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Abstract 

 

Devastating impact pressure could be generated when water surge impinges onto a 

solid surface (a typical example is a vertical wall). As of now, engineers are using 

empirical formulas obtained from laboratory experiments to evaluate the surge-induced 

impact pressure. In laboratory studies, although it is a very difficult task to measure the 

velocity field near the wall, the impact pressure has been recorded by highly sensitive 

pressure sensors on the wall. However, in many of those studies, it has been repeatedly 

reported that the surge-induced impact pressure is a highly stochastic variable. Therefore, 

the existing deterministic empirical engineering formulas for the impact pressure obtained 

by different authors fail to agree with each other, and there is no stochastic model has 

been proposed as of now. Also, due to the lack of a sound theoretical physical foundation, 

these formulas involve different physical parameters from each other. 

 

Numerical calculations on this issue have recently become popular with various 

sophisticated computational tools. Although some numerical models successfully 

provided detailed information of the velocity and pressure fields during surge impact 

events for small-scale cases, it is simply too time-consuming and expensive to conduct 

accurate calculations for large-scale problems. Also, the abrupt changes in the velocity 

field and free water surface during the impingement are not handled well by most 

computational models as of now, which is calling for a physical insight of the fluid 

motions at the first contact between surge and structure.   
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The number of analytic theories describing the surge impingement onto a vertical wall 

is surprisingly limited. The main reason is the difficulty in handling the sudden changes 

in the velocity field of water motions during the impingement process. This transient 

process usually involves singularities in its mathematical description, and thus different 

physical assumptions have been introduced to simplify the problem. However, some 

major assumptions in the past analytic studies yielded peculiar results at times, and few 

verification has been made for them. This situation prevented people from having a 

further insightful view of physics and may result in misunderstanding of the governing 

physical parameters of the impact pressure.  

 

The main objective of the present study is to advance and renew people’s knowledge 

on the physics of surge-induced impact pressure, including the governing equation, 

boundary conditions, initial conditions and its stochastic nature. This study improves the 

shortcomings, as introduced, in the existing literature. The following two issues are 

supportive of this main objective.  

① This study clearly reveals the governing and trivial physical parameters of surge-

induced impact pressure, providing a sound theoretical basis for laboratory and 

numerical studies.  

② This study presents a pioneer work on quantifying the stochastic nature of the surge-

induced impact pressure, proposing a specific extreme value distribution for it.  

 

In the theoretical derivations of the analytic solution, the velocity field near the bed is 

directly obtained from the simplified vorticity transport equation. A self-similarity system 

without any representative length is proposed for the horizontal velocity component with 
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clearly defined boundary conditions and initial conditions. Following the solution of the 

velocity field, the pressure field during the impingement is derived in an explicit form. 

Consequently, the impact pressure applied on the vertical wall could also be clearly 

calculated, and it converges to a specific finite value. Through this analytic investigation, 

the impactive process right after the first contact between surge and wall is reasonably 

interpreted, and the governing and trivial factors of the impact pressure are also revealed 

theoretically. 

 

Carefully controlled laboratory experiments are conducted to reveal the stochastic 

nature of the impact pressure. The experiments are carried out in a small-scaled acrylic 

flume with a dam-break device and a vertical wall. The surges and the impact pressure 

generated in four different experimental cases are repeatedly recorded by a high-speed 

camera and pressure sensors near the corner where the vertical wall and the flume bottom 

meet. An extreme value distribution model, Fréchet distribution, is used to quantify the 

stochastic relationship between surge front velocity and impact pressure explicitly. On 

the other hand, the laboratory data agree with the conclusion on the governing factors 

made in the analytic solution. Moreover, the resulting predictive stochastic formula 

demonstrates a wide applicable range for actual engineering works. 

 

Numerical verifications on the velocity and pressure fields during a surge impingement 

event are carried out with a CFD software, Flow-3D. The experimental cases in the 

laboratory works are reconducted numerically with different computational conditions. 

With the numerical results, the soundness of the analytic solution is verified. Also, the 

numerical results are shown to be consistent with the laboratory data. 
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With the analytic, laboratory experimental studies, and numerical verifications 

introduced above, the essential characteristics of the surge-induced impact pressure are 

studied comprehensively, renewing the achievements in the existing literature. The 

analytic solution proposed in the present study provides people an insightful view on the 

physics of surge impingement, describing the velocity and pressure field during the 

impingement and clearly indicating the governing factor of the impact pressure. On the 

other hand, the laboratory study suggests a way of predicting the impact pressure in actual 

engineering works, using a specific stochastic distribution. 
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Chapter 1   

General introduction 

 

 

1.1 Motivation and background  

 

  Devastating pressure can be generated by the impingement of liquid onto a solid surface, 

and the prediction of this pressure is a long-standing issue in various engineering fields. 

One well-known problem is water surge impingement onto structures. The terminology 

‘surge’ is frequently encountered in hydraulic and coastal engineering, such as dam-break 

flows and tsunami run-up on a coast. In this context, a surge is a transient, supercritical 

flow mainly formed by the breaking of long waves or the sudden collapse of a water 

column under the effect of gravity. Usually, it generates destructive pressure accompanied 

by a high splash of water onto structures standing on its travel route. Figure 1.1 is the 

photograph that the author took at Ohgawa Elementary School in Miyagi prefecture, 

Japan, after the 3.11 Tohoku Tsunami. The figure shows that the lower parts of the 

columns were severely damaged by the surge impact, resulting in the instability and 

destruction of the entire structure. The school was standing near the Kitagawa River (less 

than 150 m away from the riverside), and it was attacked by the ruinous run-up tsunami 

surge from the river. Many similar cases have been reported by the survey teams after the 

tsunami event (refer to the 2011 Tohoku Earthquake Tsunami Joint Survey (TTJS) Group, 

2012). Thus, it is of critical importance to appropriately account for the pressure generated 

by water surges in structural designs. 
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Fig. 1.1 Photograph taken at Ohgawa Elementary School after the 3.11 Tohoku tsunami, 

Miyagi prefecture, Japan 

 

  However, evaluating the impact pressure induced by fluid is by no means an easy task. 

There are mainly three approaches to study the surge impact problem: laboratory 

experiment, theoretical analysis, and numerical calculation. Direct on-site survey is not 

available for this issue as surge impact is a very transient and destructive phenomenon. 

Therefore, it is simply not possible for people to measure the magnitude of the impact 

pressure timely. On the other hand, although the above-mentioned three approaches have 

been taken by a number of authors, various difficulties were encountered in their works.  

 

  Many organizations in different countries have proposed guidelines with empirical 

formulas for engineers to predict the pressure induced by water surges (e.g., ASCE 2017 

and FEMA 2019). These formulas are based on the past laboratory experiments conducted 

by a number of researchers under different experimental conditions. However, these 
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authors and guidelines have suggested different formulas or even used different physical 

parameters to describe the surge-induced impact pressure. The main reason is that the 

laboratory works fail to be consistent with each other. There are mainly two aspects of 

this issue. Firstly, many empirical formulas involved the parameters for specific 

experimental set-up, e.g., initial water lever in a dam-break device, wave height in solitary 

wave breaking. However, as a classic mechanical phenomenon, the impact pressure 

should be determined only by the physical parameters right before the impact, not by 

those of surge generation. Therefore, in this sense, the governing factors of the impact 

pressure should be measured right before the impact. Secondly, the magnitude of surge-

induced impact pressure is known to be stochastic. Even in carefully controlled laboratory 

works, the pressure peaks are distributed in a wide range under the same experimental 

condition. Therefore, different laboratory works quantified the impact pressure with 

different values, which has brought significant biases when proposing empirical formulas 

based on these laboratory data. In other words, only by taking stochasticity into account 

can people correctly evaluate the magnitude of impact pressure. These two issues have 

not been addressed soundly as of now. Neither the governing and trivial factors of the 

surge-induced impact pressure are clearly indicated, nor has any stochastic model been 

proposed.  

 

Theoretical research on the impact stage is known to be a recalcitrant topic in 

hydrodynamics. The main difficulties for theoretical analysis are the absence of a 

characteristic length in the problem and the highly transient (singular, by case) nature of 

the physical phenomenon. There are basically two ways to deal with this situation: the 

self-similarity method and the pressure impulse method. The self-similarity method is a 
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potent tool for handling the physical phenomena where no explicit characteristic length 

could be defined. At the same time, it provides a possibility to avoid having singularities 

during the mathematical derivations. However, this method needs very careful definitions 

of the physical conditions, e.g., the governing equation, the initial condition, and the 

boundary conditions, since it closely looks into the details of the velocity and pressure 

fields. Unfortunately, many theoretical works did not provide verifications on their 

physical assumptions, partially because of the difficulties in collecting laboratory data 

(previously introduced), and another reason is the misunderstandings on the impact 

physics. In recent years, with the development of computational technology, chances are 

coming for people to verify the theoretical assumptions and results in detail with highly 

advanced numerical models. The pressure impulse method focuses on the integral of 

pressure over time. The advantage of this method is that the physics models considered 

are quite simple, and usually, it provides people with a classic boundary value problem 

of an elliptic differential equation. However, this method could not be used to calculate 

the detailed pressure distribution inside the integrating span. Therefore, there is a 

significant difficulty when predicting the exact impact pressure peak solely from the 

pressure impulse, although some laboratory studies have revisited the results of the 

pressure impulse itself. Generally, theoretical analysis is not an effective approach to 

describe the stochasticity of the impact pressure as the physical models are solved in 

deterministic manners. However, it elucidates the underlying physics of surge impact, 

advancing people’s knowledge on how the impact pressure peak is generated.  

 

 As previously mentioned, the numerical method could be used to verify the soundness 

of theoretical and laboratory results. Until recent years, the computation of highly 
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transient flows, such as surge impact, was considered a tough problem in CFD 

(Computational Fluid Dynamics), especially with the existence of a free surface. The 

main reason was that the physical parameters abruptly change during a transient process, 

and there is a difficulty in capturing this change numerically. When an unsuitable 

algorithm or mesh construction is applied, significant losses in momentum and energy are 

inevitable, which is unacceptable for pressure peak evaluation. Recently, a number of 

advanced CFD tools have been developed, and they are designed capable of correctly 

computing the transient flows, though most of them are still time-consuming and only 

applicable for small-scale problems. By taking advantage of these numerical tools, people 

have become able to justify their physical assumptions in the analytic works and 

reproduce the laboratory data.  

