity [104]). This problem was put forward
independently by Kalashnikov and Klimov [105] as well as by Gross, Pisarski and Yaffe [106]. A
decade after, it was solved by Braaten and Pisarski [7, 107] following the paper by Pisarski [108],
which identified the incompleteness of the preceding 1-loop calculations, and posed a resummation
scheme to overcome such incompleteness (see Ref. [109] and references therein for more historic
account). The gauge-independent result was obtained by replacing the bare gluon propagators and
vertices with the effective HTL propagators and vertices by including HTL contributions from all
orders in the loop expansion (see Sec. 3.2 for details).

The necessity of resummation can also be understood from ~-power counting following the argu-
ment in Ref. [109]. At finite temperature, ~ enters the theory as g2 → g2~ and T → T/~. At zero
temperature, perturbative expansion in terms of g2 simply counts the powers of ~. At finite temper-
ature, however, ~ appears in both g2 and T , so this naive power counting of g2 does not work. The
semi-classical limit is given by the divergent quantity in the limit of ~ → 0. Momenta of the order
of T/~ survives in the semi-classical limit. But unexpectedly, the same is also true for momenta of
the order of gT/

√
~. Therefore counting the powers of 1/

√
~ in the semi-classical limit is equal to

classifying the scales of the order T , gT , etc.

1.3 Central results of this thesis

In this thesis, we will perform the pQCD calculation of the pressure of quarks with fermionic
resummation. Our contributions are to take into account the bare quark mass effect explicitly within
the formalism called the Hard Dense Loop perturbation theory (HDLpt) [110]. We think that the
inclusion of the bare quark mass effect in the calculation is not so important, but the implications
from the results are more illuminating.

Here, we shall first present our central results in Fig. 1.3, and postpone the technical details to the
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Fig. 1.3: Comparison of the EoS in this work (HDLpt) and other EoSs. The blue and the orange bands
represent our results and the preceding results from Refs. [60,61], respectively, with Λ̄ = µ− 4µ. The
green band is the EoS extrapolated from the χEFT calculation so as to be consistent with the two-
solar-mass pulsars [111, 112]. The red band shows the EoS inferred from the Neural Networks in the
machine learning analysis of the neutron star observation [113]. The dashed black line is the APR
EoS extrapolated from the nuclear side [66].
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later chapters. On top of Fig. 1.3, our central results constitute the following key observations:

Key observations� �
(A) Reduction of the scale variation uncertainty

(B) Speed of sound exceeding the conformal limit

(C) Smooth matching between nuclear and quark matter EoS� �
In Fig. 1.3, we plot the various EoSs, which are the relation between the pressure P and the energy

density ε. In order not to make the comparison on the figure too busy, we chose only a few represen-
tative EoSs from the nuclear side; namely, the EoS extrapolated from the χEFT calculation [111,112]
by the green band, the Neural Network output in the machine learning analysis [113] by the red
band, and the standard nuclear EoS, for which we take the Akmal–Pandharipande–Ravenhall (APR)
EoS [66], shown by the dashed line. We will explain in turn the above-mentioned key observations:

(A) Reduction of the scale variation uncertainty: The orange band in the density range, ε >

103 MeV/fm3, depicts the results from the conventional pQCD calculation [60] for which we utilize
the concise formula as given in Ref. [61]. Higher-order corrections could be added, but the uncertainty
band is not much changed from Ref. [60]. As is obvious from the figure, the uncertainty band width
abruptly diverges; for this reason it has been said that pQCD is reliable only at extreme high densities
far from reality nB & 40 n0.

This large uncertainty originates from the variation of the renormalization scale Λ̄ in the coupling
constant (see Eq. (1.2) above for the concrete expression and the meaning of Λ̄). In principle, the
value of physical observables should not depend on Λ̄. Nonetheless, due to the truncation of the
perturbative series at a finite order, the scale dependence enters theory. To evaluate the uncertainty
associated with the scale variation, our standard practice is to vary Λ̄ by a factor of two. The canonical
choice for the scale Λ̄ is Λ̄ = 2µ [60] with µ being the chemical potential of quarks; quarks are highly
degenerate at T = 0 and nB > n0, so that they form the Fermi sphere filled up to the momentum
k ∼ µ. Therefore, the three orange lines in Fig. 1.3 for the conventional pQCD result correspond to
the running coupling αs(Λ̄ = µ), αs(Λ̄ = 2µ), and αs(Λ̄ = 4µ), respectively; the lowermost line is
for αs(Λ̄ = µ), which leads to the zero pressure—the breakdown of the pQCD—at the highest energy
density among these three lines.

Now, a surprise comes from a blue narrow band that represents results from our HDLpt calcu-
lations: the uncertainty band is drastically reduced! One may wonder what causes such a drastic
difference on Fig. 1.3. We can qualitatively understand this from the suppression of the baryon num-
ber density nB at fixed µ owing to the resummation in the fermionic sector. The detailed account
will be given in Chapter 6. We will also discuss the condition for the scale variation uncertainty to
vanishes.
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(B) Speed of sound exceeding the conformal limit: The EoS from our HDLpt calculation has a
notable feature in addition to the reduced scale variation uncertainty. The speed of sound c2

s corre-
sponds to the slope of the EoS. It is given by c2

s = ∂P/∂ε. The behavior of the speed of sound can
determine whether the EoS is “stiff” or “soft” (see the definition of this term in Sec. 2.1), and also it
is relevant for neutron star physics as it can influence observables of neutron stars such as the stellar
radius.

There is an empirical conjecture to claim that the speed of sound may not exceed the conformal
limit [114]. The conformal limit, c2

s = 1/3, is the value of the speed of sound for the conformal theory.
At asymptotically high density, all mass scales and interactions are negligible and c2

s approaches the
conformal limit. In the conventional pQCD, the known correction to the conformal speed of sound
c2

s = 1/3 is negative. Therefore the conformal bound is kept intact. We point out, however, our QCD-
based calculation actually violate this conformal limit. Meanwhile, our attempt also revealed another
subtleties related to the derivative of Λ̄.

(C) Smooth matching between nuclear and quark matter EoS: This issue is closely related to
the observation (A). The uncertainty bandwidth of the conventional pQCD abruptly diverges, and
thus it is reliable only at extremely high densities far from reality. At a glance, indeed, we should
understand how difficult it is to make a robust interpolation between the nuclear and the pQCD EoSs.

Now, another surprise in Fig. 1.3 comes from a blue narrow band that represents results from our
HDLpt calculations: the HDLpt EoS appears to be merged into the nuclear EoSs smoothly in the
intermediate density region! It should be noted that the APR EoS overshoots ours, but this is due to a
well-known flaw in the APR EoS, i.e., superluminal speed of sound which violates causality.

1.4 Outline

This thesis is organized as follows.

Review part (Chapter 2 and 3): Chapter 2 offers a cursory look at the dense matter EoS studies
from the viewpoint of nuclear experiments, astrophysical observations of neutron stars, and the theory
calculations. Chapter 3 covers the relevant methods. We introduce the notion of hard thermal loops
(HTLs) in Sec. 3.2, then we proceed to the survey on the various perturbative techniques to incorporate
the HTL resummation including HTL perturbation theory (HTLpt) (Sec. 3.4), and the Φ-derivable
approximation in the 2PI formalism (Sec. 3.5); these methods will be used in the later chapters.

Result part (Chapter 4 and 5): In Chapter 4, we calculate the EoS in the β equilibrium and charge
neutral system. The method we use is the HTLpt, which was outlined in Sec. 3.4, and the inclu-
sion of the bare mass of strange quarks is the novel extension in our calculation. In Chapter 5, we
discuss some corrections to the results presented in the previous chapter. Also, we perform the EoS
calculation under the Φ-derivable approximation in the 2PI formalism in Sec. 5.2.
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Discussion part (Chapter 6, 7, and 8): Chapters 6, 7, and 8 are devoted to the discussion on the
novel facets of our results. In Chapter 6, we discuss the reduction of the scale variation uncertainty in
the HTL-resummed theories. In Chapter 7, we show the speed of sound in the HDLpt, which exceeds
the conformal limit. We give a quick survey on the behavior of the speed of sound to understand why
our result exceeding the conformal limit is relevant. Finally, in Chapter 8, we claim that our HDLpt
calculation and the low-density nuclear matter EoSs smoothly match. It leads us to the physical
picture that hadrons continuously melt into quarks. We also mention the relevance of our results to
the astrophysics context.

Notations: Throughout this thesis, we use natural units c = G = ~ = kB = 1 except in Chapter. 8,
where cgs units are used.

We use the terminologies “Hard Thermal Loop (HTL)” and “Hard Dense Loop (HDL)” inter-
changeably. We will use the former when we discuss physics at high temperature, and the latter at
low temperature and high density. However, the term HTL is also used even at low temperature and
high density when we refer to the methodology of resummation itself, inasmuch as it is the original
name coined by Braaten and Pisarski.

We will use the letter k and q for momenta and do not use p in order not to confuse with the
pressure; the letter P is reserved for the pressure exclusively. Momenta in the Minkowski space is
denoted with lower case letters, e.g. kµ = (k0,k), while those in the Euclidean space are denoted with
upper case letters, e.g. Kµ = (k4,k).

Extensive and intensive variables in thermodynamics are denoted by upper and lower case letters,
respectively. However, there are exceptions to this rule, which are the pressure P and temperature T .
These are denoted by upper case letters, albeit being the intensive variables.



Chapter 2

Review of the dense matter equation of state

In this chapter, we review the basic properties and the current status of the EoS. Particularly, we
focus on the observable called the symmetry energy. There are diverse efforts towards revealing the
EoS based on the terrestrial experiments including heavy-ion collisions, astrophysical observations,
as well as theory calculations. We give a brief account of such efforts.

2.1 The basic properties of equation of state

Theoretical models usually calculate the total energy density ε of nuclear matter at given baryon
density nB. See Fig. 2.1 for the recent calculation based on χEFT. It is expressed in terms of

ε(nn, np) = nB
E
A

+ mnnn + mpnp = nB

(E
A

+ mN

)
, (2.1)

where E/A is the energy per nucleon number A, and mn/p and nn/p are the mass and the density of
neutrons/protons, respectively. If we define the nucleon mass as mN ' mn ' mp and the net baryon
density as nB = nn + np, then the energy density reduces to the RHS of Eq. (2.1).

From the total energy density or the energy per nucleon, we can calculate the pressure by the
following formula

P(nB) = n2
B
∂

∂nB

(
ε

nB

)
= n2

B
∂

∂nB

(E
A

)
, (2.2)

which follows from the thermodynamic relation P = −∂U/∂V with U = εV and V = 1/nB being the
internal energy and the volume, respectively.

Let us now introduce the notion of the symmetry energy, which is important for discussing the
dense matter EoS. We define the isospin asymmetry parameter as δ = (N −Z)/A = (nn−np)/nB. Then
the energy per nucleon number A can be expanded around δ = 0 as

E
A

(nB, δ) =
E
A

(nB, δ = 0) + δ2S 2(nB) + O(δ3) . (2.3)

Note that the term ∝ δ vanishes because of the charge independence of nucleons. Namely, n and p

13
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Fig. 2.1: Energy per nucleon E/A as a function of baryon density nB and isospin asymmetry δ. This
figure is plotted from the state of the art χEFT calculations of the density dependent S 2(nB) and E/A
of SNM [54], using the tools available online in Ref. [115]. See text for description.

are symmetric under an exchange, so that the term subject to modification under the transformation
δ → −δ is simply forbidden. The function S 2(nB)—the coefficient of the δ2-term—is commonly
referred to as the symmetry energy.1 Pure neutron matter (PNM) with δ = 1 costs more energy than
symmetric nuclear matter (SNM) with δ = 0. The symmetry energy roughly measures the difference
between the energy per nucleon in PNM and SNM:

S 2(nB) '
EPNM

N
(nB, δ = 1) −

ESNM

A
(nB, δ = 0) . (2.4)

Note that for PNM, the nucleon number A is replaced with the neutron number N as it comprises
neutrons only. The density dependence of the symmetry energy is usually taken care of by the slope
parameter L when expanding it around the saturation density n0 (see, however, Ref. [116] for the
recent discussion on the density-dependent parametrization of the nuclear symmetry energy)

S 2(nB) = S v +
L
3

(
nB − n0

n0

)
+ O

(
(nB/n0)2

)
. (2.5)

This quantity is always positive because of the Pauli exclusion principle; PNM has larger energy than
SNM.

1Strictly speaking, it is only valid in the isospin sector. Electromagnetism breaks the charge independence. So the
Coulomb interaction gives rise to the O(δ) term, but its effect is nonetheless small and thus can be neglected.
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For SNM part, we again expand around n0

ESNM

A
(nB) ≡

E
A

(nB, δ = 0) = −B +
K0

18

(
nB − n0

n0

)2

+ O

(
(nB/n0)3

)
, (2.6)

where B ' −16 MeV is the binding energy and K0 is incompressibility of nuclear matter.

If we formulate everything in terms of derivatives, the symmetry energy parameters follows from

S 2(nB) =
1
2
∂2

∂δ2

[E
A

(nB, δ)
]
δ=0

, (2.7)

as

S v = S 2(n0) , L = 3n0

[
∂S 2(nB)
∂nB

]
nB=n0

. (2.8)

The SNM incompressibility is defined as

K0 = 9n2
0
∂2

∂n2
B

[ESNM

A
(nB)

]
nB=n0

(2.9)

Up to now, we have referred to the notion of the saturation density n0 without an explanation, but
let us step back and give a brief account of this. The saturation density is the density at which nuclear
matter is self-bound, i.e., stable at zero pressure. In Fig. 2.1, at δ = 0, we have marked the minimum
of the binding energy with green blob, the stable density region with positive pressure (plotted with
the solid line), and the unstable region with negative pressure (plotted with the dashed line). From
the behavior of the pressure is given in Eq. (2.2), we can identify the saturation point as the minimum
of E/A as a function of nB; at this point, nB = n0, matter has zero pressure and the (negative) binding
energy E/A = −B ' 16 MeV. This is also the reason why the nB-term is vanishing in Eq. (2.6). From
Eq. (2.2), it is easy to understand that matter is unstable with negative pressure below n0 since E/A is
a decreasing function with respect to nB.

In QCD thermodynamics, at the first point, we calculate the pressure P(µ) as a function of chemi-
cal potential (or the grand potential Ω) from the grand canonical partition function Z(µ):

P(µ) =
T
V

ln Z(µ)
(
= −

Ω

V

)
. (2.10)

Then the number density n and energy density ε are calculated accordingly from the thermodynamic
relations:

n =
∂P
∂µ

, ε = −P + µn . (2.11)

Here we introduce the idea of stiffness. The incompressibility defined in Eq. (2.9) is one measure
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for this. Another frequently used measure is the speed of sound (squared):

c2
s =

∂P
∂ε

. (2.12)

This corresponds to the slope of the EoS expressed in terms of P − ε relation. Stiffness means the
same as in our daily life: easily compressible matter is called soft and vice versa as stiff. That is, the
soft matter has a small change in pressure when changing the (energy) density, while the stiff matter
has a larger change in pressure.

2.2 The status of experimental/observational diagnosis of the EoS

Experimental and observational data available from the extreme environments provide us with
useful constraints on possible EoSs so that some theoretical scenarios can be excluded/accepted. The
most well-known and successful example along these lines is the discovery of two-solar-mass (2 M�)
neutron stars [117–120], which turns down scenarios leading to soft EoS. That is, it is unlikely for
the dense matter to accommodate a strong first-order phase transition [121] nor condensations of
exotic degrees of freedom (see, however, Refs. [122,123] for the measurements of the Landau-Migdal
parameters; these values may still facilitate the pion condensation).

In Figs. 2.2 and 2.3, we summarize the currently obtained constraints on the EoS both either
experiments or observations. Still, the uncertainty of the estimated EoS from various sources is quite
large, so it is still inconclusive from the experiments/observations what is the precise form of the EoS.
Nonetheless, it is beneficial at this moment to distinguish what is known and what is not known. In
the following, we briefly review what we can learn about the EoS from such opportunities.

2.2.1 Terrestrial experiments and the S v–L correlation

There is a linear correlation between S v and L parameters [135–137] as can be seen clearly
in Fig. 2.2. To comprehend this correlation, it is instructive to explain in the spirit of the Bethe-
Weizsäcker mass formula

E(N,Z) = avolA − asurfA2/3 − aC
Z2

A1/3 − asym(A)δ2A + ∆E(N,Z) . (2.13)

In the liquid droplet model [138], the coefficient of the symmetric term can be expressed as

adroplet
sym (A) =

S v

1 − S s
S v

A−1/3
. (2.14)

As a finite nucleus has a surface, the additional surface symmetry energy parameter arises in this
expression. Note that the liquid droplet model is different from the liquid drop model in the sense
that it can describe neutron skins in neutron-abundant nuclei under the variation of δ; it is practically
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Fig. 2.2: Summary plot of the experimental constraints on the S v–L relation. Experimental constraints
are adapted from nuclear masses [124, 125], neutron-skin thickness of Sn isotopes [126], the dipole
polarizability of 208Pb [127, 128], giant dipole resonances (GDR) [129], isobaric analog states and
isovector skins (IAS+∆R) [130], and isospin diffusion in heavy-ion collisions (HIC (isodiff)) [131].
The overlapping region is filled with white color. The 68 % contour from the recent χEFT calcula-
tion [54] is also overlaid. This figure is reproduced from Refs. [54,132–134] using the code provided
in Ref. [115].
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more improved treatment compared with the liquid drop model.

There is a strong correlation between S v and S s. This correlation is apparent: the heavy nuclei
with A ≈ 200 and largest asymmetries requires adroplet

sym = S v/(1 − S sA−1/3/S v) = asym = const, where
asym is the usual liquid drop model parameter, so that S v and S s/S v are linearly correlated.

Now the S v–S s correlation can be translated into the S v–L correlation by utilizing the density
dependence of S s. The surface energy term S s has the density dependence because it reflects the
varying density within a nucleus, so that the correction to S v is necessary. Thus, S s depends also on
S v and L, and we can write S s(S v, L). For example, the approximate form of S s/S v has indeed been
found in Ref. [132]:

S s

S v
' 0.646 +

S v

97.9 MeV
+ 0.436

L
S v

+ 0.0873
(

L
S v

)2

. (2.15)

Therefore, there is a strong correlation between S v and L and it can be justified from the fundamental
mass formula. The various quantities in nuclear physics are dependent on S v and S s, so their measured
values are sensitive to the symmetry energy. Below is an incomplete list of nuclear structure and
reaction quantities sensitive to the symmetry energy:

Nuclear masses: As the S v–L correlation is related to the mass formula, the most straightforward
and tightest constraints on the symmetry energy are obtained by a least-squares fit to the nuclear
masses across the chart of nuclides. Kortelainen et al. [124] fitted nuclear masses and charge radii
resulting in S v ' 30.5 ± 3.1 MeV and L ' 45 ± 40 MeV (see the orange ellipse in Fig. 2.2). Also,
the finite-range droplet model (FRDM) predicts the values of S v ' 32.5 ± 0.5 MeV and L ' 70 ±
15 MeV [125] (see the white error bar in Fig. 2.2).

Neutron-skin thickness: The neutron-skin thickness is defined as

∆rnp ≡ 〈r2
n〉

1/2 − 〈r2
p〉

1/2 . (2.16)

The strong correlation between S v and S s (and thus S v and L) and ∆rnp can be seen in the liquid
droplet model prediction

∆rnp '
2r0

3
S sδ

S v + S sA−1/3 . (2.17)

By using this relation, the fit of the neutron-skin data of Sn isotopes gives the negative correlation
between S v–L [126] (see the blue region in Fig. 2.2). Also, the neutron-skin thickness of 208Pb
has been recently measured in the PREX-II experiment [139], leading to the stiff values of S v '

38.1 ± 4.7 MeV and L = 106 ± 37 MeV [140], which are inconsistent with the intersection of the
currently obtained constraints, see Fig. 2.2. It is, however, still under an intense debate: by taking
into account the dipole polarizability (see below), L is subject to significant change [141], which is at
odds with the analysis of Ref. [140] (see also Ref. [142]).
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Dipole polarizability: The dipole polarizability is the linear response of a nucleus in an excited
state caused by an external dipole electric field. The dipole polarizability αD is related to the inverse
energy-weighted photo absorption cross section σabs(ω)

αD =
~c

2π2e2

∫
dω

σabs(ω)
ω2 . (2.18)

The liquid droplet model predicts the correlation between S v and S s in the form of

αD =
AR2

20S v

(
1 +

5
3

S s

S v
A−1/3

)
, (2.19)

where R = r0A1/3 is the nuclear radius. The experimental study [127] put a constraint on αD of 208Pb.
The relation between αD and ∆rnp was found in Ref. [128], and by using the relation between ∆rnp

and S v as well as L [126], the S v–L correlation was obtained as in Fig. 2.2.

Giant dipole resonance: A good measure for the mean excitation energy of the giant dipole reso-
nance is E−1 =

√
m1/m−1, where m−1 and m1 are the inverse energy-weighted and the energy-weighted

sum rule, respectively. Given that F is the physical operator that excites a 1p-1h state from |0〉 to
its eigenstates |n〉 with an excitation energy En and ωn = En − E0, the mp sum rule is defined by
mp =

∑
n>0 |〈n|F|0〉|2ω

p
n . Hydrodynamic model [143] predicts

E−1 =

√
6~2(1 + κ)

mNR2

S v

1 + 5A−1/3S s/S v
, (2.20)

where κ is what is commonly referred to as the enhancement factor. It was shown in Ref. [129] that
Eq. (2.20) is strongly correlated with the symmetry energy at the subnuclear density nB ' 0.1 fm−3

(see the red shaded region in Fig. 2.2).

2.2.2 Heavy-ion collisions

The nuclear observables given above are useful in constraining the symmetry energy S 2(nB), how-
ever, they are only measured at the subnuclear density nB . n0. Heavy-ion collisions provide a useful
probe to study the symmetry energy at the supranuclear density since there are abundant hadrons
produced in the collisions with densities higher than n0. Although the heavy-ion collision is a very
complex experiment, the final state particles allow us a simple and clean statistical interpretation,
e.g., by using a simple statistical hadronization model [39]. Densities of protons and neutrons in the
central collisions are sensitive to the value of the symmetry energy. Generally speaking, to extract
information of the symmetry energy study from the heavy-ion collision dynamics, one needs to rely
on the specific transport model. So the model-dependence should be carefully examined, and this
invoked intensive comparisons between different codes [144–147] over the last two decades, which
lead to the improved reliability of the theory calculations.
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There are isospin-sensitive observable such as (a) isospin diffusion, (b) π−/π+ ratio, and (c)
anisotropic collective flows, to mention a few (see Ref. [148] and references therein for a more de-
tailed account).

Isospin diffusion: In the isospin diffusion process, the symmetry energy exerts the exchange of
neutrons and protons between nuclei in a heavy-ion collision. This diffusion process forces the isospin
asymmetry of the target and projectile to be equal after the collision.

Isospin transport ratio Ri(X) is defined as follows in order to separate the diffusion effects from the
others. For the isospin observable X, mixed collisions of neutron-rich nuclei A and neutron-deficient
nuclei B, A + B or B + A, are scaled with the symmetric collisions, A + A and B + B:

Ri(X) =
2X − (XA+A + XB+B)

XA+A − XB+B
(2.21)

This measure takes the value Ri = ±1 if there is no diffusion and Ri = 0 if the isospin equilibrium is
reached.

In Fig. 2.2, we plot the symmetry energy from the measurement of isospin diffusion transport
ratios in 112Sn + 124Sn and 124Sn + 112Sn collisions at the energy of 50 MeV/A [131]; in these data, the
variable X is taken to be as what is called the isoscaling parameters [149] scaled with the symmetric
collisions of neutron-rich and deficient nuclei, i.e., 124Sn + 124Sn and 112Sn + 112Sn.

