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Abstract

In this thesis, we study certain topological terms called the Wess-Zumino-Witten (WZW) terms
appearing in non-linear sigma models. The WZW terms must be present if the sigma models
are realized as low-energy effective description of four-dimensional massless quantum chromo-
dynamics (QCD), as they are responsible for appropriately reproducing the ’t Hooft anomalies of
global symmetries in the QCD.

This anomaly matching determines the overall coefficient of the WZW terms, but it further
reveals that they are not well-defined on arbitrary spacetime manifolds, since they do not obey
the required quantization conditions. For the simplest case of the IR non-linear sigma models
of SU QCD, it was pointed out by [Fre06] that the underlying spacetime manifolds need to be
equipped with spin structure allowing spinors to be defined on them, which is indeed natural as
the original QCD one started with contain fermions. However, the method used to verify this was
rather ad hoc and was not applicable to QCD with other gauge groups of interest such as SO.

We will explain that the WZW terms should be described in terms of (co)bordism instead of
naı̈ve ordinary (co)homology, and show that this description nicely makes sense of those subtleties
concerning overall coefficients, not only for SU QCD but also for SO QCD. The solution to the
former case has been known as mentioned above, but we newly provide a more sophisticated
argument based on (co)bordism with an advantage that it also applies to the latter case which was
previously intractable.

Also, SO QCD have another interesting twist concerning the “generalized” global symmetries.
It was recently found by [HL20] that SO(2nc) QCD with even number of colors can have mixed
’t Hooft anomaly between ordinary symmetries and “higher-form” symmetries, while it remained
unclear how this anomaly is matched in the IR non-linear sigma models. By examining solitonic
strings in the sigma models, we find that the WZW terms are also responsible for reproducing this
novel anomaly too.
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Chapter 1

Introduction

Quantum chromo-dynamics (QCD) is a gauge theory with a number of fermions charged under
the gauge group G. In (3 + 1) d, when the ratio between the number of fermions (“flavors”) Nf

and the number of colors Nc is sufficiently small, the theory is known to be asymptotically free,
meaning that it is weakly coupled at high-energy (UV) and gradually becomes strongly coupled as
one flows down to low-energy (IR). As a result, one experiences various unexpected phenomena
in deep IR such as

• confinement of the gauge charge, allowing only neutral particles to appear in isolation

• generation of the gauge-boson(-ball) mass, in spite of the absence of a mass term

whose mechanisms are notoriously difficult to explain for ones with only perturbative handles.
In Nature, the strong interaction seems to be well-described by SU QCD (i.e. G = SU(Nc)) with
Nc = 3 and Nf = 3 (or 2) for example, and it confirms the actual occurrence of these phenomena,
together with the results of numerical simulations. Although a rather satisfactory explanation
has been provided in models with sufficient amounts of supersymmetry [SW94], their complete
understanding in the original non-supersymmetric setup is still lacking at the moment.

To proceed, one is naturally urged to exploit non-perturbative aspects of the theory. Although
one usually does not have much control of them, there are (at least) two lucky exceptions, namely
the global symmetries and their (’t Hooft) anomalies. The latter represents the impossibility of
gauging (which can be regarded as “mild violation” of) the former, and can be described in terms
of topological quantities, which is invariant under the renormalization-group (RG) flow. This
invariance is the key property, as it implies that by computing the anomaly in a weakly-coupled
region of the RG flow, one can also obtain full knowledge of the anomaly in a strongly-coupled
region, circumventing the direct computation which would have been troublesome. Applied not
only to ordinary symmetries but also to “generalized” symmetries which will be explained later,
this ’t Hooft anomaly matching [tH80] has been a powerful tool to impose non-trivial constraints
on strongly-coupled region of gauge theories.
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Chapter 1. Introduction 2

In practice, when a theory is strongly-coupled, it is often the case that the theory is described as
another weakly-coupled theory. For the case of QCD, if fermions are massless, it is believed that
fermions form condensates at some point along the RG flow, leading to the spontaneously breaking
of the flavor symmetry, and as a result, the theory is effectively described in terms of a non-linear
sigma model parameterizing the Nambu-Goldstone bosons associated to the spontaneous symme-
try breaking (SSB). Since the flavor symmetry is chiral, i.e. acts separately on left / right-handed
fermions, the symmetry has non-zero ’t Hooft anomaly and cannot be gauged. An important point
is that this ’t Hooft anomaly has to be reproduced in the low-energy sigma model, according to
the ’t Hooft’s anomaly matching argument. For the case at hand, the Nambu-Goldstone bosons
being the only massless degrees of freedom, this is provided by a certain topological term defined
on the sigma model, which was originally identified by Wess and Zumino [WZ71]. Its topological
significance was later brought to the fore by Witten [Wit83a], where it was also noted that this
term remains non-trivial even after turning off the background gauge field for the flavor symmetry,
while the terms of this general form were already described independently by Novikov [Nov82].
Following the convention, we call it the (un)gauged Wess-Zumino-Witten (WZW) term, and
the aim of this thesis is to review various subtleties on this topological term for SU and SO QCD.1

The first issue to be addressed is the quantization of overall coefficients of the WZW terms.
They were initially determined by considering sigma model configurations on simple spacetime
manifolds such as a flat space R4 or a sphere S4, and therefore it had not been clear whether
the WZW terms are well-defined on an arbitrary spacetime M4 with an arbitrary sigma model
configuration in the first place. It turns out that the consistency of the ungauged WZW terms
for SU QCD in fact requires the spacetime manifold to be equipped with spin structure, as first
pointed out by Freed [Fre06]. We will revisit this problem in the context of the recent improved
understanding of topological terms as invertible QFTs, which are QFTs depending on some set
of background fields such that the Hilbert space is one-dimensional on any closed spatial slice
[FM04]. Invertible QFTs depending on background gauge fields are essentially equivalent to what
is called the symmetry-protected topological (SPT) phases, which were originally introduced in
the condensed-matter community and have been extensively studied. In contrast, the WZW terms
we are interested in here are examples of invertible QFTs depending on background scalar fields,
i.e. maps from the spacetime manifold to the sigma model target space. Such invertible QFTs
(and the corresponding anomalies) have only recently begun to be studied in the literature (see
e.g. [FKS17,TY17,Tho17,STY18,CFLS19a,CFLS19b,HKT20]), but the general classification of
invertible QFTs based on bordism2 established in the last several years [KTTW14,FH16,GJF17,
Yon18, Fre19] is equally applicable and will facilitate our analysis.

1Here we abused the notation; in addition to the ordinary one with G = SO(Nc), “SO QCD” includes the one
with the discrete theta angle and also the one with G = Spin(Nc) i.e. Spin QCD.

2In particular, the reference [Fre06] used a generalized cohomology called E•, which is actually a truncation of
another generalized cohomology (DΩspin)•, namely the Anderson dual of the spin bordism. As we will describe in
the main part, the latter is now understood to be the correct theory classifying the spin invertible QFTs.
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Summary of the results (1)� �
Showed that the WZW terms are appropriately described in terms of bordism, and as a result
clarified the necessity of spin structures for the definition of WZW terms in the IR of

◦ SU(Nc) QCD (refinement of Freed’s result [Fre06])

◦ SO(Nc) QCD (completely novel)

on generic spacetime manifolds, by computing relevant bordism groups.� �
Another issue to be discussed is about topological solitons in the low-energy sigma models.

It is well known that the baryons in SU QCD are described as solitonic particles from the sigma
model point of view [Sky61, Wit83b], and the U(1)B baryonic symmetry in the UV QCD having
a mixed anomaly between the flavor symmetry is also nicely reproduced in the IR sigma model
[GW81, BNRS82, CL85]. Similarly, it is known that there are Z2-valued electric flux tubes in
Spin QCD, which are again to be reproduced in the sigma model as solitonic strings [Wit83b].
We would like to describe its analog in the case of Z2-valued magnetic flux tubes of SO QCD.
For this we need the concept of p-form symmetries: while point-like operators are charged under
ordinary symmetries, higher-dimensional operators are charged under higher-form symmetries.
Denoting the dimensionality of charged operators by p, they can be treated uniformly [GKSW14].
In this language, solitonic particles are charged under the U(1)B 0-form symmetry of SU QCD,
and solitonic strings are charged under the Z2 1-form symmetries of (Spin and) SO QCD. Then,
what we need to do is :

◦ to understand the mixed anomaly of the Z2 1-form symmetry between other symmetries in
the UV QCD, and

◦ to describe how it is represented in the IR non-linear sigma model.

The first task was very recently performed in [HL20], and the second task was done in our paper
[LOT20], both of which will be reviewed in this thesis.

Summary of the results (2)� �
Successfully reproduced the newly-found mixed ’t Hooft anomaly of SO(2nc) QCD [HL20]

(involving higher-form symmetries) in the IR non-linear sigma model by the WZW term.� �
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Outline

The rest of the thesis is organized as follows. First three chapters in the main part are preliminary.
In Chap. 2, we will describe the notion of bordism and display some of the elementary examples.
In Chap. 3, we will introduce the notion of invertible QFT and see how they are related to bordism.
In Chap. 4, we will review the notion of symmetries and anomalies from a modern point of view,
especially with emphases on the relation between invertible QFT. We will then look into the
concrete examples of four-dimensional massless SU and SO QCD in turn in Chap. 5 and 6, where
the WZW terms in low-energy non-linear sigma models are studied in detail.

In Appendix A, we give a brief introduction to spectral sequences in general. In Appendix B,
we compute the relevant bordism groups of the classifying spaces and the homogeneous spaces,
which are used extensively in the main part. We mostly employ the Atiyah-Hirzebruch spectral
sequence, but some of the computations are supplemented by uses of the Adams spectral sequence.

Special notes

This thesis is based on the following paper

[LOT20] Y. Lee, K. Ohmori, Y. Tachikawa, “Revisiting Wess-Zumino-Witten terms”
arXiv:2009.00033 [hep-th], SciPost Phys. 10 (2021) 061.

https://arxiv.org/abs/2009.00033


Chapter 2

Bordism

In short, the bordism is an equivalence relation between d-dimensional closed manifolds Md

(i.e. compact without boundary) equipped with maps f : Md → X to another topological space X .
One can think of this as a relaxed “generalized” version of isomorphism between two manifolds,
where (very roughly speaking) two manifolds are identified and regarded as equivalent if they can
be smoothly deformed to each other.

It turns out that the bordism equivalence classes form a group, just as more familiar relatives
do1:

homotopy πd(X) : equivalence classes of maps Sd → X ,

homology Hd(X) : equivalence classes of maps ∆d → X ,

bordism Ωd(X) : equivalence classes of maps Md → X ,

and is indeed a “generalized” (co)homology not only in this naı̈ve sense but also in a more rigorous
sense of what is called the Eilenberg-Steenrod axioms.2 Let us first elaborate on the definition,
and then briefly take a look at some elementary examples.

1Strictly speaking, the domain of the homology case should be a formal sum of standard d-simplices ∆d.
2The curious reader is referred to e.g. [Fre13,DK01] for more details on unfamiliar jargons popping up hereafter,

although the bulk of this thesis should be (hopefully) readable without fully understanding them, which is exactly the
author’s intent. The author believes that he is not expected to pad his thesis by duplicating definitions and explanations
of every single notion from existing mathematics textbooks, and readers can safely ignore alien symbols or diagrams
as they wish.

5



Chapter 2. Bordism 6

2.1 Definition

Closed d-manifolds Md and M ′
d are defined to be equivalent (bordant) if there exists a compact

(d + 1)-manifold Wd+1 with boundary ∂Wd+1 = Md tM ′
d , where M ′

d denotes the orientation-
reversal of M ′

d.

∃?Wd+1Md M ′
d

(2.1)

Recall that closed d-manifolds forms a (commutative) monoid under the disjoint union t of man-
ifolds; the identity element is an empty d-manifold ∅d, as Md t ∅d = Md. Further passing the
disjoint union operation t to the set of bordism classes Ωoriented

d , these classes have not only an
identity element but also inverse elements under the operation, and thus form a (Abelian) group;
the identity equivalence class is the one to which ∅d belongs, and the inverse of the equivalence
class to which Md belongs is an equivalence class to which Md belongs, as can be seen below.

Md Md

'

Md tMd ∅d

(2.2)

One can further take various (tangential) structures into account, such as spin structures which
allows one to define spinors on the manifold, or more generally maps f : Md → X from the
manifold to a given topological space X . The resulting group is denoted Ωstructure

d (X). Note that,
when X is connected, the bordism group splits as

Ωstructure
d (X) = Ωstructure

d (pt)⊕ Ω̃structure
d (X). (2.3)

The first direct summand on the right hand side is the bordism group of a point, and the second
direct summand is the reduced bordism group. This splitting comes straightforwardly from the
fact that any class [f : Md → X] ∈ Ωstructure

d (X) determines [Md] ∈ Ωstructure
d (pt) by forgetting the

map f , and vice versa [Md] ∈ Ωstructure
d (pt) determines [f0 : Md → X] ∈ Ωstructure

d (X) where f0

sends Md to a single point on X .
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2.2 Examples

d = 0, oriented

Closed oriented 0-manifolds are points, and as can be seen easily,

→ → '

→

←

(2.4)

the inverse of (the equivalence class of) an oriented point is a point with the opposite orientation.
Therefore, one can immediately identify the bordism group

Ωoriented
0 (pt) = Z, (2.5)

where each element n ∈ Z corresponds to “multiple points” (which is indeed a closed 0-manifold)
with n being the net number of points with the chosen orientation. An example of bordant pairs is

→

→

←

→
(2.6)

where two closed oriented 0-manifolds on both sides are connected by 1-manifold in the bulk, and
belong to the equivalence class labeled by (+1) · 2 + (−1) · 1 = (+1) · 1 = 1 ∈ Z.

d = 1, oriented

Closed oriented 1-manifolds are circles S1, but as they can bound two-dimensional disks D2, they
are bordant to an empty 1-manifold ∅1. One can also understand this by starting from a pair of
pants and then dropping two of the three circles.

D2S1

→ →

→

→

drop any two←−−−−−−−−

(2.7)

Either way, one can see that the bordism group is trivial

Ωoriented
1 (pt) = 0. (2.8)



Chapter 2. Bordism 8

d = 1, spin

Let us next consider the case concerning spin structures, which are structures allowing spinors to
be defined on the manifold. The situation is almost the same as the above example, but this time
the difference in required (tangential) structure plays a crucial role. There are in fact two types of
S1; the one with periodic boundary condition and the other with anti-periodic boundary condition.
Furthermore, it is known that two-dimensional disk D2 equipped with spin structure is bounded
by the anti-periodic one, but not by the periodic one:

D2S1
AP

→

D2S1
P

→

(2.9)

This can be understood from a mod-2 index of a Dirac operator on S1. While S1
AP has a trivial

index, S1
P has a non-trivial index, and therefore cannot be bordant to an empty spin 1-manifold

∅1, which obviously has a trivial index. This is an example of bordism invariant. Again, one can
also understand this by considering a pair of pants

→

→

→

2 = 0 0

P

P

AP

(2.10)

where a disjoint union of two S1
P’s has a trivial mod-2 index as a whole, and it can be bordant to

S1
AP, which was further bordant to an empty 1-manifold ∅. Anyway, the bordism group becomes

Ωspin
1 (pt) = Z2 (2.11)

with the generator (representative) manifold being S1
P.
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Generic results

One can further go on and will find [Wal60, ABP67, BG87]

d Ωoriented
d (pt) Ωspin

d (pt) Ωspinc

d (pt)

0 Z Z Z
1 0 Z2 0

2 0 Z2 Z
3 0 0 0

4 Z Z Z⊕ Z
5 Z2 0 0

6 0 0 Z⊕ Z
7 0 0 0
...

...
...

...

Combining these data with the (co)homology information on a topological space X , one can
compute the bordism groups Ωstructure

d (X) by certain tools called the Atiyah-Hirzebruch spectral
sequence (AHSS) or the Adams spectral sequence. See Appendix B for the details.
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Chapter 3

Invertible QFT

3.1 Basics

A standard lore to start with is that, for any physical systems (typically lattice models in mind),
their long-range behavior can be described by scale-invariant QFT. In particular, if the original
system has a mass gap above the lowest energy states in the spectrum of the Hamiltonian, excited
states are practically invisible to low-energy observers, and it would be fair to say that the Hilbert
space of the effective field theory consists only of ground states.

The invertible QFT is a special class of such theories whose ground state is non-degenerate.
In other words, a QFT is defined to be invertible if its Hilbert space is one-dimensional

dimH = 1 (3.1)

on any closed spatial slice.
These theories are called “invertible” for the following reason. Given two QFTs Q and Q′,

one can produce a new QFT Q ? Q′ by stacking them, namely by taking a product of partition
functions and taking a tensor product of Hilbert spaces

ZQ?Q′ = ZQ · ZQ′ ,
HQ?Q′ = HQ ⊗HQ′ .

(3.2)

Since the trivial QFT Qtrivial has

ZQtrivial = 1,

HQtrivial = C,
(3.3)

generic QFTs form a (commutative) monoid under the stacking operation ?, where the identity
element is Qtrivial. However, QFTs with one-dimensional Hilbert space further form a (Abelian)
group under ?, since every such elementQ has an inverse elementQ−1 such thatQ?Q−1 = Qtrivial

11
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with

ZQ−1 = Z−1
Q ,

HQ−1 = H∨Q,
(3.4)

whose Hilbert space HQ−1 is also one-dimensional. Therefore, QFTs with one-dimensional
Hilbert space are indeed “invertible” in this sense.

