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Abstract

The concept of spontaneous symmetry breaking has developed our understanding of
various phenomena in strongly correlated electron systems. However, this historically
successful paradigm has been challenged by the discovery of the quantum spin liquid
phase and multipolar ordered phases. Quantum spin liquids are considered long-range
entangled paramagnets and possess deconfined fractionalised excitations that can couple
to emergent gauge fields. Because they do not exhibit any anomalies associated with
spontaneous symmetry breaking down to the lowest temperatures, there are still many
aspects of their nature that remain a mystery. Multipolar ordered phases are quantum
phases that are elusive from a different perspective. They present spontaneous symmetry
breaking at the transition temperature; however, their properties are not easily revealed
because of the complexity of the order parameters that govern the symmetry breaking.

Rare-earth pyrochlore systems offer an ideal platform for investigating these prominent
quantum phases because they have the potential to display both phases. The combination
of the D3d symmetric crystal electric field and the strong spin-orbit interaction of f -
electrons yields a non-trivial ground state doublet described by multipolar moments.
In addition, the pyrochlore lattice hosts a three-dimensional geometrically frustrated
structure, which is used to form the quantum spin liquid phase. Therefore, we expect that
rare-earth pyrochlore systems are useful for independently investigating the properties
of quantum spin liquids and multipolar ordered phases as well as investigating their
combination.

Motivated by this expectation, two themes are discussed in this thesis, with lattice
degrees of freedom as the common denominator: (i): Multipolar quantum spin ice and
novel experimental probes; (ii): Relationship between the spin ice, magnetic field, and
lattice.

In (i), we study a new class of quantum spin liquid, namely multipolar quantum spin
ice, in a dipolar-octupolar pyrochlore system. The quantum spin liquid phase induced
by the frustration of multipoles can be realised in a certain type of rare-earth pyrochlore
system. Additionally, we clarify that the ground state of Ce2Zr2O7 belongs to multipo-
lar quantum spin ice by comparing neutron scattering measurements and our theoretical
calculations. Furthermore, a novel experimental method known as magnetostriction mea-
surement, is proposed to experimentally classify quantum spin liquids.

In (ii), we discuss the spin ice phase of non-Kramers pyrochlore systems under an ex-
ternal magnetic field along the [110] crystal direction. Within the strong field limit, the
system is decoupled into a series of one-dimensional chains, which can then be considered
a one-dimensional Ising chain. Moreover, by introducing the phonon degree of freedom
to this chain, an emergent transverse field Ising model is realised in the non-Kramers py-
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rochlore system. We demonstrate that the quantum phase transition associated with the
emergent one-dimensional model is captured as a unique behaviour of nuclear magnetic
resonance (NMR) relaxation time measurement.

ii



Contents

Abstract i

1 Introduction 1
1.1 Quantum spin liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Z2 spin liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 U(1) spin liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Multipolar ordered phases . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Two schemes for ground state multiplets . . . . . . . . . . . . . . 21
1.2.2 Multipolar moment . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Reduction of representations . . . . . . . . . . . . . . . . . . . . . 29
1.2.4 Experimental limitation on identifying multipolar ordered states . 32
1.2.5 Recent progress in multipolar physics . . . . . . . . . . . . . . . . 33

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Rare-earth pyrochlore materials 39
2.1 Non-Kramers case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Theoretical study . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.2 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Kramers case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Dipolar-octupolar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Theoretical study . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Short summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Multipolar quantum spin liquid 51
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Classical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Existence of a four-sublattice order . . . . . . . . . . . . . . . . . 54
3.2.2 Representation theory . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Quantum analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Quantum phase diagram . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Static properties of each QSL and other MPOs . . . . . . . . . . . 63
3.3.3 Dynamic properties of each QSL . . . . . . . . . . . . . . . . . . . 69

3.4 Novel probes for QSLs in the dipolar-octupolar system . . . . . . . . . . 73

iii



Doctoral Dissertation

3.4.1 Symmetry-allowed pseudospin-strain couplings . . . . . . . . . . . 73
3.4.2 General magnetostriction expressions . . . . . . . . . . . . . . . . 77
3.4.3 Magnetostriction for 0-flux QSLs . . . . . . . . . . . . . . . . . . 78
3.4.4 Magnetostriction for AIAO ordered phases . . . . . . . . . . . . . 82
3.4.5 Magnetostriction for π-flux QSLs . . . . . . . . . . . . . . . . . . 85

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Field-revealed one-dimensionality in non-Kramers pyrochlore materials 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Phonon-pseudospin coupling . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Phonon part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Phonon-pseudospin interaction . . . . . . . . . . . . . . . . . . . . 94

4.3 Benchmark calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 NMR relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Summary 113

Appendix A Magnetostriction of non-Kramers and Kramers pyrochlores115
A.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Classical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3.1 Quadrupolar-strain coupling in the non-Kramers case . . . . . . . 119
A.3.2 Dipolar-strain coupling . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3.3 General magnetostriction expressions . . . . . . . . . . . . . . . . 120
A.3.4 Magnetostriction of MPOs in the non-Kramers case . . . . . . . . 121
A.3.5 Magnetostriction of Kramers ions . . . . . . . . . . . . . . . . . . 123

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendix B Complete set of magnetostriction expressions 127
B.1 Magnetic field along [111] direction . . . . . . . . . . . . . . . . . . . . . 127
B.2 Magnetic field along [110] direction . . . . . . . . . . . . . . . . . . . . . 128
B.3 Magnetic field along [001] direction . . . . . . . . . . . . . . . . . . . . . 129

Appendix C Phonon-pseudospin coupling within the long wavelength limit131
C.1 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Point charge approximation and crystal electric field . . . . . . . . . . . . 132

Appendix D Jordan–Wigner transformation 137

Acknowledgements 141

Bibliography 142

iv



Chapter 1

Introduction

To develop a robust understanding of emergent phenomena in strongly correlated
electron systems, deep insight is required into the many-body ground state and the exci-
tations it can support [1, 2]. In the study of magnetism, many studies on the many-body
ground states have focused on long-range ordered phases such as ferromagnetic, antifer-
romagnetic, and spin nematic phases, and the excitations are described by the spin wave
theory. Therefore, the discovery of novel magnetic orders and their unique properties had
been a main objective for several decades. However, this historically successful paradigm
has been challenged in recent times by two prominent examples: quantum spin liquids
(QSLs) and multipolar ordered states (MPOs).

In this chapter, two key concepts of this thesis are reviewed, namely QSLs and MPOs.
In Section 1.1, we describe the basic concepts and developments in QSL research, and
provide a detailed explanation for U(1) QSLs, which is the main topic in the following
chapters. In Section 1.2, we introduce the theoretical basis of multipoles and their prop-
erties, focussing on the MPOs emerging in f electron systems. Finally, in Section 1.3,
the overall structure of this thesis is provided.

1.1 Quantum spin liquids

Quantum spin liquids (QSLs) are considered to be long-range entangled correlated
paramagnets and host deconfined fractionalised excitations (spinons) that couple to an
emergent gauge field [3, 4, 5]. Here, the term “fractionalised excitation” means that the
quasiparticle excitations cannot be constructed from the elementary degree of freedom,
spin, but instead they are described by the fraction of a spin. The zero-point fluctuations
are so strong that QSLs prevent conventional magnetic long-range orders. This lack of
magnetic ordering presents an obvious challenge in its detection with conventional probes,
such as in neutron scattering experiments. In fact, despite numerous efforts, a smoking-
gun signature for QSLs has proven to be elusive, which has made QSL research extremely
challenging.

QSLs originate from a variety of mechanisms, such as geometrical frustration [6, 7, 8, 9]
and anisotropic bond-dependent spin interactions [10, 11, 12, 13]. The search for QSLs
from the two mechanisms has contributed to a deep understanding of U(1) spin liquids
and Z2 spin liquids, respectively. In this section, we review both types of QSLs.
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Most of the intriguing features of Z2 spin liquids are derived from the celebrated
Kitaev honeycomb model, whereas U(1) spin liquids are studied in a variety of contexts,
not only those originating from classical spin ice which will be discussed below. Several
are obtained from the extension of the Kitaev model; therefore, after briefly discussing the
properties of the Kitaev model and the Z2 spin liquids based on Kitaev’s original paper
in Section 1.1.2, we discuss the origin and interesting properties of U(1) spin liquids in
Section 1.1.3. Finally, we will explain why U(1) spin liquids in pyrochlore materials are
the most attractive object to study from the viewpoint of multipoles.

1.1.1 Brief history

Before moving on to the main topic, we briefly review the history of QSL research.
The QSL phase was firstly introduced by P. Anderson as the ground state of a trian-
gular antiferromagnet system [14]. He proposed that the ground state of the spin 1/2
Heisenberg model on a triangular lattice is described as a quantum superposition of the
possible spin-singlet pairs, which he referred to as the resonating valence bond (RVB)
state (Fig. 1.1). Although this prediction proved to be incorrect, it paved a new way for
the identification of QSLs in geometrically frustrated spin systems.

+ ...+RVB  =

:

Figure 1.1. A resonating valence bond state. The blue ellipses indicate spin-
singlet dimers.

The first paradigm shift occurred in 1987 when a theoretical model was proposed
describing the realisation of high-temperature superconductivity in a doped RVB state
[15, 16]. A series of studies suggested that superconductivity can emerge in doped QSLs
and revealed the existence of quasiparticle excitations, now known as spinons. These
proposals were based on the hypothesis that the ground state of the Hubbard or t–J
Hamiltonian is a non-degenerated disordered RVB state. Although valid proof for the
existence of such a phase has not yet been obtained and the stability of the RVB ground
state is still under discussion, the discovery of spinon excitation was the turning point
in QSL research; shortly thereafter, QSLs with gapless fermionic spinons and gapped
bosonic spinons were found one after another [17, 18].

Despite the development of many theories for QSLs during this period, material syn-
thesis was unsuccessful. However, a proposal for a precisely solvable quantum spin model
for QSLs by A. Kitaev and the discovery of its potential realisation with real materials
by G. Jackeli and G. Khaliullin incited optimism [10, 11]. This was the second paradigm
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shift. The Kitaev model is an ideal example for QSLs because it hosts a variety of in-
teresting QSL phases with gapped and gapless excitations, one of which being a chiral
QSL phase that possesses nonabelian Ising anyons. Quasiparticle excitation with non-
abelian statistics is also important in the field of quantum computation because of its
usefulness in fault-tolerant quantum computers [19]. As we will show in the following
section, this model is rewritten as a free Majorana fermion model in a static Z2 gauge
field. In this sense, QSLs of the Kitaev model belong to a class of Z2 spin liquids. In
the experimental side, G. Jackeli and G. Khaliullin pioneered the feasibility of material
synthesis for the Kitaev model by conducting extensive research on 5d transition metal
oxides [11, 20]. Since then, a plethora of Kitaev materials have been proposed, including
α-RuCl3 [21, 22], A2IrO3 (A=Na, Li) [23, 24, 25], and A3LiIr2O6 (A=H, D, Ag, etc.)
[26, 27, 28, 29]. Furthermore, a three-dimensional extension of the Kitaev model hosting
a hyperhoneycomb or a stripyhoneycomb lattice was suggested and their corresponding
materials are actively being studied [30, 31, 32, 33, 34, 35]. However, almost all the ma-
terials exhibit magnetic orders rather than QSL phases at the lowest temperature owing
to the existence of non-Kitaev interactions, such as the Heisenberg exchange interaction
J and the off-diagonal interaction Γ. Motivated by these experimental results, a variety
of spin models, in which extra terms are appended in addition to the Kitaev interaction,
have been extensively theoretically studied [36, 37, 38, 39, 40, 41, 42, 43, 44]. In this way,
research on QSLs in Kitaev model has progressed while theory and experiments have had
a complementary and positive influence.

Simultaneously, the search for QSLs supported by traditional mechanisms, for exam-
ple, geometrical frustration, has yielded significant progress in the last two decades. Ex-
amples include QSLs in a geometrically frustrated triangular lattice [45, 46, 47, 48, 49, 50]
and kagome lattice [7, 51, 52, 53, 54, 55, 56]. Interestingly, the concept of geometrical
frustration has been extended to three-dimensions, which led to a new class of QSL,
namely the U(1) spin liquid. The origin of U(1) spin liquids dates back to the 1997 dis-
covery of the classical spin ice state in Dy2Ti2O7 and Ho2Ti2O7 [57]. In classical spin ices,
only rare-earth ions carry the magnetic moment, which reside on a network of corner-
sharing tetrahedra, that is, a pyrochlore lattice. Their local spins are large and regarded
as classical vectors, and interact ferromagnetically with each other under the constraint
that they point along the local z [111] Ising direction. This situation is equivalent to the
frustrated antiferromagnetic Ising model on the pyrochlore lattice: H = J

∑
⟨i,j⟩ S

z
i S

z
j

with J > 0. It is known that this model possesses a macroscopic number of ground states
given by a simple ice rule that two spins point inwards and the remaining two spins point
outwards from the centre of each tetrahedron; this is called the two-in two-out config-
uration. A schematic illustration of the spin ice ground state is depicted in Fig. 1.2.
The existence of classical spin ice in real materials is promising for general research on
QSLs in magnetic materials. Although many theoretical models with QSL ground states
are artificial, as explained later, applying quantum fluctuations on the classical spin ice
states can be realistic and be expected to support a QSL phase with photon-like excita-
tions. Consequently, the name ‘U(1) spin liquids’ is derived from these emerging lattice
electrodynamics with U(1) global gauge symmetry in the QSL phase.

Thus far, we have reviewed the history of QSL research, focussing on two classes of
QSLs, Z2 spin liquids and U(1) spin liquids. Table. 1.1 contains a detailed classification
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of QSLs, including ones not mentioned in this section. We only provide a theoretical
explanation for Z2 and U(1) spin liquids in the following sections.

Figure 1.2. Classical spin ice ground state (two-in two-out spin configuration)
on a pyrochlore lattice.

Table 1.1: Classification of QSLs reconstructed from Ref. [5]. Note that
the acronyms in the table are as follows: ASL: algebraic spin liquid, FQH:
fractional quantum Hall effect, CSL: chiral spin liquid. The quantity γ is
the topological entanglement entropy.

Class Subclass Stability Excitations Models Properties

Z2

gapped d ≥ 2 e,m,ϵ (= anyons)
Toric code model
Gapped phase of
the Kitaev model

γ = ln 2

gapless d ≥ 2 Gapless fermions
Kitaev model and
its generalizations

Potential to exhibit
a nonabelian phase
under perturbation

U(1)

Pure d ≥ 3
Gapless photon,
Gapped gauge charges

Compact QED,
Quantum spin ice

Sharp photon pole
in S(q, ω),
T 3 specific heat

ASL = U(1) Dirac d = 2
Gapless fermions with
electric charge and
strongly coupled gauge field

QED3

Conformal field theory,
emergent SU(N) symmetry.
S(q,+0) > 0 at isolated q

Spinon Fermi surface d ≥ 2
Gapless fermions with
electric charge and
strongly coupled gauge field

Triangular Heisenberg
+ Ring exchange

Nontrivial power laws,
emergent SU(N) symmetry,
Broken area law,
S(q,+0) > 0 at all q

FQH/CSL d = 2 Laughlin 1/m anyons
Semiconductor electron
gases, J1,2,3 kagome
Heisenberg

Broken time-reversal,
gapless edge states,
γ = −1

2
lnm
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1.1.2 Z2 spin liquid

Theoretical review of the Kitaev model and Z2 spin liquids

The Kitaev model is a spin-1/2 model with nearest-neighbour anisotropic interactions
on a honeycomb lattice. Bonds in the honeycomb lattice are divided into three types
depending on their direction: the x, y, and z bonds (Fig. 1.3(a)). The Hamiltonian is
given as

H = Jx
∑

x-bond

σx
i σ

x
j + Jy

∑
y-bond

σy
i σ

y
j + Jz

∑
z-bond

σz
i σ

z
j , (1.1)

where σµ
i is the µ component of the Pauli matrix on site i. Then, we define the operator

associated with the plaquette (see Fig. 1.3(a))

Ŵp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6. (1.2)

This operator satisfies the relation [Ŵp, Ŵp′ ] = 0 and [Ŵp, H] = 0, and thus the eigenvalue
Wp = ±1 is a constant of motion. To solve the eigenstate problem of Eq. (1.1), we first
divide the total Hilbert space into sectors according to the set of Wp for each plaquette.
The dimension of each physical subspace is 2N , where N is the number of unit cells. We
can clarify this by introducing Majorana fermions.

Spins are represented by Majorana operators bµ (µ = x, y, z) and c as σµ = ibµc. The
Hamiltonian in Eq. (1.1) is rewritten as

H =
i

4

∑
⟨i,j⟩

Âijcicj, Âij = 2Jµij
ûij, (1.3)

where µij is the type of bond to which the ij–link belongs, and the bond operators
ûij = ib

µij

i b
µij

j . Remarkably, they commute with the Hamiltonian similar to the plaquette
operator introduced above. Therefore, the total Hilbert space can be partitioned into
subspaces according to the sets of eigenvalues of ûij. Within a certain subspace, we
can replace ûij with c-numbers, which enable us to exactly solve the Hamiltonian H{u}
because it corresponds to a free fermion system. Here the index {u} denotes the set of
eigenvalues of ûij. However, owing to the dimension redundancy of Majorana fermions,
the eigenstate of H{u}, |Ψ{u}⟩ does not belong to the physical subspace. In order for the
state to be physical, the following gauge invariance must hold for all i:

Di|ϕ⟩ = |ϕ⟩, Di = bxi b
y
i b

z
i ci. (1.4)

We can enforce this gauge invariance by operating the projection P =
∏

i
1+Di

2
on an

arbitrary state. Note that Di is considered the generator of Z2 gauge symmetry. The
physical state is constructed as

|ΦW⟩ =
∏
i

(
1 +Di

2

)
|Ψ{u}⟩. (1.5)

In the physical subspace, the ground state is characterised by the plaquette operator
Wp = ±1, defined as the product of ûij along the boundary of the plaquette, instead of
the set of u. Here,

Wp =
∏

⟨i,j⟩∈∂p

ûij. (1.6)

5
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This coincides with the aforementioned constant of motion Wp. Moreover, we can regard
ûij as a gauge potential and Wp as the associated Z2 flux combined with free Majorana
fermions c.

y

yy

x

x

x

(a) (b)

zz

z z z

z

z z z

y

yy

yy yx x

x

x

x

x

z

x y

1

2
3

4

5
6

p

7

Figure 1.3. (a): Bond configuration of the Kitaev model and the plaquette in
which the Wp is defined. (b): Schematic illustration of the Majorana decom-
position of each spin.

Thus far, we have rewritten Eq. (1.1) as a free Majorana fermion system under the
emergent Z2 gauge flux. The next question to consider is “What is the flux configuration
that minimises the ground state energy?”. Notably, the celebrated Lieb’s theory provides
a rigorous answer to this question, and the flux-free state, that is, ∀pWp = 1, is found to
be the ground state [58]. This indicates that the bond operator uij = 1 for all bonds and
a translational symmetry recovers, which enables us to analytically calculate the energy
spectrum of Majorana fermions. An intriguing property is that the spectrum can be both
gapped and gapless depending on the coupling constant. We present in Fig. 1.4 the phase
diagram of the Kitaev model, where the triangle represents the Jx + Jy + Jz = 1 plane of
the positive octant. Ax, Ay, and Az phases represent the gapped phase and relate to each
other by rotation symmetry. B phase is gapless and the spectrum has two gapless Dirac
points at q = ±q0 along the qy = 0 line. These phases are called the gapless and gapped
Z2 spin liquids, respectively. To explicitly verify that these phases have the properties
of QSLs, we calculate the long-range correlation. For example, the x component of the
correlation between sites 6 and 7 in Fig. 1.3(a) is

⟨GS|σx
6σ

x
7 |GS⟩ = ⟨GS|Ŵpσ

x
6σ

x
7Ŵp|GS⟩

= ⟨GS|σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6σ

x
6σ

x
7σ

x
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6|GS⟩

= ⟨GS|iσy
6σ

x
7σ

z
6|GS⟩

= ⟨GS| − σx
6σ

x
7 |GS⟩ = 0,

(1.7)
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where we use the relation Wp = 1 in the first line for the ground state. Similarly, we
can show that the correlation is strictly zero except between nearest neighbours, which
indicates the lack of long-range order and the realisation of the QSL phase.

Figure 1.4. Phase diagram of the Kitaev model. The triangle represents the
Jx + Jy + Jz = 1 plane of the positive octant.

As mentioned at the beginning of this chapter, the second key component of QSLs is
fractionalised excitations. We now briefly describe them in gapped and gapless Z2 spin
liquids. In gapped phases, flux excitation, that is, ∃pWp = −1, can be regarded as the
excitation of e- or m-particles. Here, the e- and m-particles are bosons with nontrivial
mutual statistics: if an e-particle turns around a m-particle, the overall quantum state
acquires an additional phase factor eiπ = −1 (Note that the particles with this nontrivial
mutual statistics in two-dimensional system are called anyons). In order to understand
the relationship between the flux excitation and the e- and m-particles, let us consider a
loop operator that shifts a flux along a certain loop. This operator coincides with Ŵp,
where p is a plaquette index in the loop. Therefore, if Wp = −1, moving a flux around
the defect flux leads to an additional π phase shift. This mutual statistic is exactly the
same as the one between the e and m anyons. In addition, the system contains itinerant
Majorana fermions identified with the ϵ particle. In summary, there are three types of
quasiparticle excitations, namely the e, m, and ϵ particles, inherent in gapped Z2 spin
liquids.

Conversely, in the gapless phase, e- and m-particles do not exist because the mu-
tual statistics is ill-defined. This is because the process of moving fluxes aforementioned
above involves the dynamics of zero-energy Majorana fermions (the adiabatic transport of
fluxes is impossible). Thus, fractionalised excitations in gapless Z2 spin liquids are simply
referred to as Majorana fermion excitation and electric charge excitation, which corre-
spond to the itinerant Majorana fermions and the flux excitation, respectively. However,
in the presence of a magnetic field, the system acquires a gap and the e and m particles
become well-defined. Remarkably, these excitations obey nonabelian statistics, and its
nonzero Chern number guarantees chiral edge modes. This field-induced gapped phase is
called a chiral quantum spin liquid, and it has attracted extensive attention in the field
of quantum computing owing to its use in fault-tolerance.

7
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Experimental progress

Much effort has been devoted to capturing intriguing properties in the Kitaev model
from an experimental perspective. A main approach is adopting the so-called Jackeli–
Khaliullin mechanism, which uses a pseudospin degree of freedom induced by a strong
spin-orbit coupling in 4d/5d transition metal oxides. Iridium and ruthenium ions (Ir4+

and Ru3+) have 5d5 and 4d5 electron configurations, respectively. The five-fold d orbital is
split into the lower-energy triplet t2g orbital and the higher-energy doublet eg orbital under
an octahedral crystal field as shown in Fig. 1.5(a). Then, owing to the strong spin-orbit
coupling of 4d/5d materials, the t2g orbital is separated into the lower Γ8 quartet (jeff =
3/2) and upper Γ7 doublet (jeff = 1/2). For 4d5 and 5d5 configurations, the Γ8 orbital is
fully occupied and the Γ7 is hall-filled. This situation is regarded as a one-hole system
with jeff = 1/2, that is, a pseudospin-1/2 system (Fig. 1.5(a)). In 4d/5d transition-
metal-based Kitaev materials, magnetic ions build a honeycomb lattice supported by
edge shared octahedrons. Considering super-exchange interactions via oxygen, we obtain
the effective Kitaev Hamiltonian Eq. (1.1) with Jx = Jy = Jz = K (Fig. 1.5(b)).

2~3 eV

CEF SOC Na2IrO3

Na+

Na+

O2-

Ir4+

(a) (b)

Figure 1.5. (a): Electron state of the Ir4+ ion. The pseudospin-1/2 system is
realised owing to a strong spin-orbit interaction. (b): Schematic diagram of
the crystal structure of Na2IrO3, which is the first Kitaev candidate. The red,
blue, and green bonds represent the x, y, and z bonds in the Kitaev model,
respectively. The octahedral configuration of oxygen ions acts as an octahedral
crystal electric field.

However, in reality, Kitaev materials exhibit magnetic orders at low temperatures be-
cause of interactions other than the Kitaev term arising from the lattice distortion; hence,
it is difficult to find the QSL ground state. Furthermore, the difficulty in capturing the
QSL state arises partly from the fact that there is no singularity in conventional physical
quantity such as specific heat and magnetic susceptibility. Thus, instead, research to
capture the characteristic properties caused by fractionalised excitations has attracted
extensive attention to prove the existence of Z2 or chiral spin liquid phases. In Table 1.2,
we summarise the Kitaev candidates and their magnetic orders at low temperatures.

8
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Table 1.2: Material candidates for the Kitaev spin liquid. Recently, Ki-
taev materials from mechanisms other than Jackeli–Khaliullin have been
proposed. Note that the Γ term mentioned in α-RuCl3 is defined as
Γ
∑

⟨ij⟩∈γ-bond(σ
α
i σ

β
j + σβ

i σ
α
j ), where α and β are the two remaining direc-

tions.

Material Dimension Magnetic order Other properties

Na2IrO3 2D zigzag (13.3 K) [59]
The first candidate
Heisenberg-Kitaev model

Li2IrO3 2D incommensurate spiral (15 K) [60] extended Heisenberg-Kitaev model

α-RuCl3 2D zigzag (7 K) [61, 62]

Suppressed magnetic order
by in-plane fields
KΓ model
Half-integer thermal Hall effect
→ CSL?

Na3Co2SbO6 2D zigzag (5 K) [63] d7 ions based material

YbCl3 2D Néel (0.6 K) [64] f ions based material

H3LiIr2O6 2D no magnetic order (0.05 K) [26] Quenched disorders

β-Li2IrO3 3D
noncollinear order
(incommensurate spiral) [35]

Hyperhoneycomb lattice

γ-Li2IrO3 3D
noncoplanar order
(incommensurate spiral) [32]

Stripyhoneycomb lattice

Now, we focus on α-RuCl3 which has received the most experimental attention as
a candidate for gapless Z2 spin liquids. This material exhibits a zigzag magnetic order
below 7 K; therefore, much effort has been devoted to indirectly proving the existence
of the gapless Z2 spin liquid phase by investigating novel phenomena caused by fraction-
alised excitations above the transition temperature. Figures 1.6(a), (b), and (c) show the
thermodynamic properties of α-RuCl3 [65]. The singularity of the magnetic susceptibility
χ at approximately TN = 7 K corresponds to a development of the zigzag magnetic or-
der. The magnetic specific heat CM shows a characteristic broad peak at approximately
TH = 100 K as well as a sharp peak at TN . As theoretically predicted, this broad peak
is associated with the free Majorana excitations (see Fig. 1.6(d)), and a linear T depen-
dent CM below TH is also in accordance with the nature of free Majorana fermions [66].
Another piece of evidence can be found in the nature of entropy release, as shown in Fig.
1.6(c). The latter half of the two-step entropy release predicted by the theory is observed
(Fig. 1.6(e)). Although the electric-charge-induced peak in the specific heat is masked
due to the magnetic order, the above experimental results strongly support the existence
of Majorana excitations.

9
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(a)

(b)

(c)

(d)

(e)

Figure 1.6. (a): Temperature dependence of the magnetic structure factor of
α-RuCl3. The broad peak at approximately TN = 7 K indicates the onset of
the zigzag magnetic order. A magnetic field is applied within the ab plane
(honeycomb plane). (b): Temperature dependence of the magnetic specific
heat CM , where the contribution from the lattice is subtracted from the total
specific heat. In addition to the sharp peak at TN , a broad peak at approx-
imately TH = 100 K is observed. This is associated with the free Majorana
fermions, and the linear-in-T dependence for 50 K ≤ T ≤ 100 K supports this
prediction (see inset). The flat region below 50 K is attributed to the contri-
bution of electric charge excitations. (c): Entropy release of α-RuCl3. The
fitted red line is a sum of contributions from the localised and free Majorana
excitations based on theoretical calculations. The yellow (green) shaded region
corresponds to the contribution from the localised (free) Majorana fermions.
(d): A quantum Monte Carlo calculation in the cluster with 2 × L2 spins
for the specific heat. The peak structures at low and high temperatures are
associated with the electric charge excitation and free Majorana excitation,
respectively. (e): Entropy per site and the thermal average of the density of
the flux W = 2

N

∑
p⟨Wp⟩. The two-step entropy release is observed at low and

high temperatures. The drastic decrease in W at low temperatures indicates
that the first entropy release is related to electric charge excitations. Fig. (a),
(b), and (c) are reprinted by permission from Springer Nature: [65], Copyright
(2021), and (d) and (e) are reprinted with permission from Copyright (2021)
by the American Physical Society [66].

Furthermore, the researches on dynamical responses have succeeded in capturing the
nature of the Kitaev spin liquid [22]. Figure 1.7(a) shows the results of the inelastic
neutron scattering experiment on the [HH0]–[KK̄0] plane. The incident energy was
40 meV and the temperature was 5.0 K (below transition temperature), and data was
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integrated over the range 4.5 meV ≤ E ≤ 7.0 meV and L = [−2.5, 2.5]. The high intensity
at the Γ point and other peak structures are consistent with the theoretical expectation
of the gapless Kitaev spin liquid shown in Fig. 1.7(b). The peak at the Γ point is not
only observed up to 120 K, but it is also observed over a wide range of energies. This
behaviour is not explained by the spin-wave theory and indicates the existence of other
continuum spectra, namely Majorana excitations.

(a)

(b)

Figure 1.7. (a): Neutron scattering measurement with an incident energy of
40 meV at 5 K. The result is projected on the [HH0]–[KK̄0] plane, where the
integration is taken over the range 4.5 meV ≤ E ≤ 7.0 meV and L = [−2.5, 2.5].
(b): Theoretical calculation of the neutron signal under the same conditions
as (a) on the isotropic Kitaev model. Reprinted with permission from AAAS
[22].

Recently, a notable experiment to measure the half-integer thermal quantum Hall
effect on α-RuCl3 was conducted [67]. It was proposed that the zigzag order in α-RuCl3
below 7 K is suppressed by an in-plane field, recovering the quantum disordered phase
[61]. Reference [67] shows that this phase belongs to the aforementioned chiral spin liquid
phase of the Kitaev model by detecting half-integer quantised thermal Hall conductivity.
In the chiral spin liquid phase, the system acquires a nonzero Chern number of sgn∆,
where ∆ ∼ hxhyhz

K2 , hµ is the µ component of the applied magnetic field, and K is the
amplitude of the isotropic Kitaev interaction. Thus, the existence of the quantum Hall
state is expected from the analogy of two-dimensional electron gas. The thermal Hall
conductivity of the integer quantum Hall state is given as

κxy =
π2k2B
3h

Tν ν = 1, 2, 3, . . . . (1.8)
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Meanwhile, noting that Majorana particles have half the degrees of freedom of complex
fermions, we obtain the thermal Hall conductivity of the chiral spin liquid phase as

κCSL
xy =

π2k2B
6h

T. (1.9)

This is exactly the half value of the ν = 1 case for two-dimensional electron gas. Figure
1.8 contains schematic diagrams comparing the above two situations, a phase diagram,
and graphs on thermal Hall conductivity, which are all adopted from Ref. [67]. In Figs.
1.8(a) and (b), the red (blue) region is a high (low) temperature area. Electrons (green
spheres) or itinerant Majorana fermions (yellow rods) at the edge, which contribute to
the one-dimensional edge mode, carry the heat current. Note that, in a Kitaev quantum
spin liquid, localised spins are separated into Majorana fermions and Z2 flux, and thus
the carrier degree of freedom is half that of the electrons. A phase diagram for α-RuCl3
in a magnetic field with a 60°tilting angle from the c axis is shown in Fig. 1.8(c). The
zigzag magnetic order observed below 7 K in the zero magnetic field disappears when
the in-plane component of the magnetic field increases. The blue diamonds represent the
transition temperature to the zigzag order, and open (closed) points are determined with
respect to the T (H) dependence of the longitudinal thermal conductivity. The red shaded
region is the area in which half-integer quantised thermal Hall conductivity is observed,
and thus the chiral spin liquid phase is expected. At points indicated by open squares,
the half-integer quantised thermal Hall conductivity disappears, that is, transition to the
trivial phase occurs. Figures 1.8(d), (e) and (f) show the observed half-integer quantised
thermal Hall conductivity at 3.7, 4.3, and 4.9 K, respectively. The dashed line represents
the κCSL

xy = π2k2B/6h line. These results support the realisation of the chiral spin liquid
phase.

The field-induced spin liquid in the Kitaev model is not limited to the chiral spin
liquid. Recent theoretical study suggests the emergence of a field-driven U(1) QSL in the
Kitaev honeycomb model [68]. In the following subsections, we present theoretical review
of U(1) spin liquids and the candidate system including the one in the Kitaev model.
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(a) (b)

(c)

(d)

(e)

(f)

Figure 1.8. (a, b): Schematic diagram of heat transport in the integer quan-
tum Hall state of a two-dimensional electron gas and in the Kitaev model in a
magnetic field perpendicular to the two-dimensional plane. (c): Phase diagram
of α-RuCl3 in a magnetic field H. The direction of the field is tilted away from
the c axis by 60°(see inset). The horizontal axis shows the in-plane component
of the magnetic field. Diamond-shaped plots represent the transition points to
the zigzag order, where the open and closed points are transition temperatures
determined by the T and H dependences of the longitudinal thermal conduc-
tivity. The red shaded field is expected to be the chiral spin liquid phase, which
exhibits the half-integer quantised thermal Hall effect. Blue open squares de-
scribe the points at which the half-integer quantised thermal Hall conductivity
are not observed. Below 80 K, the Kitaev spin liquid phase is assumed to be
realised. (d–f): Half-integer quantised thermal Hall conductivity plateau at
3.7, 4.3, and 4.9 K, respectively. Dashed lines represent the κCSL

xy = π2k2B/6h
line. Reprinted by permission from Springer Nature: [67], Copyright (2021).
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1.1.3 U(1) spin liquid

Because there are a wide variety of systems that exhibit U(1) quantum spin liquids,
it is a good idea to first explain a common property of U(1) gauge theory. Quantum
electrodynamics (QED) is based on U(1) gauge theory. In a spin system on a lattice,
compact U(1) gauge theory is naturally defined as discussed below.

Compact U(1) gauge theory

In this section, we review the explanation in Ref. [5]. Assume there are field operators
that satisfy the canonical commutation relation on each bond of a square lattice.

[Aij, Eij] = i, (1.10)

where i and j are the site indices, and we defineAij = −Aji, Eij = −Eji. We can associate
A and E with the vector potential and the electric field in the usual electrodynamics,
respectively. In this thesis, we discuss the QSL phases in the pyrochlore lattice where
effective spin models possess the compact U(1) gauge symmetric structure, and thus we
start from the compact QED Hamiltonian

H = V
∑
i

(∇ · E)2i −K
∑
p

cos(∇× A) + U

2

∑
link

E2
ij. (1.11)

The first term corresponds to the energy of charge density as in the Maxwell equation,
and the last two terms are the energy of the electromagnetic fields on a lattice. The
cosine term is introduced to obtain the compact formulation of lattice QED from vacuum
electrodynamics. In the discrete lattice, the divergence is defined as

(∇ · E)i =
∑

j∈NN−site

Eij, (1.12)

and the magnetic field on a plaquette is

Bp = (∇× A)p =
∑
∂p

Aij. (1.13)

Figure 1.9 shows a schematic diagram of the above definition.
The difference between Eq. (1.11) and vacuum electrodynamics is that the magnetic

field is included as the cosine term in the former. Owing to this difference, the wave
function has to be periodic: ψ(Ãij, . . . ), Ãij = Aij (mod 2π). This structure defines
compact U(1) gauge theory. From the commutation relation in Eq. (1.10), we find
that eiθEij is a unitary operator which shifts the phase of the vector potential Aij by θ.
Therefore, the eigenvalues of Eij must be integers to satisfy the periodic condition of Aij.
Similar to the usual electrodynamics, there is a gauge uncertainty on the vector potential
Aij. Its lattice version is given as

Aij → Aij + χj − χi, (1.14)
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01

2

3

4 5

p

Figure 1.9. Definition of the divergence and rotation on the square lattice.
Note that the edge of the plaquette is viewed in a clockwise direction.

where χj − χi is the lattice gradient of an arbitrary function. Using the relation Eij =
−Eji, we can derive that such a gauge transformation is obtained by a unitary operator

U = exp

[
i
∑
i

χi(∇ · E)i

]
. (1.15)

Since this is a symmetry operator, the charge operator (∇ · E)i commutates with the
full Hamiltonian for all i, and its eigenvalue Qi is conserved, which corresponds to hyper
charge conservation in usual non-compact U(1) gauge theory. Normally, we are interested
in the ground state and focus on the Qi = 0 sector and Bp = 0 for all p. As we will
later see, excitation to a nonzero Qi sector requires an energy gap of the order V and is
regarded as one of the fractionalised excitations in QSLs.

Coulomb phase

The most intriguing feature of the compact U(1) gauge theory is its potential to
exhibit a deconfined Coulomb phase. Assuming the gauge fluctuation is sufficiently small
and thus the fluctuation of a gauge field Bp is also small, the low-energy description of
the compact U(1) gauge theory is given as non-compact QED without gauge charge, that
is,

H ∼ U

2

∑
link

E2
ij −

K

2

∑
p

B2
p . (1.16)

When this assumption is valid, it is said that the system is in the Coulomb phase or
deconfined phase. As we will later see, in the spin model on the pyrochlore lattice,
this phase is stable in three-dimensional systems, and the U(1) QSL phase belongs to
this class. Because the Hamiltonian corresponds to usual non-compact QED, we expect
(gauge) photon excitation modes with two transverse polarisations. As the second type
of excitations, in a high energy region of the order V , there are gapped magnetic gauge
charge excitations. In the spin model, this gauge charge stems from a fractionalised
spin; hence, it characterises U(1) QSLs. Note that these gauge charges experience the
Coulomb potential qiqj/rij like real charges, where rij is the distance between site i and
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j. In the intermediate energy scale between the photon excitation and the magnetic
charge excitation, there exists the third type of excitation named electric gauge charge
excitation, which arises due to the compactness of the theory. It is considered as point
defects, where the fluctuation is locally strong and the compactness recovers. Because
this situation forms a magnetic flux excitation, it is analogous to the gapped Z2 flux
excitation of Z2 QSLs. Remarkably, it is known that electric charges also experience the
Coulomb interaction between each other. A schematic figure of the spectrum of these
excitations is shown in Fig. 1.10

0 wave number

Gauge photon 
excitation

Electric gauge charge excitation

Magnetic gauge charge excitation

Energy 
scale

Figure 1.10. Schematic illustration of the energy scale of the three excitations,
the gapless gauge photon, electric gauge charges, and magnetic gauge charges.

Spin models with the U(1) gauge structure

Now that we have briefly reviewed the compact U(1) gauge theory, we can consider
whether this can be realised in real spin models. Here, we provide examples to which the
compact U(1) gauge theory can be applied.