π−/π+ ratio: The π−/π+ ratio in heavy-ion collisions has a strong dependence on the isospin asym-
metry (see, e.g., for Refs. [150–153]). At the intermediate energy region of ∼ 300 MeV/A, inelastic
heavy-ion collisions produce the ∆ resonance which decays into the nucleon by emitting pions. The
charged pion ratio, π−/π+, depends on the ratio of protons and neutrons in a way [154]:

π−/π+ =
5N2 + NZ
5Z2 + NZ

'
n2

n

n2
p
. (2.22)

Recent experiment charged pion production in Sn isotope collisions infer the symmetry energy con-
straints at nB ' 1.5n0 of 32.5 < S v < 38.1 MeV and 42 < L < 117 MeV [155]. This data is not shown
in Fig. 2.2 not to make the figure busy, nevertheless, it has an overlap with the currently obtained
constraints.

Anisotropic collective flows: Anisotropic collective flows have been used as a probe to extract the
dense QCD matter EoS [156] (see, e.g., Refs. [157, 158] for the recent updates). Flows are described
by the corresponding coefficients in the Fourier components of the azimuthal angle distribution of
measured particles:

dN
dφ
∝ 1 + 2

∞∑
n=1

vn cos nφ (2.23)
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Fig. 2.3: Summary plot of the observational and the experimental constraints on the P–ρ relation.
The left and right panels are essentially the same, but the pressure is plotted in a log scale (left) and
a linear scale (right). Observational constraints are derived from the 2 M� consistent extrapolation of
the χEFT theory calculation [112], GW170817 [160], two independent Bayesian analyses [161,162],
and deep learning (DL) [113, 163]. Also, the collective flow constraint from HICs is overlaid [159]
(see Sec. 2.2.2 for details).

where v1 ≡ 〈cos φ〉 is the directed flow, and v2 ≡ 〈cos 2φ〉 is the elliptic flow. The mean transverse
momentum per nucleon projected onto the reaction plane is 〈px/A〉. It can be related to the directed
flow through v1 = 〈px/pT 〉 with pT ≡

√
p2

x + p2
y being the transverse momentum. The directed

transverse flow F is then defined by

F =
d〈px/A〉
d(y/ycm)

∣∣∣∣∣
y/ycm=1

, (2.24)

where y is the rapidity and ycm is that of particles at rest in the center of mass frame. By combining
v2 and F, which are obtained in Au-Au collisions with energies ∼ 0.15–10 GeV/A, Danielewicz et
al. [159] put a constraint on the EoS at densities nB = 2–4.5 n0 (see the hatched region in Fig. 2.3).
We note, however, that this result is extrapolated from the hot SNM to the cold PNM, so that it may
be subject to substantial systematic uncertainties; the experiments are only targeting the symmetric
matter at high temperatures.

2.2.3 Neutron star observations

Several observational data of neutron stars are now available from (i) the radius determination of
neutron stars in quiescent low-mass X-ray binaries (qLMXBs) and thermonuclear bursters [161,165–
168] (see reviews [162,169,170] for discussions on the methods and associated uncertainties), (ii) the
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Fig. 2.4: Schematic figure of the relation between the EoS and M–R of neutron stars. (a) Ideal
situation where the one-to-one correspondence between the EoS and M–R is established [164]; (b)
Realistic situation with observational uncertainty; ΨTOV is straightforward to calculate (blue shaded
region in M–R is calculated from the EoS), but Ψ−1

TOV is very non-trivial. Data are from Ref. [162].

mass measurements of the 2 M� pulsars by Shapiro delay [117–120], (iii) detection of gravitational
waves from binary neutron star mergers or the binary black hole neutron star merger by the LIGO-
Virgo collaboration [160,171,172], and (iv) the pulsar timing measurements in the X-ray wavelength
by the NICER [173–176]. Typical observable quantities of neutron stars are mass M, radius R, com-
pactness M/R, tidal deformability Λ (and their variants, e.g., Love number k2), etc. For instance, the
tidal deformability is extracted from the gravitational wave signals from binary neutron star mergers,
and the NICER particularly aims at the compactness M/R. An EoS-insensitive universal relation be-
tween the observables such as the I-Love-Q relation [177,178], which connects the moment of inertia
I, the Love number k2, and the quadrupole moment Q, can be useful in constraining the EoS (see
Refs. [179, 180] and reference therein for further discussions).

There are diverse statistical technologies to extract the most likely EoS from the observational
data. Here we give a brief synopsis of this problem of extracting the EoS as shown in Fig 2.4. Let
us consider particularly the pairs of stellar mass-radius relation, M–R, for example. In principle, the
method presented below works for other kinds of observables as well. The M–R can be calculated
from the EoS using the general relativistic structural equation, i.e., Tolman–Oppenheimer–Volkoff

(TOV) equation [181, 182] (see Appendix B.1.1 for details). We will express the inverse operation of
solving the TOV equation as Ψ−1

TOV. As in Fig. 2.4 (a), ideally, the Ψ−1
TOV is straightforward since there

is a one-to-one correspondence between the EoS and M–R [164]. In reality, however, the M–R data
include the observational uncertainties as shown in Fig. 2.4 (b), so that the one-to-one correspondence
is obscured. To this end, we need to rely on the statistical method to perform the regression from M–R
to the EoS. The traditional approach is the Bayesian inference [161,165,166,183–188] and the Gaus-
sian processes [189–191]. On top of that, the newly developed comprehensive technique devising
deep learning [113,163,192] (see also Refs. [193–195] for related works) serves as a complementary
tool to tackle this problem; this method is advantageous because it depends on a prior distribution
for the EoS probability distributions only implicitly while the other approaches explicitly assume the
prior.
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In Fig. 2.3, we plot the selected results2. The most conservative observational constraint (see
χEFT & 2 M� NS in Fig. 2.3) is obtained solely from the 2 M� constraint, and up to nB ' n0, we
assume the EoS calculated within the χEFT [112]. Steiner, Lattimer, and Brown [161] analyzed four
neutron stars in qLMXBs (in the globular clusters M13, ω Cen, NGC 6397, and X7 in 47 Tuc) as
well as four thermonuclear bursters (4U 1608–522, KS 1731–260, EXO 1745–248, and 4U 1820–30)
using the Bayesian inference. The result in Fig. 2.3 (see the orange region) shows the 68 % contour
of their result. Özel et al. [162,167,168] also employed Bayesian inference but analyzed additionally
four qLMXBs (in the globular clusters M28, M30, NGC 6304, and X5 in 47 Tuc) as well as two
thermonuclear bursters (SAX J1748.9-2021 and 4U 1724−207) on top of the previously mentioned
eight stars. In Fig. 2.3, we show the contour of e−1 of the maximum likelihood (see the gree region).
Fujimoto, Fukushima, and Murase [113,163] utilize deep learning (DL) to cope with the NICER data
of J0030+0451 [173] and the above-mentioned fourteen stars (see the red hatched region in Fig. 2.3).
The Bayesian analysis from GW170817 [160] is plotted with the blue region in the figure. We note
that in the right panel of Fig. 2.3, we plot the pressure in the linear scale, and it explains that the
high-density region has still large uncertainty.

2.3 The status of QCD-based theoretical calculations

As mentioned earlier, at T = 0 and nB & n0, the QCD-based ab initio methods are only available
at limited density regions at the moment. Fig. 2.5 is the summary plot of the status quo. The available
calculations include:

• nB & 50 n0: pQCD calculations [56–64]

• nB . 2 n0: Many-body methods combined with the perturbative χEFT nuclear forces [46–54]

The intermediate density region around 2–10 n0, which is relevant for the neutron star studies, still
lacks reliable QCD-based calculations. The region enclosed by the dashed line in Fig. 2.5 is the
allowed region of polytropic extrapolation from χEFT [112]; outside this region is rejected by the
2 M� constraints of neutron star observations. As mentioned above, currently the most advanced
lattice-QCD calculation is still beyond reach at high densities.

2.3.1 Perturbative QCD calculation

To sharpen novelties in our work, let us briefly summarize what has been understood so far. The
pQCD calculation is the expansion with respect to the strong coupling constant αs. The αs expansion

2Strictly speaking, the EoSs in Fig. 2.3 from the Bayesian (Steiner et al.) [161] and the HIC [159] are presented in
the form of P–nB relation, so they are different from the P–ρ relation. However, the deviation from mnnB and ρc2 = ε is
confirmed to be small, which is proportional to E/N, so we neglect this subtle difference (see, e.g., Ref. [112] for actual
numbers in the χEFT calculation). Henceforth, this subtle difference will be neglected in the schematic illustrations, and
nB, ρ, and ε are used interchangeably.
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Fig. 2.5: Status of the QCD-based theoretical calculations. The χEFT result of PNM is adapted
from Ref. [53] and the conventional pQCD result is from Ref. [60] using the concise fitting formula
provided in Ref. [61]. The region enclosed by the dashed line is the extrapolation compatible with the
2 M� constraints from the χEFT calculation [112]. Our result is from Ref. [1].
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of the pressure can be summarized as:

P =

LO
(1-loop)︷︸︸︷
Pideal +

NLO
(2-loop)︷︸︸︷
Pconst

1 αs +

NNLO
(3-loop)︷︸︸︷
Pconst

2 α2
s +

N3LO
(4-loop)︷︸︸︷
Pconst

3 α3
s

+ PLL
2 α2

s lnαs + PNLL
3 α3

s lnαs

+ PLL
3 α3

s ln2 αs , (2.25)

where the pressure of the ideal Fermi gas, which is at the leading-order (LO), is

Pideal =
NcNf

12π2 µ
4 , (2.26)

with µ being the quark chemical potential. The next-to-leading order (NLO) coefficient Pconst
1 has

been known since 1960; Refs. [196, 197] are the earliest literature to the best of our knowledge (see
also Ref. [198]). The monumental works by Freedman and McLerran in 1976 [56–58] and by Baluni
in 1977 [59] revealed the coefficients Pconst

2 and PLL
2 in Eq. (2.25); they performed the next-to-next-to-

leading order calculations for massless QCD from the 3-loop Feynman diagrams.

Since their heroic achievement, we had to wait for about three decades until the pQCD EoS was
augmented with the strange quark mass ms , 0 and applied to the neutron star phenomenology [60].
The earlier pQCD application can be found in Ref. [199] and the substantial strange mass effect was
pointed out in Ref. [200].

Currently, the theoretical efforts are progressing toward further higher-order next-to-next-to-next-
to-leading-order (N3LO) calculations [62–64] with the hope for better convergence. We note that
this situation is very different from the finite-temperature case, where the perturbation theory breaks
down above the three-loop order due to Linde’s problem [201]. Linde’s problem is caused by the
chromomagnetic screening at the ultra-soft scale, which can only be obtained non-perturbatively.
On the other hand, at zero temperature, the magnetic gluons are never screened, so that there is no
Linde’s problem and one can go beyond the three-loop order. Since the α2

s lnαs term is coming from
the plasmon ring diagram, Gorda et al. [62] identified the leading-log (LL) term at N3LO, which takes
the form of α3

s ln2 αs, from the similar consideration of the ring diagram. Moreover, Fernandez and
Kneur [202] adds all the leading-log terms and next-to-leading-log (NLL) terms, i.e., αn

s lnn−1 αs and
αn

s lnn−2 αs, up to infinite order based on the renormalization group optimization method [203]. All
the known coefficients in Eq. (2.25) are summarized in Table 2.1.

In parameter space T > 0 and µ/T < 1, where the lattice-QCD simulation is at work, the validity
of alternative theoretical approaches has been tested. In particular, the Hard Thermal Loop pertur-
bation theory (HTLpt) is the most promising resummation scheme [65, 204–215] that confronts the
lattice-QCD results at high temperatures. In this approach, the pressure with the HTL-resummation
is evaluated up to the three-loop order, i.e., NNLO. Another approach is based on the Φ-derivable ap-
proximation [216–222] in the two-particle-irreducible (2PI) skeleton expansion of the thermodynamic
potential [223–225].
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Value References

Pconst
1 −

2
π

Pideal
Akhiezer & Peletminskii (1960) [196]
Salpeter (1961) [197]

Pconst
2

−
1
π2

(
18 − 11 ln 2 + β0 ln

Λ̄

µ

−0.536Nf + Nf ln
Nf

π

)
Pideal

Freedman & McLerran (1976) [56–58]
Baluni (1977) [59]

PLL
2 −

Nf

π2 Pideal

PLL
3 −

11(N2
c − 1)Nf

32π3 Pideal Gorda, Kurkela, Romatschke, Säppi & Vuorinen [62]

Table 2.1: The known pressure coefficients in Eq. (2.25) from massless pQCD evaluated within MS
scheme. The numerical values are for Nc = Nf = 3 unless specified otherwise.

From the success of HTLpt and Φ-derivable approach at high T , it is natural anticipation that the
same machinery of resummation would cure the convergence problem at high baryon density or large
quark chemical potential µ as well, which may reduce the scale variation uncertainty. Indeed, the
parallelism between the high T and high µ cases has been established based on the transport equation
approach in Ref. [226]; the high-density counterparts of HTLs are called Hard Dense Loops (HDLs).
As long as a resummation prescription in the quark sector is concerned, more simply, we can just take
the T → 0 limit of HTLpt to introduce “HDLpt” as considered in Ref. [227] (see also Ref. [206],
and we note that the term “HDLpt” was first introduced in Ref. [110]). The existing NLO and NNLO
calculations, however, involves the expansion of integrals with respect to the parameter M2

D/T
2, where

M2
D ∝ g2T 2 is the Debye mass. Therefore, it is not straightforward to take T → 0 limit in the existing

calculations of HTLpt.

Besides, the HTL approximation usually neglects the bare quark mass and only the screening
masses of quarks enter expressions used in Refs. [206,227]. Later on, extensive discussions about the
EoS and the quark star properties have been addressed in Ref. [110]. As seen in Fig. 2 of Ref. [110],
however, the HDLpt hardly remedies the convergence problem associated with the uncertainty of the
scale Λ̄ = µ–4µ in the running coupling constant αs(Λ̄). In this work, we quantify the resummation
effects on the EoS of cold and dense quark matter at high baryon density nB or the energy density ε
with the bare quark mass dependence for the first time.

The conventional pQCD calculation at the NNLO order or higher also involves the HTL resum-
mation. As a matter of fact, in such calculations, the HTL resummation is not just an improvement,
but necessary to circumvent the IR divergence. At NNLO, the HTL resummation does not include
the vertex correction but just summing the plasmon ring diagrams to infinite orders. This sort of HTL
resummation in the primitive form can be found in the earliest work by Gell-Mann and Brueckner,
Freedman and McLerran, as well as Baluni. Along this line, now Gorda et al. [63, 64] include the
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vertex correction as well at N3LO. The pressure at N3LO in Eq. (2.25) can be reorganized in to

Pconst
3 + PNLL

3 lnαs + PLL
3 ln2 αs = Psoft

3 + Pmixed
3 + Phard

3 , (2.27)

where the superscript “soft”, “mixed”, and “hard” refer to the scale of loop momentum k: as HTL
involves the isolation of the soft and hard scales, gµ and µ, so that the diagrams only with k ∼ gµ gives
Psoft

3 , the diagrams only with k ∼ µ gives Phard
3 , and the diagrams with mixed loop momenta k ∼ µ and

gµ gives Pmixed
3 . Up to now, Psoft

3 is obtained [63, 64], but the full O(α3
s) result is still incomplete.

2.3.2 Chiral effective field theory and other calculations

As it is not the central topic of this thesis, we will only introduce the selected results of χEFT
calculations. The virtue of the χEFT calculations is that they allow for the controlled uncertainty
estimates; the uncertainty is dominated by the low energy constants that determine the leading two-
pion-exchange three-body forces. The stellar matter EoS has been obtained up to NNLO [111, 112],
and now the N3LO calculations are available for PNM [54] and also for stellar matter [228].

As repeatedly mentioned, we cannot apply the lattice-QCD for calculating the QCD thermody-
namics at T = 0 and µ > 0. Nevertheless, an alternative approach based on lattice-QCD is possible.
One can circumvent the sign problem by not calculating the EoS directly, but by calculating the EoS
from the nuclear force obtained by lattice-QCD [229]; in this method, the lattice-QCD is used secon-
darily for the EoS calculation:

Also, a holographic approach to the EoS calculation is also possible, which can treat the strong-
coupling gauge theory non-perturbatively. The gravity dual of QCD may probably exist, but it is
currently out of reach, so the computation is carried out only for QCD-like theories (see Ref. [230]
for the recent review).
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Chapter 3

Review of QCD thermodynamics and
resummation schemes

In this chapter, we will briefly mention the notion of HTL and various resummation schemes to
include the HTL effect. First of all, the path integral expression for the partition function in imaginary
time is formulated, which is needed for the EoS calculation. Then, the HTLs are exemplified by show-
ing explicit calculations. The HTL resummation schemes introduced here are (i) the Braaten-Pisarski
effective theory scheme, (ii) screened perturbation theory application to the HTL resummation (which
is also called the HTL perturbation theory), and (iii) the 2PI expansion of thermodynamics with Φ-
derivable approximation. The latter two, i.e., (ii) and (iii) are the methods we use in the later chapters.

3.1 Imaginary time formalism and path integrals for partition
functions

In this thesis, we study QCD thermodynamics in a grand canonical ensemble. Thermal equilib-
rium is specified by temperature T (or the inverse temperature β ≡ 1/T ) and the chemical potential
µ f for flavor- f quarks. Other relevant parameters are the bare flavor- f quark mass m f .

The expectation value of time-independent operators O in the grand canonical ensemble is given
by

〈Ô〉 = tr
[
ρ̂ Ô

]
, (3.1)

where the density operator ρ̂ and the partition function Z takes the form

ρ̂ =
1
Z

e−β(Ĥ−µ f N̂ f ) , Z(T, µ f ) = tr e−β(Ĥ−µ f N̂ f ) . (3.2)

The flavor- f quark number operator, which is conjugate to the chemical potential µ f , is

N̂ f =

∫
x

ψ̄ fγ
0ψ f . (3.3)

29



30 CHAPTER 3. REVIEW OF QCD THERMODYNAMICS AND RESUMMATION SCHEMES

In the path integral formalism, the matrix element of time evolution operators e−iĤ(t f−ti) can be
expressed as

〈ϕ f |e−iĤ(t f−ti)|ϕi〉 =

∫ ϕ(t f )=ϕ f

ϕ(ti)=ϕi

Dϕ(x, t) eiS (ϕ) , (3.4)

where iS (ϕ) is the action in the Minkowski space:

iS (ϕ) = i
∫ t f

ti
dt

∫
x

LM(x, t) . (3.5)

The Lagrangian in the Minkowski space is denoted as LM. Now, we can naturally generalize it
to thermal equilibrium (as the operator O is now time independent, one can Wick rotate safely) by
changing ti → 0, t f → −iβ, and t → −iτ in the path integral expression.

〈ϕ f | ρ̂ |ϕi〉 =
1
Z
〈ϕ f |e−βĤ |ϕi〉 =

1
Z

∫ ϕ(−iβ)=ϕ f

ϕ(0)=ϕi

Dϕ(x, t → −iτ) e−S E(ϕ) , (3.6)

where the Euclidean action is defined as

iS (ϕ)→ −S E(ϕ) = −

∫ β

0
dτ

∫
x

LE(x, τ) , LE ≡ −LM(t → −iτ) . (3.7)

By setting ϕi = ϕ f , which leads to 〈ϕi|ρ̂|ϕi〉 = 1, we finally arrive at the path integral representation of
the partition function

Z =

∫
ϕ(τ=β)=ϕ(τ=0)
Dϕ(x, τ) e−S E(ϕ) . (3.8)

We have now considered the bosonic ϕ and it should fulfill the periodic boundary condition at τ = β:
ϕ(τ = β) = ϕ(τ = 0). For fermion field ψ, the boundary condition is modified to the anti-periodic
condition: ψ(τ = β) = −ψ(τ = 0)1. In QCD, the gauge should be fixed carefully, but here we do not
turn to this issue and follow the standard treatment as in Refs. [232, 233]. Since fields ϕ(τ) or ψ(τ)
are either periodic or anti-periodic (ϕ(β) = ϕ(0) or ψ(β) = −ψ(0)) in the imaginary time formalism,
the Fourier transform is taken over a finite interval τ ∈ [0, β], so that it becomes a Fourier sum with a
discrete frequency:

ϕ(τ,x) = T
n=∞∑

n=−∞

ϕ̃(ωn,x)eiωnτ, ωn = 2nπT , (3.9)

ψ(τ,x) = T
n=∞∑

n=−∞

ψ̃(ωn,x)eiω̃nτ, ω̃n = (2n + 1)πT , (3.10)

where ωn and ω̃n are called (bosonic and fermionic) Matsubara frequencies.

Utilizing the path integral above, one can derive the conventional Feynman rules also in the imag-

1Interesting, the Fadeev-Popov ghost field, which is the grassmanian but bosonic degrees of freedom (scalar), follows
the periodic condition [231].
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inary time formalism. The procedure to calculate higher orders of perturbation theory is straightfor-
ward.

• Firstly, we split the Euclidean action S E in the path integral into the free part and the interacting
part:

S E = S (free)
E + S (int)

E . (3.11)

• Inside the path integral we expand e−S E in powers of S (int)
E . That is,

Z =

∫
ϕ(τ=β)=ϕ(τ=0)
Dϕ e−S E '

∫
ϕ(τ=β)=ϕ(τ=0)
Dϕ e−S (free)

E

[
1 − S (int)

E +
1
2

(S (int)
E )2 −

1
6

(S (int)
E )3 + · · ·

]
. (3.12)

• Build the loop expansion with the propagators and vertices. When we perform the loop integral,
we also sum over the Matsubara frequencies.

The Euclidean propagator for bosons is

〈ϕ̃(kn,k)ϕ̃(qn, q)〉 = βδkn+qn,0(2π)3δ3(k + q)
1

k2
n + E2

k

, (3.13)

where kn and qn are bosonic Matsubara frequencies and Ek =
√
k2 + m2. The fermionic Eu-

clidean propagator is

〈ψ̃(k̃n,k) ˜̄ψ(q̃n, q)〉 = βδk̃n+q̃n,0(2π)3δ3(k + q)
−(iγ0k̃n − γ · k)

k̃2
n + E2

k

, (3.14)

where the fermionic Matsubara frequency reads k̃n = (2n + 1)πT + iµ. The Feynman rules for
vertices can be read out from field theory at T = 0.

• When taking the Matsubara sum, the conventional procedure is to convert it to the contour
integral by using the Bose-Einstein distribution fB(ω) and the Fermi-Dirac distribution fF(ω),
which are defined as

fB(ω) ≡
1

eβω − 1
, fF(ω) ≡

1
eβω + 1

. (3.15)

It is possible because the Bose-Einstein and the Fermi-Dirac distributions possess poles at 2nπT
and (2n + 1)πT , which exactly coincide with the bosonic and fermionic Matsubara frequencies,
respectively. See Sec. 4.2 for the concrete procedure.

3.2 Hard thermal loops

Hard thermal loops (HTLs) refer to the diagrams that the “hard” loop momentum of the scale T
saturate the loop integral; it gives the leading behavior in temperature ∝ T 2. This leading behavior is



32 CHAPTER 3. REVIEW OF QCD THERMODYNAMICS AND RESUMMATION SCHEMES

<latexit sha1_base64="C9x7nQoWTJYfS3krkKJr17YTon4="></latexit>

⇧µ⌫(K) = �
K

Q

Q � K

µ ⌫

Fig. 3.1: One-loop contribution to the gluon self-energy Πµν(K).

due to the quadratic divergence in the loop integral: at finite temperature, this quadratic UV divergence
∝ k2 is cut off at . T by either the Bose-Einstein or the Fermi-Dirac distribution.

3.2.1 Hard thermal loop approximation

The leading behavior in temperature ∝ T 2 is extracted with ease in the HTL approximation. The
HTL approximation has already been employed in various literature [234–237] (see also Refs. [238,
239]) even before the concept of HTL; the interpretation of the approximation was clarified later by
Braaten and Pisarski [7, 108, 240] (see, e.g., Ref. [241] for the comprehensive review; some of the
discussion below follows this paper).

Now let us take the quark-loop contribution to the gluon self-energy diagram shown in Fig. 3.1 as
an example of the HTL approximation. The approximation can be defined by the following steps:

HTL approximation� �
(1) Consider soft external momentum of the scale K ∼ gT . Neglect all the external momenta

in numerators (which is /K).

