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Abstract 

 
 

 Lines of geological records obtained by Mars exploration suggest that Mars once had 

liquid water on its surface and that the water environment experienced acidification and 

oxidation about 3.5 billion years ago. Since the record of liquid water on the surface 

disappears at 3.5 billion years ago, revealing the acidification and the oxidation 

mechanism is important for understanding the evolution of the Martian surface. To 

reconstruct the early Martian hydrogeochemistry, in this thesis, I focused on the ferrous 

iron (Fe(II)) photo-oxidation mechanism.  

 

When UV light of wavelength at < 300 nm is irradiated onto an aqueous solution 

containing dissolved Fe(II) salts, Fe2+ ions are photo-oxidized to ferric iron (Fe(III)) 

through producing H+ via the following equation: 

Fe2+ + 3H2O 
ℎ𝑣
→  Fe(OH)3 + 2H+ + 0.5H2. 

The reaction rate of the photochemical reaction is determined by experimentally 

measuring the quantum yield (i.e., the number of Fe(III) produced per the number of 

photons absorbed). However, previous studies have quantified the quantum yield of Fe(II) 

photo-oxidation only at pH < 3 due to the difficulty avoiding the oxidation by the 

dissolved O2, which the reaction rate increases exponentially as pH increases. Since the 

pH of the early Mars aqueous environment is estimated to be pH ~7, it was not possible 

to apply it for the Martian aqueous environment. Furthermore, at neutral pH, a fraction of 

the dissolved Fe(II) ion is converted to FeOH+, which could absorb photons of 

wavelength at < 460 nm, and the quantum yield of FeOH+ photo-oxidation has not been 

reported. 

 

In Chapter 2 of this thesis, I performed a laboratory experiment of Fe(II) photo-

oxidation utilizing an Ar-purged glovebox and a zirconia pump deoxygenating system, 

which could achieve low O2 partial pressure of < 10–15 bar. By preparing the pH buffer 

solution inside the glovebox, the quantum yields of Fe2+ photo-oxidation (φFe2+) at pH of 

2.0–7.6 was measured as follows:  

φFe2+ = 0.103 (± 0.005) + 2.17 (± 0.27) × [H+]0.5. 
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The quantum yield of FeOH+ was also measured to be 0.08 ± 0.01 at pH 7.1–7.6 by 

adjusting the irradiation spectra of the light source to the wavelength of > 300 nm using 

an optical filter.  

 

  To evaluate the wavelength dependence of FeOH+ photo-oxidation, experiments with 

the irradiation wavelength at > 200 nm, > 260 nm, and > 300 using optical filters against 

solutions without pH buffer were performed to investigate the timescale of acidification 

(Chapter 3). The quantum yields of FeOH+ photo-oxidation were obtained from the initial 

reaction rate to be 0.13 ± 0.03 and 0.09 ± 0.01 for irradiation with a wavelength of > 260 

nm and > 300 nm, respectively. The about 1.4 times higher quantum yield at irradiation 

of > 260 nm compared to > 300 nm suggests that although the quantum yield of FeOH+ 

photo-oxidation shows a wavelength dependence, its variation is relatively small. 

 

  On the course of irradiation, while the solution pH drastically decreased to pH ~4 when 

irradiated with > 200 nm, it remained circum-neutral pH of ~6 for irradiations with > 260 

nm and > 300 nm within the experimental time. Using the obtained reaction rate, the 

acidification timescale for Martian solar flux under various CO2–SO2 atmospheric 

compositions were calculated. It was found that although the reaction rate seems slow, 

FeOH+ photo-oxidation would acidify the surface water pH to ~4 within a short timescale 

of ~102 years. Since various episodic warming mechanism has been proposed to sustain 

surface water for > 102 years, this result suggests the existence of a pH buffering 

mechanism on early Mars. 

 

 In order to constrain the geochemical conditions on Hesperian Mars, the reaction rates 

of Fe(II) photo-oxidation derived in Chapter 2 are applied to a reaction-transport model 

simulating the early Gale lake settings (Chapter 4). The appearances of oxidizing Fe 

oxides (e.g., hematite) in the coarser sediments and reducing Fe oxides (e.g., magnetite) 

in the finer sediments discovered by the Curiosity rover landed in the Gale Crater have 

led to a hypothesis that early Gale lakes could have been redox stratified. Fe(II) photo-

oxidation could have created a vertical redox gradient because the oxidation tends to 

proceed near the surface due to an attenuation of solar photons. I constructed a one-

dimensional geochemical model that aimed to investigate Fe(II) input fluxes, Fe(II) 

source (via rivers or groundwater), advection rate of the water column, pH of lake water, 

and atmospheric compositions to achieve redox stratification on early Gale lakes. 
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The results suggest that when Fe(II) is supplied via rivers, both acidic pH of 5 and a 

high Fe input flux are required for redox stratification. This is because dissolved Fe(II) 

supplied from the top layer needs to be transported to a deep part before Fe(II) photo-

oxidization for redox stratification and because Fe(II) photo-oxidation rates are low at 

low pH. On the other hand, when Fe(II) is supplied via groundwater upwelling, redox 

stratification occurs in a wide range of parameters (pH 5–7) and moderate Fe input flux 

as long as the advection rate is kept small. High input fluxes of Fe(II) or CO2 partial 

pressure of ~bar result in saturation with Fe(II)-carbonate, which is inconsistent with the 

in-situ observations detecting almost no carbonate minerals. Considering the recent 

estimate of the circum-neutral pH of early Gale lakes, these results prefer scenarios that 

Fe(II) was supplied via groundwater upwelling on paleo-Gale lakes. Required low 

advection rates imply that the depth of early Gale lakes would have been relatively deep 

(i.e., several hundred meters). Preferred low CO2 in the atmosphere suggests a need for 

an abundance of other efficient greenhouse effect gases than CO2 to warm the surface on 

early Mars. 

 

A groundwater-supported aqueous environment on early Mars has been suggested in 

numerous locations based on geomorphological analyses. This thesis adds new 

hydrogeochemical constraints by combining laboratory experiments of Fe(II) photo-

oxidation and hydrogeochemical model, utilizing the in-situ geochemical data obtained 

by the rover. A number of planned and ongoing planetary missions (e.g., Perseverance 

rover, ExoMars, MMX) are equipped with instruments capable of geochemical analyses. 

Therefore, the importance of understanding the fundamental geochemical processes in 

the planetary environments, as pursued in this thesis, is increasing. 
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Chapter 1. General Introduction 

 

 

本章については、5年以内に雑誌掲載等の形で公開予定のため非公開とする。 
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Chapter 2. An experimental study on 

photo-oxidation reactions of ferrous 

iron: Quantum yields at pH 3–7 

 
2.1. Background of quantum yield of photo-oxidation of ferrous iron 

 

Photo-oxidation of dissolved ferrous iron (Fe(II): Fe2+ and FeOH+ at pH < 8) would 

have been a predominant process involved in the formation of ferric iron (Fe(III)) 

(hydro)oxides in aqueous environments on early Mars (e.g., Hurowitz et al., 2010, 2017). 