Restricting QFTs of interest to those requiring the spacetime manifold to be equipped with
certain (tangential) structures or fields φ : Md → X taking values in the target space X , one can
consider various classes of special invertible QFTs. In particular, invertible QFTs whose target
space are taken to be a classifying space BG of a group G is essentially the same thing as what
is called the G-symmetry protected topological (G-SPT) phases, and has been under extensive
investigation in the condensed matter physics community for the last decade.

One of the main questions was about their classification, and initially they were thought to be
classified by ordinary (co)homology very much like other “topological” notions in QFT. However,
it turned out that some of them do not fit in this naı̈ve (co)homology classification, and [Kap14]
proposed a classification based on (co)bordism to incorporate those beyond-(co)homology phases.
This conjectural classification was proved to be correct by [FH16,Yon18], which further suggested
a natural extension to the full classification of invertible QFTs (see also [YY21]).

On the other hand, topological terms appearing in QFTs by itself can be regarded as (actions
of) almost-empty QFTs with sparse spectrum with isolated ground states, as already described.
In the following, we will discuss various “topological” terms in sigma models, all of which can
be uniformly thought of as generalizations of WZW terms. Conventionally, they have been de-
scribed in terms of ordinary (co)homology as already mentioned, but careful examinations indi-
cate that the correct description should be based on (co)bordism, which in fact reduces to ordinary
(co)homology in some cases, including those in low spacetime dimensions with simple enough
target spaces. Their classification reproduces that proposed for invertible QFTs, and therefore
serves as a strong evidence of validity (and at the same time as a demonstration of useful applica-
tion) of the latter.
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3.2 Classification

Let us first discuss ungauged WZW terms from a modern perspective. In particular, we would
like to explain why one needs (co)bordism, rather than (co)homology, to describe these terms.

3.2.1 d = 1 : U(1) connection

Let us start with the simplest example, as was also done in [Wit83a]. Consider a (0 + 1) d theory
with a scalar field φ taking values in a manifold X . This is just a convoluted way of referring
to a quantum mechanical particle moving on X . Then, make the particle electrically charged by
coupling to a U(1) gauge connection A on X . Here we denote the worldline of the particle by a
scalar field φ : S1 → X . The contribution e−S[φ,A] of the connection to the exponentiated action is
given by the holonomy along S1 of the pull-back φ∗(A) of the gauge connection. Physicists often
write this somewhat imprecisely as

e−S[φ,A] = exp

(
i

∫
S1

φ∗(A)

)
= exp

(
i

∫
φ(S1)

A

)
, (3.5)

as if A were always a globally well-defined 1-form.
It is useful to interpret the holonomy as follows. On one hand, suppose that the loop φ : S1 → X

is contractible within X , or equivalently, that it can be extended to φ : D2 → X , where D2 is a
two-dimensional disk. One can then write the holonomy as

e−S[φ,A] = exp

(
i

∫
φ(D2)

F

)
(3.6)

where F is the field strength, or equivalently the curvature of the U(1) connection A.1 In a similar
manner, one can compare the holonomy along two configurations φ0 : S1 → X and φ1 : S1 → X

deformable to each other, in the sense that there is a map φx : S1 × [0, 1]→ X such that the

1This does not depend on the choice of the extension φ, since the difference between another extension
φ′ : D2 → X is given by

exp

(
i

∫
φ(D2)

F

)

exp

(
i

∫
φ′(D2)

F

) = exp

(
i

∫
φ(D2)tφ′(D2)

F

)
,

where M denotes the orientation reversal of M and the union t is taken by identifying the boundaries. This makes
the union an image of a two-sphere S2 in X , and

∫
φ(S2)

F ∈ 2πZ shows that the right hand side is indeed 1.
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boundary values are equal to φ0,1, respectively. Then one has

e−S[φ0,A]

e−S[φ1,A]
= exp

(
i

∫
S1×[0,1]

φ∗(F )

)
= exp

(
i

∫
φx(S1×[0,1])

F

)
.

The right hand side is independent of the choice of φx interpolating φ0 and φ1.2

On the other hand, suppose that the U(1) connectionA is flat and the field strength F vanishes.
Then the holonomy does not depend on deformations of the loop φ(S1) ⊂ X , which means that
the holonomy in fact determines a character

χA : H1(X;Z)→ U(1),

and as a result one has
e−S[φ,A] = χA

(
[φ(S1)]

)
. (3.7)

In the end, a general U(1) connection can be regarded as a certain combination of two extremes
(3.6) and (3.7).

3.2.2 d = 2 : B-field

As a next example, let us consider a (1 + 1) d QFT describing a string moving within a manifold.
We denote the worldsheet of the string by M2, the target manifold by X , and the embedding by
φ : M2 → X . An important ingredient of string theory is the B-field, whose contribution to the
exponentiated action is its holonomy e−S[φ(M2),B]. This can again be written as

e−S[φ(M2),B] = exp

(
i

∫
φ(M2)

B

)
, (3.8)

when B is a globally well-defined 2-form. More generally, a B-field has a field strength H which
is a closed 3-form, such that we have ∫

[Y3]

H ∈ 2πZ (3.9)

2Indeed, given another φ′x : S1 × [0, 1]→ X interpolating φ0,1, we can consider

exp

(
i

∫
φx(S1×[0,1])

F

)

exp

(
i

∫
φ′
x(S

1×[0,1])
F

) = exp

(
i

∫
φx(S1×[0,1])tφ′

x(S
1×[0,1])

F

)

where the integral is over a 2-cycle in X . Again, it is quantized and guarantees that this is indeed 1.
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for any 3-cycle [Y3] ∈ H3(X;Z). Now, for two embeddings φ : M2 → X and φ′ : M ′
2 → X ,

suppose that there exists a three-dimensional compact manifoldW3 such that ∂W3 = M2 tM ′
2 so

that there is a map φ : W3 → X whose restrictions on the boundaries give φ and φ′ respectively.
Then,

e−S[φ,B]

e−S[φ′,B]
= exp

(
i

∫
φ(W3)

H

)
= 1,

and in particular, when φ : M2 → X is contractible and extensible to φ : W3 → X such that
∂W3 = M2, the property above suffices to determine the holonomy, and indeed one has

e−S[φ(M2),B] = exp

(
i

∫
φ(W3)

H

)
. (3.10)

For the 2d WZW model, X is a group manifold of a compact Lie group G. Assuming G is simple
and simply-connected, it is known that H3(X;R) = R and there is a G-invariant 3-form Γ3

generating it. Let us normalize it so that
∫
Y3

Γ3 = 2π, where [Y3] is a generator of H3(X;Z) ' Z.
Choosing an extension φ : W3 → X such that ∂W3 = M2 (which is always possible since
Ωspin

2 (X) = 0), the WZW term is given by

e−S[φ,B] = exp

(
ik

∫
W3

φ∗(Γ3)

)
(3.11)

where k ∈ Z is called the level.
In the other extreme, when the field strength H vanishes, the B-field determines a character

χB : H2(X;Z)→ U(1), and therefore the holonomy is given by

e−S[φ(M2),B] = χB

(
[φ(M2)]

)
. (3.12)

3.2.3 Generic WZW terms at the level of (co)homology

The two constructions above can be generalized to arbitrary spacetime dimensions as follows
[Nov82,CS85]. Consider a d-dimensional theory with a scalar field φ taking values in a manifold
X . We can now consider a d-form gauge field C on X , which has the following features. First, it
has an associated closed (d+1)-form field strengthG, such that when the scalar field φ : Md → X

is extensible to φ : Wd+1 → X with ∂Wd+1 = Md, the coupling is given by

e−S[φ(Md),C] = exp

(
i

∫
φ(Wd+1)

G

)
. (3.13)

For this coupling to be well-defined independent of the extension, one has to require∫
[Yd+1]

G ∈ 2πZ (3.14)
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for all [Yd+1] ∈ Hd+1(X;Z). Second, when the field strength G vanishes so that the d-form gauge
field is flat, the coupling is given by

e−S[φ(Md),C] = χC

(
[φ(Md)]

)
, (3.15)

where χC : Hd(X;Z) → U(1) is a character. The mathematically precise formulation of these
ideas is known as differential characters / cohomology.

The topological class of a d-form gauge field C is given by a class

c =

[
G

2π

]
∈ Hd+1(X;Z); (3.16)

when d = 1, this c is the first Chern class of the U(1) gauge connection. The important fact is that
the information contained in c can be decomposed to pieces corresponding to (3.13) and (3.15).
To see this, use the universal coefficient theorem of the ordinary (co)homology3

0 −→ ExtZ(Hd(X;Z),Z)
b−→ Hd+1(X;Z)

a−→ HomZ(Hd+1(X;Z),Z) −→ 0. (3.17)

Then,
a(c) : Hd+1(X;Z)→ Z

is the mapping
∫

[Yd+1]
G/2π for [Yd+1] ∈ Hd+1(X;Z), which exactly corresponds to the (3.13)

part. When a(c) vanishes, the gauge field can be continuously deformed to a flat one, whose
information is captured by (3.15). The holonomy assigned to the free part of Hd(X;Z) can be
continuously deformed to a trivial one, and therefore the topological class of c when a(c) = 0 is
specified by Hom(Hd(X;Z)torsion,U(1)).

Note that the exact sequence (3.17) can be identified with a part of the long exact sequence
associated with the change of coefficients

0 −→ Z −→ R π−→ U(1) −→ 0. (3.18)

Indeed, one can write

0 −→ ExtZ(Hd(X;Z),Z)
b−→ Hd+1(X;Z)

a−→ HomZ(Hd+1(X;Z),Z) −→ 0

� = ←
↩

· · · πd−→ Hd(X; U(1))
β−→ Hd+1(X;Z)

ι−→ Hd+1(X;R)
πd+1−→ · · ·

where the homomorphism β is what is called the Bockstein associated with (3.18).
3For a finitely-generated Abelian group A = Zn ⊕ Zn1

⊕ · · · ⊕ Znk
, it is

ExtZ(A,Z) = Hom(Atorsion,U(1)) ' Atorsion,

HomZ(A,Z) = Hom(Afree,Z) ' Afree,

where the rightmost isomorphisms are non-canonical.
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3.2.4 Invertible phases and (the Anderson dual of) the bordism group

As one might have noticed, the discussion in the previous section is in fact not fully general, due
to the imperfect condition (3.14); we will revise the relevant part and discuss its consequence in
the following. Suppose we have a d-dimensional spin theory with a scalar field taking values in a
manifoldX . Here, a spin theory means that the spacetime manifoldMd is required to be equipped
with a spin structure. Now, we would like to specify a U(1)-valued phase in the exponentiated
action. Physics imposes various conditions, and consistent such phases are called the invertible
phases.

Free part

As before, assume that there is a closed (d + 1)-form field strength G, such that, when the scalar
field φ : Md → X is extensible to φ : Wd+1 → X with ∂Wd+1 = Md, the coupling is given by

e−S[φ] = exp

(
i

∫
φ(Wd+1)

G

)
. (3.19)

Here we allow G to consist not only of differential forms on X but also of the Pontrjagin classes
pi of φ(Wd+1). Since Q[p1, p2, . . .] = H∗(BSpin;Q), this means that we regard G as an element
of Hd+1(BSpin×X;Q). For this coupling to be well-defined independent of the extension, one
must require ∫

φ(W closed
d+1 )

G ∈ 2πZ (3.20)

for all maps from a closed spin manifold φ : W closed
d+1 → X . This determines a homomorphism

Ωspin
d+1(X)→ Z,

opposed to our discussion in (3.14) where we had the ordinary homology group Hd+1(X;Z)

instead of the bordism group Ωspin
d+1(X). Such a homomorphism is specified by an element of

HomZ(Ωspin
d+1(X),Z). (3.21)

Torsion part

When G vanishes, the relation (3.19) implies that e−S[φ] only depends on the bordism class [φ] of
φ : Md → X . Then, the coupling is given by

e−S[φ] = χ
(
[φ]
)
, (3.22)

where χ is now a character χ : Ωspin
d (X) → U(1). Again this is different from what we had in

(3.15) where we encountered Hd(X;Z) instead of Ωspin
d (X). Such characters up to continuous

deformation are classified by

Hom(Ωspin
d (X)torsion,U(1)) = ExtZ(Ωspin

d (X),Z). (3.23)
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Combining the two and the Anderson dual

A general invertible phase is a certain combination of these two extremes. This means that the
group Invdspin(X) of deformation classes of d-dimensional spin invertible phases sits in the middle
of a short exact sequence

0 −→ ExtZ(Ωspin
d (X),Z) −→ Invdspin(X)

a−→ HomZ(Ωspin
d+1(X),Z) −→ 0. (3.24)

Note the difference with respect to (3.17), where we had ordinary homology groups instead of
bordism groups. As before, for a class c ∈ Invdspin(X), the image a(c) specifies the pairing (3.20).
When a(c) vanishes, the invertible phase is continuously deformable to a flat one, which is then
given by a character (3.22).

The explanations so far should have clarified why one needs to use (co)bordism instead of
(co)homology; the spin QFT only deals with spacetime manifolds equipped with spin structure,
but not with arbitrary representatives of homology classes which might be non-spin, unoriented,
or even not be expressed as an image from manifolds. It is true that the ordinary homology groups
are the easiest algebraic-topological invariants of spaces, but they are not necessarily natural for
the purpose of spin QFT.

Let us discuss more about the sequence (3.24). Mathematically, Ωspin
• (X) is an example of gen-

eralized homology theory. For any generalized homology theory E•(X), there is a (generalized)
cohomology theory DE•(X) called the Anderson dual [And69], satisfying

0 −→ ExtZ(Ed(X),Z) −→ DEd+1(X) −→ HomZ(Ed+1(X),Z) −→ 0. (3.25)

This can be viewed as a generalization of the universal coefficient theorem (3.17) for ordinary ho-
mology theory H•(−;Z), where it was Anderson-self-dual DH•(−;Z) = H•(−;Z). Comparing
it with (3.24), one can conclude that

Invdspin(X) = DΩd+1
spin (X), (3.26)

and this is the meaning of the statement that invertible phases are classified by the Anderson dual
of the bordism group whose degree is shifted by one, originally formulated in [FH16].4

4While the Anderson dual of the bordism group describes the deformation classes of the invertible phases, the
invertible phases themselves, not their deformation classes, should be described by the differential version thereof.
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Symmetry and Anomaly

4.1 Global symmetry

Symmetry is one of the most fundamental characteristics of a given theory. Conventionally, it was
regarded mostly as the invariance of the action (and the path-integral measure), but the existence
of “non-Lagrangian” theories or dualities which provide multiple Lagrangian descriptions to the
same theory suggests that it is not the only legitimate way to treat symmetries. In this section, we
will review the modern perspective where the symmetry actions are implemented by topological
operators, following [GKSW14].

Basics

The existence of faithful symmetry implies that there are charged operators which transform non-
trivially under the symmetry. For ordinary continuous symmetry, where the infinitesimal trans-
formations leave the action invariant, one has the associated Noether current j = jµdx

µ which is
conserved

∂µj
µ = 0 ↔ d(∗j) = 0. (4.1)

Correspondingly, the Noether charge is

Q =

∫
space

dd−1x j0

=

∫
space
∗j (4.2)

and this serves as a generator of the symmetry algebra, where the equal-time commutation relation
between operator O is given as

[Q,O] = δQO. (4.3)

19
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Generic symmetry actions can be implemented by an exponential of the generators; note that
this exponentiated operator is topological and is invariant under small deformations of the space
Md−1 →M ′

d−1 (more precisely is bordism-invariant), due to the Stokes’ theorem (and the current
conservation)

QM ′d−1
−QMd−1

=

∫
Wd

d(∗j) = 0. (4.4)

WdMd−1 M ′d−1

Now let us generalize this and introduce the notion of p-form symmetry. It is a symmetry
whose charged operators are p-dimensional (in spacetime). For a theory in d spacetime dimen-
sions with symmetry group G, its action is defined to be implemented by a topological operator
Ug(Md−p−1) labeled by the group element g ∈ G, which is associated with a codimension-(p+ 1)

closed manifold Md−p−1. (See figures below for example.) By definition, the symmetry operators
obey the multiplication law1

Ug(Md−p−1)Ug′(Md−p−1) = Ugg′(Md−p−1). (4.5)

The operator O acted by a symmetry transformation g ∈ G is turned into Og, or in terms of a
commutation relation

UgO = OgUg

and thus
δgO = [Ug,O]. (4.6)

From this point of view, ordinary symmetries correspond to 0-form symmetry, but a nice thing
here is that this generalized notion is also capable of describing discrete-group symmetries.

Note that, while two codimension-1 symmetry operators extended along the space direction
cannot be commuted with each other in the time direction, two higher-codimension operators can,
and this implies that the group G must be Abelian for p ≥ 1.

1In more generic cases where the symmetry is not necessarily a group, operators obeys the “fusion” rule

UaUb =
∑
c

Uc

which is not invertible opposed to the group-symmetry cases [BT17, CLS+18]. These are called the “non-invertible”
or “categorical” symmetries.



21 Chapter 4. Symmetry and Anomaly

Figure 4.1: In p = 0 case, the local operator O is acted by the codimension-1 symmetry operator
Ug. The symmetry operator Ug after the transformation can be completely shrunk and collapsed
if there are no other charged operator left inside.