(2) Sum over all Matsubara frequencies ω̃n inside the loops (precisely speaking, this step does
not involve any approximations, but it is anyways necessary for the HTL approximation).

(3) Expand the spatial component of external momenta over the loop momenta (which is k/q),
then integrate over hard spatial loop momenta q ∼ T .� �

3.2.2 Gluon self-energy in the HTL approximation

We will demonstrate the HTL approximation by computing the gluon self-energy diagram shown
in Fig. 3.1. We treat quarks as massless for simplicity. Using the Feynman rules in the above-
mentioned imaginary time and the path integral formalism, one can express it as

Πµν(K) = g2 Nf

2

∑∫
Q

tr[γE
µ /Qγ

E
ν ( /Q − /K)]

Q2(Q − K)2 , (3.16)
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where we define the Euclidean momenta as Kµ = (k4,k) = (−ω,k) and Qµ = (−ω̃n, q) with K2 =

ω2 +k2 and Q2 = ω̃2
n + q2. We will also denote q̂ = q/q. We use the following shorthand notation for

the Matsubara sum and spatial integration:

∑∫
Q
≡ T

∑
n

∫
q

,

∫
q

≡

∫
d3q

(2π)3 . (3.17)

Also, we define the Euclidean Dirac matrices γE
µ as γE

0 ≡ iγ0 and γE
i ≡ γi, so that they follow the

anti-commutation relation {γE
µ , γ

E
ν } = −2δµν.

HTL approximation: Step (1) neglect the soft scale in the numerator In this step, we neglect
the /K-term in the nominator corresponding to the soft external momentum and carry out the Dirac
algebra. It leads to

Πµν(K) ' g2 Nf

2

∑∫
Q

8QµQν − 4Q2δµν

Q2(Q − K)2 ,

= 4g2Nf

∑∫
Q

QµQν

Q2(Q − K)2 − 2δµνg2Nf

∑∫
Q

1
(Q − K)2 ,

= 4g2Nf

∑∫
Q

QµQν

(ω̃2
n + E2

q)[(ω̃n − ω)2 + E2
q−k

]
− 2δµνg2Nf

∑∫
Q

1
ω̃2

n + E2
q

,

≡ Iµν − δµνJ . (3.18)

In the last line, we have defined the integrals Iµν and J.

HTL approximation: Step (2) carry out Matsubara sum In this step, we carry out the Matsubara
sum for the integral Iµν and J. The Matsubara sum is performed by the usual contour integral tech-
nique. As emphasized above, there is no approximation in this step, but it is necessary for the later
step of the approximation.

Firstly, the frequency sum for J can be evaluated as [232]:

J = 2g2Nf

∑∫
Q

1
ω̃2

n + E2
q

= 2g2Nf

∫
q

1
2Eq

[1 − 2 fF(Eq)] . (3.19)

Next, we evaluate the Matsubara sum for the (i j)-component of the integral Iµν:

Ii j = 4g2Nf

∑∫
Q

qiq j

(ω̃2
n + E2

q)[(ω̃n − ω)2 + E2
q−k

]

= −
g2Nf

2π2

∫
q2dqdΩ

4π
q2q̂iq̂ j

EqEk−q

[
(1 − fF(Eq) − fF(Eq−k))

(
1

iω − Eq − Eq−k

−
1

iω + Eq + Eq−k

)
−( fF(Eq) − fF(Eq−k))

(
1

iω + Eq − Eq−k

−
1

iω − Eq + Eq−k

)]
, (3.20)
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where we defined as

Eq = q, Eq−k = |q − k|, cos θ = (k · q)/(kq), dΩ = d cos θdφ . (3.21)

Similarly, the Matsubara sum for the (4i)-component of the integral can be evaluated as:

I4i = 4g2Nf

∑∫
Q

ω̃nqi

(ω̃2
n + E2

q)[(ω̃n − ω)2 + E2
q−k

]

=
g2Nf

2π2

∫
q2dqdΩ

4π
iqq̂i

Ek−q

[
(1 − fF(Eq) − fF(Eq−k))

(
1

iω − Eq − Eq−k

+
1

iω + Eq + Eq−k

)
+( fF(Eq) − fF(Eq−k))

(
1

iω + Eq − Eq−k

+
1

iω − Eq + Eq−k

)]
. (3.22)

By using the relation ω̃2
n = Q2 − q2, (44)-component of the integrals can be related to J and Ii j, which

are already obtained above:

I44 = 2J − δi jIi j . (3.23)

HTL approximation: Step (3) carry out loop integral over the hard scale In this step, we will
treat q is large, which is the origin of the term “hard thermal loop.” We will only keep terms that
depend on T and those that do not are simply dropped.

Firstly, J from Eq. (3.19) can further be approximated as

J ' 2g2Nf

∫
q

1
Eq

fF(Eq) = −Nf
g2T 2

12
(3.24)

Supposing that q is large, we expand Eq−k in terms of k/q, so that

Eq−k = |q − k| = q
√

1 − 2(q · k)/q2 + k2/q2 ' q − k cos θ , (3.25)

fF(Eq−k) ' fF(q − k cos θ) ' fF(q) − k cos θ
d fF(q)

dq
. (3.26)

And the denominators of Eqs. (3.20) and (3.22) significantly simplify, and take the form

iω + Eq − Eq−k ' iω − k · q̂ = K · Q̂ , (3.27)

where we define Q̂µ = (−i, q̂). Using this relation, we can approximate Eq. (3.20) as

Ii j ' −
g2Nf

π2

∫
q2dqdΩ

4π
q̂iq̂ j

(
fF(q)

q
−

d fF(q)
dq

+
d fF(q)

dq
iω

K · Q̂

)
= −Nf

g2T 2

12
δi j + Nf

g2T 2

6

∫
dΩ

4π
iω

K · Q̂
q̂iq̂ j , (3.28)
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Fig. 3.2: One-loop contribution to the quark self-energy Σ(K).

and Eq. (3.22) as

I4i ' −
g2Nf

π2

∫
q2dqdΩ

4π
q̂i

d fF(q)
dq

ω

K · Q̂

= Nf
g2T 2

6

∫
dΩ

4π
ωq̂i

K · Q̂
. (3.29)

Plugging all these integrals J and Iµν in Eq. (3.18), we finally get the quark-loop contribution to
the gluon self-energy in the HTL approximation:

Π̂µν = M̂2
D

∫
dΩ

4π

δµ4δν4 +
iωQ̂µQ̂ν

K · Q̂

 . (3.30)

Note that the caret in Π̂ means that it is the HTL quantity, which is evaluated in the HTL approxi-
mation. The coefficient M̂D in front is the QCD Debye mass which takes the form by including the
additional contributions from gluon-loops and quark chemical potential:

M̂2
D ≡

g2

3

(
Nc +

1
2

Nf

)
T 2 +

g2Nf

2π2 µ
2 . (3.31)

Note that this is also the HTL quantity with a caret symbol.

3.2.3 Quark self-energy

We compute the quark self-energy diagram shown in Fig. 3.2. Here we also include the bare quark
masses m f . It can be calculated similarly to the gluon self-energy case:

Σ f (K) = −g2CF

∑∫
Q

γE
µ /Qγ

E
µ

(ω̃2
n + E2

q)[(ω̃n − ω)2 + E2
q−k

]
. (3.32)
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By performing Matsubara sum, we arrive at

Σ f (K) = −g2CF

∫
q

1
EqEq−k

{
f (−Eq, q)

iω + Eq + Eq−k

[
1 + fB(Eq−k) − fF(Eq − µ f )

]
+

f (−Eq, q)
iω + Eq − Eq−k

[
fF(Eq − µ f ) + fB(Eq−k)

]
+

f (Eq, q)
iω − Eq + Eq−k

[
− fF(Eq + µ f ) − fB(Eq−k)

]
+

f (Eq, q)
iω − Eq − Eq−k

[
−1 − fB(Eq−k) + fF(Eq + µ f )

]}
, (3.33)

where Eq =
√
q2 + m2

f and Eq−k = |q − k|. We define the function f in the nominators as

f (±Eq, q) = (D − 2)
[
±Eqγ

0 + q · γ
]

+ Dm f1 , (3.34)

with D = 4 − 2ε being the dimension of the Minkowski theory. Note that the Dirac matrices are now
in the Minkowskian convention.

We will again carry out the HTL approximation by expanding Eq and Eq−k in terms of the hard
loop momentum q:

Eq =

√
q2 + m2

f ' q, Eq−k ' q − k cos θ (3.35)

In the strict sense, neglecting the bare quark mass m f is not the HTL approximation; the bare quark
mass does not follow the soft gT or hard T scales in the HTL hierarchy, so the full m f -dependence in
Eq can be kept intact. It is, however, customary to neglect m f as well in the HTL approximation, as
m f � µ f in any cases.

After analytic continuation to the Minkowski space, we obtain the quark self-energy expression

Σ̂ f (k0, k) = M̂2
q f

∫
dΩ

4π
/y

kµyµ
, (3.36)

where we define a light-like vector yµ = (1, ŷ). The coefficient M̂q f in front is the quark screening
mass:

M̂2
q f ≡

g2

8
N2

c − 1
2Nc

T 2 +
µ2

f

π2

 . (3.37)

3.2.4 Need for resummation

We can understand why we need HTL resummation by the simple comparison between the kinetic
term and the interaction, or the fluctuation term. Let us consider the minimal coupling in QCD:

∂µ + igAµ ∼ kµ + igĀ , (3.38)
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Fig. 3.3: Diagrammatic argument of the need for HTL resummation.

where the first term corresponds to the momentum in the kinetic term; it is the momentum that appears
as the external momentum in the Feynman diagram. The second term corresponds to the typical
gauge fluctuations. We define it as Ā ≡

√
〈A2〉T ∼

√
Π̂/g. From the calculations in the preceding

subsections, we already know that the gluon self-energy has the scale Π̂ ∼ g2T 2. Therefore, the
typical gauge fluctuations Ā ∼ T . If the magnitude of the kinetic term is larger than the interaction
term, i.e. kµ � igĀ, then one can treat this mode perturbatively.

We will now refer to Fig. 3.3 for the explanation. When the kinetic term is of the scale of k ∼ T ,
then the typical gauge fluctuation is of the scale of T , so that the condition kµ � igĀ is satisfied. If
we roughly evaluate the diagram above in Fig. 3.3, then one obtains

1
k2 +

1
k2 Π

1
k2 +

1
k2 Π

1
k2 Π

1
k2 + · · ·

∼
1

T 2 +
1

T 2 (gT )2 1
T 2 +

1
T 2 (gT )2 1

T 2 (gT )2 1
T 2 + · · ·

∼
1

T 2 +
g2

T 2 +
g4

T 2 + · · · . (3.39)

There is a clear hierarchy in the g2-expansion, so that the diagrams can be perturbatively treated.

However, when the momentum is of the scale of k ∼ gT (see the lower panel of Fig. 3.3), then the
magnitude of the kinetic term and the interaction term becomes similar: kµ ∼ igĀ. Then the upshot is,

1
k2 +

1
k2 Π

1
k2 +

1
k2 Π

1
k2 Π

1
k2 + · · ·

∼
1

(gT )2 +
1

(gT )2 (gT )2 1
(gT )2 +

1
(gT )2 (gT )2 1

(gT )2 (gT )2 1
(gT )2 + · · ·

∼
1

(gT )2 +
1

(gT )2 +
1

(gT )2 + · · · . (3.40)

All the diagrams, with an arbitrary number of loops, shown below in Fig. 3.3 contribute equally. This
schematic calculation clearly delineates that the gluon self-energy Πµν is the same order of magnitude
as the bare propagator. Therefore, these diagrams should be treated on the same footing, and thus
added up to infinite orders. This is the essential ideal of the HTL resummation. If we resum all the
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HTL diagrams, what we get is the resummed full propagator:

1
k2 +

1
k2 Π

1
k2 +

1
k2 Π

1
k2 Π

1
k2 + · · · =

1
k2 − Π

. (3.41)

We have only shown the calculation of the gluon self-energy, but the same discussion applies to
the quark self-energy Σ. Moreover, the three-, and four-gluon vertices Γ are also of the same order of
magnitude as the bare propagator and the bare vertices. It is true when all external momenta are of the
soft scale gT , and this separation of the scale is crucial in the HTL machinery. The HTL resummation
can be regarded as the generalization of the Gell-Mann–Brueckner type resummation, in which only
the resummation of the propagator is concerned, but the HTL resummation is somewhat different as
it also involves the vertex correction.

Here, several comments are in order. The HTLs are independent of the gauge fixing methods. This
has been verified by the explicit calculations [7,242], and the general proof has been given by Blaizot
and Iancu within the kinetic theory approach in Refs. [243,244]. The gauge-fixing independent nature
of HTLs demonstrates that only physical excitations contribute to the collective motions.

We also note that the major impetus for pursuing the HTL resummation was to solve the con-
vergence problem of the EoS of hot QCD matter. It has been known since the old-time that the
EoS exhibits the highly oscillatory behavior. That is, if we compute the hot QCD EoS in the pertur-
bative expansion with respect to g, then the behavior completely changes order by order (see, e.g.,
[245,246] for theO(g5) calculations). The pressure P normalized with the free gas value PSB is always
P/PSB < 1 for O(g2) calculation. Things change drastically for the O(g3) and O(g4) calculations; the
normalized pressure always exceeds the unity, i.e., P/PSB > 1. If we include the O(g5) contribution,
however, then it again shows P/PSB < 1 behavior. We were not able to go beyondO(g5) perturbatively
due to Linde’s problem. It was a big problem in the late 1990s, and now it seems to be solved after the
reliable lattice-QCD calculations [42,43] have come out. The approaches mentioned in the following
sections, especially the HTL perturbation theory, concern the convergence problem in QCD thermo-
dynamics. Finally, we note that there seems to be no such convergence problem at T = 0 and µ > 0:
the higher-order perturbative correction does not change the behavior of the pressure as drastically as
in the finite-temperature QCD.

3.3 Braaten-Pisarski resummation scheme

From the discussion in the last subsection, we see the necessity of resummation. Thus, we need
to develop the effective expansion in terms of the effective, or dressed, propagators and vertices. In
this section, we will briefly mention a systematic reorganization of the perturbative series put forth by
Braaten and Pisarski [7, 108, 240], which takes into account the effective propagators and vertices.

We will first explain the effective action for the HTL resummation. Then we will proceed to the
elementary building blocks of the Braaten-Pisarski scheme, which are the dressed propagators and
vertices; these can be derived from the HTL effective action.
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The HTL effective action, which was firstly discovered by Taylor and Wong [247], can be divided
into the gluon and quark part:

LHTL = LHTL, g +LHTL, q . (3.42)

The expression of the quark self-energy in Eq. (3.36) suggests the form of the quark part of the
HTL Lagrangian:

LHTL, q = M̂2
q f ψ̄(k)

∫
dΩ

4π
/y

yµkµ
ψ(−k) . (3.43)

As the inverse Fourier transform implies that pµ → −i∂µ, this can be made into the real space

LHTL, q = iM̂2
q f ψ̄(x)

∫
dΩ

4π
/y

yµ∂µ
ψ(x) . (3.44)

This expression is still gauge-variant, so in order to maintain the gauge-invariance, we will replace ∂µ
with the covariant derivative Dµ

LHTL, q = iM̂2
q f ψ̄(x)

∫
dΩ

4π
/y

y · D
ψ(x) . (3.45)

Gluon effective action can be derived likewise. Using the gluon-self energy expression in Eq. (3.30),

LHTL, g =
1
2

tr AµΠ̂µνAν , (3.46)

from which we will obtain after the similar calculation above,

LHTL, g = −
1
2

M̂2
D tr

∫
dΩ

4π
Fµρ

yρyσ

(y · D)2 Fµ
σ . (3.47)

Finally we obtain the HTL effective Lagrangian:

LHTL = −
1
2

M̂2
D tr

Fµρ

〈
yρyσ

(y · D)2

〉
y

Fµ
σ

 + iM̂2
q f ψ̄ f

〈
/y

y · D

〉
y
ψ f , (3.48)

where y = (1, ŷ) is the light-like vector. We understand 〈· · · 〉y as the average over the ŷ direction, i.e.,
carrying out the dΩ integration. The definitions of the QCD Debye mass M̂D and the quark screening
mass M̂q f are given in Eqs. (3.31) and (3.37), respectively. This effective Lagrangian is proven to be
gauge-invariant [247] (see also Refs. [248, 249] for its connection to the Chern-Simons action).

From this Lagrangian, one can derive the gluon and quark dressed inverse propagators D and S f

D−1
µν (ω, k) = D−1

0, µν(ω, k) + Π̂µν(k) ,

S −1
f (ω, k) = S −1

0 (k) + Σ̂ f (ω, k) .
(3.49)

where D−1
0,µν and S −1

0 are the gluon and quark free inverse propagators. We can also derive the dressed
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vertices such as
∗Γa

µ(k; q1, q2) = taγµ + Γ̂a
µ(k; q1, q2) , (3.50)

from the effective Lagrangian. Indeed, from δLHTL, q/δψ̄δψδAµ, one can obtain

Γ̂a
µ(k; q1, q2) = −M̂2

q f t
a
∫

dΩ

4π
yµ/y

(q1 · y)(q2 · y)
. (3.51)

In the Braaten-Pisarski scheme, when we calculate the Feynman diagrams we use different prop-
agators and vertices according to the scale of the loop momentum involved. Namely, for hard modes,
we simply apply the bare propagators and vertices, while for soft modes we use the dressed propaga-
tors and vertices. In this scheme, we supplement the bare QCD Lagrangian with the HTL Lagrangian:

LQCD = LQCD +LHTL − LHTL = Leff + ∆L , (3.52)

and the added part will be regarded as the HTL effective theory while the subtraction is regarded as a
counter term to avoid double counting of the HTLs.

We note that the recent enterprise on the pQCD calculation at T = 0 [62–64] and T . gµ [250]
adopt this HTL-resummation scheme. Their physical picture is that the quarks are filled up to µ f in
the Fermi sphere, so that the low momentum quarks are Pauli blocked. Therefore they only consider
the hard mode for the quarks, and no resummation is included in the quark sector.

3.4 Screened perturbation theory: HTL perturbation theory

Another way to include the HTL-resummation effect is the HTL perturbation theory (HTLpt).
Later on in this thesis, we will use this approach. It is considered as an application of the screened
perturbation theory to QCD.

To see how the screened perturbation theory works, let us first take the massless scalar theory as
an example. The Minkowskian Lagrangian for the massless scalar theory reads:

L =
1
2
∂µφ∂

µφ −
λ

4!
φ4 . (3.53)

At non-finite temperature, it is well known that the conventional perturbative expansion is spoiled by
the IR divergence (see, e.g., Ref. [233] for the standard discussion). Nevertheless, this IR divergence
can be removed by resumming the higher-order ring diagrams that generate a thermal screening mass
of order meff ∼ gT , which results in the perturbative series with an expansion in powers of

√
λ, not λ.

Alternatively, this screening effect can also be reproduced by using the screened perturbation the-
ory [251], or more systematically by using the optimized perturbation theory [252] (we note that this
is the field-theoretical analog of the variational perturbation theory à la Feynman and Kleinert [253]).
In these theories, we include the screening effect by supplementing the effective mass term −1

2m2
eff
φ2
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into the original theory and subtracting the effective term so that the total Lagrangian does not change:

L =
1
2
∂µφ∂

µφ −
1
2

m2
effφ

2︸                   ︷︷                   ︸
L′(free)

+
1
2

m2
effφ

2 −
λ

4!
φ4︸             ︷︷             ︸

L′(int)

. (3.54)

Now we treat the L′(free) as the free theory and L′(int) as an interaction of order λ. The effects of the m2
eff

term in L′(free) contributes to all orders, but the systematic subtracted by the m2
eff

term in L′(int). In this
approach, the parameter m2

eff
is arbitrary; the gap equation to determine this parameter as a function

of g2 and T has been obtained. We note that this also remedies the convergence problem.

Now we apply this idea to QCD and the HTL Lagrangian. We will regard the HTL screening
effect as the effective mass in the screened perturbation theory. After reorganizing the Lagrangian as

L = L
(free)
QCD +LHTL − LHTL +L

(int)
QCD = L′(free) +L′(int) (3.55)

the new free theory includes the HTL contribution. It seems to be the same as the Braaten-Pisarski
scheme, but the difference lies in that the HTLpt uses the L′(free) at any momentum scale.

The drawback of this approach is that the UV structure is modified, so that the additional divergent
terms appear. There is still no rigorous proof on the renormalizability of L′(free), nevertheless, we
assume that new divergence can be subtracted with additional counter terms. See Ref. [254] for a
more detailed review. More details will be given in the next chapter, and the concrete calculations
will also be shown there.

3.5 Φ-derivable approximation in the 2PI expansion

A systematic way to incorporate the screening effects in the thermodynamics is to use a formalism
in which the grand potential Ω = −PV is expressed in terms of the dressed Green’s function. Such a
formalism, also referred to as the effective action for composite operators, has been recognized in non-
relativistic systems in condensed matter physics [216, 223, 224, 255], then later applied to relativistic
field theories [225] by Cornwall, Jackiw, and Tomboulis; it is thus also referred to as Cornwall-
Jackiw-Tomboulis (CJT) formalism in some literature. This has been applied to QCD in the context
of HTL resummation by Blaizot, Iancu, and Rebhan [218–221] and independently by Peshier [222].
In this formalism, the grand potential reads

βΩ[D, S ] =
1
2

tr ln D−1 −
1
2

tr ΠD − tr ln S −1 + tr ΣS + Φ[D, S ] , (3.56)

where D and S are the gluon and quark full propagators; they are expressed in terms of the gluon and
quark self-energies Π and Σ through Schwinger-Dyson equations (it is also commonly referred to as
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the gap equations)

D−1
µν = D−1

0, µν + Πµν ,

S −1
f = S −1

0 + Σ f .
(3.57)

We understand the trace in Eq. (3.56) is taken over all the configuration space such as momenta,
Matsubara modes, flavors, colors, etc. Higher-order corrections Φ[D, S ] are given in terms of two-
particle irreducible (2PI) skeleton diagrams, in which all lines are the full propagators instead of the
bare ones. The 2PI vacuum diagrams up to two-loop order in QCD are shown as
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1

2
+ · · ·

(3.58)

The self-energies are obtained from Φ[D, S ] upon variation of D and S :

Πµν ≡ 2
δΦ[D, S ]
δDµν

, Σ ≡
δΦ[D, S ]

δS
. (3.59)

The self-energies here are functionals of the full propagators, and they satisfy the SD equations of
Eq. (3.57). These relations Eqs. (3.57) and (3.59) together define the propagators and self-energies in
a self-consistent manner.

The procedure above outlines the Φ-derivable, or self-consistent, approximations; these relations
lead the full propagators to fulfill the variational equations such that Ω[D, S ] is stationary under the
variations of D and S at fixed D0 and S 0, i.e.,

δΩ[D, S ]
δD

= 0 ,
δΩ[D, S ]

δS
= 0 . (3.60)

The basic ingredient of the Φ-derivable approximation scheme is this stationary property.

Another virtue of the stationary condition in Eq. (3.60) is the simplification in the expression of
density. It is defined by

n = −
∂(Ω/V)
∂µ

∣∣∣∣∣
T
. (3.61)

After the conventional contour deformation, the Matsubara sum becomes the continuous integral, and
density takes the form of

n = −2
∫

d4k
(2π)4

∂ fF(ω − µ)
∂µ

tr
[
Im ln S −1(ω, k) − Im Σ(ω, k) Re S (ω, k)

]
+ n′ , (3.62)

where the imaginary part of the function is defined as follows

Im S −1(ω, k) ≡ Im S −1(ω + i0+, k) =
1
2i

Disc S −1(ω, k) . (3.63)
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The term n′, originating from the residual interaction between the quasi-particles [217], is given by

n′ ≡ −
∂(TΩ)
∂µ

∣∣∣∣∣
D,S

+ 2
∫

d4k
(2π)4

∂ fF(ω − µ)
∂µ

tr[Re Σ Im S ] = 0 . (3.64)

It is proven to be n′ = 0 up to O(g3). Although Φ[D, S ] contributes to Ω already at O(g2), this
cancellation postpones the Φ-contribution beyond O(g3). The advantage of this approach is that the
O(g2) results for the derivative quantity of Ω can be obtained without explicitly calculating the O(g2)
diagrams. This cancellation has been proven in QED [217] and in QCD [220].