Through this reaction, the pH of surface water could have decreased to 2–4, which is 

consistent with the occurrence of jarosite—an Fe(III) hydrous sulfate that is 

thermodynamically stable at acidic pH—at Meridiani Planum (Tosca et al., 2005). Photo-

oxidation of Fe(II) might also have generated Fe(III) (hydro)oxides in early lakes at Gale 

Crater on early Hesperian Mars (Hurowitz et al., 2017) (see Sec. 1.2).  

Photo-oxidation of Fe(II) could have proceeded under a range of pH conditions in 

aqueous environments on early Mars. Previous studies have suggested that the pH of early 

Gale lakes would have been circumneutral (Bristow et al., 2017; Hurowitz et al., 2017) 

to weakly alkaline (Fukushi et al., 2019), based on the mineralogy of lacustrine sediments 

at Gale Crater. On early Mars, the pH of groundwater would have been near neutral to 

alkaline, owing to water-rock interactions involving mafic rocks (e.g., Zolotov and 

Mironenko, 2016; Kite and Melwani Daswani, 2019). At locations where upwelling of 

groundwater occurred, photo-oxidation would thus have proceeded in circumneutral to 

alkaline water (Hurowitz et al., 2017). 

Although Fe(II) photo-oxidation would have proceeded under a range of pH conditions 

in aqueous environments on early Mars (e.g., Zolotov and Mironenko, 2016; Kite and 

Melwani Daswani, 2019; Fukushi et al., 2019), the quantum yield φ (defined as the 

number of oxidized ferrous ions divided by the number of photons absorbed by ferrous 

ions) were determined for a limited pH range of 0.4–3.0 previously (Jortner and Stein, 

1962a, 1962b). Previous experimental studies investigated the pH dependence of the 

reaction at pH > 3 (Braterman et al., 1983, 1984; Konhauser et al., 2007; Nie et al., 2017). 

However, quantum yields at pH > 3 contained large uncertainties because photon fluxes 

were not measured (Braterman et al., 1983; 1984; Konhauser et al., 2007; Nie et al., 2017) 
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(Sec. 1.3). 

Jortner and Stein (1962b) reported an empirical relationship for pH and quantum yield 

for Fe(II) photo-oxidation based on the experimental data obtained at pH 0.4–3.0 (see Eq. 

1–2 in Part 1). As pH increases above 6, FeOH+ becomes a predominant Fe(II) species in 

solution (Fig. 1–1a). Since Eq. 1–2 was obtained only to the pH range of 0.4–3.0, and 

since Fe2+ and FeOH+ have different UV absorptivity spectra (Fig. 1–1b; Anbar and 

Holland, 1992; Ehrenfreund and Leibenguth, 1970), Eq. 1–2 cannot be simply 

extrapolated to a higher pH to calculate the photo-oxidation rate of Fe(II). 

Furthermore, the experimental studies, from which Eq. 1–2 was derived, employed 

only a Hg lamp as a light source (Jortner and Stein, 1962b). This limits the applicability 

of Eq. 1–2 because the solar spectrum is continuous and markedly different from that of 

a Hg lamp. If there is a wavelength dependence of quantum yield, Eq. 1–2 cannot be used 

to determine contributions of photo-oxidation in precipitating Fe(III) (hydro)oxides on 

early Mars. 

A major difficulty in estimating photo-oxidation quantum yields at pH > 3 is the 

avoidance of oxidation of aqueous Fe(II) by dissolved O2. The rate of oxidation of 

aqueous Fe(II) by O2 increases with O2 concentration and pH (e.g., Stumm and Lee, 1961; 

Kanzaki and Murakami, 2013); 

–d[Fe2+]tot/dt = k[Fe2+]tot[O2]
x[OH–]2                 (2–1) 

where [X] denotes the molar concentration of species X in solution; [Fe2+]tot = [Fe2+] + 

[FeOH+] (at pH < 8); k is the reaction constant; and x is the reaction order with respect to 

O2 (0.5–1). The rate of Fe2+ oxidation by O2 can be comparable to, or even greater than, 

the expected photo-oxidation rates at circumneutral pH (e.g., Anbar and Holland, 1992) 

if O2 concentrations reach to 1 ppm (= 3.1 × 10–5 mol L–1). The 1 ppm of O2 were, in 

general, involved in the previous experiments on photo-oxidation of Fe(II) (Braterman et 

al., 1983, 1984; Nie et al., 2017). Dissolved O2 concentrations of << 1 ppm are thereby 

necessary for quantitative measurements of Fe2+ photo-oxidation rates at circumneutral 

pH. 

In this study, Fe(II) photo-oxidation experiments were conducted utilizing a glovebox 

connected with a gas-circulating system, in which dissolved O2 concentrations of < 0.01 

ppm were achieved. This system allows us to obtain quantum yields at pH > 3. Based on 

the results, we discuss the pH and wavelength dependences of photo-oxidation of Fe2+ 

and FeOH+.  
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2.2. Methods of photo-oxidation experiments to obtain quantum yields 

 

The experimental setup of the Fe(II) photo-oxidation is illustrated in Fig. 2–1. The 

system was mainly composed of a reaction vessel and a light source. Experimental 

solutions were prepared in a glovebox and then were introduced into the quartz reaction 

vessel with a volume of 500 mL (diameter 8 cm, height 10 cm; Fig. 2–1). The quartz glass 

was chosen as it transmits more than 90% of light at a wavelength of 200–460 nm (e.g., 

Kitamura et al., 2007). The detailed descriptions of the procedure, light source, and 

reactant solutions are shown below in Secs. 2.2.1, 2.2.2, and 2.2.3, respectively. During 

the irradiation of UV light onto the experimental solution, a part of the solution was 

collected for the measurements of Fe(II) concentration. The detailed descriptions of the 

measurements and data analyses are shown below in Secs. 2.2.4 and 2.2.5, respectively. 

The reaction conditions are summarized in Sec. 2.2.6. 

 

2.2.1. Solution preparation 

 

Solutions containing Fe(II) ions were prepared and sealed in the reaction vessel within 

a 180-L Ar-purged, acrylic glovebox connected to a deoxygenation system (SiOC-

2000GB; STLab Co., Japan) to provide low-O2 conditions ([O2] ≤ 0.01 ppm). The detailed 

descriptions of the glovebox can also be found in Kanzaki and Murakami (2019) and 

Tabata et al. (2021). 

Before preparation of solutions, the glovebox was purged for 10 hours using pure Ar 

gas (>99.9999 vol.%, Nissan Tanaka Corp., Japan), after which the remaining gas was 

circulated through the deoxygenation system for ~10 hours to remove remaining O2. The 

partial pressure of O2 (pO2) within the glovebox was decreased to <10–15 bar during this 

procedure.  

When pO2 was < 10–15 bar in the glovebox, the pH buffer solution described below was 

bubbled with Ar gas at 1.4 L min–1 for over 4 hours for deoxygenation. Concentrations of 

dissolved oxygen (DO) in solutions were monitored during bubbling using a DO meter 

(TOX-02H; Toko Kagaku, Japan) until levels were below the detection limit ([O2] ≤ 0.01 

ppm) (Fig. 2–2).  