 

1.2 Scope of the thesis 

 

The main purpose of the present thesis is to advance people’s knowledge of the physics 

of how the impact pressure is generated by surges and how its magnitude is distributed 

stochastically. To achieve this purpose, the author has to 

1. present a pioneer work on quantifying the stochastic nature of the surge-induced 

impact pressure and propose a specific extreme value distribution for it based on an 

observed governing factor of the surge impact. 

2. analytically and explicitly reveal the governing and trivial physical parameters of 

surge-induced impact pressure; propose an analytic solution for the impact pressure; 

and provide a sound theoretical basis for laboratory and numerical studies.  
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1.3 Organization of the thesis 

 

  This thesis is divided into six chapters. Chapter 2 presents a literature review on the 

historical studies related to the surge impact problem. In this chapter, we will see that 

researchers have elaborated and succeeded in overcoming many difficulties in this topic, 

remaining the unsolved issues mentioned in Section 1.1. Chapter 3 demonstrates a 

carefully controlled laboratory work measuring the surge-induced impact pressure on a 

vertical wall with measurements of the physical parameters right before the impact. This 

chapter also proposes a stochastic model for the impact pressure, showing satisfactory 

consistency with various literature. In Chapter 4, an analytic solution of the velocity and 

pressure fields during a surge impact event is proposed based on a well-posed physical 

model. The self-similarity method is applied there, and the resulting solutions could 

exactly satisfy the governing equation, the initial condition, and the boundary conditions 

near the bed. Chapter 5 provides numerical verifications on the results obtained from 

Chapter 3 and Chapter 4. With a reliable CFD tool, the soundness of the physical 

assumptions used in Chapter 4 is justified, and the consistency between laboratory and 

numerical data is demonstrated. Chapter 6 concludes this thesis and indicates some 

potential future works.     
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Chapter 2 

Literature Review 

 

 

2.1 Impact pressure generated by liquid-solid interaction 

 

The violent impact between a liquid and solid is a notorious problem in hydrodynamics 

and many engineering fields. To the author’s best knowledge, the pioneer study on this 

issue was conducted by Von Kármán (1929), where the impact force on landing seaplanes 

was considered. After that, the study on the liquid-solid impact pressure was split into 

two branches: liquid impingement onto a solid surface and entry of a solid body into 

liquid. The present study comprehensively falls into the former branch, and therefore, the 

author will trace the historical locus of the studies in this branch. A more general literature 

review on the violet pressure generated by liquid-solid (-liquid) could be found in Dias 

and Ghidaglia (2018). 

 

The foundational work on the liquid impingement problem was proposed by Bagnold 

(1939). In this work, the author not only studied the physical process of breaking wave 

impact onto a solid wall, but also pointed out the uncertainty in the magnitude of the 

impact pressure. This author concluded that the so-called “air pocket” under the water 

surface yielded this uncertainty. This work inspired researchers to classify the impact 

pressure generated by liquid impingement into three different categories (refer to, e.g., 

Lafeber et al., 2012): shock-induced, hydrodynamic, and (entrapped) gas-induced impact 

pressure.  
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The shock-induced impact pressure is closely related to the compressibility of liquid. 

As a liquid flow suddenly impinges onto a rigid solid surface, the liquid will be slightly 

compressed, generating the so-called “shock wave”. The evaluation of this kind of impact 

pressure is notoriously difficult. As far as the author knows, few fundamental theoretical 

studies could be found in Rankine (1870) and Hugoniot (1887, 1889). The so-called 

Rankine-Hugoniot solution (RHS) for the one-dimensional shock-induced impact 

pressure reads: 

 ( )( )0 0 01 Maip p cU O= + +  (2.1) 

where pi is the impact pressure, p0 is the pressure before the compression, ρ0 is the density 

of the fluid before the compression, c is the speed of sound of the fluid, and U is the 

incident speed of the fluid here. Ma0 is the initial Mach number of the fluid, and its value 

should be small in Equation (2.1). Laboratory measurement of this type of impact pressure 

is also tricky as the pressure wave travels at the speed of sound of the fluid which is 

usually a tremendous value. However, as it could be easily derived from Equation (2.1), 

the compressibility of water is negligible for flows at a speed significantly lower than the 

speed of sound of the liquid (where the squared Mach number is, say, smaller than 0.1). 

Therefore, in reality, especially in civil engineering, the compressibility of the liquid is 

neglected in almost all transient dynamic processes. 

 

The hydrodynamic impact pressure is the most important type of impact pressure in 

terms of civil engineering works. This type of impact pressure is generated by the sudden 

change of the velocity field in the incident incompressible fluid flow. Therefore, it is 

possible to evaluate the impact pressure by investigating the governing equations of 
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hydrodynamics (e.g., the Euler’s equation and the Navier-Stokes equation) analytically 

or numerically. Foundational analytic works of hydrodynamic impact pressure were 

conducted by Cumberbatch (1960) and Cooker and Peregrine (1995). These works will 

be introduced in detail in a later section. As a meaningful reference, the impact pressure 

generated by the normal water entry of a solid wedge has a definitive solution proposed 

by Wagner (1932): 

 2

i pp C U=  (2.2) 

 

2

28 tan
pC




=  (2.3) 

where pi is the impact pressure, ρ is the density of the fluid, and U here is the entry speed 

of the solid wedge. Cp is called the “impact coefficient”, where θ denotes the angle 

between the wedge and the liquid surface right before the entry. As presented, there are 

two governing factors in Wagner’s solution (WS), U and θ. It is shown that the impact 

pressure is proportional to the squared entry speed, U2. This result has been repeatedly 

verified in successive works, e.g., Scolan & Korobkin (2003). However, on the other hand, 

there is an apparent paradox that the impact pressure turns to infinity when θ approaches 

zero (and Equation (2.3) also becomes suspicious even when θ goes to 90°). As it will be 

shown in a later section, similar governing factors are used to evaluate the hydrodynamic 

impact pressure generated by liquid impingement (e.g., Cumberbatch (1960)). Therefore, 

it becomes necessary to reconsider whether the physical conditions have been soundly 

considered in these classic theories. Laboratory measurement of this type of impact 

pressure is also possible using pressure sensors at low costs. Due to these conveniences, 

hydrodynamic impact pressure is the most frequently studied one among the three 

categories. In coastal and ocean engineering, many studies on this type of impact pressure 
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were conducted for water surface wave impingement onto structures (Blackmore & 

Hewson 1984, Kirkgoz 1982, 1990, Oumeraci et al., 1993, Hattori et al., 1994, Bullock 

et al., 2001, Shu 2004, Cuomo et al., 2011). Surge-induced impact pressure also falls into 

this category, and many fruitful works are introduced later, though with some unsolved 

issues. 

 

Impact pressure could also be generated by the entrapped gas under the liquid surface. 

In that case, the gas pockets are squeezed by the surrounding liquid. This phenomenon 

results in oscillatory pressure on the solid surface, and the magnitude of the impact 

pressure is indefinite and might be influenced by the size of the gas pockets (Bagnold 

1938, Bredmose et al., 2009, Bredmose et al., 2015). The so-called Bagnold’s solution 

(BS) for the impact pressure reads: 
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where p0 is the initial pressure of the gas (air, in the case of Bagnold (1939)) and γ is the 

adiabatic exponent. S is the so-called “the impact number”, where ml is the mass of the 

liquid (water here), U is the incident velocity of the fluid flow, and Ω0 is the initial 

volume of the entrapped gas pocket. It could be understood that the value of Ω0 is very 

hard to define in actual applications; even other parameters could be relatively well 

controlled. A typical example of this type of impact pressure could be found in plugging 

wave breakings (Bagnold 1939, Kirkgöz and Mamak 2004, Bogaert et al., 2010, 

Kimmoun et al., 2010). Following this well-known example, gas-induced impact pressure 



11 

 

is sometimes called the “flip-through” pressure. To empirically solve the above-

mentioned uncertainty in the magnitude of impact pressure generated by water waves, 

Klammer et al. (1997) and Allsop et al. (1997) used stochastic distributions to describe 

this parameter for engineering works. These stochastic models actually inspired the 

author of this thesis to conduct a similar analysis on the surge-induced impact pressure. 

However, as demonstrated by laboratory works, it has to be remarked here that aeration 

does not play an important role in the surge-induced problem (Lobovský et al., 2014, Xie 

and Shimozono 2022), and the source of stochasticity of it has not been revealed yet.  

 

    The following table presents a summary of the above-mentioned categories of the 

impact pressure generated by liquid impingement onto a solid surface. The parts colored 

in red are set to be the research targets of the present study. A detailed review of these 

specific topics will be presented in a later section.  
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Table 2.1 Summary of different categories of the impact pressure generated in liquid impingement 

Categories Shock-induced Hydrodynamic Gas-induced 

 

Analytical solution 

 

RHS 

Water impingement: 

Cumberbatch (1960), 

Cooker & Peregrine (1995) 

 

BS 

Water entry (reference): WS 

Laboratory observation Difficult Possible Possible 

Aeration None Small Large 

Compressibility liquid None Gas 

Stochasticity Unknown Yes, not yet formulated Yes, formulated 
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2.2 Surge-induced impact pressure 

 

The surge-induced impact pressure on a solid surface falls into the category of 

“hydrodynamic” in Table 2.1. Therefore, many fruitful studies have been conducted on 

this topic. As introduced in Chapter 1, there are mainly three approaches for studying the 

surge-induced impact pressure. In this section, the author will present a number of 

representative works in each approach, showing what difficulties have been overcome 

and what are still unsolved.  

 

2.2.1 Laboratory studies 

 

This sub-section is based on the published work of Xie and Shimozono (2022). 

 

Many organizations in different countries have proposed guidelines with empirical 

formulas for engineers to predict the pressure induced by water surges (e.g., ASCE 2017 

and FEMA 2019). These formulas are based on the past laboratory experiments conducted 

by a number of researchers under different experimental conditions (e.g., Ramsden 1993, 

1996 and Asakura et al., 2002). A simple but comprehensive summary of these can be 

found in the study by Yeh et al. (2014). However, these authors and guidelines have 

suggested different formulas or even made different qualitative descriptions of surge 

pressure. For example, Ramsden (1993) claimed that there is no obvious impact pressure 

peak for the surges that travel on a dry bed. However, many recent laboratory studies have 

rebutted this statement with plenty of experimental data (these recent works are 
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introduced later), showing that the hydrodynamic impact pressure peak exists assuredly. 