Here, several remarks are in order. We note that the self-consistently resummed expression of
density in Eq. (3.62) is UV finite; the divergence is tamed by the Fermi-Dirac distribution. The Φ-
derivable approximation in principle introduces the gauge dependence because the vertices are not
dressed, but it has been shown that the gauge dependence is suppressed at the stationary point [256].
Nevertheless, it does not matter in the actual QCD calculations because more approximation is in-
volved, and only the gauge-invariant HTLs are used. This approach is named as “approximately
self-consistent resummation” by Blaizot, Iancu, and Rebhan [220]; we still use the self-consistent
formalism, but we make an approximation to the solution of the gap equations (3.57) as it is almost
impossible to analytically solve these equations in QCD.

In this thesis, we will briefly mention the results obtained in this formalism as a crosscheck to the
HTLpt, but there is an ambiguity in the EoS arising from the treatment of the constant term, so we do
not get deeply involved in this formalism.
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Chapter 4

EoS construction from pQCD with
HDL-resummation

In this chapter, we perform the actual calculation for the EoS. From the technical point of view, we
adopt the resummation schemes in the gluon sector as prescribed in Ref. [204, 205] and in the quark
sector as in Ref. [227] with our own extension to cope with the strange quark mass. Our expressions
are given in the form of exact integrations without any expansion in terms of the screening mass as in
Ref. [213]. We construct our EoS in the β equilibrium and charge neutral system.

4.1 Pressure of quark matter from HDLpt

In the T → 0 limit the HDLpt pressure, PHDLpt, is given by the gluon loop and the quark loop with
the self-energy insertions; namely,

PHDLpt = (N2
c − 1)Pg + Nc

∑
f =u,d,s

Pq, f + ∆Pg,q , (4.1)

where ∆Pg and ∆Pq are the counter terms that subtract the ultraviolet divergences.

Gluon pressure Pg: The gluon part with an appropriate subtraction by ∆Pg ∝ 1/ε (where the spatial
dimensions are d = 3 − 2ε in the dimensional regularization) is

Pg =
M4

D

64π2

(
ln

Λ̄

MD
+ Cg

)
. (4.2)

A constant, Cg, is an integral over a function involving the gluon self-energy and numerically esti-
mated as Cg ≈ 1.17201 in the dimensional regularization. Here, MD is the gluon screening mass
induced by µ, i.e.,

M2
D ≡

2αs

π

∑
f

µ2
f . (4.3)

45
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We note that the bare quark masses in the hard loops are neglected commonly in the HTL approx-
imation (see Ref. [232] for a standard textbook). The gluon sector is intact, so we just employ the
expressions given in Refs. [204, 205, 213, 215]. See Appendix A for the complete calculation.

Quark pressure Pq, f : The quark part appears from the flavor- f quark loop, i.e.,

Pq, f = tr ln S −1
f , (4.4)

where the inverse dressed propagator S −1
f is

S −1
f = /k − m f − Σ(k0,k) , (4.5)

k0 = iω̃n + µ f , (4.6)

for flavor- f quarks with ω̃n ≡ (2n+1)πT being the fermionic Matsubara frequency. For the expression
of the self-energy Σ, whose explicit from was given in Sec. 3.2.3, we need to introduce the following
notations according to Refs. [213, 227], i.e.,

A0(k0, k) ≡ k0 −
M2

q f

k0
T̃ (k0, k) , (4.7)

As(k0, k) ≡ k +
M2

q f

k

[
1 − T̃ (k0, k)

]
, (4.8)

and the flavor- f quark screening mass is

M2
q f ≡

αs

2π
N2

c − 1
2Nc

µ2
f . (4.9)

The fermionic HTL function in d = 3 − 2ε spatial dimensions is defined as

T̃ (k0, k) ≡
Γ(d

2 )

Γ(1
2 )Γ( d−1

2 )

∫ 1

−1
dz (1 − z2)

d−3
2

k0

k0 − kz
= 2F1

(1
2
, 1;

3
2
− ε;

k2

k2
0

)
, (4.10)

which arises from the angular integration in Eq. (3.36). Then, the self-energy for flavor- f quarks is
expressed as

/k − Σ(k0, k) = A0(k0, k)γ0 − As(k0, k)γ · k̂ . (4.11)

The paramount advance in this work is the inclusion of bare mass m f , and the quark pressure deviates
from Refs. [213,227]. Let us first write down our final expression and then explain the notations next.
In the flavor- f quark sector the pressure contribution reads:

Pq, f = M4
q f

[
Cq(η f ) + Dq(η f ) ln

Λ̄

Mq f

]
+ Pqp, f + PLd, f . (4.12)
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We introduced Cq and Dq as functions of η f ≡ 1+m2
f /(2M2

q f ). These definitions involve the following
functions:

f±(ω̄, η f ) =
η f ± η

′(ω̄, η f )
1 + ω̄2 , (4.13)

η′(ω̄, η f ) =

√
η2

f −(1+ω̄2)
[(

1−T̃ (iω̄, 1)
)2

+
T̃ 2(iω̄, 1)

ω̄2

]
, (4.14)

where ω̄ is a dimensionless and continuous variable. Then, Cq and Dq are given by

Cq(η f ) =
∑
χ=±

1
4π3

∫ ∞

0
dω̄

(
f 2
χ ln fχ −

∂ f 2
χ

∂ε

)
+

(5
4
− ln 2

)
Dq(η f )

=
∑
χ=±

1
4π3

∫ ∞

0
dω̄

(
f 2
χ ln fχ −

∂ f 2
χ

∂ε

)
−

1
2π2

(5
4
− ln 2

)
(η2

f − 1) , (4.15)

Dq(η f ) = −
∑
χ=±

1
2π3

∫ ∞

0
dω̄ f 2

χ

= −
1

2π2 (η2
f − 1) . (4.16)

We note that Dq(η f → 1) → 0 and Cq(η f → 1) ≈ −0.03653 as is consistent with Ref. [213]. We also
note that the subtraction at finite m f is mass dependent, i.e.,

∆Pq = M4
q f Dq(η f )

1
2ε
. (4.17)

Quasi-particle contribution Pqp, f to the quark pressure: The next term, Pqp, f , in Eq. (4.12) is the
quasi-particle contribution given by

Pqp, f =
1
π2

∫ ∞

0
dk k2

∑
χ=±1

[
(µ f − ω fχ)θ(µ f − ω fχ)

]
−

µ4
f

12π2 . (4.18)

We note that the ideal term ∝ −µ4
f in the above expression arises in the calculation as we doubly

pick up two pole contributions at ω f±. In Ref. [227] the quasi-particle contribution was defined by
taking the M2

q f derivative/integration, so that only the difference from the ideal term was considered
by construction, and the ideal term was not subtracted but added. Here, the quasi-particle poles, ω f±,
are solutions of the following implicit equations, i.e.,

A0(ω f±, k) ∓
√

m2
f + A2

s (ω f±, k) = 0 , (4.19)
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or writing it down more explicitly

ω f± −
M2

q f

k
Q0

(ω f±

k

)
∓

√√√
m2

f +

k − M2
q f

k
Q1

(ω f±

k

)2

= 0 , (4.20)

where

Q0(x) ≡
1
2

ln
(

x + 1
x − 1

)
, Q1(x) ≡ xQ0(x) − 1 , (4.21)

are the Legendre functions. These Legendre functions arise from the HTL function (4.10) in the limit
of ε → 0.

Landau damping contribution PLd, f to the quark pressure: Finally, the last term in Eq. (4.12)
represents the contribution from the Landau damping, which reads:

PLd, f = −
1
π3

∫ µ f

0
dω

∫ ∞

ω

dk k2 θq f (ω, k; m f ,M2
q f ) . (4.22)

The integrand is given by tan θq f = Y/X where

X = k2 − ω2 + m2
f + 2M2

q f +
M4

q f

k2

{
1 −

2ω
k

Q0(k/ω) −
k2 − ω2

k2

[
Q2

0(k/ω) −
π2

4

]}
, (4.23)

Y =
πM4

q f

k2

[
ω

k
+

k2 − ω2

k2 Q0(k/ω)
]
. (4.24)

In this case k ≥ ω holds and the argument of Q0 should be k/ω, not ω/k.
In Fig. 4.1, we show a breakdown of each contribution to the pressure for the massless bare quarks.

The pressure is normalized with the ideal gas value: Pideal = NcNfµ
4
f /(12π2). For the illustration

purpose, we plot the massless bare quark pressure, but the behavior is the same for the massive bare
quark pressure: quasiparticles dominate the pressure.

4.2 Details of the integration

Here, we will elaborate on the details of integration that appear in the derivation of Eq. (4.12) in
the previous section. The quark part of the pressure appears from the flavor- f quark loop:

Pq, f (T, µ f ) = tr ln S −1
f (4.25)

=
∑∫

{K}
ln det

[
/k − m f − Σ(iω̃n + µ f , k)

]
= 2

∑∫
{K}

ln
[
A2

S (iω̃n + µ f , k) + m2
f − A2

0(iω̃n + µ f , k)
]
, (4.26)
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Fig. 4.1: A breakdown of each contribution to the pressure. The pressure is normalized with the ideal
gas value. For the illustration purpose, the plot is in the massless limit of bare quarks, but the same
holds for the massive bare quarks.

where we write the sum-integral as ∑∫
{K}

= T
∑
ω̃n

∫
k

in d = 3−2ε spatial dimensions for the momentum
integration. The functions A0 and AS are defined above. We note that Pq, f in Eq. (4.25) can be regarded
as a leading contribution in the 2PI formalism.

We recast the Matsubara sum into the contour integral along with C as depicted in the left panel
of Fig. 4.2. We can deform the contour C into Cqp ∪ CLd, see the right panel of Fig. 4.2. We identify
the terms from Cqp and CLd with the quasi-particle contribution and the Landau damping contribution,
respectively, according to Refs. [206, 213]:

Pqp/Ld, f (T, µ f ) =

∫
k

∮
Cqp/Ld

dω
2πi

ln
[
A2

s(ω, k) + m2
f − A2

0(ω, k)
]

tanh
(
β(ω − µ f )

2

)
. (4.27)
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C
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Im ω
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Im ω

k−k

+ωf−−ωf−

Cqp

CLd

+ωf+−ωf+

Fig. 4.2: (Left) Original contour C corresponding to the Matsubara sum. (Right) Deformed contours,
Cqp and CLd.

Quasi-particle contribution: The quasi-particle contribution to the integral (see the right panel of
Fig. 4.2) is

Pqp, f =

∫
k

{∫ ∞

ω̃ f +

dω
2π

[
Disc arg

(
A2

s(ω, k) + m2
f − A2

0(ω, k)
)] [

tanh
(
β(ω − µ f )

2

)
− tanh

(
β(−ω − µ f )

2

)]
+

∫ ω̃ f−

k

dω
2π

[
Disc arg

(
A2

s(ω, k) + m2
f − A2

0(ω, k)
)] [

tanh
(
β(ω − µ f )

2

)
− tanh

(
β(−ω − µ f )

2

)]}
=

∫
k

{∫ ∞

ω̃ f +

dω
2π

(−2π)
[
2−

2
eβ(ω−µ f ) + 1

−
2

eβ(ω+µ f ) + 1

]
+

∫ ω̃ f−

k

dω
2π

(2π)
[
2−

2
eβ(ω−µ f ) + 1

−
2

eβ(ω+µ f ) + 1

]}
=2

∫
k

∑
χ,s=±

T ln
[
1 + e−β(ω fχ+sµ f )

]
− 2

∫
k

∑
s=±

T ln
[
1 + e−β(k+sµ f )

]
+ 2

∫
k

[ω f +(k) + ω f−(k) − k] ,

(4.28)

where we defined as Disc f (ω) ≡ f (ω + i0+) − f (ω − i0+), used A2
0,s(ω, k) = A2

0,s(−ω, k), and dropped
an irrelevant infinity from the upper bound of the ω-integration. The dispersion relation for quarks
ω f± is obtained by solving Eq. (4.20) above. For the moment we can drop the third term in Eq. (4.28)
that is independent of T and µ f (which will be reassembled later). Finally, we obtain:

Pqp, f (T = 0, µ f ) =
1
π2

∫ ∞

0
dk k2

∑
χ=±1

[
(µ f − ω fχ)θ(µ f − ω fχ)

]
−

µ4
f

12π2 , (4.29)

which completes the derivation of Eq. (4.18) above. The s = −1 term in the sum of Eq. (4.28) vanishes
at T → 0 because of the step function θ(−µ f − ω fχ).
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Landau damping contribution: The Landau damping contribution to the integral is

PLd, f =

∫
k

∫ k

−k

dω
2π

Disc arg
(
A2

s(ω, k) + m2
f − A2

0(ω, k)
)

tanh
(
β(ω − µ f )

2

)
= −

1
π

∫
k

∫ k

0
dω 2θq f (ω, k; m2

f ,M
2
q f )

[
1

eβ(ω−µ f ) + 1
+

1
eβ(ω+µ f ) + 1

− 1
]
. (4.30)

In the last line we introduced [with X and Y defined in Eqs. (4.23) and (4.24) above, respectively]:

2θq f = 2 arctanY/X = Disc arg
(
A2

s(ω, k) + m2
f − A2

0(ω, k)
)

= Disc arctan

 Im
[
A2

s(ω, k) + m2
f − A2

0(ω, k)
]

Re
[
A2

s(ω, k) + m2
f − A2

0(ω, k)
]


= Disc arctan


M4

q f

k2

[
−2 Im
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2F1( 1

2 , 1; 3
2 ; k2

ω2 )
)
− k2−ω2

ω2 Im
(
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2 , 1; 3

2 ; k2

ω2 )
2
)]

k2 − ω2 + m2
f + 2M2

q f +
M4

q f

k2

[
1 − 2 Re

(
2F1( 1

2 , 1; 3
2 ; k2
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− k2−ω2

ω2 Re
(

2F1( 1
2 , 1; 3

2 ; k2

ω2 )
2
)]


= 2 arctan


M4

q f
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[
−2

(
−πω2k

)
− k2−ω2

ω2

(
−πω

2

2k2 ln
(

k+ω
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))]
k2 − ω2 + m2

f + 2M2
q f +

M4
q f

k2

[
1 − 2 ω

2k ln
(

k+ω
k−ω

)
− k2−ω2

ω2
ω2
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[
ln

(
k+ω
k−ω

)2
− π2

]]
 . (4.31)

Again, we only keep the T and µ f dependent parts in Eq. (4.30), so that the T → 0 limit leads to

PLd, f (T = 0, µ f ) = −
1
π3

∫ µ f

0
dω

∫ ∞

ω

dk k2 θq f (ω, k; m f ,M2
q f ) , (4.32)

which completes the derivation of Eq. 4.22 in the previous section.

T - and µ f - independent term: We here reassemble the T and µ f independent terms that we dropped
above. To this end, it is convenient to think of the T = µ f = 0 limit in Eq. (4.26), in which the
Matsubara sum reduces to T

∑
n →

∫ ∞
−∞

dω̄
2π , so that the pressure reads:

P?
q f = 2

∫ ∞

−∞

dω̄
2π

∫
k

ln
[
A2

S (iω̄, k) + m2
f − A2

0(iω̄, k)
]

= 4
∫ ∞

0

dω̄
2π

∫
k

k ln

(1 + ω̄2)k2 + m2
f + 2M2

q f +
M4
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k2

(1 − T̃ (iω̄, 1)
)2
−
T̃ 2(iω̄, 1)

ω̄2


= −

Λ̄2εeγEε

4π5/2

Γ(2 − ε)Γ(ε − 2)
Γ( 3

2 − ε)
M4−2ε

q f

∫ ∞

0
dω̄

[(
f+(ω̄, η f )

)2−ε
+

(
f−(ω̄, η f )

)2−ε
]
, (4.33)

where we used the following integral:

∫ ∞

0
dk kα ln(k2 + m2) =

Γ
(

1+α
2

)
Γ
(

1−α
2

)
1 + α

m1+α . (4.34)
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The function f±(ω̄, η f ) with η f ≡ 1 + m2
f /(2M2

q f ) is defined as in Eqs. (4.13) and (4.14) above. The
limit of ε → 0 gives:

P?
q f = −

M4
q f

4π3

(
1
ε

+ ln
Λ̄2

M2
D

+
5
2
− 2 ln 2

) ∑
χ=±

∫ ∞

0
dω̄ f 2

χ − ε
∑
χ=±

∫ ∞

0
dω̄

(
f 2
χ ln fχ − 2 fχ

∂ fχ
∂ε

)
=M4

q f

[
Cq(η f ) + Dq(η f ) ln

Λ̄

Mq f

]
+ M4

q f Dq(η f )
1
2ε
. (4.35)

The constants Cq and Dq are defined in Eqs. (4.15) and (4.16) in the previous section, respectively.
The ultraviolet divergence is subtracted by the term ∆Pq in Eq. (4.1) above:

∆Pq = M4
q f Dq(η f )

1
2ε
. (4.36)

In this way the above procedures complete the derivation of Eq. (4.12) in the previous section.

4.3 EoS construction in β equilibrium

In Introduction, we emphasized the difference between the symmetric matter and the asymmetric
stellar matter. For matter in stellar environments, such as the neutron star matter, the crucial point was
to consider the cold catalyzed matter, which is under the β equilibrium and electric charge neutrality
conditions. Our novel contribution of this work lies in taking into account the bare mass of strange
quarks; it is crucial for the quantitative calculation of the cold catalyzed matter.

4.3.1 β equilibrium, charge neutrality, and the strange quark mass

β equilibrium: The β equilibrium is reached via the following weak reactions:

d � u + e− + ν̄e ,

s� u + e− + ν̄e .
(4.37)

These processes imply the relations between quark chemical potentials as

µd = µu + µe ,

µs = µu + µe .
(4.38)

We assume that neutrinos escape quickly from the system so that we can neglect their contributions.
In general, the chemical potential of flavor- f quarks, µ f can be expressed in terms of the linear
combination of the (quark, electric charge, strangeness) chemical potentials, (µ, µQ, µS), namely,

µ f = N f µ + Q f µQ + S f µS , (4.39)
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where N f , Q f , and S f are the quark number, electric charge, and strangeness of the flavor- f quark,
respectively. Owing to the fact Qu = 2/3, Qd = −1/3, and Qs = −1/3, as well as the difference
between Qu and Qd, the charge chemical potential is proportional to the isospin chemical potential µI.
Each quark chemical potential reads

µu = µ +
2
3
µQ , µd = µ −

1
3
µQ , µs = µ −

1
3
µQ − µS . (4.40)

The electron chemical potential is µe = −µQ as electrons carry neither the quark number nor strangeness
and are negatively charged. Plugging these quark chemical potentials in the beta equilibrium condi-
tion of Eq. (4.38) fixes the strangeness chemical potential to zero:

µS = 0 . (4.41)

And the quark chemical potentials in β equilibrium becomes

µu = µ +
2
3
µQ , µd = µs = µ −

1
3
µQ . (4.42)

Charge neutrality: The charge chemical potential µQ in Eq. (4.42) remains as a free parameter; the
(local) charge neutrality fixes µQ as a function of µ. The charge neutrality condition is

nQ(µ, µQ) − ne(µQ) = 0 , (4.43)

where ne(µQ) ≡ µ3
e/(3π

2) = −µ3
Q/(3π

2) is the electron density neglecting masses and interactions of
electrons. Also, nQ is the charge density of quark matter:

nQ =
∂P
∂µQ

=
2
3

nu −
1
3

nd −
1
3

ns , (4.44)

with nu, nd, and ns being the density of u, d, and s quark, respectively.

In the fictitious world in which all u, d, and s quarks are massless, the β equilibrium and charge
neutrality conditions are automatically satisfied; the absence of the bare quark mass significantly
simplifies technicalities as well as the realization of the β equilibrium. With an equal amount of u,
d, and s quarks (that is automatically the case if their masses are all neglected), the electric charge
neutrality follows from Eq. (4.44) as it is, even without electrons.

For quantitative descriptions of the neutron star phenomenology, however, we need to take account
of the strange quark mass and solve the β equilibrium condition. In this sense, the number of flavors
of the system with the non-zero strange quark mass is sometimes denoted as Nf = 2 + 1, while the
massless strange case is denoted as Nf = 3. One of the novel parts of this work is the inclusion of the
bare quark mass, and we have already written down the explicit expressions in the quark sector. In
our notation for flavor- f quarks the bare mass is m f and the screening mass is Mq f .
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Fig. 4.3: The running of the coupling constant αs(Λ̄) (left) and bare mass of strange quarks ms(Λ̄)
(right).

Bare mass of strange quarks: The bare quark mass of flavor- f is scale dependent (see the right
panel of Fig. 4.3 for the behavior of the running mass) as

m f (Λ̄) = m f (2GeV)
[

αs(Λ̄)
αs(2 GeV)

]γ0/β0 1 +A(Λ̄)
1 +A(2 GeV)

. (4.45)

Here, the coupling constant αs(Λ̄) (see the left panel of Fig. 4.3 for its behavior) was already intro-
duced in Eq. (1.2)

αs(Λ̄) =

1 − 2β1

β2
0

ln2
(
Λ̄2/Λ2

MS

)
ln

(
Λ̄2/Λ2

MS

)  4π

β0 ln
(
Λ̄2/Λ2

MS

) . (1.2)

The coefficient β0 was already introduced in Eq. (1.3):

β0 ≡
11
3

Nc −
2
3

Nf , (1.3)

and γ0 ≡ 3(N2
c − 1)/(2Nc). The two-loop corrections to the bare mass appear in

A(Λ̄) ≡ A1
αs(Λ̄)
π

+
A2

1 + A2

2

(
αs(Λ̄)
π

)2

(4.46)

with

A1 ≡ −
β1γ0

2β2
0

+
γ1

4β0
, (4.47)

A2 ≡
γ0

4β2
0

(
β2

1

β0
− β2

)
−
β1γ1

8β2
0

+
γ2

16β0
. (4.48)

For β2, γ1, and γ2, the general expressions are complicated, and we refer to numerical values, β2 =

3863/24, γ1 = 182/3, and γ2 = 8885/9 − 160ζ(3) ≈ 794.9 for Nc = Nf = 3. More general and
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Fig. 4.4: The EoS expressed in the form of P(µ).

complete expressions can be found, e.g., in Ref. [257]. For actual numerical calculations, we took
mu = md = 0 and ms(2GeV) = 100 MeV. For Nc and Nc in α(Λ̄) and ms(Λ̄) we took Nc = Nf = 3.

4.3.2 Numerical results of the EoS

In Fig. 4.4, we show the EoS in the form of P(µ); the pressure is normalized with the ideal
gas value Pideal(µ) = NcNfµ

4/(12π)2. It is evident that the scale variation uncertainty in HDLpt is
not small as compared with the conventional pQCD results. As we show later, however, the scale
variation uncertainty in P(ε) from our HDLpt calculation is significantly smaller than that of the
conventional pQCD. Therefore, it is a quite nontrivial discovery that the scale variation uncertainty in
P(ε) is significantly smaller than that in P(µ).

In Fig. 4.5, we show the EoS in the form of P(ε). This is derived from the P(µ; Λ̄) through the
relation ε(µ) = −P(µ) + µ(∂P/∂µ). We note that Λ̄ = ξµ (ξ = 1, 2, 4) is only substituted at the end of
the calculation (see Sec. 6.4 for the detailed discussion). This is essentially the same plot as Fig. 1.3
in the previous section with an extended region of the energy density. Because of the uncertainty out
of control at lower energy density, it is reasonable to truncate the plot around ε ' 500 MeV/fm3.

It seems that even around the energy density ε ' 150 MeV/fm3, which roughly corresponds to
the saturation density n0, the perturbative calculation still makes sense. Nevertheless, it is absurd
to use the quark EoS to describe neutron stars around the saturation density, as the natural degrees
of freedom here are nucleons. Thus, whether the EoS from the pQCD calculation is reliable or not
should be determined from the other external information.
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Fig. 4.5: The same as Fig. 1.3 with an extended region of the energy density.