After deoxygenation, dissolved Fe(II) as Fe(NH4)2(SO4)2 powder (purity >99%; Wako 

Pure Chemical Industries (WPCI), Japan) was added to the buffer solution. and its pH 

was adjusted by adding H2SO4 (purity > 99%; WPCI) for pH < 3, HNO3 (purity > 99%; 

WPCI) for pH 4–5, and bis-tris C8H19NO5 (purity >99%; Dojindo Laboratories, Japan) 

for pH 6–7.6. Ultrapure Milli-Q water (18.2 MΩ; Millipore) was used as a solvent for the 
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buffer solutions, and pH was measured using a pH meter (LAQUAtwin pH-33; Horiba, 

Japan). Use of H2SO4 as the buffer at pH < 3 is in accord with Jortner and Stein (1962a; 

1962b) and thus enables us to examine the validity of our experimental setup by 

comparing the results. The solution pH was stabilized using the above buffers within a 

range of ± 0.2 during the experiments. 

 

2.2.1. Experimental procedure 

 

Prior to an irradiation of the light source, the reaction vessel was filled with 

deoxygenated experimental solution, tightly sealed, and covered with a weighed sheet of 

aluminum foil inside the glovebox. Then, the reaction vessel was taken out of the 

glovebox and weighed to measure the initial amount of the experimental solution. The 

reaction vessel was set on a thermostat-magnetic stirrer at a distance of 20 cm from the 

lamp (Fig. 2–1). The solution was kept at room temperature (~25°C) and stirred 

continuously. The lamp was turned on 30 minutes before starting the irradiation to ensure 

that the photon flux was stabilized.  

At intervals during the experiment, ~1 mL of irradiated solution was collected as a 

sample after another ~1 mL of solution was drained to waste through a Teflon sampling 

cock. This was done because the first 1 mL may contain unmixed solution from near the 

cock. In both the draining and sampling procedures, the solution was withdrawn from the 

reaction vessel by injecting 1 mL of pure He into the vessel through the butyl-rubber plug, 

using a gas-tight syringe (Fig. 2–1). About half (i.e., ~0.5 mL) of each collected sample 

was used for pH measurement, and the other half for Fe(II) concentration ([Fe2+]tot = 

[Fe2+] + [FeOH+]) measurement. Samples collected for [Fe2+]tot measurement were 

introduced directly into polypropylene vessels filled with acidic solution buffered at pH 

3.5 to avoid oxidation of Fe2+ by air after sampling. The oxidation of Fe2+ by atmospheric 

O2 is negligible at pH < 3.5; Eq. 2–1; (Stumm and Lee, 1961; Kanzaki and Murakami, 

2013). At low pH, all dissolved Fe(II) was supposed to be converted to Fe2+, which can 

be quantified using the phenanthroline method. 

The irradiation time for each experiment was set to ensure that the total fraction of 

oxidized Fe2+ ions did not exceed the initial concentration of Fe2+ by more than a few 

percent. This was done because the UV absorption by Fe(III) (hydro)oxide particles can 

be safely assumed to be negligible compared with absorption by aqueous Fe2+ ions (Sec. 

2.2.5). The precipitated Fe(III) (hydro)oxide particles are known to adsorb dissolved 

Fe(II) species and catalyze oxidation reaction by dissolved O2 (Tamura et al., 1976; Sung 

and Morgan, 1980). Although the catalyzed oxidation by the dissolved O2 would be 
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negligible due to reduced [O2] (Sec. 2.2.1) (Sung and Morgan, 1980), the high fraction of 

adsorbed Fe(II) could reduce the apparent photo-oxidation rate. However, the ratio of the 

adsorbed Fe(II) ([Fe2+]ad) to the remaining dissolved [Fe2+] is reported to be linearly 

proportional to ([Fe2+]ad/[Fe2+] = Kad[Fe(III)]/[H+], where Kad is the constant = 10–9.6 mol 

mg–1) (Tamura et al., 1976). Thus, the adsorbed fraction of Fe(II) would remain < 1% of 

the total Fe(II) in the solution even at pH 7, as long as [Fe(III)] is kept at below a few 

percent of the initial [Fe2+] (i.e., 10–3 mol L–1, see Sec. 2.2.5 below). Photo-oxidation 

quantum yields were calculated on the basis of the dissolved Fe(II) concentrations of the 

samples (Sec. 2.2.6). 

 

2.2.3. Light sources and photon-flux actinometry 

 

In most experiments, a 150 W Xe lamp (L7810; Hamamatsu Photonics, Japan) was 

used as the light source, although a low-pressure Hg lamp (80-1057-01; BHK Inc., USA) 

was used in some experiments to compare quantum yields with those obtained in the 

previous studies (Jortner and Stein, 1962a; 1962b). We used an optical filter that passes 

through photons with a wavelength of > 300 nm in some experiments in order to 

investigate the quantum yields of FeOH+ photo-oxidation. 

A low-pressure Hg lamp provides UV light at 254 nm wavelength (λ), and a Xe lamp 

provides light continuously from UV (λ > 200 nm) to visible wavelengths, with the 

spectrum of the latter being similar to solar spectra in the UV range (Fig. 2–3). The 

spectrum of the low-pressure Hg lamp in Fig. 2–3 was obtained using a calibrated UV-

Vis spectrometer (USB4000; Ocean Optics, USA). An optical filter with >99% cutoff at 

λ = 300 nm (N-WG-320; Schott AG, Germany) was used with the Xe lamp in FeOH+ 

experiments, allowing oxidation of Fe(II) ions to be attributed solely to photo-oxidation 

of FeOH+ (Fig. 1–1b). The optical filter was set to the aperture of the Xe lamp (Fig. 2–1). 

  Since the irradiated light from the Xe lamp includes photons with the minimum energy 

required of photolysis of liquid H2O (~6 eV: corresponding to a photon with a wavelength 

of ~200 nm) (Sander et al., 1993; Bernas et al., 1997), reactive oxygen species could be 

generated via H2O photolysis in our experiments. However, UV absorptivity of liquid 

H2O at 200 nm is 0.0026 cm–1 (Fewell and Trojan, 2019), which is an order of magnitude 

lower than that of Fe2+ at the concentration of 10–3 mol L–1 in our experiments (0.0286 

cm–1) (Heinrich and Seward, 1990). Also, the quantum yield of H2O photolysis is reported 

to be in the order of 0.001 by a photon at ~180 nm (Nikogosyan et al., 1983), which is 

two orders of magnitude lower than that of Fe2+ photo-oxidation (see Sec. 2.3 and the 

previous studies (e.g., Jortner and Stein, 1962a)). Thus, the contribution of oxidants 
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produced via H2O photolysis to oxidize Fe2+ is more than three orders of magnitude 

smaller than Fe2+ photo-oxidation. Furthermore, the effect of H2O photolysis should be 

even smaller because Fe2+ can utilize photons of 200–300 nm for photo-oxidation, unlike 

H2O. 

Photon fluxes of wavelengths at 200–460 nm were quantified using the potassium 

ferrioxalate (K3[Fe(III)(C2O4)3]) actinometry method (e.g., Hatchard and Parker, 1956; 

Kuhn et al., 2004), in which dissolved Fe(III) of potassium ferrioxalate is photo-reduced 

to Fe(II) when potassium ferrioxalate solution is irradiated at λ < 460 nm (Eq. 2–2). 