Figure 4.2: In p = 1 case, the non-local line operator L is acted by the codimension-2 symmetry
operator Ug.
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Gauging

The first step to gauging a global symmetry is to couple the theory to background (non-dynamical)
gauge fields. For ordinary 0-form symmetries, a flat background gauge field in a spatial slice
Md−1 can be described in terms of transition functions of a G-bundle; an intersection of patches
Uα∩Uβ to which gαβ ∈ G is associated can be interpreted as a symmetry operator Ugαβ(Uα∩Uβ).
Also, multiple intersections of patches can be resolved into triple intersections Uα ∩ Uβ ∩ Uγ
with gαβgβγgγα = 1, and these correspond to trivalent junctions of the symmetry operators. One
can immediately generalize this description to p-form symmetries, where symmetry operators are
defined on (p+ 2)-tuple intersections of patches, which are effectively codimension-(p+ 1).

Summing over all possible configuration of background gauge fields, one obtains a gauged
theory. Let us take a gauge theory with gauge group G as an example. As will be elaborated in
Sec. 5.1.1, the Γ subgroup of the center Z(G) becomes a global 1-form symmetry of the theory
when none of the matter fields transform non-trivially under it. Gauging Γ, the center reduces to
Z(G)/Γ, which implies that the gauge group itself is also reduced toG/Γ. In this case, non-trivial
background gauge field A characterizes the equivalence classes of G/Γ-bundles which are not G-
bundles, as then coupling a G gauge theory to background gauge fields A and summing over them
corresponds to summing over G/Γ-bundle, which by definition gives a G/Γ gauge theory

ZG/Γ =
∑
A

ZG[A]. (4.7)

Note that one can also incorporate non-trivial weights when summing over background gauge
fields, which will give rise to different gauged theories; this is namely the discrete torsion or the
discrete theta angle.
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4.2 Anomaly

Basics

Given a theory, even when it seems to be symmetric at first sight (at the level of classical action),
the symmetries are sometimes actually violated by quantum effects. For gauge symmetries, this
leads to inconsistency of the theory by definition, and therefore gauge anomalies must be canceled
as a whole. On the other hand, for global symmetries, non-trivial anomalies have no problem by
itself. However, there is an interesting case where the global symmetries themselves are anomaly-
free but they cannot be gauged (or coupled to background gauge fields) as doing so leads to
anomalies of gauged symmetries. Such form of the anomaly is called the ’t Hooft anomaly.
These gauge anomalies or ’t Hooft anomalies can be described as a non-invariance of the partition
function Z[A] under the gauge transformation g : Md → G

Z[Ag] 6= Z[A].

Naively, the invariance under infinitesimal gauge transformations would be extended to the in-
variance under arbitrary gauge transformations. However, even if the theory is free of perturbative
anomalies, it is in fact still in danger of suffering from non-perturbative anomalies as it might
not be invariant under “large” gauge transformations, which cannot be smoothly deformed to the
trivial gauge transformation.

’t Hooft anomaly matching

The ’t Hooft anomalies are believed to be invariant under the renormalization group (RG) flow
from high-energy to low-energy, for the following reason. Given a theory with certain amount of
’t Hooft anomaly, adding whatever degrees of freedom (“spectator”) which cancel this ’t Hooft
anomaly (and at the same time do not strongly interact with the original theory) by hand makes
the symmetry gauge-able. Gauging the symmetry, its anomaly should remain trivial as one flows
down the RG flow, and at the end, ungauging the symmetry and removing the added degrees of
freedom (which is possible by construction) must reproduce the same amount of ’t Hooft anomaly
as that one started with. This property allows us to “match” ’t Hooft anomalies between the
weakly-coupled and strongly-coupled regions of the theory at different energy scales, and provides
us a probe into the latter which is otherwise difficult to analyze in general.

Anomaly inflow

An anomalous QFT with G global symmetry in (d + 1) spacetime dimensions is considered to
be realized on the boundary of an invertible QFT with G symmetry in (d + 1) + 1 = (d + 2)

spacetime dimensions; the deformation class α ∈ Invd+1
spin (BG) of the invertible QFT is believed

to be the anomaly of the original theory on the boundary.
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From the short exact sequence (3.24), one can extract the quantity

a(α) ∈ HomZ(Ωspin
d+2(BG),Z) (4.8)

which corresponds to the anomaly polynomial. It is usually given as an element of

HomZ(Ωspin
d+2(BG),Z)⊗Q ' Hd+2(BSpin×BG;Q), (4.9)

which is given by a polynomial of spacetime Pontrjagin classes and the differential forms on BG.
Furthermore, for a chiral fermion in the representation V of G, the anomaly polynomial is given
by

a(α(V )) =
[
Â ch(V )

]
d+2

(4.10)

where Â ∈ H∗(BSpin) is the A-roof polynomial and ch (V ) = trV e
iF/(2π) is the Chern character

where F is the curvature of the G-bundle. More generally, the anomaly of a fermion system is
given by an η invariant, which carries not only the data of the anomaly polynomial but also those
of the torsion part (see e.g. [WY19]).

Given a fermion system charged under G, we would like to gauge its normal subgroup Ggauge.
This requires Ggauge to be anomaly free. The flavor symmetry group is then Gflavor = G/Ggauge, if
there is no mixed anomaly between Ggauge and Gflavor, that is, if the anomaly αG ∈ Invd+1

spin (BG)

of the fermion system is pulled back from an element αGflavor ∈ Invd+1
spin (BGflavor) via the projection

p : G→ Gflavor as
αG = p∗(αGflavor).

Then, the Gflavor-anomaly of the gauged theory is simply given by αGflavor .
In the presence of the mixed anomaly, it is not even guaranteed that F is the flavor symmetry

group [Tac17]. In this thesis we only consider the simpler cases where there is no mixed anomaly
in the original ungauged fermion system.
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4d SU(Nc) gauge theories

5.1 UV

5.1.1 Pure Yang-Mills theory

When matters are absent, the Euclidean action is simply given by a kinetic term of the gauge field∫
M4

trF ∧ (∗F ) =

∫
M4

d4x trFµνF
µν .

The important observables in this theory are the Wilson lines

Wγ = trR

[
P exp

(
i

∮
γ

A

)]
which are defined on a loop γ and represent the holonomy along γ. Under gauge transformations,
the path-ordered exponential inside the trace transforms according to its representation R under
the gauge group G, but from the invariance of a trace under cyclic permutations, one can see that
these operators are actually gauge-invariant. Thus, the Wilson lines seem to be labeled by R,
which can be identified with a point on the weight lattice Λweight. However, this is not strictly the
case as the dynamical gauge bosons which are charged under adjoint representation screen them;
the net charge of the Wilson lines take values in

Λweight/Λroot ' Z(G),

and as a result they are charged under the center 1-form Ẑ(G) symmetry. For G = SU(Nc), it is
namely ZNc symmetry, generated by the lines in the fundamental representation Nc.

If one gives up the invariance under the parity transformation (and allows oneself to use an
epsilon tensor), one can also incorporate a topological term

θ

∫
M4

trF ∧ F = θ

∫
M4

d4x tr εµνρσFµνFρσ.

The integral detects non-triviality of the gauge bundle, namely the instanton numberH4(BSU(n);Z) =

Z in this case.

25
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5.1.2 QCD

Let us now add fermions in fundamental representation Nc of the gauge group G = SU(Nc)∫
M4

d4x
(

trFµνF
µν + iψ(D/ +m)ψ

)
.

For the case of massless fermions in which we are mostly interested, one must include the same
number Nf of left-handed Weyl fermions and right-handed Weyl fermions, in order to avoid the
gauge anomaly. Then, the flavor symmetry is SU(Nf )L× SU(Nf )R. Wilson lines in fundamental
representation are screened away by dynamical quarks, and therefore the center 1-form symmetry
becomes trivial in this standard SU QCD.

Also, as is well-known, the gauge coupling g runs along the energy scale µ as

dg

d log µ
= − g3

16π2

[
11

3
C(adj.)−

fermions∑
f

2

3
C(Rf )−

scalars∑
s

1

3
C(Rs)

]
+O(g4)

= − g3

16π2

[
11

3
·Nc −

2

3
· 1

2
· 2Nf − 0

]
+O(g4)

= − g3

48π2
(11Nc − 2Nf ) +O(g4),

whereC(R)’s are certain group-theoretic constants depending on representationsR, whose values
are suitably substituted. As a result, QCD is asymptotically free for small enough Nf . For such
Nf , the gauge coupling g grows as one flows down to the low energy, and it is believed that QCD
eventually undergoes a spontaneous breaking of the flavor symmetry G = SU(Nf )L × SU(Nf )R
to its diagonal subgroup H = SU(Nf )diag., due to the strong gauge interaction.

5.1.3 Anomaly

Gauge symmetry

For Nc ≥ 3, there exist perturbative gauge anomalies indicated by Ωspin
6 (BSU(Nc)) = Z, where

the generator corresponds to the anomaly polynomial of a Weyl fermion in fundamental represen-
tation. As briefly mentioned above, the anomaly cancellation requires the numbers of left-handed
and right-handed fermions to be identical.

This is not the case for Nc = 2, since the fundamental representation of SU(2) is pseudo-real
and thus fermions do not contribute to the perturbative gauge anomaly, which is indeed consistent
with Ωspin

6 (BSU(2)) = 0. Instead, one now has to be careful of Witten’s global (non-perturbative)
gauge anomaly [Wit82], which forbids the number of Weyl fermions (in any even-dimensional
representations in general) to be odd. Conventionally this was attributed to the fact that the gauge
group has non-trivial homotopy

π4(SU(2)) ' π5(BSU(2)) = Z2,
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but the correct indicator to look at is actually the bordism

Ωspin
5 (BSU(2)) = Z2,

which happens to be naturally isomorphic.1

Anyway, in the QCD case at hand, there are always even number of Weyl fermions since we
have had the same number of “left-handed” ones and “right-handed” ones by construction, and
therefore this anomaly is safely avoided.2

Global symmetry

The chiral fermions are in Nc ⊗N
(L)
f ⊗ 1(R) and N̄c ⊗ 1(L) ⊗N

(R)
f representations, and for

Nf ≥ 3, their anomaly polynomials are

Nc · chN
(L)
f +Nf · chNc

−Nc · chN
(R)
f +Nf · ch N̄c

respectively, which add up to

Nc · (chN
(L)
f − chN

(R)
f ) =

Nc

2
· (c(L)

3 − c
(R)
3 ). (5.1)

Here c(L,R)
i ∈ H2i(BSU(Nf )L,R;Z) denote the Chern classes. Note that due to the fractional

coefficient, these are not elements of H6(BSU(Nf );Z), but the expression (5.1) still integrates to
an integer on a spin manifold.3 As Ωspin

5 (B(SU(Nc) × SU(Nf ))) = 0, the anomaly polynomial
completely determines the anomaly.

Now if we actually gauge SU(Nc), as is clear from its form, the anomaly (5.1) is pulled back
from the anomaly of the quotient group SU(Nf )L × SU(Nf )R. Therefore, there is no mixed
anomaly between the gauge symmetry SU(Nc), and the flavor symmetry of the theory is indeed
the quotient SU(Nf )L × SU(Nf )R.

We can also consider the U(1)B baryon number symmetry, which assigns charge ±1 to the
left-handed and right-handed fermions respectively. The contribution to the anomaly polynomial
can be similarly obtained and is given by

Nc ·
[
FB
2π

]
(c

(L)
2 − c

(R)
2 ). (5.2)

As (−1) ∈ U(1)B acts on the fermions in the same way as the 2π rotation, the spin structure of
the spacetime can in fact be upgraded to the spinc structure.

1The absence of Witten-type anomaly for Nc ≥ 3 can be inferred from Ωspin
5 (BSU(Nc)) = 0.

2However, as the flavor symmetry becomes SU(2Nf ) rather than SU(Nf )L × SU(Nf )R, the SU(2) QCD is
somewhat exceptional and therefore we will restrict ourselves to Nc ≥ 3 hereafter.

3One can see this from its appearance in the index theorem applied to the fermion bundle. Alternatively, referring
to Appendix B, one can use c3 = Sq2c2 = w2(TM)c2 mod 2 which guarantees that the integral of c3’s on a spin
manifold M (which has w2(TM) = 0) to be even.
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5.2 IR

As already mentioned, QCD is believed to undergo a spontaneous breaking of the flavor symmetry
G = SU(Nf )L × SU(Nf )R to H = SU(Nf )diag. along the RG flow for small enough Nf . The
theory is then effectively described in terms of a non-linear sigma model in the low-energy limit,
whose target space is

G/H =
SU(Nf )L × SU(Nf )R

SU(Nf )diag.
= SU(Nf )target,

in which the Nambu-Goldstone bosons σ associated to the spontaneous symmetry breaking (SSB)
take value. ForNf ≥ 3, assuming that they are the only massless degrees of freedom, the anomaly
matching requires these Nambu-Goldstone fields to reproduce the anomaly (5.1) in the UV QCD,
which is in fact achieved by a certain topological term called the Wess-Zumino-Witten (WZW)
term. For Nf = 2, the anomaly (5.1) does not exist, and correspondingly the ordinary WZW term
is also absent, but there is a discrete analog of the WZW term which also plays an important role
as we will see in a moment.

5.2.1 WZW term: Nf ≥ 3

Somewhat surprisingly, a proper description of WZW term on general manifolds requires the use
of the spin structure, as already emphasized in [Fre06].

Given a spacetime four-manifoldM4 and a field configuration σ : M4 → SU(Nf )target, suppose
one can pick an auxiliary five-dimensional manifold W5 whose boundary is M4 with a suitable
extension σ : W5 → SU(Nf )target. Pick a closed 5-form on the group manifold SU(Nf )target,
generating H5(SU(Nf );R) = R. There is a natural SU(Nf )-invariant one, which is tr(σ−1dσ)5.
Then we define the WZW term as eik

∫
W5

tr(σ−1dσ)5 with a suitable coefficient k.
It was argued in [Wit83b] that the proper coefficient is given by

e−SWZW[σ] := exp

(
2πi ·Nc

∫
W5

Γ5(σ)

)
(5.3)

where

Γ2n−1(σ) :=

(
i

2π

)n
(n− 1)!

(2n− 1)!
tr(σ−1dσ)2n−1 (5.4)

is normalized to integrate to 1 on the generator of π2n−1(SU(Nf )) = Z [BS78]. According
to [Bot58], the map

π2n−1(SU(Nf ))→ H2n−1(SU(Nf );Z) (5.5)

sends 1 to (n − 1)! times a generator. This means that Γ5 integrates to 1/2 on the generator of
H5(SU(Nf );Z), which in turn implies that the coupling (5.3) violates the quantization condition
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(3.14) based on (co)homology, when Nc is odd.4 The way out is to require spin structures on the
manifolds.

First, it is known that H∗(SU(Nf );Z) =
∧

Z[x3, x5, · · · ], where xi ∈ H i(SU(Nf );Z). In
particular, x5 is the generator of H5(SU(Nf );Z) = Z. Denoting the corresponding elements in
H i(SU(Nf );R) by the same symbol xi, one has Γ5 = x5/2, since Γ5 integrates to 1/2 on the
generator Wu (see the footnote 4) of H5(SU(Nf );Z). Also denoting the mod 2 reductions of xi
by the same symbol, it is known that x5 = Sq2x3 [BS53]. Then, for any closed manifold W5

equipped with σ : W5 → SU(Nf )target, one has

∫
W5

σ∗(x5) =

∫
W5

σ∗(Sq2x3) (mod 2)

=

∫
W5

Sq2σ∗(x3)

=

∫
W5

ν2(TW5)σ∗(x3) (mod 2)

=

∫
W5

[
w2(TW5) + w1(TW5)2

]
σ∗(x3)

(5.6)

where νi(T ) is the Wu class of the tangent bundle TW5. As we assume our W5 to be oriented
(i.e. w1(TW5) = 0) and spin (i.e. w2(TW5) = 0), this means

∫
W5
σ∗(x5) ∈ 2Z in our case, and

therefore implying
∫
W5
σ∗(Γ5) ∈ Z. This makes the 4d WZW coupling (5.3) for odd Nc well-

defined on spin manifolds, at least when we can find a W5 and σ : W5 → SU(Nf )target extending
a given σ : M4 → SU(Nf )target, with both M4 and W5 equipped with spin structure.

Now one needs to discuss whether such an extension really exists, and this can be answered
using the theory of bordisms. The (reduced) bordism group relevant for our question is

Ω̃spin
4 (SU(Nf )) = 0 for Nf ≥ 3.

This means that any σ : M4 → SU(Nf ) is bordant to σ0 : M4 → SU(Nf ) where σ0 sends the
entire spacetime to a single point. In other words, we can find W5 with ∂W5 = M4tM4 such that
there is a map σ : W5 → SU(Nf ) which extends σ and σ0 on both boundaries. Declaring that the
WZW term is trivial for the topologically trivial configuration σ0, the WZW term for a non-trivial
σ is simply given by the integral (5.3) over W5.