4.3.3 The effect of the bare mass of strange quarks

In this subsection, we quantify the effect of the bare mass of strange quarks on the EoS. We note
that the bare mass of strange quarks is handled under the HDL approximation. For the complete
treatment, in which the expression of pressure is very complicated, see Sec. 5.1.2.

In Fig. 4.6, Nf = 3 refers to the HDLpt in the massless limit, while Nf = 2+1 means that the HDLpt
with the strange quark mass in β equilibrium. The left panel of Fig. 4.6 shows the effect of the bare
strange quark mass on the P–µ relation. The finite mass in the calculation leads to that the pressure
goes to zero at a larger value of µ, while some of the N f = 3 results go beyond one. The result for
N f = 2 + 1 is more natural because the baryon onset point corresponds to µB = mN − B ' 930 MeV,
which is equivalent to µ ' 300 MeV; at this point, the pressure becomes zero. Of course, we do
not expect that the pQCD calculation is valid down to the nuclear matter region, nevertheless, it is
interesting to observe that the N f = 2 + 1 results reproduce the EoS such that the pressure onset is
around µ ' 300 MeV.

The right panel of Fig. 4.6 shows the effect of the bare strange quark mass on the P–ε relation. By
comparing N f = 2 + 1 and N f = 3 results, one can see that the finite mass has the effect of reducing
the scale variation uncertainty at higher energy density.

In Fig. 4.7, we also plot the ratio of the strange quark density out of the total quark density,
Ys = ns/n (which is equivalent to the negative strangeness fraction, because the strangeness of the
strange quark is defined as S = −1). From this plot, we can quantify at which density the strangeness
comes into play with a hope to quantitatively account for the hyperon puzzle from the quark matter
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Fig. 4.6: The effect of the bare quark on the P–µ relation (left) and the P–ε relation (right). Nf = 3
refers to the EoS in the massless limit, while Nf = 2 + 1 means that the EoS with the strange quark
mass in β equilibrium.
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Fig. 4.7: The ratio of the strange quark density out of the total quark density, Ys = ns/n.
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side. In the actual calculation, uncertainties in the onset density of the strangeness turn out to be very
large due to the running of the strange quark mass as shown in Fig. 4.3, so that it cannot be applied
to solve the hyperon puzzle. This large uncertainty may be mitigated by taking into account the bare
quark mass dependence in the self-energy (see Sec. 5.1.2).



Chapter 5

Some corrections and alternative approach

In this chapter, we turn to two corrections and an alternative approach to the HDLpt calculation
in the previous chapter. The two corrections include an ad hoc correction to match with the existing
pQCD results and the mass correction to the self-energy in the full propagator. The calculation in the
2PI formalism is also performed under the Φ-derivable approach.

5.1 Corrections to the HDLpt

In this section, we show two corrections to the HDLpt calculation. One is the ad hoc O(αs) cor-
rection to mitigate the mismatch with the conventional pQCD result. The other is the bare quark mass
effect in the self-energy, which is resummed in the full propagator. We neglect it when performing
the HTL approximation, but we can keep the full dependence of the bare quark mass. Nevertheless,
this correction is negligible, but we show it for completeness.

5.1.1 O(αs) correction

The HDLpt has a deviation of O(αs) in the pressure from the conventional pQCD calculation. For
analytical simplicity, we will show the calculation in the massless case only. It is known that the
expansion of PHDLpt in powers of Mq f /µ f � 1 gives, for Nc = 3 [227]:

PHDLpt

Pideal
= 1 − 6

M2
q f

µ2
f

+ O

M4
q f

µ4
f

 = 1 − 4
αs

π
+ O(α2

s) , (5.1)

where the ideal pressure is Pideal = NcNfµ
4
f /(12π2).

The leading correction to Pideal comes from the quasi-particle contribution in PHDLpt, and inte-
gration is saturated around the hard momentum scale k ∼ µ. The explicit description is as follows.
When k � Mq f , the dispersion relation of quasi-particles, which is the solution to Eq. (4.20), can be

59
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Fig. 5.1: EoS from the HDLpt with and without the O(αs) correction.

approximated as [232]

ω f + ≈ k +
M2

q f

k
, ω f− ≈ k + 2k exp

− 2k2

M2
q f

− 1

 . (5.2)

Substituting this expression in to the quasi-particle contribution,

Pqp, f =
1
π2

∫ ∞

0
dk k2

∑
χ=±1

[
(µ f − ω fχ)θ(µ f − ω fχ)

]
−

µ4
f

12π2 . (5.3)

By approximating the step function as θ(µ f − ω fχ) ≈ θ(µ f − k), we get the leading correction

Pqp, f ≈
1
π2

∫ µ f

dk k2

µ f − k −
M2

q f

k

 +
1
π2

∫ µ f

dk k2

µ f − k − 2k exp

− 2k2

M2
q f

− 1

 − µ4
f

12π2 ,

≈
1
π2

(
k3

3
µ f −

k4

4
−

k2

2
M2

q f

)∣∣∣∣∣∣µ f

+
1
π2

(
k3

3
µ f −

k4

4

)∣∣∣∣∣∣µ f

−
µ4

f

12π2 ,

=
µ4

f

12π2

1 − 6
M2

q f

µ2
f

 = Pideal

(
1 − 4

αs

π

)
. (5.4)

We note that this equation explains why the ideal pressure µ4
f /(12π2) should be subtracted in Eq. (4.18):

from both quasi-particle branches, ω f + and ω f−, there is the over counted ideal pressure contribution,
so one of them should be subtracted.
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The conventional pQCD result is [56–59]

PpQCD

Pideal
= 1 − 2

αs

π
+ O(α2

s) . (5.5)

Therefore we can match the O(αs) terms of the HDLpt with the conventional pQCD result by adding
the following ad hoc correction to PHDLpt:

Pcorr = 2
αs

π
Pideal , (5.6)

which was introduced in Ref. [227].

In Fig. 5.1, we quantify the effect of this O(αs) correction. We only calculate it in the massless
limit because the qualitative feature is already captured in the massless limit (of course the strange
quark mass becomes important when discussing the quantitative feature). The EoS does not change
its form drastically, in particular for Λ̄ = 4µ, which is the bottom-most line in the figure. It is
natural as larger Λ̄ means the smaller αs, so that the effect of O(αs) correction becomes also smaller.
This ad hoc correction can be naturally reproduced by going to the next order in the perturbative
expansion [207, 208].

5.1.2 Bare quark mass contribution to the self-energy

In this subsection, we will see how the derivation given in Sec. 4.2 changes if we keep the bare
quark mass m f in the self-energy expression of Eq. (3.33). We note that the dispersion relation of
the massive quarks has previously been studied in Refs. [258–261] (see also Ref. [262] for the recent
development based on the effective theory). Unlike in Sec. 4.2, when we keep the bare quark mass,
then there is an additional constant term in the self-energy expression:

Σ(k0,k) = Σ0(k0, k)γ0 − Σs(k0, k)γ · k̂ − Σm . (5.7)

The last term arises owing to the mass correction; it can be verified shortly after by seeing it is
proportional to m f itself. If we neglect the bare mass in the loop, then Σm = 0. Now with the bare
mass correction, the inverse propagator in Eq. (4.11) modifies its form to

S −1
f (k0, k) = A0(k0, k)γ0 − As(k0, k)γ · k̂ − Am , (5.8)

where we define
A0 = k0 − Σ0, As = k − Σs, Am = ms − Σm . (5.9)

If we evaluate each term in Eq. (5.7) under the HDL approximation at T = 0 but keeping the bare
mass correction intact, i.e., applying the following approximation to Eq. (3.33)

Eq =

√
q2 + m2

f , Eq−k ' q − k cos θ . (5.10)
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Note that preceding section, Eq was approximated as Eq ' q. We obtain after long calculations (we
evaluate in 3 − 2ε spatial dimension)

Σ̂0(k0, k) =
4(1 − ε)Γ(3

2 )

(4π)2−εΓ( 3
2 − ε)

g2
∫ √

µ2
f−m2

f

0
dq

q1−2ε

k0 + Eq − q 2F1

(
1
2
, 1;

3
2
− ε;

k2

(k0 + Eq − q)2

)
, (5.11)

Σ̂s(k0, k) =
4(1 − ε)Γ(3

2 )

(4π)2−εΓ( 3
2 − ε)

g2

k

∫ √
µ2

f−m2
f

0
dq

q2−2ε

Eq

[
2F1

(
1
2
, 1;

3
2
− ε;

k2

(k0 + Eq − q)2

)
− 1

]
, (5.12)

Σ̂m(k0, k) =
4(2 − ε)Γ(3

2 )

(4π)2−εΓ( 3
2 − ε)

g2m f

∫ √
µ2

f−m2
f

0
dq

q1−2ε

Eq(k0 + Eq − q) 2F1

(
1
2
, 1;

3
2
− ε;

k2

(k0 + Eq − q)2

)
.

(5.13)

In the limit ε → 0, it becomes

Σ̂0(k0, k) =
g2

4π2

∫ √
µ2

f−m2
f

0
dq

q
k0 + Eq − q 2F1

(
1
2
, 1;

3
2

;
k2

(k0 + Eq − q)2

)
, (5.14)

Σ̂s(k0, k) =
g2

4π2k

∫ √
µ2

f−m2
f

0
dq

q2

Eq

[
2F1

(
1
2
, 1;

3
2

;
k2

(k0 + Eq − q)2

)
− 1

]
, (5.15)

Σ̂m(k0, k) =
m f g2

2π2

∫ √
µ2

f−m2
f

0
dq

q
Eq(k0 + Eq − q) 2F1

(
1
2
, 1;

3
2

;
k2

(k0 + Eq − q)2

)
. (5.16)

Note that this expression can also be obtained from the HTL effective Lagrangian with the bare quark
mass given in Ref. [263], in which he assumes Eq ' q + m2

f /(2q).

We can check that these expressions recover the familiar expression in the massless limit m f → 0,
namely,

Σ̂0(k0, k)
m f→0
−−−−→

g2

4π2k0

∫ µ f

0
dq q 2F1

(
1
2
, 1;

3
2

;
k2

k2
0

)
=

M2
q f

k0
2F1

(
1
2
, 1;

3
2

;
k2

k2
0

)
, (5.17)

Σ̂s(k0, k)
m f→0
−−−−→

g2

4π2k

∫ µ f

0
dq q

[
2F1

(
1
2
, 1;

3
2

;
k2

k2
0

)
− 1

]
=

M2
q f

k

[
2F1

(
1
2
, 1;

3
2

;
k2

k2
0

)
− 1

]
, (5.18)

Σ̂m(k0, k)
m f→0
−−−−→ 0 . (5.19)

In the massless case, as was seen in Eq. (3.36), there was the simple factorization into the radial
integration, which leads to the quark screening mass M̂q f , and the angular integration. However, this
feature is lost in the massive case. This disastrously complicates the expression of the self-energy.

Now the branch cut of Σ̂, which was shown in Fig. 4.2, is modified to the −k−m f < ω < k+kF−µ f

with kF =
√
µ2

f − m2
f being the Fermi momentum. It also complicates the quasi-particle contribution
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to the pressure as

Pmassive
qp, f (T = 0, µ f ) =

1
π2

∫ ∞

0
dk k2

∑
χ=±1

[
(µ f − ω fχ)θ(µ f − ω fχ)

]
−

(2µ f − kF)4

12π2 , (5.20)

where ω fχ are the solution of

0 = A0(ω f±, k) ∓
√

A2
m(ω f±, k) + A2

s (ω f±, k) . (5.21)

The Landau damping contribution to the pressure can be generalized to

Pmassive
Ld, f (T = 0, µ f ) =

1
π

∫
k

∫ k+kF−µ f

−k−m f

dω 2θmassive
q f θ(µ f − ω) , (5.22)

where 2θmassive
q f is defined as

2θmassive
q f = arctan

 Im
[
A2

s (ω, k) + A2
m(ω, k) − A2

0(ω, k)
]

Re
[
A2

s (ω, k) + A2
m(ω, k) − A2

0(ω, k)
]
 . (5.23)

The imaginary of A2
s + A2

m − A2
0 can only be evaluated numerically, so that these expressions cannot

be simplified further.
We have shown this calculation for completeness, but we posit that neglecting the bare quark mass

in the HTL approximation is not a large effect. It is indeed the standard practice to drop the bare quark
mass in this approximation. Thus, we do not go into further details and leave the numerical evaluation
of this effect for the future.

5.2 Φ-derivable approximation in the 2PI expansion

The advantage of the 2PI formalism is that one can reproduce the perturbative result beyond two-
loop order without calculating two-loop diagrams directly. The expression of density was already
given in Eq. (3.62) above. It is

nΦ, f (T, µ f ) = −2
∫
k

∫
dω
2π

∂ fF(ω − µ f )
∂µ f

tr
[
Im ln S −1 − Im Σ Re S

]
. (5.24)

By using the identity

Im ln S −1(ω, k) = arctan
(
Im S −1

Re S −1

)
− πsgn(ω)θ(−Re S −1) , (5.25)

we can split the first term of the trace in Eq. (5.24) into two terms, namely, the Landau-damping
contribution, nLd, f , and the quasi-particles contribution, nqp, f . In fact, these terms are exactly the same
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Fig. 5.2: A breakdown of each contribution to the pressure in the Φ-derivable approximation.

as the one evaluated in HDLpt in the preceding section. The only difference between the HDLpt
and the Φ-derivable approximation resides in the second term of the trace in Eq. (5.24), i.e., the self-
energy contribution nse, f . Thus, the Φ-derivable approximate expression of the density, nΦ, f (5.24)
can be recast in the form

nΦ, f (T, µ f ) = Nc

∑
f =u,d,s

(
nqp, f + nLd, f + nse, f

)
. (5.26)

The contribution from each term is depicted in Fig. 5.2. As in the case of the HDLpt, the quasi-particle
contribution is dominant.

The quasi-particle and Landau-damping contributions can be simply given by just taking the
derivative of Eq. (4.18) and (4.22) with respect to µ f with keeping Mq f constant

nqp, f (T, µ f ) =

(
∂Pqp, f

∂µ f

)
Mq f

= −
1
π2

∫ ∞

0
dk k2

∑
χ,s=±

s

eβ(ω fχ+sµ f ) + 1
−

µ f T 2

3
+
µ3

f

3π2

 , (5.27)

nLd, f (T, µ f ) =

(
∂PLd, f

∂µ f

)
Mq f

= −
1
π3

∫ ∞

0
dω

∂

∂µ f

[
1

eβ(ω−µ f ) + 1
+

1
eβ(ω+µ f ) + 1

] ∫ ∞

ω

dk k2 θq f (ω, k; m f ,M2
q f ) . (5.28)
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Fig. 5.3: P(ε) evaluated within the Φ-derivable approach.

In the T = 0 limit, they become

nqp, f (T = 0, µ f ) =
1
π2

∫ ∞

0
dk k2

∑
χ=±1

θ(µ f − ω fχ) −
µ3

f

3π2 , (5.29)

nLd, f (T = 0, µ f ) = −
1
π3

∫ ∞

µ f

dk k2 θq f (µ f , k; m f ,M2
q f ) . (5.30)

Performing the similar calculation in Sec. 4.2, we can obtain the expression for nse, f (T, µ f )

nse, f (T, µ f ) = −
1
π3

∫ ∞

0
dω

∂

∂µ f

[
1

eβ(ω−µ f ) + 1
+

1
eβ(ω+µ f ) + 1

] ∫ ∞

ω

dk k2
Y

[
X −

π2 M4
q f

2k4 (k2 − ω2)
]

X2 +Y2 ,

(5.31)

where the functions X and Y are defined in Eqs. (4.23) and (4.24). In T = 0 limit, it becomes

nse, f (T = 0, µ f ) = −
1
π3

∫ ∞

µ f

dk k2
Y

[
X −

π2 M4
q f

2k4 (k2 − ω2)
]

X2 +Y2

∣∣∣∣∣∣∣∣∣∣
ω=µ f

. (5.32)

This completes the derivation of three terms in Eq. (5.26).
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From the density nΦ, f , we can compute the pressure

PΦ, f (µ f ; Λ̄) = −B +

∫ µ f

µ0(Λ̄)
dµ′ nΦ, f (µ′; Λ̄) , (5.33)

where µ0(Λ̄) is the point that n2PI, f becomes zero for the given value of Λ̄ = ξµ, i.e., nΦ, f (µ0(Λ̄); Λ̄) =

0. There is an ambiguity in the constant term in the above expression; it may be regarded as the bag
constant in the MIT bag model [264, 265], which quantifies the energy difference in the pressure of
hadronic matter and quark matter. Nevertheless, we can set the constant B = 0, and then evaluate the
relation between P and the energy density ε as in Fig. 5.3. The pressure values are different between
the Φ-derivable approximation and the HDLpt results, due to the difference in the constant terms, but
still, the scale variation uncertainty is smaller than the conventional pQCD.

These results imply that resummation both in the HDLpt and the Φ-derivable approximation some-
how alleviates the scale variation uncertainty. The difference between the HDLpt and the Φ-derivable
approximation is due to the treatment of the vacuum term, in other words, the µ- and T -independent
term, which is denoted as P? in Sec. 4.2. In the former scheme, it evaluates the vacuum term utilizing
the dimensional regularization, while the latter simply throws away this contribution since we only
calculate the density that depends on µ and T ; the pressure is evaluated indirectly through the integra-
tion of the density. This treatment of the vacuum terms is by no means trivial, so it is worth further
investigation, and we leave it as future work. In this thesis, we regard the HDLpt calculation as our
primary result and the Φ-derivable approximation as the complementary approach, so that we do not
go into the details.



Chapter 6

Reduction of scale variation uncertainty

The surprising feature of our HDLpt calculations is the reduction of scale variation uncertainty in
the EoS expressed in the form of P(ε). In this chapter, we explain what is the origin of such a drastic
difference, and then write down the condition for the reduction of uncertainty. We put a caveat on the
treatment of the µ-dependence in the coupling constant.

6.1 Origin of the scale variation uncertainty in pQCD

In principle, the value of physical observables should not depend on the renormalization scale Λ̄.
Here, however, the pressure–energy density relation depends on the value of Λ̄; it can be identified as
the effect of truncation of the perturbative series at a certain order.

The scale variation uncertainty originates from the NNLO or beyond in the conventional pQCD
calculation, i.e., 3-loop order, or O(α2

s). Up to NLO, the quark pressure and density reads

P = Pideal

[
1 − 2

αs(Λ̄)
π

]
, (6.1)

n = nideal

[
1 − 2

αs(Λ̄)
π

]
, (6.2)

where Pideal = µ4/(12π2) and nideal = µ3/(3π2). Owing to the same perturbative coefficients, the
relation P(n) or P(ε) does not depend on Λ̄ at all. Indeed, if we calculate the speed of sound, then it
is always constant c2

s = 1/3.

At NNLO, the quark pressure and the reads

P = Pideal

1 − 2
αs(Λ̄)
π

+

(
C(αs) + β0 ln

Λ̄

µ

) (
αs(Λ̄)
π

)2 , (6.3)

n =
∂P
∂µ

= nideal

1 − 2
αs(Λ̄)
π

+

C(αs) + β0 ln
Λ̄

µ
−
β0

4︸︷︷︸
 (αs(Λ̄)

π

)2
 , (6.4)

67
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Fig. 6.1: Scale variation uncertainty for the conventional pQCD and the HDLpt (our result) calcula-
tions.

where the constant irrelevant to the discussion here is defined as C(αs) = 18 − 11 ln 2 − 0.536Nf +

Nf ln(Nfαs/π). The term marked with the under brace in Eq. (6.4) is responsible for the Λ̄-dependence
in the P(n)-relation or the P(ε)-relation. This under-braced term arises from the ln µ contribution in
the expression, so the ln µ term is the very reason for the scale variation uncertainty. Note that even
if we substitute Λ̄ = ξµ (ξ = 1, 2, 4) first, then take the derivative of P with respect to µ, one will still
get the term that will produce the deviation from the pressure expression as in Eq. (6.4). It is related
to whether we resum ln µ dependence in αs or not (see Sec. 6.4 for details).

6.2 Heuristic interpretation

One may wonder what causes such a drastic difference in the scale variation uncertainty in Fig. 6.1.
We can qualitatively understand this from Fig. 6.2 (top) in which the baryon number density nB as a
function of the quark chemical potential µ is plotted.

Because the HDLpt sums the quark loops up, nB is the most sensitive quantity affected by the
resummation in the quark sector. It is an interesting and reasonable observation that nB is suppressed at
fixed µ after the resummation: thermodynamic quantities are dominated by quark quasi-particles (see
Fig. 4.1), and in HDLpt, quark excitations are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 6.1, the corresponding µ for a given ε becomes larger, and the
corresponding running coupling αs(Λ̄ = ξµ), where ξ = 1, 2, 4, is smaller. This qualitative argument
partially accounts for the reduction of the uncertainty band, but not fully yet. As shown in Fig. 6.2,
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Fig. 6.2: Baryon number density (top) and pressure (bottom) as functions of the quark chemical
potential. In the figure pQCD refers to the results from Refs. [60, 61] and HDLpt to our results.
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if we plot the pressure P, the baryon number density nB, and the energy density ε as functions of µ,
respectively, the uncertainty bands are wider than Fig. 6.1. In Fig. 6.2 (top), we overlay a horizontal
line at nB = 10 n0 to find the values of the corresponding µ for different Λ̄. The values of P at these
µ’s are shown in Fig. 6.2 (bottom) with the same markers. Importantly, the marker for P(Λ̄ = µ) is
out of the plot range. This P(Λ̄ = µ) one was the most problematic, which was actually the source
of the large uncertainty in the conventional pQCD calculation. Owing to the suppression in nB leads
to the situation that P(ε) with Λ̄ = µ and that with Λ̄ = 4µ happen to stay close, which narrows the
uncertainty band on Fig. 6.1. There might be a deep reason (e.g., scaling properties) for this behavior,
and further investigations are in progress.

6.3 Scale independence condition

For the astrophysical application, we need P(ε) or P(nB) rather than P(µ). Here we formulate the
scale independence condition for P(ε) or P(nB).

6.3.1 P–nB relation

The condition that P(nB; Λ̄) ≡ P(µB(nB; Λ̄); Λ̄) is insensitive to the scale Λ̄ is

0 =
dP(nB; Λ̄)

dΛ̄
=
∂P(µB(nB; Λ̄); Λ̄)

∂Λ̄
+
∂P(µB(nB; Λ̄); Λ̄)

∂µB

∂µB(nB; Λ̄)
∂Λ̄

(6.5)

At this point we require dµB/dΛ̄ = 0, where µB is the function of nB and takes a certain value at fixed
µ∗B, i.e.,

µB(nB(µ∗B; Λ̄); Λ̄) = µ∗B . (6.6)

Then, taking the derivative with respect to Λ̄ on the both hand sides leads to

∂µB

∂Λ̄
+
∂µB

∂nB

∂nB

∂Λ̄
= 0 . (6.7)

We plug this expression into Eq. (6.5), and obtain

∂P(µB; Λ̄)
∂Λ̄

−
nB(µB; Λ̄)
χB(µB; Λ̄)

∂nB(µB; Λ̄)
∂Λ̄

= 0 , (6.8)

where µB = 3µ is the baryochemical potential and χB ≡ ∂nB/∂µB is the baryon number susceptibility.
Using the expression of the speed of sound (7.2), one can put it in the form

∂P(µB; Λ̄)
∂Λ̄

− c2
sµB

∂nB(µB; Λ̄)
∂Λ̄

= 0 . (6.9)
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6.3.2 P–ε relation

We can also derive such a condition for P(ε; Λ̄) ≡ P(µB(ε; Λ̄); Λ̄) likewise. It is

0 =
dP(ε; Λ̄)

dΛ̄
=
∂P(µB(ε; Λ̄); Λ̄)

∂Λ̄
+
∂P(µB(ε; Λ̄); Λ̄)

∂µB

∂µB(ε; Λ̄)
∂Λ̄

. (6.10)

Using the relation similar to Eq. (6.7):

∂µB

∂Λ̄
+
∂µB

∂ε

∂ε

∂Λ̄
= 0 , (6.11)

we finally arrive at
∂P(µB; Λ̄)

∂Λ̄
− c2

s
∂ε(µB; Λ̄)

∂Λ̄
= 0 . (6.12)

By substituting the thermodynamic relation ε = −P + µBnB, the condition becomes

(
1 + c2

s

) ∂P(µB; Λ̄)
∂Λ̄

− c2
sµB

∂nB(µB; Λ̄)
∂Λ̄

= 0 . (6.13)

Furthermore, in the most of the pQCD calculation, it can be approximated as c2
s ≈ 1/3, thus,

4
3
∂P(µB; Λ̄)

∂Λ̄
−

1
3
µB
∂nB(µB; Λ̄)

∂Λ̄
=

1
3

(
4 − µB

∂

∂µB

)
∂P(µB; Λ̄)

∂Λ̄
= 0 . (6.14)

The last equation shows that the reduction of the scale uncertainty in P(ε) is automatically satisfied
given that P(µB) ∝ µ4

B.