[Fe(III)(C2O4)3]
3– 

ℎ𝑣
→  [Fe(II)(C2O4)3]

2– + C2O4
–             (2–2) 

With a known photo-reduction quantum yield (Fig. 2–4), the photon flux can be 

determined through measurement of photo-reduced [Fe2+] (see Sec. 2.2.4) in the 

potassium ferrioxalate solution upon irradiation (Eq. 2–3): 

𝐼𝑎𝑏𝑠,𝑓 = 
[Fe2+]

𝜑𝑓𝑡
               (2– 3) 

where Iabs,f is the photon flux absorbed by the ferrioxalate (mol L–1 min–1), φf is the 

quantum yield of the photo-reduction reaction of ferrioxalate, and t (min) is the irradiation 

time. The geometric configuration during photon-flux measurements was the same as that 

of the photo-oxidation experiments. 

In the photon-flux measurements, potassium ferrioxalate solution at concentrations of 

6 × 10–3 or 15 × 10–3 mol L–1 was introduced into the reaction vessel (Table 2–1). The 

concentrations of ferrioxalate were chosen to ensure that the photo-reduced fraction of 

ferrioxalate is < 10%. The ferrioxalate was synthesized from potassium oxalate 

monohydrate ((COOK)2·H2O; purity > 99%; WPCI) and ferric chloride hexahydrate 

(FeCl3·6H2O; purity > 99%; WPCI), following previously published methods (e.g., Kuhn 

et al., 2004). All procedures were conducted under a > 500-nm Safelight (PTP760; 

Paterson Photographic Ltd., UK) to avoid photochemical artifacts. 

The Fe2+ concentration in potassium ferrioxalate solution increased linearly with 

irradiation time (Fig. 2–5). Photon flux was calculated from the quantum yield of 

potassium ferrioxalate (Eq. 2–3) (Murov, 1993; Goldstein and Rabani, 2008). The 

measured photon fluxes are summarized in Table 2–1. 

 

2.2.4. Fe(II) concentration measurement 

 

The total Fe(II) concentrations of samples were determined using the phenanthroline 
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method (e.g., Saywell and Cunningham, 1937; Kuhn et al., 2004), in which o-

phenanthroline displays an absorption centered at λ = 510 nm in an acidic (pH 3.5) 

solution through the formation of a chelate complex with Fe2+.  

Phenanthroline solutions were prepared as described in Hatchard and Parker (1956). 

For each Fe2+ analysis, 2.5 mL of solution was prepared in a polypropylene tube from 1 

mL 5.5 mmol L–1 o-phenanthroline solution (purity >99%; WPCI), 0.25 mL ultrapure 

water, and 1.25 mL of a mixture of 0.18 mol L–1 H2SO4 and 0.6 mol L–1 CH3COONa  

(purity >99%: WPCI) solutions (i.e., an H2SO4–CH3COONa pH buffer at pH 3.5). Each 

collected sample was added to a tube of a prepared solution and kept in the dark for 30 

minutes to stabilize the Fe2+–phenanthroline chelate complex (Kuhn et al., 2004). All 

these procedures were conducted under a Safelight (as above) to avoid photo-oxidation 

of Fe2+ after the sampling. Sample absorbances were measured by UV–visible 

spectrophotometry (Lambda 650; Perkin Elmer, USA). A calibration plot was generated 

with solutions of known Fe2+ concentration (Fig. 2–6). 

 

2.2.5. Reaction conditions and evaluation of air contamination 

 

Reaction conditions involved systematically varied irradiation conditions and solution 

pH in experiments, referred to by ‘run’ numbers in Table 2–2: (a) using the Hg lamp (runs 

1–3); (b) using the Xe lamp without an optical filter (runs 4–9); (c) using the Xe lamp 

with an optical filter (runs 10–12); and (d) a control experiment using no light source (run 

13). These groups of experiments were respectively intended for (a) comparison with 

previous studies (Jortner and Stein, 1962a; 1962b) without deoxygenation of solutions 

(runs 1–3); (b) study of the pH dependence of the Fe2+ photo-oxidation rate (runs 4–9); 

(c) study of FeOH+ photo-oxidation (runs 10–12); and (d) a background check on the 

effect of Fe(II) oxidation due to O2 contamination during the procedures (run 13). In the 

background check, the measured [Fe2+] remained unchanged from the initial value within 

a 1σ of measurement error (± 6.6 × 10–3 mmol L–1) for 600 min (Fig. 2–7), which indicates 

that oxidation of Fe2+ due to air contamination during sampling was negligible. 

 

2.2.6. Photo-oxidation analysis 

 

After irradiation, Δ[Fe2+] was determined; i.e., the difference in [Fe2+] from the initial 

value ([Fe2+]0) after a certain time, t (min), of irradiation ([Fe2+]t): Δ[Fe2+] = [Fe2+]0 – 

[Fe2+]t. The increasing rate of Δ[Fe2+] gradually decreased over the irradiation time, 

because Fe2+ is consumed by photo-oxidation, and because UV light is absorbed by 
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produced Fe(III) ions (Fe3+, Fe(OH)2+, and Fe(OH)2
+). The latter reduces the photon flux 

absorbed by Fe(II) (i.e., absorbed photon flux, Iabs,Fe2+ and Iabs,FeOH+; unit mol min–1 L–1), 

the so-called inner-filter effect (Jortner and Stein, 1962a, 1962b). In determining quantum 

yields of Fe2+ and FeOH+ photo-oxidation (φFe2+ and φFeOH+, respectively) from Δ[Fe2+], 

the effect of the inner-filter effects must be taken quantitatively into account as follows.  

The theoretical time trend (i.e., the trend with irradiation time) of Δ[Fe2+] was first 

considered for a given set of quantum yields, based on quantum yields, φFe2+ and φFeOH+, 

and absorbed photon flux, Iabs,Fe2+ and Iabs,FeOH+: 

𝛥[Fe2+] = ∫ 𝜑Fe2+𝐼abs,Fe2+(𝑡) + 𝜑FeOH+𝐼abs,FeOH+(𝑡) 𝑑𝑡.               (2– 4)
𝑡

0

 

The functions Iabs, Fe2+ and Iabs,FeOH+ are represented as: 

𝐼abs,Fe2+(𝑡) = ∫ 𝐼0(𝜆)
300

200

(1 − 10−𝑘(𝜆))
𝜀Fe2+[Fe

2+]𝑡
∑𝜀x[X]𝑡

 𝑑𝜆 (2– 5)

𝐼abs,FeOH+(𝑡) = ∫ 𝐼0(𝜆)
460

200

(1 − 10−𝑘(𝜆))
𝜀FeOH+[FeOH

+]𝑡
∑𝜀x[X]𝑡

 𝑑𝜆 (2– 6)

 

where I0(λ) is the irradiated photon flux at wavelength λ (mol cm–2 min–1 nm–1), εX is the 

molar absorptivity of species X (mol–1 L cm–1), and k(λ) represents the total absorption 

due to all dissolved species. The function k(λ) is expressed as: 

𝑘(𝜆)  =∑𝜀X[X]𝑑 (2– 7) 

where d is the optical path length (6.3 cm was used as an average optical path length 

based on the geometry of the reaction vessel). To obtain k(λ), the respective 

concentrations of Fe2+, Fe(OH)+, Fe3+, Fe(OH)2+, and Fe(OH)2
+, based on ion speciation 

in a solution at 25ºC for the pH of the experiment, were applied (Fig. 2–8) (Stefansson, 