4 This can be confirmed explicitly for example by taking σ : W5 → SU(Nf )target to be the inclusion

σ : Wu ↪→ SU(3) ⊂ SU(Nf )

where Wu = {σ ∈ SU(3) | σ = σT} ' SU(3)/SO(3) is the so-called Wu manifold. For example, introduce a basis
of su(3) such that trλaλb = 2δab, so that λ6,7,8 belongs to so(3). Let U = 1 +λax

a ∈ SU(3) and let σ = UUT. We
find Γ5 = 4/(

√
3π3) dx1 · · · dx5 at the origin, while it is known [BST02] that the volume of SU(3)/SO(3) in this

metric is
√

3π3/8. Therefore Γ5 integrates to 1/2 in the end. Also, note that the Wu manifold is in fact a generator of
Ωoriented

5 = Z2, which can be detected by a product of second and third Stiefel-Whitney classes w2(TW5)w3(TW5).
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5.2.2 WZW term: Nf = 2

Let us now consider the special case ofNf = 2. There is no appropriate 5-form since dim SU(2) =

3, but instead the bordism group is

Ω̃spin
4 (SU(2)) = Z2

opposed to the Nf ≥ 3 case. Using this, one can introduce the coupling

e−SWZW[σ] := (−1)Nc[σ:M4→SU(2)] (5.7)

where [σ : M4 → SU(2)] represents the equivalence class of the map σ and takes value in Z2.
This sign has a more explicit description: a map σ can be viewed as a collection of Skyrmions.

The worldline of (cores of) Skyrmions can be defined as an inverse image of a point on SU(2).
After deforming σ slightly if necessary, this inverse image is a collection of circles embedded in
M4. As M4 itself is assumed to be a spin manifold, its spin structure can also be used to define
spin structures on these circles. Then one can assign a weight ±1 on each circle depending on the
spin structure, and we multiply them.5 That this construction detects Ω̃spin

4 (SU(2)) = Z2 can be
seen by studying the Atiyah-Hirzebruch spectral sequence (AHSS) computing it.

In the end, this means that a Skyrmion behaves as a fermion if there is a non-trivial discrete
WZW term. This fact was first explained more elementarily in [Wit83b]. The preceding discus-
sions show that it is essential to have spin structures on M4 to define the SU(2) WZW term.

Relation between WZW terms for Nf ≥ 3

So far, we have learned that the WZW terms (5.3) and (5.7) for SU QCD look rather different
depending on whether Nf ≥ 3 or Nf = 2 . However, there is in fact a close relationship between
them. By composing with the standard inclusion SU(2) ⊂ SU(Nf ), a map σ : M4 → SU(2) can
also be thought of as a map σ̃ : M4 → SU(Nf ≥ 3). Then we have an equality

(−1)Nc[σ:M4→SU(2)] = exp

(
2πi ·Nc

∫
W5

Γ5(σ̃)

)
(5.8)

where W5 is a spin manifold such that ∂W5 = M4. This equality was shown in [Wit83b] by
explicitly constructing W5 and σ, and then evaluating Γ5 on it, but it can also be shown using
algebraic topology, see Appendix B.3.

5Similar methods were used extensively in [GOP+18].



31 Chapter 5. 4d SU(Nc) gauge theories

5.2.3 WZW terms as invertible phases

First when Nf ≥ 3, one has a short exact sequence

0→ ExtZ(Ωspin
4 (SU(Nf )),Z)︸ ︷︷ ︸

=0

→ (DΩspin)
5(SU(Nf ))→ HomZ(Ωspin

5 (SU(Nf )),Z)︸ ︷︷ ︸
=Z

→ 0

showing that DΩ5
spin(SU(Nf )) = Z whose elements are labeled by the number Nc of colors. Note

that Ωspin
5 (SU(Nf )) = Z→ H5(SU(Nf );Z) = Z is a multiplication by two, and therefore dually,

H5(SU(Nf );Z) = Z → HomZ(Ωspin
5 (SU(Nf )),Z) = Z is also a multiplication by two. This

corresponds to the fact that the generator x5 of H5(SU(Nf );Z) integrates to even integers on the
image of spin manifolds in SU(Nf ), which can be seen from x5 = Sq2x3 as in (5.6). This allows
us to put the latter multiplication by two into a short exact sequence

0→ H5(SU(Nf );Z)︸ ︷︷ ︸
=Z

→ DΩ5
spin(SU(Nf ))︸ ︷︷ ︸

=Z

→ H3(SU(Nf );Z2)︸ ︷︷ ︸
=Z2

→ 0. (5.9)

As analyzed in detail in Appendix B.3, this sequence naturally arises from the computation of the
Atiyah-Hirzebruch spectral sequence (AHSS) determining DΩ5

spin(SU(Nf )).
On the other hand, when Nf = 2, the sequences are modified to

0→ ExtZ(Ωspin
4 (SU(2)),Z)︸ ︷︷ ︸

=Z2

→ DΩ5
spin(SU(2))→ HomZ(Ωspin

5 (SU(2)),Z)︸ ︷︷ ︸
=0

→ 0

and similarly ends up with

0→ H5(SU(2);Z)︸ ︷︷ ︸
=0

→ DΩ5
spin(SU(2))︸ ︷︷ ︸

=Z2

→ H3(SU(2);Z2)︸ ︷︷ ︸
=Z2

→ 0. (5.10)

Comparing (5.9) and (5.10), one finds that the pull-back along SU(2) ⊂ SU(Nf ≥ 3) is the mod 2
reduction

DΩ5
spin(SU(Nf ))︸ ︷︷ ︸

=Z

→ DΩ5
spin(SU(2))︸ ︷︷ ︸

=Z2

,

which explains the relation (5.8) from a different, more abstract point of view.

Aside

One can also consider spinc structure instead of spin structure. Physically, this corresponds to
considering the non-chiral baryonic U(1) charge of the fermions in QCD. The relevant bordism
group vanishes Ω̃spinc

4 (SU(2)) = 0, see Appendix B.3. Therefore one can find a spinc manifold
W5 together with σ : W5 → SU(2) which extends the σ on M4 = ∂W5. One can then write the
coupling

exp

(
2πi ·Nc

∫
W5

F

2π
∧ Γ3

)
, (5.11)
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where F is the curvature of the U(1) part of the spinc connection, or equivalently the background
gauge field for the baryonic U(1) symmetry, and Γ3 was introduced in (5.4) and measures the
Skyrmion number. Once one allows W5 to be spinc, it is rather natural to introduce the spinc

structure on the boundary M4 itself. When F = dA, the expression above can be partially inte-
grated to give

exp

(
i ·Nc

∫
M4

A ∧ Γ3

)
, (5.12)

which simply means that this term induces baryonic chargeNc on a single Skyrmion. In particular,
because of the spin-charge relation imposed by the spinc structure, this term makes a Skyrmion a
fermion when Nc is odd.

5.2.4 Gauged WZW terms

Let us now discuss a few extra complications which arise when we introduce gauge fields into
the discussions. Our approach here is to try to define and discuss the gauged WZW terms for the
sigma model target space X with an isometry group G in general, with the later use in Chap. 6 in
mind.

At the level of differential forms, the anomaly of a d-dimensional system with G symmetry
is given by its anomaly polynomial αd+2(A, ω), which is a gauge-invariant closed (d + 2)-form
constructed from the background G-gauge field A and the spin connection ω of the spacetime.
Below we leave the possible ω-dependence implicit and focus on A-dependence.

Suppose that the symmetry G spontaneously breaks down to its subgroup H in the infrared,
resulting in the Nambu-Goldstone scalar field σ : Md → G/H . The crucial insight of [Wit83a] is
that this process induces the WZW term for σ. We assume that the Nambu-Goldstone field is the
sole massless field in the IR. Then, while the torsion part of the anomaly can be carried by other
topological parts of the theory, the sigma model part needs to reproduce the anomaly polynomial.6

This can be achieved as follows.
The WZW term when σ : Md → X extends to σ̃ : Wd+1 → X was given by the integral

exp

(
2πi

∫
Wd+1

Γd+1(σ)

)
. (5.13)

Introducing the background gauge field A for the flavor symmetry, the coupling is generalized to

exp

(
2πi

∫
Wd+1

Γd+1(σ,A)

)
, (5.14)

6For SU QCD withNc = 2 andNf odd, the UV theory has the Witten’s global SU(2) anomaly [Wit82]. Although
this is a torsion part of the anomaly, this cannot be cancelled by gapped modes in the theory [GEHO+17, Sec. 5] and
has to be reproduced also by the sigma model part. More generally, any torsional anomaly not cancellable by gapped
modes, recently discussed e.g. in [CO19a, CO19b], needs to be reproduced by the sigma model.
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where Γd+1(σ,A) is a possibly-non-closed but gauge-invariant (d + 1)-form such that it reduces
to Γd+1(σ) when the background gauge field is turned off

Γd+1(σ) := Γd+1(σ,A = 0). (5.15)

As we assumed that the sigma model field is the sole massless degree of freedom in the IR, this
coupling needs to reproduce the anomaly polynomial (5.1) of the flavor symmetry in the UV,
meaning that it should have the same variation under the changes of Wd+1 and the gauge field A
on it as the expression

exp

(
2πi

∫
Wd+1

CSd+1(A)

)
, (5.16)

where CSd+1(A) is the Chern-Simons term satisfying αd+2(A) = dCSd+1(A). This condition can
be achieved by postulating

dΓd+1(σ,A) = dCSd+1(A)

= αd+2(A). (5.17)

Running the argument in reverse, this allows us to determine the ungauged WZW term starting
from the anomaly by solving (5.17) and then setting A = 0.

More mathematically, a gauge-invariant closed (d + 2)-form αd+2(A) constructed from the
background G-gauge field A determines an element α ∈ Hd+2(BG;R). Similarly, the closed
(d+ 1)-form Γd+1(σ) comes from an element Γ ∈ Hd+1(G/H;R). The equation (5.17) means
that α trivializes cohomologically when pulled back to the total space of the universal G/H bun-
dle over BG. From the definition of the classifying spaces, this universal bundle is homotopy-
equivalent to BH , and one has a fibration

G/H −→ BH
p−→ BG. (5.18)

More generally, associated to a fibration

F −→ E
p−→ B (5.19)

one can consider the following operation. Take an element α ∈ Hd+2(B). Assume its pull-back
to E trivializes: p∗(α) = 0 ∈ Hd+2(E). At the cochain level, this means that there is an element
Γ ∈ Cd+1(E) such that δΓ = p∗(α). If we now restrict Γ to the fiber F , then δΓ|F = 0 ∈ Cd+2(F ),
and therefore correspondingly we have an element Γ ∈ Hd+1(F ). This operation is known as the
transgression in algebraic topology, and Γ is said to transgress to α.7,8

7That the relation between the WZW term and the anomaly is the transgression is of course long known. See
e.g. [DW90, Sec. 4], [Wit92, Appendix] and [Fre06, Sec. 5]. In particular, the reference [DW90, Sec. 4] already
contains a detailed explanation of the transgression associated to the special but important case G→ EG→ BG.

8Note that we here made our analysis at the level of differential forms. This does not allow us, for example, to
obtain the WZW term for Nf = 2 from the Witten’s global anomaly via transgression. This was done in [Fre06]
using the differential version of the generalized cohomology theory E•, for SU WZW terms. An abstract version of
the transgression map in the bordism case, constructing elements Γ ∈ Invdspin(F ) from α ∈ Invd+1

spin (B) assuming that
it trivializes in Invd+1

spin (E), was also discussed in [KOT19, Sec. 2.5].
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Normalization of the ungauged WZW terms

From the construction of ungauged WZW terms discussed above, one can also check its normal-
ization as follows. First of all, the Leray-Serre spectral sequence (LSSS) associated to the fibration
(5.19), whose E2 page is given by

Ep,q
2 = Hp

(
B;Hq(F ;Z)

)
, (5.20)

converges to Hp+q(E;Z) (see Appendix A for the brief introduction to spectral sequences). The
elements in Hr(F ;Z) which transgress to Hr+1(B;Z) are known to be those elements which
survive to the (r+1)-st pageE0,r

r+1, and the transgression is known to coincide with the differential

dr+1 : E0,r
r+1 → Er+1,0

r+1 . (5.21)

For the case of interest, the fibration is (5.18) where G = SU(Nf )L × SU(Nf )R and H =

SU(Nf )diag. with Nf ≥ 3, and correspondingly the convergence is as

Ep,q
2 = Hp

(
B(SU(Nf )L × SU(Nf )R);Hq(SU(Nf )target;Z)

)
Hp+q

(
BSU(Nf )diag.;Z

)
6

5 Z ∗ ∗
4

3 Z ∗ ∗
2

1

0 Z Z⊕2 Z⊕2

0 1 2 3 4 5 6

=⇒

6 Z
5

4 Z
3

2

1

0 Z

(5.22)
To realize correct convergence in degree p+ q = 5, 6, the differential d6 : E0,5

6 → E6,0
6 must be an

injection so that E0,5
7 = E0,5

∞ = 0 and E6,0
7 = E6,0

∞ = Z. Considering the symmetry of exchanging
two SU(Nf )L,R factors, this means that the generator x5 ∈ H5(SU(Nf )target;Z) transgresses to
c3− c′3 ∈ H6(BSU(Nf )L×BSU(Nf )R;Z). Since Γ5 = x5/2, the normalization (5.3) is verified.

Topological consistency of the gauged WZW term

Let us now consider possible global topological issues associated to the gauged WZW term (5.14).
By construction, the combination

exp

(
2πi

∫
Wd+1

(
CS(A)− Γ(σ,A)

))
(5.23)

for closed manifolds Wd+1 determines a bordism invariant

γ : Ωspin
d+1(BH)→ U(1). (5.24)
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When (the torsion part of) γ is non-zero, it signifies that the gauged WZW term Γd+1(σ,A) itself
is still anomalous, and at the same time it determines a (d+ 1)-dimensional spin invertible phase,
and therefore gives an element of Invd+1

spin (BH). Also, the deformation class of the expression
(5.23) is the same as that of the Chern-Simons term alone, since Γ(σ,A) is a globally well-defined
differential form. This means that γ as an element of Invd+1

spin (BH) is simply a pull-back of the
original anomaly α ∈ Invd+1

spin (BG).
Mathematically, the situation can be summarized as follows. First we have the following

commutative diagram:

0 −→ ExtZ(Ωspin
d+1(BH),Z)

b−→ Invd+1
spin (BH)

a−→ HomZ(Ωspin
d+2(BH),Z) −→ 0

↑ ↑ ↑

0 −→ ExtZ(Ωspin
d+1(BG),Z)

b−→ Invd+1
spin (BG)

a−→ HomZ(Ωspin
d+2(BG),Z) −→ 0.

Starting from the anomaly α ∈ Invd+1
spin (BG) in the lower middle part, one obtains p∗(α) ∈

Invd+1
spin (BH) by pulling it back to the upper middle part. Since we assumed that the anomaly

polynomial restricted to the unbroken subgroup H is zero i.e. a(p∗(α)) vanishes, p∗(α) is in the
image of b from the exactness of the sequence, so one can write p∗(α) = b(γ), where

γ ∈ ExtZ(Ωspin
d+1(BH),Z) = Hom(Ωspin

d+1(BH)torsion,U(1)).

This γ being non-zero signifies that there is a residual global anomaly in the gauged WZW term.
In the concrete case of SU WZW terms,

Ωspin
5 (BSU(Nf )diag.) = 0 for Nf ≥ 3

and one can conclude that this γ is actually zero. This is consistent with the physics point of view,
since γ ∈ Inv5

spin(BH) would be the anomaly of fermions with respect to a symmetry H , under
which they can be given a non-zero mass; this immediately guarantees that not only the free part
characterized by the anomaly polynomial vanishes, but also the subtler torsion part does.

5.2.5 Solitonic symmetries

As π3(SU(Nf )) = Z and H3(SU(Nf )) = Z are naturally isomorphic by the Hurewicz theorem,
the low-energy sigma model has a single type of point-like solitons whose number as an integer
is conserved. This quantum number in the IR has been identified as the baryon number in the
UV [Sky61, Wit83b]. Let us recall why this should be the case.

As reviewed in Sec. 5.1.3, the U(1)B baryon number and the SU(Nf )L × SU(Nf )R flavor
symmetries have an anomaly (5.2). By inspecting the LSSS (5.22), one finds that the generator
Γ3 = x3 of H3(SU(Nf );Z) = Z transgresses to c(L)

2 − c(R)
2 . This means that the anomaly (5.2)

transgresses from the WZW-type coupling

exp

(
2πi ·Nc

∫
W5

FB
2π
∧ Γ3

)
(5.25)
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which can be partially integrated to

exp

(
i ·Nc

∫
M4

AB ∧ Γ3

)
. (5.26)

As AB is the background gauge field for the baryonic symmetry, Γ3 should be the sigma-model
expression of the baryonic number current [GW81, BNRS82, CL85].



Chapter 6

4d SO(Nc) gauge theories

6.1 UV

6.1.1 Pure Yang-Mills theory

When Nc = 2nc is even, the center of the gauge group is

Z(SO(2nc)) = Z2,

and as before there are non-trivial Wilson lines in the vector representation of the gauge group,
charged under the center Z2 1-form symmetry. On the other hand, when Nc is odd, the center is
trivial and correspondingly the theory does not have non-trivially charged Wilson lines.