As another example, Asakura (2002) proposed a predictive formula for evaluating the 

surge-induced impact pressure on a vertical wall, which reads: 

 
maxip g =  (2.6) 

where ηmax is the highest water level without the presence of the wall, and α is a variable 

coefficient whose value is no larger than 3. As Equation (2.6) presented, this formula 

evaluates the impact pressure using the expression of hydrostatic pressure. However, one 

of the engineering guidebooks, FEMA 2019, suggested a completely different formula 

for the impact pressure (a simple derivation of this formula is presented in Chapter 4): 

 
22.25ip U=  (2.7) 

where U is the incident surge front velocity. Equation (2.7) follows the conventional 

assumption that the impact pressure is proportional to U2. Obviously, Equation (2.6) and 

(2.7) use different physical parameters to quantify the impact pressure. However, as 

mentioned in Chapter 1, the impact pressure should be determined by the status of 

incident flow right before the impingement. Therefore, in this context, Equation (2.7) is 

in a more acceptable form, although Equation (2.6) is also consistent with specific data 

sets.  

 

In recent years, several laboratory studies under various experimental conditions have 

been published (e.g., Robertson et al., 2008, Nouri et al., 2010, Al-Faesly et al., 2012, 

Robertson et al., 2013, Douglas and Nistor 2014, Lobovský et al., 2014, Kihara et al., 

2015, Kihara and Kaida 2016, 2019, Xu et al., 2021, Shen et al., 2020 and Chuang et al., 

2020). These works not only investigate the impact pressure applied on structures but also 
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provide detailed information on incident surge, e.g. the surge front velocity and water 

surface elevation right before the impingement. In these works, highly sensitive pressure 

sensors and high-speed video cameras were the main devices to accurately collect the 

data. Also, as an associated issue, surge-induced forces on different types of structures 

have also been investigated by several authors (e.g., Arnason 2009, Nouri et al., 2010, 

Robertson et al., 2013 and Wüthrich et al., 2018).  

 

    As introduced in the previous section, the uncertainty in the impact pressure 

generated by wave breaking has been studied quantitatively with stochastic distribution 

models. On the other hand, the carefully controlled experiments of Lobovský et al. (2014) 

have revealed that the magnitude of pressure during water surge impingement is also 

stochastic and cannot be described by deterministic predictive formulas. These authors 

repeated the experiments under the same experimental conditions 100 times in a small-

scale flume. Stochastic distributions of the impact pressure were accurately obtained at 

different locations on the structure (a vertical wall). However, no predictive formula 

based on their stochastic analysis has been proposed. Furthermore, the fluid phenomena 

underlying the stochasticity have not been elucidated. As far as the author of this thesis 

knows, no stochastic model has been proposed for surge-induced impact pressure. 

 

2.2.2 Analytical works 

 

    As introduced in Chapter 1, there are mainly two ways to analytically deal with the 

surge-impingement problem: the self-similarity method and the pressure impulse method. 

These two methods provide two different standing points of solving the problem. The 
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self-similarity method looks into the physical parameters from the view of differential 

form. In contrast, the pressure impulse method solves the physical parameter in the 

integrated form.  

 

    We first review the pressure impulse method. The concept of pressure impulse in 

hydrodynamics has been mentioned in some books in early ages (e.g., Lamb 1932 

[Chapter I-11], and Batchelor 1973 [Chapter 6-10] ). However, the usage of this concept 

for the liquid impact problem was originated in a later work by Cooker and Peregrine 

(1995). The pressure impulse is defined as 

 ( ) ( ), , ,
b

a

t

t
P x y p x y t dt=   (2.8) 

where x and y are the cartesian coordinates, ta and tb are the times immediately before and 

after impact, respectively. p (x, y, t) is the pressure distribution in the fluid region. The 

value of tb - ta is assumed to be small enough so that an evaluation of the pressure impulse 

P (x, y) is sufficient for actual applications (also refer to Ghadirian and Bredmose 2019). 

In the work of Cooker and Peregrine (1995), the following physical model has been 

studied under the assumption that the advection terms in the velocity field are negligible 

compared with the time derivatives.  
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Fig. 2.1 Physical model used in Cooker and Peregrine (1995) 

 

It could be understood from Figure 2.1 that although the authors divided the fluid region 

into two parts, the pressure impulse in each part could be obtained from an elliptic 

equation with clearly defined boundary values. As the governing equation is linear, many 

powerful mathematical tools (e.g., Fourier analysis) could be applied. Owing to the 

simple structure of the physical model, the work of Cooker and Peregrine (1995) was 

expanded into many three-dimensional applications with more complicated boundary 

values (e.g., Wood and Peregrine 1998, Chatjigeorgiou et al., 2016, Ghadirian and 

Bredmose 2019). The effects of turbulence involved in the incident flow were also studied 

by several authors (e.g., Thao et al., 2007). However, it has been proved by several 

laboratory works (Bagnold 1939, Kirkgöz and Mamak 2004, Lobovský et al., 2014, 

Chuang et al., 2020) that the impact duration, tb - ta, is a highly stochastic parameter. 

Therefore, although its value is usually very small, it could significantly affect the value 

of pressure peak enveloped in the integrated form, Equation (2.8). It could be said that 
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the pressure impulse method is an outer approximation to the impact pressure in this 

context. 

    As a parallel method to the pressure impulse, the self-similarity method has a longer 

history, and it was first used by Cumberbatch (1960). In this foundational work, the 

motion of water particles during the impact was assumed to be irrotational, and therefore 

the velocity potential theory was applied. The author proposed the following self-

similarity variables in the derivations. 

    ,   
x y

Ut Ut
 = =  (2.9) 

 ( ) ( ) ( ) ( )2 2 21
, , ,    ,   ,

2
x y t tU          = = − +  (2.10) 

 ( ) ( ),x t tU  =  (2.11) 

where Φ is the velocity potential, and η is the location of the free water surface. The 

physical model of this study is shown in Figure 2.2, where a water wedge with angle θ 

normally impinges onto a horizontal plate.  

 

Fig. 2.2 Physical model used in Cumberbatch (1960) 
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From Figure 2.2, we can see that the governing equation of the velocity potential is also 

an elliptic equation. However, the boundary conditions have become nonlinear and in 

very complicated forms. Therefore, it is far more difficult to derive an analytic solution 

for the velocity field under this physical model than the pressure impulse method. After 

some simplifications and approximations, a predictive formula for the impact pressure 

was proposed: 

 ( ) ( )
( )

2

2 1i p

w

p U C


  
 

  
 = −     

 (2.12) 

where the impact coefficient Cp is a function of the incident wedge angle, and its value 

could be determined numerically. λw is the location of the water surface on the plate. Note 

that the applicable range of this analytic solution is 0 < θ < π/4. Figure 2.3 shows the 

value of Cp and λw.  

 

 

Fig. 2.3 Relationship between Cp, λw and θ 
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As mentioned in Chapter 1, an apparent advantage of the self-similarity solution is that 

the singularity in the velocity field when t approaches zero is explicitly involved in the 

formulations. For the impact pressure, similar to Wagner’s solution, Equation (2.12) also 

suggests that the governing factors of the impact pressure are U2 and θ. However, from 

Figure 2.3, we could still point out the peculiar behavior of Cp when θ approaches zero, 

where the value of Cp turns to 0.5, the well-known value of the pressure in steady flows. 

This issue has motivated the author of this thesis to reconsider: whether the literature have 

correctly described the physics of surge impact.  

 

    Following the work of Cumberbatch (1960), a series of self-similarity solutions for 

describing the impact pressure were proposed. Cross (1967), Kihara et al. (2015) and 

Kihara and Kaida (2016) took the gravitational term into account, which was neglected 

in Cumberbatch (1960). Many researchers derived the self-similarity solution for liquid 

impact with more complicated geometries (e.g., Wu 2007, Duan et al., 2009, Semenov 

and Wu, 2013). Nevertheless, the framework of those studies was originated in Equation 

(2.9) – (2.11).  

 

 

2.2.3 Numerical calculations 

 

With the rapid development of CFD, it has become possible for people to conduct 

numerical calculations to evaluate the hydrodynamic impact pressure. This section 

presents some basic descriptions of the CFD tools that have been applied to simulate the 

liquid impingement process. As the author of this thesis only takes advantage of a 
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commercial CFD software to verify the results from laboratory works and theoretical 

analysis, details such as the algorithm and scheme construction are not presented here.  

 

For the hydrodynamic impact pressure, the incompressible Navier-Stokes equation is 

usually selected as the governing equation in numerical models (refer to Dias and 

Ghidagria 2018). A number of sophisticated solvers and software have been released for 

users to calculate the velocity and pressure fields during the surge impingement swiftly 

and accurately. For example, ANSYS Fluent and OpenFOAM are popular CFD tools to 

simulate various liquid-solid impact phenomena (refer to Wei et al., 2016, Henry et al., 

2014, Sarjamee et al., 2017). Most of the available numerical models have some common 

characteristics:  

1. The classic finite-difference or finite-volume method is used to discretize the 

governing equation. 

2. The VOF (Volume of Fluid) method is applied to track the motion of the free water 

surface (Heyns et al., 2013) 

3. The two-equation model, usually the k-e model, is used to generate turbulence 

(originated in the work of Kolmogorov, 1942).  

A brief review of these characteristics could be found in Sarjamee et al. (2017). When 

simulating the highly transient flows along an abruptly curving surface numerically, it has 

been reported that significant losses of momentum and kinetic energy could occur 

(Mampaey and Xu 1995). This difficulty has been recently overcome by a CFD solver, 

Flow-3D, where a unique model FAVORTM has been specifically applied to ensure that 

no momentum is lost along a sharply changed surface. Although the above-mentioned 

numerical tools can provide people with accurate numerical results of impact pressure, it 
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is also notable that the calculations are sometimes extremely time-consuming (the CPU 

time is usually no less than the order of 104 s). The reason is that, in order to capture the 

highly transient and localized impact pressure, the mesh size and the time step have to be 

tiny enough. There is currently no solution to this awkward situation, and therefore, the 

numerical calculations of impact pressure are usually conducted for small-scale problems. 

Also, to the best knowledge of the author of this thesis, as of now, there is no numerical 

model capable of evaluating the instabilities in the free water surface. Nevertheless, it 

will be seen in Chapter 3 that those kinds of instabilities are potentially responsible for 

the uncertainty in the magnitude of surge-induced impact pressure.    
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Chapter 3 

Laboratory experiments on surge impingement process and stochastic 

analysis on the impact pressure 

 

 

This chapter is based on the published work of Xie and Shimozono (2022). 

 

3.1 Introduction 

 

  This chapter presents a laboratory experimental work and a stochastic analysis on the 

surge impingement process.  