(i) Pyrochlore lattice
Spin models on the pyrochlore lattice are the most famous example of an emergent

U(1) gauge structure [69]. Consider the Hamiltonian

H = Jz
∑
⟨i,j⟩

Sz
i S

z
j + J⊥

∑
⟨i,j⟩

(S+
i S

−
j + S−

i S
+
j ). (1.17)
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The first term is the Hamiltonian for the classical spin ice, which was introduced in
Section 1.1.1, and the second term describes the quantum fluctuation. The first term is
rewritten up to constant as (Jz/2)

∑
t(
∑

i∈t S
z
i )

2; therefore, we can easily understand that
there is a macroscopic degeneracy with the two-in two-out manifold. Here, the index t
represents the tetrahedron. When the quantum fluctuation is small, that is, J⊥ ≪ Jz, it is
known that a degenerate perturbation theory yields the following effective ring exchange
Hamiltonian:

Heff = Jring
∑
7

(S+
1 S

−
2 S

+
3 S

−
4 S

+
5 S

−
6 + h.c.). (1.18)

Here, Jring ∼ O(J3
⊥/J

2
z ), and the summation is taken over all the hexagons on the kagome

layers of the pyrochlore lattice. It is convenient to change the sign of the ring exchange
amplitude by applying a unitary transformation, which acts as a π rotation about the
local z axis. Then, we obtain

Heff = −Jring
∑
7

(S+
1 S

−
2 S

+
3 S

−
4 S

+
5 S

−
6 + h.c.). (1.19)

We define the gauge field as

Sz
i = ηrErr′ , S+

i = eiηrArr′ , (1.20)

where r indicates the site of the dual diamond lattice, and ηr = 1(−1) when r specifies
the A(B) sublattice. Note that site i resides at the midpoint of the vector that connects
r and r′. We can easily verify that the relations Err′ = −Er′r and Arr′ = −Ar′r are
satisfied. Enforcing the constraint Sz

i = ±1/2 with a Lagrange multiplier U , Eq. (1.19)
is rewritten in the compact U(1) gauge form up to constant:

HQED =
U

2

∑
⟨rr′⟩

E2
rr′ − 2Jring

∑
7

cos(∇× A)∂7. (1.21)

This is the same as the compact U(1) gauge theory without gauge charge. Note that
U →∞ must be taken to recover the original spin Hamiltonian.

We can rewrite Eq. (1.19) using the quantum rotor variables Qrr′ ∈ Z and ϕrr′ ∈
[−π, π), which satisfy the commutation relations [Qri, ϕr′j] = iδijδrr′ . In the context
of the quantum rotor model, the model should enter a Coulomb phase for small U/K.
However, Monte Carlo simulations for Eq. (1.21) reveal that the Coulomb phase extends
to the infinite U limit. This result indicates that, as long as J⊥ ≪ Jz is fulfilled, the
ground states are in the Coulomb phase and U(1) QSL state because no long-range order
is observed. A complete analysis of the spin model on the pyrochlore lattice is provided
in the next chapter since the concept of multipoles is crucial.

(ii) Hubbard model on a triangular lattice
Beyond spin models with short-range pairwise interactions, the Hubbard model has

been studied as a candidate model that exhibits U(1) QSL ground states [70]. The
Hubbard model is expressed as

H = −
∑
⟨i.j⟩,σ

(tijc
†
iσcjσ + h.c.) +

U

2

∑
i

ni(ni − 1). (1.22)
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Here, c†iσ(ciσ) is the creation (annihilation) operator at the i-th site with spin σ and
ni =

∑
σ c

†
iσciσ. The transfer integral can take the complex value with tij = |tij|e−iAij ,

where the vector potential Aij arises from an external electromagnetic field. Introducing
the aforementioned quantum rotor variables, the electron operator is rewritten as ciσ =
fiσe

−iϕi with the spinon annihilation operator fiσ. The extended Hilbert space has a
constraint Qi = f †

i↑fi↑ + f †
i↓fi↓ − 1, and the operator e−iϕi acts as a lowering operator

of the gauge charge Qi. This representation leads to a U(1) gauge redundancy, which
appears as the invariance of electron operators under ϕi = ϕi + χi, fiσ = eiχifiσ. Now,
the U(1) gauge invariant Hamiltonian is

H = −
∑
⟨i.j⟩,σ

(|tij|ei(ϕi−ϕj−Aij)f †
iσfiσ + h.c.) +

U

2

∑
i

Q2
i . (1.23)

The spinons are free, except for the coupling to the slave rotor variant ϕ in the first term.
This term can be separated by mean-field treatment into

−
∑
⟨i.j⟩,σ

(teffij f
†
iσfiσ + Jije

i(ϕi−ϕj−Aij) + h.c.). (1.24)

Here, teffij = |tij|⟨ei(ϕi−ϕj−Aij)⟩ and Jij = |tij|⟨f †
iσfjσ⟩ [71]. The mean-field approximation

reveals two possible phases. The first is a QSL with a spinon Fermi surface when the
rotor fields are disordered, and the second is called the Higgs phase, which explains a
Fermi liquid when the rotor fields are condensed, that is, ⟨eiϕi⟩ ̸= 0.

Recently, a piece of experimental evidence for a QSL with a spinon Fermi surface in
a triangular lattice was reported [49]. YbMgGaO4 demonstrates no magnetic ordering
below 30 mK. In this material, Yb3+ ions, which carry magnetic moments, form a Kramers
doublet owing to the D3d crystal field, and its magnetic properties are well described by
the effective spin half local moment. Yb3+ ions form almost perfect triangular layers that
are well-separated by non-magnetic Mg2+/Ga3+ ions. Hence, this system is considered
a two-dimensional spin-half antiferromagnet on the triangular lattice. In Fig. 1.11, we
show results from inelastic neutron scattering measurements at 70 mK. Figures 1.11(a–
e) present experimental results on a certain energy plane, indicating the existence of
diffusive excitations for every energy scale. Figure 1.11(f) is derived from a theoretical
calculation based on the simplified mean-field model of spinons, Hmf = −t

∑
⟨i,j⟩(f

†
iσfjσ+

h.c.) − µ
∑

i f
†
iσfiσ. A schematic diagram of the spinon Fermi surface derived from the

same theoretical model is provided in Fig. 1.11(g). These experimental results strongly
support the theoretical prediction of spinon Fermi surface U(1) spin liquids.

(iii) Field-induced U(1) spin liquid in the Kitaev model
In the previous section, we introduced the Kitaev model as an example of Z2 spin

liquids. A recent theoretical study suggests the emergence of a field-driven U(1) spin
liquid in the Kitaev model [68]. The isotropic Kitaev model in a magnetic field is defined
as

H = K
∑

⟨i,j⟩∈γ–bond

Sγ
i S

γ
j −

∑
i

h · Si. (1.25)
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Figure 1.11. Signals from an inelastic neutron scattering (INS) measurement
at 70 mK. (a–e): Several constant-energy planes exhibiting broad diffusive
excitations in a wide range of Brillouin zones. (f): Theoretical calculation for
the INS signals at E = 7.5t, where t is the amplitude of universal transfers
in the mean-field Hamiltonian introduced in the main text. (g): Schematic
illustration of the spinon Fermi surface. Blue, red, and green circles describe the
high symmetry points of the Brillouin zone (Γ, M , and K points, respectively).
Same colours indicate the equivalent points. The black dashed arrow depicts a
pairwise excitation with momentum transfer p owing to an incident neutron.
This enable us to observe the spinon Fermi surface in the INS measurement.
Reprinted by permission from Springer Nature: [49], Copyright (2021).

In α-RuCl3, the [112̄], [1̄10], and [111] directions correspond to the a, b, and c-axis,
respectively. The orientation is parameterised by angle θ from the [111] direction. An
exact diagonalisation for the antiferromagnetic Kitaev model (K > 0) suggests that
the gapped chiral spin liquid phase extends beyond the perturbative limit and a novel
gapless spin liquid phase emerges in the intermediate magnetic field region (Fig. 1.12(a)).
A remarkable feature of the intermediate phase is that its density of states at low-energy
regions is drastically enhanced (Fig. 1.12(b)). Taking the finite size effect into account,
these excitation spectra are expected to be gapless, which indicates that gapless photon
excitation exists in this intermediate phase. Moreover, it is confirmed that this phase is
robust against non-Kitaev interactions, such as Heisenberg or Γ terms.

However, the mere existence of gapless excitations is not sufficient to confirm that a
U(1) spin liquid has been realised. Reference [68] attempts to reveal the nature of this
intermediate phase from various perspectives. First, we mention an intriguing feature
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observed in the dynamic spin structure factor. In the intermediate state, they carry
physical spin spectral weight over all momenta. Because only electric charge excitation
carries the spin spectral weight in the Kitaev model without a magnetic field, the gap of
electric charge excitations is expected to be closed in the intermediate state. Although
one may expect that no electric charge gap will result in electric charge condensation and
transition to the trivial magnetic ordered phase, this is not possible because they couple
to the Majorana zero modes; thus, they cannot condensate by themselves. If this scenario
is correct, the emergence of a U(1) spin liquid seems to be reasonable in terms of the
subsequent fermionic parton analysis. The spins of Abrikosov fermions are represented by
Si =

1
2
f †
iσσfiσ with the constraint ∀i, f †

iσfiσ = 1. Because the Kitaev model is invariant
under the U(1) gauge transformation fiσ → eiχfiσ, the Kitaev model can be regarded as
possessing a U(1) gauge structure. If we begin from this parton representation, the orig-
inal Kitaev spin liquid state is viewed as the state with the instability of fermion pairing,
which is a superconducting state in terms of fermionic partons. This superconducting
condensation reduces the symmetry of the gapless U(1) gauge field to the gapped Z2

field. It is also known that the topological properties of the Kitaev spin liquid require the
superconductor to be of a chiral p-wave [72]. Therefore, the transition from the Kitaev
spin liquid to the intermediate spin liquid phase is understood as the phase transition
from a chiral p-wave parton superconductor with a gapped Z2 field to an ordinary metal
coupled to an emergent U(1) gauge field, and the recovery of U(1) gauge symmetry is
accompanied by the gap closing of electric charge excitations [72, 73]. Although no rig-
orous proof for this scenario has been provided, nor has it been experimentally observed,
it is expected to attract attention as a new system of U(1) spin liquids.

(a) (b)

Figure 1.12. (a): Phase diagram obtained by an exact diagonalisation for the
antiferromagnetic Kitaev model on a 24-site honeycomb cluster. KSL, GSL,
and PL denote the chiral spin liquid phase in Kitaev’s original paper, the
intermediate spin liquid phase, which is assumed to be a U(1) QSL, and a fully
polarised phase, respectively. The red dotted lines indicate the θ =7.5° and
82.5° lines. The KSL extends beyond the perturbative region. (b): Energy
spectrum in a magnetic field with θ =7.5°. The density of state of the GSL
phase in this energy scale is approximately ten times larger than that of the
KSL phase. Adopted from [68].
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So far, we have introduced three examples that are expected to manifest the U(1) QSL
phase. Among them, only the spin-ice-induced U(1) spin liquid may have pseudospins,
that is, not real spins, which constitute the spin liquid state. In particular, the pseu-
dospin sometimes yields higher-rank multipoles in rare-earth pyrochlore materials. In
the subsequent section, we provide the concept of multipoles, their theoretical platform,
and experimental progresses.

1.2 Multipolar ordered phases

In strongly correlated electron systems, crystal structures, spins, and orbitals are inex-
tricably linked, which leads to exotic degrees of freedom, known as multipolar moments.
Throughout this thesis, we will focus on the multipolar nature in rare-earth pyrochlore
materials and review the basic concepts of them in this section. To understand multipolar
degrees of freedom, it is better to focus on electronic states split by the electric field of the
crystal and the spin-orbit interaction. Although this is an undergraduate-level topic, it
is vital for the correct understanding of the properties of multipolar moments; therefore,
we will begin with the basics. At the end of this section, we will apply the theoretical
results to rare-earth compounds.

1.2.1 Two schemes for ground state multiplets

In the context of strongly correlated electron systems, transition metal oxides have
long been a central research target. The complex interplay between the localised prop-
erties of d electrons, crystal structures, spins, and orbitals, has continued to attract
attention as a platform for the emergence of rich physical phenomena, ranging from
Mott insulators to cuprate high-temperature superconductors. These traditional studies
have mainly focussed on 3d electron systems, including iron, manganese, and copper. In
contrast, compounds with strong spin-orbit interactions, including rare-earth materials
that possess 4f electrons, tend to attract attention owing to their exotic phenomena.
An example of these, the realisation of the Kitaev model supported by an emergent
pseudospin-1/2 degree in iridium compounds, has already been provided in the previous
section.

The spin-orbit interaction is naturally derived from the Dirac equation, a relativistic
Hamiltonian. In general, it is represented as

HSO =
ℏ2

2m2c2

(
1

r

dV

dr

)
l · s, (1.26)

where l and s are the orbital and spin angular momenta of electrons, respectively. V (r)
describes the potential experienced by electrons. If we use the Coulomb interaction from
a nucleus as the potential, V (r) = −Ze2/r, the amplitude of the spin-orbit interaction
can be evaluated as

λ =

〈
ℏ2Ze2

2m2c2r3

〉
. (1.27)

Here, ⟨. . . ⟩ is the average with regard to the wave function of electronic orbitals. From
this formula, we expect that 4f or 5d electron systems with large atomic numbers host
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a strong spin-orbit interaction1. For strong spin-orbit interactions, l and s are no longer
suitable quantum numbers; instead, the total angular momentum, j = l + s, becomes a
suitable quantum number. Next, we will demonstrate that the total angular momentum
scheme effectively describes the basis multiplet, using the f 2 electron configuration as an
example.

The one-electron state of f electron systems with an orbital angular momentum l = 3
in a spherically symmetric potential is determined by the combination of the magnetic
quantum number (lz = −3,−2, . . . , 3) and spin (sz = ±1/2); therefore, there are 14 de-
generate states in total. For the f 2 electron configuration, such as in Pr3+ ions, 14C2 = 91
possible degenerate states are lifted by considering the Coulomb interaction between elec-
trons. First, we consider the situation in which the Coulomb interaction is much greater
than the spin-orbit interaction. In this regime, the lowest energy state is settled using
Hund’s rules: (i) The lowest energy state is the term with maximum S; (ii) Under this
constraint, the term with the largest L has the lowest energy; (iii) If the number of f
electrons is half-filled or less, the J = |L − S| state gives the ground state multiplet.
Otherwise, the J = |L + S| state is the ground state. Here, S,L, and J are the total
spin angular momentum, total orbital angular momentum, and total angular momentum,
respectively. From Hund’s rules, we find a J = 4 nine-fold state with L = 5, S = 1 con-
stituting the ground state multiplet. This procedure to obtain the ground state multiplet
is called the LS coupling regime. In f electron systems, this method provides a good
approximation for the ground state multiplet because the amplitude of the Coulomb inter-
action is several tens of times larger than that of the spin-orbit interaction. Throughout
the remainder of this thesis, we adopt this LS coupling regime.

For completeness we next consider the inverse limit, where the spin-orbit interaction
is much greater than the Coulomb interaction. In this scheme, we first take into account
the effect of the spin-orbit interaction for the one-electron state and focus on the j =
3−1/2 = 5/2 state with six-fold degeneracy. Rules similar to Hund’s rules can be applied
to this case; the ground state is given by maximising the total angular momentum, which
we call the extended Hund’s rule. Applying the extended Hund’s rule to our case, we
find that the J̃ = 5/2 + 3/2 = 4 state constructs the ground state multiplet. This
method is called the j-j coupling regime and is useful when hybridisation with conduction
electrons is being considered. Figure 1.13 schematically illustrates the difference between
these two schemes. Note that, although J = 4 and J̃ = 4 have the same magnitude of
angular momentum and degeneracy number, their wave functions are different because
their configuration methods differ.

Starting from these ground state multiplets, the local ground state doublet can be
realised by considering the crystal electric field. Notably, this emergent pseudospin 1/2
is not the same as the usual spin but can sometimes be regarded as a multipole. This
fact is illustrated in subsequent sections.

1Strictly speaking, we should consider the quantum mechanical expectation value; however, this
statement is also true if it is taken into account.
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f orbital

Hund's rules
Spin orbit 
interaction

LS regime

...

Spin orbit
interaction

Extended 
Hund's rules

j-j regime

Figure 1.13. Schematic illustration of two schemes to identify the ground state
multiplet of the f2 configuration. In the j-j coupling regime (left panel),
we first consider the splitting of a one-electron state owing to the spin-orbit
interaction. Then, the extended Hund’s rule is applied to find the ground
state multiplet. Conversely, in the LS regime (right panel), we first apply
Hund’s rules, and then construct the ground state by considering the spin-
orbit interaction. Note that the ground state wave functions of each regime
are different, although they host a common total angular momentum, and the
total angular momenta of the excited states are also different.

1.2.2 Multipolar moment

In this section, we provide basic concepts of multipoles based on Refs. [74, 75]. The
orbital degree of freedom has been implicitly recognised because of the frequent occurrence
of phenomena involving electron orbitals in f , 4d, and 5d electron systems with strong
spin-orbit interactions. With the rapid development of research in the last few decades,
this degree of freedom has been developed into a more general concept for a multipolar
degree of freedom that includes spin and orbital. In the following section, we will discuss
the basic concept of a multipolar degree of freedom and how it is used.

Definition

A multipole is a quantity that characterises the anisotropy of the electric/magnetic
charge distribution of a wave function and is naturally defined using the multipole ex-
pansion of the following scalar and vector potentials in classical electromagnetism:

ϕ(r) =
∑
lm

alQlm
Ylm(r̂)

rl+1
, A(r) =

∑
lm

blMlm
Y l

lm(r̂)

rl+1
+ clTlm

Y l+1
lm (r̂)

rl+2
, (1.28)

where r̂ = r/r. The normalisation factors are given by al =
√
4π/(2l + 1), bl =

i
√
4π(l + 1)/(2l + 1)l, and cl = −

√
4π/(l + 1). Ylm(r̂) and Y j

lm(r̂) (j = l, l ± 1) are
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Table 1.3: The parity of the physical quantities of inversion and time-
reversal operators.

physical quantities inversion P time-reversal T

Electrical charge ρe + +
Magnetic charge ρm − −
Toroidal charge ρt + −

Electric multipole Qlm (−)l +
Magnetic multipole Mlm (−)l+1 −
Magnetic toroidal multipole Tlm (−)l −

Scalar potential ϕ(r) + +
Vector potential A(r) − −
Electric field E(r) − +
Magnetic field B(r) + −

the usual spherical harmonics and the vector spherical harmonics. They are defined as

Ylm(r̂) = (−1)
m+|m|

2

√
4l + 1

4π

√
(l − |m|)!
(l + |m|)!

Pm
l (cos θ)eimϕ, (1.29)

Y l
lm(r̂) =

1√
l(l + 1)

ℓYlm(r̂), (1.30)

Y l−1
lm (r̂) = − 1√

l(2l + 1)
(ir̂ × ℓ− lr̂)Ylm(r̂), (1.31)

Y l+1
lm (r̂) = − 1√

(l + 1)(2l + 1)
(ir̂ × ℓ+ (l + 1)r̂)Ylm(r̂), (1.32)

where Pm
l (x) are Legendre polynomials and ℓ = −ir̂ × ∇ [76, 77]2. Qlm, Mlm, and Tlm

in Eq. (1.28) are multipolar moments known as the electric, magnetic, and magnetic
toroidal multipolar moments, respectively3. These multipolar moments are classified
based on the nature of their response to inversion and time-reversal operators; arranging
different types of “charges” constitutes the multipole. Parities against inversion- and
time-reversal operators and related physical quantities are provided in Table 1.3.

2When a general vector field is expanded by vector spherical harmonic functions, it is expanded by
these three independent components. Now, when we expand the vector potential, we are taking the
Coulomb gauge ∇·A = 0, in which case the Y l−1

lm (r̂) component does not appear. Also, the second term
in the expansion of the vector potential is often ignored because it disappears after rotation and does
not affect the magnetic field. However, this degree of freedom often affects solid state properties and is
actively being studied.

3Although it is possible to define the electric toroidal moment, such a term does not appear in
multipole expansion.
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From the multipole expansion, each multipolar moment is represented as

Qlm =

∫
drrlZ∗

lm(r̂)ρe(r), Mlm =

∫
drrlZ∗

lm(r̂)ρm(r), Tlm =

∫
drrlZ∗

lm(r̂)ρt(r),

(1.33)
where Zlm(r̂) =

√
4π/2l + 1Ylm(r̂) is the Racah-normalised spherical harmonics. From

the spatial and time-reversal symmetric nature of each “charge” and spherical harmonic
functions, the parity of multipolar moments is as shown in Table 1.3. In addition, l
is the rank of the multipoles, where monopoles are known as (l = 0), dipoles (l =
1), quadrupoles (l = 2), octupoles (l = 3), and so on. For example, electric charges
correspond to electric monopoles, magnetic spins correspond to magnetic dipoles, and a
vector potential corresponds to the degree of freedom of magnetic toroidal dipoles.

In the presence of inversion symmetry, only multipoles with even parity can be active.
That is, only even-ranked electric multipoles, magnetic toroidal multipoles, and odd-
ranked magnetic multipoles are finite. Previous microscopic theories on multipoles have
mainly focussed on even-parity multipoles localised at these atomic sites. Furthermore,
magnetic toroidal multipoles become active only when the different angular momenta
(s-d or d-f orbitals) are hybridised; however, this hybridisation is generally small and has
not been specifically considered. Recently, there have been many attempts to discover
odd-parity multipoles in such systems. The search for odd-parity multipoles in systems
with locally-broken inversion symmetry has attracted much attention, where the mul-
tipoles are not localised at atomic sites but are defined in a whole unit cell (extended
multipoles). The ordered phases of magnetic quadrupoles and electric octupoles have
been theoretically proposed.

Wigner–Eckart theorem and Stevens equivalent operators

In the following sections, we will restrict our discussion to the localised electric and
magnetic multipoles, which are being actively studied. Because the observed quantities
related to multipoles are thermal averages of the electric or magnetic charge distribution
operators, we first need to construct the multipolar operators.

In the following chapters, we will frequently use polynomials in terms of total angular
momentum J and call them “multipoles”. Towards the end of this section, we will clarify
the relationship between the multipolar operators defined by the total angular momen-
tum and the multipolar operators defined by the anisotropy of the charge distribution
described so far. Specifically, we mathematically show that polynomials in terms of total
angular momentum J capture the geometrical property of multipoles. Readers who are
familiar with this treatment are requested to skip this section and go to Section 1.2.3.

Let us assume that the electric charges distribute in points. The charge distribution
operator is expressed as

ρ̂e(r) = e
∑
i

δ(r − r̂i). (1.34)

Note that r̂i is the position operator. Therefore, the electric multipole operator is

Q̂lm = e
∑
i

rliZ
∗
lm(r̂i). (1.35)
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The situation is similar for the magnetic multipole operator; however, the formula is more
complex, reflecting the fact that the magnetic dipolar moment M must be distributed
in a point-like manner due to the absence of magnetic charge. The result is

M̂lm = µB

∑
i

(
2li
l + 1

+ 2si

)
· ∇i

(
rliZ

∗
lm(r̂i)

)
, (1.36)

where µB is the Bohr magneton [77]. When the active multipolar moment is derived,
we must calculate the matrix elements by taking the expectation values of the above
operators in terms of the ground state multiplet, which is specified by the total angular
momentum J and its z componentM , ⟨J ′M ′|X̂lm|JM⟩ (X = Q,M). As explained in the
previous section, the ground state multiplet is represented by a many-body wave function;
thus it is difficult to calculate the expectation value of one-body operators included in
multipolar operators. Fortunately, this problem is resolved using the Wigner–Eckart
theorem and the Stevens equivalent operator method, as described below.

Wigner–Eckart theorem� �
Let us consider a spherical tensor operator with rank k: T (k) = {T (k)

q } (q = −k,−k+
1, . . . , k). This operator satisfies the following commutation relations with the total
angular momentum operator:

[Jz, T
(k)
q ] = qT (k)

q ,

[J±, T
(k)
q ] =

√
(k ∓ q)(k ± q + 1)T

(k)
q±1.

The Wigner–Eckart theorem states that the expectation value of this operator is given
as follows:

⟨JM |T (k)
q |J ′M ′⟩ = ⟨J ||T (k)||J ′⟩⟨J

′M ′kq|JM⟩√
2J + 1

= ⟨J ||T (k)||J ′⟩(−1)J ′−k+M

(
J J ′ k
−M M ′ q

)
,

where ⟨J ||T (k)||J ′⟩ is referred to as the reduced matrix element, which includes the
physical properties of the spherical tensor operator, the initial state, and the final
state. Moreover, it is independent of M,M ′, and q. ⟨J ′M ′kq|JM⟩ is the Clebsch–
Gordan coefficient for the coupling J = J ′ + k, and geometrical information on the
matrix element is included. The 2×3 array in the second line denotes the 3j symbol,
which represents the Clebsch–Gordan coefficients in a symmetric form. The key result
is that the matrix elements of the spherical tensor operator are separated into the
physical term and geometrical term.
More generally, the Wigner–Eckart theorem holds for any tensor operator with the
same transformation as that of the basis of the irreducible representation.� �

Outline of the proof
Here, we prove that the matrix elements of the spherical tensor operator ⟨JM |T (k)

q |J ′M ′⟩
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are proportional to the Clebsch–Gordan coefficient ⟨J ′M ′kq|JM⟩. From the first com-

mutation relation [Jz, T
(k)
q ] = qT

(k)
q , we find

⟨JM |[Jz, T (k)
q ]|J ′M ′⟩ = ⟨JM |qT (k)

q |J ′M ′⟩,
⇒M⟨JM |T (k)

q |J ′M ′⟩ −M ′⟨JM |T (k)
q |J ′M ′⟩ = q⟨JM |T (k)

q |J ′M ′⟩,
⇒ (M −M ′ − q)⟨JM |T (k)

q |J ′M ′⟩ = 0.

Thus, ⟨JM |T (k)
q |J ′M ′⟩ = 0 unless M = M ′ + q. From the second commutation relation

[J±, T
(k)
q ] =

√
(k ∓ q)(k ± q + 1)T

(k)
q±1, we can derive

⟨JM |[J±, T (k)
q ]|J ′M ′⟩ = ⟨JM |

√
(k ∓ q)(k ± q + 1)T

(k)
q±1|J ′M ′⟩

⇒
√

(J ∓M + 1)(J ±M)⟨J,M ∓ 1|T (k)
q |J ′M ′⟩

−
√
(J ′ ±M ′ + 1)(J ′ ∓M ′)⟨JM |T (k)

q |J ′,M ′ ± 1⟩

=
√

(k ∓ q)(k ± q + 1)⟨JM |T (k)
q±1|J ′M ′⟩.

In the above, each term is zero unlessM = q+M ′±1. To demonstrate that this recursion
relation resembles that of the Clebsch–Gordan coefficient, we consider the coupling J =
J ′ + k. Using the Clebsch–Gordan coefficient, the state |JM⟩ is represented as

|JM⟩ =
∑
M ′,q

⟨J ′M ′kq|JM⟩|J ′M ′kq⟩.

Applying the operator J∓, we obtain√
(J ∓M + 1)(J ±M)|J,M ∓ 1⟩

=
∑
M ′,q

√
(J ′ ∓M ′ + 1)(J ′ ±M ′)⟨J ′M ′kq|JM⟩|J ′,M ′ ∓ 1, kq⟩

+
∑
M ′,q

√
(k ∓ q + 1)(k ± q)⟨J ′M ′kq|JM⟩|J ′M ′k, q ∓ 1⟩

⇒
∑
M ′,q

√
(J ∓M + 1)(J ±M)⟨J ′M ′kq|J,M ∓ 1⟩|J ′M ′kq⟩

=
∑
M ′,q

√
(J ′ ±M ′ + 1)(J ′ ∓M ′)⟨J ′,M ′ ± 1, kq|JM⟩|J ′M ′kq⟩

+
∑
M ′,q

√
(k ± q + 1)(k ∓ q)⟨J ′M ′k, q ± 1|JM⟩|J ′M ′kq⟩.

Comparing the coefficients of the above equation, we find the recursion relation of the
Clebsch–Gordan coefficient as√
(J ∓M + 1)(J ±M)⟨J ′M ′kq|J,M ∓ 1⟩ −

√
(J ′ ±M ′ + 1)(J ′ ∓M ′)⟨J ′,M ′ ± 1, kq|JM⟩

=
√

(k ± q + 1)(k ∓ q)⟨J ′M ′k, q ± 1|JM⟩.
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This is the same as the recursion relation of ⟨JM |T (k)
q |J ′M ′⟩, and each term is zero unless

M = q +M ′ ± 1 owing to a property of the Clebsch–Gordan coefficient. In other words,
⟨JM |T (k)

q |J ′M ′⟩ and ⟨J ′M ′k, q|JM⟩ follow the same relation in terms of J,M, J ′,M ′, k,
and q. Thus, we can derive

⟨JM |T (k)
q |J ′M ′⟩ ∝ ⟨J ′M ′k, q|JM⟩.

■

From the Wigner–Eckart theorem, we can derive the Stevens equivalent operator method.
In reality, the spherical tensor operator can be constructed using total angular momentum
operators [76]. In this case, the spherical tensor operator is described as

T̃
(k)
k = (−1)k

√
(2k − 1)!!

(2k)!!
(J+)

k, [J−, T̃
(k)
q ] =

√
(k + q)(k − q + 1)T

(k)
q−1, (1.37)

and the reduced matrix element within a J multiplet is4

⟨J ||T̃ (k)||J⟩ = 1

2k

√
(2J + k + 1)!

(2J − k)!
̸= 0. (1.38)

Therefore, the following formula is satisfied for the arbitrary spherical tensor operator
T

(k)
q :

⟨JM |T (k)
q |JM ′⟩ = ⟨J ||T

(k)||J⟩
⟨J ||T̃ (k)||J⟩

⟨JM |T (k)
q |JM ′⟩ ∝ ⟨JM |T (k)

q |JM ′⟩. (1.39)

Remembering that the multipolar operators are defined in spherical symmetric space, we
recognise that they also satisfy the properties of the spherical tensor operator. Thus, we
can express the expectation values of the multipolar operators for the fn configuration
as

⟨JM |Qlm|JM ′⟩ = e⟨rl⟩g(l)n ⟨JM |T̃ (l)
m |JM ′⟩,

⟨JM |Mlm|JM ′⟩ = µB⟨rl−1⟩g(l)n ⟨JM |T̃ (l)
m |JM ′⟩,

(1.40)

where the radial average is ⟨rl⟩ =
∫
drr2rlR2(r). Here, R(r) is the radial distribution

function. The non-angle dependent part of the many-body wave function, that is, the
physical factor, is absorbed by the coefficients g

(l)
n and is called the generalised Stevens

factor. Note that the values of g
(l)
n are different for the LS and j-j coupling regimes

because their wave functions differ. The formulae to calculate the matrix element of
the multipolar operators via a spherical tensor operator constructed by the total angular
momentum operators are called the Stevens equivalent operator method. The merit of
this method is that we can easily obtain the matrix element of T̃

(l)
m . From Eq. (1.38) and

the Wigner–Eckart theorem, we obtain

⟨JM |T̃ (l)
m |JM ′⟩ = 1

2l

√
(2J + l + 1)!

(2J − l)!
(−1)J ′−l+M

(
J J ′ k
−M M ′ q

)
. (1.41)

4The reduced matrix element for different J is zero, namely ⟨J ′||T̃ (k)||J⟩ = 0; hence, we cannot use
this equivalent operator method in this case.
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Moreover, using the fact that multipolar operators with rank l are proportional to the
l-th polynomial and the rank-1 spherical tensor operator T̃ (1) satisfies the relation

⟨JM |T̃ (1)
0 |JM ′⟩ = ⟨JM |Jz|JM ′⟩ =M ′δM ′M ,

⟨JM |J (1)
±1 |JM ′⟩ =

〈
JM

∣∣∣∣∓ 1√
2
(Jx ± iJy)

∣∣∣∣ JM ′
〉

= ± 1√
2

√
(J ∓M ′)(J + 1±M ′)δM,M ′±1,

(1.42)
we can automatically calculate the matrix element of the multipolar operators in the
following way. First, we convert the l-th order polynomial in the multipolar operators
into the symmetrised product, that is,

xaybzc → a!b!c!

(a+ b+ c)!

∑
P

P(Ja
xJ

b
yJ

c
z), (1.43)

where the summation is taken over all possible permutations. Then, we can evaluate the
matrix element based on Eq. (1.42).

1.2.3 Reduction of representations

Thus far, we have introduced multipolar moments and a method of calculating their
expectation values in terms of the J multiplet. Now, we ask “Must we always consider the
(2J +1)× (2J +1) matrix when evaluating multipolar moments in the system?”. In real
materials, f electrons are surrounded by several crystal electric fields (CEFs) that arise
from other ions, which results in a further splitting of the ground state multiplet. In this
subsection, we will discuss the reduction of representations, which is a group-theoretic
method for understanding how the original J multiplet is split by a CEF, and finally, we
derive what multipoles are active in rare-earth pyrochlore systems.

Any symmetric operators R can be represented in a matrix form using an appropriate
basis. A group of matrices that represents each symmetry operator in a certain group
is known as the representation of the group. In general, the representation D(R) is
separated into the direct sum of irreducible representations by a unitary transformation,
that is [78],

D(R) = Γα(R)⊕ Γβ(R)⊕ Γγ(R) . . . . (1.44)

In this case, the character of the representation χ(R) satisfies

χ(R) = χα(R) + χβ(R) + χγ(R) · · · =
∑
µ

cµχ
µ(R), (1.45)

where cµ indicates the number of times the irreducible representation Γµ appears inD(R).
The coefficient cµ is given by

cµ =
1

h

∑
R

χµ∗(R)χ(R). (1.46)

Here, h is the order of the group. Since a J multiplet is the ground state in a spherically
symmetric potential, it is invariant under the rotation of any angle about any axis. This
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means that the (2J + 1)-dimensional matrix D(J)(Rα) constructs an irreducible repre-
sentation (irreps) of the rotational group, where the basis is the J multiplet and Rα is
the rotation operator by angle α about a certain axis. Generally, it is known that the
character for the rotation by angle α about any axis in the rotation group is obtained
from

χ(J)(Rα) =
sin
(
J + 1

2

)
α

sin α
2

. (1.47)

As an example, we consider the splitting of the f 2 (J = 4) configuration in a CEF
with D3 point group symmetry, which is realised in rare-earth pyrochlore materials. We
provide the calculated characters of the rotation group D(J) and the character table of
the point group D3 in Table 1.4, which is obtained from Eq. (1.47). When J = 4, from
Eq. (1.46) and Table 1.4, cΓ is

cΓ1 =
1

12
(1 · 9 + 1 · 9 + 2 · 0 + 2 · 0 + 3 · 1 + 3 · 1) = 2,

cΓ2 =
1

12
(1 · 9 + 1 · 9 + 2 · 0 + 2 · 0− 3 · 1− 3 · 1) = 1,

cΓ3 =
1

12
(2 · 9 + 2 · 9− 2 · 0− 2 · 0 + 0 · 1 + 0 · 1) = 3,

cΓ4,5,6 = 0.

Therefore, the rotation group D(4) is reduced as

D(4) = 2Γ1 ⊕ Γ2 ⊕ 3Γ3. (1.48)

Other possible reductions in rare-earth pyrochlore materials are summarised in Table
1.4. Although the CEF parameters determine which irreps become the ground state,
the Γ3 and Γ6 irreps possess the potential to carry a pseudospin 1/2 owing to their two-
dimensionality. In addition, one-dimensional Γ4 and Γ5 irreps are accidentally degenerate
and can host a pseudospin-1/2 degree. In real materials, the Γ3 ground state doublet can
be realised in Pr-, Ho-, and Tb-based pyrochlores, the Γ6 ground state doublet is realised
in Er- and Yb-based pyrochlores, and the Γ4⊕Γ5 ground state doublet is realised in Ce-,
Dy-, and Nd-based pyrochlores.

Now, another question is considered: can these pseudospin-1/2 states be regarded
as usual spins, that is, magnetic dipoles? To answer this question, we will explain how
to derive the active multipole degrees of freedom in a given Hilbert space. In general,
for the matrix element of the operator A, which belongs to the irreps Γ̃, to be non-zero
within the state space of irreps Γ, the representation Γ̃ must appear when the product
representation Γ ⊗ Γ is reduced. In other words, we can identify the active multipoles
within a given Hilbert space by reducing the product representation and examining the
basis functions of the irreps that arise via the reduction. We will follow this procedure
by taking the Γ3 ground state doublet in Pr-based pyrochlores as an example.

Because the characters of an arbitrary product representation Γα⊗Γβ for a symmetry
operator X are given by χΓα⊗Γβ

(X) = χΓα(X) × χΓβ
(X), the characters of Γ3 ⊗ Γ3 for

the symmetry operators of the D3 group are as follows:
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Table 1.4: Character table of the D3 point group and the characters of
the rotation group D(J). In the right two columns, we provide the repre-
sentation reduction results of the rotation group and material examples.

D3 E R
C3

C2
3R

C2
3

C3R
3C ′

2 3C ′
2R Reduction Material Example

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 2 2 −1 −1 0 0
Γ4 1 −1 −1 1 i −i
Γ5 1 −1 −1 1 −i i
Γ6 2 −2 1 −1 0 0

D(5/2) 6 −6 0 0 0 0 Γ4 ⊕ Γ5 ⊕ 2Γ6 Ce2Zr2O7

D(7/2) 8 −8 1 −1 0 0 Γ4 ⊕ Γ5 ⊕ 3Γ6 Yb2Ti2O7

D(4) 9 9 0 0 1 1 2Γ1 ⊕ Γ2 ⊕ 3Γ3 Pr2Zr2O7

D(9/2) 10 −10 −1 1 0 0 2Γ4 ⊕ 2Γ5 ⊕ 3Γ6 Nd2Zr2O7

D(6) 13 13 1 1 1 1 3Γ1 ⊕ 2Γ2 ⊕ 4Γ3 Tm2Ti2O7

D(15/2) 16 −16 −1 1 0 0 3Γ4 ⊕ 3Γ5 ⊕ 5Γ6 Er2Ti2O7

D(8) 17 17 −1 −1 1 1 3Γ1 ⊕ 2Γ2 ⊕ 6Γ3 Ho2Ti2O7

D3 E R
C3

C2
3R

C2
3

C3R
3C ′

2 3C ′
2R

Γ3 ⊗ Γ3 4 4 1 1 0 0

Thus, we obtain

Γ3 ⊗ Γ3 = Γ1 ⊕ Γ2 ⊕ Γ3. (1.49)

However, this reduction is not sufficient to identify the active multipoles because we can-
not distinguish between electric and magnetic multipoles. To solve this problem, we first
divide the product state Γ3⊗Γ3 into the symmetric representation (Γ3⊗Γ3)sym. and asym-
metric representation (Γ3 ⊗ Γ3)asy.. It is known that the electric multipoles arise from
symmetric (asymmetric) representation and the magnetic multipoles arise from asym-
metric (symmetric) representation when J is an integer (half integer). The characters of
each representation are given by

χ(Γ⊗Γ)sym.(X) =
1

2
(χ2

Γ(X) + χΓ(X
2)) χ(Γ⊗Γ)asy.(X) =

1

2
(χ2

Γ(X)− χΓ(X
2)). (1.50)

Thus, in this case, we obtain

D3 E R
C3

C2
3R

C2
3

C3R
3C ′

2 3C ′
2R

(Γ3 ⊗ Γ3)sym. 3 3 0 0 1 1
(Γ3 ⊗ Γ3)asy. 1 1 1 1 −1 −1
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Noting that J = 4 (integer) in the f 2 configuration, we find

(Γ3 ⊗ Γ3)sym. = Γ1g + Γ3g, (Γ3 ⊗ Γ3)asy. = Γ2u, (1.51)

where the index g(u) indicates the electric (magnetic) multipoles. Examining the basis
functions of each irreps in the character table of point group D3d, we can determine that
two Γ3g electric quadrupoles with the form JxJz+JzJx and JyJz+JzJy and a Γ2u magnetic
dipole Jz are active in the Γ3 doublet. Note that the Γ1g electric monopole corresponds
to the identity operator. Further calculations reveal that the Pauli matrices in this state
can be represented as

τx = JxJz + JzJx, τy = JyJz + JzJy, τz = Jz. (1.52)

From this discussion, we can understand that the properties of an emergent pseudospin-
1/2 degree of freedom in rare-earth pyrochlore materials are completely different from
real spins. Similar calculations are applicable for other emergent doublets in rare-earth
pyrochlore materials, the results of which are summarised in Table 1.5 [79, 80].