2007). Assuming that Fe(III) ions formed solely during photo-oxidation of Fe2+, the total 

concentration of Fe(III) ions ([Fe3+]tot = [Fe3+] + [Fe(OH)2+] + [Fe(OH)2
+]) was treated as 

per Δ[Fe2+] as long as its value was lower than the solubility of ferrihydrite (Fe(OH)3; an 

initial Fe(III) precipitation phase; Stefansson (2007)). When Δ[Fe2+] exceeded the 

solubility of ferrihydrite, the concentrations of Fe(III) ions were assumed to be in 

equilibrium with the solubility of ferrihydrite at the applied pH. Published values were 

used for the molar absorptivity (εX) of each species (Heinrich and Seward, 1990; Anbar 

and Holland, 1992; Stefansson, 2007; Fig. 1–1 and Fig. 2–8). For Fe(III) ions, εX was 

assumed to be zero at λ > 350 nm for Fe3+, >400 nm for FeOH2+, and >400 nm for 
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Fe(OH)2
+, because εX decreases markedly at longer wavelengths (and no published values 

for longer wavelengths were available). Measured total Fe(II) concentrations and 

published εX values were used to calculate k(λ) for the applied pH. The spectral irradiated 

photon flux, I0(λ), was calculated by scaling the manufacturer-specified spectral 

irradiance (Fig. 2–3) so that the integrated irradiation flux matched the photon flux 

measured by chemical actinometry (Table 2–1). For the Hg lamp, the measured photon 

flux was assumed to be attributed to the emission line at λ = 254 nm (Fig. 2–3). Photon 

absorption calculations (Eqs. 2–5 and 2–6) involved integration over the range of λ = 

200–460 nm at 10-nm intervals. The time trends of Iabs, Fe2+, Iabs,FeOH+, and Δ[Fe2+] were 

then determined for a given set of quantum yields. 

Quantum yields were based on least-squares fitting of experimental time trends of 

Δ[Fe2+] with the theoretical predictions of Δ[Fe2+]. The FeOH+ concentration becomes 

non-negligible at pH > 5 (e.g., runs 8 and 9; Fig. 1–1a), so the time trend of Δ[Fe2+] at pH 

> 5 could be caused by photo-oxidation of both Fe2+ and FeOH+. To distinguish between 

these reactions, φFeOH+ was first obtained using the optical filter (runs 10–12), then 

employed in the photo-oxidation analyses to obtain φFe2+ based on the time trend of 

Δ[Fe2+] at pH > 5. Errors in quantum yields were evaluated by the propagation of 

uncertainties and errors in measurements and calculations, applying 1σ uncertainties for 

Δ[Fe2+], [Fe2+]0, and I0. The calculated errors in quantum yields were ≤ 10%. 

  In the analysis, reductive dissolution of Fe(III) (hydro)oxides by dissolved H2 was not 

considered. Although the kinetic rate of such a reaction is not reported, a decrease in 

photo-oxidation rate would be observed if such a reaction occurs. However, as shown in 

Sec. 2.3,  the time evolutions of photo-oxidation rates are quantitatively explained by 

the inner-filter effect, suggesting the reductive dissolution of Fe(III) (hydro)oxides by H2 

is less important, possibly due to the low solubility of H2 in water. The precipitation of 

Fe(II) (hydro)oxide, Fe(OH)2, was also not considered as its precipitation is negligible at 

the experimental pH of this study (Fig. 1–1a). 

 

2.3. Results 

 

2.3.1. Fe2+ photo-oxidation at 254 nm 

 

Time trends of Δ[Fe2+] during UV irradiation with the Hg lamp with [Fe2+]0 = 0.02, 

0.01, and 0.001 mol L–1 (runs 1–3, respectively) are shown in Fig. 2–9, where an increase 

in Δ[Fe2+] indicates consumption of Fe(II) species. Throughout the experiments, the 

measured Δ[Fe2+] values increase continuously with Fe2+ photo-oxidation (Fig. 2–9). 
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However, the rate of increase decreases gradually, owing to the inner-filter effect (see Sec. 

2.2.6). By fitting the measured time trend of Δ[Fe2+] with the theoretical equation by Eqs. 

2–4 to 2–6 for Δ[Fe2+], the quantum yields of Fe2+ photo-oxidation, φFe2+, for runs 1–3 

were determined as 0.29 ± 0.03 (at pH 0.5), 0.29 ± 0.03 (at pH 0.6), and 0.24 ± 0.02 (at 

pH 0.4), respectively (Fig. 2–10), which are consistent with yields reported previously 

using a similar Hg lamp (Jortner and Stein, 1962a; Fig. 2–9a), and which confirm the 

validity of our experimental system and procedure. 

 

2.3.2. Fe2+ photo-oxidation by UV–visible light (> 200 nm) 

 

Time trends of Δ[Fe2+] during experiments with the Xe lamp (runs 4–12) are shown in 

Fig. 2–11. Measured Δ[Fe2+] values increase with irradiation time, as well as runs 1–3 

with the Hg lamp. The inner-filter effect becoming less significant as pH increases, thus 

increasing almost linearly against irradiation time at pH 6 compared to pH 1.9 (e.g., 

compare Fig. 2–11a and f). This is because the solubility of ferrihydrite decreases 

exponentially as pH increases from 2 to 7 (Stefansson, 2007). The fraction of photons 

absorbed by aqueous Fe(III) ions (Fe3+, Fe(OH)2+, and Fe(OH)2
+) decreases markedly at 

higher pH, resulting in an almost linear increase in Δ[Fe2+] with irradiation time (Fig. 2–

11).  

Measured quantum yields of Fe2+ photo-oxidation, φFe2+ are plotted against pH in Fig. 

2–12. Their decrease as pH increases can be fitted by the function: 

φFe2+ = 0.103 (± 0.005) + 2.17 (± 0.27) × [H+]0.5.           (2– 8) 

Here, the contribution of FeOH+ photo-oxidation is excluded using the quantum yield 

obtained in runs 10–12 (see the next section; also Sec. 2.2.6). Thus, φFe2+ represents the 

quantum yield solely by photo-oxidation of Fe2+. Jortner and Stein (1962a, 1962b) 

reported a similar pH dependence (the ∝ [H+]0.5 term) for quantum yield at pH 0.4–3.0 

with a Hg lamp (Eq. 1–2) and attributed it to a reaction mechanism where electrons (i.e., 

H atoms) produced by photo-oxidation of Fe2+ are consumed more effectively in solutions 

with higher H+ concentrations. 

  The effective quantum yield of Fe2+ photo-oxidation is determined by the sum of the 

three following processes: 1. Photo-oxidation of UV-excited Fe2+ (Fe2+(OH)2
*) followed 

by an escape of hydrogen atom into the bulk solvent (Eq. 2–9), 2. Backreaction of photo-

oxidation (Eq. 2–10), and 3. Backreaction inhibited by H+ scavenging the hydrogen atom, 

releasing H2
+ into the bulk solvent (Eq. 2–11). 