 

  As introduced, many authors have conducted laboratory works to reveal the 

characteristics of the surge impact process. Based on these works, people have proposed 

various deterministic formulas to evaluate the magnitude of surge impact pressure onto 

structures, using various physical parameters that appeared in the laboratory works. Most 

of these formulas could quantitatively predict the experimental data collected on the 

structures in the corresponding laboratory works but disagree with the data from other 

literature. Nevertheless, most of the formulas suggested similar qualitative characteristics 

of the surge impact pressure, showing that they have partially captured the nature of it 

indeed.  

 

  The main reason for the situation mentioned above is that the authors did not include 

stochasticity in their formulas. In that case, although the basic qualitative correlations 
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among the physical parameters could be figured out with limited laboratory data, 

significant biases on the quantitative evaluations were inevitable. On the other hand, 

although the stochasticity of surge impact pressure has been repeatedly confirmed 

recently, there is still no formula that could describe it as of now. Therefore, in this chapter, 

I attempt to obtain an explicit stochastic model to fill up this gap, showing that the data 

of various literature might be consistent with each other under this model. For this purpose, 

carefully controlled laboratory experiments are carried out to provide sufficient 

experimental data.  

 

  Section 3.2 describes the experimental setup and the devices employed in the 

laboratory work. It is shown that the dam-break experiments are carefully controlled, and 

the devices are capable of collecting reliable data. In Section 3.3, the experimental results 

of surge front velocity, surge front shape and the impact pressure applied on a vertical 

panel are presented. The stochasticity is found not only in the impact pressure but also in 

the incident surge flows, despite that the experiments are repeated with almost exactly the 

same initial conditions. In Section 3.4, I attempt to propose a stochastic model for the 

data using the so-called Fréchet distribution based on the experimental results. The 

resulting empirical formulas could give satisfactory correlations for the data in the present 

study and the experimental data randomly collected from various literature. In this section, 

the relationship between the impact pressure and the surge front slope is also discussed 

with the analytic theory proposed by Cumberbatch (1960). Section 3.5 summarizes some 

main findings of this chapter and leads the discussions into the later chapters.  
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3.2 Experimental setup and devices 

 

3.2.1 Flume setup 

 

The laboratory experiments are conducted at the University of Tokyo. As presented in 

Figure 3.1, the main experimental device is an acrylic flume equipped with a sluice gate 

on one side and a vertical acrylic panel on the other side. Water is filled in on the left-

hand side of the gate when the gate is at the lowest position (closed). After the gate 

opening, the water is released and impinges onto the vertical panel. Figure 3.2 shows a 

sketch of the experimental setup with (x, y) coordinates.   

 

 

Fig. 3.1 Photograph of the experimental flume. 
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 Fig. 3.2 Sketch of the experimental setup (vertically exaggerated, length in mm). 

 

A cuboid acrylic flume of 1,520 × 420 × 450 mm is built specifically for the present study 

with a precision of 1 mm. Similar small-scale flumes have been utilized for dam-break 

experiments in the literature (e.g., Lobovský et al., 2014). The flume sides, composed of 

10-mm-thick acrylic plates, are perfectly perpendicular to each other at the joints. Two 

sliding rails for the sluice gate are ditched on the sides of the flume with a 10.5 mm width. 

There are two circular openings with a 10 mm diameter on the central axis of the flume 

bottom. The opening positioned at (905, 0) in Figure 3.2 is used for drainage (sealed 

during experiments), and the one at (1105, 0) is used for equipping a pressure sensor. 

 

The sluice gate used is a 10-mm-thick acrylic plate of 495 × 409 ×10 mm. It is 

positioned at x=510 mm, as presented in Figure 3.2. This sluice gate fits and slides well 

along the rails due to the silicone lubricant sprayed onto its side edges. A waterproof seal 
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is applied on the bottom of the sluice gate, ensuring no water leakage before the gate 

opens. The gate could be vertically opened by releasing a weight from a height of around 

15 cm. Therefore, the maximum opening height of the gate is 15 cm, and the initial water 

level behind the gate, H, should be set not to exceed this height. The average moving 

speed of the gate is around 1.2 m/s to ensure that the rising time of the gate is shorter than 

the upper limit to generate dam-break flows, 

 1.25c

H
t

g
=  (3.1) 

according to Vischer and Hager (1998), where g is the gravitational acceleration. A 

number of authors have reported that the gate speed could potentially affect the 

characteristics of dam-break flows (Lobovský et al., 2014, Takagi and Furukawa 2021). 

However, this issue is not considered in the present study since I measure the incident 

surge parameters in each run of the experiment. 

 

A vertical acrylic panel (495 × 395 × 10 mm), on which the pressure is measured, is 

positioned at x=1105 ± 1 mm. The front face of the panel is right above the opening 

located at (1105, 0). Two acrylic supporting elements are employed behind the panel, 

ensuring that it does not move from its initial position during the water surge impingement.  

 

3.2.2 Instruments setup 

 

There are four pressure sensors (P310V-01, produced by SSK Co., Ltd) located at y=7, 

37, 67 and 97 mm along the central axis of the vertical panel. They are perfectly inserted 

into the four circular openings, providing a flat front face for the panel. Another pressure 
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sensor is installed in the opening at (1105, 0), right beneath the panel. The diameter of 

each pressure sensor is 10 mm; their designed hysteresis (non-linearity) is 0.5% RO, and 

the repeatability is 0.2% RO, according to the manufacturer. The maximum capacity of 

the pressure sensors is 10 kPa, and the sampling rate is set to 500 Hz (refer to Appendix 

A for further information on this sampling rate). In the present study, I only focus on the 

pressure sensors located at (1105, 0) and (1105, 7) (denoted by P0 and P1 hereby), as 

presented in Figure 3.2. The reason is that the maximum surge-induced pressure is most 

likely occurs at the corner (refer to Kihara and Kaida 2019, Lobovský et al., 2014) 

 

A high-speed video camera (k8-USB, produced by KATO KOKEN) is used to record 

the impingement process from beside the flume. The number of pixels in one frame is set 

to 800 × 600, the shutter speed is 1/5,000 s, and the frame rate is 500 fps. This video 

camera is able to capture the water motions during the impingement, as will be shown in 

a later section.  

 

In addition, a wave gauge (with a sampling rate of 500 Hz) is employed inside the 

sluice gate (see Figure 3.1) to record the changes in the water level. The measured data 

are mainly used to detect the moment the sluice gate opens.  

 

The pressure sensors and the wave gauge are connected to a data acquisitor (A/D 

Atsume-Taro, KENEK), and therefore they are precisely synchronized with each other. 

As the sluice gate opens, the water surface inside the gate is immediately disturbed, and 

the wave gauge accurately captures this moment. On the other hand, the high-speed 

camera also visually captures the moment of the gate opening. Therefore, the pressure 
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sensors and the high-speed camera are synchronized using the wave gauge as an 

intermediary with a precision of 0.002 s.  

 

3.2.3 Experimental cases 

 

I investigate the impingement process in four different cases by changing the initial 

water level behind the sluice gate, H. Considering the maximum opening height of the 

gate, which is around 15 cm, I set H = 8, 10, 12 and 14 cm. Each case is repeated 24 times 

(runs) so that the stochastic properties of the surge impingement could be studied.  

 

Figure 3.3 presents a typical side view of the surge generation, propagation and 

impingement, starting from the gate opening until the impact stage. Figure 3.4 presents a 

typical overhead view of the same process. The photographs in Figure 3.3 and 3.4 are 

recorded using a compact video camera (Victor GZ-HD40, 30 fps and shutter speed of 

1/2,000 s) in order to present an overall view of the experiment. As can be seen from 

Figure 3.4, it is notable that the surge front is parallel to the panel but produced some 

finger-like patterns in the transverse direction. This phenomenon, usually referred to as 

fingering, occurs at the contact line when a flow with a high Reynolds number is traveling 

on a dry bed (Jánosi et al., 2004). A finger can merge with an adjacent finger or split into 

two fingers actively during the propagation, and these processes are highly stochastic 

(Thoroddson and Sakakibara 1998). The fingering patterns become more obvious after 

the surge impingement on the panel (also refer to Kondic 2003). Figure 3.5 presents a 

zoomed-in view of the surge front shape right before the impingement for each case 

(recorded by the high-speed video camera, with a precision of 0.002 s).  
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Fig. 3.3 Typical fluid motion during the dam-break experiment (H = 12 cm) 0.033 s 

(top left), 0.133 s (top right), 0.233 s (middle left), 0.333 s (middle right), 0.433 s 

(bottom left) and 0.467 s (bottom right) after the sluice gate opening. 
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Fig. 3.4 Typical surge front during an impingement event (H = 12 cm, overhead 

view) 0.333 s (top left), 0.367 s (top right), 0.400 s (middle left), 0.433 s (middle 

right), 0.467 s (bottom left) and 0.500 s (bottom right) after the sluice gate opening. 
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Fig. 3.5 Typical surge front shape right before the impact with H = 8 cm (top left),  

H = 10 cm (top right), H = 12 cm (bottom left) and H = 14 cm (bottom right). 

 

By using the pressure sensors and high-speed video camera, I record the time history of 

the pressure applied on the panel, the surge front velocity, and the surge shape right before 

the impact for each run in each case. 
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3.3 Experimental results 

 

3.3.1 Time history of pressure on the vertical panel 

 

In the present study, I focus on the time history of the pressure at P0 and P1 to study 

the stochastic properties of the surge impingement in the initial stage. The effect of gravity 

is considered negligible during the first impact at these locations (refer to Lamb 1932, 

Chapter I-11). In a later section, I will investigate the difference between the pressure at 

P0 and P1. Figure 3.6 and 3.7 present the time history of the pressure at P0 and P1 in each 

case.  

 

Fig. 3.6 Time history of pressure applied on P0 with H = 8 cm (top left), H = 10 cm 

(top right), H = 12 cm (bottom left) and H = 14 cm (bottom right). 
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 Fig. 3.7 Time history of pressure applied on P1 with H = 8 cm (top left), H = 10 cm  

(top right), H = 12 cm (bottom left) and H = 14 cm (bottom right). 

 

In these figures, the time origin (t = 0 s) is defined as the moment the sluice gate opens. 

All the time series end at t = 2 s before the re-reflected wave from the left side reaches 

the panel. The arrival time of the surge fronts on the panel demonstrates high repeatability 

in each case. The pressure time series of different runs generally agree on their shapes 

(the correlations among these curves will be demonstrated and investigated in Appendix 

B), but the peak values are distributed over relatively wide ranges. There is a pressure 

peak right after the arrival of the surge front in each run (the impact stage), hereinafter 



35 

 

referred to as the impact pressure. In almost all runs, the impact pressure is the maximum 

pressure in the entire time span. The second pressure peak appears when the run-up water 

starts to be yanked back by gravity (the run-up stage). Although this second pressure peak 

is smaller than the impact pressure, a number of previous studies have reported that the 

force applied on the vertical structure (the run-up force) reaches the maximum at this 

stage (Al-Faesly et al., 2013 and Nouri et al., 2010). In the present study, I mainly discuss 

the properties of the impact pressure. The magnitude of the impact pressure peak agrees 

with past experiments, and a comparison will be shown in a later section.  