Table 1.5: Active multipoles for three types of emergent pseudospin-1/2
states in rare-earth pyrochlore materials. Here, [. . . ] denotes the sym-
metrised product, for example, JxJyJy = JxJyJy + JyJxJy + JyJyJx.

Irreps. τx τy τz

Γ6 (Kramers) Jx (Γ3u dipole) Jy (Γ3u dipole) Jz (Γ2u dipole)
Γ4 ⊕ Γ5 (Kramers) J3

x − JxJyJy (Γ2u octupole) J3
y − JxJyJy (Γ1u octupole) Jz (Γ2u dipole)

Γ3 (non-Kramers) JxJz + JzJx (Γ3g quadrupole) JyJz + JzJy (Γ3g quadrupole) Jz (Γ2u dipole)

1.2.4 Experimental limitation on identifying multipolar ordered
states

Let us return to the general topic. Considering the effective spin model within the
ground state, which hosts high-rank multipoles, we naturally expect the realisation of
multipolar ordered states (MPOs). However, the extraction of features that indicate
MPOs is not easy.

There is a wide range of experimental techniques for detecting magnetically ordered
states. Because (real) spins carry a magnetic dipolar moment and can linearly couple to
an external field or the magnetic moments of neutrons or nuclei, characteristic behaviours
are captured using methods such as susceptibility measurements, neutron scattering,
and nuclear magnetic resonance (NMR). While there are numerous tools for identifying
magnetically ordered phases, there is a limited number of techniques for higher-rank
MPOs. If MPOs are only constructed by electric quadrupoles, they can be measured
using ultrasound because the electric quadrupoles can couple to the lattice distortion
degree of freedom. By analysing the elastic constants obtained from the acoustic wave
measurements, the uniform quadrupole susceptibility can be determined. The observed
elastic constants and uniform quadrupole susceptibility χαβ follow the relation:

cαβ(T ) = c̄αβ(T )− γαγβχαβ, (1.53)
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where c̄αβ(T ) is the contribution from electrons other than those that are localised, α
and β are the indices for the quadrupolar moments, and γ is the coupling between the
lattice distortion and quadrupoles. From this formula, we expect a softening of the
elastic constants to be observed as the uniform quadrupole susceptibility increases in a
Curie-Weiss-like formation. In principle, much higher-ranked multipolar ordered states
can be observed using resonant X-ray scattering. Theoretically, the analysis of electric
quadrupole transitions (E2 transition) enables us to identify MPOs up to rank 4; however,
the scattering intensity is extremely weak. Therefore, this is a difficult experiment to
conduct [81].

Recently, effort has been made to understand the nature of multipoles by examining
the cross-correlation response they induce [82]. For example, it is proposed that the
magnetic piezoelectric effect can detect magnetic hexadecapoles, which are represented
as

cµν = aµνγjγ, (1.54)

where cµν is elastic distortion, jγ is current density, and aµνγ represents the piezoelectric
tensor. This indicates that lattice distortion is induced by an electric current via a
coefficient aµνγ. In metallic Ba1−xKxM2As2, which exhibits a magnetic hexadecapole
order, the lattice distortion cxy in the [110] direction is expected under an electric current
along the z axis. Thus, we can confirm the existence of higher-rank multipolar orders
through a cross-correlation response [83].

These theoretical results indicate the importance of employing the lattice degree of
freedom to capture MPOs with high-rank multipoles.

1.2.5 Recent progress in multipolar physics

One of the most exotic materials in the context of multipolar physics is a family of
Pr-based 1-2-20 compounds such as Pr(Ti,V,Ir)2(Al,Zn)20, whose ground state doublet
is described purely by higher-rank multipoles: two quadrupoles and an octupole. Owing
to its uniqueness, extensive effort has been devoted to clarifying the multipolar nature of
these materials [84, 85, 86, 87, 88, 89, 90]. Thus far, an antiferro-quadrupolar order at the
low temperature has been reported in Pr(Ir,Rh)2Zn20 (TQ ∼ 0.11 K for the Ir system and
TQ ∼ 0.06 K for the Rh system) [86, 88], and a ferro-quadrupolar order has been observed
in PrTi2Al20 (TQ ∼ 2 K) [91]. Furthermore, successive phase transition has been reported
in the high-quality single crystal PrV2Al20. The first transition is considered to be an
antiferro-quadrupolar transition (TQ ∼ 0.75 K), and the second transition at T ∗ ∼ 0.65 K
might be associated with the octupolar degree of freedom; however, no distinct signature
has been found because of limits in the experimental technique mentioned above [92]. A
recent theoretical study based on the celebrated Landau theory revealed that a system
with an antiferro-quadrupolar order possesses an accompanied ferro-octupolar order; thus,
this hidden order can be considered a ferro-octupolar order [93].

Here, we briefly review the properties of each material. PrIr2Zn20 is confirmed to
display an antiferro-quadrupolar order at TQ = 0.11 K using an ultrasonic measurement
[88]. Furthermore, transition to a superconducting phase is observed at Tc = 0.05 K,
where the quadrupolar fluctuations play an important role to form Cooper pairs [86].
In the ultrasonic measurement, softening of the (C11 − C12)/2 elastic moduli suddenly
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disappears at TQ, which indicates growth of the quadrupolar order with an O2
2 =
√
3(J2

x−
J2
y )/2 moment. The fitting parameters of the obtained data strongly suggest a negative

quadrupole-quadrupole coupling constant; hence, the ordering will be antiferromagnetic.
The entropy release at TQ is estimated as merely 20% of R ln 2, which indicates that
the fluctuation of the quadrupole moment remains to some extent, contributing to the
formation of superconducting pairs at the lowest temperatures. Figure 1.14(a) shows a
B–T phase diagram obtained from Ref. [86].

PrV2Al20, which exhibits a two-step phase transition, has attracted extensive at-
tention, from a theoretical point of view, as an observational example of the auxiliary
ferro-octupolar order. This material was first investigated as a rare example of heavy-
fermion superconductivity with an effective mass as high asm∗/m0 ∼ 140 and a transition
temperature Tc = 0.05 K in a high-quality sample. In an attempt to capture the charac-
teristics of heavy fermions from specific heat measurements, two anomalies were found to
occur in the normal state (Fig. 1.14(b)). One was ascribed to the antiferro-quadrupolar
phase transition, whereas the other remains elusive. A theoretical study based on the
classical Landau theory proposed that an auxiliary ferro-octupolar order emerges with
the antiferro-quadrupolar order and the experimentally observed anomaly in the specific
heat arises from the contribution of a local octupolar degree [93]. The wave functions of
the Γ3 local doublet in these families are represented as [84]

|ϕα⟩ =
1

2

√
7

6
|4⟩ − 1

2

√
5

3
|0⟩+ 1

2

√
7

6
| − 4⟩,

|ϕβ⟩ =
1√
2
|2⟩+ 1√

2
| − 2⟩.

(1.55)

Describing the pseudospin basis as

| ⇑⟩ = 1√
2
(|ϕα⟩+ i|ϕβ⟩) , | ⇓⟩ = 1√

2
(i|ϕα⟩+ |ϕβ⟩) , (1.56)

the Pauli matrices are given by

τx = −
√
3

8
(J2

x − J2
y ), τy = −

1

8
(3J2

z − J2), τz =

√
3

18
JxJyJz. (1.57)

Using these matrices, Ref. [93] constructs the following multipolar order parameters:

ϕu,s = ⟨τ+A ⟩ ± ⟨τ
+
B ⟩, mu,s = ⟨τ zA⟩ ± ⟨τ zB⟩, (1.58)

whereA/B is the sublattice index, ϕu,s is the ferro/antiferro-quadrupolar order (FQ/AFQ)
and mu,s is the ferro/antiferro-octupolar order (FO/AFO). By considering the symmetry-
allowed Landau free energy and exploiting the Landau theory, the researchers of Ref. [93]
uncovered a successive transition that occurs to the AFQ and AFQ+FO ordered phases
with parasitic FQ-order parameters.

Intriguingly, this symmetry analysis was developed further, and a theory for detecting
the octupole order was proposed [94]. Lattice strain has been regarded as a powerful tool
for detecting quadrupolar ordered phases; however, it has been considered ineffective for
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(a) (b)

Figure 1.14. (a): B–T phase diagram of PrIr2Zr20. The transition at TQ = 0.11
K in the zero magnetic field splits into two transitions when magnetic fields
along [100] or [110] are applied; the origin of these remains elusive. Tc = 0.05
K indicates a transition to the superconducting phase. The inset describes the
temperature dependence of the resistivity and susceptibility, which suggests
that zero resistance and perfect diamagnetism is realised below Tc. Reprinted
with permission from [86] Copyright (2021) by the American Physical Society.
(b): Temperature dependence of specific heat above T and the entropy of
PrV2Al20 and PrTi2Al20. In addition to the anomaly at TQ, a sharp peak
structure is observed in the specific heat at T ∗ in PrV2Al20. The inset of the
upper figure shows the temperature dependence of C4f/T in the zero magnetic
field and B = 20 mT. The inset of the lower figure shows C4f/T versus T 3

in PrV2Al20. Here, C4f/T is estimated by subtracting contributions from the
lattice and nuclei. Reprinted with permission from Copyright (2021) by the
American Physical Society [92].

probing octupolar moments because they are odd under time-reversal. However, this
difficulty is overcome by considering the time-reversal odd magnetic field, which assists
the coupling between lattice strains and octupolar moments. Therefore, magnetostric-
tion measurement can be a novel probe for detecting octupolar ordered states. In fact,
it was theoretically revealed that magnetostriction in the presence of the octupolar order
exhibits an unusual linear-in-field form and hysteric behaviour in a [111] magnetic field,
which is consistent with unpublished experimental observations. Note that, qualitatively,
quadratic-in-field magnetostriction should be observed when the quadrupolar order pa-
rameter is dominant, and thus linear-in-field magnetostriction is a unique signature that
proves the existence of octupolar orders.
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1.3 Outline of this thesis

The key points of Chapter 1 are summarised as follows:

• Quantum spin liquids are considered long-range entangled correlated paramagnets,
and the lack of spontaneous symmetry breaking makes their detection arduous.

• In the U(1) class of spin liquids, only the spin ice configuration based QSLs have
the potential to host higher-rank multipoles.

• Multipolar ordered phases have eluded detection owing to limited experimental
techniques; however, a recent proposal for a lattice-based technique has introduced
a new method.

Using these points, a common feature of two seemingly unrelated quantum phases, QSLs
and MPOs is revealed: both phases are difficult to experimentally detect. Considering
the recent success in the lattice-based analysis, we can now wonder: can the lattice-
based technique used to probe elusive quantum phases also be used for quantum disordered
phases, namely QSLs? We believe that the best platform to investigate both QSLs and
MPOs is rare-earth pyrochlore compounds, and the following two research projects will
be discussed in this thesis:

1. Probing and distinguishing quantum spin liquid phases using a combination of
ordinary experimental tools and a novel experimental technique known as magne-
tostriction measurement.

2. Pseudospin-lattice-coupling-induced phenomena in rare-earth pyrochlore materials.

The first project covers the main topic of this thesis. A dipolar-octupolar system with
a Γ4 ⊕ Γ5 doublet as the ground state is mainly investigated (see Section 1.2.3). First,
we confirm that four distinct QSL phases can appear in the spin model of this system,
where the flux degree of freedom and each multipole (dipole and octupole) play a crucial
role in describing them. Then, by examining the static and dynamic properties of each
QSL obtained with an ordinary experimental tool (neutron scattering), we propose that
the multipolar quantum spin ice phase with a unique flux configuration is realised in
Ce2Zr2O7. To corroborate the results of the neutron scattering analysis and address its
limitations, we present a new potential experimental approach. We construct a free energy
formula with symmetry-allowed coupling between the lattice strain, magnetic field, and
local multipolar moment. Using the obtained formula, we estimate the field dependence
of the system’s magnetostriction. The key finding is that a lack of direct coupling between
the octupoles and magnetic fields paradoxically enables us to distinguish the octupolar-
related phase from other phases. Because octupolar phases have so far been elusive, this
finding is remarkable. In addition, we investigate other rare-earth pyrochlore systems for
completeness and derive a comprehensive view of rare-earth pyrochlore systems.

The second project arose during the first. In the first study, we attempt to indirectly
capture quantum phases by studying the effect of each quantum phase on the lattice
degree of freedom. However, in the second project, we consider the effects of lattice
fluctuations on the spin system and attempt to discover interesting phenomena produced
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by the lattice-spin couplings. As explained in this chapter, non-Kramers pyrochlores, such
as Pr2Zr2O7, host local quadrupoles that linearly couple to quantised lattice fluctuations,
phonons. Therefore, we expect the appearance of unique phonon-pseudospin-coupling-
induced phenomena in non-Kramers pyrochlore materials. Motivated by this expectation,
we first analyse the form of phonon-pseudospin couplings in detail and demonstrate that
an emergent transverse field exists in local pseudospins. Then, we demonstrate that a
unique NMR relaxation time behaviour can be observed owing to this emergent term in
a [110] magnetic field. Furthermore, emergent one-dimensionality is revealed in three-
dimensional frustrated magnets.

The remainder of this thesis is structured as follows: In Chapter 2, we provide detailed
explanations of rare-earth pyrochlore materials and briefly describe several of our results.
In Chapter 3, the main chapter of this thesis, we discuss the first project. We propose
the existence of multipolar quantum spin ice and the usefulness of a novel experimental
technique. The contents of Chapter 3 is published in Refs. [79] and [95]. In Chapter
4, we discuss phonon-pseudospin coupling and the emergent one-dimensionality in non-
Kramers pyrochlore materials. We are currently preparing to publish the contents of
Chapter 4. Finally, a summary of this thesis is provided in Chapter 5.
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Chapter 2

Rare-earth pyrochlore materials

In Chapter 2, three types of rare-earth pyrochlore materials described in the previous
chapter: (i) non-Kramers, (ii) Kramers, and (iii) dipolar-octupolar cases will be discussed.
In this thesis, we study (i) non-Kramers case in Chapter 4 and (iii) dipolar-octupolar
case in Chapter 3; thus experimental and theoretical progress of these cases will be
intensively explained in this chapter. Additionally, the introductive topics and a part of
our theoretical results for the (i) and (iii) cases will be provided.

2.1 Non-Kramers case

The Γ3 non-Kramers doublet ground state can be realised in a certain rare-earth
pyrochlore material. As seen in the previous chapter, τx and τy represent quadrupolar
moments, and τz is a dipolar moment. A representative material belonging to this class
is Pr2(TM)2O7 (TM = Sn, Zr, Hf, and Ir), which has been considered a likely candidate
for QSLs from both a theoretical and experimental perspective.

2.1.1 Theoretical study

Considering crystal symmetry and the time-reversal property of local multipolar mo-
ments, the generic nearest-neighbour pseudospin-1/2 model is represented as [96, 97]

HNK =
∑
⟨ij⟩

[
JzzS

z
i S

z
j − J±(S+

i S
−
j + S−

i S
+
j ) + J±±(γijS

+
i S

+
j + γ∗ijS

−
i S

−
j )
]
. (2.1)

Here, the summation is taken over all nearest-neighbour sites, and γ is a 4 × 4 complex
unimodular matrix;

γµν =


1 xµ − xν ∈ yz plane

ei2π/3 xµ − xν ∈ xz plane

e−i2π/3 xµ − xν ∈ xy plane

, (2.2)

where xµ (µ = 0, 1, 2, 3) are vectors that connect two sites of the dual diamond lattice
through the pyrochlore site with sublattice µ. As in Eq. (1.18), this Hamiltonian can
be mapped onto the compact U(1) gauge theory on the dual diamond lattice, and the
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obtained QED Hamiltonian has been investigated using the gauge mean-field theory
(gMFT) [98]. Let us review the mapping procedure below.

First, the gauge charge defined on the diamond site r arises from the first Ising term
by rewriting it as (Jzz/2)

∑
rQ

2
r up to constant, where

Qr = ηr
∑
r′

Sz
(r+r′)/2. (2.3)

Here, (r + r′)/2 indicates that the pyrochlore site is at the centre of the vector that
connects r and r′, and r′ is the nearest-neighbour site of r. The sign factor ηr = 1(−1)
if the diamond site r belongs to the A(B) sublattice. Then, we introduce an operator
defined on the diamond lattice, szrr′ = Sz

(r+r′)/2 and the corresponding ladder operator Φ.
Using these operators, we obtain

S+
(r+r′)/2 = Φ†

rs
+
rr′Φr′ , (2.4)

where r ∈ A and Φ
(†)
r are annihilation (creation) operators of a bosonic spinon that acts

on the gauge charge Qr. Note that they satisfy the commutation relations [Φ
(†)
r , Qr] =

(−)Φ(†)
r . Employing these gauge operators, the Hamiltonian Eq. (2.1) is rewritten as

HQED =
Jzz
2

∑
r

Q2
r−J±

∑
r,r′ ̸=r′′

Φ†
r′Φr′′s−ηr

rr′ s
ηr
rr′′+

J±±

2

∑
r,r′ ̸=r′′

(γηrµνΦ
†
rΦ

†
rΦr′Φr′′sηrrr′s

ηr
rr′′+h.c.).

(2.5)
Here, the sites r′ and r′′ are the nearest-neighbours of site r, and µ [ν] is the sublattice
index of the pyrochlore site at (r + r′)/2 [(r + r′′)/2]. This Hamiltonian is invariant
under the U(1) gauge transformations Φr → Φre

−iχr and s±rr′ → s±rr′e±i(χr′−χr).
Before providing the gMFT phase diagram of this model, we introduce a flux degree

of freedom, which will be important in the next chapter. In the perturbative regime,
where J±± ≲ J± ≪ Jzz, the effective Hamiltonian becomes the following ring exchange
interaction:

Hring = −Jring
∑
7

cos(∇× A) (2.6)

with Jring = O(J3
±/J

2
zz) (cf. Eq. (1.18)–(1.22)). Thus, we expect that the flux defined

for each hexagonal plaquette (=∇× A) takes the value cos(∇× A) = 1 for J± > 0 and
cos(∇× A) = −1 for J± < 0. The former state is known as the zero-flux state, and the
latter is the π-flux state. The different flux configuration patterns describe the different
QSLs. Reference [98] provides a gMFT analysis of the zero-flux state only.

Because the gMFT analysis is not a main topic of this thesis, a detailed explanation
is not provided. Instead, the result is displayed in Fig. 2.1. We can see that the U(1)
QSL phase expands beyond the perturbative regime and exotic MPOs exist in the large
J± or J±± region. Through this analysis, we have once again confirmed that rare-earth
pyrochlore materials are the ideal platform for verifying MPOs and QSLs.

Inspired by the result, we evaluated the magnetostriction for each quantum phase in
the previous research [80]. Our main findings are shown in Fig. 2.2, which illustrates
the field dependence of the length change under an applied magnetic field [111] for the
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Figure 2.1. Left: Phase diagram of the J±–J±± space. Four distinct phases are
observed: classical spin ice, U(1) QSLs, the antiferroquadrupolar (AFQ) order,
and the ferroquadrupolar (FQ) order. Right: Schematic illustration of the (a):
AFQ and (b): noncoplanar FQ orders. (c,d): Corresponding antiferromagnet
and noncoplanar ferromagnet phases, where the x and y components of the
pseudospin are regarded as the usual dipole. Reprinted with permission from
Copyright (2021) by the American Physical Society [98].

U(1) QSL phase (J±/Jzz = 0.02, J±±/Jzz = 0.05). Under this magnetic field, the system
first enters the kagome ice phase, where the two-in two-out spin ice configuration is
maintained within the kagome layer intrinsic to the pyrochlore lattice. Then, it becomes
a trivial, fully polarised phase through an intermediate phase. The key result is that a
characteristic linear-in-field dependence in the kagome ice phase and the jump behaviour
in the intermediate phase are observed with length change along the (1,1,1) and (1,1,0)
directions. These features are only captured for the U(1) QSL ground state and are
consistent with unpublished experimental results [99]. Theoretical formalisms have much
in common with the contents of Chapter 3; hence, a detailed explanation will be provided
there. Moreover, Appendix A contains the magnetostriction of additional MPOs.

2.1.2 Experimental study

A spin-ice configuration with large quantum fluctuations was reported in Pr2Zr2O7

[100]. The neutron scattering measurements accurately captured the key properties of
this material. Figure 2.3 presents a q-map of inelastic and elastic neutron scattering
measurements. The pinch point singularities near (111) and (002) in Fig. 2.3(b) suggest
that the two-in two-out spin configuration is satisfied for each tetrahedron. Because this
scattering pattern resembles the one obtained from the spin model with nearest-neighbour
Ising interactions, this phase may be regarded as classical spin ice. However, the Weiss
temperature is negative, which indicates that the antiferromagnetic transverse interaction
term J± is not negligible. Therefore, combined with the theoretical results, we expect the
U(1) QSL to be realised. In fact, the inelastic scattering signature provides evidence for
quantum spin dynamics. The pinch points disappear, which indicates that the excited
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Figure 2.2. Field dependence of the length change ∆L/L under an applied
magnetic field [111] for the U(1) QSL phase J±/Jzz = 0.02, J±±/Jzz = 0.05.
Left: length change along the (1,1,1) direction. Right: length change along
the (1,1,0) direction. For the infinitesimal but finite field, the system enters
the kagome spin ice phase, where the spin ice degeneracy only remains in the
kagome layer of the pyrochlore lattice. However, the U(1) QSL is stable for a
small window of magnetic field strengths. This region is schematically denoted
by the orange shaded region. For the large field region, the system enters
a trivial, fully polarised phase (blue-shaded region). The green, blue, and
red lines (squares) denote the contribution from the quadrupole, dipole, and
combined to the length change, respectively, obtained through classical (ex-
act diagonalisation) calculation. The classical (1,1,0) length change possesses
two behaviours in the kagome ice phase because the length change reflects
the degeneracy of the kagome ice manifold. The average over the degeneracy
(red dashed line) accurately matches the exact diagonalisation result along the
(1,1,0) direction. A theoretical formalism and additional pyrochlore cases will
be provided in Chapter 3 and Appendix A. Adopted from our previous study
[80].

states differ from the ground state owing to violation of the ice-rule and the creation of
monopole excitations. Moreover, the intensity of the inelastic neutron scattering signal
accounts for more than 90% of the magnetic scattering cross section. This indicates that
quantum fluctuations dominate the magnetism of Pr2Zr2O7.

At this stage, previous experiments merely assert the dominance of quantum fluctu-
ations rather than experimentally determining the existence of U(1) QSLs. To provide
evidence on the presence of U(1) QSLs from multiple perspectives, proposals for new ex-
perimental methods have been anticipated. Therefore, our proposal of magnetostriction
as a novel probe for U(1) QSLs is a powerful tool to offer further evidence. As previ-
ously mentioned, magnetostriction measurements have been conducted and the results
are consistent with our theory [80, 99]. Thus, we can conclude that the ground state of
Pr2Zr2O7 is a U(1) QSL.

To further corroborate the experimental realisation of the U(1) spin liquid in Pr2Zr2O7

from another perspective, let us analyse the coupling constants in Eq. (2.1). Reference
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[96] provides a preliminary estimate of the coupling constants for Pr2(TM)2O7 (TM =
Sn, Zr, Hf, and Ir) using a fourth-order strong-coupling perturbation theory. Because the
detailed explanation of this theory is beyond the scope of this thesis, just an overview is
provided here. For Pr-based pyrochlore materials, the non-Kramers ground state doublet
is described as

|±⟩ = α|Jz = ±4⟩ ± β|Jz = ±1⟩ − γ|Jz = ∓2⟩, (2.7)

where α, β, and γ are real coefficients determined by CEF parameters, and we observe
that α =

√
1− β2 − γ2 is dominant. For Pr2Zr2O7, the first CEF excited state is Γ1

singlet located at 108 K [100]. This energy scale is significantly greater than the one we
are interested in; for example, Jzz in Eq. (2.1) is predicted to be in the order of a few
Kelvin [101]. Therefore, it is reasonable to neglect the CEF excited states and confine
our discussion to the non-Kramers ground state doublet. Equipped with this assumption,
we find that the effective quantum pseudospin-1/2 model obtained from the fourth-order
perturbation theory corresponds to Eq. (2.1), and the coupling constants J± and J±±
are dependent on parameters β and γ. If β = γ = 0, the coupling constants J± and
J±± vanish, indicating that the mixing of the |Jz = ±1⟩ and |Jz = ±2⟩ states in the
ground state wave function contributes to additional superexchange paths and finite J±
and J±±. Using typical values for Slater-Koster parameters included in β and γ, we can
finally evaluate as J±/Jzz ∼ 0.1 and J±±/Jzz ∼ 0.1. When we compare this preliminary
estimate of the coupling constants to the phase diagram shown in Fig. 2.1, we establish
that the U(1) QSL ground state is plausible. In Chapter 4, we demonstrate that the
Ising anisotropy of the parameter set and resulting spin liquid phase in Pr2Zr2O7 plays a
crucial role to explain the unique experimental result of NMR relaxation time.

2.2 Kramers case

A trivial Kramers case with a Γ6 doublet does not possess higher-rank multipoles.
Instead, various magnetically ordered phases are reported. Only a brief comment is
provided as they are not main topics in this thesis.

In addition to the Hamiltonian Eq. (2.1), another interaction term is allowed owing
to the time-reversal odd nature of dipolar moments. Thus, the Hamiltonian of the usual
Kramers doublet is [96, 97]

HK =
∑
⟨ij⟩

JzzS
z
i S

z
j − J±(S+

i S
−
j + S−

i S
+
j ) + J±±(γijS

+
i S

+
j + γ∗ijS

−
i S

−
j )

+ Jz±
[
Sz
i (ζijS

+
j + ζ∗ijS

−
j ) + (ζijS

+
i + ζ∗ijS

−
i )S

z
j

]
,

(2.8)

where ζ = −γ∗. The additional contribution to the QED Hamiltonian is described as

−Jz±
∑

r,r′ ̸=r′′

szrr′(γ−ηr
µν Φ†

rΦr′′sηrrr′′ + h.c.). (2.9)

Note that this term is also invariant under the U(1) gauge transformation explained in
the previous section. A similar gMFT analysis is conducted on the parameter space of
Jz±/Jzz and J±/Jzz with J±± = 0 [102]. The phase diagram is shown in Fig. 2.4. In this
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Figure 2.3. (a): Inelastic neutron scattering signal with an energy transfer of
0.25 meV in Pr2Zr2O7. The broad scattering pattern is attributed to crystal
symmetry. The pinch-point singularity unique to the spin-ice state is masked,
which indicates the presence of magnetic monopoles. (b): Elastic neutron
scattering signal. Pinch points are observed at (002), (111), and (1̄11). The
broadened nature suggests that the quantum fluctuations are not negligible in
this material. Adopted from [100].

case, the U(1) QSL phase is robust for finite J± and Jz±; however, we find that it is more
stable against J±± (see Figs. 2.1 and 2.4). More interestingly, the Coulomb ferromagnetic
ordered (CFM) phase is obtained and covers a wide range of the parameter region. The
order parameters that characterise the CFM phase are ⟨Φ⟩ = 0 and ⟨sz⟩ ̸= 0. The former
condition indicates that spinons have a finite gap and are deconfined, as explained in the
previous chapter, and the latter represents the presence of the Ising magnetic order.

(a) (b)

Figure 2.4. (a): Phase diagram of pyrochlore materials with the Kramers
doublet as the ground state. (b): Order parameters for each phase. Reprinted
with permission from Copyright (2021) by the American Physical Society [102].

Yb2(Ti,Sn)2O7 has attracted extensive experimental attention as a candidate for U(1)
QSLs. Despite this expectation, this material was found to enter a trivial ferromagnetic
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state at the lowest temperatures. However, it was recently discovered that this seemingly
trivial ferromagnetic state displays an unusual behaviour. Powder neutron diffraction
experiments revealed that the magnetic moments approximately point in the same direc-
tion, along the cubic [100] axis, with a small splay angle [103]. Owing to this nature, this
ordered phase is known as the splayed ferromagnetic phase (Appendix A). Moreover, a
mysterious property is observed in their zero-field spin dynamics. As a primitive excita-
tion, a gapped magnon excitation with minimum q = 0 would be expected owing to large
anisotropy of the exchange interactions. Contrary to this naive prediction, an almost
gapless spectrum is observed in Yb2Ti2O7, which is not well-defined in spin wave modes.
The distribution of the spectrum is relatively broad with the strongest intensity at q = 0,
referred to as a ferromagnetic continuum [104, 105, 106]. Of particular interest is the
evolution of the excitation spectrum when a magnetic field is applied. Within the strong
field limit, the obtained spectrum is well explained by spin wave theory and smoothly
transfers to the ferromagnetic continuum as the field is lowered without exhibiting any
phase transition signatures. Below 1 T, magnon excitations merge and the spectrum de-
viates from semiclassical theory. An explanation for the ferromagnetic continuum could
be a gapless fractionalised excitation from U(1) QSLs. However, such an idea fails to ex-
plain the smooth connection between the zero-field state and the trivial high-field state;
hence, this mystery is yet to be resolved.

2.3 Dipolar-octupolar case

The Γ4 ⊕ Γ5 Kramers doublet ground state is the most important case in this thesis.
As previously explained, the active multipoles are the (magnetic) dipole and octupole;
thus, this system is known as a dipolar-octupolar system. In contrast with the other
two cases, this state has not been the subject of much research until recently owing to
difficulties in discovering higher-rank multipoles in the real materials.

2.3.1 Theoretical study

The general nearest-neighbour spin model in this case has a completely different form
than the previous two cases. It is represented as [107, 108]

HDO =
∑
⟨ij⟩

JxS
x
i S

x
j + JyS

y
i S

y
j + JzS

z
i S

z
j + Jxz(S

x
i S

z
j + Sz

i S
x
j ). (2.10)

Notably, the cross term is eliminated by a global pseudospin rotation. Then, the simple
XYZ model is obtained as

HXYZ =
∑
⟨ij⟩

J̃xτxτx + J̃yτyτy + J̃zτzτz. (2.11)

Although it appears to be a simple spin model, there are two distinct QSL possibilities
inherent in this system. First, we consider the case of a large J̃z limit, where J̃z ≫ J̃x, J̃y.
When J̃x = J̃y < 0, a quantum Monte Carlo simulation revealed that a “usual” U(1)
QSL exists for |J̃x|/Jz ≲ 0.1 [109]. Note that this phase is robust against parameter
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fluctuations and exists away from the J̃x = J̃y line. The unique U(1) QSL appears for
the large J̃y case, where J̃y ≫ J̃x, J̃z. Here, the gauge electric field Err′ defined on a link
of the dual diamond lattice is described as τ yi = ηrErr′ , where ηr = 1(−1) when r is on
the A(B) sublattice (cf. Eq. (1.21)). This indicates that the gauge electric field is a pure
octupole moment in this case, whereas in the usual U(1) QSL case it is a dipole moment1.
Owing to this feature, the former is known as an octupolar quantum spin liquid (oQSL)
and the latter is a dipolar quantum spin liquid (dQSL). Although they are distinct QSL
phases, it is extremely difficult to distinguish between them in experiments. For example,
the T 3 contribution is dominant in the specific heat, which stems from gapless photon
excitations in both QSLs.

A section of the phase diagram is obtained by the gMFT calculation [107]. Assuming
the J̃γ term denotes the dominant Ising interaction, the pseudospin operators can be
represented as

τ γi = sγrr′ , τ+i = Φ†
rs

+
rr′Φr′ . (2.12)

Here, the site i is located at the centre of the vector that connects r and r′, and τ+i =
ταi +iτβi , where α and β are the two remaining directions. The XYZ models are rewritten
as

H =
J̃γ
2

∑
r

Q2
r +

(
J̃α + J̃β

2

) ∑
r,r′ ̸=r′′

Φ†
r′Φr′′s−ηr

rr′ s
ηr
rr′′

+

(
J̃α − J̃β

4

) ∑
r,r′ ̸=r′′

(Φ†
rΦ

†
rΦr′Φr′′sηrrr′s

ηr
rr′′ + h.c.),

(2.13)

where Qr = ηr
∑

r′ τ
γ
(r+r′)/2. This Hamiltonian is also invariant under the U(1) gauge

transformations Φr → Φre
−iχr and s±rr′ → s±rr′e±i(χr−χr′ ). A phase diagram is obtained

for the unfrustrated parameter region, that is, (J̃α + J̃β)/2 < 0. Figure 2.5 presents a
section of the phase diagram for the dipolar-octupolar case. Remarkably, the U(1) QSL
phases are quite robust within the studied parameter region. Because QSLs are known
to be more stable in the frustrated parameter region, we expect the observed QSLs to
widely expand into unstudied parameter space. In addition to the QSL phases, we find
the characteristic multipolar ordered state, the antiferro-octupolar (AFO) phase, and
magnetically ordered state, the all-in all-out (AIAO) phase. It is interesting to observe
the multipolar ordered and the spin liquid phases in the same phase diagram, as in the
case of non-Kramers.

Furthermore, we explore the phase diagram of the dipolar-octupolar case under an
external magnetic field. In the usual Kramers or non-Kramers cases, the emergent gauge
electric fields are represented by a dipolar degree of freedom. Thus, an external magnetic
field directly couples to the gauge electric field, and this coupling term results in an
extremely complex spinon model. However, when J̃y ≫ J̃x, J̃z is realized in the dipolar-
octupolar case, we can conduct the gMFT analysis with a small revision. In the presence
of a magnetic field, the Zeeman term is appended to the XYZ model Eq. (2.11). Here, it is
described as−

∑
i h·ẑiτ zi because only the z component of the pseudospin carries a dipolar

1Strictly, the octupolar moment is mixed in with the τz due to the global pseudospin rotation, so it
is safe to say that the gauge electric field transforms under the Γ+

4 representation of the Oh point group.
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Figure 2.5. Left: Studied parameter region in the dipolar-octupolar model.
The shaded region represents the unfrustrated parameter sets and can be anal-
ysed by a usual gMFT. Right: Phase diagram of the XYZ model originating
from the dipolar-octupolar doublet. This is on the J̃z = 1 plane; thus, quan-
tum spin ice (QSI) represents the dQSL phase. Note that we consider the
terms quantum spin ice and QSLs in the pyrochlore lattice to be the same. In
addition, two ordered phases, the all-in all-out (AIAO) phase and antiferro-
octupolar (AFO) phase, are found. The blue solid (dashed) line describes the
phase boundary of the 2nd (1st) order transition. Note that the phase diagram
for the other plane is obtained by simply relabelling the parameters. Reprinted
with permission from Copyright (2021) by the American Physical Society [107].

moment and can directly couple to the magnetic field. Using the spinon representation
and setting J̃x = J̃z, the full Hamiltonian becomes

H =
J̃y
2

∑
r

Q2
r + J̃x

∑
r,r′ ̸=r′′

Φ†
r′Φr′′s−ηr

rr′ s
ηr
rr′′ −

1

2

∑
⟨rr′⟩

h · ẑi(Φ†
rΦr′s+rr′ + h.c.). (2.14)

The gMFT phase diagram for various magnetic fields is depicted in Fig. 2.6. As shown,
the U(1) QSL is stable along all magnetic field directions. The gauge electric field τ y,
which constitutes the Ising term, is not coupled to the magnetic field because it has an
octupolar degree of freedom and is only affected by the external magnetic field through
spinons. Reflecting this fact, the QSL is considered to be stable up to relatively large
magnetic field regions. In particular, for the [110] magnetic field and small J±, the
QSL is unbroken even when subjected to a fairly large magnetic field. This is due to
the relationship between the [110] magnetic field and localised pseudospins; the related
phenomena will be explained in detail in Chapter 4.

Moreover, it should be emphasised that extensive theoretical research has been con-
ducted after our publication on dipolar-octupolar systems, which is explained in detail
in the next chapter [110, 111, 112].
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Figure 2.6. Phase diagrams of the XXZ model originating from the dipolar-
octupolar doublet under magnetic fields along (a): [111], (b): [001], and (c):
[110]. In our notation, J± = −J̃x. Insets are schematics of the resulting
orders of the large field limit, where each order smoothly connects to the other.
Reprinted with permission from Copyright (2021) by the American Physical
Society [108].

2.3.2 Experimental study

Typical examples of dipolar-octupolar systems are Nd- and Ce-based pyrochlore ma-
terials. In the early stages of research, the Nd-based pyrochlore material Nd2Ir2O7 was
the target material [113, 114]. However, the octupolar degree of freedom in the local
ground state doublet of the Nd ion had not yet been noticed. The low temperature phase
of this material is known to be the all-in all-out (AIAO) phase; related materials, such as
Nd2Sn2O7, Nd2Hf2O7, and Nd2Zr2O7, also exhibit the AIAO phase [115, 116, 117, 118].
The observed result was consistent with the theoretical prediction; the non-Ising interac-
tion was relatively large. However, whether the AIAO structure is constructed by dipoles
or octupoles had not yet been revealed.

Several years later, a Ce-based pyrochlore material Ce2Zr2O7 began attracting atten-
tion as a candidate for U(1) QSLs with a dipolar-octupolar nature [119, 120]. Addition-
ally, Ce2Sn2O7 was examined and reported to exhibit no magnetic order down to T = 20
mK; however, at that time, the dipolar-octupolar nature of its CEF ground state had not
been closely considered [121]. Returning to Ce2Zr2O7, to confirm its dipolar-octupolar
nature, a high-energy inelastic neutron scattering measurement was conducted, which
revealed the single-ion properties of Ce ions. In Ref. [120], the CEF ground states were
found to be well-separated from other excited states and their wave function was approx-
imated as a pure mJ = ±3/2 state, which hosts both dipolar and octupolar moments.
The inverse magnetic susceptibility of a Ce2Zr2O7 powder sample was also measured and
the neutron scattering intensity for both the powder and single crystal was obtained.
Intriguingly, none of the results indicated a magnetically ordered state down to T = 0.06
K. In particular, no Bragg scattering nor enhancement of the Bragg peak associated with
any q = 0 structure was observed, which includes the AIAO phase observed in the other
dipolar-octupolar pyrochlore materials explained above. To elucidate the features of the
disordered state in detail, low-energy inelastic neutron scattering measurement is useful.
Figure 2.7 presents the obtained results of Ref. [120] and a theoretical prediction based on
the Hamiltonian of the usual Kramers case2. A qualitative resemblance can be observed

2The U(1) QSLs in this model may be equivalent to the dQSL of the dipolar-octupolar case; however,
this has not yet been confirmed. In addition, the theoretical prediction for the oQSL is not yet obtained.
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between them, which suggests that the disordered state of Ce2Zr2O7 is identified as a
U(1) QSL. Note that the other group also concludes that Ce2Zr2O7 displays experimen-
tal signatures of a three-dimensional QSL from thermodynamic, muon spin relaxation,
and neutron scattering experiments on the single crystal [119].

Now, let us estimate the coupling constants J̃x, J̃y, and J̃z of the XYZ model (Eq.
(2.11)) for the Ce2Zr2O7 case. One way to evaluate them is performing a fourth-order
perturbation analysis on the ground state doublet |Jz = ±3/2⟩, but we leave it as a
future problem due to its extreme complexity. We naively anticipate a strong Ising
anisotropy to exist (albeit we cannot identify the Ising direction) because the ground
state is entirely generated from mJ = ±3/2 states and the potential superexchange
pathways are restricted. Rather than performing a perturbation analysis, we provide
a recent parameter estimation derived by fitting the experimental magnetization and
specific heat to quantum finite temperature Lanczos method calculations [112]. In Ref.
[112], they have estimated the parameters under various assumptions and found that
Ising anisotropy exists in the octupole component τy in all situations. They have, for
example, derived (J̃x, J̃y, J̃z) = (0.51, 1.01, 0.17) as one parameter set, where J̃µ values
are reported in Kelvin units. In Chapter 3, we show that these parameter set derived
from the experiment on Ce2Zr2O7 corresponds to a unique quantum spin liquid ground
state.