 Fe2+(OH)2
* + H2O → Fe3+(OH)3 + Hbulk (2–9) 



 

21 

 

 Fe3+(OH)3 + H → Fe2+(OH)2 + H2O (2–10) 

 H+ + H → H2
+

bulk (2–11) 

While the quantum yield via the first process (Eq. 2–9) is pH-independent, corresponding 

to the first term in Eq. 2–8, the quantum yield via the second and third process would be 

pH-dependent as the H+ involves as a reactant. The pH dependence of such a system 

would be determined by the competition of the reaction of Eq. 2–10 and 2–11, which was 

investigated by Noyes (1955).  

  When the probability that the backreaction occur at a time interval between t and t + dt 

is expressed as h(t), the probability of the back reaction occurring after the photo-

oxidation, β, could be written as follows: 

∫ ℎ(𝑡) 𝑑𝑡 = 𝛽.
∞

0

                                                   (2– 12) 

Since the backreaction requires the recombination of Fe3+ and H, its probability would 

be expected to be proportional to ∝ t–3/2, assuming the 3-D random walk for Fe3+ and 

H (Noyes, 1955). Thus h(t) = a/t3/2, where a is a constant parameter. On the other hand, 

the probability that H reacts with H+ during the random walk of t min could be 

expressed as follows:  

1 − 𝑒−2𝑘11[H
+]𝑡,                                                (2– 13) 

where k11 is the reaction rate constant of Eq. 2–11 (Noyes, 1955). Thus, the fraction that 

escapes the back reaction could be given by the time integration of the product of h(t) 

and Eq. 2–13 as follows:  

∫ ℎ(𝑡)(1 − 𝑒−2𝑘11[H
+]𝑡)𝑑𝑡 = 2𝑎√2𝜋𝑘11[H+]  + ⋯ .

∞

0

               (2– 14) 

Here, the definite integration was conducted using the characteristics of the Gauss error 

function. Therefore, the result that the quantum yield shows a pH-dependence of [H+]0.5 

suggests that the H+ is interacting with the H atoms (i.e., electrons) produced in the photo-

oxidation reaction via the scavenging processes rather than through other mechanisms. 

The similar pH dependence observed here at higher pH under continuous UV–visible 

irradiation (Fig. 2–12) suggests a similar reaction mechanism, despite variations in 

solution composition and irradiation wavelength. Furthermore, if the electron 

consumption by H+ fully accounts for the pH dependence of Eq. 8, then the elementary 

process of the Fe2+ photo-oxidation itself could be pH-independent. 

Although our measured quantum yields display a similar pH dependence to those 

obtained under the Hg lamp, the absolute values using the Xe lamp are significantly 
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different from previous ones using the Hg lamp (Fig. 2–12). For example, the yield at pH 

1.9 (run 4; φFe2+ = 0.34 ± 0.03) obtained using the Xe lamp in deoxygenated solution is 

higher than that reported previously using the Hg lamp against deoxygenated solutions 

(φFe2+ ~0.1 at pH 1.9; Jortner and Stein, 1962b; Fig. 2–10). This suggests a wavelength 

dependence of the quantum yield of Fe2+ photo-oxidation, as discussed in Sec. 2.4.1. 

 

2.3.3. FeOH+ photo-oxidation 

 

Time trends of Δ[Fe2+] with the Xe lamp plus optical filter (i.e., λ > 300 nm; runs 10–

12) are shown in Fig. 2–11; as explained in Sec. 2.2.3, only FeOH+ can be photo-oxidized 

under these conditions (Fig. 1b). The low inner-filter effect (due to the low solubility of 

ferrihydrite at pH > 7.1) means that Δ[Fe2+] values increase linearly with irradiation time 

(Fig. 2–11). Quantum yields of FeOH+ photo-oxidation, φFeOH+, at pH 7.1, 7.4, and 7.6 

were 0.071 ± 0.006, 0.096 ± 0.009, and 0.072 ± 0.006, respectively (Fig. 2–12). The 

investigated pH range was narrow for φFeOH+ compared with that of φFe2+ because 

[FeOH+] is very low at pH < 7 (Fig. 1–1a), and because oxidation by dissolved O2 cannot 

be excluded at pH > 8. Within the pH range of 7.1–7.6, no obvious pH dependence of 

φFeOH+ was observed (Fig. 2–12). The measured φFeOH+ value of 0.08 ± 0.01 at pH 7.1–7.6 

is comparable with φFe2+ at pH ~7 (Fig. 2–12). 

 

2.4. Discussion 

 

2.4.1. Wavelength dependence of Fe2+ photo-oxidation 

 

Our results indicate that the quantum yield of Fe2+ photo-oxidation by the Xe lamp (λ 

> 200 nm; Fig. 2–12) is significantly higher than that obtained using the Hg lamp (λ = 

254 nm; Fig. 2–10), with the former representing an average over the UV–visible (λ > 

200 nm) range, and the latter the yield at λ = 254 nm. 

A shorter wavelength means higher energy, so the Xe lamp could produce higher φFe2+ 

values. Logan (1990) demonstrated that the quantum yield of Fe2+ photo-oxidation with 

UV at λ = 229 nm from a Cd lamp was 1.4 times that at 254 nm (Hg lamp). For the Xe-

lamp quantum yield (φFe2+ ~0.35 at pH 2; Fig. 2–12) to be a few times that of λ = 254 nm 

(Hg-lamp φFe2+ ~0.1 at pH 1.9; Fig. 2–10), the yields at λ < 230 nm must be > 0.35. 

In experiments with the Xe lamp, 40–50% of the total photons absorbed by Fe2+ ions 

are at λ < 230 nm, based on the integration of emission intensities from the Xe lamp (Fig. 

2–3) using Eq. 2–5 to 2–7. Although the irradiation flux at λ < 230 nm is relatively small, 
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high absorption cross-sections of Fe(II) at λ < 230 nm (Fig. 1–1) results in such efficient 

absorption of photons at short wavelengths. Assuming φFe2+ values of 0.1–0.14 at λ > 230 

nm at pH 2 (Jortner and Stein, 1962b; Logan, 1990), φFe2+ at λ = 200–230 nm must be 

0.5–0.6 to account for the average φFe2+ of 0.35 obtained in our experiment with 

irradiation at λ > 200 nm (Fig. 2–3). 

The quantum yield of 0.5–0.6 may seem high compared to the previous reports (Jortner 

and Stein, 1962b; Logan, 1990). However, Horvath and Papp (1984) report the quantum 

yields of 0.6–1.0 at solution pH of –0.5–2.0 for the Cu+ photo-oxidation reaction, which 

also demonstrates pH dependence of ∝[H+]0.5 (see Sec. 2.3.1). In the photo-oxidation 

reactions that the produced radicals (i.e., H atoms) are also involved in the oxidation 

reactions, quantum yields of the net oxidation reaction tends to be high. In fact, an 

apparent quantum yield of > 1.0 is observed in the experiment at a pH of –0.3, which 

abundant [H+] sufficiently scavenges the H atoms (Horvath and Papp, 1984). 

Further systematic investigation of the wavelength dependence of the quantum yield 

of Fe2+ photo-oxidation is required, but our results indicate that Fe2+ photo-oxidation 

proceeds efficiently under irradiation at λ = 200–230 nm. UV light at λ = 200–250 nm 

might have reached the surfaces of early Mars when shielding by O2 and/or O3 was absent 

in their atmospheres (e.g., Ranjan and Sasselov, 2016). 