’t Hooft line

The fact that the group SO(Nc) is not simply-connected brings several twists into the story. The
first twist is that there is an additional type of non-triviality for SO(Nc) gauge bundles, character-
ized by

H2(BSO(Nc);Z2) = Z2

which was absent in the SU(Nc) gauge theories. Correspondingly, there are magnetic monopoles
in SO(Nc) gauge theories in addition to ordinary gauge instantons. This singularity of a gauge
bundle c is detected by the second Stiefel-Whitney class w2(c) ∈ H2(BSO(Nc);Z2), evaluated
on an enclosing two-sphere S2. One can view this S2 as a two-dimensional manifold on which
a codimension-2 symmetry operator measuring the charge of 1-form symmetry is defined; the
charged operator is what is called the ’t Hooft line. The theory can be coupled to the background
gauge field B of this magnetic Z2 1-form symmetry [AST13, GKSW14] via

exp

(
2πi · 1

2

∫
M4

Bw2(c)

)
. (6.1)

37
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Discrete theta angle

Another twist is that there is also an additional type of topological term due to

Hom(Ωspin
4 (BSO(Nc))torsion,U(1)) = Z2 for Nf ≥ 5,

which is a discrete analog of the ordinary theta term. Its explicit form is given as

1

2

∫
M4

P(w2(c))

where P : H2(−;Z2) → H4(−;Z2) is a cohomology operation called the Pontrjagin square.1

Opposed to the ordinary one, a theory with discrete theta term and a theory without it are not
continuously deformable to each other, and thus they are two distinct theories; the former is called
the SO(Nc)− theory while the latter ordinary theory is called the SO(Nc)+ theory [AST13].

Global structure of the gauge group

Yet another twist is that there is a further variant of the theory, namely the Spin(Nc) gauge theory.
A Spin group is a simply-connected double cover of SO group. For even Nc = 2nc, its center is
either Z2×Z2 or Z4 depending on the parity of nc, and correspondingly there are various quotients
thereof, associated with characteristic classes as follows:

Spin(2nc)

Ss(2nc) SO(2nc) Ss′(2nc)

SO(2nc)/Z2

nc even

v2=w′2
w2=w′2

v2=w2

w2

v2
w′2

Spin(2nc)

SO(2nc)

SO(2nc)/Z2

nc odd

w2

v2

x2

Characteristic classes obstruct the lifting of corresponding principal bundles. For example,
SO(2nc)/Z2-bundles can be uplifted to SO(2nc)-bundles if the class v2 ∈ H2(B(SO(2nc)/Z2);Z2)

is trivial, and it can be further uplifted to Spin(2nc)-bundles if the class w2 ∈ H2(BSO(2nc);Z2)

is also trivial. Note that for nc odd, w2 might not be a cocycle from the beginning; starting from an
SO(2nc)/Z2-bundle, there are Z4-valued cocycle x2 and its Z2-reduction v2, while the would-be
cocycle w2 is actually a cochain satisfying

δw2 = βv2, (6.2)
1Note that the codomain is not necessarily Z2-valued but rather Z4-valued in general when the underlying space-

time manifold is not equipped with spin structure. Also there is a subtlety concerning non-closedness of w2(c) for nc
odd cases, see e.g. [LOT21] for further details.
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where β is a Bockstein homomorphism associated with the short exact sequence

0 −→ Z2 −→ Z4 −→ Z2 −→ 0.

As a result, w2 becomes a cocycle only when v2 is trivial, or equivalently, when x2 takes value in
{0, 2} ⊂ Z4, and is given by w2 = 1

2
x2 taking values in {0, 1} = Z2. For nc even, there is no such

issue, and w2 is a genuine cocycle. Combining the two cases, one can write

δw2(c) = nc · βv2(c). (6.3)

Now, from what we have discussed in Sec. 4.1, one can obtain an SO+ gauge theory by gauging
the Γ = Z2 subgroup 1-form symmetry of a Spin gauge theory. From the G = Spin gauge theory
point of view, the corresponding background gauge field is w2(c) which characterizes G/Γ = SO

bundles, coupled to the Spin gauge theory through

1

2

∫
Bw2(c)

where B is another Z2-valued degree-2 closed cochain, and is exactly the background gauge field
of the magnetic Z2 1-form symmetry of the SO+ gauge theory appeared in (6.1).

Conversely, starting from an SO+ gauge theory, one can also obtain a Spin gauge theory by
gauging the magnetic Z2 1-form symmetry, as B serves as a Lagrange multiplier and summing
over B forces w2(c) to be trivial, where w2(c) = 0 meant that the bundle is actually lifted to a
Spin bundle.

6.1.2 QCD

Let us now add massless fermions in vector representation of the gauge group SO(Nc). When
Nc = 2nc is even, the center Z2 actions of the gauge SO(2nc) group and the spacetime Spin

group on them are identical. If we really identify them, the fermions are actually charged under

Spin(spacetime)× SO(2nc)

Z2

× SU(Nf ), (6.4)

which has a subgroup SO(2nc) = {1,(−1)F }×SO(2nc)
Z2

we are going to gauge. Therefore, whether the
SO(2nc)/Z2-gauge bundle lifts to an SO(2nc)-bundle is synchronized with whether the spacetime
SO tangent bundle lifts to a Spin bundle. In terms of cohomology classes, this means

v2(c) = w2(TM4). (6.5)
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6.1.3 Anomaly

Global symmetry (ordinary 0-form)

For Nf ≥ 3, the chiral fermions are in Nc ⊗Nf representation, and their anomaly polynomial is
given by

Nc · chNf =
Nc

2
· c3 (6.6)

as before. Since Ωspin
5 (B(SO(Nc) × SU(Nf ))) = 0, this is sufficient to completely specify the

anomaly of the fermion system. This anomaly is pulled back from the anomaly of SU(Nf ) sym-
metry. Therefore, there is no mixed anomaly between the gauge symmetry SO(Nc), and the flavor
symmetry of the theory is SU(Nf ), whose ’t Hooft anomaly is given by (6.6).

Furthermore, as computed in Appendix B.2, all possible anomalies under the structure (6.4)
are pull-backs from either Spin(spacetime)×SO(2nc)

Z2
or SU(Nf ). However, since the fermions can be

made massive under the former, the anomaly is again a pull-back from the latter, specified by
(6.6). After the gauging, therefore, we have the spacetime structure

Spin(spacetime)/Z2︸ ︷︷ ︸
=SO(spacetime)

× SU(Nf ). (6.7)

Novel mixed anomaly

When the right hand side of (6.2) is non-zero, w2(c) is not a cocycle anymore, and the coupling
(6.1) is not well-defined. Indeed, the integrand is not closed:

δ(Bw2(c)) = nc ·Bβv2(c)

= nc ·Bβw2(TM4)

where we used (6.5). This depends only on the background fields, and therefore one can safely
add the bulk 5d action

exp

(
2πi · nc

2

∫
W5

Bβw2(TW5)

)
(6.8)

to make the combined bulk-boundary system non-anomalous. In other words, the gauge theory on
the 4d boundary has a mixed ’t Hooft anomaly between the Z2 1-form symmetry and the spacetime
rotation symmetry. The existence of this mixed anomaly was first pointed out in [HL20], where
SO(Nc)×SU(Nf )

Z2
was used instead.2

2It was also pointed out there that this mixed anomaly is transformed into a 2-group structure between the electric
Z2 1-form symmetry and the rest of the symmetry in the Spin(2nc) gauge theory. Let us briefly recall how this 2-
group arises. The Spin(2nc) gauge theory has an electric Z2 1-form symmetry, whose background field E sets the
second Stiefel-Whitney class w2(c) ∈ H2(X;Z2) of the SO(2nc) gauge bundle to be E = w2(c). Then, the relation
(6.3) together with (6.5) results in

δE = nc · βw2(TM4). (6.9)
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6.2 IR

6.2.1 WZW term: Nf ≥ 3

The Spin(Nc) QCD contains fermions ψαai with the spacetime spinor index α = 1, 2, the color
index a = 1, . . . , Nc, and the flavor index i = 1, . . . , Nf . It is expected that, when Nf is not too
large with respect to Nc, the strongly-coupled dynamics generates the condensate

Λ3σij := 〈εαβδabψαaiψβbj〉

where σij is a complex symmetric matrix and Λ is the dynamical scale. The σ field then takes
values in the subset

{σ ∈ SU(Nf ) | σ = σT}

which can be identified with the homogeneous space SU(Nf )/SO(Nf ).
Let us first discuss theNf ≥ 3 case. As in the SU QCD case in Sec. 5.2.1, given a configuration

σ : M4 → SU(Nf )/SO(Nf ) which can be extended to a map σ : W5 → SU(Nf )/SO(Nf ) such
that ∂W5 = M4, one can pull back the differential form Γ5(σ) on SU(Nf ) to SU(Nf )/SO(Nf )

and define the WZW term as eik
∫
W5

Γ5(σ) with a suitable coefficient k. As we will recall later in
Sec. 6.2.4, the normalization coming from physics consideration is

exp

(
2πi ·Nc

∫
W5

Γ5(σ)

2

)
. (6.10)

The integrand Γ5/2 integrates to 1/4 on the generator of H5(SU(Nf )/SO(Nf );Z) ' Z, which
can be taken to be the Wu manifold Wu. Therefore this coupling is not well-defined if we allow ar-
bitrary oriented W5.3 Stated differently, denoting the generator of Z ⊂ H5(SU(Nf )/SO(Nf );Z)

by y5, one needs to show that
∫
W5
y5 is a multiple of four once we impose some constraint on

the allowed manifold W5. As QCD requires spin structure, it is a natural condition for W5 to be
equipped with spin structure. However, the argument we used for SU QCD in Sec. 5.2.1 does
not suffice, since it only shows that

∫
W5
y5 is a multiple of two. Fortunately, by a more detailed

analysis, one can show that the integral on any spin manifold is in fact 0 mod 4 as required. We
provide one method utilizing Adams spectral sequence in Appendix B.4.

This means that the electric Z2 1-form symmetry extends the spacetime symmetry. This extension can also be
understood as the combination of the following two facts, namely that the Spin(2nc) theory is obtained by gauging
B of the SO(2nc) theory [KS14, GKSW14], and that a theory with an anomaly (6.8) turns into a theory with an
extension (6.9) under the gauging of the 1-form symmetry [Tac17].

3 As we have mentioned earlier, when Nc = 2nc is even, one can put the theory on a non-spin manifold, and
in this case, the consistency of the WZW term is realized in a subtler way. We will come back to this question in
Sec. 6.2.5.
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Then, we now need to ask whether one can find such an extension σ : W5 → SU(Nf )/SO(Nf )

in the first place. This information is encoded in the reduced bordism group

Ω̃spin
4 (SU(Nf )/SO(Nf )) =


Z2 (Nf ≥ 5),

Z (Nf = 4),

0 (Nf = 3).

Nf ≥ 5

For Nf ≥ 5, the reduced bordism group is non-trivial, and σ : M4 → SU(Nf )/SO(Nf ) in the
generating bordism class cannot be extended to a bulk W5 with ∂W5 = M4. However, as the
group is Z2, two copies of them can be extended to a bulk W5 with ∂W5 = M4 t M4, which
implies4 (

e−SWZW[σ:M4→SU(Nf )/SO(Nf )]
)2

= exp

(
2πi ·Nc

∫
W5

Γ5(σ)

2

)
(6.11)

for which there are two solutions differing by a sign. Let us fix a representative σ of the generating
bordism class and pick a particular solution anyway. Then, one can define a WZW term for generic
σ′ : M ′

4 → SU(Nf )/SO(Nf ) in the generating bordism class as

e−S
(1)
WZW[σ′] := exp

(
2πi ·Nc

∫
W ′5

Γ5(σ)

2

)
e−S

(1)
WZW[σ]

asM4 andM ′
4 are bordant such that ∂W ′

5 = M4tM ′
4 with σ suitably extended. The other solution

for the fixed representative leads to

e−S
(2)
WZW[σ] = e−S

(1)
WZW[σ] · χ

(
[σ : M4 → SU(Nf )/SO(Nf )]

)
where χ ∈ Hom(Ω̃spin

4 (SU(Nf )/SO(Nf )),U(1)) = Z2 is a non-trivial character. Here, neither
S

(1)
WZW nor S(2)

WZW is privileged at this point; the solutions to (6.11) form an affine space (or a
torsor) over Hom(Ω̃spin

4 (SU(Nf )/SO(Nf )),U(1)). The path integral of SO QCD should provide
one specific solution among them, and determining it in any meaningful manner would be an
interesting question.

The non-trivial character χ can be explicitly determined and is given by

χ
(

[σ : M4 → SU(Nf )/SO(Nf )]
)

= exp

(
2πi · 1

2

∫
M4

1

2
P(σ∗w2)

)
(6.12)

where w2 is the generator of H2(SU(Nf )/SO(Nf );Z2), and P is the Pontrjagin square. For
the derivation, see Appendix B.2. As σ∗w2 represents the worldsheet of a electric flux tube, the
character above adds a factor −1 at each intersection of two flux tubes.

4In [Yon20, Sec. 4], a nice representative was constructed, where M4 = T 2 × T 2 and the configuration σ is
invariant under the spacetime parity transformation. This guarantees that the right hand side of (6.11) is trivial, and
e−SWZW[σ] = ±1.
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Nf = 4

ForNf = 4, one can assign an arbitrary phase e−SWZW[σ] = eiθ instead of a sign for the generator of
the reduced bordism group. As θ can be continuously deformed, it does not affect the deformation
class of the WZW term, but the actual WZW term depends on the value of θ, and should be fixed
by the QCD path integral, similarly as in the Nf ≥ 5 case.5

Nf = 3

For Nf = 3, the reduced bordism group is trivial, and any σ can be extended to that in the bulk.
Therefore, there are no subtleties as in Nf ≥ 4, and the WZW term is simply given by (6.10).

6.2.2 WZW term: Nf = 2

This time, the sigma model target space is SU(2)/SO(2) ' S2, for which we find that Ω̃spin
4 (S2) =

Z2. Quite similarly as in the SU QCD case, this allows us to write down a WZW term

(−1)Nc[σ:M4→S2] (6.13)

where [σ : M4 → S2] represents the (reduced) bordism class of the map σ and takes value in Z2.
Again this sign has an explicit description. Let us perturb σ slightly to make it generic,

and then take the inverse image of a point on S2 under σ. This defines a union of surfaces Σ

(which is codimension-2) within M4. Given a spin structure on M4, it induces a spin structure
on Σ. We then take the Arf invariant of the spin surface Σ. Physically, this surface can be in-
terpreted as a worldsheet of the color flux tube associated to π2(S2) = Z, and the 2d effective
theory on it is a non-trivial fermionic invertible phase corresponding to the non-trivial element of
Hom(Ωspin

2 (pt),U(1)) = Z2, which is known as the Arf theory or the Kitaev chain [Kit00].
The boundary of the Arf theory famously carries an odd number of Majorana fermion zero

modes. Therefore, this means that the boundary of the electric flux tube with odd (resp. even) Nc

carries an odd (resp. even) number of Majorana zero modes. To see this in the UV description,
recall that electric flux tubes of the Spin(Nc) gauge theory are charged under the spinor represen-
tation, and therefore ends on the Wilson line in the spinor representation. In our Spin(Nc) QCD,
the dynamical fermions ψa were in the vector representation. The Wilson lines in the spinor rep-
resentation of Spin(Nc) then have an action of the gamma matrices Γa (a = 1, . . . , Nc), which
can also be considered as Majorana fermions, and there are clearly Nc of them.

5A proposal was recently given in [Yon20, Sec. 4], which uses gauged WZW terms in an essential manner.
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Relation between WZW terms for Nf ≥ 3

The map Ω̃spin
4 (S2) → Ω̃spin

4 (SU(Nf )/SO(Nf )) for Nf ≥ 3 is a zero map, as shown in Ap-
pendix B.4. This means that the SO WZW term for Nf = 2 can be expressed as an SO WZW
term for Nf ≥ 3 using (6.10) as

(−1)Nc[σ:M4→S2] = exp

(
2πi ·Nc

∫
W5

Γ5(σ̃)

2

)
, (6.14)

where W5 is found by considering Nf = 2 configurations as Nf ≥ 3 configurations. This equality
can be shown using algebraic topology, see Appendix B.4. The two-fold ambiguity of the Nf ≥ 3

WZW term given by (6.12) is immaterial here, since P(w2) = 0 on S2 because of H4(S2) = 0.

6.2.3 WZW terms as invertible phases

First when Nf ≥ 3, one has a short exact sequence

0→ ExtZ(Ωspin
4 (SU(Nf )/SO(Nf )),Z)︸ ︷︷ ︸

=Z2 or 0

→ (DΩspin)
5(SU(Nf )/SO(Nf ))

→ HomZ(Ωspin
5 (SU(Nf )/SO(Nf )),Z)︸ ︷︷ ︸

=Z

→ 0,

and the ordinary WZW term (6.10) for the SO(Nc) QCD corresponds to Nc times the generator
of the free part Z. Recall that

H5(SU(Nf )/SO(Nf );Z) ⊃ Z → HomZ(Ωspin
5 (SU(Nf )/SO(Nf )),Z)︸ ︷︷ ︸

=Z

is a multiplication by four. This cannot be understood by just noting that the generator y5 of
H5(SU(Nf )/SO(Nf );Z) is in the image of Sq2 as before; it actually comes from the extension by
H3(SU(Nf )/SO(Nf );Z2) = Z2 and then another extension by H2(SU(Nf )/SO(Nf );Z2) = Z2,
as can be seen from the analysis of the Atiyah-Hirzebruch spectral sequence (AHSS) or Adams
spectral sequence, see Appendix B.4. Meanwhile, the torsion part the WZW term for SO QCD
has not been determined successfully.

On the other hand, whenNf = 2, we instead haveDΩ5
spin(SU(2)/SO(2)) = Z2. The pull-back

along SU(2)/SO(2) ⊂ SU(Nf ≥ 3)/SO(Nf ) is a mod 2 reduction (of the free part)

DΩ5
spin(SU(Nf )/SO(Nf ))︸ ︷︷ ︸

⊃Z

→ DΩ5
spin(SU(2)/SO(2))︸ ︷︷ ︸

=Z2

.
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6.2.4 Gauged WZW terms

Let us now turn on the gauge fields for the flavor symmetry and apply the generic argument given
in Sec. 5.2.4.