(a) (b)

Figure 2.7. (a): Measured low-energy inelastic neutron scattering from an
annealed single crystal of Ce2Zr2O7. (b): Theoretical calculation for inelastic
neutron scattering signals of the U(1) QSL phase. The analysis is based on the
spin Hamiltonian of the usual Kramers case at finite temperature. Reprinted
with permission from Copyright (2021) by the American Physical Society [120].

2.4 Short summary

In this chapter, we have reviewed various type of QSLs which arise in rare-earth py-
rochlore materials and some of them are distinguished based on the type of emergent
gauge fields. Differences in the way the emergent gauge field couples to the external
magnetic field can be observed using methods such as inelastic neutron scattering experi-
ments. For example, in the oQSL case, the magnetic field only couples to spinons; hence,
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Table 2.1: List of the difference of expected inelastic neutron scattering
signals for each U(1) QSL.

Type Inelastic neutron scattering signals

non-Kramers doublet only gapless photon excitation
usual Kramers doublet both gapless photon and gapped spinon excitations
dQSL in dipolar-octupolar doublet both gapless photon and gapped spinon excitations
oQSL in dipolar-octupolar doublet only gapped spinon excitations

only the gapped excitation of the spinons will be observed, and no gapless photons will be
observed. Table 2.1 summarises the differences between the inelastic neutron scattering
signals of every U(1) QSL reviewed throughout this chapter.

Although at least two experiments support the existence of the QSL phase in Ce2Zr2O7,
it is not clear which type of spin liquid has been realised. In the previous section, inelastic
neutron scattering was identified as a tool for distinguishing the dQSL and oQSL. How-
ever, in reality, two experiments could not determine the type of QSL despite conducted
inelastic neutron scattering measurements and discovering signatures of quantum spin
ices. This was due to the lack of detailed research on inelastic neutron scattering based
on the XYZ effective pseudospin model. To overcome this difficulty, we analyse the orig-
inal XYZ model to elucidate the explicit behaviours of neutron scattering. In addition,
we propose a novel technique to distinguish these QSLs by utilising multipolar-lattice
couplings. In the next chapter, this theoretical proposal is explained in detail and further
potential QSL phases are identified.
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Chapter 3

Multipolar quantum spin liquid

As introduced in Section 2.3, the dipolar-octupolar system in rare-earth pyrochlore
materials can host two distinct QSLs, namely the dipolar and octupolar QSLs. However,
theoretical research has been limited within the unfrustrated parameter region, and other
potential QSLs have not been investigated. Moreover, inelastic neutron scattering exper-
iments have been proposed to probe the difference between the dipolar QSL (dQSL) and
octupolar QSL (oQSL); however, the difference revealed in these experiments has not
been specified.

In Chapter 3, we provide a classical and quantum analysis on the dipolar-octupolar
system, including the parameter region, which has not previously been explored. Re-
markably, we find a total of four distinct QSLs associated with the difference in the
flux and multipole degrees. From our theoretical analysis of neutron scattering signals,
an octupolar quantum spin liquid phase with a unique flux configuration is proposed in
Ce2Zr2O7. However, we are sceptical that inelastic neutron scattering experiments alone
can distinguish between these four types of QSLs within the scope of this study. Instead,
a novel probe for distinguishing QSLs known as magnetostriction is proposed. The mag-
netostriction experiment measures the lattice distortion under an external magnetic field,
and the multipole-strain couplings play an important role in this distortion. The insen-
sitivity of the octupolar moment to the external magnetic field results in a significant
difference in the magnetostriction response of the dQSL and oQSL phases. These find-
ings suggest that the lattice degree of freedom can be useful to detect local multipoles,
including magnetic multipoles that do not interact directly with strain. In addition, these
results provide a new method for probing multipoles with a rank greater than two, which
is in high demand.

3.1 Model

We begin with the most general nearest-neighbour pseudospin-1/2 model for the
dipolar-octupolar doublet in the pyrochlore lattice:

HDO =
∑
⟨ij⟩

JxS
x
i S

x
j + JyS

y
i S

y
j + JzS

z
i S

z
j + Jxz(S

x
i S

z
j + Sz

i S
x
j ). (3.1)
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Table 3.1: Local sublattice basis vectors

α 0 1 2 3

ẑα
1√
3
(1, 1, 1) 1√

3
(1,−1,−1) 1√

3
(−1, 1,−1) 1√

3
(−1,−1, 1)

x̂α
1√
6
(−2, 1, 1) 1√

6
(−2,−1,−1) 1√

6
(2, 1,−1) 1√

6
(2,−1, 1)

ŷα
1√
2
(0,−1, 1) 1√

2
(0, 1,−1) 1√

2
(0,−1,−1) 1√

2
(0, 1, 1)

The summation is taken over the nearest-neighbour sites, and x, y, and z describe the
local coordinate frame, which will be explained later. As shown in Section 1.2.3, the x and
z components of the pseudospin belong to the same irreps., Γ2u, although the multipole
ranks are different (the x component is the octupole and z is the dipole). This enables
the coupling between them, which corresponds to the last term of Eq. (3.1). We can
eliminate the last term by introducing the transformation(

τx
τz

)
=

(
cos θ − sin θ
sin θ cos θ

)(
Sx

Sz

)
, τy = Sy, (3.2)

where 2θ = arctan
(

2Jxz
Jz−Jx

)
. The resulting Hamiltonian is represented by the XYZ model

HXYZ =
∑
⟨ij⟩

J̃xτ
x
i τ

x
j + J̃yτ

y
i τ

y
j + J̃zτ

z
i τ

z
j , (3.3)

where J̃x = Jx cos
2 θ + Jz sin

2 θ − 2Jxz sin θ cos θ, J̃y = Jy, and J̃z = Jx sin
2 θ + Jz cos

2 θ +
2Jxz sin θ cos θ. Note that τx(τ z) is no longer the pure octupole (dipole) but a linear
combination of the dipole and octupole1.

Here, we introduce the local coordinate frame. As shown in the Fig. 3.1, the py-
rochlore lattice has an underlying FCC Bravais lattice with four sublattices per unit cell,
where the centre of each tetrahedron constitutes the Bravais lattice, and the indices 0,1,2,
and 3 denote the sublattice number. The local coordinate frame differs depending on the
sublattice index, and the blue vectors in the figure indicates the local z axis for each
sublattice. In the following explanation, we define the green (light-blue) tetrahedron as
the “up” (“down”) tetrahedron and its centre belongs to sublattice A (B) of the dual
diamond lattice. The local sublattice basis vectors are summarised in Table 3.1.

Under an external magnetic field, only the dipolar moment can be linearly coupled
via usual Zeeman coupling. In this case, the XYZ model under the field is written as

HXYZh =
∑
⟨ij⟩
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x
i τ
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y
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y
j + J̃zτ

z
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y
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y
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z
i τ

z
j −

∑
i

(h · ẑi)(g̃xτxi + g̃zτ
z
i ),

(3.4)

1In the Ce compound case, Sx(Sz) is a pure octupole (dipole) and the transformation combines the
two. On the other hand, in the Nd compound case, Sx already includes the dipolar components without
the transformation owing to the difference in the wave function of the ground state doublets.
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0

1
2

3

Figure 3.1. Rare-earth sites in a unit cell of the pyrochlore lattice. The centre
of each tetrahedron constitute the FCC Bravais lattice, and indices 0,1,2, and
3 represent the corresponding sublattices. The local z axes are defined for each
sublattice and depicted as blue vectors. We define the green (light-blue) tetra-
hedron as the “up” (“down”) tetrahedron, and its centre belongs to sublattice
A (B) of the dual diamond lattice.

where g̃x = −gz sin θ, and g̃z = gz cos θ. In addition, a symmetry analysis, which will
be discussed later in detail, revealed a higher-order coupling between the pure octuple
τ y and external fields. Including this higher-order coupling term, the full Hamiltonian
under a magnetic field is expressed as

HXYZh =
∑
⟨ij⟩

J̃xτ
x
i τ

x
j + J̃yτ

y
i τ

y
j + J̃zτ

z
i τ

z
j −
∑
i

(h · ẑi)(g̃xτxi + g̃zτ zi )+gy
[
(hyi )

3 − 3(hxi )
2hyi
]
τ yi .

(3.5)
Here, hµi is the magnetic field in the local coordinate frame. Throughout this chapter, we
will mainly analyse Eqs. (3.3) and (3.5).

3.2 Classical analysis

Before moving on to the quantum analysis, a classical analysis shall be provided. In
this section, we employ representation theory analysis to derive the exact classical phase
diagram for the dipolar-octupolar case. This analysis enables us to explore all poten-
tial parameter regions, and the results provide a solid starting point for the forthcoming
quantum analysis. Furthermore, the spin ice states, which are the phase we are inter-
ested in, are discovered to be stable across a wide range of parameter region and to be
categorised into two types in terms of multipoles.
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In the non-Kramers or usual Kramers case, the classical ground state has been proven
to always be a q = 0 four-sublattice order, with the order parameters classified by a
representation theory [122]. In this section, we can apply this method and derive an
exact classical phase diagram for the dipolar-octupolar system.

3.2.1 Existence of a four-sublattice order

In the absence of an external field, the Hamiltonian Eq. (3.3) can be separated into
the sum of tetrahedra, HXYZ =

∑
mHm. Here, the index m specifies the tetrahedron, and

Hm is defined as

Hm =
∑
i,j∈m

τiJ τj =
∑
i,j∈m

τi

J̃x J̃y
J̃z

 τj. (3.6)

This decomposition is possible because the interactions within the up and down tetra-
hedra are related by the inversion of a single shared site. This also indicates that the
interaction forms in a tetrahedron are the same regardless of the sublattice index, up
and down. Assuming that τ is the classical spin, we can construct the ground state of
the system by repeating the spin configuration, which minimises the energy of Hm for all
tetrahedra. Because the Hamiltonians of each tetrahedron is exactly the same and every
spin is shared by two tetrahedra, the state that minimises the energy of a tetrahedron
simultaneously minimises the energy of all other tetrahedra; this is the classical ground
state. Therefore, the classical ground state of the dipolar-octupolar system seems to be
described by q = 0 four-sublattice orders.

However, depending on the degeneracy type of the spin configuration for a single
tetrahedron, other phases are allowed. Three cases can be considered for this problem.
First, if all spins on a single tetrahedron point in a different direction in each of the
classically degenerate ground states, the q = 0 four-sublattice ordered state is unique
and the finite q state cannot be a ground state. Second, within a set of classically
degenerate ground states for a single tetrahedron, there are two or more states in which a
spin on a certain site points in the same direction, the four-sublattice state is not unique,
and the finite q state is possible. A good example of this case is kagome ice. Assume that
the sublattice 0 points along the local z axis and the other sublattices construct a two-in
one-out configuration. In this case, we can separate the pyrochlore lattice into triangular
layers composed of sublattice 0 and kagome layers composed of sublattices 1,2, and 3.
This is also considered when the kagome ice planes accumulate along the q ∥ [111] axis,
which is a ground state with finite q. In the final case, two or more states exist with two
spins on a certain site pointing in the same direction. The two-in two-out configuration is
associated with this case, and this is not considered the q = 0 ordered state. In addition,
it presents a macroscopic number of degeneracies.

3.2.2 Representation theory

At this stage, we find that the ground state of the XYZ model in the dipolar-octupolar
case is obtained by minimising the energy of a single tetrahedron. Here, we adopt a

54



Doctoral Dissertation

symmetry-based analysis and derive an exact classical phase diagram [79]. First, the
XYZ model of a single tetrahedron can be expressed as a 12×12 matrix,

Htet
XYZ =

1

2
T t


0 J J J
J 0 J J
J J 0 J
J J J 0

 T , (3.7)

where T t = (τ0, τ1, τ2, τ3), τα = (τxα , τ
y
α, τ

z
α), and α is the sublattice index. We then

explore the consequences of applying the representation theory for the point group sym-
metry operators to Eq. (3.7). This analysis transforms the Hamiltonian into a block
diagonalised form, and the basis function set provides the order parameters that charac-
terise the q = 0 ordered states and the classical spin ice phase.

The point group symmetry of the pyrochlore lattice is Td
2. Our first aim is to obtain a

character table for the Td point group using T as a basis for the representation matrices.
The point group Td has 24 elements and 5 classes: 8 × Ĉ3, 3 × Ĉ2, 6 × Ŝ4, 6 × σ̂d,
and Ê. Thus, to obtain the character table, one element is chosen from each class, and
representation matrices corresponding to them are derived. Furthermore, the generator of
the Td point group is any C3 rotation and any S4 improper rotation, and other symmetry
operators are obtained through a combination of these; hence, it is sufficient to examine
the characters of these symmetry operators.

C−
31—2π/3 rotation about the [111] axis

Under this operator, the local axes transform as follows:
ẑ0,1,2,3 → ẑ0,3,1,2

x̂0,1,2,3 → −1
2
x̂0,3,1,2 −

√
3
2
ŷ0,3,1,2

ŷ0,1,2,3 →
√
3
2
x̂0,3,1,2 − 1

2
ŷ0,3,1,2.

However, pseudospins τ do not transform in this way because of their multipolar nature.
Since each component of τ is represented using the total angular momentum as τx =
J3
x − JxJyJy, τ y = J3

y − JyJxJx, and τ z = Jz, they transform in the following ways:

τz → τz

τx →
(
−
1

2
Jx −

√
3

2
Jy

)3

−
(
−
1

2
Jx −

√
3

2
Jy

)(√
3

2
Jx −

1

2
Jy

)(√
3

2
Jx −

1

2
Jy

)

−
(√

3

2
Jx −

1

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)(√
3

2
Jx −

1

2
Jy

)
−
(√

3

2
Jx −

1

2
Jy

)(√
3

2
Jx −

1

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)
= J3

x − JxJyJy = τx

τy →
(√

3

2
Jx −

1

2
Jy

)3

−
(√

3

2
Jx −

1

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)

−
(
−
1

2
Jx −

√
3

2
Jy

)(√
3

2
Jx −

1

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)
−
(
−
1

2
Jx −

√
3

2
Jy

)(
−
1

2
Jx −

√
3

2
Jy

)(√
3

2
Jx −

1

2
Jy

)
= J3

y − JyJxJx = τy

2To be exact, the inversion operator I is also a symmetry operator; thus, Oh = Td × I is the correct
point group. However, the inversion operator is often dismissed because it plays a benign role in the spin
basis.
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where the sublattice index is omitted for simplicity. Therefore, the representation matrix
for the C3 rotation operator in the basis T is

C−
31 =


I

I
I
I

 , I =

1
1
1

 . (3.8)

From this expression, we find the character of the class Ĉ3 as χ(Ĉ3) = 3.

S4z—π/4 improper rotation about the z axis

In the global coordinate frame, this symmetry operator is represented as

S4z =

0 −1 0
1 0 0
0 0 1

 · I,
where I is an inversion operator, which plays a benign role for spin operators. Considering
this and applying the transformation of the coordinate, the local spin operators transform
as 

Jz
0,1,2,3 → Jz

2,0,3,1

Jx
0,1,2,3 → 1

2
Ĵx
2,0,3,1 −

√
3
2
Ĵy
2,0,3,1

Jy
0,1,2,3 → −

√
3
2
Ĵx
2,0,3,1 − 1

2
Ĵy
2,0,3,1.

Thus, the local pseudospins transform as

τz → −τz

τx →
(
1

2
Jx −

√
3

2
Jy

)3

−
(
1

2
Jx −

√
3

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)

−
(
−
√
3

2
Jx −

1

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)
−
(
−
√
3

2
Jx −

1

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)
= −J3

x + JxJyJy = −τx

τy →
(
−
√
3

2
Jx −

1

2
Jy

)3

−
(
−
√
3

2
Jx −

1

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)

−
(
1

2
Jx −

√
3

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)
−
(
1

2
Jx −

√
3

2
Jy

)(
1

2
Jx −

√
3

2
Jy

)(
−
√
3

2
Jx −

1

2
Jy

)
= J3

y − JyJxJx = τy

where the sublattice index is once again omitted. Therefore, the representation matrix
for the C3 rotation operator in the basis T is

S4z =


A

A
A

A

 , A =

−1 1
−1

 . (3.9)

From this expression, we find the character of the class Ŝ4 as χ(Ŝ4) = 0.
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Other operators

As mentioned above, other symmetry operators are obtained through a combination
of C−

31 and S4z. For example, a C2 rotation operator is obtained using C2z = S4zS4z. By
explicitly calculating the trace of the representation matrix of this operator, the character
of the class Ĉ2 is found to be χ(Ĉ2) = 0. The result of the character table is as follows:

Td Ê 8Ĉ3 3Ĉ2 6Ŝ4 6σ̂d
Γ 12 3 0 0 −2

Using the method explained in Section 1.2.3, we can reduce the representation Γ into
a direct sum of irreps

Γ = Γ1 ⊕ 2Γ2 ⊕ 2Γ4 ⊕ Γ5. (3.10)

This means that the basis T is transformed into the basis functions of the irreps obtained
above through a unitary transformation.

The next step involves identifying the linear combination of τµα that constitutes the
basis functions of each irreps Γn. According to group theory, the i-th basis of d dimen-
sional irreps Γn is obtained by operating the projection operator P on an arbitrary vector,
which is defined as

P i,(j) =
d

g

∑
G

⟨Γi
n|G|Γj

n⟩∗G, (3.11)

where g and G are the order and elements of the point group, respectively, and |Γi
n⟩

is the i-th basis of the irreps, which is given in a usual character table. Note that
j = 1, 2, . . . , d can be chosen arbitrarily. The obtained basis functions for every Γn and
corresponding orders are summarised in Table 3.2. Using these basis functions, the full
classical Hamiltonian is rewritten in the block-diagonalised form:

HXYZ =
1

2

∑
n

[
3J̃yM

2
Γ1

+ 3J̃xM
2
Γ2a

+ 3J̃zM
2
Γ2b
− J̃xM 2

Γ4a
− J̃zM 2

Γ4b
− J̃yM 2

Γ5

]
, (3.12)

with the constraint M2
Γ1

+ M2
Γ2a

+ M2
Γ2b

+ M 2
Γ4a

+ M 2
Γ4b

+ M2
Γ5

= 1, which originates
from a property of classical spins |τ | = 1/2. The ground state is obtained by letting
|Mk| = 1 and the others equate to zero, where the coupling constant associated with
the order parameter Mk is the smallest. Based on this analysis, we obtain a classical
phase diagram for the dipolar-octupolar case, as shown in Fig. 3.2. In total, six distinct
phases appear whose order parameters are related to the basis functions shown in Table
3.2. Although the d/o-AIAO phases are the q = 0 ordered state, the d/o-CSI phases
are not. In these phases, six-fold degeneracy remains within a tetrahedron and the third
rule provided in the previous section is satisfied. As a result, a macroscopic number of
degeneracies remain in the full system; this is one of the important properties of classical
spin ices. Remarkably, the classical spin ice states, which evolve into quantum spin ices3

3Here, we do not mention symmetry of the QSL because it remains under discussion. Around the
origin of each phase diagram, the existence of a U(1) QSL phase is confirmed via experiments and
theories. However, the symmetry of the QSL far from the origin is not clear, although quantum spin ice
signatures are certainly observed. For example, at the Heisenberg limit, it is theoretically proposed that
the U(1) nature is absent and the probability of the Z2 spin liquid is suggested [123, 124].
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in the quantum regime appear more stable in the unexplored frustrated parameter region.
Motivated by these findings, a quantum analysis is conducted, including the area in which
the interactions are frustrated.

Table 3.2: Basis functions for the magnetic orderings of the dipolar-
octupolar case. Abbreviations: o-AIAO = octupolar all-in / all-out, d-
AIAO = dipolar all-in / all-out, d-CSI = dipolar classical spin ice, and
o-CSI = octupolar classical spin ice. Although τx is mainly composed of
the octupolar moment, we assume that the related orders MΓ2a and MΓ4a

belong to the dipolar phase because they transform exactly the same as
the dipole τ z. The orderings are arranged into irreps of Td, that is, the
pyrochlore point group.

Irreps Basis set Orders

Γ1 MΓ1 =
1

2
(τ y0 + τ y1 + τ y2 + τ y3 ) o-AIAO

Γ2

MΓ2a =
1

2
(τx0 + τx1 + τx2 + τx3 )

MΓ2b
=

1

2
(τ z0 + τ z1 + τ z2 + τ z3 )

d-AIAO

Γ4

MΓ4a =
1

2

τx0 + τx1 − τx2 − τx3
τx0 − τx1 + τx2 − τx3
τx0 − τx1 − τx2 + τx3


MΓ4b

=
1

2

τ z0 + τ z1 − τ z2 − τ z3
τ z0 − τ z1 + τ z2 − τ z3
τ z0 − τ z1 − τ z2 + τ z3


d-CSI

Γ5 MΓ5 =
1

2

τ y0 + τ y1 − τ
y
2 − τ

y
3

τ y0 − τ
y
1 + τ y2 − τ

y
3

τ y0 − τ
y
1 − τ

y
2 + τ y3

 o-CSI
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d-CSI
(Γ4a)

d-AIAO
(Γ2b)

o-AIAO

d-AIAO
(Γ2a)

o-CSI

d-AIAO
(Γ2b)

d-CSI
(Γ4b)

o-AIAO

d-AIAO
(Γ2a)

Figure 3.2. Classical phase diagram of the dipolar-octupolar system. (Γα)
describes the irreps of the order parameters.

3.3 Quantum analysis

Reliable methods of quantum analysis on the dipolar-octupolar system are extremely
limited. For example, the aforementioned gMFT method is not easily extended to the
frustrated parameter region, and quantum Monte Carlo simulations are not applicable
to the frustrated parameter region because of a notorious sign problem. Owing to the
difficulty of these methods, an exact diagonalisation (ED) approach was used for minority
site clusters. In this section, we confirm that classical spin ices in the unfrustrated and
frustrated parameter regions are distinguished in the quantum spin model and find that
there are four distinct quantum spin ice phases in this model. In the following calculations,
a 32-site cluster was used (Fig. 3.3), which preserves the entire crystal symmetry, and a
16-site cluster is also used, which corresponds to pyrochlore unit cells.

3.3.1 Quantum phase diagram

The quantum phase diagram on the J̃y = 1.0 plane obtained from an ED calculation
is provided in Fig. 3.4(a). The phase boundaries are denoted by points where the
∂2E/∂J̃x and ∂2E/∂J̃z become singular. Clear singularities appear at the boundary of
the frustrated and unfrustrated parameter regions. In order to investigate the situation
in detail, we illustrate in Figs. 3.4(c) and (d) the parameter dependences of the energy
per site (ϵ = E/N) and ∂2ϵ/∂J̃2

µ along the J̃z = 0 and J̃x = 0 lines, respectively. Sharp

peak structures in ∂2ϵ/∂J̃2
µ at J̃µ ∼ ±0.002 are discovered, indicating the presence of

phase transitions that were not revealed in the previous classical analysis. This phase
transition is explained below. Near the Ising limit (J̃x, J̃z ≪ J̃y), the low energy theory
can be described by an emergent lattice U(1) gauge theory defined on the dual diamond
lattice

Heff = UE2 +K cos(∇× A), (3.13)

where E and A are the emergent electric and gauge fields, and are related to the Ising
and transverse components of the pseudospin 1/2, respectively. Here, K < 0 (K > 0)
for ferromagnetic (antiferromagnetic) transverse interactions and U is taken to be a large
constant. As we have mentioned before, these regimes are often called unfrustrated
(K < 0) and frustrated (K > 0) regimes, respectively. The argument ∇ × A in (3.13)
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a
b

c

Figure 3.3. Schematic illustration of a 32-site symmetric cluster of the py-
rochlore lattice. The periodic conditions are imposed along the [1̄10], [1̄01],
and [011] axes.

represents the emergent gauge flux penetrating a hexagonal loop in the dual diamond
lattice, and K < 0 (K > 0) would favour 0 (π) flux configurations in the corresponding
ground states. Therefore, the QSL in the unfrustrated (frustrated) region is called the 0-
flux (π-flux) QSL. The gauge flux degree of freedom stems from quantum spins; thus, this
phase transition was invisible within the classical analysis. As seen in Figs. 3.4(c) and (d),
the classical spin ice (CSI) state (which should be found in the Ising limit) is stable within
a quite small window (−0.002 ≲ J̃µ ≲ 0.002). According to the preceding description,
the phase transition at J̃µ ≃ −0.002 (J̃µ ≃ 0.002) corresponds to the transition to the
0-flux (π-flux) QSL phase. These QSLs are discriminated experimentally, as we will
demonstrate later. We should highlight that the names 0-flux and π-flux QSLs are based
on the preceding perturbative analysis, and we do not explicitly compute the amplitude
of the gauge field on the dual diamond lattice because it is not capturable in the ED
calculation. The energy gain ∆ can be defined as the amount of energy gained as a result
of optimal flux configurations.

In addition, we find the π-flux oQSL phase expands across a wide range in the pa-
rameter region. This result is consistent with the rough estimation of gMFT for the
non-Kramers case [98]. In the non-Kramers case, a gMFT calculation reveals that the
critical point is J±/Jz ∼ 0.19 for the unfrustrated case and J±/Jz ∼ 4.13 for the frustrated
case. Moreover, from our ED calculation, the stability of the U(1) QSL in the frustrated
parameter region is confirmed; remarkably, this can also be true far from the perturbative
regime. Another possibility is that the quantum spin ice originating from the classical
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spin ice scheme (U(1) QSL) smoothly connects another QSL on the pyrochlore lattice,
which is observed in the Heisenberg model. The existence of the U(1) nature far from
the origin is still under discussion; hence, it is still unclear whether quantum spin ices
in the non-perturbative and frustrated parameter regions are identified as U(1) QSLs.
Thus, we do not explicitly mention the symmetry of QSLs here. Note that the quantum
spin ice signatures are observed even in the non-perturbative region. Furthermore, the
parameter region, where the 0-flux oQSL phase exists, which is also found in the gMFT
calculation, is much smaller than that of gMFT. This indicates that 0-flux oQSL phase is
not robust against fluctuations. However, the present results still indicate that the spin
liquid state exists stably in a wider range than the perturbative region.

Because phase diagrams on other planes are obtained by simply relabelling the coordi-
nates, 0- and π-flux dQSLs can also be found. Therefore, the dipolar-octupolar system has
potential to exhibit four distinct QSLs in total. Although Ce-based compounds present
numerous signatures indicating the realisation of the QSL phase, the type of QSL to
which it belongs is yet unknown. Furthermore, previous theoretical research has focussed
only on the difference between dipolar and octupolar QSLs and did not pay attention
to the differences between flux configurations. Hence, it is important to discover clear
differences between these four QSLs.
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(a)

: 0 flux : π flux

0-flux phase π-flux phase

(b)

(c)

Classical Classical

Quantum Quantum

(d)

π-o-QSL

0-o-QSL

d-AIAO
(Γ2b)

d-AIAO
(Γ2a)

CSI

d-AIAO
(Γ2a)

0-o-QSL

π-o-QSL

CSI

d-AIAO
(Γ2b)

0-o-QSL

CSI

π-o-QSL

Figure 3.4. (a): Quantum phase diagram for the dipolar-octupolar system.
The phase boundaries are determined by the singular points of the second
derivative of the ground state energy in the 16-site cluster ED calculation.
The black-dashed line represents the boundary between the frustrated and un-
frustrated parameter regions, and the red line is the phase boundary obtained
in the gMFT calculation [107]. The red star indicates the parameter set that is
considered to be realised in Ce2Zr2O7 (see Section 2.3.2). Note that the phase
diagrams for other planes are obtained by relabelling the coupling constant and
considering the order parameters. (b): The schematics of the 0-flux and π-flux
configurations. The lattice represents the dual diamond lattice, and the thick
red lines carry the emergent lattice gauge field Arr′ = π. (∇ × A)7 = 0 (π)
mod 2π is satisfied for all hexagons in the 0 (π)-flux phase. The energy per
site ϵ = E/N and the second derivative ∂2ϵ/∂J̃2

µ along (c): the J̃z = 0 and

(d): J̃x = 0 line. The black-dashed, red-solid, and blue-solid lines indicate the
classical energy, the quantum energy, and the second derivative, respectively.
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3.3.2 Static properties of each QSL and other MPOs

Now the quantum phase diagram for the dipolar-octupolar system has been revealed,
we must elucidate the physical properties of each phase. First, we attempt to discover
several differences that characterise the distinct flux configurations. As shown in Fig.
3.4, a gauge field with Arr′ = π appears on some bond of the diamond lattice only in the
π-flux phase. Considering the spins are located at the centre of the bond, we expect spins
on the bond with Arr′ = π and Arr′ = 0 to be different. Because there are a macroscopic
number of gauge field configurations that satisfy (∇ × A)7 = π mod 2π, it will not be
possible to compare a single spin and discover an intriguing signal. However, it will be
possible for the finite gauge fields to provide the static spin correlations with a certain
effect. Motivated by this prediction, we calculate the diagonal pseudospin correlation:

S̃αα =
1

N

∑
i,j

eiq·Ri−Rj⟨Sα
i S

α
j ⟩, (3.14)

where α is the local coordinate frame. This quantity is explored using two methods: a
classical Monte Carlo calculation on 4 × L × L × L (L = 8) sites and an exact diago-
nalisation (ED) on the 32-site cluster with full point group symmetry. The Monte Carlo
simulation was performed by my collaborator Emily Z. Zhang.

Figure 3.5 displays the local diagonal pseudospin correlation of the octupolar spin ices.
The first, second, third, and fourth rows correspond to the result of the ED calculation for
the π-flux oQSL (π-oQSL), classical Monte Carlo calculation for the π-oQSL, ED calcula-
tion for the 0-flux oQSL (0-oQSL), and classical Monte Carlo calculation for the 0-oQSL,
respectively. The following parameter sets were employed: (J̃x, J̃y, J̃z) = (0.5, 1.0, 0.25)
for the π-oQSL phase, and (J̃x, J̃y, J̃z) = (−0.1, 1.0,−0.1) for the 0-oQSL phase. The
white hexagons in each plot represent the Brillouin zone. From the classical Monte Carlo
results, we can find sharp pinch point structures in the q-map of S̃yy for both flux pat-
terns, which characterises the spin ice states, as seen in Figs. 3.5(e) and (k). We expect
gapless photon excitation to emerge from these q locations in its quantum counterpart.
No significant difference is observed between the pinch point structures of the 0-flux and
π-flux phases. In contrast, the results of S̃xx and S̃zz (Figs. 3.5(d), (f), (j), and (l))
exhibit a clear difference, which yields a distinct neutron scattering signature, as will
be explained later. In Figs. 3.5(d) and (f), the π-oQSL phase has a weak intensity
at the Γ0 point (q = (0, 0, 0)) and exhibits peaks at the Γ1 (q = (0, 0, 4π)) and Γ2

(q = (±4π,±4π, 0)) points; their contrast is prominent in S̃xx. Conversely, as shown in
Figs. 3.5(j) and (l), the 0-oQSL phase has a peak at the Γ0 point, and the intensity at the
Γ1 and Γ2 points is relatively weak. Considering the emergent gauge fields are related to
τ
+/−
i , it is reasonable to observe that a difference in flux configuration yields a difference
in the diagonal pseudospin correlations whose components are not related to the spin
ice configuration. Figures 3.5 (a–c) and (g–i) show the quantum results, which support
the classical Monte Carlo results, although the pinch point structures are not clear due
to the quantum fluctuations and the size effect. However, the enhanced signals are still
observed around the corresponding momentum positions. Whether these behaviours are
due to finite size effects or quantum effects obscuring the pinch point must be clarified
experimentally and in future theories.
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Figure 3.5. Diagonal pseudospin correlation for octupolar spin ice phases
obtained from the classical Monte Carlo calculation and the exact diago-
nalisation on the 32-site cluster. The following parameter sets were em-
ployed: (J̃x, J̃y, J̃z) = (0.5, 1.0, 0.25) for the π-oQSL phase and (J̃x, J̃y, J̃z) =
(−0.1, 1.0,−0.1) for the 0-oQSL phase. (a–c): the exact diagonalisation (ED)
results for the π-oQSL phase, (d–f): the classical Monte Carlo (MC) results
for the π-oQSL phase, (g–i) the ED results for the 0-oQSL phase, and (j–l):
the MC results for the 0-oQSL phase. The white hexagons in each plot repre-
sent the Brillouin zone. The pinch point singularities observed in (e) and (k)
characterise the realisation of the spin ice state.

Figure 3.6 presents the local diagonal pseudospin correlations of the dipolar spin ices.
The first, second, third, and fourth rows correspond to the result of ED calculation for the
π-flux dQSL (π-dQSL), classical Monte Carlo calculation for the π-dQSL, ED calculation
for the 0-flux dQSL (0-dQSL), and classical Monte Carlo calculation for the 0-dQSL,
respectively. The following parameter sets were employed: (J̃x, J̃y, J̃z) = (0.25, 0.5, 1.0)
for the π-dQSL phase and (J̃x, J̃y, J̃z) = (−0.1,−0.1, 1.0) for the 0-dQSL phase. In dipolar
spin ice cases, we find pinch point singularities in the z component of correlations for both
flux configurations, and this resemblance yields a similar neutron scattering signature
and makes it difficult to distinguish between them. Other properties are understood in a
similar way to the octupolar spin ices by relabelling the coordinates.
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Figure 3.6. Diagonal pseudospin correlation for dipolar spin ice phases obtained
from the classical Monte Carlo calculation and the exact diagonalisation on
the 32-site cluster. The following parameter sets were employed: (J̃x, J̃y, J̃z) =
(0.25, 0.5, 1.0) for the π-dQSL phase and (J̃x, J̃y, J̃z) = (−0.1,−0.1, 1.0) for the
0-dQSL phase. (a–c): the exact diagonalisation (ED) results for the π-dQSL
phase, (d–f): the classical Monte Carlo (MC) results for the π-dQSL phase,
(g–i) the ED results for the 0-dQSL phase, and (j–l): the MC results for the
0-dQSL phase. The white hexagons in each plot represent the Brillouin zone.
The pinch point singularities observed in (f) and (i) characterise the realisation
of the spin ice state.

For completeness, we explore the local diagonal pseudospin correlations of the ordered
phases, namely, X-AIAO (d-AIAO (Γ2a)), Y-AIAO (o-AIAO), and Z-AIAO (d-AIAO
(Γ2b)). Figure 3.7 depicts the ED and classical Monte Carlo results for the Y-AIAO
phase, and those for other phases are obtained by relabelling the index. For example,
the results of the X-AIAO phase are obtained by relabelling as (x, y, z) → (z, x, y).
Supported by the q = 0 nature of the ordered states, the intensity distribution of the
o-AIAO phase shown in Fig. 3.7 exhibits an especially sharp intensity of the pseudospin
correlation at q = 0 for S̃yy, which was not observed in the spin ice phases. This behaviour
characterises the pseudospin correlation property of the ordered phases. However, the
q dependence of S̃zz looks similar to that of the π-oQSL phase. As we will describe
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below, this indicates the QSL phase and the ordered phase are indistinguishable by a
neutron scattering measurement alone although they are apparently distinguishable by
verifying the existence of anomalies in the specific heat and susceptibility measurements.
In addition, an inconsistency between classical and quantum calculations is found for
the q dependence of S̃xx. The reason for this is not clearly understood and needs to be
compared with the results of other calculations, but intuitively, the results of the classical
calculation are reasonable because the τx coupling (J̃x) is antiferromagnetic and we would
expect low intensities at the zone centre as seen in the π-oQSL case. Another possibility
is that, owing to quantum effects, what is actually observed is the ED results.

(a) (b) (c)

(d) (e) (f)

ED

MC

Figure 3.7. Diagonal pseudospin correlation for the o-AIAO phase obtained
from (a–c): the exact diagonalisation on the 32-site cluster and (d–f): the
classical Monte Carlo calculation. Note that the results for d-AIAO phases are
obtained by simply relabelling the index, as appropriate. The parameter set
was chosen as (J̃x, J̃y, J̃z) = (0.2,−0.75, 1.0).

Some may assume that these signals are detectable using a neutron scattering mea-
surement; however, this is incorrect. Since neutron spins are considered dipolar moments
or external fields, they cannot couple to the y component of the pseudospin, and S̃yy

is invisible in neutron scattering measurements. Furthermore, in the limit of Jxz → 0,
that is, the dipolar-octupolar coupling within the same irreps is negligible, S̃xx is also
invisible. Therefore, only S̃zz can contribute to the neutron scattering signals. In other
words, we should define the neutron scattering structure factor as

S(q) =
1

N

∑
µν

(
δµν −

qµqν
q2

)
⟨Mµ(−q)Mν(q)⟩. (3.15)

Here, µ and ν represent the global coordinate frame, the dipolar-based magnetization
M (q) =

∑
i e

iq·Ri ẑiτ
z
i , and N is the number of sites. In the local coordinate frame, this

is represented as

S(q) =
1

N

∑
i,j

[
ẑi · ẑj −

(ẑi · q)(ẑj · q)
q2

]
e−iq·(Ri−Rj)⟨τ zi τ zj ⟩. (3.16)
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Figure 3.8 shows the q dependences of this neutron scattering structure factor for every
QSL, which are then compared to experimental values. Figures 3.8(a–d) present the ED
results for the π-oQSL, π-dQSL, 0-oQSL, and 0-dQSL phases, and Figs. 3.8(e–h) present
the classical Monte Carlo results for the π-oQSL, π-dQSL, 0-oQSL, and 0-dQSL phases,
respectively. As is the case for diagonal pseudospin correlation, the classical calculations
demonstrate that the π- and 0-flux oQSLs display distinct behaviours in the neutron
scattering structure factor, and thus they are distinguishable in the experiment. However,
on a classical level, it is almost impossible to identify the difference between the π- and
0-flux dQSLs; although, their pseudospin correlation is completely different. Moreover,
considering the experimental resolution, we expect that it is difficult to differentiate
them against the π-oQSL phase. This is because the main differences in the pseudospin
correlation of these phases are found in S̃xx and S̃yy, which do not couple to neutron
spins. Thus, neutron scattering signals for the π-oQSL, π-dQSL, and 0-oQSL phases
resemble one another. This situation is partially solved by examining the quantum ED
results. The π-oQSL phase exhibits a similar rod-like distribution to the classical result;
however, we find intensity peaks at the X points of the Brillouin zone (q = (0, 0,±2π)),
which was not found in the classical calculation. Therefore, we can conclude that the rod-
like neutron scattering behaviour and the particularly high intensity at the X points are
important properties of the π-oQSL phase. Meanwhile, the π-dQSL and 0-dQSL phases
exhibit somewhat different behaviours from the π-oQSL phase. Although the remnants of
rod-like behaviour are still captured in the ED results, they are divided into high-intensity
and low-intensity regions. In other words, the difference in scattering intensity becomes
conspicuous in the quantum calculation. Points with strong scattering intensities are
concentrated at the Γ points, and peak behaviours cannot be found at the X points. This
fact enables us to distinguish the π-oQSL phase from π- and 0-dQSLs. Unfortunately,
it is difficult to distinguish between the π- and 0-dQSL phases because of their similar
neutron scattering intensity distributions. We will see that the limitation of these ordinary
experiments (neutron scattering measurement) can be resolved by introducing a novel
experimental probe, the magnetostriction measurement, in the latter half of this chapter.
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Figure 3.8. Neutron structure factor of four distinct spin ices obtained from (a–
d): the exact diagonalisation and (e–h): the classical Monte Carlo calculation.
In the ED results, particularly high intensity regions are depicted by the purple-
shaded regions. The experimental data shows the subtraction of scattering
intensity at T = 2 K from that at T = 60 mK, with an integration in energy
transfer E = [0, 0.15] meV [111]. The white square represents the region in
which the corresponding theoretical results are provided. Rod-like behaviours
along the [001], [111], and [111̄] directions with a strong scattering intensity are
observed in the π-oQSL, π-dQSL, 0-oQSL phases, and the experiment. Among
them, the quantum (ED) result for the π-oQSL is in good agreement with the
experiment because a particularly strong scattering intensity is identified at
the X points (q = (0, 0,±2π)).