 

2.4.2. Quantum yield of FeOH+ photo-oxidation 

 

Previous studies of FeOH+ photo-oxidation used an optical filter (λ > 366 nm) with a 

medium-pressure Hg lamp (Braterman et al., 1983; 1984) or a borosilicate glass reaction 

vessel that transmits UV only at λ > ~300 nm (Nie et al., 2017). Quantum yields of FeOH+ 

photo-oxidation have been determined as ~0.01–0.05 (Braterman et al., 1983; 1984) or 

~0.07 (Nie et al., 2017), based on concentrations of Fe3+ (Braterman et al., 1983; 1984) 

or Fe2+ (Nie et al., 2017) ions measured during irradiation. However, these studies 

involved no quantitative photon flux measurements (Nie et al., 2017), or photo-oxidation 

experiments without pH buffers (Braterman et al., 1983; 1984). As the concentration of 

FeOH+ is strongly dependent on pH (Fig. 1–1a), the use of a pH buffer is crucial when 

determining quantum yield. 

In contrast, through measurement of photon flux and usage of pH buffers, the present 

study determined a quantum yield, φFeOH+, of 0.08 ± 0.01 for FeOH+ photo-oxidation at 

pH 7.1–7.6, which is consistent with that estimated at pH 7.3 (~0.07) by Nie et al. (2017). 

Braterman et al. (1983; 1984) might have underestimated φFeOH+ (0.01–0.05) at 

circumneutral pH, possibly because they used no pH buffers. In that case, a decrease in 
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pH due to photo-oxidation could have inhibited further photo-oxidation of FeOH+ (Fig. 

1–1) 

At pH 7.0 with no optical filter (run 9), only ~1% of the total Fe(II) ions were consumed 

through FeOH+ photo-oxidation, with ~99% occurring through Fe2+ photo-oxidation. 

Despite the low abundance of FeOH+ at pH ~7 ([FeOH+]/[Fe2+] ≈ 10–2.5) (Fig. 1–1a), the 

loss of Fe(II) through FeOH+ photo-oxidation occurred because FeOH+ mainly absorbs 

UV–visible light at λ > 300 nm (Fig. 1–1b). The high emission intensity of the Xe lamp 

at λ > 300 nm (Fig. 2–3) and the effective absorption of long-wavelength light by FeOH+ 

result in efficient FeOH+ photo-oxidation at pH ~7. In an alkaline solution (pH > 8), where 

FeOH+ is the predominant form of Fe(II), it would enhance the overall photo-oxidation. 

 

2.4.3. Implications for Fe photo-oxidation on early Mars 

 

As described in Sec. 2.1, photo-oxidation of ferrous ions is suggested to be a possible 

mechanism to explain the depositions of Fe(III) (hydro)oxides in the middle Hesperian 

on Mars (e.g., Hurowitz et al., 2010; Nie et al., 2017). Nie et al. (2017) estimated the 

efficiency of Fe2+ photo-oxidation on early Mars by taking into account the wavelength 

dependence of the absorption. They assumed a constant quantum yield, φFe2+, of 0.07 for 

Fe2+ photo-oxidation throughout pH 2–7 and considered no photo-oxidation of FeOH+. 

In addition, they assumed no absorption of UV light due to Fe3+ ions in solutions. 

As shown in Eq. 2–8, the obtained φFe2+ in our experiments is significantly higher than 

0.07 that were assumed by Nie et al. (2017). In addition, we showed φFeOH+ = 0.08 for 

FeOH+ photo-oxidation (see Sec. 2.4.2), which was ignored previously (Nie et al., 2017). 

Accordingly, we suggest that the previous study would underestimate the efficiency of 

Fe2+ photo-oxidation on early Mars, especially in surface water with circumneutral pH. 

We also confirmed the occurrence of the inner-filter effects in our experiments, especially 

low pH. This was because at low pH, Fe3+ ions can be present in the solutions. Thus, we 

also suggest that the previous study would overestimate the efficiency of Fe2+ photo-

oxidation in the low pH range. 

In Part 4 of this thesis, we calculate the photo-oxidation rate and Fe(III) (hydro)oxide 

precipitation for various pH of surface water on early Mars using a one-dimensional 

geochemical model by introducing Eq. 2–8. Based on the model results, we will evaluate 

the geochemical conditions that can account for the Fe(III) (hydro)oxide precipitation on 

early Gale Lake (see Part 4 for the detailed results and discussion). 
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2.5. Summary 

 

In the present study, the reaction rate (i.e., quantum yields; φ) of the photo-oxidation 

reaction of Fe(II) (Fe2+ and FeOH+) were determined by conducting laboratory 

experiments. The semi-empirical equation of quantum yields of Fe2+ photo-oxidation at 

pH 3.0–7.6 under continuous UV–visible irradiation with wavelengths at > 200 nm using 

Xe-lamp was determined as follows: 

φFe2+ = 0.103 (± 0.005) + 2.17 (± 0.27) × [H+]0.5. 

The quantum yield of FeOH+ photo-oxidation reaction was also determined at pH 7.1‒

7.6, under continuous UV–visible irradiation with wavelength at > 300 nm using a UV 

cutoff filter, as 0.08 ± 0.01. The obtained quantum yield values were a few times higher 

than that reported by the previous studies at pH < 3.0 under single-wavelength irradiation 

at 254 nm using Hg-lamp, suggesting that the quantum yields are wavelength dependent. 

Although further investigation on such wavelength dependence is desirable, the quantum 

yields obtained in the present study under continuous UV-visible irradiation similar to 

that of solar spectra should serve as a first-order value for investigating the contribution 

of Fe(II) photo-oxidation reaction on early Mars. 
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Fig. 2–1. Experimental setup. The Xe lamp was placed 20 cm from the quartz-glass 

reaction vessel, which was stirred continuously by a thermostat-magnetic stirrer at 25°C. 

The optical filter, when used, was set in front of the lamp. During irradiation, solution 

samples were collected continuously via the Teflon sampling cock upon injection of pure 

He through the butyl-rubber cap on the top.  
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Fig. 2–2. Dissolved oxygen concentration (DO) during Ar gas bubbling. The dissolved 

oxygen concentration was continuously monitored during Ar gas bubbling inside the 

deoxygenated glovebox. The DO levels of < 0.01 ppm were achieved in ~4 hours from 

the start of Ar gas bubbling. Gas bubbling rate was 1.4 L min–1, and pO
2
 inside the 

glovebox during bubbling was ~10–15 atm.  
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Fig. 2–3. UV and visible spectra of light sources. (a) UV and visible spectra of a Xe lamp 

without the optical filter and with the optical filter (dashed and dotted lines, respectively) 

compared with the solar spectrum (solid line). Xe-lamp irradiance and filter transmittance 

data were provided by the relevant manufacturer; solar irradiance data are based on the 

American Society for Testing and Materials air mass zero reference spectrum (ASTM E-

490), corrected for distance for the average Martian semi-major axis (1.5 AU). (b) UV–

visible spectra of a low-pressure Hg lamp, based on irradiance data obtained by UV–vis 

spectrophotometry. Although intensity is given in an arbitrary unit, relative intensities 

were determined from the irradiance of the Xe lamp.  
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Fig. 2–4. Compiled quantum yields of potassium ferrioxalate photo-reduction at various 

wavelengths. The quantum yield data are from Murov (1993) and Goldstein and Rabani 