Normalization of the ungauged WZW terms

For G = SU(Nf ) and H = SO(Nf ) with Nf ≥ 5, the Leray-Serre spectral sequence (LSSS)
associated with the fibration (5.18) is given as

Ep,q
2 = Hp

(
BSU(Nf );H

q(SU(Nf )/SO(Nf );Z)
)

Hp+q
(
BSO(Nf );Z

)
6

5 Z⊕ Z2 ∗ ∗
4

3 Z2 ∗ ∗
2

1

0 Z Z Z
0 1 2 3 4 5 6

=⇒

6 Z2

5 Z2

4 Z
3 Z2

2

1

0 Z

(6.15)

To realize correct convergence in degree p + q = 5, 6, the differential d6 : E0,5
6 → E6,0

6 must
be a multiplication by two on the summand Z and the zero map on the summand Z2. Therefore
the generator y5 ∈ H5(SU(Nf )/SO(Nf );Z) transgresses to 2c3 ∈ H6(BSU(Nf );Z). Since
Γ5 = y5/2, the normalization (6.10) is verified.

Topological consistency of the gauged WZW term

As for the symmetry H = SO(Nf ) after the spontaneous breaking one has

Ωspin
5 (BSO(Nf )) = 0,

there is no residual global anomaly in the gauged WZW term. This is again consistent with the
physics point of view, since γ ∈ Inv5

spin(BH) would be the anomaly of fermions with respect
to a symmetry H , under which they can be given a non-zero mass; this immediately guarantees
that not only the free part characterized by the anomaly polynomial vanishes, but also the subtler
torsion part does.

However, if we consider SO(2nc) QCD on non-spin manifolds (see Sec. 6.1.2), things become
complicated. In this case, the anomaly of the QCD takes values in Inv5

oriented(BSU(2nc)). Its
pull-back is in Inv5

oriented(BSO(2nc)), which is not directly the anomaly of fermions which can be
made massive, and therefore we cannot argue that it vanishes. To seek a way out, let us continue
the discussion of the general case and study how we can actually determine γ in the non-zero case.
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Here we make a simplifying assumption that the anomaly αd+2 comes from the cohomology
class α ∈ Hd+2(BG;Z), rather than the bordism class. In this case, instead of the commutative
diagram (5.2.4), one can use the following:

0 −→ ExtZ(Hd+1(BH;Z),Z)
β−→ Hd+2(BH;Z) −→ HomZ(Hd+2(BH;Z),Z) −→ 0

↑ ↑ ↑

0 −→ ExtZ(Hd+1(BG;Z),Z)
β−→ Hd+2(BG;Z) −→ HomZ(Hd+2(BG;Z),Z) −→ 0.

As recalled around (3.2.3), β is simply the Bockstein homomorphism acting on

ExtZ(Hd+1(BH;Z),Z) = Hd+1(BH,U(1))torsion.

Therefore, determining γ reduces to finding the element γ ∈ Hd+1(BH,U(1))torsion whose Bock-
stein β(γ) equals the original anomaly α ∈ Hd+2(BG;Z) pulled back to Hd+2(BH;Z).

Now let us examine the concrete case of of SO(Nc) QCD. The gauged WZW term was
(Nc/4) y5, where y5 is a generator of Z ⊂ H5(SU(Nf )/SO(Nf );Z). Recall also that y5 trans-
gresses to 2c3. Then, when Nc = 2nc is even, the anomaly ncc3 is well-defined without the spin
structure. Referring to the Appendix B.2, one can immediately read off the following:

• c3 ∈ H6(BSU(Nf );Z) pulls back to (W3)2 ∈ H6(BSO(Nf );Z),

• which reduces to (w3)2 ∈ H6(BSO(Nf );Z2),

• which is the image of the Bockstein β = Sq1 of w2w3 ∈ H5(BSO(Nf );Z2).

This implies that the possible inconsistency of the gauged WZW term for the anomaly α = ncc3

is given by
γ = nc · w2(f)w3(f), (6.16)

where wi(f) is the i-th Stiefel-Whitney classes of the SO(Nf ) bundle. This seems non-zero and
therefore the gauged WZW term might not be well-defined at this point, on generic non-spin
manifolds.6 However, it turns out that this γ is actually trivial, as will be discussed in Sec. 6.2.5.

6This possible inconsistency disappears on spin manifolds, as we have w2w3 = w2Sq
1w2 = Sq2w3 and there-

fore ∫
W5

w2(f)w3(f) =

∫
W5

Sq2w3(f) =

∫
W5

ν2(TW5)w3(f)

modulo 2, which is 0 mod 2 on a spin manifold as in (5.6). Therefore, the gauged WZW term is well-defined on a
spin manifold, and this conclusion agrees with the general discussion we made at the beginning.
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Torsion part

Recall from our discussion in Sec. 6.2.1 that, for Nf ≥ 5, the part (Nc/4) y5 = (Nc/2) Γ5 only
specifies the ungauged SO WZW term up to the addition of the torsion part specified by a character

χ : Ω̃spin
4 (SU(Nf )/SO(Nf ))→ U(1).

Correspondingly, the gauged SO WZW term also suffers this indeterminacy.
To describe the gauged WZW term, one needs to describe its behavior for the sigma model

fields taking values not only in SU(Nf )/SO(Nf ), but also in the total space BSO(Nf ) fibered
over BSU(Nf ). As computed in Appendix B.4, one has the equality

Ω̃spin
4 (SU(Nf )/SO(Nf )) ' Ω̃spin

4 (BSO(Nf ))torsion︸ ︷︷ ︸
=Z2

for Nf ≥ 5.

This means that the unfixed torsion part of the gauged SO WZW term simply comes from the
character

χ ∈ Z2 ⊂ Hom(Ω̃spin
4 (BSO(Nf )),U(1)).

Its non-trivial element is given by [AST13]

exp

(
2πi

∫
M4

1

2
P(w2(f))

)
(6.17)

where w2(f) is the second Stiefel-Whitney class of the SO(Nf ) bundle f and P is the Pontrjagin
square. Also, note that the pull-back of w2(f) to SU(Nf )/SO(Nf ) is simply the generator of
H2(SU(Nf )/SO(Nf );Z2) = Z2. The analysis so far only determines the gauged WZW term up
to the addition of this torsion WZW term (6.17). It is at present difficult to specify exactly which.7

6.2.5 Solitonic symmetries

The lowest non-trivial homotopy group is π2(SU(Nf )/SO(Nf )) = Z2, which is naturally isomor-
phic to H2(SU(Nf )/SO(Nf );Z) via Hurewicz theorem. This gives rise to a string-like soliton
in the low-energy sigma model, whose tension is controlled by the dynamical scale of the QCD.
Since the group is Z2, two copies of such a flux tube can annihilate together. This indeed matches
the property of the electric flux tube in the confining phase, generated by a charge in the spinor
representation of Spin(Nc) [Wit83b], and is an IR counterpart of the electric Z2 1-form symme-
try of Spin(Nc) QCD in the UV; the operator charge is measured through the generator w2 of
H2(SU(Nf )/SO(Nf );Z2) = Z2.

This further allows us to determine the coupling of the Z2 gauge theory with the low-energy
sigma model. As already mentioned in Sec. 6.1.1, the SO(Nc) gauge theory can be obtained by

7A proposal was recently made in [Yon20, Sec. 4].
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gauging the electric Z2 1-form symmetry of the Spin(Nc) gauge theory. This means that the
low-energy limit of SO(Nc) gauge theory has the coupling

exp

(
2πi · 1

2

∫
M4

(a ∪ δb+ b ∪ σ∗(w2) + b ∪B)

)
, (6.18)

where a ∈ C1(M4;Z2) and b ∈ C2(M4;Z2); aδb is the kinetic term of the Z2 gauge theory, and
B ∈ Z2(M4;Z2) is the background for the magnetic Z2 1-form symmetry of the SO(Nc) gauge
theory. The equation of motion of (6.18) forces

B = σ∗(w2) (6.19)

at the level of cohomology classes. In other words, the space of the sigma model field has discon-
nected components labelled by the cohomology class w2 ∈ H2(M4;Z2), and every sector other
than the one specified by the background field B through (6.19) is projected out from the path
integral by the Z2 gauge theory.

On non-spin manifolds

As we saw in Sec. 6.1.3, when Nc = 2nc is even, one can relax the constraint that our spacetime
manifold is spin.

Let us start from considering Spin(2nc) gauge theory. The electric Z2 1-form symmetry ex-
tends the spacetime rotation group non-trivially as we saw in (6.9), which we reproduce here:

δE = nc · βw2(T ). (6.20)

In the following consider the more interesting case of odd nc. For the ungauged WZW term (6.10)

exp

(
2πi ·Nc

∫
W5

Γ5

2

)
= exp

(
2πi · nc

∫
W5

y5

2

)
(6.21)

to be well-defined, one needs to show that the integral of the generator y5 of H5(SU/SO;Z) is
even on a closed oriented (non-spin) 5-manifold with E satisfying (6.20) is specified. Using the
information gathered in Appendix B.4, this can be shown as follows.
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The mod 2 reduction of y5 is w2w3, where wi ∈ H i(SU/SO;Z2). Then we have∫
W5

σ∗(y5) =

∫
W5

σ∗(w2w3) (mod 2)

=

∫
W5

σ∗(Sq2βw2)

=

∫
W5

Sq2σ∗(βw2)

=

∫
W5

ν2(TW5)σ∗(βw2) (mod 2)

=

∫
W5

w2(TW5)σ∗(βw2) as w1(TW5) = 0

=

∫
W5

w2(TW5) βσ∗(w2)

=

∫
W5

[βw2(TW5)]σ∗(w2) (mod 2)

(6.22)

where in the last equality we used the formula8
∫
aβb =

∫
bβa mod 2. Now, our assumption

(6.20) means that βw2(TW5) is cohomologically trivial, making the integral on the left hand side
even.

Now let us turn to SO(2nc) gauge theory. The integral of y5 modulo 2 is still given by (6.22),
which is now

=

∫
W5

Bβw2(TW5). (6.23)

Since this final expression only depends on the external background fields and not on the WZW
sigma model fields σ which are path integrated, it gives the mixed anomaly of the system, and
indeed reproduces the anomaly (6.8) of the SO(2nc) QCD. The consistency of the gauged WZW
term also follows in a similar manner; the possible inconsistency is given by (6.16), which is also
w2w3, this time of the total space BSO of the fibration SU/SO→ BSO→ BSU.

8This follows from ∫
β(ab) =

∫
ν1(TW5)ab =

∫
w1(TW5)ab = 0

on an oriented W5.
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Chapter 7

Conclusion

In this thesis, we studied the WZW terms in non-linear sigma models from the modern point
of view based on bordism classification of topological terms and invertible QFT. Let us briefly
review and summarize the content.

In Chap. 2, we encountered the notion of bordism. Bordism was a rather coarse equivalence
relation between closed manifolds, and the equivalence classes formed a (Abelian) group under
the operation of disjoint union of manifolds. We familiarized ourselves with these bordism groups
through some elementary examples in low dimensions.

In Chap. 3, we discussed various WZW-like topological terms in sigma models and saw that
they are appropriately described in terms of (co)bordism rather than ordinary (co)homology which
had been conventionally used. We also introduced the notion of invertible QFT which was defined
to be QFT with one-dimensional Hilbert space, and saw that their conjectured classification seems
to be identical to that of WZW-like terms, which strongly supports the validity of the former.

In Chap. 4, we reviewed the recent understanding of global symmetries. It had various ad-
vantages over the conventional understanding based on the invariance of Lagrangians of QFT,
including the unified incorporation of “generalized” higher-form symmetries under which higher-
dimensional operators are charged. Although these higher-form symmetries can also be coupled
to background gauge fields, this gauging procedure might lead to inconsistency of the gauged
theory, represented in a form of ’t Hooft anomaly as with ordinary symmetries. We explained that
these anomalies serve as a powerful tool to extract information on dynamics in strongly-coupled
region of theories, and that they are believed to be realized as boundaries of corresponding in-
vertible QFT in one-higher dimensions, which indeed sounds plausible from our knowledge on
anomaly inflow examples.

In Chap. 5, we finally started our investigation of the WZW terms appearing in the low-energy
effective description of SU QCD in (3 + 1) d. We succeeded in confirming that the underlying
spacetime manifolds are required to be equipped with spin structure, or in other words able to
define spinors on them, for the WZW terms to be well-defined. This was already known for the
SU QCD case to some extent, but our analysis based on bordism can be regarded as a refinement
of the previous analysis.
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In Chap. 6, we continued our investigation of the WZW terms appearing in the low-energy
effective description of SO QCD in (3 + 1) d, and saw that our refined analysis is also applicable
opposed to the previous ad hoc analysis. Again we found the necessity of spin structure on
underlying spacetime manifolds. Furthermore, for SO(2nc) QCD with even number of colors,
theory is known to possess higher-form global symmetries in addition to ordinary ones, and there
was a novel kind of (mixed) ’t Hooft anomaly involving them. We newly found that the WZW
terms are again responsible for its reproduction in the IR non-linear sigma models, which was
deduced by examining the solitonic strings. In spite of these successes, there were also some
subtleties concerning the torsion part, or equivalently, discrete WZW terms for the SO QCD case,
which definitely deserve further investigation in the future.
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Appendix A

Spectral sequence

Spectral sequences are the tools to compute graded algebraic objects A∗ from their smaller pieces.
In general, it is rather difficult to obtain the former while one has far easier access to the latter,
and the philosopher’s sequences allow alchemists today for variety of glorious transmutations.
As noble objects A∗, we typically have generalized (co)homology h∗(X) of some topological
spaces X in mind. The arcana of magnum opus presented below are mostly based on [McC01],
and interested readers are further referred to e.g. [DK01, Hat04, Tam13] and references therein.

Phase 1. Nigredo

First of all, suppose that the graded object A∗ is filtered and the filtration is bounded, i.e.

{0} ⊂ · · · ⊂ F pA∗ ⊂ · · · ⊂ F 1A∗ ⊂ F 0A∗ = A∗.

Then, one can try to recover the original A∗ from the associated graded E∗∞(A∗) where

Ep
∞(A∗) = F pA∗

/
F p+1A∗,

by summing over as

A∗ ∼
∞⊕
p=0

Ep
∞(A∗).

Since A∗ itself is graded, one can carry out a further decomposition based on a filtration

{0} ⊂ · · · ⊂
(
F pA∗ ∩ Ar

)
⊂ · · · ⊂

(
F 1A∗ ∩ Ar

)
⊂
(
F 0A∗ ∩ Ar

)
= Ar.

As a result, one can recover the original A∗ as

A∗ ∼
⊕
p+q=r

Ep,q
∞ =

⊕
p+q=r

F pA∗ ∩ Ap+q

F p+1A∗ ∩ Ap+q
(A.1)

Although the equivalences are up to isomorphism and possibly miss non-trivial extensions, if any,
(A.1) at least serves as a first-order approximation to A∗ and is useful enough in some cases.
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Phase 2. Albedo

Here comes the central definition. A spectral sequence {E∗,∗r , dr} is a sequence of bi-graded E∗,∗r
equipped with differentials dr satisfying dr ◦ dr = 0 (together consists of a complex), which map

dr : Ep,q
r → Ep+r,q−r+1

r

and each E∗,∗r+1 is given by the “(co)homology” of E∗,∗r , namely

Ep,q
r+1 =

Ker dr : Ep,q
r → •

Im dr : • → Ep,q
r

As alluded by the notation, our goal is to find a nice {E∗,∗r } which converges to the desired E∗,∗∞
reproducing A∗ as in (A.1).

Phase 3. Citrinitas

Actually, the shadow above is casted by a light of more general setting as follows. Given a long
sequence of objects D,E

· · · k−→ D
i−→ D

j−→ E
k−→ D

i−→ · · ·

or more conventionally written as

D D

E

i

jk

the tuple {D,E, i, j, k} composes an exact couple if i, j, k are all exact, i.e.

Ker j = Im i,

Ker k = Im j,

Ker i = Im k.

If so, one can immediately equip E with a differential d : E → E satisfying d ◦ d = 0, namely
d = j ◦ k. This differential naturally leads us to consider the “(co)homology”

E ′ = Ker d
/

Im d

and by defining
D′ := i(D)

i′ := i|D′
j′(i(x)) := j(x) + d(E)

k′(y + d(E)) := k(y)

the tuple {D′, E ′, i′, j′, k′} again composes an exact couple, which is called the derived couple.
As one might have guessed by now, it turns out that {Er, dr} collected from r-th derived couples
gives rise to a spectral sequence when objects D,E are bi-graded.
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Phase 4. Rubedo

The typical base objects given as input to start with is E∗,∗2 . For important subclasses of interest,
one has Ep,q

2 6= 0 only for a finite number of (p, q)’s, which makes dr trivial for large enough r.
In general, some of the Ep,q

r+1’s become trivial for exact dr with Ker dr = Im dr as one turn pages,
and at some point, all of them inevitably stabilize as E∗,∗r = E∗,∗r+1 = · · · = E∗,∗∞ ; in extreme cases,
E∗,∗2 is so sparse that nothing can happen and the sequence is already stabilized at r = 2.