In any of the cases for P(ε) or P(nB), the essential observation is that the cancellation between
the scale dependence in P and nB is enough to reduce the scale dependence. In the conventional
argument, however, the reduction of the scale variation error in P(µ), that is ∂P/∂Λ̄ = 0, has been the
central issue. Here we point out that ∂P/∂Λ̄ = 0 is only a sufficient condition for Eqs. (6.9), (6.12),
and (6.13). Albeit ∂P/∂Λ̄ , 0, the inclusion of the latter terms, such as ∝ ∂nB/∂Λ̄ and ∝ ∂ε/∂Λ̄, can
cancel the scale-dependence; Fig. 6.2 is the concrete realization of such cancellation.

6.4 Issues related to differentiating the µ-dependence in αs

In this section, we mention the subtleties related to the µ-derivative to be fair. We take the µ-
derivative when we derive the number density from the pressure. As repeatedly mentioned above, in
our conventional prescription, the renormalization scale Λ̄ in the coupling constant αs(Λ̄) is chosen
to be Λ̄ = ξµ, where ξ = 1, 2, 4. In principle, physical observables should not depend on the choice
of the parameter Λ̄, so this is merely a matter of convention for parametrization. On the other hand,
it is nonetheless customary to take Λ̄ as the typical scale of the system, so that µ is an appropriate
choice; for example, in the DGLAP equation in the high-energy pQCD context, Q2-dependence (see
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the definition of Q2 in Sec. 1.2) is included in the coupling constant, αs(Q2), and this Q2-dependence
is also resummed through the Q2-evolution equation.

Therefore here comes the subtlety: should we also differentiate the µ-dependence in the coupling
constant αs(ξµ) when we derive the density? Generally speaking, there is no definite answer to this
question; this is something that cannot be determined from principle but requires the comparison of
specific calculations. In this thesis, we posit that we should not differentiate the µ-dependence in the
coupling constant. In the following, we will see how differentiating the µ-dependence in the coupling
constant affects the EoS. Then we give a convincing argument why we should not take the µ-derivative
for the coupling constant; we will give a couple of justifications in the spirit of the approximately self-
consistent resummation, as well as based on the thermodynamic consistency.

Let us firstly take the NNLO expression of the quark pressure.

P = Pideal

1 − 2
αs(Λ̄)
π

+

(
C + Nf ln

αs(Λ̄)
π

+ β0 ln
Λ̄

µ

) (
αs(Λ̄)
π

)2 , (6.15)

where the constant irrelevant to the discussion here is defined as C = 18− 11 ln 2− 0.536Nf + Nf ln Nf

(note that the definition is different from the one given in Sec. 6.1). If we do not differentiate the
µ-dependence in the coupling constant, then the number density becomes

n =
∂P
∂µ

= nideal

1 − 2
αs(Λ̄)
π

+

(
C + Nf ln

αs(Λ̄)
π

+ β0 ln
Λ̄

µ
−
β0

4

) (
αs(Λ̄)
π

)2 . (6.16)

On the other hand, if we differentiate the µ-dependence in the coupling constant, which requires the
QCD beta function, then the number density is

n =
dP
dµ
≡
∂P
∂µ

+
∂P
∂Λ̄

∣∣∣∣∣
Λ̄=ξµ

∂(ξµ)
∂µ

= nideal

1 − 2
αs(Λ̄)
π

+

(
C + Nf ln

αs(Λ̄)
π

+ β0 ln
Λ̄

µ
−
β0

4

) (
αs(Λ̄)
π

)2 + O(α3
s) , (6.17)

where we used
∂αs(Λ̄)
∂Λ̄

= −
β0

Λ̄

α2
s

2π
+ O(α3

s) in Eq. (1.5). In this case, the expression of the running

coupling constant αs(Λ̄ = ξµ) incorporates the resummation of ln µ terms through the renormalization
group equation [58] as is apparent from Eq. (1.2).

Regardless of whether we differentiate αs with respect to µ or not, these expressions match at the
given order of the perturbation theory. But the latter includes the higher-order terms that are beyond
the accuracy of the current calculation, which might ruin the thermodynamic consistency [60].

The effect of differentiating αs with respect to µ is significant when we perform the actual calcu-
lation of the EoS. In Figs. 6.3 and 6.4, we plot such an example (dP/dµ and ∂P/∂µ are the ones that
does and does not include the µ-differentiation in αs, respectively). In Fig. 6.3, in which the EoS in
the form of P(ε) is plotted, the scale variation uncertainty becomes as large as that of the conventional
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pQCD calculation. Particularly, Λ̄ = µ looks very similar to that of the pQCD calculation, which may
suggest that the breakdown of the pQCD calculation for Λ̄ = µ originates from the coupling constant.
Fig. 6.4 shows the nB(µ) relation and the baryon number density suppression is suppressed for dP/dµ
case.

Here, we give two justifications for not taking the µ-derivative for the coupling constant.
The first justification is based on the thermodynamic consistency [60]. As already shown above,

if we differentiate the µ-dependence in the coupling constant, we will get the uncontrolled higher-
order terms in the density. These unwanted terms go beyond the perturbation order considered and
are typically ill-behaved. If we just drop these higher-order terms, then it implies Ndµ , VdP; it is
a violation of thermodynamic consistency, so we cannot drop these terms. The simplest solution to
this is just to treat the coupling constant as constant, namely, do not differentiate the µ-dependence
inside αs. As was already mentioned above, Eqs. (6.16) and (6.17) show that the expressions of the
density match at the given order of the perturbation theory regardless of whether we differentiate αs

with respect to µ or not. In fact, this matching is not a mere coincidence. The ln µ terms responsible
for the scale variation uncertainty in Eq. (6.16) stem from the vacuum polarization diagrams; they are
the same diagrams for the evaluation of the QCD beta function, so the diagrammatic consideration
ensures this matching. To further verify the matching beyond the NNLO, we need explicit calculation
with four-loop diagrams along the line of Ref. [64], which is left for future work. Nevertheless, the
matching favors not to differentiate the µ-dependence in the coupling constant.

In passing, we note that this matching also explains why in Figs. 6.3 and 6.4 the massless HDLpt
results with differentiating the µ-dependence in αs [dP/dµ in Figs. 6.3 and 6.4] and the conventional
pQCD results show the similar behavior; in particular the massless HDLpt (dP/dµ) result for Λ̄ = µ

breaks down around ε ' 6 × 103 MeV/fm3.
The second justification is based on the pressure expression in the HDLpt calculation. In the

HDLpt, the ln µ term responsible for the scale variation uncertainty enters the expression through
a log of the screening mass ln Mq f ∼ ln(gµ). Taking the µ-derivative of αs is equivalent to setting
Λ̄ ∼ ξµ, so the additional ln µ appears; it will lead to the double counting of ln µ. Thus in the HDLpt,
we should not differentiate αs with respect to µ.

Based on these two justifications, in this thesis, we take the perspectives that we do not take the
µ-derivative of αs.



Chapter 7

Speed of sound

The EoS from our resummed perturbation theory has a notable feature in addition to the smaller
uncertainty. Here we discuss the speed of sound that could exceed the conformal limit and the robust-
ness of this behavior against the various corrections.

7.1 Overview of the speed of sound

In this section, we discuss the behavior of the speed of sound (squared), whose definition is given
by

c2
s ≡

∂P
∂ε

. (7.1)

By using the thermodynamic relation ε = −P = µn = −P + µBnB it can be recast in the form

c2
s =

n
µχ

=
nB

µBχB
, (7.2)

where µB = 3µ is the baryochemical potential as well as χ ≡ ∂n/∂µ and χB ≡ ∂nB/∂µB are the quark
and baryon number susceptibilities. Rewriting this expression in the following form(

µB
∂

∂µB
−

1
c2

s

)
nB = 0 , (7.3)

implies that c2
s is related to the effective degrees of freedom of the system. For the ideal Fermi gas,

c2
s = 1/3 and it is indeed nB ∝ µ

3
B. It is more illuminating if we express the baryon number density

as nB = N(µB)µ3
B/(6π

2) with N(µB) being the number of degrees of freedom of the system, e.g.,
polarization, flavor, color, etc. Then the speed of sound can further be altered into the expression

c2
s =

1
3

(
1 +

µB

3N
dN
dµB

)−1

. (7.4)
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This implies that if the degrees of freedom increase with increasing chemical potential, i.e. dN/dµB <

0, then c2
s < 1/3 holds.

7.1.1 Conformal limit and pQCD calculation

In the conventional pQCD calculation up to O(α2
s), the value of the speed of sound is almost 1/3.

This value, c2
s ≈ 1/3, is commonly referred to as the conformal limit since it is the value in the con-

formal theory; in this limit, the EoS reads P = ε/3. In the high-density limit in QCD, asymptotically,
all mass scales and interactions are negligible and the conformal limit should be eventually saturated.
In the O(α2

s) pQCD calculation, the first correction from the conformal limit is negative, so that the
conformal limit is approached from c2

s < 1/3 with increasing density. The pQCD expression up to
O(α2

s) for the number density is [56–59]

n(2)
pQCD(µ, Λ̄) = nideal

[
1 − 2

αs

π
−

(
61
4
− 11 ln 2 − 0.369Nf + Nf ln

Nfαs

π
+ β0 ln

Λ̄

µ

) (
αs

π

)2
]
. (7.5)

The derivative with respect to µ reads

µ
∂n(2)

pQCD(µ, Λ̄)

∂µ
= 3n(2)

pQCD + β0

(
αs

π

)2
nideal . (7.6)

Plugging these expressions in Eq. (7.2), one obtains

c2
s =

1
3

n(2)
pQCD/nideal

n(2)
pQCD/nideal +

β0
3

(
αs
π

)2 <
1
3
. (7.7)

Alternatively, one can differentiate µ-dependence inside the coupling constant αs(Λ̄ = ξµ) (ξ =

1, 2, 4)

µ
dn(2)

pQCD(µ, Λ̄ = ξµ)

dµ
≡ µ

∂n(2)
pQCD(µ, Λ̄ = ξµ)

∂µ
+ µ

∂n(2)
pQCD(µ, Λ̄ = ξµ)

∂Λ̄

∂(ξµ)
∂µ

,

= 3n(2)
pQCD + β0

(
αs

π

)2
nideal + O(α3

s) . (7.8)

Plugging these expressions in Eq. (7.2), one obtains the same expression as above up to O(α2
s)

c2
s =

1
3

n(2)
pQCD/nideal

n(2)
pQCD/nideal +

β0
3

(
αs
π

)2 <
1
3
. (7.9)

Even if we take the derivative with respect to µ inside αs(ξµ) or not, the expression of c2
s becomes

the same up toO(g2). The very existence of the term β0
3

(
αs
π

)2
in the denominator ensures that the speed

of sound is always less than 1/3, and approaches the conformal limit from below with increasing
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Fig. 7.1: A few possible scenarios for the speed of sound based on the current understanding of its
behavior: Scenario (A) refers to the case the conformal limit is always respected. Scenario (B) has
the peak in the speed of sound, which violates the conformal limit. Scenario (C) resembles to (B), but
the higher density region is different.

density.

It is also interesting to observe that the coefficient is closely related to the asymptotic freedom:
β0 is the first coefficient in the beta function of QCD as is given in Eq. (1.3). The origin of this
behavior can be ascribed to the different term depending on whether we differentiate µ-dependence
inside αs(ξµ) or not: If we differentiate µ-dependence inside αs(ξµ), the first coefficient of n, i.e.
−2/π, as well as β0 in Eq. (1.5) is responsible for this behavior. If not, then the term β0 ln Λ̄/µ at
O(α2

s) is the origin. In the former case, one can state it as the “one-loop” effect, but the latter is the
pure “two-loop” effect.

7.1.2 A few scenarios for the speed of sound

Fig. 7.1 summarizes the current state of the speed of sound based on several theory calculations
(see Ref. [266] for the recent review). Other than the conformal limit mentioned above, there is an
obvious bound of the causality, which forces the speed of sound to be less than the speed of light:
c2

s < 1. There are two established boundary conditions both in lower and higher density terrains: in
the lower density region nB ' 1–2 n0, it is almost consensus that the speed of sound is c2

s � 1/3.
On the other hand, at the higher density region, in which nB & 10 n0, the speed of sound approaches
c2

s ' 1/3 either from below or above. Also, the recent neutron star observations rule out the strong
first-order phase transitions [267]; strong first-order phase transition means that c2

s goes to zero. There
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may still be a weak first order phase transition [163], but we will assume that the speed of sound can
roughly be regarded as the continuous function of density. As shown in Fig. 7.1, its behavior can be
classified into a few scenarios:

(A) The speed of sound is always below c2
s = 1/3. This scenario is based on an empirical conjecture

that the speed of sound does not exceed the conformal limit.

(B) The speed of sound has a peak at moderate densities, and it goes below the conformal limit at
large densities.

(C) The speed of sound has also a peak at moderate densities, but it is kept above the conformal
limit at large densities.

The problem with scenario (A) is that at low densities the value of c2
s should be sufficiently large,

which means that the EoS should be stiff, otherwise the heavy neutron stars cannot be supported.
It is likely that c2

s exceeds 1/3 from the recent neutron star observations [53, 228], so in this sense,
scenarios (B) and (C) are more realistic ones.

7.2 The speed of sound in HDL-resummed theories
7.2.1 HDLpt

We calculated the speed of sound within the HDLpt, which is depicted in Fig. 7.2. To make clear
the relevance to the neutron star environment, we chose the horizontal axis as the baryon number
density nB in the unit of the normal nuclear density n0.

There is an empirical conjecture to claim that the speed of sound may not exceed the conformal
limit c2

s = 1/3. As was already explained, in the pQCD calculation, the conformal limit is approached
from c2

s < 1/3 with increasing density. Also at finite temperature, the lattice-QCD results demonstrate
that the conformal bound c2

s < 1/3 holds [42, 43]. Known examples of QCD calculations seem
to respect the conformal limit (see, however, Ref. [36] for an exception at finite isospin chemical
potential). However, no field-theoretical proof exists to guarantee c2

s < 1/3. The recent analysis
based on neutron star data, especially the two-solar-mass condition, indeed suggest a possibility of
c2

s > 1/3 at sufficiently high baryon density [53, 114, 228, 268]. Moreover, theoretical consideration
also points to an inevitable peak in the speed of sound [269–271] as in the scenario (B) and (C) in
Fig. 7.1.

Figure 7.2 shows that our resummed EoS slightly violates the conformal bound and c2
s approaches

1/3 from above. It is evident that our result is a counterexample to the conjecture of c2
s < 1/3.

The quantitative difference is numerically small between EoSs from our HDLpt and pQCD, and the
violation of the conformal bound is tiny, but this comparison on Fig. 7.2 implies that one should be
careful about the robustness of the speed of sound bound (see, for example, discussions in Refs. [272,
273]). Our finding also opens up a possibility of scenario (C) in Fig. 7.1. If the speed of sound is the



7.2 The speed of sound in HDL-resummed theories 79

102 103

Baryon number density nB/n0

0.31

0.32

0.33

0.34

0.35
Sp

ee
d 

of
 so

un
d 

c2 s

Conformal limit c2
s = 1/3

HDLpt (this work)
pQCD

Fig. 7.2: Speed of sound c2
s from the EoSs; the blue band represent the results from our HDLpt EoS

(evaluated in the massless limit), and the orange band from the pQCD for reference.

continuous function of nB, then at some point the speed of sound should exceed the conformal limit,
which may lead to the peak structure as shown in Fig. 7.1.

7.2.2 HDLpt with the O(αs) correction

The HDLpt has a deviation of O(αs) in the pressure from the conventional pQCD calculation as
mentioned earlier in Sec. 5.1.1. Also, as was discussed in Sec. 7.1.1, the fact that c2

s < 1/3 can be
ascribed to the O(αs) coefficient of the pressure. Here, in order to check the robustness of our result,
we add the ad hoc correction term Pcorr = (2αs/π)Pideal [227] to PHDLpt to mitigate the difference in the
O(αs) coefficient. In Fig. 7.3 we plot the speed of sound evaluated by PHDLpt and PHDLpt + Pcorr both
in the massless case. Fig. 7.3 clearly shows that even with the Pcorr correction, the speed of sound still
approaches c2

s = 1/3 from above as the density increases. We verify that our HDLpt predicts c2
s > 1/3

even if we add a correction to match the O(αs) terms; this implies that c2
s > 1/3 could be attributed to

the higher order effects from the resummation.

7.2.3 Φ-derivable approximation in the 2PI expansion

In Fig. 7.4 we plot the speed of sound evaluated in the Φ-derivable approximation in the 2PI
formalism. Since the expression of the speed of sound only involves the density and its derivative,
the speed of sound is insensitive to the ambiguity in the constant in Eq. (5.33), so this is more reliable
than, e.g., P(ε) relation. It is very surprising to see that the speed of sound from the Φ-derivable
approach is exactly c2

s = 1/3. This may imply the conformal nature of the theory. We are still not
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Fig. 7.5: The speed of sound evaluated in the HDLpt with (dPHDLpt/dµ) and without (∂PHDLpt/∂µ)
including the differentiation of αs with respect to µ.

aware of its origin, and further investigation is in order.

7.3 Issues related to differentiating the µ-dependence in αs

As in Sec. 6.4, differentiating the µ-dependence in αs has also a large effect on the speed of sound.
From the discussion in Sec. 7.1.1, the behavior of the speed of sound is not affected by taking the
µ-derivative inside αs, i.e., it is always c2

s < 1/3.
However, for the HDLpt calculation, the behavior changes drastically. In Fig. 7.5, we plot the

speed of sound evaluated in the HDLpt. The one marked with dPHDLpt/dµ (orange shaded region)
takes into account the derivative of the µ-dependence in the coupling constant αs: the speed of sound
is always less than the conformal limit, i.e., c2

s < 1/3. This behavior can be understood in the
following manner. From the Mq f /µ expansion of the HDLpt pressure PHDLpt, we know that the first
correction has a negative coefficient. Since it shares the same structure of the expression as the
conventional pQCD calculation, then it is natural to observe c2

s < 1/3. In short, this can be ascribed to
the combined effect of the negative coefficient of PHDLpt atO(αs) as well as the first negative coefficient
of the QCD beta function.

The one marked with ∂PHDLpt/∂µ (blue shaded region) is the same as in Fig. 7.2. In the case of
the conventional pQCD, the behavior of the speed of sound does not change irrespective of whether
we differentiate αs with respect to µ or not. On the other hand, it is interesting to observe that the
behavior of the speed of sound in the HDLpt becomes completely different by changing the way of
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taking the derivative. Again we emphasize that our assumption is not to differentiate µ-dependence in
αs, throughout this thesis (see Sec. 6.4 for the justification).



Chapter 8

Smooth matching between nuclear and quark
matter EoS

In this chapter, we will discuss the phase transition from hadronic matter to quark matter in neutron
stars. A cursory look is provided on why the first-order phase transition is disfavored and the crossover
transition is more favored. Then, we will turn to a bit of theory to justify the crossover transition at
high density. Finally, we will construct the EoS solely from the QCD boundary conditions to prove
that the pQCD is useful in constraining the EoS, and calculate the stellar observables such as the mass,
radius, and tidal deformability of neutron stars.

8.1 Hadron-to-quark transition in neutron stars

In Fig. 8.1, we plot the astrophysical constraint on the EoS from different neutron stars, and
also the conventional nuclear matter EoS. DL refers to the deep learning analysis [113, 163], and
GW170817 refers to the Bayesian analysis from the neutron star merger event [160]. APR is one of
the nuclear matter EoS, which is conventionally used in a wide context [66]. On the other hand, in the
high-density region, we plot our HDLpt results which are evaluated in the β equilibrium and charge
neutral system with taking the strange mass effect into account.

In the figure, around the density range ρ ' 3–8 ρ0, one can clearly see the smooth matching be-
tween the EoSs extrapolated from the lower density and the EoS of quark matter calculated from the
HDLpt. This implies that if there is a phase transition from hadronic matter to the quark matter, then
there is no large gap in the EoS; the energy density gap with the constant pressure generally means
the first-order phase transition. The smooth matching favors a crossover transition from the hadronic
matter to the quark matter, which is also observed in the high-temperature QCD (see Fig. 8.2). There
may still be a possibility of a weak first-order transition within the allowed range of the EoS. Nonethe-
less, the strong first-order phase transition is excluded, so that it suggests some underlying physics
that hadrons steadily melt into quarks as the density increases.

Here, let us now review how the hadron-to-quark first-order or crossover transitions are dealt

83
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Fig. 8.1: Smooth matching between the hadronic EoS and the quark EoS.
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Fig. 8.2: The schematic figure of the EoS of the high temperature QCD matter. At lower temperatures,
the EoS based on the hadron resonance gas model works well, but it becomes divergent once the
quark-gluon matter sets in. At higher temperatures, pQCD calculations such as the one from the
HTLpt is available. The Lattice-QCD calculation reveals that the transition from the hadron resonance
gas to the quark-gluon plasma is crossover-type.
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Fig. 8.3: The schematic figure of the EoS construction for hybrid star matter. We connect the hadronic
EoS and the quark EoS; (a) We extrapolate the hadronic EoS up and the quark EoS down to the
densities where they meet. The EoS is built upon the Maxwell construction. (b) This case is not
allowed. See text for further details.

with in the theoretical treatment (see Ref. [274] for the recent comprehensive review). We note in
passing that in this section, we generally use the term “hadronic matter” instead of nuclear matter
because hyperons—which are baryons (=fermionic hadrons) containing strange quarks inside—may
also appear. Particularly, we will review how to construct the EoS for the matter inside “hybrid stars,”
which are neutron stars with a quark matter core inside.

8.1.1 Maxwell construction for the first-order phase transition

Firstly, we will turn to the problems of the hadron-to-quark first-order phase transition by taking
the Maxwell construction as an actual example. Historically speaking, for the quark matter descrip-
tion, the standard choice was to utilize the MIT bag model [264, 265]; in this model, quarks are
confined inside a limited space named the “bag,” and the non-perturbative confining effects are ac-
counted by the so-called bag constant B, which quantifies the energy difference between the QCD
and the ordinary vacua. In the traditional argument, e.g. Refs. [16, 275], a quark core of neutron
stars is treated as a giant MIT bag. In such a treatment, the EoS of hybrid star matter is constructed
by connecting the hadronic matter EoS and the quark matter EoS. For the quark matter EoS, other
models such as the Nambu–Jona-Lasinio (NJL) models [8, 276–278] are also frequently used.