For completeness, Fig. 3.9 shows the q-map of the neutron scattering structure factors
of the ordered phases. As expected from the local pseudospin correlation results, distinct
behaviours can be found for each ordered phase. We note that the discrepancy in the
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results for the X-AIAO phase is due to the inconsistency in the local spin correlations.
If we assume the ED results are what is actually observed, these results suggest that
neutron scattering measurement can be utilised to identify the type of AIAO state . For
example, in Nd2Zr2O7, which has an AIAO order below TN ∼0.4 K [117, 125], a strong
sharp neutron scattering intensity is observed at Γ2 = (4π, 4π, 0) [126]. This scattering
structure is unique to the Z-AIAO phase, and we can conclude that the all-in all-out
configuration is constituted by usual dipolar moments.

Finally, let us compare the theoretical results to recent neutron scattering measure-
ments on Ce2Zr2O7, which is a candidate material of QSLs. Figure 3.8(i) shows the
subtraction of the scattering intensity at T = 2 K from that at T = 60 mK, with an
integration in energy transfer E = [0, 0.15] meV [111]. The rod-like intensity distribution
and peak structures can be found at the X points, which indicates that the π-oQSL phase
is realised in this system. For the quantum calculation, Fig. 3.8(a) effectively describes
the experimental result, including the peak structures. Quantum spin ice composed of
multipoles had not yet been identified; this identification of multipolar quantum spin ice
is the main result of the first half of this chapter.
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Figure 3.9. Neutron structure factor of three ordered phases (X-, Y-, and Z-
AIAO phases) obtained from (a–c): the exact diagonalisation on the 32-site
cluster and (d–f): the classical Monte Carlo calculation.

3.3.3 Dynamic properties of each QSL

To capture the dynamic properties of the system, the following dynamic structure
factors represented in the local coordinate frame are calculated:

S(q, ω) =
1

2πN

∑
i,j

∫ ∞

−∞
dt

[
ẑi · ẑj −

(ẑi · q)(ẑj · q)
q2

]
e−iq·(Ri−Rj)+iωt⟨τ zi (t)τ zj (0)⟩. (3.17)
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Before moving on to the results, we should first provide the method to calculate them.

Molecular dynamics

To examine the classical limit, finite temperature Monte Carlo (MC) techniques have
been employed to obtain the spin correlations [127, 128]. Firstly, a combination of simu-
lated annealing and parallel tempering for 5× 106 MC sweeps has been used. Fixing the
magnitude of the classical pseudospins τ = (τx, τ y, τ z) to be τ = 1/2, we have allowed
the system to thermalize to a temperature of T = 0.06|J̃ |, where J̃ = J̃y in the octupolar
case, and J̃ = J̃x in the dipolar case. Then, another 106 MC sweeps have been performed
with measurements recorded every 10 steps.

Now, the method of classical Molecular Dynamics (MD) is used to capture the dy-
namics of these systems. The spins are evolved according to the semi-classical Landau-
Lifshitz-Gilbert equations of motion [129],

d

dt
τi = −τi ×

∂H

∂τi
, (3.18)

and we allow the system to evolve for a long but finite time of t = 60/|J̃ |, with step sizes of
δt = 0.05/|J̃ | to obtain τµi (t)τ

ν
j (0). This process is repeated for every measurement from

the MC simulations, and the results are averaged over to yield ⟨τµi (t)τ νj (0)⟩. Finally, we
numerically integrate over these time-evolved spins to obtain the energy- and momentum-
dependent dynamical structure factors. In order to more accurately compare the classical-
quantum correspondence in the spin dynamics, our classical MD results are re-scaled by
a factor of βω [127].

Dynamical function in exact diagonalisation

Here, we limit our discussion within zero temperature. First, we start from defining
two operators: Aµ

q = N−1/2
∑

i e
iq·Ri ẑµi τ

z
i and Bq = N−1/2

∑
i e

iq·Ri(ẑi ·q/q)τ zi . Then, Eq.
(3.17) is rewritten as

S(q, ω) =
1

2π

∫ ∞

−∞
eiωt(⟨Aµ†

q (t)Aµ
q(0)⟩ − ⟨B†

q(t)Bq(0)⟩), (3.19)

where the summation is taken over µ = x, y, z. It is known from linear response the-
ory that the correlation function C(q, ω) = 1

2π

∫∞
−∞ eiωt⟨Â†(t)B̂(0)⟩ and retarded Green’s

function GR
AB(q, ω) =

∑
n

⟨0|Â†|n⟩⟨n|B̂|0⟩
ω+iδ−En

= ⟨0|Â† 1
ω+iδ−H

B̂|0⟩ are related via the fluctuation-
dissipation theorem as

C(q, ω) = −2ImGR
AB(q, ω). (3.20)

Therefore, the final form of the dynamic structure factor is

S(q, ω) = − 1

π
Im

[
−⟨Φ0|B†

q

1

ω + iδ −H
Bq|Φ0⟩+

∑
µ

⟨Φ0|Aµ†
q

1

ω + iδ −H
Aµ

q |Φ0⟩

]
,

(3.21)
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where |Φ0⟩ is the ED ground state. This result indicates that the dynamical structure
factor is obtained by employing the Lanczos algorithm initialised with the excited states
Aµ

q |Φ0⟩ and Bq|Φ0⟩. However, because intuitive implementation of this can cause a trun-
cation error [130, 131], this calculation was performed using a sophisticated shifted Krylov
method in a numerical library Kω with the quantum lattice model solver package HΦ
[132].

The method is briefly explained below [133]. First, let us introduce the vectors

|ν(z)⟩X =
1

z −H
Xq|Φ0⟩, |µ⟩X = Xq|Φ0⟩, (3.22)

where Xq = Aµ
q ,Bq. Then,

S(q, ω) = − 1

π
Im[−⟨µ|ν(ω + iδ)⟩B +

∑
µ

⟨µ|ν(ω + iδ)⟩Aµ ]. (3.23)

To calculate |ν(z)⟩X , we solve the equation (z −H)|ν(z)⟩X = |µ⟩. This linear equation
can be solved by an iterative procedure, such as the conjugate gradient (CG) method. At
each i-th step, the CG algorithm searches for an approximate solution |ν(z)⟩X,i, which
minimises the norm of the residual vector (z−H)|ν(z)⟩X,i−|µ⟩ within a Krylov subspace,
span{|µ⟩, (z − H)|µ⟩, . . . , (z − H)n−1|µ⟩}. Owing to the shift invariance in the Krylov
subspace, we can obtain |ν(z′)⟩ from |ν(z)⟩ with the complexity of O(N0), where N is
the dimension of the Hamiltonian. This invariance gave the shifted Krylov method its
name and enables us to calculate |ν(ω+iδ)⟩ for various ω with reasonable computational
resources. In the following calculations, we use δ = 0.05 and the number of iterations
N = 1000.

Results and discussion

Figure 3.10 presents the dynamical structure factors of four distinct spin ices along
the [001] direction obtained from the ED and classical Monte Carlo calculations. In the
ED results, only the accessible momentum points, namely the Γ0, X, and Γ1 points, are
depicted.

As shown in Figs. 3.10(a) and (e), the π-oQSL phase displays a gapped excitation
spectrum with the gap ∆/Jy ∼ 0.6. The classical result (Fig. 3.10(e)) does not show
the momentum dependence of the excitation spectrum, whereas the quantum result (Fig.
3.10(a)) clearly presents a strong intensity at the X point, as is expected from the equal-
time neutron structure factor provided in the previous section. The gapped nature is
consistent with the prediction in Table 2.1. In octupolar quantum spin ices, the gauge
photon cannot be captured by the neutron’s moment due to the inherent octupolar nature.
Thus, gapless gauge photon excitation is invisible, and only gapped spinon excitations
are observed.

In contrast with the π-oQSL phase, (nearly) gapless excitation spectra are observed in
the π-dQSL phase, as shown in Figs. 3.10(b) and (f). We expect that the tiny gap in the
ED result stems from a finite size effect, and the gap becomes smaller as the system size
increases. In fact, the result of the classical calculation, which was performed on a lattice
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with 2048 sites, supports this prediction. Moreover, we find the intensity is strong at the
Γ points. We can attribute the gapless excitation signature to gauge photon excitation
of the U(1) QSL; however, further theoretical and experimental research is required to
determine this U(1) nature.

The classical and quantum results show a discrepancy for the 0-oQSL, as shown in
Figs. 3.10(c) and (g), despite the fact that they both possess a gapped excitation unique
to octupolar spin ices. The excitation gap of the ED result is ∆/Jy ∼ 1.0, whereas that of
the classical result is ∆/Jy ∼ 0.6. The reason for this difference is not clear; however, it
indicates the failure of classical calculations in differentiating flux configurations. Thus,
we expect the excitation energy of the magnetic gauge charges to differ depending on the
ground state flux configuration.

Lastly, Figs. 3.10(d) and (h) present the dynamic structure factor results of the 0-
dQSL phase. As well as the π-dQSL, the gapless excitation spectrum is captured, which
is attributed to the gauge charge degree of freedom. The band-like spectrum obtained in
the classical result shown in Fig. 3.10(h) is a unique signature of this phase. However, this
discreteness is concealed in the quantum calculation, and thus it is undetectable in real
experiments. Therefore, it will be difficult to distinguish between the flux configurations
of dipolar quantum spin ices when examining the excitation spectra as well as the static
properties. This limitation of neutron scattering is partially resolved by introducing a
novel experimental probe, magnetostriction, which will be described in the subsequent
sections.

Figure 3.10. Dynamical structure factor of four distinct spin ices along the
[001] direction obtained from (a–d): exact diagonalisation and (e–h): classical
Monte Carlo calculation. In the ED results, only the accessible momentum
points, namely the Γ0, X, and Γ1 points, are displayed.
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3.4 Novel probes for QSLs in the dipolar-octupolar

system

So far, the responses of each spin liquid phase to basic experiments has been inves-
tigated. However, these are not sufficient to completely identify the type of spin liquid.
Therefore, it becomes necessary to discover the unique characteristics of each spin liquid
using further experiments. Here, we extend our theory of magnetostriction, which has
been proven to be a powerful tool to detect a quantum spin liquid phase in a non-Kramers
case (Section 2.1.1), to the present dipolar-octupolar system. Detailed explanations for
magnetostriction are provided in this section, and results for the non-Kramers and usual
Kramers cases, which are not the main topics of this thesis, are summarised in Appendix
A.

3.4.1 Symmetry-allowed pseudospin-strain couplings

Elastic energy

Before discussing these couplings, the symmetry-constrained elastic energy is consid-
ered. As explained in Section 3.2, the pyrochlore lattice hosts a symmetry with a point
group Oh. This cubic nature of the underlying Bravais lattice constrains the elastic energy
to

Flattice =
cB
2
ϵ2B +

c11 − c12
2

(
ϵ2µ + ϵ2ν

)
+
c44
2

(
ϵ2xy + ϵ2yz + ϵ2zx

)
. (3.24)

Here, the crystal deformation is described by the components of the strain tensor in the
global coordinate frame ϵij, and cij is the elastic modulus tensor describing the stiffness
of the crystal. cB is defined as the bulk modulus, ϵB ≡ ϵxx + ϵyy + ϵzz is the volume
expansion of the crystal, and ϵµ ≡ ϵxx − ϵyy and ϵν ≡ (2ϵzz − ϵxx − ϵyy)/

√
3 are the cubic

normal mode lattice strains.

Notations and symmetries

Since we will consider elastic strain tensors, magnetic fields, and local moments on
each sublattice, we specify the notation here to clearly identify in which sublattice basis
we are considering each quantity,

ταx,y,z, hαx,y,z, ϵαij, (3.25)

where i, j = x, y, z are the usual components of the cubic strain tensor, and α = 0, 1, 2, 3
refers to the sublattice index. Here, ταx,y,z, h

α
x,y,z, and ϵ

α
ij denote the local pseudospin-1/2

moment (i.e. local coordinate frame), magnetic field component and the elastic strain
tensor component in the sublattice α basis, respectively. We can also define the same
quantities in the global coordinate frame {(1,0,0),(0,1,0),(0,0,1)} as τx,y,z, hx,y,z and ϵij,
i.e. without the sublattice superscript.

Next, the transformation of the relevant quantities from the local coordinate frame
to the global axes is presented. The vector-like quantities, such as the magnetic field
and pseudospins, are transformed using hα = P−1

α h and τα = P−1
α τ , and the tensor-

strain is transformed using ←→ϵ α = P−1
α
←→ϵ Pα. Here, Pα is the matrix for sublattice–α to
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change the basis, that is, its columns contain the basis vectors of the given sublattice, as
denoted in Table 3.1. As an example, the local-to-global magnetic field transformations
are presented below (transformations of the strain components are more complex and
struggle to fit on the page).h

(0)
x

h
(0)
y

h
(0)
z

 =


−2hx+hy+hz√

6
hz−hy√

2
hx+hy+hz√

3


h

(1)
x

h
(1)
y

h
(1)
z

 =

−
2hx+hy+hz√

6
hy−hz√

2
hx−hy−hz√

3


h

(2)
x

h
(2)
y

h
(2)
z

 =


2hx+hy−hz√

6

−hy+hz√
2

−hx−hy+hz√
3


h

(3)
x

h
(3)
y

h
(3)
z

 =


2hx−hy+hz√

6
hy+hz√

2

−hx+hy−hz√
3


(3.26)

Recall that hx,y,z are magnetic field components in the global coordinate frame.
As the third step, we consider the local symmetry of rare-earth ions. Although the

point group symmetry of the overall lattice is Oh, the local point group symmetry of the
rare-earth site is described by the D3d point group. It can be generated by the following
two symmetry operators written in an orthonormal basis (R3 basis):

S−
6 =

 1/
√
2
√
3/2 0

−
√
3/2 1/2 0
0 0 −1

 , C ′
21 =

−1 0 0
0 1 0
0 0 −1

 , (3.27)

where S−
6 is an improper rotation about the z-axis by π/3, and C ′

21 is a π rotation about
the y-axis. Using these generators, we can transform the pseudospin-1/2 quantities as
follows:

ταx
S−
6−→ ταx ταx

C′
21−−→ −ταx

ταy
S−
6−→ ταy ταy

C′
21−−→ ταy

ταz
S−
6−→ ταz ταz

C′
21−−→ −ταz

(3.28)

hαx
S−
6−→ −1

2
hαx −

√
3

2
hαy hαx

C′
21−−→ hαx

hαy
S−
6−→
√
3

2
hαx −

1

2
hαy hαy

C′
21−−→ −hαy

hαz
S−
6−→ hαz hαz

C′
21−−→ −hαz .

(3.29)

Note that the inversion operator included in S−
6 behaves as an identical operator for

pseudovectors, such as spins and magnetic fields. Finally, the elastic tensor transforms
in the usual manner, that is, ←→ϵ α → A←→ϵ αAT , where A is the symmetry element.

Octupolar-strain couplings

First, we consider the coupling between the octupolar component τy and strains.
Owing to the time reversal odd nature of the octupolar moment, they cannot directly
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couple to the strains. However, in the presence of magnetic fields, field-assisted strain-
moment couplings are possible. Their general form can be expressed as

Fα
octupolar−strain =

∑
µ=x,y,z

∑
ν,γ=x,y,z

Cµνγταy hαµϵανγ, (3.30)

where Cµνγ are the phenomenological coupling constants. Considering the above point
group symmetry, terms that are invariant under the symmetry operators S−

6 and C ′
21

remain. Thus, D3d symmetry-constrained octupolar-strain coupling is described as

Fα
octupolar−strain = ταy

[
C0
(
2hαxϵ

α
xy + hαy (ϵ

α
xx − ϵαyy)

)
+ C1

(
hαy ϵ

α
xz − hαxϵαyz

)]
, (3.31)

where Einstein summation notation is introduced for the sublattice index α = 0, 1, 2, 3,
and C0,1 are phenomenological coupling constants, which are independent of the choice in
sublattice (as each sublattice is physically equivalent to the others, the only difference is
that they are rotated with respect to each other). Combining all sublattices, we obtain

Foctupolar−strain = Foctupolar−strain,C0 + Foctupolar−strain,C1 (3.32)

and

Foctupolar−strain,C0 = C ′0{[(2ϵxy − 2ϵzx − ϵyy + ϵzz)hx + (2ϵyz − 2ϵxy − ϵzz + ϵxx)hy

+ (2ϵzx − 2ϵyz − ϵxx + ϵyy)hz]τ
(0)
y

+ [(−2ϵxy + 2ϵzx − ϵyy + ϵzz)hx + (−2ϵyz − 2ϵxy + ϵzz − ϵxx)hy
+ (2ϵzx + 2ϵyz + ϵxx − ϵyy)hz]τ (1)y

+ [(2ϵxy + 2ϵzx + ϵyy − ϵzz)hx + (−2ϵyz + 2ϵxy − ϵzz + ϵxx)hy

+ (−2ϵzx − 2ϵyz + ϵxx − ϵyy)hz]τ (2)y

+ [(−2ϵxy − 2ϵzx + ϵyy − ϵzz)hx + (2ϵyz + 2ϵxy + ϵzz − ϵxx)hy
+ (−2ϵzx + 2ϵyz − ϵxx + ϵyy)hz]τ

(3)
y },

(3.33)

Foctupolar−strain,C1 = C ′1{[(ϵxy − ϵzx + ϵyy − ϵzz)hx + (ϵyz − ϵxy + ϵzz − ϵxx)hy
+ (ϵzx − ϵyz + ϵxx − ϵyy)hz]τ (0)y

+ [(−ϵxy + ϵzx + ϵyy − ϵzz)hx + (−ϵyz − ϵxy − ϵzz + ϵxx)hy

+ (ϵzx + ϵyz − ϵxx + ϵyy)hz]τ
(1)
y

+ [(ϵxy + ϵzx − ϵyy + ϵzz)hx + (−ϵyz + ϵxy + ϵzz − ϵxx)hy
+ (−ϵzx − ϵyz − ϵxx + ϵyy)hz]τ

(2)
y

+ [(−ϵxy − ϵzx − ϵyy + ϵzz)hx + (ϵyz + ϵxy − ϵzz + ϵxx)hy

+ (−ϵzx + ϵyz + ϵxx − ϵyy)hz]τ (3)y },

(3.34)

where C ′0 =
√
2C0/3, C ′1 = C1/3, and all physical quantities except for pseudospins are

represented in a global coordinate frame using the transformation described above.
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Dipolar-strain couplings

A similar analysis is also applicable to dipolar-strain couplings. Because τx and τz
are symmetrically equivalent, it is sufficient to only consider the coupling between τx and
stains. Again, the general coupling form is represented as

Fα
dipolar−strain =

∑
µ=x,y,z

∑
ν,γ=x,y,z

Cijkταx hαµϵανγ, (3.35)

and D3d symmetry-constrained dipolar-strain coupling is described as

Fα
dipolar−strain = ταx

[
C2x
(
hαx(ϵ

α
yy − ϵαzz) + 2hαy ϵ

α
xy

)
+ C3x

(
hαxϵ

α
xz + hαy ϵ

α
yz

)
+C4xhαz

(
ϵαxx + ϵαyy

)
+ C5xhαz ϵαzz

], (3.36)

where the summation is taken over α, and C2x,3x,4x,5x are phenomenological coupling con-
stants independent of the sublattice indices. Taking the summation over the sublattices,
we obtain

Fx
dipolar−strain = Fx

dipolar−strain,C2x + F
x
dipolar−strain,C3x

+ Fx
dipolar−strain,C4x + F

x
dipolar−strain,C5x .

(3.37)

The explicit forms of each term are listed below.

Fdipolar−strain,C2x = C ′2x{[(−2ϵxx + ϵyy + ϵzz + 2(ϵxy − 2ϵyz + ϵzx))hx

+ (ϵxx − 2ϵyy + ϵzz + 2(ϵxy + ϵyz − 2ϵzx))hy

+ (ϵxx + ϵyy − 2ϵzz − 2(2ϵxy − ϵyz − ϵzx))hz]τ (0)x

[(−2ϵxx + ϵyy + ϵzz − 2(ϵxy + 2ϵyz + ϵzx))hx

+ (−ϵxx + 2ϵyy − ϵzz + 2(ϵxy − ϵyz − 2ϵzx))hy

+ (−ϵxx − ϵyy + 2ϵzz − 2(2ϵxy + ϵyz − ϵzx))hz]τ (1)x

[(2ϵxx − ϵyy − ϵzz + 2(ϵxy − 2ϵyz − ϵzx))hx
+ (ϵxx − 2ϵyy + ϵzz − 2(ϵxy + ϵyz + 2ϵzx))hy

+ (−ϵxx − ϵyy + 2ϵzz − 2(2ϵxy − ϵyz + ϵzx))hz]τ
(2)
x

[(2ϵxx − ϵyy − ϵzz − 2(ϵxy + 2ϵyz − ϵzx))hx
+ (ϵxx + 2ϵyy − ϵzz − 2(ϵxy − ϵyz + 2ϵzx))hy

+ (ϵxx + ϵyy − 2ϵzz − 2(2ϵxy + ϵyz + ϵzx))hz]τ
(3)
x }

(3.38)
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Fdipolar−strain,C3x = C ′3x{[(2ϵxx − ϵyy − ϵzz + ϵxy − 2ϵyz + ϵzx)hx

+ (−ϵxx + 2ϵyy − ϵzz + ϵxy + ϵyz − 2ϵzx)hy

+ (−ϵxx − ϵyy + 2ϵzz − 2ϵxy + ϵyz + ϵzx)hz]τ
(0)
x

[(2ϵxx − ϵyy − ϵzz − ϵxy − 2ϵyz − ϵzx)hx
+ (ϵxx − 2ϵyy + ϵzz + ϵxy − ϵyz − 2ϵzx)hy

+ (ϵxx + ϵyy − 2ϵzz − 2ϵxy − ϵyz + ϵzx)hz]τ
(1)
x

[(−2ϵxx + ϵyy + ϵzz + ϵxy − 2ϵyz − ϵzx)hx
+ (−ϵxx + 2ϵyy − ϵzz − ϵxy − ϵyz − 2ϵzx)hy

+ (ϵxx + ϵyy − 2ϵzz − 2ϵxy + ϵyz − ϵzx)hz]τ (2)x

[(−2ϵxx + ϵyy + ϵzz − ϵxy − 2ϵyz + ϵzx)hx

+ (ϵxx − 2ϵyy + ϵzz − ϵxy + ϵyz − 2ϵzx)hy

+ (−ϵxx − ϵyy + 2ϵzz − 2ϵxy − ϵyz − ϵzx))hz]τ (3)x }

(3.39)

Fdipolar−strain,C4x = C ′4x{[(ϵxx + ϵyy + ϵzz − ϵxy − ϵyz − ϵzx)(hx + hy + hz)]τ
(0)
x

+ [(ϵxx + ϵyy + ϵzz + ϵxy − ϵyz + ϵzx)(hx − hy − hz)]τ (1)x

− [(ϵxx + ϵyy + ϵzz + ϵxy + ϵyz − ϵzx)(hx − hy + hz)]τ
(2)
x

− [(ϵxx + ϵyy + ϵzz − ϵxy + ϵyz + ϵzx)(hx + hy − hz)]τ (3)x }

(3.40)

Fdipolar−strain,C5x = C ′5x{[(ϵxx + ϵyy + ϵzz + 2ϵxy + 2ϵyz + 2ϵzx)(hx + hy + hz)]τ
(0)
x

+ [(ϵxx + ϵyy + ϵzz − 2ϵxy + 2ϵyz − 2ϵzx)(hx − hy − hz)]τ (1)x

− [(ϵxx + ϵyy + ϵzz − 2ϵxy − 2ϵyz + 2ϵzx)(hx − hy + hz)]τ
(2)
x

− [(ϵxx + ϵyy + ϵzz − 2ϵxy − 2ϵyz − 2ϵzx)(hx + hy − hz)]τ (3)x }
(3.41)

Here, C ′2x =
√
6C2x/9, C ′3x =

√
3C3x/9, C ′4x = 2

√
3C4x/9, and C ′5x =

√
3C5x/9. The

couplings between τz and the strains are represented in exactly the same form, with
coupling constants C2z,3z,4z,5z.

3.4.2 General magnetostriction expressions

Based on the above results, the total energy is represented as follows:

Ftotal = Flattice + Foctupolar−strain + Fx
dipolar−strain + F z

dipolar−strain. (3.42)

In this section, the steps to obtain general length change expressions are presented and
the length change along particular cubic directions is evaluated. Before doing so, the
extremised lattice normal modes (ϵ∗ij) are first computed using all free energy terms that
involve the elastic strain tensors (Eq. (3.42)). Extremising Ftotal with respect to the
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normal modes (δFtotal/δϵij) yields ϵ
∗
ij. Their explicit forms are highly complex, and thus

they are not shown here.
Inserting the extremised strain into the length change formula given by(

∆L

L

)n̂

ℓ

=
∑

j,k=x,y,z

ϵjkℓ̂j ℓ̂k (3.43)

yields the magnetostriction along a direction ℓ in the presence of an external magnetic
field h = hn̂. The complete expression for the various experimentally relevant magnetic
fields and length change cubic directions are provided in Appendix B. Presented here are
the magnetostriction expressions for the length change along the ℓ = (1, 1, 1) direction
under a parallel magnetic field n̂ = [111]:(

∆L

L

)[111]

(1,1,1)

=
h

27cB

[
(C5z + 2C4z)

(
3τ (0)z − τ (1)z − τ (2)z − τ (3)z

)
+ (C5x + 2C4x)

(
3τ (0)x − τ (1)x − τ (2)x − τ (3)x

)]
+

4

27c44
h

[(
8
√
2C2x − 4C3x

) (
τ (1)x + τ (2)x + τ (3)x

)
+ (C5x − C4x)

(
9τ (0)x + τ (1)x + τ (2)x + τ (3)x

)
+
(
8
√
2C2z − 4C3z

) (
τ (1)z + τ (2)z + τ (3)z

)
+ (C5z − C4z)

(
9τ (0)z + τ (1)z + τ (2)z + τ (3)z

) ]

. (3.44)

3.4.3 Magnetostriction for 0-flux QSLs

In this section, we analyse the magnetostriction of 0-flux QSLs, namely the 0-dQSL
and 0-oQSL, using the formulae obtained in the previous section. Here, the moments of
each sublattice are estimated from two ways: a classical mean-field calculation and the
exact diagonalisation method on the XYZh Hamiltonian Eq. (3.5). Before presenting the
result, Table 3.3 shows the coupling between the external magnetic fields and pseudospin
moments under the three considered magnetic field directions: [111], [110], and [001].
Note that the pure octupolar moment τy only couples to the magnetic field along the [110]
direction. For g-factors in the magnetic field coupling terms, we take gz = 1.0, gx = 0.01,
and gy = 4.0 × 10−4. The diminutive nature of gy emphasises the perturbatively weak
nature of the cubic-in-h coupling. The tiny value of gx indicates limited mixing between
the pure dipole Sz and octupole Sx, which allows an isolated study of the dipolar-dominant
and octupolar-dominant phases.

As a main result of this section, Figure 3.11 depicts the classical and magnetostriction
behaviours of the two 0-flux QSLs parallel to a [111] magnetic field with their respective
order parameter evolutions.
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Table 3.3: Direct coupling of multipolar moments to magnetic fields along
the h = h√

3
(1, 1, 1), h = h√

2
(1, 1, 0), and h = h(0, 0, 1) directions.

Coupling to sublattice α

0 1 2 3

[111]
τ yα 0 0 0 0

τx,zα h −h/3 −h/3 −h/3

[110]
τ yα 0 −h3 h3 0

τx,zα

√
2/3h 0 0 −

√
2/3h

[001]
τ yα 0 0 0 0

τx,zα h/
√
3 −h/

√
3 −h/

√
3 h/

√
3

Through a comparison to magnetostriction experiments on familiar rare-earth Pr-
and Ce-based heavy fermion compounds, the magnitudes of the coupling constants Ci
are estimated. We adopt C0 = 0.27 × 10−7, C1 = −0.8 × 10−7, C2x = 4.0 × 10−7, C3x =
−8.0×10−7, C4x = 1.2×10−6, C5x = −2.6×10−7, C2z = 0.5×10−7, C3z = −0.7×10−7, C4z =
0.43 × 10−7, and C5z = 0.51 × 10−7. The scale of the above coupling constants results
in magnetostriction behaviours on the physical scale of ∆L/L ∼ 10−6. The order of
magnitude of the pseudospin-x coupling terms aids in highlighting the importance of
quantum fluctuations in the 0-dQSL and 0-oQSL. If these are chosen to be compara-
ble, magnetostriction is dominated by the pseudospin-z and provides a jump feature
similar to what is seen in magnetostriction studies on non-Kramers pyrochlore systems
under a [111] field (Section 2.1.1). Note that the elastic constants are taken as unity
cB = c44 = c11 − c12 = 1.0. The precise values of the coupling constants can be deter-
mined by employing these theoretical predictions in conjunction with future experimental
measurements on Ce-based pyrochlore materials—for example, by fitting the experimen-
tally measured length changes along the various directions and field orientations proposed
later.

As seen in Figs. 3.11(a) and (b), there is a clear discrepancy between the two QSLs.
The classical 0-dQSL experiences a sharply decreasing jump discontinuity at ha ∼ 3Jz
followed by a drop, and then a sharp kink in the length change at hb ∼ 3.5Jz, as seen
in Fig. 3.11(a). From the quantum mechanical ED results, the 0-dQSL is in agreement
with its classical result in that it displays a similar drop at approximately the same mag-
netic field strength. However, the magnitude of the drop is enhanced in ED compared
to its classical counterpart, which indicates the importance of quantum fluctuations in
enhancement of 0-dQSL magnetostriction. The underlying physics of the 0-dQSL mag-
netostriction behaviour can be understood in terms of a metamagnetic transition from
kagome ice, that is, a classically two-in two-out configuration with sublattice 0 fixed to
+1/2, to the fully polarised three-in one-out phase, as shown in the corresponding order
parameter evolution in Fig. 3.11(c). This transition is accompanied by the brief appear-
ance and disappearance of an island of ⟨τx,y⟩ ̸= 0, which accounts for the aforementioned
sharp nonanalytic kinks in Fig. 3.11(a) at ha and hb. In the quantum model, the meta-
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magnetic transition is more gradual and lacks the sharp discontinuous features of the
classical island, which is expected from a finite-sized cluster. Nevertheless, this creates
the (enhanced by quantum fluctuations) dip feature in the magnetostriction. Indeed, the
analogous physics is responsible for the similar magnetostriction results obtained for the
non-Kramers QSL in Pr2Zr2O7 (Section 2.1.1).

In contrast, the classical 0-oQSL undergoes a monotonic (negative) increase in the
length change with a single continuous kink at hc ∼ 3Jy, as shown in Fig. 3.11(b). The
origin of the kink is the ultimate demise of pseudospin-y and the completed polarisation
of pseudospin-z, which is encouraged by the [111] magnetic field, as shown by the order
parameter evolution in Fig. 3.11(d). Indeed, because the magnitude of pseudospin-y
diminishes with increasing field, the pseudospin-y expectation values of two sublattices
(α1 and α2) are positive, whereas the pseudospin-y expectation values of the remaining

two sublattices (α3 and α4) are negative. In other words, ⟨τ (α1,α2)
y ⟩ > 0 and ⟨τ (α3,α4)

y ⟩ < 0.
This sign structure is reminiscent of the octupolar spin ice two-in, two-out degeneracy.
Thus, the increasing pseudospin-z in conjunction with the disappearing pseudospin-y in-
dicates a polarised dipole (pseudospin-z) coexisting with octupole (pseudospin-y) spin-ice
correlations for h < hc. In the magnetostriction of the quantum model, there is an overall
monotonic (negative) increase in the length change that is analogous to the classical be-
haviour. Interestingly, as seen in Fig. 3.11(b), the classical kink at hc is smoothened out
in the quantum model, which can be understood from ED order parameter evolution un-
der the magnetic field: the transition into the fully polarised state is smoother/broadened
out in the ED order parameters in Fig. 3.11(d). Moreover, nonanalytic kinks exist in
the order parameter at an order of magnitude smaller than the classical hc. The early
locations of the ED kinks suggest the fragility of the 0-oQSL to quantum fluctuations in
the presence of the field.

The key difference between the 0-dQSL and 0-oQSL is caused by the ability of the
pseudospin degree of freedom responsible for forming the classical ice manifold to couple
directly to the magnetic field (Table 3.3). This leads to different phases appearing in the
low-field window, and subsequently, distinct magnetostriction signatures of the parent
QSL phase. Despite this difference, both QSLs retain remnants of their parent classical
spin ice degeneracy in the low-field window, which is reflected in particular length change
directions. For completeness, Fig. 3.12 presents the classical magnetostriction behaviours
under the [111] field along the (1,1,0) and (0,0,1) directions, where the retained classical
degeneracy is reflected. The observed directions provide the clearest differences between
the 0-dQSL and 0-oQSL phases. As shown, the degeneracy of the kagome ice regime for 0-
dQSL and the dampened degeneracy of the 0-dQSL are reflected in the classical solutions.
Since the [111] magnetic field does not couple to the τy octupolar moment, we are unable
to extract the ED pseudospin-y expectation values required for the ℓ = (1, 1, 0), (0, 0, 1)
directions; hence, only the classical solutions are presented. Once again, the 0-dQSL
classically demonstrates a more dramatic peak in the magnetostriction, while the 0-oQSL
classically has more kink-like features. This is the general discriminating feature between
the 0-flux QSLs: the 0-oQSL possesses a gentler behaviour in its magnetostriction com-
pared with the sharp features of the 0-dQSL. To contrast, and emphasise the uniqueness
of, the length change behaviours of the QSLs, the magnetostriction of neighbouring mul-
tipolar ordered phases are also examined in the following section. Considering an array
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of commonly accessible (in cubic materials) magnetic field and length change directions,
these findings highlight the anisotropic (and distinct) nature of magnetostriction for the
various possible ordered phases.

0-dQSL 0-oQSL

Figure 3.11. Magnetostriction along the ℓ = (1, 1, 1) direction and order pa-
rameter evolution under the n̂ = [111] magnetic field for the 0-flux dipolar
QSL (0-dQSL) and octupolar QSL (0-oQSL). (a), (b): relative length change,
∆L/L for the 0-dQSL and 0-oQSL, respectively, along the ℓ = (1, 1, 1) and
n̂ = [111] magnetic field. Solid lines (squares) indicate classical (32-site exact
diagonalisation) magnetostrictions and order parameters. The superimposed
magnetostriction ED result in (a) indicates an enhancement by quantum fluc-
tuations. (c): 0-dQSL order parameter evolution. The 0-dQSL develops (both
classically and quantum mechanically) into the kagome ice phase within the
low-field limit. Upon increasing the field, the kagome ice undergoes a meta-
magnetic transition in ⟨τz⟩ and is accompanied by an “island” of the finite x
and y components of the pseudospins for sublattices 1,2, and 3 that survives
for a small window of magnetic field strengths. The first (second) discontinu-
ity in (a) reflects the appearance (disappearance) of this island. (d): 0-oQSL
order parameter evolution. The 0-oQSL steadily collapses with increasing field
strength and is accompanied by the gradual increase in ⟨τz⟩ into a fully po-
larised phase. The single classical kink at hc ∼ 3Jy in (b) is the critical field
value, where ⟨τy⟩ on all sublattices has collapsed to zero.
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(a) 0-dQSL (b) 0-oQSL 

(c) 0-dQSL (d) 0-oQSL 

Figure 3.12. Length change ∆L/L along the ℓ = (1, 1, 0), (0, 0, 1) directions
for a magnetic field applied along the n̂ = [111] direction for the 0-dQSL and
0-oQSL. Solid lines indicate classical magnetostrictions. (a): 0-dQSL along
ℓ = (1, 1, 0), (b): 0-oQSL along ℓ = (1, 1, 0), (c): 0-dQSL ℓ = (0, 0, 1), and (d):
0-oQSL ℓ = (0, 0, 1). The 0-dQSL reflects the kagome ice degeneracy and the
0-oQSL reflects the dampened degeneracy, as described in the main text. The
degenerate 0-dQSL solutions are denoted by dashed lines for clarity.

3.4.4 Magnetostriction for AIAO ordered phases

To contrast the length change behaviours of the 0-flux QSLs, we verify these be-
haviours for the all-in all-out ordered phases. The obtained results can be used to deter-
mine the type of multipole that comprises the AIAO configuration in Nd-based pyrochlore
materials. However, the main purpose is to reveal the uniqueness of the QSL length
change behaviour; hence, Fig. 3.13 presents the results of the classical calculations only.
Note that degenerate branches exist for the AIAO magnetostriction behaviours, which re-
flects the degeneracy of the AIAO phase. Clearly, this is not observed in all length change
directions because it requires particular combinations of pseudospin configurations to ap-
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pear in the length change expressions, such as ∼ h(3τ
(1)
x +3τ

(2)
x +2τ

(3)
x ), ∼ h(3τ

(0)
x + τ

(3)
x ),

∼ h(3τ
(1)
z + 3τ

(2)
z + 2τ

(3)
z ), ∼ h(3τ

(0)
z + τ

(3)
z ), and ∼ h(τ

(1)
y − τ (2)y ).

As shown in Figs. 3.13(a), (d), and (g), every AIAO phase exhibits a distinct length
change behaviour from that of 0-flux QSLs. Neither dip nor kink behaviours found
in the 0-flux QSL phases are observed in AIAO ordered phases, which supports the
uniqueness of the length change behaviour of 0-flux QSLs. More interestingly, each
AIAO phase exhibits a different behaviour. Under a [111] magnetic field, X- and Y-AIAO
phases present a monotonic quadratic-in-h length change behaviour at low field and no
discontinuity is observed, as shown in Figs. 3.13(a) and (d). Although the multipole
symmetries are different, they are considered octupolar AIAO phases, and these mild
length change behaviours are an important property for octupolar AIAO phases. Indeed,
in the Z-AIAO phase, that is, a dipolar AIAO phase, we find several kinks in the length
change behaviour, and each sector exhibits a linear-in-h behaviour in Figs. 3.13(g), which
indicates the distinguishability between the dipolar AIAO and octupolar AIAO phases.
For different magnetic field directions, we can find clear difference between the dipolar
and octupolar AIAO phases, as shown in Fig. 3.13(b), (c), (e), (f), (h), and (i). In
particular, while octupolar AIAOs exhibit a gentle length change behaviour under the
[110] field, the dipolar AIAO exhibits a clear jump structure in all accessible length change
directions. In experiments, linear-in-h length change behaviour, and the observation of
kink or jump structures, will evidence the realisation of the dipolar AIAO phase. In
contrast, the observation of quadratic-in-h length change behaviour for small h and the
lack of nonanalytic behaviour under the [111] and [110] fields indicates the realisation of
octupolar AIAO phases.