 

3.3.2 Distribution of the impact pressure  

 

As mentioned in the previous section, although the time history curves of the pressure 

generally share the same shape, the values of the impact pressure widely ranged. To show 

the characteristics of the pressure distribution over the different runs, I plot the cumulative 

percentile ranking graphs of the impact pressure for each case in Figure 3.8. 
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 Fig. 3.8 Cumulative percentile ranking graphs of the impact pressure in different 

cases at P0 (top) and P1 (bottom). 

 

In each case, most plots concentrate around a certain mode value, with some significantly 

larger than others. However, no extremely small pressure is confirmed from the data. This 

distribution type is often called ‘fat-tailed’ in statistics, and it usually falls into one of the 

extreme value distribution models. A similar pressure distribution shape was also obtained 
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by Lobovský et al. (2014). This fat-tailed distribution is possibly an inherent property of 

the impact pressure. One of the possible reasons for it may be the fingering phenomenon 

described in Section 3.2.3. As the fingering patterns at the surge front actively evolve 

during the surge propagation, fluid particles at the fingers may have gained additional 

(but short-life) velocity components to the general surge front velocity locally. When a 

finger impinges on the pressure sensor, the impact pressure could have been significantly 

magnified. However, in the present study, I do not pursue further details of the fingering 

patterns but regarded them as a possible source of uncertainty and stochasticity of the 

impact pressure.  

 

It is not surprising that a higher impact pressure results from a surge generated with a 

higher water level behind the gate. The median or mode value could be more suitable as 

a representative value than the mean value owing to the presence of the extreme values. 

These statistical parameters and a stochastic model for the impact pressure will be 

discussed in a later section.  

 

Figure 3.9 presents the relationship between the impact pressures at P0 and P1 without 

distinguishing the cases. It suggests that the measurements of the pressure at P0 and P1 

had a high positive correlation. In addition, it could be understood from the slope of the 

linear fitting curve that the impact pressure at P0 (which is exactly at the bottom) is 

generally larger than the impact pressure at P1 (which is above the bottom). 
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Fig. 3.9 Relationship between the impact pressures at P0 and P1. 

 

3.3.3 Distribution of surge front velocity 

 

The surge front velocity, U, of each run is obtained through a careful analysis of the 

videos taken by the high-speed video camera beside the flume. I calculate the surge front 

velocity right before the impact by measuring the time difference between the impact and 

the moment the surge front passes the location 10 cm away from the panel (with a 

precision of 0.1 cm and 0.002 s). Although this method includes some uncertainties of the 

fingering patterns mentioned in Section 3.2.3, it could describe the general moving speed 

of the surge front. The theoretical velocity of the surge front velocity was given by Ritter 

(1982) as U2 = 4gH. However, it is commonly known that this formula significantly 

overestimates the surge front velocity and U2/gH varies under different experimental 

conditions (refer to Dressler 1954, Koshizuka and Oka 1996, Hu and Sueyoshi 2010 and 

Shen et al., 2020). In the present study, U2/gH is around 1.96 in each case. Figure 3.10 
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presents the cumulative percentile ranking graph for the squared dimensionless surge 

front velocity, U2/gH, in each case. The primary reason for the difference between the 

experimental data and the theory is the energy dissipation during the propagation. In 

Chapter 5, I will discuss this issue with numerical method.   

 

Fig. 3.10 Cumulative percentile ranking graph of the squared dimensionless surge front 

velocity in different cases. 

 

Almost all points in Figure 3.10 concentrate around a certain mode value without extreme 

data contrary to the pressure distribution. The deviations from the mode potentially result 

from measurement uncertainties, the variability of the gate speed (Takagi and Furukawa 

2021) and the fingering phenomenon described in Section 3.2.3.  

 

3.3.4 Surge front shape and surge front slope 

 

Several analytical studies on impact pressure (Cumberbatch 1960, Cross, 1967, Shu, 

2004) have suggested that the shape of the surge front, especially the surge front slope, 
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could influence the impact pressure. Therefore, I study the surge front slope and, in a later 

section, confirm how the surge geometry affects an actual impingement event. However, 

due to the complexity of the surge tip, I could not exactly define the water surface in the 

region very close to the contact line between the surge and dry bed. The surge shape 

demonstrated in this section is confined to the region wherein the water surface could be 

clearly defined (Figure 3.5 shows this circumstance. Kihara et al., 2015 used a similar 

method to measure the surge front shape). Figure 3.11 and 3.12 present the time history 

curves of the water surface elevation above the flume bed 10 cm away from the panel. 

The curves end after 0.1 s from the arrival of the surge front so that they do not include 

the affection from the panel.  
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Fig. 3.11 Time history of water surface elevation 10 cm away from the panel after 

the arrival of the surge front with H = 8 cm (top left), H = 10 cm (top right), H = 12 

cm (bottom left) and H = 14 cm (bottom right). 
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 Fig. 3.12 Time history of water surface elevation 10 cm away from the panel after the 

arrival of the surge front with H = 8, 10, 12 and 14 cm (median curves). 

 

The time origin (t = 0 s) in these figures is set as the moment the water surface becomes 

definable, which is 0.002 s after the arrival of the surge here. Therefore, they demonstrate 

the abrupt change in the elevation of the water surface at t = 0 s. This fact suggests that 

the actual surge flows could not be perfectly described as the moving water wedge used 

by Cumberbatch (1960). The figures demonstrate that the water surface rises more rapidly 

in the case with a higher initial water level, primarily due to the increase in the surge front 

velocity as well as the difference in the surge front shape.  

 

The surge front slope could be calculated using the surge front velocity (presented in 

Section 3.3.3) and the time history of the water surface elevation (Figure 3.11) for each 

run as follows: 

 0.02tan
0.02

h

U
 =  (3.2) 
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where tanθ is the surge front slope (averaged over 0.02 s), h0.02 is the water surface 

elevation at t=0.02 s in Figure 3.11, and the values of U have been shown in Figure 3.10. 

Figure 3.13 presents the cumulative percentile ranking graph of the surge front slope of 

each run over 0.02 s, within which the impact pressure occurs after the arrival of the surge 

front.  

 

Fig. 3.13 Cumulative percentile ranking graph of the average surge front slope 

within 0.02 s after the arrival of the surge front in different cases.  

 

Figure 3.13 demonstrates that a steeper surge front slope occurs with a higher initial water 

level. The plots are widely distributed in each case, implying that the surge front slope is 

a highly stochastic physical parameter in contrast to the surge front velocity. The reason 

for the stochasticity could be considered as the complex turbulence at the tip of the surge 

front. The fingering patterns described in Section 3.2.3 could also have had slight effects 

on the shape of the tip (see Thoroddson and Sakakibara 1998). The influence of the surge 

front slope on the impact pressure will be discussed in a later section.  
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3.4 Stochastic model for the impact pressure and discussions on the effect of 

surge front slope 

 

3.4.1 Stochastic model for impact pressure 

 

This section proposes a predictive stochastic model for the calculation of the impact 

pressure given the incident surge velocity. With regard to the relationship between the 

surge pressure and velocity, the following dimensionless parameter has to be investigated: 

 
2

i
p

p
C

U
=  (3.3) 

where pi (i = 0,1) is the impact pressure at P0 and P1, U is the surge front velocity in the 

present study, ρ is the density of water, and Cp is hereafter referred to as the impact 

coefficient. The value of Cp has been studied using analytical (Cumberbatch 1960) and 

semi-analytical methods (Kihara et al., 2015, Kihara and Kaida, 2016) and quantified 

empirically in several guidebooks (e.g., ASCE 2017 and FEMA 2019). However, these 

previous works treated the value of Cp in a deterministic manner, and its stochastic 

properties have rarely been studied in the literature to the best of my knowledge. Figure 

3.14 presents the cumulative percentile ranking graphs of the value of Cp in each case. 
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Fig. 3.14 Cumulative percentile ranking graphs for impact coefficient Cp in 

different cases at P0 (top) and P1 (bottom). 

 

Since Cp is a function of the pressure, it also holds a fat tail as shown in Figure 3.14. 

Notably, the plots from different cases agree with each other slightly better in the graph 

of P0 than those of P1. There are two possible reasons for this tendency. Firstly, the 

recorded pressure is the averaged pressure over the area of the pressure sensors. 
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According to the surge depth shown in Figure 3.12, only the lower part of P1 receives 

direct impact of the surge when the value of H is small. Meanwhile, the upper part 

recorded the pressure generated by the run-up water. Therefore, the records of P1 might 

be lower than the actual impact pressure under this condition. Secondly, the surge front 

slope might affect the value of impact pressure at P1. This issue will be discussed in a 

later section. However, in this section, I attempt to propose a single-variable distribution 

model for Cp. Although the initial water levels of each case are different, the impact 

pressure has to be determined only by the physical parameters right before the impact.  

 

The next step is to determine a stochastic distribution that could simultaneously provide 

a good likelihood and avoid conflicting with the physics. Since the value of Cp has to be 

greater than zero, the Fréchet distribution (also called type II extreme value distribution 

or the inverse Weibull distribution) is a reasonable choice to fit the ‘fat-tailed’ data here. 

It should be noted that several other similar distributions, e.g., the Gumbel distribution, 

fail to meet the lower limit of Cp. The non-exceedance probability distribution function 

(which is equivalent to the cumulative distribution function) and probability density 

function of the Fréchet distribution are 

 ( )0 exp
p

C p p

C
P C C

s

−  
  = −  

   

 (3.4.1) 

 ( )
1

0 exp
p p

D p p

C C
P C C

s s s

 


− − −    

  = −    
     

 (3.4.2) 

where Pc is the non-exceedance probability distribution function, PD is the probability 

density, and s and σ are the scale and shape parameters, respectively, to be determined 

from the laboratory data. pC   is a non-negative random variable.   
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Figure 3.15 presents the fitting curves of Cp based on Equation (3.4.1) for P0 and P1. 