The schematic figure in Fig. 8.3 depicts the typical construction based on the traditional point of
view. In Fig. 8.3 (a), we show the Maxwell construction for the hadron-to-quark phase transition. We
extrapolate the hadronic EoS, PH(µB), up and the quark EoS, PQ(µB), down to the densities where
they meet. At this point, we impose the Gibbs condition between the hadronic and quark phases, i.e.,

µhadron
B = µ

quark
B ≡ µc , PH(µc) = PQ(µc) , (8.1)
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Fig. 8.4: The general problem with the Maxwell construction between the hadronic and quark matter
EoS. This EoS, which is plotted in the form of P(ε) corresponds to that in Fig. 8.3 (a), which is
plotted in the form of P(µB). At the high-density end of the plateau in the energy density, the EoS
rises abruptly, so that the causality violation c2

s > 1 easily occur.

where µhadron
B and µquark

B are the baryon chemical potential of the hadronic and quark matter, respec-
tively. In addition, we require the conditions

PH > PQ (µB < µc) , PH < PQ (µB > µc) , (8.2)

in order for the hadronic matter to be realized at low densities and the quark matter to be at high
densities. With these conditions fulfilled, we build the EoS based on the Maxwell construction. There
can arise such a situation as in Fig. 8.3 (b), in which the hadronic matter EoS diverges. It is not allowed
as in the conventional construction of the EoS outlined above, as it does not satisfy the condition (8.2).
In reality, however, it is actually the case for high-temperature QCD, so here is the problem of the
Maxwell construction.

There is also another problem related to the Maxwell construction of Fig. 8.3 (a). Fig. 8.4 clearly
illustrates what is the problem. In Fig. 8.4, the EoS is plotted in the form of P(ε) corresponds to
that in Fig. 8.3 (a), which is plotted in the form of P(µB). The hadron-to-quark phase transition in
Fig. 8.3 (a), which is marked as a cusp with the red dot, corresponds to an energy density jump in
Fig. 8.4 by a factor of two or so. At the high-density end of the energy density jump, the EoS rises
abruptly, so that there can arise the acausal behavior, c2

s > 1, at this point easily. Also, the Maxwell
construction requires infinite surface tension at the boundary between the hadronic and quark matter.
Moreover, the EoS with a strong first-order phase transition becomes soft, so it cannot support heavy
neutron stars with masses ∼ 2 M�. It is clearly in tension with the current observations, so this is the
reason why the strong first-order phase transition is excluded.

For simplicity, here we have only shown the Maxwell construction, but one can generalize this to
the globally charge neutral construction by relaxing the Gibbs condition in Eq. (8.1) because there are
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Fig. 8.5: The schematic figure of the three-window, or the quark-hadron continuity construction of
the EoS. We divide the chemical potential into three windows: (i) hadronic region, (ii) crossover
region, and (iii) quark region. In the the hadronic EoS (green line) and the quark EoS (blue line) are
interpolated by the smooth function (red thick line); (a) The typical crossover construction without
the first-order phase transition; (b) The crossover construction also works for the situation which
was not allowed in the Maxwell construction. See text for further details.

multiple conserved charges in neutron stars such as the baryon number and the electric charge [279].

8.1.2 Three-window construction for hadron-to-quark crossover

The problems of the Maxwell construction mentioned in the preceding subsection can be remedied
by using the three-window construction [280–283]. This construction is also referred to as the quark-
hadron continuity construction. The schematic figure in Fig. 8.5 depicts the typical three-window
construction of the EoS. In this construction, we divide the regions of the chemical potential into
three windows: (i) hadronic region, (ii) crossover region, and (iii) quark region. In regions (i) and
(iii), we cut off the hadronic and quark EoS at a certain value of the chemical potential. Then, by using
the smooth function in the region (ii), we interpolate between the hadronic EoS in the region (i) and
the quark EoS in (iii). The crossover construction in Fig. 8.5 (a), corresponding to Fig. 8.3 (a), induces
no first-order phase transition in the EoS. We note that by using the function with a cusp instead of
the smooth one, then we can also have the first-order transition in the three-window construction. The
advantage of this construction lies in Fig. 8.5 (b), which was forbidden in the Maxwell construction as
it does not satisfy the condition (8.2). Indeed, Fig. 8.5 (b) is exactly the case for the high-temperature
QCD (compare with Fig. 8.2), in which the precise form of the EoS is known from the reliable lattice-
QCD calculations.

In short, the three-window construction is a more general prescription for interpolating between
the hadronic and the quark EoS; it allows the EoS to have either the crossover or the first-order
transition. As we can avoid a first-order transition in the three-window modeling, it can cure the
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acausal behavior in the Maxwell construction, which is generally the problem of the EoS with a first-
order transition. Also, the EoS constructed by the three-window modeling can support the massive
2 M� neutron stars. Actually, this was the exact driving force to consider the crossover-type EoS. Now
various phenomenological EoSs (QHC18 [274], QHC19 [284], and QHC21 [285]) are constructed in
this construction by taking the realistic nuclear matter EoS (Togashi EoS) [67] or the χEFT EoS [228]
for the hadronic EoS, as well as the NJL model for the quark EoS.

Underlying physics behind this three-window crossover construction is the concept called Quark-
hadron continuity, which we will turn to in the next section.

8.2 Underlying idea of the crossover: Quark-hadron continuity

In the high-density crossover transition, the hadronic matter is smoothly bridged to quark matter.
Color superconductivity gives us an insight into the idea that hadronic matter and quark matter are
continuously connected; Schäfer and Wilczek coined the term “Quark-hadron continuity” (QHC) for
such idea [286]. The idea of QHC can be attributed to the same symmetry breaking patterns and
low-lying excitations in both quark and hadronic phases. In a three-flavor symmetric case, color-
flavor locking (CFL) occurs [30], and the idea of QHC is established [286] (see, however, Refs. [287–
290] for recent discussions under the existence of the non-Abelian vortices). By contrast, in the
two-flavor case, the concept of QHC between nuclear matter and two-flavor color superconductor
(2SC) is invalidated due to the apparent difference in the global symmetries. However, it has been
pointed out that the QHC can still be maintained in the two-flavor case by the present author and
collaborators [291, 292]. The essential point is that the two-flavor stellar matter is highly asymmetric
as repeatedly mentioned above and neutron abundant.

In this section, we introduce the QHC scenarios in some detail. We will only stick to the QHC
although many other scenarios that realize the crossover transition such as ones based on Quarkyonic
matter [35, 269, 283, 293–296], quantum percolation [297] as well as hidden topology change [298],
to mention a few. For the three-flavor symmetric case, the physical picture of QHC is that the hyperon
superfluid and the CFL color superconductor are indistinguishable. For the two-flavor case, the QHC
picture is that we cannot distinguish the 3P2 neutron superfluid [299, 300], which is believed to occur
inside neutron stars and the conventional 2SC color superconductor with an additional component of
the 〈dd〉 diquark condensation.

In the conventional color superconductor, a diquark condensate in 1S 0 channel is formed

〈q̂>αACγ
5q̂βB〉 ∝ εαβγεABC〈Φ̂

γC〉 , (8.3)

where the charge conjugation matrix C ≡ iγ0γ2 is inserted to form a Lorentz scalar. Greek (α, β, . . .)
and capital (A, B, . . .) indices represent color and flavor, respectively1. The color-superconducting
phase can be thought of as a Higgs phase of QCD. Diquarks play here the same role as the Higgs

1Note that the flavor index was f in the above.
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boson does in the electro-weak sector of the standard model. It has previously been shown in lattice
gauge theories that the confinement phase and the Higgs phase are connected without a phase bound-
ary [301]. Owing to this fact, we cannot distinguish between the hadronic (confinement) phase and
the color superconductor (Higgs) phase as long as the global symmetries are the same in both phases;
this is the essence of the QHC.

The symmetry of QCD comprises local gauge symmetry, chiral symmetry and baryon number
symmetry: GQCD = [SU(3)C] × SU(Nf)L × SU(Nf)R × U(1)B. Neglecting the strange (s) quark mass,
the chiral part of GQCD can be ideally treated as Nf = 3. In reality, however, s is much heavier than the
up (u) and the down (d) quarks (ms/mu,d ∼ 30), so it is more natural to consider isospin-symmetric
Nf = 2 systems.

Nf = 3 case: In this case, the quark matter is the CFL color superconductor. The CFL ansatz for the
diquark condensate Eq. (8.3) reads 〈Φ̂αA〉 = δαA∆CFL. The pattern of symmetry breaking in the CFL
phase is GQCD → GCFL, where GCFL = SU(3)C+L+R is the residual symmetry in the CFL phase. The
residual global symmetry in the CFL phase GCFL is the same as that of the hadronic phase, where the
chiral and the baryon number symmetries are spontaneously broken. This led us to the observation of
the QHC.

Local gauge symmetry cannot be broken spontaneously [302]. It means that the Higgs mechanism
alone, which is a fictitious breaking of gauge symmetry, cannot be captured by any gauge-invariant
order parameter. Here, however, global symmetry breaking occurs simultaneously in GQCD → GCFL,
thus this global sector can still be captured by gauge-invariant order parameters. We can construct
such order parameters by saturating gauge indices of diquark operator (8.3) in two ways, either sym-
metrically or anti-symmetrically. Then, each of which captures the breaking of the chiral (SU(Nf)L ×

SU(Nf)R) and superfluid (U(1)B) sector of the QCD symmetry GQCD [303].

Chiral : M = δβαδ
β′

α′(q̄
αq̄α

′

)(qβqβ′) ∝ (q̄αqα)(q̄α
′

qα′) , (8.4)

Superfluid : Υ = εαβγεα
′β′γ′(qαqα′)(qβqβ′)(qγqγ′) ∝ (εαβγqαqβqγ)(εα

′β′γ′qα′qβ′qγ′) . (8.5)

Superfluid order parameter Υ takes a similar expectation value in both the quark and the hadronic
phases because of the QHC. In the hadronic phase, as it is obvious from the RHS of Eq. (8.5) above, it
can be interpreted as Υ ∝ ΛΛ with Λ ∼ uds. This is the order parameter for the hyperon superfluidity.

N f = 2 case: The 2SC ansatz for the diquark condensate (8.3) reads

〈Φ̂αA〉 = δα3δA3∆2SC ≡ Φα
2SC , (8.6)

where we assumed the unitary gauge-fixing. The residual symmetry in the 2SC phase is G2SC =

[SU(2)C]×SU(2)L×SU(2)R×U(1)B, which is apparently different from the hadronic phase. However,
aside from the 2SC condensate Φα

2SC, it is still possible to consider an additional two-flavor diquark
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condensate in order for the QHC to be maintained. Here we focus on the superfluid aspect of the
QHC. We describe neutrons by a quark-diquark structure n = εαβγ(u>αCγ

5dβ)dγ. The order parameter
for 3P2 neutron superfluidity is

Υnn ≡ n>Cγi∇ jn . (8.7)

By rearranging the valence quark content in Υnn, we get

Υnn ∝ ε
αβγεα

′β′γ′(u>αCγ
5dβ)(u>α′Cγ

5dβ′)(d>γ Cγ
i∇ jdγ′) . (8.8)

The first two terms in parentheses are identical to the 2SC condensate Φ
γ
2SC in Eq. (8.6), while the last

term d>γ Cγ
i∇ jdγ′ is the novel element here. If we take the expectation value of Υnn in the mean-field

approximation, Υnn takes the value

〈Υnn〉 ≈ Φα
2SCΦα′

2SC〈d
>
αCγ

i∇ jdα′〉 , (8.9)

where we have neglected the crystalline condensation. The last term in the angle brackets of the
above expression is the diquark condensate of d-quarks, which is paired in the 3P2 channel. We call
this phase 2SC+〈dd〉 phase. The residual symmetry in the 2SC+〈dd〉 phase is the same as neutron
matter, hence the QHC holds. We note in passing there appears a new topological excitation called
the non-Abelian Alice strings [304–306] appears in this novel phase.

We can draw a connection between the microscopic 3P2 diquark condensate and the macroscopic
value of the EoS. We considering the four-fermion coupling interaction in the 3P2 diquark channel,
i.e.,

ÎP = (ψ̄γi∇ jCψ̄>)(ψ>Cγi∇ jψ) . (8.10)

By Fierz rearranging this ÎP term, one finds a term with a direct correspondence to the energy-
momentum tensor in the fermionic sector, T µν = ψ̄iγµ∂νψ. For matter in equilibrium, T µν = diag[ε, P, P, P],
with the energy density ε and the pressure P of fermionic matter. Extracting only the contribution rel-
evant for the energy-momentum tensor, the tree-level expectation value of ÎP reads

〈ÎP〉 ≈
3
4

P2 . (8.11)

It is evident from this expression that the 3P2 diquark interaction couples to the pressure which is a
macroscopic quantity.

8.3 Phenomenological application

In this section, we discuss the phenomenological application of our results, i.e., the HDLpt cal-
culation of the quark matter EoS. In specific, we calculate the observables of neutron stars or hybrid
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stars as we take into account the effect of the quark matter EoS.

Combined with the EoS, the mass and radius of neutron stars are obtained by solving the TOV
equation2:

dP
dr

= −
mε
r2

(
1 +

P
ε

) (
1 +

4πr3P
m

) (
1 −

2m
r

)−1

, (8.12)

m(r) = 4π
∫ r

0
r′2dr′ ε(r′) , (8.13)

where r is the radial distance from the stellar center and m(r) is the mass enclosed within the radius r.
This is an initial problem with the initial conditions set at the center of the star r = 0: P(r = 0) = Pc

and m(r = 0) = 0. The central pressure Pc is a free parameter. After solving the initial value problem,
we further solve P(r = R) = 0 to find the radius. Then, the mass of a neutron star is given by
M = m(r = R).

Another important observable of neutron stars is tidal deformability, Λ, which quantifies the defor-
mation caused by the tidal force when two neutron stars merge. Tidal deformability can be obtained
by solving the following equation [307, 308] combined with the TOV equation:

dH
dr

= β (8.14)

dβ
dr

= 2
(
1 −

2m
r

)−1

H

2π
[
5ε + 9P + (ε + P)

dε
dP

]
+

3
r2 + 2

(
1 −

2m
r

)−1 (m
r2 + 4πr2P

)2


+
2β
r

(
1 −

2m
r

)−1 {
−1 +

m
r

+ 2πr2(ε − P)
}
. (8.15)

Again this is an initial value problem with the initial condition H(r = 0) = β(r = 0) = 0 (see also
Eq. (B.30) for the practical value used for the initial value). From M, R, H, and β obtained above, we
can calculate the tidal deformability as

Λ =
16
15

(1 − 2C)2[2 + 2C(y − 1) − y]

×

{
2C[6 − 3y + 3C(5y − 8)] + 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)
}−1

, (8.16)

where C and y are defined as C ≡ M/R and y ≡ Rβ(R)/H(R), respectively. See Appendix B for the
complete derivation of these equations.

In the following two subsections, we will quantify the effect of the QCD EoS on neutron star
observables. The effect of the pQCD branch seems to be tiny when we connect the pQCD calculation
directly to the nuclear matter EoS. However, as the pQCD EoS becomes soft with c2

s = 1/3 at high

2Practically, it is more convenient to formulate it in terms of enthalpy η ≡ (ε + P)/nB instead of radius r.
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Fig. 8.6: (Left) Pure hadronic EoS (SLy4) and the hadronic EoS connected to the quark EoS. (Right)
Corresponding M–R relation.

P1[dyne/cm2] Γ1 ρ1 Γ2 ρ2 Γ3

Pure hadronic (SLy4) 2.42 × 1034 3.01 1.85 ρ0 2.99 3.70 ρ0 2.85
Crossover to quark 2.42 × 1034 3.01 1.85 ρ0 2.99 4.72 ρ0 1.33

Table 8.1: Parameters of piecewise polytropic EoSs in cgs units.

densities, it can be very useful constraining the global trend of the EoS.

8.3.1 Connecting hadronic EoS and quark EoS

For numerical simplicity, we use the piecewise polytrope parametrization of the EoS [309]. We
divide the density range into a certain number of segments. In this subsection, we take it as three, and
in the next subsection, we take it as four. For the mass density ρ in the range [ρi−1, ρi] (i = 1, 2, . . .),
the EoS is expressed by a polytrope

P(ρ) = Ki ρ
Γi , ρi−1 ≤ ρ ≤ ρi , (8.17)

where Γi is the adiabatic index of the i-th piece. The corresponding energy density in the range
ρi−1 < ρ < ρi is given by

ε(ρ) = (1 + ai)ρ +
Ki ρ

Γi

Γi − 1
, ai =

ε(ρi−1)
ρi−1

− 1 −
Ki ρ

Γi−1
i−1

Γi − 1
. (8.18)

Below the density ρ1, we connect the crust EoS, which is P(ρ) = Kcrust ρ
1.36 with Kcrust = 4.00×10−8 in

cgs units (see Ref. [309] for details). In this subsection, we consider three polytropic regions, which
is specified by the six parameters in cgs units: (P1,Γ1, ρ1,Γ2, ρ2,Γ3) with P1 ≡ P(ρ1).
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Fig. 8.7: Constraints on the EoS put solely by QCD boundary condition combined with a minimal
2 M� constraint.

Under these setups, we compare the pure hadronic EoS, which is taken to be SLy4 [68], and the
EoS with the hadron-to-quark crossover. The crossover EoS is constructed by finding the density
where these two EoSs, which are SLy4 and the HDLpt EoS, meet in the P–ρ plane. The fitted param-
eters for each EoS are given in Table 8.1; The only difference is in the third segment, and the crossover
EoS has the rapid softening feature. Precisely speaking, since there is a gap in the derivative quantity
such as the adiabatic index, it is not the crossover transition, but the second-order phase transition.
Nonetheless, we cannot get the smooth EoS within the piecewise polytropic parametrization, we call
it the crossover EoS (see, however, Ref. [310] for the generalized parametrization, which allows for
the continuous adiabatic index).

In Fig. 8.6, we compare the pure hadronic EoS and the crossover EoS. From the M–R relation in
the right panel, one can see that the effect of the quark matter is very tiny. At least within the current
precision of the observation, we cannot distinguish these two cases.

8.3.2 QCD constraints on the EoS

In the preceding subsection, we saw that the effect of the quark matter calculation on a specific
EoS is very slight. However, we point out that it can still be useful for constraining the allowed EoS
regions in the P–ρ plane.

The strategy is to set the boundary conditions from the QCD calculations: at lower density side,
we use the χEFT calculation [228] up to ρ ' 2 ρ0, and at higher density side, we use our HDLpt
calculation down to ρ ' 8 ρ0. Then, in the intermediate density range 2 ρ0 < ρ < 8 ρ0, we interpolated
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Fig. 8.8: M–R relation corresponding to Fig. 8.7. The radius constraints from the NICER collabora-
tion are overlaid: J0030+0451 at M = 1.4 M� [173, 174], and J0740+6620 at M = 2 M� [175, 176].

Fig. 8.9: Tidal deformability corresponding to Fig. 8.7. The red arrow is the constraint from
GW170817.
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between these boundary conditions using the piecewise polytropes. We generate numerous piecewise
polytropes with the parameters chosen at random. Here, we take the number of pieces as four with
the adiabatic index in the last piece fixed to Γ4 = 1.33; this value is chosen to match the quark
matter value given in Table 8.1. This program has been initiated by Kurkela, Vuorinen, and their
collaborators [311]; up to now, they have subsequently developed the method to get the EoS constraint
from the tidal deformability [312] or to use the speed of sound for the parametrization [272, 313].

In Fig. 8.7, we plot 10,000 randomly generated piecewise polytropic EoSs interpolating between
the χEFT and the HDLpt calculations. Fig. 8.8 and Fig. 8.9 are the corresponding M–R relation and
the tidal deformability. We reject EoSs with a maximum mass less than 2 M�; one can clearly see it
in Fig. 8.8, in which all M–R relation reaches beyond 2 M�. In this sense, we can say this is the most
conservative constraint on the EoS based on the theory calculations with the minimal observational
criterion. Even so, the magnitude of the allowed region is comparable to the observational constraint
from the GW170817 event [160]. We would like to emphasize here that the theory calculation, par-
ticularly the pQCD calculations at high densities, can still be useful for constraining the possible
EoSs.

In Fig. 8.7, we see the kink around ρ = 4–6 ρ0. This global tendency, which is quantified more
quantitatively by the speed of sound or the adiabatic index, is related to the emergence of quark matter
inside neutron stars [272].

In this subsection, we have mentioned briefly how the pQCD calculations are useful in constrain-
ing the EoS, and further studies on this issue can be found, e.g., in Ref. [314].
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Chapter 9

Conclusions

In this thesis, the equation of state (EoS) of the strongly interacting dense matter is studied com-
prehensively relying on the QCD-based approach. Our machinery is the perturbation theory with
resummation, and to be more specific, it is what is called the Hard Dense Loop perturbation theory
(HDLpt). With the application to neutron star physics in mind, we take into account the effect of a
bare mass of strange quarks. The inclusion of the bare quark mass effect is important for the quan-
titative description of the β equilibrium and charge neutral stellar system, but it hardly affects the
qualitative feature of the EoS.

What is more crucial is the effect of resummation in the quark sector. Previously, the conven-
tional perturbative QCD (pQCD) calculations are plagued with large scale variation uncertainty. In
principle, the pQCD results should not depend on the choice of the renormalization scale, Λ̄, but the
truncation of the perturbative series at a finite order causes the uncertainty depending on the choice
of Λ̄. We find that this scale variation uncertainty is lessened in the EoS when it is expressed as
the relation between the pressure, P, and the energy density, ε. This P–ε relation is important for
the astrophysical application. Since the scale variation uncertainty is lessened, now we can compare
our pQCD calculation with the EoS constrained by astrophysical observations; we found that there
is a smooth matching between these EoSs. It may imply there is a smooth crossover transition from
nuclear matter to quark matter. We also found the counterexample to the empirical theorem stating
that the speed of sound, c2

s , should always be less than the conformal limit, c2
s = 1/3, by explicitly

showing c2
s > 1/3 in our calculation.

In Chapter 1, we gave a brief introduction to motivate why we study strongly interacting dense
matter by putting an emphasis on the advantage of QCD-based approaches with resummation.

In Chapter 2, we offered a cursory look at the dense matter EoS studies. After briefly explaining
the basic properties of the EoS, we presented the constraints on the EoS from nuclear experiments
and astrophysical observations of neutron stars. We then reviewed the status of the theory calculation,
particularly the pQCD calculations of the EoS. In Chapter 3, we covered the necessary perturbative
methods to calculate QCD thermodynamics incorporating the hard thermal loop (HTL) resummation.
We introduced the notion of HTLs and the need for resummation in Sec. 3.2. Then, we mentioned the

97
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various techniques such as HTL perturbation theory (HTLpt) (Sec. 3.4), and the Φ-derivable approx-
imation in the 2PI formalism (Sec. 3.5), which were used in the later chapters. For completeness, we
also mentioned the resummation scheme à la Braaten and Pisarski in Sec. 3.3.

In Chapter 4, based on the method we introduced in Sec. 3.4, we calculated the EoS in the form of
P(µ), which is the relation between the pressure and chemical potential, µ. In Sec. 4.1, all the neces-
sary formulae were given, and details of the integration, which arises from the Matsubara summation,
were supplemented in Sec. 4.2 for reference. Then the EoS construction in the β equilibrium and
charge neutral system was explained in Sec. 4.3 along with the numerical results for the Nf = 2 + 1
quarks. In Chapter 5, we discussed two corrections to the results presented in the previous chapter;
they are an ad hoc O(αs) correction to match with the conventional pQCD coefficient as well as the
bare mass correction in the self-energy expression used in the HDLpt, which turned to be negligible
in our case. Also, for comparison, we performed the EoS calculation in the alternative resummation
method of the Φ-derivable approximation in the 2PI formalism in Sec. 5.2.

In Chapters 6, 7, and 8, we discussed the novel facets of our results. Chapter 6 was devoted to the
reduction of the scale variation uncertainty in the HTL-resummed theories. A heuristic interpretation
was given by scrutinizing the relations between P, µ, and the baryon density, nB. Then, we explicitly
wrote down the condition in order for the scale variation uncertainty to vanish. Thermodynamics
involves differentiation with respect to µ. There can also arise a µ-dependence in the coupling con-
stant, and the treatment of this µ-dependence is subtle. In Sec. 6.4, after describing the subtle feature
of this point, we justify our assumption of not differentiating the µ-dependence in the coupling con-
stant by stating that this is merely a convention of the parametrization. In Chapter 7, we discussed
the behavior of the speed of sound in the HDLpt. We gave a quick survey on a few conventional
scenarios describing the behavior of the speed of sound to fully appreciate our result. Main results,
i.e. the violation of the conformal limit, were shown in Sec. 7.2 again with a caveat on the subtleties
related to differentiating µ-dependence in the coupling constant in Sec. 7.3. Finally, in Chapter 8,
we showed the smooth matching between our HDLpt EoS and the low-density nuclear matter EoSs.
Inspired by this behavior of the EoS, we are led to the physical picture of quark-hadron continuity,
which states that hadrons deconfine smoothly into quarks with increasing density, thus the hadron-to-
quark transition becomes crossover-type. In Sec. 8.1, we reviewed the general remarks on the EoS
construction with crossover, and in Sec. 8.2 we introduced the quark-hadron continuity concept, in
which the present author and collaborators contributed. Finally in Sec. 8.3 the pQCD calculation is
applied to constraining the neutron star observables to illustrate the usefulness of the pQCD results.