As is the case for 0-flux QSLs, the key difference between dipolar and octupolar AIAO
phases is caused by the ability of the pseudospin degree of freedom responsible for forming
the all-in all-out configuration to directly couple to the magnetic field. This results in the
qualitative difference in the length change behaviour within the low-field window. Unfor-
tunately, distinguishing between X- and Y-AIAO phases is difficult because quantitative
differences in Figs. 3.13(a–f) are caused by an arbitrary choice of the coupling constants
Ci. Note that, in a realistic system with multiple domains, an average is expected over
the degenerate branches.
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(d) (e) (f)

(g) (h) (i)

Figure 3.13. Length change ∆L/L for a magnetic field applied along the
n̂ = [111], [110], and [001] directions for X-, Y-, and Z-AIAO phases, where
the x, y, and z components of the pseudospin constitute the all-in all-out
configuration, respectively. Depicted are the three common experimentally ac-
cessible cubic length change directions along ℓ = (1, 1, 1), (1, 1, 0), (0, 0, 1), in
red, black, and cyan, respectively. In several of these results, classically degen-
erate branches are observed at the low and intermediate fields, reflecting the
degeneracy of the all-in all-out nature of these phases. In a realistic system
with multiple domains, an average is expected over the degenerate branches.
Moreover, quantum fluctuations can enhance the discontinuity or change the
transition points; however, the overall properties are not expected to be altered.
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3.4.5 Magnetostriction for π-flux QSLs

At this stage, we have analysed the length change behaviours of classically distin-
guishable phases, namely 0-flux QSLs and AIAO ordered phases. As shown in the first
half of this chapter, the most promising candidate for the QSL phase in Ce2Zr2O7 is the
π-oQSL. Therefore, it is vital to ascertain whether magnetostriction is also useful for
distinguishing between π-flux QSLs and other phases because this would offer another
way to check for π-flux QSL realisation in actual materials.

Figure 3.14 presents the quantum magnetostriction behaviours of the two π-flux QSLs
parallel to a [111] magnetic field; their respective order parameter evolutions are also
shown. Here, only the quantum results are presented because the classical π-flux QSL
phase results do not capture their unique features because they do not appear in the
classical phase diagram. From these results, we can find a clear difference in the length
change behaviours of other phases, such as 0-flux QSLs and AIAO ordered phases. How-
ever, the length changes of the π-dQSL and π-oQSL phases display a resemblance, which
reveals the difficulty in distinguishing between them using magnetostriction experiments.
Of particular interest is that both phases exhibit several jumps in the length change
behaviour accompanied by stable plateaus in the order parameter evolution.

As shown in Fig. 3.14(b), the π-dQSL gradually develops into the kagome ice phase,
similar to the case of the 0-dQSL in the small field region. Upon increasing the magnetic
field, it experiences two sharp transitions at ha ∼ 2.0 and hb ∼ 3.5 accompanied by the
plateaus in τz for sublattices 1, 2, and 3. The critical field ha, in which the kagome ice
phase collapses, is almost identical to that in the 0-dQSL phase. Finally, at hc ∼ 4.0, the
system enters a fully polarised phase. The underlying physics can be described as follows:
the π-flux phases exhibit partially polarised phases as intermediate phases, which is not
described by the metamagnetic transition observed in 0-flux QSLs. In the parameter
region ha < h < hb, we estimate that 25% of tetrahedra enter the fully polarised phase
and 62.5% are in the fully polarised phase within the parameter region hb < h < hc.
Although the reason why such behaviours are found only in π-QSLs is elusive, it is
possible that the flux configuration plays an important role in determining the stability
of partially polarised phases for an intermediate field strength.

The order parameter evolution and the resulting length change behaviour of the π-
oQSL are similar to those of the π-dQSL, as shown in Figs. 3.14(a) and (b). The key
difference between the π-dQSL and π-oQSL phases is the absence of a stable kagome
ice state in the low-field window. Instead, the early locations of transition into partially
polarised phases are captured. Such instability of the oQSL is also found in the 0-flux
case, which can be an important property of oQSL phases regardless of the flux configu-
rations. In contrast with the π-dQSL phase, the plateau-like order parameter evolution
in τz for sublattices 1, 2, and 3 displays a subtle field dependence whose origin has yet
to be revealed. Unfortunately, the difference between the π-dQSL and π-oQSL does not
yield distinct behaviours in the magnetostriction; therefore, we cannot determine the
QSL type when a length change with several jump structures is observed. However, once
again, it must be emphasised that the multiple jump structures are unique to π-flux
QSLs. Therefore, the 0-dQSL and π-dQSL, which were proven to be almost indistin-
guishable via neutron scattering, can be distinguished by this novel probe for detecting
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quantum phases: magnetostriction measurement. The key message in this chapter is as
follows: the combination of an ordinary probe (neutron scattering measurement) and a
novel probe (magnetostriction measurement) reveals the existence of new type of QSL,
namely multipolar quantum spin liquids.

(a) π-QSLs, H||[111]
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Figure 3.14. Magnetostriction along the ℓ = (1, 1, 1) direction and order pa-
rameter evolution under the n̂ = [111] magnetic field for the π-flux dipolar QSL
(π-dQSL) and octupolar QSL (π-oQSL). (a): relative length change, ∆L/L,
for the π-dQSL and π-oQSL, respectively, along ℓ = (1, 1, 1) and the n̂ = [111]
magnetic field. Squares indicate 16-site exact diagonalisation magnetostric-
tions and order parameters. Multiple jump structures in the length change
behaviours are unique properties of π-flux QSLs. (b): π-QSL order parame-
ter evolution. The π-dQSL gradually develops into the kagome ice phase in
the small-field region. Upon increasing the field, the kagome ice undergoes

two sudden transitions in ⟨τ (1,2,3)z ⟩ at approximately ha ∼ 2.0 and hb ∼ 3.5

accompanied by h-independent τ
(1,2,3)
z . From the values of these plateaus, we

estimate that 25% (62.5%) of tetrahedra are in the fully polarised phase for
ha < h < hb (hb < h < hc). Then, at approximately hc ∼ 4.0, the system
enters a fully polarised phase. The π-oQSL also exhibits a similar behaviour
except for the stable kagome ice state. In addition, the meaning of the value
of τz in the plateaus is unclear. Resemblance in the length change behaviour
stems from the similarity in order parameter evolution.

3.5 Conclusion

In this chapter, we analysed the dipolar-octupolar Kramers system in rare-earth py-
rochlore materials and revealed the existence of four types of QSLs, that is, the dipolar
and octupolar QSLs with 0 and π flux. The flux degree of freedom was concealed due to
the difficulty in accessing the frustrated parameter region; however, this was made clear
by exploiting the exact diagonalisation method on the 32-site cluster. In addition, we
studied the physical properties, the static and dynamic structure factors, of four QSLs
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from classical and quantum viewpoints. As a result, we found strong evidence for the
realisation of the π flux octupolar QSL phase in Ce2Zr2O7. This is the first observation
of a multipolar quantum spin liquid and has the potential to exhibit exotic phenomena
owing to its multipolar nature. Its field dependence and novel responses are expected to
be of experimental interest in future studies.

In the latter half of this chapter, a novel probe was proposed to complete the ex-
perimental identification method for QSLs. In the first half, it had become clear that
distinguishing between the 0-dQSL and π-dQSL using conventional experimental meth-
ods alone, such as neutron scattering experiments, was a difficult task. Therefore, we have
shown that they are distinguishable using magnetostriction experiments, which have been
successful in distinguishing MPOs or QSLs in other f electron systems. In this theory,
magnetic-field-supported strain-pseudospin coupling plays an important role and enables
us to capture the different length change behaviours under an external magnetic field
depending on the types of QSLs. These results suggest that the lattice degree of freedom
is also useful in detecting multipoles with time-reversal even nature, which do not directly
interact with the strains. Furthermore, importantly, magnetostriction measurement can
be a new promising experimental method for detecting multipoles with ranks greater
than two, which has been in high demand.

As a concluding remark, it is once again emphasised that this is the first time that a
multipolar quantum spin liquid has been found in which the local multipoles are frustrated
and constitute the quantum spin liquid. This discovery opens a new door for the study
of quantum spin liquids and will broaden the scope of future research in terms of peculiar
responses and practical applications.
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Chapter 4

Field-revealed one-dimensionality in
non-Kramers pyrochlore materials

In the previous chapter, we discussed the effect of spin configuration on the lattice de-
gree of freedom and the usefulness of magnetostriction to probe various quantum phases,
including multipolar QSLs and MPOs. In this chapter, we will discuss the effect of the
lattice degree of freedom on the spin system. Quantised lattice fluctuations, phonons,
can linearly couple to the local quadrupolar moment in the non-Kramers doublet ground
state owing to its time-reversal even nature. First, this phonon-pseudospin coupling is
shown to result in an effective transverse field to the local quadrupoles. Then, the re-
alisation of an emergent one-dimensional transverse field Ising model is proposed for a
particular external magnetic field, that is, the field along the [110] direction.

On the experimental side, an unusual NMR relaxation time behaviour is observed
in the non-Kramers pyrochlore material Pr2Zr2O7 under the [110] magnetic field. We
demonstrate that these behaviours can be described by the finite temperature quantum
phase transition of the one-dimensional transverse field Ising model. Because the anoma-
lies associated with this transition are usually concealed in specific heat and susceptibility
measurements, only NMR relaxation time measurement provides strong evidence of emer-
gent one-dimensionality in three-dimensional frustrated magnets.

4.1 Introduction

As revealed previously, to develop a deep understanding of rare-earth pyrochlore ma-
terials, it is crucial that the lattice degree of freedom is considered. In particular, non-
Kramers pyrochlore materials possess local quadrupolar moments that can linearly couple
to lattice dislocations; thus, exploring their phonon-pseudospin interactions is of particu-
lar importance. However, interesting phonon-induced phenomena have not been reported
and are currently not being actively studied. Motivated by these circumstances, we will
reveal the explicit form of phonon-pseudospin couplings in non-Kramers pyrochlore sys-
tems and suggest that this coupling plays an important role in describing the peculiar
behaviour of NMR relaxation time T1 under an external magnetic field along the [110]
direction in Pr2Zr2O7, which is an unpublished experimental result.
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The extremely large [110] magnetic field separates the three-dimensional pyrochlore
lattice into two types of one-dimensional chains. Let us consider the following nearest-
neighbour pseudospin 1/2 model under an external field along the [110] direction:

Hspin = J
∑
⟨ij⟩

Sz
i S

z
j −

∑
i

h · ẑαSz
i . (4.1)

Here, we ignore the J± and J±± terms in Eq. (2.1) for simplicity, α represents the
sublattice index to which site i belongs, and h ∥ [110]. As we mentioned in Section 2.1.2,
the Ising anisotropy exits in the Pr-based pyrochlore materials; and thus, ignoring the
transverse term J± and J±± is not far from reality. From Table 3.1, we find h · ẑα = 0 for
sublattices 1 and 2, which means the one-dimensional chains constituted by sublattices 0
and 3 become fully polarised (forced ferromagnetic chain) and the other one-dimensional
chains constituted by sublattices 1 and 2 remain decoupled within the strong field limit
(decoupled chain) [134]. A schematic of this situation is shown in Fig. 4.1.

In Fig. 4.1(a), we can see that the forced ferromagnetic and decoupled chains ac-
cumulate alternately along the crystal c direction. Because only the nearest-neighbour
interactions are considered, the chain-chain couplings within the same ab plane are negli-
gible; however, those between different ab planes (chain-chain coupling between different
types of chains) are finite. Bearing this in mind, we can identify the ground state spin
configuration of each chain within the strong field limit, as shown in Fig. 4.1(b). The
spins in the forced ferromagnetic chain can couple to the external field and point in the
+ẑ0 and −ẑ3 directions, where ẑα is the local z axis of sublattice α defined in Table 3.1.
As a result, net magnetisation along the [110] axis remains in the forced ferromagnetic
chains. In the decoupled chain, although the spins exhibit a similar configuration to
those in the forced ferromagnetic chain, as shown in Fig. 4.1(b), their origin is different.
Because the spins cannot couple to the external field, their configuration is determined by
the Ising term in Eq. (4.1). Remembering that this interaction yields the two-in two-out
constraint to a single tetrahedron and each tetrahedron is constructed from two atoms
of the forced ferromagnetic chain (one points inwards and the other points outwards
from the tetrahedron) and two atoms of the decoupled chain, we find two possible spin
configurations as the ground states: (+ẑ1,−ẑ2) and (−ẑ1,+ẑ2). This indicates that the
decoupled chain is regarded as a one-dimensional antiferromagnetic Ising chain, where the
local z axis is dependent on the sublattice index. Note that this robustness of the two-in
two-out configuration relates to the robustness of the U(1) QSL in the dipolar-octupolar
system under a field along the [110] direction (Fig. 2.6(c)).

The uniqueness of the [110] field direction also appears in the experimental signatures.
For instance, the NMR study on Zr sites of Pr2Zr2O7 for a variety of magnetic field
directions revealed an unusual temperature dependence of the spin-lattice relaxation time
T1. As shown in Fig. 4.1(a), the Zr atom is surrounded by six Pr ions and monitors the
local (pseudo)spin susceptibility via transferred hyperfine interactions. In particular,
under the [110] magnetic field, four sites out of the six belong to the forced ferromagnetic
chain and the remaining two sites belong to the decoupled chain. Figure 4.2 presents
the experimental results of the temperature dependences of 1/T1. For the magnetic field
along the [111] and [100] directions, 1/T1 drastically reduces at low temperatures. More
precisely, these “drop” behaviours are observed forH > 2 T under the [111] magnetic field
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Forced ferromagnetic chain

[110]

[110]-

or

Decoupled chain

(a) (b)

[110]

Figure 4.1. Schematic illustration of the separation of the pyrochlore lattice
into two types of one-dimensional chains under a strong [110] magnetic field.
(a): Chain decomposition of the rare-earth sites in the pyrochlore lattice. The
orange (green) spheres represent the sites that belong to sublattices 0 and 3
(1 and 2) and constitute the forced ferromagnetic (decoupled) chains. The
gold sphere is one of the Zr atoms of Pr2Zr2O7, and the internal field at this
Zr site originates from nearest-neighbour Pr sites, that is, the sites on the
red-dashed hexagon. (b): Spin configuration under the strong [110] magnetic
field of the forced ferromagnetic and decoupled chains. The spins in the forced
ferromagnetic chain point in the +ẑ0 and −ẑ3 directions owing to usual Zeeman
coupling, where ẑα is the local z axis of sublattice α defined in Table 3.1.
Meanwhile, the spin configurations in the decoupled chain are determined only
by the Ising interaction because of the lack of Zeeman coupling. There are two
possible spin configurations within a single tetrahedron that maintain the ice
rule: spins pointing to (+ẑ1,−ẑ2) and (−ẑ1,+ẑ2).

and are observed in magnetic fields as small as 0.5 T in the [100] direction. Meanwhile,
for the [110] magnetic field, 1/T1 reaches its minimum at approximately T = 5 K and
then increases with decreasing temperature. This “up-and-down” behaviour is unique
to this field direction and is associated with the emergent one-dimensionality described
above.

Several of these behaviours can be explained by a simple analysis. For example, the
“drop” behaviours are described in the context of a gapped spin system. Under the
field along the [111] direction, the system enters into the kagome ice state. Then, at
approximately h/J ∼ 2.0, it becomes a fully polarised state [135]. In the high field
region, the singlet fully polarised ground state has an excitation gap ∆ corresponding to
the required energy for spin-flipping. Analogous to the NMR relaxation time behaviour
of s-wave superconductivity, we expect the relation 1/T1 ∝ exp (−∆/kBT ) in this strong
field regime. In fact, the “drop” behaviour for h > 2 T and the [111] field direction can be
accurately fitted by this relation, and the increasing ∆ with increasing field is consistent
with this scenario. In addition, it is reasonable to assume that the phase transition to the
fully polarised state occurs at approximately 2 T because J is of the order of a few Tesla,
and hence the drop is only observed for h > 2 T. A similar scenario is also applicable to
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Figure 4.2. Temperature dependences of the inverse of the spin-lattice re-
laxation time 1/T1 for various magnetic field directions, (a): along the [111]
direction, (b): [110] direction, and (c): [100] direction. For the [111] and
[100] field directions, 1/T1 drastically decreases with decreasing temperature,
whereas 1/T1 reaches its minimum at approximately 5 K before increasing for
the [110] field direction. This uniqueness can be attributed to emergent one-
dimensionality under the [110] magnetic field. Note that this experimental data
is unpublished and obtained from a private communication with Dr. Hikaru
Takeda.

the “drop” behaviour under the [100] magnetic field. In this case, the system does not
experience the kagome ice state; hence, the “drop” signature is observable for fields as
small as 0.5 T.

Unfortunately, the other features cannot be described by a simple analysis. In partic-
ular, the origin of the unique “up-and-down” relaxation time behaviour for the [110] field
remains elusive because it cannot be explained by simply considering chain decoupling.
The key purposes of this chapter are as follows:

1. To consider the phonon degree of freedom and construct the phonon-pseudospin
coupling Hamiltonian.

2. To describe the up-and-down behaviour in the spin-lattice relaxation time T1 under
the [110] magnetic field.

To begin with, we consider phonon-spin coupling of non-Kramers pyrochlore systems in
the subsequent section.
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4.2 Phonon-pseudospin coupling

In this section, a Hamiltonian, including the phonon degree of freedom, is constructed
by considering a generalised spring model and point charge approximation. Two different
models are proposed depending on the considered assumptions; however, only one of them
is discussed here. The second model is described in Appendix C for future research.

4.2.1 Phonon part

We start from the following generalised model for atomic oscillations

Hph =
∑
j,α,µ

p̂2jαµ
2mα

+
1

2

∑
jαµ
j′,β,ν

ϕ(jαµ; j′βν)ûjαµûj′βν , (4.2)

where j and j′ are the unit cell indices, α and β are the sublattice indices, and µ, ν = x, y, z
denote the direction of displacement. ûjαµ and p̂jαµ are the µ components of the position
and momentum operators at site (j, α), respectively. Note that û is measured from
the equilibrium position, that is, û denotes the deviation from the equilibrium position.
ϕ(jαµ; j′βν) is the coupling constant and satisfies ϕ(jαµ; j′βν) = ϕ(j′βν; jαµ). Because
it is reported that the dislocation of Pr ions is significant in Pr2Zr2O7 [9, 136], we consider
a situation in which only the nearest-neighbour Pr ions couple with each other through
certain coupling constants. Applying the Fourier transformation

ûjαµ =
1√
N

∑
q

eiq·Rj ûαµ(q) p̂jαµ =
1√
N

∑
q

e−iq·Rj p̂αµ(q), (4.3)

we find that Eq. (4.2) becomes

Hph =
∑
q

∑
α,µ

p̂αµ(−q)p̂αµ(q)
2mα

+
1

2

∑
q

∑
α,µ
β,ν

ϕ̃αµ,βν(q)ûαµ(−q)ûβν(q)

=
1

2

∑
q

∑
α,µ

p̂αµ(−q)√
mα

p̂αµ(q)√
mα

+
1

2

∑
q

∑
α,µ
β,ν

ϕ̃αµ,βν(q)√
mαmβ

√
mαûαµ(−q)

√
mβûβν(q)

=
1

2

∑
q

[
p̃(−q) · p̃(q) + ũ†(q)D(q)ũ(q)

]
=

1

2

∑
q

∑
s

[
|Ps(q)|2 + ω2

s(q)|Us(q)|2
]
.

(4.4)

Here, ũαµ =
√
mαûαµ and p̃αµ = p̂αµ/

√
mα are the new conjugate operator pair and are

represented in vector form in the third line. ωs(q) is the s-th eigenvalue of the dynamical
matrix Dαµ,βν(q) = ϕ̃αµ,βν(q)/

√
mαmβ, and Us(q) is the s-th component of the eigenstate

of D, that is,
−→
U = U †(q)ũ(q), where U is the unitary operator, which diagonalises the
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dynamical matrix D. Because this Hamiltonian can be regarded as a set of independent
harmonic oscillators, we can introduce the usual bosonic phonon operators:

Us(q) =

√
ℏ

2ω2
s(q)

(
asq + a†s,−q

)
, Ps(q) = i

√
ℏω2

s(q)

2

(
−as,−q + a†s,q

)
. (4.5)

Equipped with these results, the phonon part of the Hamiltonian is simplified as

Hph =
∑
q

∑
s

ℏωs(q)

(
a†sqasq +

1

2

)
. (4.6)

4.2.2 Phonon-pseudospin interaction

We assume that the main contribution of phonon-pseudospin interactions originates
from the modified crystal electric field (CEF) owing to the dislocation of the Pr ions.
Moreover, there is an in-plane instability in the Pr location; thus, we consider dislocation
within the local xy plane and its effect using point charge approximation [96]. The D3d

symmetric CEF is composed of three types of ions: two oxygen ions at the A sites (red
spheres), six iridium ions in a hexagonal arrangement (gold spheres), and six oxygen ions
at the B sites (blue spheres), as shown in Fig. 4.3. Here, the yellow sphere at the centre
denotes the equilibrium position of the Pr ion, and u = (u cosα, u sinα, 0) indicates the
deviation from the origin within the local xy plane.

Pr
Zr

O  (A site)

O
 (B site)

u

u

Figure 4.3. Site configuration of the D3d symmetric crystal electric field. The
yellow sphere denotes the Pr ion, the two red spheres represent the oxygen ions
at the A sites, the six blue spheres represent the oxygen ions at the B sites, and
the six gold spheres denote the Zr ions. The green ellipse indicates the local xy
plane, and the red vector is the deviation from the equilibrium position. The
right panel shows this view from the local z axis. Note that this configuration,
including the direction of the local x, y and z, is independent of the sublattice
index introduced in the previous chapter.
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CEF from the oxygen ions at the A sites

Without the deviation, the oxygen ions at the A sites are located at (0,0,±
√
3a
8
),

where a is the lattice constant. When the Pr ion shifts to (u cosα, u sinα, 0), their

relative positions become (−u cosα,−u sinα,±
√
3a
8
). In the spherical coordinate frame,

they are represented as R1 = (rO,A, θ0, π + α) and R2 = (rO,A, π − θ0, π + α), where

rO,A =
(
u2 + 3

64
a2
)−1/2

and θ0 = cos−1
( √

3a
8rO,A

)
.

In general, the potential energy at r = (r, θ, ϕ) arising from the ions with electric
charge Ze residing at Ri = (Ri, θi, ϕi) is given by [78]

VCEF(r, θ, ϕ) =
∑
i

∞∑
k=0

k∑
m=−k

rkγikmC
(k)
m (θ, ϕ), (4.7)

where

γikm =

√
4π

2k + 1

Ze2

Rk+1
i

∑
i

Y ∗
km(θi, ϕi), C(k)

m =

√
4π

2k + 1
Ykm(θ, ϕ). (4.8)

Note that Ykm(θ, ϕ) denotes the spherical harmonics.
In the present case, we find

γkm =

√
4π

2k + 1

2e2

rk+1
O,A

[Y ∗
km(θ0, π + α) + Y ∗

km(π − θ0, π + α)]

=

√
4π

2k + 1

2e2

rk+1
O,A

[
(−1)m + (−1)k

]
Y ∗
km(θ0, α),

(4.9)

which yields

V O,A
CEF(r) =

∞∑
k=0

k∑
m=−k

V
O,A(k,m)
CEF (r)

=
∞∑
k=0

k∑
m=−k

√
4π

2k + 1

2e2

rk+1
O,A

rk
[
(−1)m + (−1)k

]
Y ∗
km(θ0, α)C

(k)
m (θ, ϕ).

(4.10)

To consider the CEF effect on f electrons with l = 3,ml = −3,−2, . . . , 3, we next
calculate ⟨lm′|V O,A

CEF(r)|lm⟩. For f electrons, the even k (with k ≤ 6) gives the finite
matrix element. Using Eq. (4.10), we can find that the matrix elements are finite only
when m′ −m is even. Expanding the spherical harmonics up to the second order with
regard to δ = u/a, we finally obtain V O,A

CEF(r) = V
O,A(0)
CEF (r) + V

O,A(2)
CEF (r), where

V
O,A(0)
CEF (r)(±3,±3) = VO,A

3 , V
O,A(0)
CEF (r)(±2,±2) = VO,A

2

V
O,A(0)
CEF (r)(±1,±1) = VO,A

1 , V
O,A(0)
CEF (r)(±0,±0) = VO,A

0

V
O,A(2)
CEF (r)(3,1) =

(
V

O,A(2)
CEF (r)(1,3)

)∗
= V

O,A(2)
CEF (r)(−1,−3) =

(
V

O,A(2)
CEF (r)(−3,−1)

)∗
= UO,A

3 δ2e−2iα

V
O,A(2)
CEF (r)(2,0) =

(
V

O,A(2)
CEF (r)(0,2)

)∗
= V

O,A(2)
CEF (r)(0,−2) =

(
V

O,A(2)
CEF (r)(−2,0)

)∗
= UO,A

2 δ2e−2iα

V
O,A(2)
CEF (r)(1,−1) =

(
V

O,A(2)
CEF (r)(−1,1)

)∗
= UO,A

1 δ2e−2iα.

(4.11)
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Here, V O,A
CEF(r)(m′,m) denotes ⟨lm′|V O,A

CEF(r)|lm⟩, and V and U are real parameters that
complexly depend on the expectation value of the power r, r̄p =

∫
|R4f (r)|2rpr2dr. Note

that U/V is of the order of 102.

CEF from the Zr ions

We can employ a similar analysis for the CEF induced by the Zr ions. With the
in-plane deviation of the Pr ions, the relative positions of the Zr site are represented as

R1 = (R1, π/2, ϕ1), R1 =
a

2

[
1− 4δ sin

(
α +

π

3

)
+ 4δ2

]1/2
, ϕ = tan−1

[
1− 4δ sinα√
3− 4δ cosα

]
,

R2 = (R2, π/2, ϕ2), R2 =
a

2

[
1− 4δ sinα + 4δ2

]1/2
, ϕ = tan−1

[
1− 2δ sinα

−2δ cosα

]
,

R3 = (R3, π/2, ϕ3), R3 =
a

2

[
1− 4δ sin

(
α− π

3

)
+ 4δ2

]1/2
, ϕ = tan−1

[
1− 4δ sinα

−
√
3− 4δ cosα

]
,

R4 = (R4, π/2, ϕ4), R4 =
a

2

[
1 + 4δ sin

(
α +

π

3

)
+ 4δ2

]1/2
, ϕ = tan−1

[
−1− 4δ sinα

−
√
3− 4δ cosα

]
,

R5 = (R5, π/2, ϕ5), R5 =
a

2

[
1 + 4δ sinα + 4δ2

]1/2
, ϕ = tan−1

[
−1− 4δ sinα

−2δ cosα

]
,

R6 = (R6, π/2, ϕ6), R6 =
a

2

[
1 + 4δ sin

(
α− π

3

)
+ 4δ2

]1/2
, ϕ = tan−1

[
−1− 4δ sinα√
3− 4δ cosα

]
.

(4.12)
Therefore, the CEF from the Zr ions is

V Zr
CEF(r) = −

6∑
i=1

∞∑
k=0

k∑
m=−k

√
4π

2k + 1

4e2

Ri

(
r

Ri

)k

Y ∗
km(π/2, ϕi)C

(k)
m (θ, ϕ). (4.13)

Similar to the previous case, the matrix elements ⟨lm′|V Zr
CEF(r)|lm⟩ are finite only when

k ≤ 6, andm′−m are even. Each matrix element of ⟨lm′|V Zr
CEF(r)|lm⟩ = ⟨lm′|V Zr(0)

CEF (r)|lm⟩+
⟨l,m′|V Zr(2)

CEF (r)|lm⟩ is expressed as follows:

V
Zr(0)
CEF (r)(±3,±3) = VZr

3 , V
Zr(0)
CEF (r)(±2,±2) = VZr

2 , V
Zr(0)
CEF (r)(±1,±1) = VZr

1 ,

V
Zr(0)
CEF (r)(±0,±0) = VZr

0 , V
Zr(0)
CEF (r)(3,−3) =

(
V

Zr(0)
CEF (r)(−3,3)

)∗
= VZr

6 ,

V
Zr(2)
CEF (r)(3,1) =

(
V

Zr(2)
CEF (r)(1,3)

)∗
= V

Zr(2)
CEF (r)(−1,−3) =

(
V

Zr(2)
CEF (r)(−3,−1)

)∗
= UZr

3 δ
2e−2iα,

V
Zr(2)
CEF (r)(2,0) =

(
V

Zr(2)
CEF (r)(0,2)

)∗
= V

Zr(2)
CEF (r)(0,−2) =

(
V

Zr(2)
CEF (r)(−2,0)

)∗
= UZr

2 δ
2e−2iα,

V
Zr(2)
CEF (r)(1,−1) =

(
V

Zr(2)
CEF (r)(−1,1)

)∗
= UZr

1 δ
2e−2iα,

V
Zr(2)
CEF (r)(3,−1) =

(
V

Zr(2)
CEF (r)(−1,3)

)∗
= V

Zr(2)
CEF (r)(1,−3) =

(
V

Zr(2)
CEF (r)(−3,1)

)∗
= UZr

4 δ
2e2iα,

V
Zr(2)
CEF (r)(2,−2) =

(
V

Zr(2)
CEF (r)(−2,2)

)∗
= UZr

5 δ
2e2iα.

(4.14)
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CEF from the oxygen ions at the B sites

As shown in the left panel of Fig. 4.3, oxygen ions at the B sites do not reside on the
local xy plane. Three of them reside on the z = z0 plane and the others are on the z = −z0
plane, which reduces the CEF symmetry from D6d to D3d. Their equilibrium positions
are represented using the parameter η as R0

1 = (
√
6a(1

8
− η), 0,

√
3ηa),R0

2 = (
√
6a
2
(1
8
−

η), 3
√
2a
2

(1
8
− η),−

√
3ηa),R0

2 = (−
√
6a
2
(1
8
− η), 3

√
2a
2

(1
8
− η),

√
3ηa),R0

4 = −R0
1,R

0
5 = −R0

2,
and R0

6 = −R0
3. Although their relative positions in the presence of Pr ion deviation is

not presented owing to their extreme complexity, we obtain the CEF from the oxygen
ions at the B sites as

V O,B
CEF(r) =

6∑
i=1

∞∑
k=0

k∑
m=−k

√
4π

2k + 1

2e2

Ri

(
r

Ri

)k

Y ∗
km (θi, ϕi)C

(k)
m (θ, ϕ), (4.15)

where Ri = (Ri, θi, ϕi) are the oxygen ions’ relative locations in the presence of Pr
ion deviation. Of particular importance is the finite nature of the matrix elements
⟨lm′|V O,B

CEF(r)|lm⟩ for odd m′ − m, which contrasts with the above two cases. Then,

each matrix element of ⟨lm′|V O,B
CEF(r)|lm⟩ = ⟨lm′|V O,B(0)

CEF (r)|lm⟩ + ⟨lm′|V O,B(2)
CEF (r)|lm⟩ is

obtained. However, these are not shown here owing to space limitation. Instead, the
combined CEF effect is provided in the next section.

Dislocation-induced emergent transverse field

Combining all three CEF effects, we can derive the total CEF Hamiltonian as VCEF =
V

(0)
CEF + V

(2)
CEF, where V

(i)
CEF indicates the i-th order term in terms of δ = u/a. The explicit

form is

V
(0)
CEF =

∑
m′,m

∑
σ

V
(0)
CEF,(m′,m)f

†
m′σfmσ,

V
(0)
CEF,(±3,±3) = V3, V

(0)
CEF,(±2,±2) = V2, V

(0)
CEF,(±1,±1) = V1,

V
(0)
CEF,(0,0) = V0, V

(0)
CEF,(3,−3) =

(
V

(0)
CEF,(−3,3)

)∗
= V4,

V
(0)
CEF,(3,0) =

(
V

(0)
CEF,(0,3)

)∗
= −V (0)

CEF,(0,−3) = −
(
V

(0)
CEF,(−3,0)

)∗
= V5,

V
(0)
CEF,(2,−1) =

(
V

(0)
CEF,(−1,2)

)∗
= −V (0)

CEF,(1,−2) = −
(
V

(0)
CEF,(−2,1)

)∗
= V6,

(4.16)
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V
(2)
CEF =

∑
m′,m

∑
σ

V
(2)
CEF,(m′,m)f

†
m′σfmσ,

V
(2)
CEF,(3,2) =

(
V

(2)
CEF,(2,3)

)∗
= −V (2)

CEF,(−2,−3) = −
(
V

(2)
CEF,(−3,−2)

)∗
= U0δ2e2iα

V
(2)
CEF,(3,1) =

(
V

(2)
CEF,(1,3)

)∗
= V

(2)
CEF,(−1,−3) =

(
V

(2)
CEF,(−3,−1)

)∗
= U1δ2e−2iα

V
(2)
CEF,(3,−1) =

(
V

(2)
CEF,(−1,3)

)∗
= V

(2)
CEF,(1,−3) =

(
V

(2)
CEF,(−3,1)

)∗
= U2δ2e2iα

V
(2)
CEF,(3,−2) =

(
V

(2)
CEF,(−2,3)

)∗
= −V (2)

CEF,(2,−3) = −
(
V

(2)
CEF,(−3,2)

)∗
= U3δ2e−2iα

V
(2)
CEF,(2,1) =

(
V

(2)
CEF,(1,2)

)∗
= −V (2)

CEF,(−1,−2) = −
(
V

(2)
CEF,(−2,−1)

)∗
= U4δ2e2iα

V
(2)
CEF,(2,0) =

(
V

(2)
CEF,(0,2)

)∗
= V

(2)
CEF,(0,−2) =

(
V

(2)
CEF,(−2,0)

)∗
= U5δ2e−2iα

V
(2)
CEF,(2,−2) =

(
V

(2)
CEF,(−2,2)

)∗
= U6δ2e2iα

V
(2)
CEF,(1,0) =

(
V

(2)
CEF,(0,1)

)∗
= −V (2)

CEF,(0,−1) = −
(
V

(2)
CEF,(−1,0)

)∗
= U7δ2e2iα

V
(2)
CEF,(1,−1) =

(
V

(2)
CEF,(−1,1)

)∗
= U8δ2e−2iα

(4.17)

where f †
mσ (fmσ) is a creation (annihilation) operator of the f electron with a magnetic

quantum number m and spin σ, and Vi and Ui are real crystal field parameters. It is once
again emphasised that U/V is of the order of 102.

As shown in Section 1.2.3, the ground state J-multiplet of the Pr ion is the J = 4
nine-fold state. To examine the CEF splitting of the ground state J-multiplet, we must
calculate the matrix element with regard to the basis functions |JM⟩ (J = 4,M =
−4,−3, . . . , 4). Employing the LS-coupling scheme, the states |JM⟩ are expanded by
Clebsch–Gordan coefficients as

|JM⟩

=
∑

mL,mS

⟨L = 5,mL;S = 1,mS|JM⟩|L = 5,mL;S = 1,mS⟩

=
∑

mℓ1
,σ1

mℓ2
,σ2

⟨ℓ1 = 3,mℓ1 ; ℓ2 = 3,mℓ2 |L = 5,mℓ1 +mℓ2⟩⟨s1 = 1/2, σ1; s2 = 1/2, σ2|S = 1, σ1 + σ2⟩

⟨L = 5,mℓ1 +mℓ2 ;S = 1, σ1 + σ2|JM⟩f †
mℓ1

σ1
f †
mℓ2

σ2
|0⟩

≡
∑

mℓ1
,mℓ2

σ1,σ2

CMmℓ1
,mℓ2

,σ1,σ2
f †
mℓ1

σ1
f †
mℓ2

σ2
|0⟩.

(4.18)
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Using this result, we obtain

⟨JM ′|VCEF|JM⟩ =
∑

m′
ℓ1
,m′

ℓ2
σ′
1,σ

′
2

∑
mℓ1

,mℓ2
σ1,σ2

∑
α,β,σ

CM ′

m′
ℓ1
,m′

ℓ2
,σ′

1,σ
′
2
VCEF,(α,β)CMmℓ1

,mℓ2
,σ1,σ2

⟨0|fm′
ℓ2
σ2
fm′

ℓ1
σ1
f †
ασfβσf

†
mℓ1

σ1
f †
mℓ2

σ2
|0⟩,
(4.19)

and

⟨0|fm′
ℓ2
σ2
fm′

ℓ1
σ1
f †
ασfβσf

†
mℓ1

σ1
f †
mℓ2

σ2
|0⟩ = δβ,mℓ1

δσ,σ1⟨fm′
ℓ2
σ2
fm′

ℓ1
σ1
f †
ασf

†
mℓ2

σ2
⟩

− δβ,mℓ2
δσ,σ2⟨fm′

ℓ2
σ2
fm′

ℓ1
σ1
f †
ασf

†
mℓ1

σ1
⟩

= δβ,mℓ1
δσ,σ1δα,m′

ℓ1
δσ,σ′

1
δm′

ℓ2
,mℓ2

δσ′
2,σ2

− δβ,mℓ1
δσ,σ1δα,m′

ℓ2
δσ,σ′

2
δm′

ℓ1
,mℓ2

δσ′
1,σ2

− δβ,mℓ2
δσ,σ2δα,m′

ℓ1
δσ,σ′

1
δm′

ℓ2
,mℓ1

δσ′
2,σ1

+ δβ,mℓ2
δσ,σ2δα,m′

ℓ2
δσ,σ′

2
δm′

ℓ1
,mℓ1

δσ′
1,σ1

,

(4.20)

which yields

⟨JM ′|VCEF|JM⟩ =
∑
α,β,γ

∑
σ,σ′

VCEF,(α,β)

[
CM ′

α,γ,σ,σ′CMβ,γ,σ,σ′ − CM
′

γ,α,σ,σ′CMβ,γ,σ′,σ

−CM ′

α,γ,σ,σ′CMγ,β,σ′,σ + CM
′

γ,α,σ,σ′CMγ,β,σ,σ′

]
.

(4.21)

To analyse the effect of the dislocation-induced CEF on the local pseudospins, we treat
V

(2)
CEF as a perturbation of the D3d symmetric CEF, V

(0)
CEF. Diagonalising the Hamiltonian

⟨JM ′|V (0)
CEF|JM⟩ reveals that the nine-fold J = 4 is separated into three doublets and

three singlets, and the ground state is known to be the doublet [137]. The wave function
of the ground state doublet is described as

|±⟩ = p|M = ±4⟩ ± q|M = ±1⟩+ r|M = ∓2⟩, (4.22)

where p, q, and r are real parameters, which depend on the CEF parameters. Describ-
ing these states as |σ⟩ =

∑
M CσM |JM⟩, where σ = +,−, we find that the first-order

perturbative calculation using Eqs. (4.17) results in

⟨σ′|V (2)
CEF|σ⟩ =

∑
M ′,M

Cσ′

M ′CσM⟨JM ′|V (2)
CEF|JM⟩ =

(
0 −Γδ2e2iα

−Γδ2e−2iα 0

)
. (4.23)

Here, the parameter Γ is real and complexly depends on the CEF parameters U . Impor-
tantly, this result indicates that Pr ion dislocation induces the effective transverse field
to the local pseudospin. Combined with the result of the previous section, we can derive
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the total Hamiltonian as

H = Hspin +Hph +Hs-p

= J
∑
⟨ij⟩

Sz
i S

z
j −

∑
i

h · ẑαSz
i +

∑
q

∑
s

ℏωs(q)

(
a†sqasq +

1

2

)
−∆0

∑
i

[
(u2i,x − u2i,y)Sx

i − 2ui,xui,yS
y
i

]
.

(4.24)

Equation (4.23) is reformulated using the relations ux = u cosα, uy = u sinα, and
∆0 = Γ/a2, and the site dependence of the deviation is assumed. An intriguing feature of
this Hamiltonian is that, if the phonon part is removed and only the phonon-pseudospin
coupling is considered, the aforementioned decoupled chain under an external [110] mag-
netic field can be regarded as an emergent one-dimensional transverse field Ising chain.
We demonstrate that this treatment succeeds in explaining the unique T1 behaviour of
the NMR experiment throughout the rest of this chapter.