The relationship between ln(Cp) and ln[ln(Pc
−1)] proves that the fitting curves have good 

likelihood for both P0 and P1. Table 3.1 presents several important statistical parameters 

of the fitting curves. 
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Fig. 3.15 Fitting curves based on the Fréchet distribution for P0 with (σ, s) = (3.52, 0.737) (top left, top right)  

and P1 with (σ, s) = (3.31, 0.674) (bottom left, bottom right)
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Table 3.1 Parameters of the proposed probability distributions (fitting curves) 

Parameters P0 P1 

σ 3.52 3.31 

s 0.737 0.674 

Mode ( ( )
1

1s


 +   ) 0.687 0.622 

5 % quantile 0.540 0.485 

First quartile ( ( )
1

ln 4s


) 0.672 0.610 

Median ( ( )
1

ln 2s


) 0.818 0.753 

Third quartile ( ( )
1

ln 4 3s


   ) 1.05 0.982 

95 % quantile 1.74 1.66 

 

It is found that both the mode and median of P1 are smaller than those of P0 (although 

the differences are both under 10%). As presented in Figure 3.11 and 3.12, there is a 

possibility that P1 could not receive a full impact owing to its location in the case of a 

small H, whereas P0 is more likely to receive the full impact. This may be why the 

statistical parameters listed in Table 3.1 generally had smaller values at P1, and therefore, 

(s, σ) of P0 may have been more representative in terms of impingement physics. To 

justify the applicability of Equation (3.4.1) with (s, σ) listed in Table 3.1, I compare it 

with the published data obtained by Wemmenhove et al. (2010), Al-Faesly et al. (2012), 

Douglas and Nistor (2014), Kihara et al. (2015), Mizutani et al. (2017), Kihara and Kaida 

(2019), Shen et al. (2020), Chuang et al. (2020) and Xu et al. (2021). Both the impact 

pressure and surge front velocity were provided in these studies. Figure 3.16 presents the 

result of the comparison. 
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Fig. 3.16 Comparison between Equation (3.4.1) with (s, σ) = (3.52, 0.737) and 

(3.31, 0.674) and published data. 

 

Equation (3.4.1) demonstrates good performance when predicting the cumulative 

distribution of the published data randomly collected from various literature works. 

Except for Chuang et al. (2020), who used the representative Cp from multiple runs, other 

authors provided the data from single measurement.  

 

Equation (3.4.1) provides a way to predict the stochastic distribution of the impact 

pressure using only the surge front velocity right before the impact. In other words, the 

physical parameters specifically related to the dam-break experiments (such as the initial 

water level and gate speed) are excluded from the model. This is convenient for certain 

engineering practices (e.g., real tsunami surge impingement). Consequently, based on 
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Equation (3.4.1), especially with (s, σ) = (3.52, 0.737), engineers could propose 

engineering formulas for any quantile case by case. For example, the 50 % and 95 % 

quantiles read: 

 ,50% 0.818pC =  (3.5) 

 ,95% 1.74pC =  (3.6) 

The comparisons between these two formulas and the formulas proposed in literature will 

be provided in Chapter 4 (Figure 4.8 and 4.9). Similar formulas are widely used in civil 

engineering (e.g., Kitahara and Ishihara 2020). 

 

 

3.4.2 Relationship between Cp and surge front slope  

 

Equation (3.4.1) and (3.4.2) suggest that the surge front velocity is the dominant factor 

for the impact pressure at P0 and P1. However, as introduced, a classic theoretical solution 

proposed by Cumberbatch (1960) indicated that the surge front slope could influence the 

value of Cp (also see Faltinsen 2006). Further discussions on this theory are carried out in 

Chapter 4. In this section, I investigate the effect of the surge front slope on Cp.  

 

Figure 3.17 presents the relationship between Cp and the surge front slope tanθ in each 

case, combined with the theoretical solution proposed by Cumberbatch (1960).  
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 Fig. 3.17 Relationship between the surge front slope and impact coefficient in 

different cases at P0 (top) and P1 (bottom), combined with the theory proposed by 

Cumberbatch (1960). 

 

The theory suggests that the value of Cp should slightly increase with tanθ. This tendency 

could be confirmed in the graph of P1 but not in the graph of P0. Besides, as seen in 
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Figure 3.13, the values of tanθ increased with H. This may have been one of the reasons 

why the plots of P0 in Figure 3.14 agreed each other better compared with those of P1 

under different values of H. Figure 3.17 implies that the theory proposed by Cumberbatch 

(1960) could predict the increasing tendency of Cp with tanθ above the bottom but needs 

to be improved at the bottom. A possible reason is that actual surges were not as simple 

as the water wedge assumed by Cumberbatch (1960). As explained in Section 3.4 (also 

refer to Dressler 1952, 1954), the water surface elevation abruptly changed at the tip of 

the surge front, and therefore, the theory could not exactly predict the impact pressure of 

such surges at the bottom. However, the water surface elevation at the tip becomes trivial 

at P1, which is above the bottom. Thus, the theory is valid in predicting the tendency of 

the pressure there. Quantitatively, the theory generally underestimated the value of Cp 

within the range of data. This comparison shows that Cumberbatch (1960) might not 

elucidate the physics of surge impact in a reasonable way. This issue will be discussed in 

detail in Chapter 4.  

 

Finally, although some theoretical works (e.g., Dressler 1952, Chanson 2009 and Deng 

et al., 2018) have demonstrated that the water surface shape at the surge front is 

determined by the surge front velocity, I did not obtain a good correlation between them 

using the data collected in the present study (see Figure 3.18). This may explain the low 

correlation between Cp and the surge front slope and further stochastic studies have to be 

carried out as future works. 
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Fig. 3.18 Relationship between the squared surge front velocity and surge front slope in 

different cases. 

 

 

3.5 Findings and motivations of further investigations 

 

In this chapter, laboratory experiments and a stochastic analysis were conducted to 

evaluate the impact pressure generated by water surge impingement onto a vertical wall. 

Several findings could be derived from the analysis of the experimental data: 

1. The time history of the pressure on the vertical wall confirmed that the impact 

pressure produces the largest pressure peak during the whole impingement process. 

The impact pressure was distributed over a wide range, and therefore, stochastic 

estimation is necessary indeed.  

2. The impact coefficient Cp = p/ρU2 could be reasonably modeled by the Fréchet 

distribution, suggesting that it is more likely to have an extremely large Cp rather than 

an extremely small one. A predictive formula (Equation [3.4.1]) was proposed for the 
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stochastic distribution of Cp, which involves only the surge front velocity right before 

the impact. Examples of engineering formulas were given by Equation (3.5) and (3.6). 

3. The surge front slope does not significantly influence the impact pressure at the bed 

but affects the impact pressure slightly above the bed. The theory proposed by 

Cumberbatch (1960) failed to predict the tendency of the impact pressure at the bed 

and generally underestimated the magnitude of the impact pressure (the theoretical 

value is smaller than the first quartile presented in Table 3.1). Therefore, based on the 

present study, it could be said that an improved theory should be proposed to describe 

the impact pressure better. 

 

 

As mentioned in finding 3, it becomes necessary for me to seek an improved theory 

over Cumberbatch (1960) to interpret the underlying physics of surge impact. At least, 

the resulting analytic solution should be able to elucidate the velocity field and the impact 

pressure near the toe of the vertical wall, as the largest pressure peak occurs there. In 

Chapter 4, I will attempt to propose such an analytic solution under a well-posed physical 

model with detailed mathematical derivations. Also, in the laboratory works, the effects 

of energy dissipation on the surge front (which might be also influential to the impact 

pressure) was not elucidated in detail. This issue will be addressed by numerical 

calculations in Chapter 5.  
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Chapter 4 

Analytic solution of the impact pressure 

 

 

4.1 Introduction 

 

This chapter proposes an analytic solution for the velocity and pressure field during a 

surge impingement event.  

As introduced, many authors have attempted to describe the physics of surge impact 

by various analytic approaches. In most cases (if not all cases), the direct solutions on the 

velocity field are derived based on the velocity potential theory, without verifying its 

existence; the incident surges are also given in simple geometries. Besides, the 

mathematical formulations in these works are complicated and, at times, not explicit 

enough for readers to indicate simple relationships between the physical parameters.  

The main reason for this awkward situation is that these authors aimed to obtain a 

comprehensive solution for the velocity field in the entire fluid region. Due to the 

existence of free water surface and the non-periodic nature of the surge impact, the 

velocity potential theory became the primary method to simplify the governing equation 

(the Euler's equation in most cases). In the present study, I convert the way of thinking: 

focusing on a specific part of the fluid region and simplifying the governing equation by 

a more reasonable method other than the velocity potential theory. It has been shown in 

many works of literature and a previous chapter of this thesis that the region near the 
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corner where the wall and the bed meet is crucial, as the largest impact pressure occurs 

there. Therefore, in this chapter, the velocity and pressure field in the vicinity of this 

corner will be mainly discussed without assuming the existence of velocity potential, but 

with a more natural simplification.   

Section 4.2 proposes an initial-boundary value problem for a well-posed physical 

model of the surge impact. A simplified form of the inviscid vorticity transport equation 

(or the Euler’s equation) is used as the governing equation near the bed, and the boundary 

conditions of the velocity field are clearly assigned on a moving boundary. The initial 

condition reasonably demonstrates the discontinuous nature of the impact process. In 

Section 4.3, this initial-boundary value problem is solved with the self-similarity method. 

The approximate solutions for horizontal and vertical velocity components are explicitly 

obtained with very high precision. The solutions could satisfy the initial condition 

naturally, as well. In Section 4.4, the pressure field is obtained following the solution of 

the velocity field. The impact pressure near the bed is shown to be finite and proportional 

to the square of surge front velocity with a constant impact coefficient. In Section 4.5, the 

solution of impact pressure is compared with the theoretical result of Cumberbatch (1960) 

and the formulas suggested by FEMA (2019) and ASCE (2017). The comparisons clearly 

demonstrate their performances when predicting the laboratory data obtained in Chapter 

3. Section 4.6 briefly discusses the effect of viscosity during the impact process, 

intuitively proving that the Euler's equation is a proper governing equation in the present 

study.   
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4.2 Initial-boundary value problem 

 

The two-dimensional water surge impingement onto a vertical wall is illustrated in 

Figure 4.1 with x and y coordinates in the horizontal and vertical directions, respectively, 

and with the origin at the toe of the wall. The tip of the surge approaches the wall in the 

negative x-direction with a uniform constant celerity U<0. Here, I set the time coordinate 

so that the surge front reaches the wall at t=0, and then runs up for t>0. The horizontal 

and vertical components of the flow velocity during the impingement process are denoted 

by u (x, y, t) and v (x, y, t), respectively, and the water pressure is represented by p (x, y, 

t). g is the gravitational acceleration.  

 

 

Fig. 4.1 Conceptional sketch of water surge impingement onto a vertical wall. 