For example, the spectral sequences we encounter in this thesis are mostly Leray-Serre type,
whose E2 pages are given by

Ep,q
2 = Hp(B;hq(F ))

and converges to
h∗(E)

for a fibration F → E → B with suitable assumptions. For the ordinary Leray-Serre spectral
sequences, h is taken to be the ordinary (co)homology H , while the Atiyah-Hirzebruch spectral
sequences treat more generic h, including the (co)bordism Ω.

Also, note that one might be able to exploit (additional) structure with which A∗ is equipped
to fully recover A∗ from E∗,∗∞ , although not always successful. Two major examples are when

• A∗ is a (graded) algebra, equipped with a product�� ��ex. cohomology H∗(X) : cup product

• A∗ is a (graded) module, equipped with an action of another (graded) algebra�� ��ex. cohomology H∗(X;Zp) : action of mod-p Steenrod algebra Ap
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Prima materia

We will also encounter another type of spectral sequences in Appendix B.4, which have far more
complicatedE2 pages. Below, we collect miscellaneous notions and facts including ones on which
they are based, although it is not necessary for the readers to understand all these Greeks as we
have repeatedly warned.

Module

Let R be a commutative ring (with a unit element 1). An R-module is an Abelian group (M,+)

equipped with scalar multiplication R×M →M such that, for all x, y ∈M and a, b ∈ R,

(a+ b)x = ax+ bx,

(ab)x = a(bx),

a(x+ y) = ax+ ay,

1x = x.

A homomorphism between two R-modules M,N is a function f : M → N which preserves the
structure of two operations

f(x+ y) = f(x) + f(y),

f(ax) = a(f(x)).

Now, let us consider the following type of (very short) exact sequence of modules

A′
α−→ A −→ 0

so that α is surjective (i.e. Imα = A). Then, an R-module P is defined to be projective if there
exists a homomorphism f ′ : P → A′ such that α ◦ f ′ = f

P

AA′ 0

f

α

∃?f ′

for any A,A′, α, and f .1 A prominent example of P is free R-modules, which are the modules
with a basis (i.e. linearly-independent elements generating the whole module), and one can resolve
any R-module by a free module over it, which is projective.

1Note that one can similarly define a notion of injective modules by reversing the arrows in the above diagrams.
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Ext

Given twoR-modules M and N , the homomorphisms between them form a group HomR(M,N).
One can think of HomR(−,M) as a function taking a module as an input and returning a group
as an output. Applying HomR(−,M) to a short exact sequence of R-modules

0 −→ A −→ B −→ C −→ 0,

one partially loses its exactness in general, but instead has a natural long exact sequence as

· · · ←− ExtnR(A,M) ←− ExtnR(B,M) ←− ExtnR(C,M) ←−
...

...
...

...

Ext1
R(A,M) ←− Ext1

R(B,M) ←− Ext1
R(C,M) ←−

HomR(A,M) ←− HomR(B,M) ←− HomR(C,M) ←− 0

with a condition that Extn≥1
R (P,M) = 0 for projective modules P guaranteeing its uniqueness.

Tor

A tensor product between two R-modules M,N is an Abelian group M ⊗N whose elements are
(m,n) for m ∈M,n ∈ N with the original operations naturally inherited as

(m+m′, n) = (m,n) + (m′, n),

(m,n+ n′) = (m,n) + (m,n′),

(am, n) = a(m,n) = (m, an).

Again, one can think of − ⊗M as a function taking a module as an input and returning a group
as an output, and applying it to the same short exact sequence as before, one partially loses its
exactness in a slightly different way as

0 −→ A⊗M −→ B ⊗M −→ C ⊗M
−→ TorR1 (A,M) −→ TorR1 (B,M) −→ TorR1 (C,M)

...
...

...
...

−→ TorRn (A,M) −→ TorRn (B,M) −→ TorRn (C,M) −→ · · ·

with a condition that Torn≥1
R (P,M) = 0 for projective modules P guaranteeing its uniqueness.

From the conditions on projective modules, it turns out that both Extn≥2
Z (−,M) and Torn≥2

Z (−,M)

are trivial for R = Z,2 and one usually just drops the super / subscripts for n = 1 in this case.

2More generally, this is true for any principal ideal domains (PID) which are commutative rings with no zero
divisors (i.e. integral domain) and every ideal being generated by a single element (i.e. principal).
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Appendix B

Bordism group computation

The anomalies of QFT are believed to be captured by a one-higher dimensional invertible QFT,
which is nicely described in terms of bordism groups, as described in Sec. 3. In particular, the
information on the anomalies d-dimensional spin QFT with target space X are encoded in the
bordism group Ωspin

d+1(X). In this section, we compute this bordism group for some X’s using
various types of spectral sequences. For more details which are omitted (and notions which are
undefined) in the following, refer to e.g.

• [BT82, Hat02], mathematics textbooks on algebraic topology in general

• [GEM18], an introduction to the Atiyah-Hirzebruch spectral sequence aimed at physicists

• [BC18], an introduction to the Adams spectral sequence

and references therein.

B.1 BSU(n)

First of all, the ordinary cohomology of the classifying space BSU(n) is known to be

H∗
(
BSU(n);Z

)
= Z[c2, c3, . . . , cn],

H∗
(
BSU(n);Z2

)
= Z2[c2, c3, . . . , cn],

(B.1)

where cj’s are the j-th Chern classes (and their mod-2 reductions) which have degree 2j [MT91].
For Z2 cohomology, there are certain cohomology operations called the Steenrod powers Sqi,
whose actions are given by the Wu formula

Sq2i(cj) =
i∑

k=0

(
j − k − 1

i− k

)
ci+j−kck (0 ≤ i ≤ j). (B.2)
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Using these results, one can compute the bordism group by a machinery called the Atiyah-
Hirzebruch spectral sequence (AHSS). It can be regarded as a generalization of the Leray-Serre
spectral sequence (LSSS) appeared in the main part e.g. Sec. 5.2.4; this time the E2 page is given
by

E2
p,q = Hp

(
B; Ωspin

q (F )
)
,

and converges to Ωspin
p+q(E) for the fibration F −→ E

p−→ B. For our purpose, it is sufficient to
use the trivial fibration

pt −→ X
p−→ X.

Anyway, let us take a look at how it works. One can deduce the necessary homology groups
from the cohomology information (B.1) by using the universal coefficient theorem, and the E2

page can be easily filled as follows

E2
p,q = Hp

(
BSU(n); Ωspin

q (pt)
)

6

5

4 Z ∗ ∗
3

2 Z2 Z2 ∗
1 Z2 Z2 Z2

0 Z Z Z
0 1 2 3 4 5 6 7

(B.3)

where the horizontal and vertical axes correspond to p and q respectively. Note that when n = 2,
the columns to the right of the dotted lines are to be discarded. Also, the differentials going into
the p = 0 column are all zero (see e.g. [DK01, below Theorem 9.10]), which follows from the
splitting of Ωspin

d (X) = Ωspin
d (pt)⊕ Ω̃spin

d (X) explained in (2.3).
A key property specific to the spin bordism is that the differentials d2 : E2

p,q → E2
p−2,q+1 for

q = 0, 1 are known [Tei93] to be the duals of the Steenrod square Sq2 (composed with mod-
2 reduction for q = 0). From the knowledge on the cohomology (B.2), d2 : E2

6,0 → E2
4,1 and

d2 : E2
6,1 → E2

4,2 are both non-trivial for n ≥ 3 due to Sq2c2 = c3, and the E3 page results in

6

5

4 Z ∗ ∗
3

2 Z2 ∗
1 Z2

0 Z Z Z
0 1 2 3 4 5 6 7

(B.4)
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As there are no more non-trivial differentials at p + q ≤ 6, the spectral sequence collapses at this
point and E3

p,q = E∞p,q for this region. Therefore, one can read off that

Ωspin
5 (BSU(n ≥ 3)) = 0, (B.5)

and
Ωspin

6 (BSU(n ≥ 3)) = Z, (B.6)

and notably the map Ωspin
6 (BSU(n)) = Z→ H6(BSU(n);Z) = Z is a multiplication by two.

On the other hand, for n = 2, the entries E6,0 and E6,1 are empty, and correspondingly the
spectral sequence already collapses at the E2 page. Therefore, the bordism groups of interest are

Ωspin
5 (BSU(2)) = Z2, (B.7)

and
Ωspin

6 (BSU(2)) = 0. (B.8)

B.2 BSO(n)

The Z2 cohomology of the classifying space BSO(n) is known to be

H∗
(
BSO(n);Z2

)
= Z2[w2, . . . , wn],

where wi’s are the i-th Stiefel-Whitney classes which have degree i. As before, there are Steenrod
square operations, whose actions are given by the Wu formula of a similar form

Sqi(wj) =
i∑

k=0

(
j − k − 1

i− k

)
wi+j−kwk (0 ≤ i ≤ j). (B.9)

The integral cohomology is more involved [Bro82, Fes83]; up to degree 6 one has

d 0 1 2 3 4 5 6 · · ·
Hd(BSO(3);Z) Z 0 0 Z2 Z 0 Z2 · · ·
Hd(BSO(4);Z) Z 0 0 Z2 Z⊕2 0 Z2 · · ·
Hd(BSO(n ≥ 5);Z) Z 0 0 Z2 Z Z2 Z2 · · ·

generator 1 0 0 W3 p1 W5 W 2
3 · · ·

(e4) (e6)

(B.10)

where Wi is an integral lift of wi, p1 is the first Pontrjagin class which reduces to w2
2, and e2k’s are

the Euler classes generating Z which reduces to w2k. (Accordingly, the n = 6 case is somewhat
exceptional, but here we omit them for simplicity.)
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One can now fill the E2 pages as follows:

E2
p,q = Hp

(
BSO(3); Ωspin

q

)
E2
p,q = Hp

(
BSO(4); Ωspin

q

)
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 Z2 Z2 ∗ ∗
0 Z Z2 Z Z2 ∗

0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 ∗ ∗ ∗

1 Z2 Z2 Z2 Z⊕2
2 ∗ ∗

0 Z Z2 Z⊕2 Z2 ∗
0 1 2 3 4 5 6

E2
p,q = Hp

(
BSO(n ≥ 5); Ωspin

q

)
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 ∗ ∗ ∗

1 Z2 Z2 Z2 Z⊕2
2 ∗ ∗

0 Z Z2 Z⊕ Z2 Z2 ∗
0 1 2 3 4 5 6

(B.11)

Since Sq2w2 = (w2)2, Sq2w3 = w5 + w3w2, Sq2(w2)2 = (w3)2, and Sq2w4 = w6 + w4w2, the
differentials marked above are all non-trivial. Resulting E3 pages are given as follows:

n = 3 n = 4

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 ∗ ∗ ∗
1 Z2 ∗ ∗
0 Z Z2 Z ∗

0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 ∗ ∗ ∗
1 Z2 ∗ ∗
0 Z Z2 Z⊕2 ∗

0 1 2 3 4 5 6

n ≥ 5

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 ∗ ∗ ∗
1 Z2 ∗ ∗
0 Z Z2 Z⊕ Z2 ∗

0 1 2 3 4 5 6

(B.12)
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As a result, one can read off

Ω̃spin
4 (BSO(n)) =


Z⊕ Z2 (n ≥ 5)

Z⊕2 (n = 4)

Z (n = 3)

(B.13)

and
Ωspin

5 (BSO(n)) = 0. (B.14)

Note that the result (B.13) corresponds to the fact that 4d SO gauge theories have a discrete theta
angle (for the Z2 summand), in addition to the standard theta angle (for the Z summand) [AST13].
Using characteristic classes, this comes from the fact [Tho60] that

p1 ≡ 2w4 + P(w2) (mod 4)

where 2 is a map sending {0, 1} = Z2 to {0, 2} ⊂ Z4, and P : H2(−;Z2) → H4(−;Z4) is the
Pontrjagin square operation. On a spin manifold, P(w2) is even, and one can “divide” by two

p1

2
≡ w4 +

1

2
P(w2) (mod 2).

The left hand side is the dual of the generator of the Z summand, and either of the terms on the
right hand side can be taken to be the dual of the generator of the Z2 summand.

Also, note that there are relations between Chern classes and Stiefel-Whitney classes induced
from a projection ψ : BSO(n) −→ BSU(n),

H∗(BSU(n);Z2)
ψ∗−−−→ H∗(BSO(n);Z2)

∈ ∈

ci 7−→ (wi)
2,

(B.15)

and
H∗(BSU(n);Z)

(−1)i · ψ∗−−−−−−−→ H∗(BSO(n);Z)

∈ ∈

c2i 7−→ pi.

(B.16)
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Absence of mixed anomalies

Here we examine the mixed anomaly between SO(Nc) and SU(Nf ) symmetries for fermion sys-
tems charged under SO(Nc)× SU(Nf ). This assures the naive intuition that the flavor symmetry
of 4d SO QCD is SU.

The E2 page of the relevant AHSS for the Anderson-dual of bordism can be filled by applying
the Künneth formula1 and is given as follows:

Ep,q
2 = Hp

(
BSO×BSU; Invqspin

)
4

3 Z ∗ ∗ ∗ ∗
2 Z2 Z2 ∗ ∗ ∗ ∗
1 Z2 Z2 Z2 ∗ ∗ ∗
0

−1 Z Z2 Z⊕2 Z2 ∗
0 1 2 3 4 5 6

(B.17)

Fortunately, since the non-trivial mixing between H∗(BSO;Z) and H∗(BSU;Z) occurs above
degree 7 (similarly above degree 6 for Z2-cohomology), elements of Invp+q≤5

spin (BSO × BSU)

should be exhausted by the pull-backs from those of Invd≤5
spin (BSO) and Invd≤5

spin (BSU). This means
that there is no mixed anomaly between SO and SU at least for spacetime dimensions ≤ 4. Also,
note that since there is no interference between cohomologies of BSU and BSO, one can stack
two AHSS (B.3) and (B.11) for the region p+ q ≤ 5 and deduce

Ωspin
d (BSO×BSU) = Ωspin

d (BSO)⊕ Ωspin
d (BSU) (d ≤ 5).

Furthermore, a similar argument applies to the Spin(spacetime)×SO(2nc)
Z2

× SU(2nf ) case. The
relevant bordism in this case is twisted spin bordism

InvdSpin×SO
Z2

(BSU),

where theE2 page of the AHSS converging to it is given byEp,q
2 = Hp(B(SO/Z2)×BSU; Invdspin).

From the LSSS associated to the fibration BSO → B(SO/Z2) → K(Z2, 2) (which we omit the
detail), one finds that the lowest degree of non-trivial elements in H∗(B(SO(2nc)/Z);Z) is 3
(and accordingly that in H∗(B(SO(2nc)/Z);Z2) is 2). Therefore, there is no non-trivial mixing
between B(SO/Z2) and BSU at p+ q ≤ 5, as in the previous case.

1When the coefficient is a field F it is simply

Hd(X × Y ;F ) =
⊕
p+q=d

Hp(X;F )⊗Hq(Y ;F ).

For the Z-coefficient case it is given by

0 −→
⊕
p+q=d

Hp(X;Z)⊗Hq(Y ;Z) −→ Hd(X × Y ;Z) −→
⊕

p+q=d+1

TorZ(Hp(X;Z), Hq(Y ;Z) −→ 0

which is known to split non-canonically, see e.g. [Spa81, Theorem 5.5.11].
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B.3 SU(n)

The ordinary cohomology of the group manifold SU(n) is known to be

H∗
(
SU(n);Z

)
=

∧
Z[x3, x5, . . . , x2n−1],

H∗
(
SU(n);Z2

)
=

∧
Z2

[x3, x5, . . . , x2n−1],
(B.18)

where xi’s have degree i. Here, the exterior algebra
∧

[a1, a2, . . .] is defined to be the polynomial
algebra modulo the relations a2

1 = a2
2 = · · · = 0 and aiaj = −ajai; note that the former relation

does not follow from the latter over Z2. Again, there are Steenrod square operations for Z2

cohomology [BS53]

Sq2ix2j−1 =

(
j − 1

i

)
x2i+2j−1. (B.19)

Let us first compute the spin bordism of SU(n), whose E2 page is the following:

E2
p,q = Hp

(
SU(n); Ωspin

q (pt)
)

5

4 Z ∗ ∗
3

2 Z2 Z2 ∗
1 Z2 Z2 Z2

0 Z Z Z
0 1 2 3 4 5 6

(B.20)

As always, the columns to the right of the vertical dotted lines are to be discarded when n = 2.
The differential d2 : E2

5,0 → E2
3,1 is non-trivial for n ≥ 3 since Sq2x3 = x5, and one obtains

Ω̃spin
4 (SU(n ≥ 3)) = 0, (B.21)

while it is trivial for n = 2 as x5 does not exist, leading to

Ω̃spin
4 (SU(2)) = Z2. (B.22)

Furthermore, the differential d2 : E2
5,1 → E2

3,2 is also non-trivial for n ≥ 3, and one has

Ωspin
5 (SU(n ≥ 3)) = Z (B.23)

and
Ωspin

6 (SU(n ≥ 3)) = 0. (B.24)

and notably the map Ωspin
5 (SU(n)) = Z→ H5(SU(n);Z) = Z is a multiplication by two.
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One can similarly compute the spinc bordism of SU, starting from the following E2 page:

E2
p,q = Hp

(
SU(n); Ωspinc

q (pt)
)

5

4 Z⊕2 ∗ ∗
3

2 Z Z Z
1

0 Z Z Z
0 1 2 3 4 5

(B.25)

Since degree p+ q = 4 entries (except E2
0,4) are empty, one immediately obtains

Ω̃spinc
4 (SU(n)) = 0, (B.26)

independent of whether n = 2 or n ≥ 3. This means that the WZW term for Nf = 2 with spinc

structure is not of the torsion type but of the free type, contrary to the genuine spin structure case.