4.3 Benchmark calculations

In this section, several benchmark calculations are provided before describing the
characteristic features of the NMR relaxation time under the [110] magnetic field. In
the following calculation, we only consider the effect of phonons via phonon-pseudospin
coupling for simplicity. Then, under the [110] magnetic field, the Hamiltonian of the
decoupled chain is

H = J
∑
⟨ij⟩

Sz
i S

z
j −∆0

∑
i

[
(u2i,x − u2i,y)Sx

i − 2ui,xui,yS
y
i

]
. (4.25)

Let us define αi as the angle that specifies the direction of deviation of the Pr ion at site
i. The complex transverse field term can be simplified by applying frame rotation about
the ẑi axis by angle 2αi, which yields

H = J
∑
⟨ij⟩

S̃z
i S̃

z
j −∆0u

2
∑
i

S̃x
i . (4.26)

Here, we assume that the amplitude of the deviation u2 = u2x + u2y is independent of the
site indices. Clearly, this is nothing more than a transverse field Ising model with the field
Γ = ∆0u

2. Because the lattice deviation is mainly caused by thermal fluctuations, we
expect that the emergent transverse field Γ depends on the temperature T and becomes
stronger as T increases. Thus, the T dependence of Γ is first estimated by examining the
thermal average ⟨u2⟩.

Employing the notations in Section 4.2.1, the µ direction deviation of the Pr ion at
unit cell i with sublattice α is represented as

uiαµ =
1√
N

∑
q,s

1
√
mPr

eiq·RiU(q)αµ,sUs(q)

=
1√
N

∑
q,s

eiq·RiU(q)αµ,s

√
ℏ

2mPrωs(q)
(asq + a†s,−q)

(4.27)
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where mPr is the mass of the Pr ion. Now, we focus on the acoustic modes s = 0, 1, 2 and
assume that their dispersions are represented as ωs(q) = cs|q|. We find

⟨u2iα⟩ =
∑
µ=x,y

⟨u2iαµ⟩

∼ 1

N

∑
q,µ

∑
s=0,1,2

|U(q)αµ,s|2
ℏ

2mPrcs|q|
⟨(asq + a†s,−q)(as,−q + a†sq)⟩

=
1

N

∑
q,µ

∑
s=0,1,2

|U(q)αµ,s|2
ℏ

mPrcs|q|
⟨a†sqasq +

1

2
⟩

=
1

N

∑
q,µ

∑
s=0,1,2

|U(q)αµ,s|2
ℏ

2mPrcs|q|
coth

βℏcs|q|
2

.

(4.28)

Here, we assume that, at low temperatures, the q = 0 contribution is important and
remove the q-dependence of U(q)αµ,s. Then, we obtain

⟨u2iα⟩ ≃
v0
2π2

∑
µ,s

∫
dq q2|U(q = 0)αµ,s|2

ℏ
2mPrcs|q|

coth
βℏcs|q|

2

=
v0
2π2

∑
µ,s

1

(βℏcs)2
ℏ

2mPrcs
|U(q = 0)αµ,s|2

∫ ΘD/T

0

dx xcoth
x

2

∝ T 2,

(4.29)

where v0 is the volume of the unit cell and ΘD is the Debye temperature which specify the
cutoff of the integral. Because the temperature region we are interested in (a few Kelvin)
is a finite temperature, but sufficiently smaller than the Debye temperature, the upper
limit of the integral is approximated as infinity; therefore no temperature-dependent
contribution from the integral is assumed. From this assumption, we can conclude that
the main T dependence of Γ is approximated as Γ ∝ T 2 at low temperatures. Following
this estimation, we analyse the Hamiltonian defined on a one-dimensional decoupled chain

H = J
∑
⟨ij⟩

S̃z
i S̃

z
j − Γ

∑
i

S̃x
i (4.30)

with the temperature-dependent effective transverse field Γ = ρT 2, where ρ is a phe-
nomenological parameter.

Here, we briefly estimate the amplitude of Γ. If we adopt the simplest phonon Hamil-
tonian on a one-dimensional chain as the starting point, that is,

Hph =
∑
j,µ

|p̂2jµ|
2M

+
Kµ

2
(ujµ − uj+1,µ)

2 (4.31)

we find U(q)αµ,s = 1 without any approximation. Inserting the experimentally obtained
values, Debye temperature ΘD = 452 K, cs = 3700 m/s, and the lattice constant a =
7.665 × 10−10 m, we find that ⟨u2⟩ ∼ 3.57 × 10−22 m2 at 5 K [138]. From the CEF
experiment, the order of the V parameters is approximately 10 meV; thus, the order of
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the U parameters is approximately 1000 meV. Because the order of Γ is Γ ∼ O(U⟨u2⟩/a2),
we can estimate that Γ is of the order of a few Kelvin.

As is well known from the Jordan–Wigner transformation analysis, the one-dimensional
transverse field Ising model Eq. (4.30) reveals a quantum phase transition (QPT) at
Γ = J/2 for zero temperature (Appendix D). Based on this fact, we expect that the
unique behaviour of the NMR relaxation time under the [110] field is associated with
the “finite-temperature” QPT. In other words, at 5 K, where 1/T1 takes its minimum
value, the relation Γ = ρT 2 = J/2 is satisfied. In fact, because the amplitude of J is also
evaluated to be a few Kelvin, this scenario is not unrealistic. To corroborate this expec-
tation, we must confirm the absence of anomalies in the physical quantities related to the
“finite-temperature” QPT because such anomalies are not observed experimentally.

4.3.1 Specific heat

Here, the temperature dependence of the specific heat is provided for the non-Kramers
pyrochlore model with a temperature-dependent transverse field:

H = J
∑
⟨ij⟩

Sz
i S

z
j −

∑
i

h · ẑαSz
i − Γ

∑
i

Sx
i , (4.32)

where the summation is taken over all pyrochlore sites, and Γ = ρT 2. Figure 4.4(a) shows
the T dependence of the specific heat under the strong [110] magnetic field. In this case,
we expect that the forced ferromagnetic and decoupled chains emerge where the effective
transverse field Ising model is realised (Eq. (4.30)). Thus, the QPT on the decoupled
chains will be observed at finite temperatures. The calculation was conducted on the
16-site cluster of the pyrochlore lattice by employing the microcanonical TPQ method
(mTPQ). The gray (blue) dashed (solid) line represents the result for Γ = 0.0 (Γ = ρT 2),
where J = 1.0 and ρ = 0.02. In this parameter set, the finite temperature QPT should
occur at T = 5.0 K. As shown in Fig. 4.4(a), QPT signatures are not observed, and we
find that the effect of the transverse field is almost negligible. This is consistent with the
experimental results, in which no anomalies associated with the QPT are observed. We
expect that such an anomaly is concealed by thermal fluctuations.

Remarkably, the presence of the QPT induced by the effective transverse field is
proposed in the absence of external magnetic fields [139]. Motivated by this proposal,
we examine the T dependence of the specific heat without a magnetic field. In this case,
a benign effect of the transverse field is found and traces of the QPT are not observed.
From these results, we can conclude that the “finite temperature” QPT is concealed due
to thermal fluctuations and is not captured within the usual physical quantity.

4.3.2 Magnetic susceptibility

Because it is often the case that the magnetic susceptibility is more sensitive to fluctu-
ations, and effective transverse field is applied to examine the effect. Figure 4.5 presents
the temperature dependence of the inverse susceptibility of Eq. (4.32). As in Fig. 4.4,
the gray (blue) dashed (solid) line represents the results for Γ = 0.0 (Γ = ρT 2), where
J = 1.0 and ρ = 0.02. Whether the effective transverse magnetic field exists or not, a
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Figure 4.4. Temperature dependence of the specific heat for Eq. (4.32) with
J = 1.0 and ρ = 0.02. The strength of the applied magnetic field along the
[110] direction is (a): h = 10.0 (strong limit) and (b): h = 0.0. The gray (blue)
dashed (solid) line represents the result for Γ = 0.0 (Γ = ρT 2). We find that
the effect of the transverse field is almost negligible in both cases.

Curie-Weiss behaviour can be found for a wide range of temperatures. If we consider
the phonon-pseudospin coupling as an effective transverse field, its contribution to the
susceptibility is approximated by the Van-Vleck-like behaviour as 1/χ ∝ Γ ∝ T 2. Thus,
we expect an additional T 2 contribution to the Curie-Weiss-type inverse magnetic sus-
ceptibility. However, in this case, its effect is tiny enough to ignore and the effect on the
overall magnetic susceptibility is limited. Naturally, no anomalies associated with the
finite temperature QPT are observed.

Figure 4.5. Temperature dependence of the inverse susceptibility for Eq. (4.32)
with J = 1.0 and ρ = 0.02. The gray (blue) dashed (solid) line represents the
results for Γ = 0.0 (Γ = ρT 2). The Curie-Weiss behaviour is observed for
a wide range of temperatures, and a significant transverse field effect is not
observed, as expected.
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4.4 NMR relaxation time

Thus far, we have verified that the effective transverse magnetic field and accom-
panying quantum transition do not affect physical quantities such as specific heat and
magnetic susceptibility. In this section, it is proposed that the finite temperature QPT
has an influence on the NMR relaxation time and can explain the experimental signa-
tures. As shown in Fig. 4.1 and 4.6, the Zr ions are surrounded by six Pr ions on a
hexagon, and the internal field is constructed from them. When the external field is
sufficiently strong, only the Pr spins in the decoupled chain introduce fluctuations to the
internal field. Because the fluctuations perpendicular to the external field contribute the
relaxation time 1/T1, we will focus on this value.

[111]- -

h    [110]//

Zr

fluctuation fluctuation

T1? ?

sublattice 0

sublattice 0

sublattice 3

sublattice 3

sublattice 1sublattice 1

Internal
field 

Figure 4.6. Schematic illustration of the NMR measurement for Zr ions in
Pr2Zr2O7 under a strong magnetic field along the [110] direction. The internal
field at the Zr site is constructed from six Pr ions on the surrounding hexagon.
Within the strong field limit, the internal field fluctuations perpendicular to
the field’s direction, which relate to the relaxation time T1, are introduced by
the decoupled chain.

We begin from the phonon-pseudospin coupling model of the decoupled chain under
an external field along the [110] direction:

H = J
∑
j

σz
jσ

z
j+1 − Γ

∑
j

σx
j (4.33)

with Γ = ρT 2. Here, we rewrite Eq. (4.30) using Pauli matrices and consider the rotation
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about the local y axis by angle π/2. The Hamiltonian in this new coordinate frame is

H = J
∑
j

σ̃x
j σ̃

x
j+1 − Γ

∑
j

σ̃z
j . (4.34)

This transverse field Ising model can be exactly solved with the Jordan–Wigner transfor-
mation (Appendix D) which yields

H =
∑
k>0

(
c†k c−k

)(2J cos k − 2Γ 2iJ sin k

−2iJ sin k −2J cos k + 2Γ

)(
ck

c†−k

)
, (4.35)

where c†k(ck) is the creation (annihilation) operator of a spinon with momentum k. We
can derive the matrix form of Green’s function from the formula G(k, iϵλ)(iϵλ−H(k)) = 1.
The explicit form is represented as

G(k, iϵλ) =
1

(iϵλ)2 − E2
k

(
iϵλ + 2(J cos k − Γ) 2iJ sin k

−2iJ sin k iϵλ − 2(J cos k − Γ)

)
, (4.36)

where Ek = 2
√

(J cos k − Γ)2 + J2 sin2 k.

Let us calculate the NMR relaxation time using these formulae. The longitudinal
relaxation rate, 1/T1, is given by

1

T1
= T lim

ω→0

∑
j,j′∈hex

Imχ⊥
jj′(ω + iδ)

ω
. (4.37)

Here, χ⊥
jj′(ω+iδ) is obtained using the analytic continuation χ⊥

jj′(iωλ)|iωλ→ω+iδ. Note that

χ⊥
jj′(iωλ) =

∫ β

0
dτeiωλτχ⊥

jj′(τ), where χ
⊥
jj′(τ) =

∑
µ⟨σ

µ
j (τ)σ

µ
j′(0)⟩, and the summation over

µ is taken for two perpendicular axes to the external field direction [110] ([1,−1,−1] and
[−1, 1,−2]). When sites j and j′ belong to the decoupled chain, considering the basis
rotation introduced in Section 4.3 and at the beginning of this section, we obtain

χ⊥
jj′(τ)

= ⟨σ̃x
j (τ)σ̃

x
j′(0)⟩

+
〈[

sin
(
2αj +

π

3

)
σ̃y
j + cos

(
2αj +

π

3

)
σ̃z
j

]
τ

[
sin
(
2αj′ +

π

3

)
σ̃y
j′ + cos

(
2αj′ +

π

3

)
σ̃z
j′

]
0

〉
→ ⟨σ̃x

j (τ)σ̃
x
j′(0)⟩+

1

2
δjj′⟨σ̃y

j (τ)σ̃
y
j′(0) + σ̃z

j (τ)σ̃
z
j′(0)⟩.

(4.38)
In the final line, an average is taken over αj and αj′ . Because spins in forced ferro-
magnetic chains do not contribute to the NMR relaxation time within the strong field
limit, we only need to consider this value. Henceforth, we focus on the final term
χzz
jj′(τ) =

1
2
δjj′⟨σ̃z

j (τ)σ̃
z
j′(0)⟩ because it is analytically calculated and accurately describes
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the experimental signatures. Then, we can evaluate the longitudinal relaxation time as

1

T1
= T lim

ω→0

1

ω
Im

[∫ β

0

dτeiωλτ ⟨σ̃z
s(τ)σ̃

z
s(0)⟩

]
iωλ→ω+iδ

= T lim
ω→0

1

ω
Im

∑
q

1

N

∫ β

0

dτeiωλτ ⟨σ̃z
q (τ)σ̃

z
−q(0)⟩︸ ︷︷ ︸

≡χzz(q,iωλ)


iωλ→ω+iδ

(4.39)

where the subscript s denotes the site index of the decoupled chain. Because there are
two sites that belong sublattice 1 in the hexagon, the factor 1/2 in χzz

jj′(τ) is cancelled
out after the summation

∑
j,j′∈hex. Applying a Fourier transformation with regard to the

space and imaginary time, we find

χzz(q, iωλ) =
1

N

∫ β

0

dτeiωλτ ⟨σ̃z
q (τ)σ̃

z
−q(0)⟩

=
1

N

∫ β

0

dτeiωλτ
∑
k,k′

⟨(2c†kck+q − 1)τ (2c
†
k′ck′−q − 1)0⟩

=
4

N

∫ β

0

dτeiωλτ
∑
k

⟨c†k(τ)ck(0)⟩⟨ck+q(τ)c
†
k+q(0)⟩ − ⟨c

†
k(τ)c

†
−k(0)⟩⟨ck+q(τ)c−k−q(0)⟩

=
4

N

∫ β

0

dτeiωλτ
∑
k

G22(−k, τ)G11(k + q, τ)− G21(−k, τ)G12(k + q, τ)

= −4kBT

N

∑
k,n

G11(k + q, iϵn + iωλ)G11(k, iϵn)− G12(k + q, iϵn + iωλ)G12(k, iϵn).

(4.40)
The summation over the Matsubara frequency can be replaced by the integral along pass
C (Fig. 4.7) as follows:

χzz(q, iωλ)

=
4

N

∑
k

∮
C

dz

2πi
f(z) [G11(k + q, z + iωλ)G11(k, z)− G12(k + q, z + iωλ)G12(k, z)]

=
4

N

∑
k

∫ ∞

−∞

dϵ

2πi
f(ϵ) [G11(k + q, ϵ+ iωλ)G11(k, ϵ+ iδ)− G11(k + q, ϵ+ iωλ)G11(k, ϵ− iδ)

+ G11(k + q, ϵ+ iδ)G11(k, ϵ− iωλ)− G11(k + q, ϵ− iδ)G11(k, ϵ− iωλ)

− G12(k + q, ϵ+ iωλ)G12(k, ϵ+ iδ) + G12(k + q, ϵ+ iωλ)G12(k, ϵ− iδ)

−G12(k + q, ϵ+ iδ)G12(k, ϵ− iωλ) + G12(k + q, ϵ− iδ)G12(k, ϵ− iωλ)] ,

(4.41)
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Figure 4.7. Pass of the integral. The integral along the original pass C is
divided into four contributions, the integral along C1, C2, C3, and C4, because
the contribution from the arc (red dashed line) is zero.

where f(z) = 1/(eβz+1). From Eq. (4.36), the 11 and 12 components of Green’s function
are represented as

G11(k, iϵλ) =
|uk|2

iϵλ − Ek

+
|vk|2

iϵλ + Ek

, G12(k, iϵλ) =
ukv

∗
k

iϵλ − Ek

− ukv
∗
k

iϵλ + Ek

. (4.42)

Here,

uk =

√
1

2

(
1 +

2(J cos k − Γ)

Ek

)
, vk = −i

J sin k

|J sin k|

√
1

2

(
1− 2(J cos k − Γ)

Ek

)
. (4.43)

Then, defining the retarded (advanced) Green’s function as GR(k, ϵ) = G(k, iϵλ → ϵ+ iδ)
(GA(k, ϵ) = G(k, iϵλ → ϵ− iδ)), we obtain

χzz(q, iωλ)

=
4

N

∑
k

∫ ∞

−∞

dϵ

2πi
f(ϵ)

[
GR

11(k + q, ϵ+ iωλ)G
R
11(k, ϵ)−GR

11(k + q, ϵ+ iωλ)G
A
11(k, ϵ)

+GR
11(k + q, ϵ)GA

11(k, ϵ− iωλ)−GA
11(k + q, ϵ)GA

11(k, ϵ− iωλ)

−GR
12(k + q, ϵ+ iωλ)G

R
12(k, ϵ) +GR

12(k + q, ϵ+ iωλ)G
A
12(k, ϵ)

−GR
12(k + q, ϵ)GA

12(k, ϵ− iωλ) +GA
12(k + q, ϵ)GA

12(k, ϵ− iωλ)
]
.

(4.44)
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Then,

lim
ω→0

Imχzz(q, ω + iδ)

ω

= − 4

N

∑
k

∫ ∞

−∞

dϵ

2π
f(ϵ)

{
Re

[
∂

∂ϵ
GR

11,k+q(ϵ)G
R
11,k(ϵ) +GA

11,k+q(ϵ)
∂

∂ϵ
GA

11,k(ϵ)

]
−Re

[
∂

∂ϵ
GR

11,k+q(ϵ)G
A
11,k(ϵ) +GR

11,k+q(ϵ)
∂

∂ϵ
GA

11,k(ϵ)

]}
= − 4

N

∑
k

∫ ∞

−∞

dϵ

2π
f(ϵ)

{
Re

[
∂

∂ϵ
GR

11,k+q(ϵ)G
R
11,k(ϵ) +GR

11,k+q(ϵ)
∂

∂ϵ
GR

11,k(ϵ)

]
−Re

[
∂

∂ϵ
GR

11,k+q(ϵ)G
A
11,k(ϵ) +GR

11,k+q(ϵ)
∂

∂ϵ
GA

11,k(ϵ)

]}
=

4

N

∑
k

∫ ∞

−∞

dϵ

2π
f ′(ϵ)Re

[
GR

11,k+q(ϵ)
[
GR

11,k(ϵ)−GA
11,k(ϵ)

]]
=

4

N

∑
k

β

4 cosh2 βEk

2

δ

(Ek+q − Ek)2 + δ2
(|uk+q|2|uk|2 + |vk+q|2|vk|2 − 2uk+qv

∗
k+qukv

∗
k)

=
4

N

∑
k

β

4 cosh2 βEk

2

δ

(Ek+q − Ek)2 + δ2
(uk+quk − vk+qvk)

2.

(4.45)
During this calculation, we employ πδ(x) ≃ δ/(x2 + δ2). From this, we obtain

1

T1
=

1

N

∑
k,q

1

cosh2 βEk

2

δ

(Ek+q − Ek)2 + δ2
(uk+quk − vk+qvk)

2

=
1

N

∑
k,k′

1

cosh2 βEk

2

δ

(Ek − Ek′)2 + δ2
(ukuk′ − vkvk′)2.

(4.46)

Now that we have derived the formula to calculate the NMR relaxation time, Fig. 4.8
presents the temperature dependences of 1/T1. The parameter ρ = 0.02 was chosen, the
QPT occurs at 5 K, and the values are normalised by the value at the QPT point.

Figure 4.8(a) shows the coupling constant dependence of the relaxation time be-
haviour. Below the QPT point and the low-temperature region, 1/T1 exhibits the power-
law behaviour, 1/T1 ∼ T−α and α decreases as the coupling constant increases. At the
QPT point (T = 5 K), 1/T1 reaches its minimum, which is observed in the experiment
shown in Fig. 4.2(b). Above the QPT temperature, 1/T1 again increases; however, in
this case, the rising slope is sharper when J is greater, which is the opposite behaviour
to the low-temperature region. Furthermore, in contrast with to the low-temperature
region, the relaxation time is almost independent of the temperature for T ≳ 8 K. In the
experiment shown in Fig. 4.2(b), 1/T1 is proportional to T−α with α = 0.8–1.0 for the
low-temperature region and becomes almost independent of the temperature for T > 10
K, and the J = 0.5 case behaves in a way that supports this.

Figure 4.8(b) describes the δ dependence of the relaxation time behaviour. We expect
that impurities in the system affect the value of δ. In the low-temperature region, we
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find the power-law behaviour 1/T1 ∼ T−α and α decreases as δ decreases. In the high-
temperature region, we again observe the opposite behaviour to the low-temperature
region. The slope near the critical point is sharper when δ is small. Of particular
importance in these results is that 1/T1 reaches its minimum value at the finite QPT
point regardless of the choice of J and δ. Therefore, we can conclude that the unique
behaviour of the temperature dependence of the NMR relaxation time is associated with
the finite temperature QPT. Although the QPT is not captured by specific heat and
susceptibility measurements, NMR measurements, which are sensitive to fluctuations,
are able to reveal this.

The phase diagram of the one-dimensional transverse field Ising model helps to explain
these results. Figure 4.9(a) is the Γ–T phase diagram of the usual one-dimensional
transverse field Ising model. The quantum phase transition occurs at the critical field
Γ = Γc when T = 0. Meanwhile, at finite temperatures, the region of quantum criticality
is enlarged and transitions to the renormalized classical and quantum disordered phases
are viewed as crossovers, as shown in Fig. 4.9(a) by the green-dashed lines. These
crossover lines are determined by T = |∆|, where ∆ is the spinon excitation gap. On
these crossover lines, we naively expect the spinon fluctuation to increase as well as the
QPT point (T = 0, Γ = Γc) and that this will enhance the nuclear spin relaxation,
resulting in a small T1. In other words, for finite temperatures, 1/T1 will become large
towards the crossover areas. As a result, 1/T1 will be smaller on the finite temperature
QPT line (Γ = Γc) in the middle of quantum critical zone than near the crossover regions
(around the green dashed lines). Figure 4.9(b) depicts the value of 1/T1 on the Γ–T
plane for the case J = 0.5 and δ = 1.0 × 10−4. Because the effective transverse field
in our situation is temperature dependent, Γ and T moves along the black-dashed line.
White-dashed and red-solid lines indicate the crossover lines and the finite temperature
QPT line, respectively. As predicted before, the value of 1/T1 gets smaller on the finite
temperature QPT line than in the surrounding region. As the temperature is reduced in
the current model, the parameters (Γ, T ) cross the finite temperature QPT line at 5 K;
therefore, the inverse of the relaxation time 1/T1 behaves as if it is the smallest at 5 K.
These scenarios are unaffected by the choice of J or δ.

Lastly, the effect of other terms in Eq. (4.38) is discussed. These terms appear
in the NMR relaxation time calculation for the usual one-dimensional transverse field
Ising model and have been extensively investigated in previous studies [140, 141]. In
the low-temperature region of the usual transverse field Ising model, a previous study
revealed that 1/T1 ∼ T−1e∆/T , where ∆ is the spinon excitation gap. This indicates
that 1/T1 increases more rapidly than T−1 as the temperature decreases. However, in the
experiment shown in Fig. 4.2(b), 1/T1 ∼ T−0.8–T−1 at the low temperature region. Thus,
we expect that the contributions from ⟨σx(τ)σx(0)⟩ and ⟨σy(τ)σy(0)⟩ are not significant
and the contribution from the term we have been focusing on is dominant. The NMR
relaxation time behaviour for the quantum disordered regime (Γ > J) is only known
for low temperatures (1/T1 ∼ e−∆/T ). In our case, the quantum disordered regime is
reachable only for T > 5 K (relatively high temperature) and it is unclear whether the
1/T1 ∼ e−∆/T behaviour is observed. In any case, this contribution can be predicted to
be sub-dominant for the same reasons explained earlier.
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(a) (b)

Figure 4.8. Temperature dependences of the inverse of the NMR relaxation
time 1/T1. (a): Coupling constant J dependence, and (b): δ dependence. The
power-law behaviour varies depending on the parameter; however, all cases
exhibit the behaviour of taking a minimum at the QPT point (5 K). The
values in this figure are normalised by the value of the QPT point.

4.5 Conclusion

In this chapter, we analysed the phonon-pseudospin coupling effect on non-Kramers
pyrochlore materials and revealed that the unique NMR relaxation time behaviour is
described by considering its effect. Recent experiment studies in the temperature de-
pendence of the NMR relaxation time for various field directions have clarified that the
unique up-and-down behaviour is observed under the [110] magnetic field. Here, it is
proposed that this behaviour is associated with the finite temperature quantum phase
transition in the one-dimensional transverse field Ising chain.

In the first half of this chapter, we derived an explicit form of the phonon-pseudospin
coupling of non-Kramers pyrochlore materials by employing point charge approximation.
As is expected from the time-reversal even nature of the lattice deviation and the local
quadrupolar moment, the resultant coupling form is represented as an effective trans-
verse field. We clarified that, combined with one-dimensionality under the strong [110]
magnetic field, this phonon-pseudospin coupling yields an emergent transverse field Ising
model in the pyrochlore lattice.

Equipped with this result, we have investigated the temperature dependence of the
NMR relaxation time in the latter half of this chapter. We derived an analytical form of
the relaxation time by focussing on the zz correlation. Remarkably, this term accurately
describes the experimental result, and the unique up-and-down behaviour for 1/T1 has
been obtained regardless of the choice in parameters. These results indicate that the NMR
experiment succeeds in capturing evidence for the finite temperature quantum phase
transition of an emergent transverse field Ising model. However, other experiments, such
as specific heat and susceptibility measurements, cannot find any anomalies associated
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Figure 4.9. (a): Γ–T phase diagram of the one-dimensional transverse field
Ising model. At T = 0, the quantum phase transition occurs at the critical field
Γc. Meanwhile, at finite temperatures, the quantum critical region expands
and the transition is considered to be a crossover. Here, the green dashed
line T = |∆| indicates the crossover, where ∆ is the spinon excitation gap.
(b): Colour map of 1/T1 on the Γ–T plane. The parameters J = 0.5 and
δ = 1.0 × 10−4 are chosen. Because the effective transverse field depends on
the temperature, Γ and T moves along the black dashed line. The white dashed
and red solid lines are the crossover in Fig. (a) and the finite temperature QPT
line, respectively.

with this phase transition.
As a concluding remark, potential future prospects are provided. In the intermediate

field region, chain-chain couplings are expected between the decoupled chains as a result
of fluctuations in forced ferromagnetic chains. Though the NMR experiment has not been
conducted for this regime, it might be possible to corroborate our scenario by taking such
an interaction into account in this theory and comparing the result to future experiments.
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Chapter 5

Summary

In this dissertation, various multipolar related phenomena in rare-earth pyrochlore
materials were studied. Multipolar moments have attracted great attention as an emer-
gent degree of freedom induced by the strong spin-orbit entanglement of rare-earth ions.
Combined with other factors such as geometrical frustration and lattice fluctuation, they
present a variety of interesting phenomena.

In Chapter 2, we classified rare-earth pyrochlore materials based on the ground state
doublet; (i): non-Kramers, (ii): usual Kramers, and (iii): dipolar-octupolar. Among
these, the non-Kramers and dipolar-octupolar cases possess a local multipolar moment
and are expected to exhibit a number of intriguing multipolar related phenomena.

In Chapter 3, we focussed on the dipolar-octupolar system and proposed the existence
of four different quantum spin liquid regimes, namely 0-flux octupolar quantum spin
liquid (0-oQSL) and 0-flux dipolar quantum spin liquid (0-dQSL) in the unfrustrated
parameter regime, and π-flux octupolar quantum spin liquid (π-oQSL) and π-flux dipolar
quantum spin liquid (π-dQSL) in the frustrated parameter regime. In previous research,
the flux degree of freedom was not considered because of the difficulty in accessing the
frustrated parameter region. However, this study succeeded in capturing it by employing
the exact diagonalisation (ED) method on a 32-site cluster. Analysing the equal-time
and dynamical neutron structure factors using the ED calculation and classical Monte
Carlo simulation and comparing the obtained results with the experimental signatures
from Ce2Zr2O7, we revealed that the π-oQSL phase is realised in real materials. This is
completely different from the usual quantum spin ice phase in that the spin ice state is
constructed by octupoles. This multipolar quantum spin ice discovery was one of the main
results of this chapter. During the analysis of neutron scattering profiles, we noticed that
it was not sufficient to distinguish all four quantum spin regimes. To tackle this problem,
we extended the theory of magnetostriction to the present case, and showed that it is
useful to distinguish between the four quantum spin liquids. This result indicates that
the combination of ordinary and novel experimental techniques is required to uncover the
intriguing properties of the dipolar-octupolar system.

In Chapter 4, the interaction between the multipolar moment and the lattice fluctua-
tion, that is, phonons was discussed. Furthermore, by considering this phonon-pseudospin
interaction with the effect of an external field, the nature of the peculiar NMR relaxation
time behaviour observed in the [110] field direction was revealed. In non-Kramers py-
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rochlore materials, the x and y components of the pseudospin consist of time-reversal even
quadrupoles and can linearly couple with phonons. Because of this property, the phonon-
pseudospin coupling can be regarded as an effective transverse field. In addition, applying
the strong [110] magnetic field, we found that the pyrochlore lattice is divided into a se-
ries of forced ferromagnetic and decoupled chains. Considering the phonon-pseudospin
coupling on the decoupled chains, the possible emergent one-dimensional transverse field
Ising model was proposed in a three-dimensional frustrated magnet. Then, based on
this proposal, we investigated the temperature dependences of the NMR relaxation time
under the strong [110] magnetic field. The possibility of the unique NMR relaxation
time behaviour in this situation corresponding to the finite temperature quantum phase
transition of the transverse field Ising model was revealed. This was the main finding of
this chapter.

To summarise this dissertation, future prospects are presented. Although we have
clarified the existence a variety of quantum spin ices, the majority of their features remain
unknown. For example, investigating the transport properties in multipolar quantum spin
ice will be an interesting topic. The combination of the multipolar nature and spin liquid
nature may result in unique transport behaviours. In addition, the phonon-pseudospin
coupling discussed in Chapter 4 will have some influence on the transport properties of
rare-earth pyrochlore materials. Because the phonon transport has not yet been studied
in detail, this will also be a fascinating research direction.
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Appendix A

Magnetostriction of non-Kramers
and Kramers pyrochlores

A.1 Model

As shown in Section 2.1, the symmetry-allowed generic nearest-neighbour pseudospin
1/2 model for non-Kramers pyrochlore materials is represented as

HNK =
∑
⟨ij⟩

[
JzzS

z
i S

z
j − J±(S+

i S
−
j + S−

i S
+
j ) + J±±(γijS

+
i S

+
j + γ∗ijS

−
i S

−
j )
]
, (A.1)

where the summation is taken over all the nearest-neighbour sites i and j. For the usual
Kramers case, the time-reversal odd nature of pseudospins allows another coupling term,
which yields

HK =
∑
⟨ij⟩

JzzS
z
i S

z
j − J±(S+

i S
−
j + S−

i S
+
j ) + J±±(γijS

+
i S

+
j + γ∗ijS

−
i S

−
j )

+ Jz±
[
Sz
i (ζijS

+
j + ζ∗ijS

−
j ) + (ζijS

+
i + ζ∗ijS

−
i )S

z
j

]
,

(A.2)

where the unimodular 4× 4 matrix γ is defined as

γµν =


1 xµ − xν ∈ yz plane

ei2π/3 xµ − xν ∈ xz plane

e−i2π/3 xµ − xν ∈ xy plane

, (A.3)

and ζ = −γ∗. Note that pseudospin Sµ
i is represented in the local coordinate frame

introduced in Section 3.1.

Under an applied magnetic field, the magnetic dipole moment couples at a linear order
and to the quadrupolar moments at a quadratic order. The explicit form of the Zeeman
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term is described as

Hmag,NK = −
∑
t

3∑
α=0

h · ẑαSz
tα + δ1(h

x
αh

z
αS

x
tα + hyαh

z
αS

y
tα) + δ2Γ2([(h

y
α)

2 − (hxα)
2]Sx

tα + 2hxαh
y
αS

y
tα)

Hmag,K = −
∑
t

3∑
α=0

h ·
[
ẑαS

z
tα +

g⊥
gz

(x̂αS
x
tα + ŷαS

y
tα)

]
.

(A.4)
Here, t indicates the index for the “up” tetrahedra, and Sµ

tα is the Sµ moment on sublattice
α of tetrahedron t. As a typical example, we take the estimated g-factor values of
Yb2Ti2O7: (g⊥, gz) = (4.18, 1.77) [142].

A.2 Classical analysis

As in the dipolar-octupolar case, the classical Hamiltonians (A.1) and (A.2) can be

separated into the sum of the tetrahedra, HNK/K =
∑

mH
NK/K
m , and Hm can be rewritten

in a block-diagonalised form using the basis of irreducible representations. The results
are as follows:

HNK =
1

2

∑
m

[
3JzzM

2
Γ2
− 6J±M

2
Γ3
− JzzM 2

Γ4a
+ (2J± − 4J±±)M

2
Γ4b

+ (2J± + 4J±±)M
2
Γ5

]
,

HK =
1

2

∑
m

[
3JzzM

2
Γ2
− 6J±M

2
Γ3
− JzzM 2

Γ4a
+ (2J± − 4J±±)M

2
Γ4b

+ (2J± + 4J±±)M
2
Γ5

−8Jz±MΓ4a ·MΓ4b
] ,

(A.5)
with the constraint M2

Γ2
+M 2

Γ3
+M 2

Γ4a
+M 2

Γ4b
+M 2

Γ5
= 1. The ground state is obtained

by letting |Mk| = 1 and the others equate to zero, where the coupling constant associated
with the order parameter Mk is the smallest. The basis sets are provided in Table A.1,
and the classical phase diagram is presented in Fig. A.1.

These classical non-Kramers/Kramers phase diagrams provide a variety of possible
phases: in the non-Kramers case, a classical two-in two-out spin ice phase with Γ4 symme-
try, a coplanar antiferroquadrupolar (cAFQL) phase with Γ5 symmetry, another coplanar
antiferroquadrupolar (cAFQL) phase with Γ4 symmetry, and a ferroquadrupolar (FQL)
phase with Γ3 symmetry; in the Kramers case, a spin ice (SI) phase with Γ4 symmetry,
a splayed ferromagnet (SFM) phase with Γ4 symmetry, a Palmer-Chalker (PC) phase
with Γ5 symmetry, and a one-dimensional manifold of states with Γ3 symmetry. Key
differences between Kramers and non-Kramers ions are (i) Jz± ̸= 0, which causes mixing
between the spin-ice and splayed ferromagnet phases and (ii) in Kramers ions, the mag-
netic field can couple at a linear order to the xy components of the pseudospins. These
differences are a consequence of the pseudospin components being mere dipole moments
and are thus odd under time reversal.

Although these discussions are based on a classical analysis, they strongly indicate that
quantum phases have origins in classical phases from parton mean-field theory (gMFT), as
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explained in Section 2.1 and 2.2. Indeed, in gMFT, the classical SI phase gets promoted to
a U(1) QSL phase, which is characterised by the existence of deconfined bosonic spinons
coupled to a U(1) gauge field [69]. The other classically ordered phases get promoted
to Higgs phases in gMFT, where the bosonic monopole condenses, thus eliminating the
emergent gauge field.

Figure A.1. (a): Classical phase diagram of non-Kramers ions. The depicted
phases are classical spin ice (CSI), coplanar antiferroquadrupolar (cAFQL), a
second coplanar antiferroquadrupolar (cAFQL), and ferroquadrupolar (FQL).
The subscript L is to indicate orderings in the local basis. cAFQL and cAFQL

are related by a local C4z rotation on each sublattice. (b): Classical phase
diagram for the Kramers case (Jz± = 0.25Jzz). The depicted phases are
spin ice (SI), splayed ferromagnet (SFM), Palmer-Chalker (PC), and the one-
dimensional manifold of states. The black dashed line indicates an equal mixing
of the SI and SFM phases and separates the SI-dominating phase and SFM-
dominating phase.
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A.3 Magnetostriction

In this section, we first examine the coupling of the local pseudospin moments to
the elastic normal modes and then derive the magnetostriction expression for the non-
Kramers/Kramers case. As shown in Section 3.4.1, the cubic nature of the underlying
Bravais lattice constrains the elastic energy to the form

Flattice =
cB
2
ϵ2B +

c11 − c12
2

(
ϵ2µ + ϵ2ν

)
+
c44
2

(
ϵ2xy + ϵ2yz + ϵ2zx

)
, (A.6)

where the crystal deformation is described by the components of the strain tensor in the
global coordinate frame ϵij, and cij is the elastic modulus tensor describing the stiffness
of the crystal. cB is defined as the bulk modulus, ϵB ≡ ϵxx + ϵyy + ϵzz is the volume
expansion of the crystal, and ϵµ ≡ ϵxx − ϵyy and ϵν ≡ (2ϵzz − ϵxx − ϵyy)/

√
3 are cubic

normal mode lattice strains.

A.3.1 Quadrupolar-strain coupling in the non-Kramers case

Because non-Kramers xy pseudospin components are time-reversal even quadrupolar
moments, they can linearly couple to elastic strains. Therefore, the general form is
represented as

Fα
quad-strain =

∑
µ=x,y

∑
ν,γ=x,y,z

CµνγSα
µ ϵ

α
νγ. (A.7)

Here, pseudospins and strains are described in the local basis, and the superscript α
indicates the sublattice index. Considering the point group symmetry introduced in
Section 3.4.1, the majority of coupling constants Cµνγ are zero and the D3d symmetry
constrained quadrupolar-strain coupling becomes

Fquad-strain = −k1
[
Sα
x (ϵ

α
xx − ϵαyy)− 2Sα

y ϵ
α
xy

]
− k2

[
Sα
x ϵ

α
xz + Sα

y ϵ
α
yz

]
, (A.8)

in which Einstein summation notation is introduced for α, and k1,2 are phenomenological
coupling constants.

A.3.2 Dipolar-strain coupling

The z pseudospin component contains the time-reversal odd magnetic dipole moment
and can only couple to the elastic strain in the presence of a time-reversal breaking
external magnetic field h to yield

Fα
dipolar−strain =

∑
µ=x,y,z

∑
ν,γ=x,y,z

CµνγSα
z h

α
µϵ

α
νγ. (A.9)

In addition, point group symmetry reduces the degrees of the coupling constant, which
results in

Fdipolar−strain,z =− g1Sα
z

[
(ϵαxx − ϵαyy)hαz − 2ϵαxyh

α
y

]
− g2Sα

z

[
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α
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α
y

]
− g3Sα

z h
α
z

[
ϵαxx + ϵαyy

]
− g4Sα

z h
α
z ϵ

α
zz,

(A.10)
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where g1,2,3,4 are coupling constants, and we once again employ Einstein summation
notation for α. Note that this expression is common to both non-Kramers and Kramers
cases.