(2008). The thick line represents the 10-nm step values used in the calculation of photon 

flux.  
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Fig. 2–5. Time trends of [Fe2+] during irradiation of Hg-lamp, Xe-lamp, and Xe-lamp 

with the filter in actinometry experiments. (a) Hg lamp; (b) Xe lamp ; (c) Xe lamp with 

the optical filter. The linear increase trend of [Fe2+] over irradiation time shows that 

dissolved potassium ferrioxalates are photo-reduced to ferrous ions. 
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Fig. 2–6. Calibration line for measurement of [Fe
2+

] in the phenanthroline method. The 

absorbance at 510 nm shows a linear relationship with [Fe
2+

]. The fitted curve obtained 

by the least-square fitting is also shown. 
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Fig. 2–7. Time trend of [Fe2+] in the experimental solution without irradiation (run 13). A 

deoxygenated experimental solution was prepared in the glovebox with initial [Fe2+]tot = 

1.06 mmol L–1 and pH buffered to 7.1 by Bis-Tris and HNO3. The reaction vessel was 

covered with aluminum foil and kept in the dark to avoid photo-oxidation.  
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Fig. 2–8. UV absorptivity and pH dependence of Fe(III) species in solution. (a) Relative 

abundances (molar fractions) of aqueous and Fe (III) species as a function of pH, based 

on the equilibrium constants of Fe3+ hydrolysis reactions at 25ºC reported by Stefansson 

(2007). (b) Molar absorption coefficients of aqueous Fe(III) species based on absorptivity 

data from Stefansson (2007). 
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Fig. 2–9. Time trends of Δ[Fe2+] during UV irradiation by the Hg lamp at different pH 

and initial [Fe2+] values. (a) pH 0.4, [Fe2+]0 = 2.08 × 10–2 mol L–1; (b) pH 0.6, [Fe2+]0 = 

1.04 × 10–2 mol L–1; (c) pH 0.5, [Fe2+]0 = 8.34 × 10–4 mol L–1. Estimated quantum yields, 

φ, are shown in each panel. Solid least-squares regression lines are shown. Run numbers 

refer to Table 2–2. Δ[Fe2+] is the difference in [Fe2+] from the initial value ([Fe2+]0) after 

a certain time, t (min), of irradiation ([Fe2+]t): Δ[Fe2+] = [Fe2+]0 – [Fe2+]t. Error bars are 

1σ.  



 

35 

 

 
Fig. 2–10. Quantum yields of Fe2+ photo-oxidation under irradiation by Hg lamp plotted 

as a function of solution pH (black dots). Quantum yields of Fe2+ photo-oxidation at pH 

0.4–3.0 in oxygenated solutions (gray triangles) and their pH dependence (gray curve) 

(Jortner and Stein, 1962b) are shown for comparison. 
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Fig. 2–11. Time trends of Δ[Fe2+] during Xe-lamp irradiation. (a–f) Solution pH was 1.9, 

3.0, 4.6, 4.7, 6.1, and 7.0, respectively, without the optical filter. (g–i) Solution pH was 

7.1, 7.4, and 7.6, respectively, with the optical filter applied. Derived quantum yields and 

initial [Fe2+] values are shown in each panel with least-squares regression lines. Run 

numbers refer to Table 2–2. Error bars are 1σ. 
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Fig. 2–11. (continued). 
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Fig. 2–12. Quantum yields of Fe2+ and FeOH+ photo-oxidation under irradiation by Xe 

lamp plotted as a function of solution pH (cyan dots and orange diamonds, respectively). 

Plotted with the semi-empirical equation of the pH-dependence of quantum yield of Fe2+ 

photo-oxidation derived in this study (Eq. 2–8; cyan curve). Quantum yields of FeOH+ 

photo-oxidation estimated by Braterman et al. (1984) (0.01–0.05) and Nie et al. (2017) 

(0.07) are shown for comparison (pink and purple squares, respectively). Solid and 

dashed gray curves represent the pH-dependence of quantum yield for Fe2+ photo-

oxidation at pH 0.4–3.0 in deoxygenated solutions (Eq. 1–2; Jortner and Stein, 1962b) 

and its extrapolation to pH > 3.0, respectively.  
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Table 2–1. Measured photon fluxes in the actinometry experiments. The photon fluxes of 

light sources measured by the potassium ferrioxalate actinometry method are shown with 

initial concentrations of potassium ferrioxalate and irradiation time.  

 

Light source Initial [K-ferrioxalate] 

(mol L–1) 

Irradiation time 

(min) 

Photon flux 

(mol min–1 L–1) 

Hg lamp 6.01 × 10–3 15 1.15 ± 0.01 × 10–5 

Xe lamp without filter (> 200 nm) 1.53 × 10–2 40 3.09 ± 0.01 × 10–5 

Xe lamp with filter (> 300 nm) 6.12 × 10–3 20 2.23 ± 0.01 × 10–5 

  

 

Table 2–2. Summary of experimental conditions. The initial pH and its compositions of 

the experimental solutions, initial concentration of Fe(II), the light source used, and the 

duration of irradiation in each experimental run are summarized. 

  

Run 

number 

Light source pH Buffer composition Initial [Fe2+] 

(mol L–1) 

Irradiation time 

(min) 

1 Hg  0.5 0.4 M H2SO4 2.08 × 10–2 300 

2 Hg  0.6 0.4 M H2SO4 1.04 × 10–2 300 

3 Hg  0.4 0.4 M H2SO4 8.34 × 10–4 180 

4 Xe  1.9 10-2 M H2SO4 1.08 × 10–3 540 

5 Xe  3.0 10-3 M H2SO4 2.12 × 10–2 600 

6 Xe  4.6 10-5 M HNO3 1.11 × 10–3 240 

7 Xe  4.7 10-5 M HNO3 1.07 × 10–3 610 

8 Xe  6.1 0.029 M H2SO4 + 0.071 M Bis-Tris 1.07 × 10–3 290 

9 Xe  7.0 0.013 M H2SO4 + 0.087 M Bis-Tris 1.08 × 10–3 660 

10 Xe + filter 7.1 0.017 M HNO3 + 0.083 M Bis-Tris 1.03 × 10–3 720 

11 Xe + filter 7.4 0.011 M HNO3 + 0.089 M Bis-Tris 1.09 × 10–3 510 

12 Xe + filter 7.6 0.007 M HNO3 + 0.093 M Bis-Tris 1.04 × 10–3 540 

13 No light 7.1 0.017 M HNO3 + 0.083 M Bis-Tris 1.06 × 10–3 600 

 



40 

 

Chapter 3. Effect of UV spectrum on 

photo-oxidation of ferrous iron: 

Implications for the trigger of 

acidification on Mars 

 

 
本章については、5年以内に雑誌掲載等の形で公開予定のため非公開とする。 



Chapter 4. Implications for atmospheric 

and hydrological conditions for redox 

stratification on early Gale lakes 

 

 
本章については、5年以内に雑誌掲載等の形で公開予定のため非公開とする。 
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Chapter 5. General conclusions 

 

 
本章については、5 年以内に雑誌掲載等の形で公開予定のため非公開とする。 
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