WZW terms for SU QCD from cobordism

Let us see how discrete WZW terms for Nf = 2 are related to ordinary WZW terms for Nf ≥ 3,
from the cobordism point of view. Again considering the AHSS for the Anderson-dual, the E2

page is given by
Ep,q

2 = Hp
(
SU(Nf ); Invqspin

)
4

3 Z ∗ ∗
2 Z2 ∗ ∗
1 Z2 Z2 ∗
0

−1 Z Z Z
0 1 2 3 4 5 6

(B.27)

which indeed shows

0→ H5(SU(Nf );Z)︸ ︷︷ ︸
E5,−1

2 =Z

→ Inv4
spin(SU(Nf ))︸ ︷︷ ︸

Z

→ Inv4
spin(SU(2))︸ ︷︷ ︸
E3,1

2 =Z2

→ 0.

This reads: the 4dWZW term for general SU(Nf ) on oriented manifolds is given byH5(SU(Nf );Z),
and this maps to twice the minimal WZW term for generic SU(Nf ) on spin manifolds given by
Inv4

spin(SU(Nf )), where the difference comes from the discrete WZW term for SU(2) on spin
manifolds.
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B.4 SU(n)/SO(n)

The Z2 cohomology of the homogeneous space SU(n)/SO(n) is known to be

H∗
(
SU(n)/SO(n);Z2

)
=
∧

Z2
[w2, w3, . . . , wn]. (B.28)

where wi’s have degree i and the same Steenrod square actions as BSO(n). The integral coho-
mology of SU/SO is similarly complicated [Car60]

d 0 1 2 3 4 5 6 7 · · ·
Hd(SU(3)/SO(3);Z) Z 0 0 Z2 0 Z 0 0 · · ·
Hd(SU(4)/SO(4);Z) Z 0 0 Z2 Z Z 0 Z2 · · ·
Hd(SU(5)/SO(5);Z) Z 0 0 Z2 0 Z⊕ Z2 0 Z2 · · ·
Hd(SU(6)/SO(6);Z) Z 0 0 Z2 0 Z⊕ Z2 Z Z2 · · ·
Hd(SU(n ≥ 7)/SO(n);Z) Z 0 0 Z2 0 Z⊕ Z2 0 Z⊕2

2 · · ·
generator 1 0 0 W3 (e4) y5,W5 (e6) a7 · · ·

W7

(B.29)

where W2k+1 is the integral lift of w2k+1, and a7 is the integral lift of Sq1(w2w4) = w2w5 +w3w4

(therefore a7 = W3e4 for n = 4). Furthermore, e2k only exists when n = 2k is even and reduces
to w2k, while y5 generates Z and reduces to w2w3.

Also, note that the Stiefel-Whitney classes wi of BSO(n) pull back to wi of SU(n)/SO(n)

along the map ι : SU(n)/SO(n)→ BSO(n); that is, we have

H∗(BSO(n);Z2)
ι∗−−−→ H∗(SU(n)/SO(n);Z2)

∈ ∈

wi 7−→ wi.

(B.30)

Now, one can compute the spin bordism of SU(n)/SO(n) in a similar manner. As SU(2)/SO(2) =

S2 and therefore Ω̃spin
d (SU(2)/SO(2)) = Ωspin

d−2(pt) from the suspension isomorphism, let us focus
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on the n ≥ 3 cases. The E2 pages are now as follows:

E2
p,q = Hp

(
SU(3)/SO(3); Ωspin

q

)
E2
p,q = Hp

(
SU(4)/SO(4); Ωspin

q

)
5

4 Z ∗ ∗
3

2 Z2 Z2 Z2 ∗
1 Z2 Z2 Z2 Z2

0 Z Z2 Z
0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 Z2 ∗ ∗
1 Z2 Z2 Z2 Z2 Z2 ∗
0 Z Z2 Z Z Z2

0 1 2 3 4 5 6

E2
p,q = Hp

(
SU(5)/SO(5); Ωspin

q

)
E2
p,q = Hp

(
SU(6)/SO(6); Ωspin

q

)
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 Z2 ∗ ∗
1 Z2 Z2 Z2 Z2 Z⊕2

2 ∗
0 Z Z2 Z2 Z Z2

0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 Z2 ∗ ∗
1 Z2 Z2 Z2 Z2 Z⊕2

2 ∗
0 Z Z2 Z2 Z Z⊕ Z2

0 1 2 3 4 5 6

E2
p,q = Hp

(
SU(n ≥ 7)/SO(n); Ωspin

q

)
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 Z2 Z2 ∗ ∗
1 Z2 Z2 Z2 Z2 Z⊕2

2 ∗

0 Z Z2 Z2 Z Z⊕2
2

0 1 2 3 4 5 6

(B.31)

The differentials d2 : E2
4,0 → E2

2,1 , d2 : E2
5,0 → E2

3,1 and d2 : E2
6,0 → E2

4,1 are again given by

the mod 2 reduction composed with the dual of Sq2. The first one turns out to be zero since
Sq2w2 = (w2)2 = 0, while the remaining two are possibly non-trivial since Sq2w3 = w5 + w3w2

and Sq2w4 = w6 + w4w2. The other differentials d2 : E2
4,1 → E2

2,2 and d2 : E2
5,1 → E2

3,2 are

again the dual of Sq2, and the same argument tells that the former is always trivial while the latter
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can be non-trivial. Therefore, we arrive at the E3 pages given as follows:

n = 3 n = 4
5

4 Z ∗ ∗
3

2 Z2 Z2 ∗
1 Z2 Z2

0 Z Z2 Z
0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 ∗
0 Z Z2 Z Z

0 1 2 3 4 5 6

n = 5 n = 6
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 ∗ ∗
0 Z Z2 Z2 Z

0 1 2 3 4 5 6

5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 ∗ ∗
0 Z Z2 Z2 Z ∗

0 1 2 3 4 5 6

n ≥ 7
5

4 Z ∗ ∗ ∗ ∗
3

2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 ∗ ∗
0 Z Z2 Z2 Z ∗

0 1 2 3 4 5 6

(B.32)

Unfortunately, one cannot tell how the differential d3’s act on in general, and one is stuck in a dead
end here from the AHSS alone. However, it turns out that d3 : E3

5,0 → E3
2,2 has to be non-trivial2

in order to match the results with those computed by using the Adams spectral sequence, which
we will see later. In the end, one is led to

Ω̃spin
4 (SU(n)/SO(n)) =


Z2 (n ≥ 5)

Z (n = 4)

0 (n = 3)

(B.33)

and
Ωspin

5 (SU(n)/SO(n)) = Z, (B.34)

where Ωspin
5 (SU(n)/SO(n)) = Z→ H5(SU(n)/SO(n);Z) = Z is a multiplication by four.

2It should also be possible to check by using the general form of d3 in terms of cochains determined in [BM18].
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WZW terms for SO QCD from cobordism

As in Sec. B.3, let us see how the discrete WZW term for Nf = 2 is related to the ordinary WZW
term for Nf ≥ 3, from the cobordism point of view. The E2 page of the relevant AHSS for the
Anderson dual of spin bordism is as follows:

Ep,q
2 = Hp

(
SU(Nf )/SO(Nf ); Invqspin

)
4

3 Z ∗ ∗ ∗
2 Z2 Z2 ∗ ∗ ∗ ∗
1 Z2 Z2 Z2 ∗ ∗ ∗
0

−1 Z Z2 (Z) Z (⊕Z2) ∗
0 1 2 3 4 5 6

(B.35)

As we have discussed repeatedly, the free part of the 4d WZW term for general SU(Nf )/SO(Nf )

on oriented manifolds which is given by H5(SU(Nf )/SO(Nf );Z), maps to four times the (free
part of the) minimal WZW term for general SU(Nf )/SO(Nf ) on spin manifolds. The E2 page
above says that this factor of four arises due to the extension of the direct summand Z in E2

5,−1

once by Z2 = E3,1
2 and then again by Z2 = E2,2

2 . This last Z2 is already present when Nf = 2,
meaning that the generator of the direct summand Z of Inv4

spin(SU(Nf )/SO(Nf )) pulls back to
the generator of Z2 of Inv4

spin(SU(2)/SO(2)).
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Adams spectral sequence

There is another way to compute the bordism group of interest, namely the Adams spectral se-
quence. For the case of interest, the E2 page is given as

Es,t
2 = Exts,tA

(
H̃∗(MSpin ∧X;Z2),Z2

)
=⇒ Ω̃spin

t−s(X)∧2 , (B.36)

and converges to the 2-completion3 of the desired (reduced) bordism group. Here,A is the mod-2
Steenrod algebra generated by certain cohomology operations, ExtR is a certain functor in the
category of (graded) R-modules which takes values in Abelian groups, and MSpin is the Thom
spectrum of the universal bundle over BSpin.

Using the Künneth formula, the (reduced) cohomology of a smash product is decomposed as

H̃∗(X ∧ Y ;Z2) ' H̃∗(X;Z2)⊗Z2 H̃
∗(Y ;Z2).

Note that it is known [ABP67, FH16, Guo18] that

H̃∗(MSpin;Z2) ' A⊗A(1) (Z2 ⊕M≥8) (B.37)

where A(1) is the subalgebra of A generated by Sq1 and Sq2 and M≥8 is an A(1)-module which
is trivial in degrees less than 8. Then, the combination of the shearing isomorphism and the
adjunction formula allows us to rewrite the E2-terms as

Exts,tA(1)

(
(Z2 ⊕M≥8)⊗Z2 H̃

∗(X;Z2),Z2

)
. (B.38)

Fortunately, things become significantly easier in low degree in which we are interested. Namely,
for t− s ≤ 7, the M≥8 part has no effect, so the E2-terms can actually be reduced to

Exts,tA(1)

(
Z2 ⊗Z2 H̃

∗(X;Z2),Z2

)
= Exts,tA(1)

(
H̃∗(X;Z2),Z2

)
. (B.39)

To compute Ext∗,∗A(1)(M,Z2) for an A(1)-module M , first take the minimal projective resolu-
tion

0←−M ←− P0 ←− P1 ←− · · ·

where each module Ps is free up to a grade-shift, namely Ps =
⊕Ns

j=1A(1)[ts,j] with Ns’s min-
imized sequentially from s = 0. A general theorem on Hopf algebra asserts that the morphisms
between Ps’s become trivial after passed to the functor Hom(−,Z2), and thus

Ext∗,∗A(1)(M,Z2) =
⊕
s

Ns⊕
j

Z2[s, ts,j], (B.40)

where [s, t] denotes a bi-degree shift. Once the E2 page is determined, it is convenient to draw the
Adams chart in which, for each summand in (B.40), a dot is drawn at (ts,j − s, s) in the (t− s, s)
coordinate.

3In practice, the 2-completion removes odd-torsion parts and replaces each Z by a module of 2-adic integers Z∧2 .
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SU(3)/SO(3)

Let us see how it works. The A(1)-module structure of H̃∗(SU(3)/SO(3);Z2) is represented as

•

•

• w2

w3

w2w3

(B.41)

where the straight lines and curved lines represent the actions of Sq1 and Sq2 respectively. Noting
that the bottom element w2 has (t-)degree 2, one finds the following exact sequence

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

0 H̃∗(SU(3)/SO(3) A(1)[2] J [4] 0

where P0 = A(1)[2], which corresponds to a dot at (t − s, s) = (2, 0) in the Adams chart, and
also P1 = J [4], where J is a named A(1)-module “Joker.” Migrating the Adams chart of J
from [BC18, Fig. 29] with a shift (t− s, s) = (3, 1), one obtains the following Adams chart

0 1 2 3 4 5 6 7

0

1

2

3

4

5
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where the horizontal and vertical axes correspond to t− s and s respectively. The vertical lines in
the chart represent the action by h0 ∈ Ext1,1

A(1)(Z2,Z2) with degree (t− s, s) = (0, 1), and the “h0

tower” remaining in the E∞ page indicates the extension. Similarly, the sloped lines in the chart
represent the action by h1 ∈ Ext1,2

A(1)(Z2,Z2) with degree (t− s, s) = (1, 1).

Fortunately, this E2 page is too sparse for any differential, as the degree of a differential dr is
(t− s, s) = (−1, ∗). All in all, the Adams spectral sequence converges as follows:

d 0 1 2 3 4 5 6 · · ·

Ω̃spin
d (SU(3)/SO(3)) 0 0 Z2 Z2 0 Z 0 · · ·

(B.42)

The fact that the h0 tower representing the free part starts from s = 2 indicates that the generator
of the free part is 22 = 4 times the generator of the free part of the ordinary homology.4 This is
indeed consistent with the AHSS computation, since the d = 4 part must be trivial according to the
Adams spectral sequence computation. In this way, one can sometimes obtain further information
by combining two spectral sequences.5

4 Replacing A in (B.36) not by A(1) but by A(0) = F2[Sq1]/(Sq1)2, one can consider a (Bockstein) spectral
sequence converging to the (2-localized) ordinary homology H(−;Z). For X = SU(3)/SO(3), the h0 tower there
starts from (t − s, s) = (5, 0), indicating the generator y5 in the cohomology with Z coefficient is the Z uplift of
w2w3. From the naturality of the Adams spectral sequence, the map Ω→ HZ is induced, in the way compatible with
h0, from the map between the corresponding map between the E2 pages. Therefore, the image of the map Ω→ HZ
is generated by four times the dual of y5. However, note that this argument does not determine the possible further
multiplicity with prime factors other than 2.

5See e.g. [LT20] for another interesting example of using the Adams spectral sequence to compute bordism
groups.
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SU(4)/SO(4)

Introducing a new generatorw4, theA(1)-module structure of H̃∗(SU(4)/SO(4);Z2) up to degree
7 is represented as

•

•

•

•

•

• w2

w3

w4

w2w3

w2w4

w3w4

(B.43)

with an additional module compared to the previous case. This module is also a named one
(Q, “question mark upside-down”) and its Adams chart can again be found in [BC18, Fig. 29].
Therefore one has

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Although this E2 page alone does not determine the differential from the h0 tower at t − s = 5

to that at t − s = 4, one can infer from the AHSS computation that it should be trivial, since
otherwise it will kill the Z at degree 5. In the end, one can conclude that the spectral sequence
converges as follows:

d 0 1 2 3 4 5 6 · · ·

Ω̃spin
d (SU(4)/SO(4)) 0 0 Z2 Z2 Z Z 0 · · ·

(B.44)
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SU(5)/SO(5)

Introducing a new generatorw5, theA(1)-module structure of H̃∗(SU(5)/SO(5);Z2) up to degree
7 is represented as

• •

•

• •

•

•

• w2

w3

w4

w2w3 + w5 w5

w2w4

w2w5w2w5 + w3w4

(B.45)

where the second module is (although not fully drawn) in fact turned intoA(1)[4] from Q. Corre-
spondingly, the Adams chart becomes

0 1 2 3 4 5 6 7

0

1

2

3

4

5

A possibly-nontrivial differential is the one with the source at (t − s, s) = (4, 0) and would hit
the class in (t − s, s) = (3, 1), but again one knows that this is forbidden due to the AHSS
result; otherwise it in particular kills Z2 at degree 3 which we know to survive on the AHSS side.
Therefore, the spectral sequence converges as follows:

d 0 1 2 3 4 5 6 · · ·

Ω̃spin
d (SU(5)/SO(5)) 0 0 Z2 Z2 Z2 Z 0 · · ·

(B.46)
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SU(6)/SO(6)

Introducing a new generatorw6, theA(1)-module structure of H̃∗(SU(6)/SO(6);Z2) up to degree
7 is represented as

• •

• •

• •

•

•

• w2

w3

w4

w2w3 + w5 w5

w2w4 + w6

w2w5w2w5 + w3w4

w6

(B.47)

and one now has an additional trivial A(1)-module Z2. Its Adams chart can again be found
in [BC18, Fig. 20], and as a result one obtains

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Similar reasonings as before guarantees all possibly-nontrivial differentials to be trivial, and the
spectral sequence converges as

d 0 1 2 3 4 5 6 · · ·

Ω̃spin
d (SU(6)/SO(6)) 0 0 Z2 Z2 Z2 Z Z · · ·

(B.48)
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SU(n ≥ 7)/SO(n)

Finally, introducing a new generatorw7, theA(1)-module structure of H̃∗(SU(n ≥ 7)/SO(n);Z2)

up to degree 7 is represented as

• • •

• •

• •

•

•

• w2

w3

w4

w2w3 + w5 w5

w2w4 + w6

w2w5w2w5 + w3w4 + w7

w6

w7

(B.49)

where the third module is in fact turned intoA(1)[6] from a trivial module. Therefore, the resulting
Adams chart is

0 1 2 3 4 5 6 7

0

1

2

3

4

5

The reasoning we have been using cannot be applied to the differential from (t− s, s) = (6, 0) to
(5, 2), but it is not consistent with the h0 action and hence should be trivial. At last, the spectral
sequence converges as

d 0 1 2 3 4 5 6 · · ·

Ω̃spin
d (SU(n ≥ 7)/SO(n)) 0 0 Z2 Z2 Z2 Z Z2 · · ·

(B.50)
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