In the Kramers case, the x and y components also contain the time-reversal odd
magnetic dipole moment; thus, additional dipolar-strain couplings are found as

Fdipolar−strain,xy =− n0

[
Sα
xh

α
xϵ

α
xx + Sα

y h
α
y ϵ
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,

(A.11)
where n0,1,2,3,4,5 are phenomenological coupling constants.

A.3.3 General magnetostriction expressions

Now that we have obtained free energy expressions for the non-Kramers and Kramers
cases, general magnetostriction expressions can be derived for these cases by following
the strategy described in Section 3.4.1 and 3.4.2. Present here is an important expression
for magnetostriction, that is, the length change along the ℓ = (1, 1, 1) direction under
h = h√

3
(1, 1, 1).

(
∆L

L

)[111]
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(A.12)
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(A.13)
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Here, subscripts NK and K represent the non-Kramers and Kramers cases, respectively,

and ñ =
√
3
(2cB(5

√
2n0−3

√
2n1−4n2−2

√
2n3+4n4+

√
2n5)+

√
2c44(n0+n1+n3))

27c44cB
is a collection of con-

stants. Note that the couplings from Eqs. (A.8) and (A.10) have been redefined for
brevity, that is, g1 = g1√

6
, g2 = g2

2
√
3
, g3 = 2g3

3
√
3
, g4 = g4

3
√
3
, k1 = k1√

3
, and k2 = k2√

6
. Because

the z couplings of the Kramers case have the same form as in the non-Kramers case, the
length change arising from the z dipole moment is identical. The xy contribution is also
similar; however, in the Kramers case, it is associated with a magnetic field strength, h.

A striking observation of these formulae is that uniform ferro-like ordering of the xy
local moments results in vanishing length change contributions from the quadrupolar
(non-Kramers) or dipolar (Kramers) moments. This scenario occurs when J±± = 0
and only Jzz, J± > 0. To have nonvanishing contributions from the xy moments, the ℓ =
(1, 1, 1) length change clearly requires the assistance of finite J±± to provide nonuniformity
to the ordering on each sublattice.

A.3.4 Magnetostriction of MPOs in the non-Kramers case

Because the length change behaviour of the QSL phase in the non-Kramers case has
already been provided in Section 2.1, presented here is the length change behaviour of
MPO phases and the uniqueness of the jump behaviour found in Fig. 2.2. Figure A.2
illustrates the length change behaviour for four distinct MPO phases that can be realized
in non-Kramers pyrochlore materials. We take Jzz = 1.0 in this study. For the cAFQL

magnetostriction, J±/Jzz = −0.5 and J±±/Jzz = −0.5. For the cAFQL magnetostriction,
J±/Jzz = −0.5 and J±±/Jzz = 0.5. For FQL+, J±/Jzz = 0.72 and J±±/Jzz = 0.5.
For FQL−, J±/Jzz = 0.72 and J±±/Jzz = −0.5. As for the phenomenological coupling
constants, we take g1 = g2 = − 9

4
√
3
× 10−7, g3 = 14

√
3 × 10−7, g4 = 4

√
3 × 10−7, k1 =

−4.5
√
3× 10−7, k2 = 2.6

√
3× 10−7, and cB = c44 = c11− c12 = 1.0. Finally, we take δ1 =

7.5×10−4 and −δ2 = 8.8×10−5 to emphasize the perturbative nature of the quadratic-in-
h magnetic field coupling. The numerical values of the pseudospin-lattice couplings are
taken with comparison to an experimental study on a Pr-based heavy fermion compound,
PrIr2Zn20 [143]. PrIr2Zn20 has similarities to Pr2Zr2O7 in that both of their interesting
phenomena arise from the f2 electrons in Pr ions. Taking the above coupling constants
yields magnetostriction behaviours that are of the same scale as the reported study.
Indeed, the physical scale of (∆L/L) ∼ 10−6 for the relative length change has also
been observed in other f electron heavy fermion compounds as well as Kitaev materials
under pressure during recent magnetostriction studies [144, 145, 146]. The actual value
or ratio of the coupling constants will be determined by employing the proposed length
change behaviours in conjunction with experimental measurements. As an example, by
subtracting the leading linear-in-h scaling behaviour from the experimental length change
measurements for the [111] field and (1,1,1) direction allows the determination of (2k1+k2)
in Eq. (A.12) and subsequently (k1−k2) from the (1,1,0) length change (the formula is not
shown) because we have numerically computed the pseudospin configurations. Additional
length change measurements are required to subsequently extract the remaining g1,2,3,4
couplings.

To successfully understand the length change behaviour of MPOs in the non-Kramers
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case, Eq. (A.12) is rewritten in the following form:

(
∆L

L

)[111]

(1,1,1),NK

= Q0

[
Mx

Γ5
+My

Γ5
+M z

Γ5

]
−hC0MΓ2−hC1(Mx

Γ4,a
+My

Γ4,a
+M z

Γ4,a
), (A.14)

where the constants are collected under Q0 = 8(2k1+k2)

3
√
3c44

, C0 = 4
√
3(−8g1+4g2−3g3+6g4)

9c44
, and

C1 = 8
√
3(4g1+2g2−3g3+6g4)

27c44
+ 2(g3+g4)

3
√
3cB

. Figure A.2 depicts the magnetostriction behaviour

of MPOs in the non-Kramers case for ℓ = (1, 1, 1). The vertical dashed lines indicate
jump discontinuous behaviours in the ordering. Specifically, both the cAFQL and cAFQL

phases have jump discontinuous behaviours, which correspond to S
(0)
z becoming fully

polarised. cAFQL also has the distinction of having a finite length change in the absence
of an external field1. This is apparent from Eq. (A.14), where the cAFQL order parameter
is present even at zero magnetic field. The FQL± states do not possess any nonanalytic
behaviours in their length changes. Indeed, the local moments undergo a smooth and
gradual change into the fully polarised state. Note that the FQL+ and FQL− behaviours
are related by local C4z rotation of the pseudospins, where the ± denote J±± > 0 and
J±± < 0, respectively. These different parameter options for the classically same phase2

highlight the independence of the qualitative magnetostriction features on the precise
value of the exchange couplings.

Because of these characteristics, each MPO has its own distinct signature that allows
it to be identified individually as well as distinguished from the classical and quantum
spin ice phase (Fig. 2.2). The FQL± states are the easiest to identify because they possess
a smooth change in the length change; this gradual change is not present in classical or
quantum spin ices nor the other MPOs. cAFQL can also be distinguished as it is the only
non-Kramers phase that has a finite length change in the absence of an external field. The
length change of cAFQL and classical and quantum spin ices share several characteristics
as both possess a jump discontinuity in the total length change. However, the lack of
a jump or peak in the quadrupolar contribution of cAFQL qualitatively distinguishes
this phase from the classical and quantum spin ices. Furthermore, the length change of
the classical and quantum spin ices has a dominant linear-in-h scaling behaviour before
the jump, whereas cAFQL has an overarching nonlinear scaling before Sz becomes fully
polarised. These differences demonstrate the uniqueness of the non-Kramers classical and
quantum spin ices and the MPO magnetostriction signatures.

1Here, the length change is not measured from the length at zero magnetic field but from the length
when the system is disordered. Therefore, it is possible that the order itself can induce the lattice
distortion without a magnetic field.

2These phases can be distinguished by considering spin wave excitation.
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xy
z

Figure A.2. Length change along the (1,1,1) direction under an applied [111]
magnetic field for the various classical MPOs of non-Kramers ions: (a) copla-
nar antiferroquadrupolar (cAFQL), (b) a second coplanar antiferroquadrupo-
lar (cAFQL), and (c) and (d) ferroquadrupolar (FQL±), where the ± denote
J±± > 0 and J±± < 0, respectively. The dashed vertical lines indicate regions

of discontinuity in the length change arising from S
(0)
z becoming fully polarised.

The blue, yellow, and red curves denote the length change arising from the xy
pseudospin (quadrupolar), z pseudospin (dipole), and combined contributions,
respectively.

A.3.5 Magnetostriction of Kramers ions

For completeness, we investigate the magnetostriction of Kramers ions. Fig. A.3
shows the length change along the (1,1,1) direction under an applied [111] magnetic
field for various classically magnetically ordered phases of Kramers ions, where we set
Jz± = 0.25 and ñ = 1.0 × 10−7 in Eq. (A.13). Because of the aforementioned mixing of
the SI and SFM phases, the behaviour is presented for the choice of J±, J±±, Jz±, which
yields a dominant SI (SFM) behaviour over SFM (SI). For SI-dominant magnetostriction,
J±/Jzz = 0.02 and J±±/Jzz = 0.05. For SFM-dominant magnetostriction, J±/Jzz = −0.5
and J±±/Jzz = −0.5. For PC magnetostriction, J±/Jzz = −0.5 and J±±/Jzz = 0.5. For
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1D+, J±/Jzz = 0.72 and J±±/Jzz = 0.5. For 1D−, J±/Jzz = 0.72 and J±±/Jzz = −0.5.
Once again, 1D+ and 1D− behaviours are related by local C4z rotation of the pseudospins,
where the ± denote J±± > 0 and J±± < 0, respectively.

In this case, we can also rewrite the Eq. (A.13) in the following form:(
∆L

L

)[111]

(1,1,1),K

= − 2ñ√
3
h
[
Mx

Γ4,b
+My

Γ4,b
+M z

Γ4,b

]
−h
[
C0MΓ2 + C1(Mx

Γ4,a
+My

Γ4,a
+M z

Γ4,a
)
]
.

(A.15)
In all Kramers ion behaviours, at h = 0, the total length change vanishes, as indicated by
Eq. (A.15). Moreover, all phases possess a monotonically increasing xy contribution to
the length change. For the SI-dominant phase in Fig. A.3(a), two points of discontinuity

are observed. The first arises due to S
(0)
z becoming fully polarised in the−ẑ0 direction, and

the second is a result of S
(0)
z becoming polarised in the +ẑ0 direction. This discontinuity

also appears in the xy behaviour. The second discontinuity can be loosely associated with
the discontinuity in the NK case, in that S

(0)
z becomes fully polarised in both. However,

because the magnetic field coupling involves S
(0-3)
x,y as well as the presence of the finite Jz±

term, it is not a direct comparison. The SFM-dominant phase in Fig. A.3(b) possesses
a single discontinuity, which (just as the second discontinuity point of the SI-dominant

phase) is associated with S
(0)
z becoming fully polarised. The broad maximum in the z

contribution arises from the gradual change in the sign of S
(0)
z from S

(0)
z < 0 in the

SFM-like phase to the fully polarised value S
(0)
z = 1/2. The PC phase in Fig. A.3 (c)

also possesses two discontinuous points. The first is associated with S
(0)
z becoming fully

polarised, and the second is where S
(1)
y → 0. From numerical minimisation, the second

discontinuity appears to be continuous. Finally, the two 1D manifold states in Figs.
A.3(d) and A.3(e) have a single discontinuity that is again associated with S

(0)
z becoming

fully polarised.
There is a lack of clear difference between the various Kramers magnetically ordered

phases. In fact, only the SI-dominant phase appears to be distinct, with the dipole
contribution flipping sign after discontinuity. This suggests that, unlike the non-Kramers
case, magnetostriction is less suited to Kramers ions.

Specific contrasts can be drawn between the associated Kramers and non-Kramers
cases. For instance, the 1D manifold states in the Kramers case have a discontinuity,
whereas the corresponding FQL states of non-Kramers ions undergo a smooth length
change under an increasing magnetic field. Analogously, SFM and cAFQL can be distin-
guished because SFM has a vanishing length change at zero field, whereas it is finite for
cAFQL. Finally, PC and cAFQL can be differentiated because PC has two discontinuous
points in the length change, whereas cAFQL has only one. Such key differences in the
length change behaviours of Kramers and non-Kramers ions highlight the broad applica-
bility of magnetostriction in pyrochlore materials. Furthermore, since Kramers ions are
more commonly examined with conventional magnetic ordering probes (most notably,
neutron scattering), magnetostriction can serve as useful corroborating evidence. This
contrasts with the non-Kramers case, which has a shortage of available probes, and each
MPO possesses distinct features (Fig. A.2) that allow them to be individually identified
(and distinguished from non-Kramers classical and quantum spin ices). Therefore, this
comparison also serves to emphasise the suitability of magnetostriction to non-Kramers
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ions.

Figure A.3. Length change along the (1,1,1) direction under an applied
[111] magnetic field for various classically magnetically ordered phases of
non-Kramers ions: (a) spin-dominant (SI), (b) splayed ferromagnetic domi-
nant (SFM-dominant), (c) Palmer-Chalker (PC), (d) and (e) one-dimensional
(1D±), where the ± denote J±± > 0 and J±± < 0, respectively. The dashed
vertical lines indicate regions of discontinuity in the length change, which is
closely linked to the discontinuity in the pseudospin expectation values. The
blue, yellow, and red curves denote the length change arising from the xy
pseudospin (quadrupolar), z pseudospin (dipole), and combined contributions,
respectively.

A.4 Summary

To summarise this appendix, a novel experimental tool known as the measurement
of magnetostriction is useful for distinguishing MPOs as well as the multipolar quantum
spin ice phases described in the main text. In particular, the five distinct classical phases,
including MPOs and a spin ice in non-Kramers ions, display completely different length
change behaviours. This indicates that experimentally elusive phases are now exposed
to detection through magnetostriction measurements. This means that magnetostriction
can serve as a novel alternative to ultrasonic measurement.

In terms of future studies, it would be interesting to examine finite-temperature
length-change behaviours, such as thermal expansion, and identify the nature of the
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finite-field quantum kagome ice state in the generic pyrochlore model (in addition to
its possible connection to the resonating plaquette state in the simplified XXZ model
[109, 147]). Such studies would provide insight into the nontrivial fractionalised exci-
tations predicted in quantum spin ice, such as the emergent monopoles and photons.
Furthermore, in the context of Pr2Zr2O7, an important future study would be to examine
and incorporate the impacts of disorder [136, 148] in the context of magnetostriction.
Finally, it would also be interesting to examine magnetostriction in other frustrated lat-
tices (with different symmetries) that are candidates for QSLs. It would be fascinating to
explore whether those systems also possess strong magnetostriction signatures for their
proposed QSL and/or any nearby ordered phases.

126



Appendix B

Complete set of magnetostriction
expressions

B.1 Magnetic field along [111] direction

In this section, we provide the magnetostriction expression for field along [111] direc-
tion.(
∆L

L

)[111]

(1,1,1)

=
h

27cB

[
(C5z + 2C4z)

(
3τ (0)z − τ (1)z − τ (2)z − τ (3)z

)
+ (C5x + 2C4x)

(
3τ (0)x − τ (1)x − τ (2)x − τ (3)x

)]
+

4

27c44
h

[(
8
√
2C2x − 4C3x

)(
τ (1)x + τ (2)x + τ (3)x

)
+ (C5x − C4x)

(
9τ (0)x + τ (1)x + τ (2)x + τ (3)x

)
+
(
8
√
2C2z − 4C3z

)(
τ (1)z + τ (2)z + τ (3)z

)
+ (C5z − C4z)

(
9τ (0)z + τ (1)z + τ (2)z + τ (3)z

)]
(B.1)

(
∆L

L

)[111]

(1,1,0)

=
h

27cB

[
(C5z + 2C4z)

(
3τ (0)z − τ (1)z − τ (2)z − τ (3)z

)
+ (C5x + 2C4x)

(
3τ (0)x − τ (1)x − τ (2)x − τ (3)x

)]
+

1
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√
3(c11 − c22)

h

[(√
6C2x +

√
3C3x

)(
τ (1)x + τ (2)x − 2τ (3)x
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+
(√

6C2z +
√
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)(
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√
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(
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√
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+

[ (√
2C0 − C1

)
6
√
3(c11 − c22)

+
2
(
2
√
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√
3C1
)

9c44

]
h
(
τ (1)y − τ (2)y

)
(B.2)
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(
∆L

L

)[111]

(0,0,1)

=
h

27cB

[
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(
3τ (0)z − τ (1)z − τ (2)z − τ (3)z
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√
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(B.3)

B.2 Magnetic field along [110] direction

In this section, we provide the magnetostriction expression for field along [110] direc-
tion.

(
∆L

L

)[110]

(1,1,1)

=

√
2

9
√
3cB

h
[
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(B.4)
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(B.5)
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B.3 Magnetic field along [001] direction

In this section, we provide the magnetostriction expression for field along [001] direc-
tion.

(
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(B.7)
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(B.8)

129



Doctoral Dissertation

(
∆L

L

)[001]

(0,0,1)

=
1

9
√
3cB

h
[
(2C4x + C5x)

(
τ (0)x − τ (1)x − τ (2)x + τ (3)x

)
+ (2C4z + C5z)

(
τ (0)z − τ (1)z − τ (2)z + τ (3)z

)]
+

1

3
√
3(c11 − c12)

h

[(√
2C2x + C3x

)(
τ (0)x − τ (1)x − τ (2)x + τ (3)x

)
+
(√

2C2z + C3z
)(

τ (0)z − τ (1)z − τ (2)z + τ (3)z

)]
(B.9)

130



Appendix C

Phonon-pseudospin coupling within
the long wavelength limit

C.1 Assumption

In this appendix, another phonon-pseudospin coupling model is provided based on
a different assumption from the one used in the main text. Here, we only focus on the
acoustic phonon mode from the beginning. First, the properties of acoustic phonon modes
in a one-dimensional atomic chain are reviewed for simplicity. Figure C.1(a) illustrates
the relative deviation of atoms observed from a certain atom (yellow circle) corresponding
to the acoustic phonon mode within the long wavelength limit. The green (blue) vectors
represent the deviations of the longitudinal (transverse) mode. Comparing the atoms
on the left with those on the right with respect to the central atom, we can see that
the direction of relative displacement is reversed. In addition, the magnitude of the
displacement increases as the atoms move away from the centre.

Let us extend these observations to our case. First, we assume that the direction of
deviation of the central Pr ion is specified by two angles θ0 and ϕ0, where θ0 is the polar
angle and ϕ0 is the azimuthal angle in the local coordinate frame. Here, we consider the
coupling between the local pseudospin and the acoustic phonon associated with this set
up within the long wavelength limit. Figure C.1(b) shows the configuration of the relative
lattice dislocation in this case. Sites that are point-symmetrical with respect to the Pr
ion will each be displaced in the opposite direction; the magnitude of the displacement
is proportional to ri · q, where ri denotes the equilibrium position of each site and q is
the direction of phonon propagation. Equipped with these assumptions, we derive the
phonon-pseudospin coupling by employing the point charge approximation in the next
section.
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(a)

(b)

Figure C.1. (a): Schematic illustration of the lattice deviation of the one-
dimensional chain corresponding to the acoustic phonon modes within the long
wavelength limit. The green (blue) vectors represent the deviations of the lon-
gitudinal (transverse) mode. q denotes the direction of phonon propagation.
(b): Relative deviation of each site of the pyrochlore lattice, measured from the
central Pr site (yellow sphere), corresponding to the acoustic phonon modes
within the long wavelength limit. The magnitude of the displacement is pro-
portional to ri · q, where ri denotes the equilibrium position of each site. For
instance, the deviation magnitude of an oxygen atom at r0 is represented as
D0 ∝ r0 · q.

C.2 Point charge approximation and crystal electric

field

We begin by considering the crystal electric field (CEF) of oxygen ions at the A
sites (red spheres in Fig. C.1(b)) using the assumptions described above. Their relative

positions are represented as RO,A
1 = (D0 sin θ0 cosϕ0, D0 sin θ0 sinϕ0,

√
3a
8

+D0 cos θ0) and

RO,A
2 = −RO,A

1 . In the spherical coordinate frame, we obtain RO,A
1 = (R, θ, ϕ) and

RO,A
2 = (R, π − θ, π + ϕ), where

R =

√
3a

8

[
1− 16√

3
δ0 cos θ0 +

64

3
δ20

] 1
2

, θ = cos−1

 1− 8√
3
δ0 cos θ0[

1− 16√
3
δ0 cos θ0 +

64
3
δ20

] 1
2

 , ϕ = ϕ0.

(C.1)
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Here, we define δ0 = D0/a. From these relations, we find that γkm in Eq. (4.8) is
represented as

γkm =

√
4π

2k + 1

2e2

Rk+1
[Y ∗

km(θ, ϕ0) + Y ∗
km(π − θ, π + ϕ0)] . (C.2)

Therefore, the CEF potential induced by oxygen ions at the A sites is given by

V O,A
CEF(r) =

∞∑
k=0

k∑
m=−k

√
4π

2k + 1

2e2

Rk+1
rk [Y ∗

km(θ, ϕ0) + Y ∗
km(π − θ, π + ϕ0)]C

(k)
m (θ, ϕ). (C.3)

As in the main text, we consider the matrix elements ⟨lm′|V O,A
CEF(r)|lm⟩. However, because

the first order term in δ0 = D0/a is finite in this case, we expand the CEF potential to

V O,A
CEF(r) = V

O,A(0)
CEF (r) + V

O,A(1)
CEF (r). Note that the 0th order term is the same as the one

provided in the main text. The explicit form of the matrix elements V
O,A(1)
CEF (r)(m′,m) =

⟨lm′|V O,A(1)
CEF (r)|lm⟩ is provided below.

V
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]∗
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CEF,(1,0) =
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V
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]∗
= −V O,A(1)

CEF,(0,−1) =
[
−V O,A(1)
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= A3δ0 sin θ0e

−iϕ0 .

(C.4)

Here, the position dependence r was removed, and Ai is a real parameter.
Next, we consider the CEF constructed by transition metal ions (gold spheres in Fig.

C.1(b)). Their relative positions in the spherical coordinate frame are represented as
RTM

1 = (R1, θ1, ϕ1), R
TM
2 = (R2, θ2, ϕ2), R

TM
3 = (R3, θ3, ϕ3), R

TM
4 = −RTM

1 , RTM
5 =

−RTM
2 , and RTM

6 = −RTM
3 , where

R1 =
a

2

[
1 + 4δ1 sin θ0 sin

(
ϕ0 +

π

3

)
+ 4δ21

] 1
2
, θ1 = cos−1

 2δ1 cos θ0[
1 + 4δ1 sin θ0 sin

(
ϕ0 +

π
3

)
+ 4δ21

] 1
2


ϕ1 = tan−1

[
1 + 4δ1 sin θ0 sinϕ0√
3 + 4δ1 sin θ0 cosϕ0

]
,

R2 =
a

2

[
1 + 4δ2 sin θ0 sinϕ0 + 4δ22

] 1
2 , θ2 = cos−1

 2δ1 cos θ0[
1 + 4δ2 sin θ0 sinϕ0 + 4δ22

] 1
2

 ,

ϕ2 = tan−1

[
1 + 2δ2 sin θ0 sinϕ0

2δ2 sin θ0 cosϕ0

]

R3 =
a

2

[
1 + 4δ3 sin θ0 sin

(
ϕ0 −

π

3

)
+ 4δ23

] 1
2
, θ3 = cos−1

 2δ3 cos θ0[
1 + 4δ3 sin θ0 sin

(
ϕ0 − π

3

)
+ 4δ23

] 1
2

 ,

ϕ3 = tan−1

[
1 + 4δ3 sin θ0 sinϕ0

−
√
3 + 4δ3 sin θ0 cosϕ0

]
.

(C.5)
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Here, δi = Di/a, and Di is the magnitude of deviation of each ion. Using these relations,
we obtain the CEF potential from the transition metal ions to be

V TM
CEF(r) = −

∑
i=1,2,3

∞∑
k=0

k∑
m=−k

√
4π

2k + 1

4e2

Rk+1
i

rk [Y ∗
km(θi, ϕi) + Y ∗

km(π − θi, π + ϕi)]C
(k)
m (θ, ϕ).

(C.6)
The matrix elements ⟨l′m|V TM

CEF(r)|lm⟩ are calculated from this result. Expanding this

with regard to δi, the first order term of the matrix element, that is, ⟨l′m|V TM(1)
CEF (r)|lm⟩

is represented as

V
TM(1)
CEF,(m,m−1) =

[
V

TM(1)
CEF,(m−1,m)

]∗
= −V TM(1)

CEF,(−m+1,−m) =
[
−V TM(1)

CEF,(−m,−m+1)

]∗
= ATM

(m,m−1) cos θ0
[
δ1e

−iπ/6 + δ2e
−iπ/2 + δ3e

−i5π/6
]
,

V
TM(1)
CEF,(m,m−2) =

[
V

TM(1)
CEF,(m−2,m)

]∗
= V

TM(1)
CEF,(−m+2,−m) =

[
V

TM(1)
CEF,(−m,−m+2)

]∗
= ATM

(m,m−2) sin θ0

[
δ1e

−iπ/3 cos(ϕ0 −
π

6
) + δ2e

−iπ cos(ϕ0 −
π

2
) + δ3e

−i5π/3 cos(ϕ0 −
5π

6
)

]
+A′TM

(m,m−2)i sin θ0

[
δ1e

−iπ/3 sin(ϕ0 −
π

6
) + δ2e

−iπ sin(ϕ0 −
π

2
) + δ3e

−i5π/3 sin(ϕ0 −
5π

6
)

]
,

V
TM(1)
CEF,(m,m−3) =

[
V

TM(1)
CEF,(m−3,m)

]∗
= −V TM(1)

CEF,(−m+3,−m) =
[
−V TM(1)

CEF,(−m,−m+3)

]∗
= ATM

(m,m−3) cos θ0
[
δ1e

−iπ/2 + δ2e
−i3π/2 + δ3e

−i5π/2
]
,

V
TM(1)
CEF,(m,m−4) =

[
V

TM(1)
CEF,(m−4,m)

]∗
= V

TM(1)
CEF,(−m+4,−m) =

[
V

TM(1)
CEF,(−m,−m+4)

]∗
= ATM

(m,m−4) sin θ0

[
δ1e

−i2π/3 cos(ϕ0 −
π

6
) + δ2e

−i2π cos(ϕ0 −
π

2
) + δ3e

−i10π/3 cos(ϕ0 −
5π

6
)

]
+A′TM

(m,m−4)i sin θ0

[
δ1e

−i2π/3 sin(ϕ0 −
π

6
) + δ2e

−i2π sin(ϕ0 −
π

2
) + δ3e

−i10π/3 sin(ϕ0 −
5π

6
)

]
,

V
TM(1)
CEF,(m,m−5) =

[
V

TM(1)
CEF,(m−5,m)

]∗
= −V TM(1)

CEF,(−m+5,−m) =
[
−V TM(1)

CEF,(−m,−m+5)

]∗
= ATM

(m,m−5) cos θ0
[
δ1e

−i5π/6 + δ2e
−i5π/2 + δ3e

−i25π/6
]
,

V
TM(1)
CEF,(m,m−6) =

[
V

TM(1)
CEF,(m−6,m)

]∗
= V

TM(1)
CEF,(−m+6,−m) =

[
V

TM(1)
CEF,(−m,−m+6)

]∗
= ATM

(m,m−6) sin θ0

[
δ1 cos(ϕ0 −

π

6
) + δ2 cos(ϕ0 −

π

2
) + δ3 cos(ϕ0 −

5π

6
)

]
+A′TM

(m,m−6)i sin θ0

[
δ1 sin(ϕ0 −

π

6
) + δ2 sin(ϕ0 −

π

2
) + δ3 sin(ϕ0 −

5π

6
)

]
,

(C.7)
where the position dependence r was removed, and ATM

(m′,m) and A
′TM
(m′,m) are real param-

eters.

Lastly, we analyse the CEF potential induced by oxygen atoms at the B sites (blue
spheres in Fig. C.1(b)). Only the first order term in δi of the matrix element is provided
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below to avoid overcomplication.

V
O,B(1)
CEF,(m,m−1) =

[
V

O,B(1)
CEF,(m−1,m)

]∗
= −V O,B(1)

CEF,(−m+1,−m) =
[
−V O,B(1)

CEF,(−m,−m+1)

]∗
= AO,B

(m,m−1) cos θ0

[
δ4 + δ5e

−i2π/3 + δ6e
−i4π/3

]
+A

′O,B
(m,m−1) sin θ0

[
δ4 cosϕ0 + δ5e

−i2π/3 cos(ϕ0 −
2π

3
) + δ6e

−i4π/3 cos(ϕ0 −
4π

3
)

]
+A

′′O,B
(m,m−1)i sin θ0

[
δ4 sinϕ0 + δ5e

−i2π/3 sin(ϕ0 −
2π

3
) + δ6e

−i4π/3 sin(ϕ0 −
4π

3
)

]
V

O,B(1)
CEF,(m,m−2) =

[
V

O,B(1)
CEF,(m−2,m)

]∗
= V

O,B(1)
CEF,(−m+2,−m) =

[
V

O,B(1)
CEF,(−m,−m+2)

]∗
= AO,B

(m,m−2) cos θ0

[
δ4 + δ5e

−i4π/3 + δ6e
−i2π/3

]
+A

′O,B
(m,m−2) sin θ0

[
δ4 cosϕ0 + δ5e

−i4π/3 cos(ϕ0 −
2π

3
) + δ6e

−i2π/3 cos(ϕ0 −
4π

3
)

]
+A

′′O,B
(m,m−2)i sin θ0

[
δ4 sinϕ0 + δ5e

−i4π/3 sin(ϕ0 −
2π

3
) + δ6e

−i2π/3 sin(ϕ0 −
4π

3
)

]
V

O,B(1)
CEF,(m,m−3) =

[
V

O,B(1)
CEF,(m−3,m)

]∗
= −V O,B(1)

CEF,(−m+3,−m) =
[
−V O,B(1)

CEF,(−m,−m+3)

]∗
= AO,B

(m,m−3) cos θ0 [δ4 + δ5 + δ6]

+A
′O,B
(m,m−3) sin θ0

[
δ4 cosϕ0 + δ5 cos(ϕ0 −

2π

3
) + δ6 cos(ϕ0 −

4π

3
)

]
+A

′′O,B
(m,m−3)i sin θ0

[
δ4 sinϕ0 + δ5 sin(ϕ0 −

2π

3
) + δ6 sin(ϕ0 −

4π

3
)

]
V

O,B(1)
CEF,(m,m−4) =

[
V

O,B(1)
CEF,(m−4,m)

]∗
= V

O,B(1)
CEF,(−m+4,−m) =

[
V

O,B(1)
CEF,(−m,−m+4)

]∗
= AO,B

(m,m−4) cos θ0

[
δ4 + δ5e

−i2π/3 + δ6e
−i4π/3

]
+A

′O,B
(m,m−4) sin θ0

[
δ4 cosϕ0 + δ5e

−i2π/3 cos(ϕ0 −
2π

3
) + δ6e

−i4π/3 cos(ϕ0 −
4π

3
)

]
+A

′′O,B
(m,m−4)i sin θ0

[
δ4 sinϕ0 + δ5e

−i2π/3 sin(ϕ0 −
2π

3
) + δ6e

−i4π/3 sin(ϕ0 −
4π

3
)

]
V

O,B(1)
CEF,(m,m−5) =

[
V

O,B(1)
CEF,(m−5,m)

]∗
= V

O,B(1)
CEF,(−m+5,−m) =

[
V

O,B(1)
CEF,(−m,−m+5)

]∗
= AO,B

(m,m−5) cos θ0

[
δ4 + δ5e

−i4π/3 + δ6e
−i2π/3

]
+A

′O,B
(m,m−5) sin θ0

[
δ4 cosϕ0 + δ5e

−i4π/3 cos(ϕ0 −
2π

3
) + δ6e

−i2π/3 cos(ϕ0 −
4π

3
)

]
+A

′′O,B
(m,m−5)i sin θ0

[
δ4 sinϕ0 + δ5e

−i4π/3 sin(ϕ0 −
2π

3
) + δ6e

−i2π/3 sin(ϕ0 −
4π

3
)

]
V

O,B(1)
CEF,(m,m−6) =

[
V

O,B(1)
CEF,(m−6,m)

]∗
= −V O,B(1)

CEF,(−m+6,−m) =
[
−V O,B(1)

CEF,(−m,−m+6)

]∗
= AO,B

(m,m−6) cos θ0 [δ4 + δ5 + δ6]

+A
′O,B
(m,m−6) sin θ0

[
δ4 cosϕ0 + δ5 cos(ϕ0 −

2π

3
) + δ6 cos(ϕ0 −

4π

3
)

]
+A

′′O,B
(m,m−6)i sin θ0

[
δ4 sinϕ0 + δ5 sin(ϕ0 −

2π

3
) + δ6 sin(ϕ0 −

4π

3
)

]
.

(C.8)
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We note once more that δi = Di/a, Di is the magnitude of deviation of each site, and

AO,B
(m′,m), A

′O,B
(m′,m), and A

′′O,B
(m′,m) are real parameters.

Following the same procedure as in the main text and projecting the total CEF,
which is the first order in δ, that is, V

(1)
CEF = V

O,A(1)
CEF + V

TM(1)
CEF + V

O,B(1)
CEF , to the local

doublet, we again find that the effective interaction is described as a transverse field,
(∆S+ + ∆∗S−). However, the amplitude of the effective transverse field is different.
Assuming the normalised deviation δi is proportional to ri ·q, as explained in the previous
section, we obtain

∆ = ∆0[qxux − qyuy + i(qxuy + uxqy)] + ∆1 [qz(ux − iuy)] + ∆2 [uz(qx − iqy)] , (C.9)

where uµ denotes the deviation of the Pr ion along the local µ axis from its equilibrium
position. Therefore, the phonon-pseudospin interaction is represented as

Hs-p = Sx [∆0(qxux − qyuy) + ∆1qzux +∆2qxuz]+Sy [−∆0(qxuy + uxqy) + ∆1qzuy +∆2qyuz] .
(C.10)

We note that the parameter ∆i is real. This coupling form will be utilised in the analysis
of phonon transport properties in non-Kramers pyrochlore materials.
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Appendix D

Jordan–Wigner transformation

In this appendix, we review the exact solution of the one-dimensional transverse field
Ising model by employing the Jordan–Wigner transformation. The starting point is

H = J
N−1∑
j=0

σx
j σ

x
j+1 − Γ

N−1∑
j=0

σz
j , (D.1)

where N represents the number of sites. Applying the Jordan–Wigner transformation
(S = σ/2 and S± = Sx ± iSy):

S+
j =

∏j−1
i=0 (1− 2c†ici)c

†
j = (−1)

∑j−1
i=0 c†i cic†j

S−
j =

∏j−1
i=0 (1− 2c†ici)cj = (−1)

∑j−1
i=0 c†i cicj

Sz
j = c†jcj − 1

2

, (D.2)

we obtain

H = J

N−2∑
j=0

(c†j − cj)(c
†
j+1 + cj+1) + J(−1)F+P(c†0 + c0)(c

†
N−1 − cN−1)− 2Γ

N−1∑
j=0

(
c†jcj −

1

2

)
.

(D.3)
Here, (−1)F =

∏N−1
j=0 (1−2c

†
jcj) is known as the fermion parity and is a conserved quantity.

Additionally, P = 0 (P = 1) when the boundary condition is periodic (antiperiodic).
Henceforth, we only consider the periodic boundary condition, that is, the P = 0 case.

First, we assume F = 0. Carefully considering the boundary condition of the fermion
operators, we find k can take k = 2m+1

N
π (m ∈ Z) and −π ≤ k ≤ π, namely

k =

{
−π + π

N
,−π + 3π

N
, . . . ,− π

N
, π
N
, . . . , π − 3π

N
, π − π

N
N : even

−π,−π + 2π
N
, . . . ,− π

N
, π
N
, . . . , π − 2π

N
, π N : odd

. (D.4)

When the number of sites N is even, the Fourier transformation

c†j =
1√
N

∑
k

e−ikjc†k, cj =
1√
N

∑
k

eikjck, (D.5)
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yields

H =
∑
k>0

(
c†k c−k

)(2J cos k − 2Γ 2iJ sin k

−2iJ sin k −2J cos k + 2Γ

)(
ck

c†−k

)

≡
∑
k>0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
.

(D.6)

The eigenvalue of H(k) is denoted as ϵk = ±Ek = ±2
√

(J cos k − Γ)2 + J2 sin2 k. As
corresponding eigenvectors, we define

H(k)

(
uk −v∗k
vk u∗k

)
=

(
uk −v∗k
vk u∗k

)(
Ek 0

0 −Ek

)
, Uk =

(
uk −v∗k
vk u∗k

)
. (D.7)

Using this unitary matrix, the Hamiltonian is represented as

H =
∑
k>0

Ek(α
†
k+αk+ + α†

k−αk− − 1), (D.8)

where (
αk+

α†
k−

)
= U †

k

(
ck

c†−k

)
. (D.9)

The explicit form of uk and vk is given by

uk =

√
1

2

(
1 +

2(J cos k − Γ)

Ek

)
, vk = −i

J sin k

|J sin k|

√
1

2

(
1− 2(J cos k − Γ)

Ek

)
, (D.10)

which is provided in the main text (Eq. (4.43)).
If N is odd, the situation is slightly different. In this case, the Hamiltonian is already

diagonalised at k = π because the non-diagonal component sin k = 0. Therefore, we
should specially treat the momentum k = π to avoid double counting as

H = −2(J + Γ)

(
c†πcπ −

1

2

)
+
∑
k>0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
. (D.11)

A similar behaviour also occurs when we consider the F = 1 case. The possible momen-
tum is as follows:

k =

{
−π,−π + 2π

N
, . . . ,−2π

N
, 0, 2π

N
, . . . , π − 2π

N
, π N : even

−π + π
N
,−π + 3π

N
, . . . ,−2π

N
, 0, 2π

N
, . . . , π − 3π

N
, π − π

N
N : odd

. (D.12)

Therefore, the Hamiltonian should be written as

H = 2(J − Γ)

(
c†0c0 −

1

2

)
− 2(J + Γ)

(
c†πcπ −

1

2

)
+
∑
k>0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
. (D.13)
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when N is even and

H = 2(J − Γ)

(
c†0c0 −

1

2

)
+
∑
k>0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
. (D.14)

when N is odd.
To summarise, when the periodic boundary condition is assumed, we find

• F = 0, N : even

H =

N
2
−1∑

m=0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
, k =

2m+ 1

N
π (D.15)

• F = 0, N : odd

H = −2(J + Γ)

(
c†πcπ −

1

2

)
+

N−3
2∑

m=0

(
c†k c−k

)
H(k)

(
ck

c†−k

)
, k =

2m+ 1

N
π (D.16)

• F = 1, N : even

H = 2(J−Γ)
(
c†0c0 −

1

2

)
−2(J+Γ)

(
c†πcπ −

1

2

)
+

N
2
−1∑

m=1

(
c†k c−k

)
H(k)

(
ck

c†−k

)
, k =

2m

N
π

(D.17)

• F = 1, N : odd

H = 2(J − Γ)

(
c†0c0 −

1

2

)
+

N−1
2∑

m=1

(
c†k c−k

)
H(k)

(
ck

c†−k

)
, k =

2m

N
π (D.18)

Within the thermodynamic limit, k is treated as a continuous variable and we do not
have to specially treat the k = 0, π modes because they will have a benign role in the
physical quantities.
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Phys.: Condens. Matter 13, 9301 (2001).

[143] A. Wörl, T. Onimaru, Y. Tokiwa, Y. Yamane, K. T. Matsumoto, T. Takabatake,
and P. Gegenwart: Phys. Rev. B 99, 081117 (2019).

[144] F. Weickert, P. Gegenwart, C. Geibel, W. Assmus, and F. Steglich: Phys. Rev. B
98, 085115 (2018).
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