 

For simplicity, I assume that, inside the tip of the incident surge, water particles retain 

the uniform horizontal velocity component equals to the surge front velocity, U, and the 

vertical velocity component is zero almost everywhere when t=0. Therefore, the presence 
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of turbulent water layers near the bed and water surface are neglected. The initial 

condition is then represented by  

 
0 0

   for 0, 0
0

x
u y t

U x

=
=  =


   and   0  for  0,  0,  0v x y t=   = . (4.1) 

Equation (4.1) shows that u (x, y, t) has an abrupt change at the wall when t=0, reflecting 

the discontinuous nature of the surge impact. A typical initial condition that was used in 

many analytical works is 

 ,  0  for  0,  0,  0u U v x y t= =   =  (4.2) 

As the discontinuity in the velocity field is not involved explicitly, Equation (4.2) is 

indeed a simpler initial condition compared with Equation (4.1). However, it brings a 

remarkable misunderstanding on the flow status, which will be discussed later. Since the 

surge impingement is a highly transient process over a short time, the viscous force is 

negligible compared with the inertial force (briefly discussed in Section 4.6). Therefore, 

the subsequent flow (t > 0) can be described by the two-dimensional Euler’s equations:   

 0
u v

x y

 
+ =

 
, (4.3) 

 
1u u u p

u v
t x y x

   
+ + = −

   
, (4.4) 

 
1v v v p

u v g
t x y y

   
+ + = − −

   
, (4.5) 

The solutions for the velocity components and the pressure filed could be uniquely 

determined under appropriate boundary conditions, but I need to simplify the governing 

equations in advance for an analytic approach.  
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First, Equation (4.3) and (4.4) can be combined into the so-called vorticity transport 

equation, for t>0: 

 0u v
t x y

    
+ + =

  
  with  

u v

y x


 
= −
 

, (4.6) 

where ω represents the vorticity. Here, the initial condition of Equation (4.6) has to be 

analysed carefully. If the incident surge has no vorticity at the first contact, then Equation 

(4.6) suggests that vorticity will be kept to zero for any t>0, which also implies the 

existence of velocity potential. Therefore, based on Equation (4.2), many previous studies 

assumed the irrotationality for t>0 and introduced the velocity potential to simplify the 

governing equations.  

 

However, this assumption appears not to be valid considering the nature of the 

subsequent up-rushing flow under the impact condition described by Equation (4.1). 

Obviously, the up-rushing flow (above the bed, y>0) has a higher vertical velocity near 

the wall due to the discontinuity at t = 0, and thus, 
v

x




 has a very large negative value 

in the vicinity of the wall. On the other hand, the horizontal velocity is forced to be 

uniform along the wall (u = 0) and in the fluid region far from the wall (u = U). Thus, 

u

y




 is relatively small near the wall. Therefore, I assume that the following relation holds 

near the wall immediately after the impingement for any small y>0: 

 
v u

x y

 


 
    and    0

u v

y x


 
= − 
 

 (4.7)                 

Equation (4.7) suggests that an abrupt transition from the irrotational to rotational flow 

occurs during the surge impingement by an impulsive external force at t = 0. Therefore, 

for small y>0, velocity potential could not be used in the present impact model.  
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Furthermore, the fluid motion near the bed is now considered. When y is small, the 

affection of the water surface on the velocity field is considered trivial. Therefore, based 

on the so-called “squeeze theorem” (u is squeezed by the vertical and the uniform incident 

flow), it could be said that,  

 0
u

y





 (4.8) 

near the bed. Based on Equation (4.8), I here choose to simplify Equation (4.6) by 

neglecting 
u

y




 from it (neglecting 

v

x




 results in a trivial solution), arriving at 

 
2 2 2

2
0

v v v
u v

x t x x y

  
+ + 

    
 (4.9) 

Additionally, since the horizontal velocity component has been assumed to be vertically 

uniform near the bed, it could be denoted as u = u (x, t). Consequently, Equation (4.3) 

could be integrated from the bed to an arbitrary small y as 

 ( )
( ),

, ,
u x t

v x y t y
x


 −


 (4.10) 

Substituting Equation (4.10) into (4.9), we obtain a partial differential equation in terms 

of only u (x, t): 

 

3 3 2

2 3 2
0

u u u u
u

t x x x x

   
+ − 

    
 (4.11) 

Here, the trivial solution y=0 has been abandoned as our discussion is confined to the 

region near the bed, but not precisely on the bed. Hereafter, I assume that Equation (4.11) 

exactly holds near the bed and derive the velocity field under the initial condition 

(Equation [4.1]) and appropriate boundary conditions. On the other hand, note that the 

equation for the pressure is now 0xyp =  and it will be mentioned in a later section.  
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In order to solve this third-order differential equation, at least three boundary 

conditions are required. As the most straightforward boundary condition,  

 ( )0, 0u t =  (4.12) 

has to be satisfied on the wall. In contrast, the boundary conditions apart from the wall 

become more perplexing. Due to the existence of free water surface, the influence of the 

wall will not propagate upstream at infinite speed (or, at least, much slower than the speed 

of sound in water). Therefore, the fluid motion far from the wall should not be disturbed 

by the impingement event for small t. In other words, there exists a moving boundary l(t) 

dividing the water into an impact region and an undisturbed region such that 

 ( ) ( ),    ,   u x t U x l t=   (4.13) 

 ( ) ( ) ( ), , , 0   ,   
u

v x y t x t x l t
x


 − = 


 (4.14) 

Figure 4.2 illustrates the moving boundary and the two regions. In the undisturbed region 

(x > l(t)), water particles hold the constant horizontal velocity component u (x, t)=U and 

vertical velocity component v (x, y, t)=0. In the impact region (0 < x < l(t)), the velocity 

field varies under the influence of the wall. Therefore, considering the continuity of u (x, 

t) and v (x, y, t), Equation (4.13) and (4.14) have to be satisfied on the moving boundary 

l(t). On the other hand, l(t) travels against the incident flow direction, expanding the 

impact region into upstream. Therefore, in the present study, although the main target is 

to solve the velocity field in the impact region, the location of the moving boundary l(t) 

also has to be determined simultaneously as an additional unknown. I have to remark here 

that Equation (4.14) is only a simplified form for the boundary conditions at l(t). 
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Rigorously, the higher-order x-derivatives and t-derivatives of u (x, t) also have to be zero 

on this boundary. In that case, the system will become overdetermined. The consequences 

of conducting this simplification to the boundary conditions will be mentioned in a later 

section.  

 

 

Fig. 4.2 Conceptional sketch interpreting the moving boundary conditions. 

 

Up to here, an initial-boundary value problem for the horizontal velocity component, 

u (x, t), in the impact region has been constructed. The governing equation is Equation 

(4.11), and the boundary conditions are Equation (4.12) - (4.14). The initial condition is 

Equation (4.1). This moving boundary problem is an analogous problem to the notorious 

Stefan problem (Mei 1994, pp 343 - 407, also see Appendix A) in the field of applied 

mathematics. However, compared with the classic Stefan problem, Equation (4.11) is 

strongly nonlinear and there is no small parameter could be used to apply perturbation 

expansion. This awkward situation is dealt in Section 4.3. 
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One of the advantages of the present system is that the shape of free water surface is 

not involved in the problem. In the previous studies with the irrotational flow assumption, 

the free-surface boundary could not be avoided as the elliptic differential equation of the 

velocity potential had to be solved for the entire fluid region. Although l (t) is also a 

moving boundary here, it is a single-variable function of t with its initial value being 

simply zero. Therefore, compared with the complex free water surface (which could be 

in a complicated shape from the beginning), the moving boundary proposed here is 

obviously easier to handle in this sense. In compensation, our discussion is inevitably 

confined to the region very close the bed as the simplification is based on 0
u

y





. It 

will be shown in Chapter 5 that, in practise, the solution of the velocity field is also 

applicable to the water region slightly above the bed.  
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4.3 Self-similarity solution of velocity field 

 

In this section, I attempt to find an analytic solution of u (x, t) in the initial-boundary 

value problem proposed in Section 4.2. Since there is no explicit characteristic length in 

the horizontal direction, I define that 

 ( )           
u x

F X X
U Ut

= =  (4.15) 

as the self-similarity variables to construct a self-similarity solution for u (x, t). These 

variables were also used in the analytical work of Cumberbatch (1960). As I am interested 

in the very beginning stage of the impingement, the gravitational effect could be 

considered negligible (refer to Lamb 1932, Chapter I-11). Using Equation (4.15), I 

transform Equation (4.11) into 

 2 0XF F FF F F    − − + − =  (4.16) 

which is a nonlinear ordinary differential equation of F(X) without any scaling factor. 

Equation (4.12) could be immediately translated into the form of  

 ( )0 0F =  (4.17) 

for t>0. By using Equation (4.16) and (4.17), I could also obtain that  

 ( ) ( )0 0     or     0 2F F = = −  (4.18) 

Equation (4.18) will be used to verify the soundness of the self-similarity assumption in 

a later chapter. I only consider the velocity field within the impact region defined in the 

previous section in the present study. Therefore, the rest of the boundary conditions given 

at the moving boundary l(t) are written in the self-similarity forms: 
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 ( ) 1F L =  (4.19) 

 ( ) 0F L =  (4.20) 

where L = l(t)/Ut. Since the gravitational acceleration and the viscosity are neglected in 

the present discussion, it could be said that 

 ( )l t Ut  (4.21) 

is the only possible form for l(t), from the view of dimension analysis. Therefore, L should 

be a constant number in the present system. However, as the gravitational acceleration is 

negligible only for small t, Equation (4.21) is valid only when discussing the impact 

process. 