Novelties of our work lie in the following points.
First of all, the inclusion of bare quark mass effect both in the HDLpt and in the 2PI expansion, as

discussed in Sec. 4.1 and 5.2, is newness in the technicalities. This allows us to construct the EoS in
a realistic stellar environment, in which the strange quarks are heavier than u and d quarks.

This is just the extension of the preceding works; previously there have been calculations using the
HDLpt in the massless limit of bare quarks such as in Refs. [110,227]. Our primary new findings were
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not the calculations themselves, but rather the implications from the results of the above calculations.
The one is the reduction of the scale variation uncertainty when viewed in the relation P(ε). Usually in
the community of pQCD thermodynamics, what they care about is the P(µ)-relation as they calculate
this quantity directly. For the phenomenological application, however, more important is P(ε), so
that the reduction of the uncertainty is more demanding in this expression. We have given explicit
conditions for the reduction of the scale variation uncertainty in Sec. 6.3. We have also mentioned
the issues related to differentiating µ-dependence in the coupling constant in Sec. 6.4. This issue has
been alluded to in various literature as in Ref. [60], but to the best of our knowledge, this is the first
time that these issues are stated with an explicit calculation at least in this context.

The upshot of this reduction of the uncertainty is the smooth matching between our calculation
and the nuclear matter EoS. The possibility of the crossover transition at high densities has been thor-
oughly investigated in recent years, but our direct comparison allows us to see clearly the crossover
tendency in the EoS. We note, however, that the analyses in Sec. 8.3 is not new; it is the direct appli-
cation of the program initiated in Ref. [311].

The behavior of the speed of sound surpassing the conformal limit is also a notable issue. As we
have explained, there is an empirical conjecture stating that the bound for the speed of sound is the
conformal limit. This conjecture significantly affects the neutron star structure, and in recent years,
there has been a variety of negative results on this conjecture from the astrophysical point of view.
Our calculation serves as the counterexample for such conjecture.

The advantage of our calculations is the inclusion of resummation in the quark sector, which was
absent in the conventional pQCD calculations [56–64]. As has been discussed in the 2PI expansion,
the self-consistent resummation scheme itself is non-perturbative and robust.

To be fair, we also raise the drawback of our approach; our calculation is still at the leading order,
and we are throwing away some known contributions in the pQCD results. For further systematic
studies, we definitely need to go to higher orders in the coupling constant expansion, to contrast
on equal footing with the existing results. In any case, a complementary approach other than the
conventional pQCD is demanding.

This is the first step towards the QCD-based construction of the EoS in all the density regions. The
significance of the EoS is not merely the problems that it solves, but the issues which it raises. We
believe this will eventually help us understand the finite density region of QCD, which still remains
as a terra incognita.

There are several directions we can take for future works.
First of all, the most critical is the higher-order calculations. The LO calculation still works well

sometimes, but in order to settle things fully, the higher-order calculations are inevitable.
Fixing the renormalization scale appropriately is another issue. It has been argued that there are

typical scale setting methods suggested in the various literature [315]. The application of such meth-
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ods is worth further investigation. Also, now we are only considering resummation in the chromo-
electric sector of QCD, but the chromomagnetic sector, whose scale is softer than the former, should
also be taken into account. Color superconductivity is recognized to be arising from the long-range
interaction in the chromomagnetic sector [316], and incorporating the gap in color superconductors
may have a large effect on the EoS.

We can think of the application of our calculation to several dynamical phenomena. One is neutron
star merger simulations emitting gravitational waves. It would be very interesting to consider how the
crossover transition can be detected in the gravitational wave observatories. Also, our formulation
also works at finite temperature, so that we can apply it to the context of heavy-ion collisions. High
baryon density QGP matter is currently probed in the beam energy scan program at the RHIC [317], so
it is of utmost importance to take advantage of such data. In this thesis, we considered the possibility
of hybrid stars, which are neutron stars with quark cores inside. The compact stellar object may be
solely made of strange quark matter [318–320], which is called quark stars. The existence of quark
stars is still inconclusive, but at least the quark stars are inconsistent with the recent observations
of compact stellar objects; the bag model description of quark stars with different values of the bag
constant B [264, 265, 278, 321] will all lead to the smaller radius and maximum mass, which are
inconsistent with the recent observations, thus the observed compact objects cannot be regarded as
quark stars. Nonetheless, in current years, terrestrial experiments look for a somewhat different form
of the strange quark matter in nuclear colliders; they are called metastable exotic multi-hypernuclear
objects (MEMO) [322], and they can be regarded as a strangelet, or a nugget of the strange quark
matter. Our quantitative study in the strangeness sector may also be useful in studying such objects.



Appendix A

Gluon calculations

We will supplement the pressure of gluons in Eq. 4.2 of the main text. It was already derived in,
e.g., Ref. [204].

Pg =
M4

D

64π2

(
ln

Λ̄

MD
+ Cg

)
. (4.10)

The gluon pressure can be split into the transverse gluon part and the longitudinal gluon part:

Pg(T, µ f ) ≡ (2 − 2ε)PT(T, µ f ) + PL(T, µ f ) , (A.1)

where the transverse gluon contribution PT and the longitudinal contribution PL are

PT(T, µ f ) = −
1
2

∑∫
K

ln
[
K2 + ΠT(iωn, k)

]
, (A.2)

PL(T, µ f ) = −
1
2

∑∫
K

ln
[
k2 + ΠL(iωn, k)

]
. (A.3)

(A.4)

We define the transverse and longitudinal gluon self-energy appearing in the expression of the pres-
sures as

ΠT(iωn, k) ≡ −
M̂2

D

2 − 2ε
ω2

n

k2

[
1 −

ω2
n + k2

ω2
n
T (iωn, k)

]
, (A.5)

ΠL(iωn, k) ≡ M̂2
D [1 − T (iωn, k)] , (A.6)

(A.7)
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where we also define the HTL functions for bosons T as

T (iωn, k) ≡
Γ(3

2 − ε)

Γ( 3
2 )Γ(1 − ε)

∫ 1

0
dc (1 − c2)−ε

(iωn)2

(iωn)2 − k2c2 (A.8)

= 2F1

(
1
2 , 1; 3

2 − ε;
k2

(iωn)2

)
ε→0
−−−→

iωn

k
Q0

( iωn

k

)
=

iωn

2k
ln

iωn + k
iωn − k

. (A.9)

Note that the HTL function involves the dimensional regularized form as they originate from the
angular integrals in the 3 − 2ε dimensions. Small ε dependence in the hypergeometric function will
be important when calculating the temperature/density-independent part of the pressure (which we
denote P? below).

By carrying out the Matsubara sums and integrals, we will arrive at the one-loop expression of
presssure calculated within the HTLpt.

Pg(T, µ f ) =
M̂4

D

64π2

(
ln

Λ̄

M̂D
+ Cg

)
+

1
2π3

∫ ∞

0
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1
eβω − 1

∫ ∞
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dk k2(2φT − φL)

−
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2π2

∫ ∞

0
dk k2

[
2 ln

(
1 − e−βωT

)
+ ln

(
1 − e−βωL

)]
−
π2T 4

90
.

(A.10)

Here the constants are evaluated numerically Cg ≈ 1.17201 and Cq ≈ −0.03653. Also we define the
functions φT and φL as

φT(ω, k; M̂2
D) = arctan


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[
1 + k2−ω2

2kω ln
(

k+ω
k−ω

)]
 , (A.11)

φL(ω, k; M̂2
D) = arctan


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[
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(

k+ω
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)] , (A.12)

Dispersion relations ωT(k; M̂2
D) and ωL(k; M̂2

D) are given by the solutions to the following equations:

ω2
T − k2 −

M̂2
Dω

2
T

2k2

[
1 −

ω2
T − k2

2ωTk
ln

(
ωT + k
ωT − k

)]
= 0 , (A.13)

k2 + M̂2
D

[
1 −

ωL

2k
ln

(
ωL + k
ωL − k

)]
= 0 . (A.14)

We will derive each terms below.
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Fig. A.1: (Left) Integration contour of Matsubara sum; (Right) Contour after deformation.

A.1 Transverse gluons

We will start from the transverse gluon pressure in Eq. (A.2). We can rewrite the Matsubara sum
into the contour integral by isolating the Matsubara zero mode ωn=0.

PT(T, µ f ) = −
1
2

∑∫
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ln
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]
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∑∫
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−
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coth
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(A.15)

where we have used the relations ΠT(iωn = 0, k) = 0 and ∑∫
K

ln(k2) =
∑

n limµ→0

∫
k

ln(k2 + µ2) =
1

(4π)d/2
2
d Γ(1− d

2 )(µ2)d/2 = 0 . The contour C is depicted in Fig. A.1 (Left). Now, by contour deformation,
we can change the integration path C into Cqp∪CLd, the one shown in Fig. A.1 (Right). We identify the
term coming from the contour Cqp with the quasi-particle contribution and the one from the contour
CLd with the Landau damping contribution:
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∮
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, (A.16)

PT,Ld = −
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)
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Quasi-particle contribution

PT,qp = −
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∮
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(A.18)

where in the intermediate steps, we have used the relations ΠT(−ω, k) = ΠT(ω, k) and coth(βω/2) =

coth(−βω/2) = 2/(eβω−1)+1. The dispersion relation for transverse gluons ωT is obtained by solving
Eq. (A.13). In the penultimate line, we have introduced the convergence factor e−ωδ and it gives out
the −1/2δ contritbuion in the last line. This divergent term −1/2δ vanishes owing to dimensional
regularization.
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Landau damping contribution
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where in the penultimate step, we have used the facts
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) . (A.20)

Now the angle φT is defined as in Eq. (A.11).

Temperature and chemical potential independent part
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(A.21)

in the penultimate line, we have rescaled asωE → kωE. Now we define the function fT in the integrand
above as:

fT(ωE) =
2 − 2ε

M̂2
D

ΠT(iωE, 1)
1 + ω2

E

. (A.22)
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Fig. A.2: (Left) Integration contour of Matsubara sum; (Right) Contour after deformation.

We note here that this function fT carrys the ε dependence (though not written explicitly). By expand-
ing the integrand as the power of ε, we obtain
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Here we define the constant as
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)
(A.24)

and using the value ∫ ∞
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(8 ln 2 − 5) , (A.25)

we arrive at the expression
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A.2 Longitudinal gluons

We will start from the longitudinal gluon pressure in Eq. (A.3). We can rewrite the Matsubara
sum into the contour integral by isolating the Matsubara zero mode ωn=0.
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PL(T,µ f ) = −
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where in the intermediate step, we have used the relation ΠL(iωn = 0, k) = M̂2
D. The contour C is

depicted in Fig. A.2 (Left). Note that the contribution from the Matsubara zero mode enters the final
contour integral expression with the opposite sign because zero mode contour, which is the circle
wrapping around the origin, can be deformed into −C. Here, further deforming the contour C, we can
change the integration path into Cqp ∪ CLd as shown in Fig. A.2 (Right). As for the case in transverse
gluons, we identify the term coming from the contour Cqp and CLd with the quasi-particle contribution
and the Landau damping contribution, respectively:
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PL,Ld = −
1
4

∫
k

∮
CLd

dω
2πi

ln
k2 + ΠL(ω, k)

k2 + M̂2
D

 coth
(
βω

2

)
(A.29)



108 APPENDIX A. GLUON CALCULATIONS

Quasi-particle contribution
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(A.30)

where in the intermediate steps we have used the relations ΠL(−ω, k) = ΠL(ω, k) and coth(βω/2) =

− coth(−βω/2) = 2/(eβω − 1) + 1. The dispersion relation for longitudinal gluons ωL is given by
solving Eq. (A.14).
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Landau damping contribution

PL,Ld = −
1
4

∫
k

∮
CLd

dω
2πi

ln
k2 + ΠL(ω, k)

k2 + M̂2
D

 coth
(
βω

2

)
= −

1
4

∫
k


∫ k

−k

dω
2πi

ln ∣∣∣∣∣∣k2 + ΠL(ω, k)
k2 + M̂2

D

∣∣∣∣∣∣ + i arg
k2 + ΠL(ω + i0+, k)

k2 + M̂2
D

 coth
(
βω

2

)
+

∫ −k

k

dω
2πi

ln ∣∣∣∣∣∣k2 + ΠL(ω, k)
k2 + M̂2

D

∣∣∣∣∣∣ + i arg
k2 + ΠL(ω − i0+, k)

k2 + M̂2
D

 coth
(
βω

2
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= −

1
4

∫
k

∫ k

−k

dω
2π

Disc arg
k2 + ΠL(ω, k)

k2 + M̂2
D

 coth
(
βω

2

)
=

1
4

∫
k

2
∫ k

0

dω
2π

Disc arctan

 M̂2
D Im 2F1( 1

2 , 1; 3
2 ; k2

ω2 )

k2 + M̂2
D − M̂2

D Re 2F1(1
2 , 1; 3

2 ; k2

ω2 )

 2
(

1
eβω − 1
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1
2
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= −

1
π

∫
k

∫ k

0
dωφL(ω, k; M̂2
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(

1
eβω − 1

+
1
2

)
(A.31)

where in the penultimate line, we used the relations

Im 2F1( 1
2 , 1; 3

2 ; k2

(ω±i0+)2 ) = ∓
iπω
2k

, Re 2F1( 1
2 , 1; 3

2 ; k2

(ω±i0+)2 ) =
ω

2k
ln(

k + ω

k − ω
) . (A.32)

The angle φL is defined in Eq. (A.12).

Temperature and chemical potential independent part

P?
L = −

1
2

∫ ∞

−∞

dωE

2π

∫
k

ln
[
k2 + ΠL(iωE, k)

]
= −

∫ ∞

0

dωE

2π

∫
k

k ln
[
k2 + ΠL(iωE, 1)

]
=

Λ̄2εeγEε

16π5/2

Γ(2 − ε)Γ(ε − 2)
Γ( 3

2 − ε)

∫ ∞

0
dωE (ΠL(iωE, 1))2−ε (A.33)

in the penultimate line, we have rescaled asωE → kωE. Now we define the function fL in the integrand
above as:

fL(ωE) = M̂−2
D ΠL(iωE, 1) . (A.34)
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We note here that this function fL carrys the ε dependence (though not written explicitly). By expand-
ing the integrand as the power of ε, we obtain

P?
L =

Λ̄2εeγEε

16π5/2

Γ(2 − ε)Γ(ε − 2)
Γ(3

2 − ε)
M̂4−2ε

D

[∫ ∞

0
dωE f 2

L (ωE) − ε
∫ ∞

0
dωE

(
f 2
L ln fL − 2 fL

∂ fL

∂ε

)]
=

M̂4
D

16π3

1
ε

+ ln
Λ̄2

M̂2
D

+
5
2
− 2 ln 2

 [∫ ∞

0
dωE f 2

L (ωE) − ε
∫ ∞

0
dωE

(
f 2
L ln fL − 2 fL

∂ fL

∂ε

)]
(A.35)

Here we define the constant as

κL = −

∫ ∞

0
dωE

(
f 2
L ln fL − 2 fL

∂ fL

∂ε

)
(A.36)

and using the value ∫ ∞

0
dωE f 2

L (ωE) =
π

3
(1 − ln 2) , (A.37)

we arrive at the expression

P?
L =

M̂4
D

64π2

4 − 4 ln 2
3

1
ε

+ ln
Λ̄2

M̂2
D

+
5
2
− 2 ln 2

 +
4κL

π

 (A.38)



Appendix B

The structure equations of neutron stars

In this chapter we will present for completeness the description of the structure equations of
neutron stars from the reduction of the Einstein equation.

B.1 Equilibrium configuration: mass and radius
B.1.1 Derivation of the TOV equation

The geometry of spacetime of a static and spherical symmetric star can be described by the fol-
lowing metric:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θ dφ2). (B.1)

The energy-momentum tensor is given by

Tµν = (ε + P)uµuν + Pηµν, (B.2)

where ε and P are density and pressure, and uµ is the velocity four-vector, defined so that uµuν = −1.
Ricci tensor associated with this metric can be calculated as follows

R0
0 = −e−λ(r)

(
ν′′

2
+
ν′

r
+
ν′2

4
−
ν′λ′

4

)
, (B.3)

R1
1 = −e−λ(r)

(
ν′′

2
−
λ′

r
+
ν′2

4
−
ν′λ′

4

)
, (B.4)

Ri
i = −e−λ(r)

(
ν′ − λ′

2r
+

1
r2

)
+

1
r2 , (i = 2, 3). (B.5)

The prime denote the differentiation in terms of r. Ricci scalars are

R = Rµ
µ = −e−λ(r)

(
ν′′ +

2(ν′ − λ′)
r

+
ν′2

2
−
ν′λ′

2
+

2
r2

)
+

2
r2 (B.6)
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Thus now one can write the Einstein equation:

Gµ
ν = 8πT µ

ν , (B.7)

where Gµ
ν is the Einstein tensor

Gµ
ν = Rµ

ν −
1
2
δµνR. (B.8)

Each component ((0,0), (1,1) and (i, i), i = 2, 3) reads

e−λ(r)
(

1
r2 −

λ′

r

)
−

1
r2 = −8πε (B.9)

e−λ(r)
(
ν′

r
+

1
r2

)
−

1
r2 = 8πP (B.10)

e−λ(r)
(
ν′′

2
+
ν′ − λ′

2r
+
ν′2

4
−
ν′λ′

4

)
= 8πP (B.11)

Here we define Φ(r) and m(r) instead of ν(r) and λ(r)

eν(r) =: e2Φ(r), e−λ(r) =: 1 −
2m(r)

r
. (B.12)

Plugging these in Eq. (B.9) and (B.10) gives

dm(r)
dr

= 4πr2ε(r) (B.13)

dΦ(r)
dr

=
m + 4πr3P
r(r − 2m)

(B.14)

The derivative of p in terms of r result from the conservation of the momentum:

∇νT 1ν = 0 →
dP
dr

= −(ε + P)
dΦ

dr
(B.15)

This completes the derivation of the TOV equations:

dm
dr

= 4πr2ε, (B.16)

dP
dr

= −
mε
r2

(
1 +

P
ε

) (
1 +

4πr3P
m

) (
1 −

2m
r

)−1

, (B.17)

dΦ

dr
= −

1
ε + P

dP
dr

. (B.18)
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As a remark, these equations (B.16-B.18) yield the well-known Schwarzschild metric:

ds2 = −

(
1 −

rs

r

)
dt2 +

(
1 −

rs

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2), (B.19)

where rs is Schwarzschild radius rs := 2M and M := m(R) is the mass of star up to the stellar radius
r = R.

B.1.2 Gravitational redshift

In the geometry described by the Schwarzschild metric, a proper time interval is

dτ =

(
1 −

rs

r

)1/2
dt (B.20)

Assume signals of frequency

ν(r = R) =
dN
dτ

=

(
1 −

rs

R

)−1/2 dN
dt

(B.21)

are emitted from the neutron star surface (r = R), where dN is the number of signals over a time
interval dτ. A distant observer will detect signals of frequency

ν∞ =
dN
dt
, (B.22)

since the geometry becomes asymptotically flat at infinity. Thus, the gravitational redshift of signals
emitted from the surface is

ν∞ =

(
1 −

rs

R

)1/2
ν(R), z :=

ν(R)
ν∞
− 1 =

(
1 −

rs

R

)−1/2
− 1. (B.23)

B.2 Static linearized perturbations: tidal deformability

B.2.1 Perturbations due to an external tidal field

In this section, the behavior of the equilibrium configuration under linearized perturbations due to
an external quadrupolar tidal field is examined following [307, 308]. The full metric of the geometry
is given by

gµν = ηµν + hµν, (B.24)

where hµν is a linearized metric perturbation. Here we analyze the angular dependence of the compo-
nents of hµν into spherical harmonics Ym

l (θ, φ). Introducing a l = 2 and m = 0 perturbation without
loss of generality onto the spherically symmetric geometry (B.1) results in a static (zero-frequency),
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even-parity perturbation of the metric:

ds2 = −eν(r)[1 + H(r)Y0
2 (θ, φ)]dt2 + eλ(r)[1 − H(r)Y0

2 ]dr2 + r2[1 − K(r)Y0
2 (θ, φ)](dθ2 + sin2 θ dφ2),

(B.25)

where K(r) is related to H(r) by K′(r) = H′(r) + H(r)ν′(r). The corresponding perturbations of the
energy momentum tensor (B.2) are

δT 0
0 = −δε(r)Y0

2 (θ, φ), δT i
i = δP(r)Y0

2 (θ, φ). (B.26)

From the perturbed Einstein equation δGµ
ν = 8πδT µ

ν , one obtains the differential equation for H(r):

H′′ + H′
[
2
r

+ eλ
(
2m(r)

r2 + 4πr (P − ε)
)]

+ H
[
−

6eλ

r2 + 4πeλ
(
5ε + 9P +

ε + P
(dP/dε)

)
− ν

′2
]

= 0, (B.27)

This second-order differential equation is separated into two first-order equations by defining the
additional functions β(r) = dH/dr and becomes:

dH
dr

= β (B.28)

dβ
dr

= 2
(
1 −

2m
r

)−1

H

2π
[
5ε + 9P + (ε + P)

dε
dP

]
+

3
r2 + 2

(
1 −

2m
r

)−1 (m
r2 + 4πr2P

)2


+
2β
r

(
1 −

2m
r

)−1 {
−1 +

m
r

+ 2πr2(ε − P)
}
. (B.29)

These equations are augmented with Eqs. (B.16) and (B.17), and solved simultaneously with a bound-
ary condition

H(r) = a0r2
[
1 −

2π
7

(
5εc + 9Pc +

εc + Pc

(dP/dε)c

)
r2 + O(r3)

]
, (B.30)

at r slightly away from r = 0, where εc and Pc are the energy density and pressure at the stellar center.
The constant a0 determines how much the star is deformed and can be chosen arbitrarily as it cancels
in the expression for the Love number k2.

B.2.2 Calculation of the tidal Love number

Once we get the solution m(r), P(r),H(r) and β(r) solving the Eqs. (B.16), (B.17), (B.28), and
(B.29), the tidal Love number k2 can be calculated by the following procedure.

H has an analytical solution outside the star r ≥ R, where Tµν = 0:

H = c1

( r
M

)2
(
1 −

2M
r

) [
−

M(M − r)(2M2 + 6Mr − 3r2)
r2(2M − r)2 +

3
2

ln
( r
r − 2M

)]
+ 3c2

( r
M

)2
(
1 −

2M
r

)
,

= c1
1 − 2C

C2

[
−

C(C − 1)(2C2 + 6C − 3)
(1 − 2C)2 −

3
2

ln(1 − 2C)
]

+ 3c2
1 − 2C

C2 , (B.31)
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where C = M/R is the compactness of the star. From the asymptotic behavior of this expression, the
coefficients c1 and c2 are matched as follows [307]:

c1 =
15
8

1
M3λE, c2 =

1
3

M2E, (B.32)

so that one can solve Eq. (B.31) and its derivative in terms of λ and obtain (remember k2 = (3/2)λ/R5):

k2 =
8C5

5
c1

6c2
(B.33)

=
8C5

5
(1 − 2C)2[2 + 2C(y − 1) − y]

×

{
2C[6 − 3y + 3C(5y − 8)] + 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)
}−1

, (B.34)

where y is defined as

y =
R β(R)
H(R)

=
R H′(R)

H(R)
. (B.35)
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