  

With Equation (4.17), (4.19) and (4.20), the solution of Equation (4.16) should be 

uniquely determined. However, unfortunately, I am unable to find out an exact solution 

of Equation (4.16) by standard mathematical functions, with boundary conditions 

assigned on an undetermined boundary. Therefore, an approximate solution is built. The 

solution of Equation (4.16) is expanded into the Taylor series at X=0: 

 ( ) 2 3 4

1 2 3 4

1

n

n

n

F X a X a X a X a X a X


=

= = + + + +  (4.22) 

Note that Equation (4.17) has already been applied here (a0 = 0). Similar expansions were 

used in Stoker (1957 [Chapter 12]) and Tao et al., (1988). If Equation (4.22) is cut off at 

Xq, where q is an integer greater than unity, there would be totally q+1 unknowns (a1,…,aq 

and L). The following algebraic equations could be obtained by plugging Equation (4.22) 

into Equation (4.16). 
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 0

2 1 2:  4 2 0X a a a− − =  (4.23) 

 1 2

2 3:  4 18 0X a a− − =  (4.24) 

 2

2 3 4 1 4:  12 48 12 0X a a a a a− − − =  (4.25) 

 3 2

3 2 4 5 1 5:  12 8 100 40 0X a a a a a a− − − + =  (4.26) 

 
4

3 4 2 5 6 1 6:  30 10 180 90 0X a a a a a a a− + − + =  (4.27) 

 
5 2

4 3 4 2 5 7 1 7:  24 24 48 294 168 0X a a a a a a a a− − + − + =  (4.28) 

 
6

4 5 2 7 8 1 8:  56 112 448 280 0X a a a a a a a− + − + =  (4.29) 

 

Only the first q-1 algebraic equations could be considered when the series in Equation 

(4.22) is cut off at Xq, as higher-order terms appear from the q-th equation. However, the 

boundary conditions at X=L provide two more equations for solving the unknowns:  

 
1

1
q

n

n

n

a L
=

=  (4.30) 

 
1

1

0
q

n

n

n

na L −

=

=  (4.31) 

As the system of q+1 equations is nonlinear, reluctantly, I have to solve it numerically in 

most cases, under the restrictions that the solutions must be real and satisfy L<0. Since 

Equation (4.16) is a third-order ordinary differential equation, I have to at least include 

the terms up to X3 in Equation (4.22). Reasonable approximations up to Xq, denoted by 

Fq (X), have been listed in Table 4.1 (q=3, 4, …8). These solutions are obtained using a 

reliable mathematical software Mathematica 12.3.  
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Table 4.1 Solutions of the coefficients in Equation (4.22) and the value L for Fq (X) 

q a1 a2 a3 a4 a5 a6 a7 a8 L 

3 Real solution does not exist 

4 -2.000 -1.313 -0.3828 0.08374 - - - - -1.143 

5 -2.000 -1.363 -0.4126 0.09370 0.01702 - - - -1.255 

6 -2.000 -1.351 -0.4054 0.09125 0.01643 0.002466 - - -1.213 

7 -2.000 -1.352 -0.4064 0.09159 0.01651 0.002481 0.0003296 - -1.220 

8 -2.000 -1.352 -0.4062 0.09154 0.01650 0.002479 0.0003292 3.597×10-5 -1.219 

 

Table 4.1 suggests that the coefficients exhibit oscillatory convergence to certain values 

with increasing q. Also, as an extra restriction to the solutions, Equation (4.18) is exactly 

satisfied by the value of a1 at any accuracy in Table 4.1. The reason why real solution 

does not exist for q=3 is not discussed in this thesis. A possible way to address this 

problem is to study the structure of the algebraic equations in detail. The proof that real 

solutions always exist for any q>3 is also not pursuit here. These issues are left for future 

mathematical works.  

 

Figure 4.3 presents the approximate curves based on the coefficients listed in Table 4.1. 

The curves of different orders suggest quick convergence of the series, and the higher-

order terms have no significant effect on the approximate solution. Figure 4.4 shows the 

relative differences between Fq (X) and Fq-1 (X), which is defined as 

 ( )
( ) ( )

( )

1

1 1
100%

q q

q

q

F X F X
E X

F X

−

−

−
=   (4.32) 
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for q= 5, 6, 7 and 8. The results confirm that the solutions have satisfactory convergence. 

The importance of this property will be mentioned again in a later discussion of the 

pressure field.  

 

 

  Fig. 4.3 Solutions of F(X) at different accuracy 

 

F
(X

) 
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The vertical velocity component v (x, y, t) inside the impact region is also calculated in a 

self-similarity form using Equation (4.10) and the result of F (X) as follows 

 ( ) ( )2 3

1 2 3 4, 2 3 4G X Y Y a a X a X a X= − + + + +  (4.33) 

where 

 ( ),      ,     
v y

G X Y Y
U Ut

= =  (4.34) 

are the self-similarity variables in the vertical direction. Also, the dimensionless total 

velocity of the water particles could be obtained as  

 ( ) ( ) ( )2 2, ,V X Y F X G X Y= +  (4.35) 

The distributions of G (X, Y) and V (X, Y) are shown in the following figures.  

 

Fig. 4.4 Relative differences between Fq (X) and Fq-1 (X) (q=5,6,7,8). 
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Fig. 4.5 Solutions of G (X, Y) 

 

 

Fig. 4.6 Solutions of V (X, Y) 
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    In Figure 4.5, it could be confirmed that, above the bed, the vertical velocity 

component of the water particles monotonically increases in the impact region, but does 

not diverge to infinity in the present self-similarity system of X and Y. However, Figure 

4.5 also revealed an obvious weak point of this system. When X=L, the X-derivative of G 

(X, Y) is non-zero (greater than zero) for any Y>0. The reason is, as mentioned before, 

that I only considered the boundary condition for the first derivative of F (X) on L, 

neglecting the restrictions of higher-order derivatives. This simplification will be shown 

to bring more conspicuous calculation errors in a later chapter.  

 

It could be found in Figure 4.6 that the total velocity of the water particles shows 

different behaviors in (L, 0) under different values of Y. For small Y, the velocity of water 

particles monotonically decreases when X approaches zero. For medium Y, it decreases 

at first and increases near the wall. For large Y, it monotonically increases with X. The 

reason is that the horizontal velocity component governs the velocity field very close to 

the bed, while the vertical velocity component comes into power for large Y instead. I, 

here again, emphasize that these discussions are only valid near the bed. 
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4.4 Self-similarity solution of pressure field 

 

In this section, I seek a solution for the pressure field using the Euler’s equation. Given 

the expressions of F (X) and G (X, Y), Equation (4.4) and (4.5) can be rewritten in terms 

of the self-similarity variables as 

 
pC dF dF

X F
X dX dX


− = − +


 (4.36) 

 
pC G G G G gt

X Y F G
Y X Y X Y U

    
− = − − + + +
    

 (4.37) 

Here, Cp (X, Y, t)=p (X, Y, t)/ρU2 is hereafter referred to as the “impact coefficient”. For 

Equation (4.37), I replace G (X, Y) by F (X) using the mass conservation law, arriving at  

 ( ) ( )2pC gt
Y XF F FF F Y X

Y U


   − − = + − + = 


 (4.38) 

Perceptively, I noticed that  

 ( ) 2 0X XF F FF F F      = + − + =  (4.39) 

according to Equation (4.16). This result suggests that the value of Φ (X) is a constant 

number. Therefore, if the value of Φ (X) at a specific X is figured out, the value of Φ (X) 

at any X could then be determined. By taking advantage of Equation (4.17) and (4.18), I 

can easily obtain that 

 ( ) ( )0 2X =  =  (4.40) 

Therefore, Equation (4.37) could be rewritten into  

 2
pC gt

Y
Y U


− = +


 (4.41) 

Cp (X, Y, t) can be then obtained from Equation (4.36) and (4.41) as 
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 ( )2 21
( , , )

2

X

p
L

gt
C X Y t F XF FdX Y Y T t

U
= − + − − − +  (4.42) 

where T(t) is an unknown function of time. T(t) can be determined using the dynamic 

boundary condition that the pressure at L is hydrostatic. For example,  

 ( )
( )

( )
( )2 2

1 1
,0,

2
p

gh t
C L t L T t

U Fr t
= = = − + +  (4.43) 

where h(t) is water depth at X = L and Fr (t) is the local Froude number. Based on Equation 

(4.43), 

 
( ) ( )

2 2

2

1 1 1
( , , ) 1

2 2

X

p
L

r

YUt
C X Y t F XF FdX Y L

F t h t

 
= − + − − + − + − 

 
  (4.44) 

is obtained. Since the tip of the surge is highly supercritical, the hydrostatic pressure term 

is considered negligible in most cases of the present study (it may become significant 

when discussing a large-scale problem). Particularly, the impact coefficient at the toe of 

the wall (X=0 and Y=0+) is given by 

 ( ) ( ) ( ) ( )

0

2 2

1 1 1 1
0,0 ,

2 2
pw p

L
r r

C C t L FdX S
F t F t

+ = + − − + = + +  (4.45) 

where S is equivalent to the area shown in Figure 4.7, bounded by the vertical axis, F (X) 

and F (X)=1. From Equation (4.45), we could clearly figure out three different pressure 

components. The constant 1/2 is equivalent to the value of Cpw under a steady flow 

condition. S is generated by the unsteady nature of impact, and this area is by no means 

negligible as long as F(X) holds the distribution shown in Figure 4.3 and 4.7 (this issue 

will be discussed again in Section 4.5). The term involving the Froude number represents 

the hydrostatic component.  
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Fig. 4.7 Sketch of the definition of S  

 

The calculation error of F (X) in the range of larger X becomes more influential, 

considering the shape of curves in Figure 4.3. This fact was mentioned in the previous 

section, and the approximate solutions of F (X) for q=7 and 8 have been proved to have 

good convergence as X approaches zero.  

 

It is also possible to directly calculate the integral in Equation (4.45) using Equation 

(4.22) and the information listed in Table 4.1. Table 4.2 presents the values of Cpw at 

different accuracy, neglecting the hydrostatic pressure. E2, the relative differences 

between the values of Cpw at two adjoint orders of accuracy, denoted by Cpw
q

 and Cpw
q-1, 

is defined as following (q=5,6,7,8), which is similar to the definition of E1.  

 

1

2 1
100%

q q

pw pw

q

pw

C C
E

C

−

−

−
=   (4.46) 
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Table 4.2 Calculated impact coefficient at different accuracy 

q Cpw E2 (%) 

4 0.8587 - 

5 0.8686 1.157 

6 0.8659 -0.3139 

7 0.8671 0.1414 

8 0.8667 -0.05040 

 

It could be understood from Table 4.2 that the values of Cpw rapidly converge to a constant 

which is around 0.867. Therefore, in case that the hydrostatic effect is neglected, the 

theoretical value of Cpw at the first contact, t=0+, could be approximately written as  

 ( )0 0,0 ,0 0.867pw pC C + + =  (4.47) 

Compared with the quantiles presented in Table 3.1, Equation (4.47) provides a 

theoretical value close to the median value. Besides, we could obtain an engineering 

formula for predicting the 95 % quantile of the impact coefficient as 

 0,95% 1 2 1 2     2.01 ,  0.867pwC    = = =  (4.48) 

From the discussions up to here, I have found a self-similarity solution of the impact 

coefficient that could satisfy the Euler’s equation, when F (X) and G (X, Y) are given. The 

resulting impact coefficient on the wall, Cpw0, converged to a finite constant value under 

this self-similarity system. It proved that although the velocity components could be truly 

singular in a surge impingement event, the singularity is removable in terms of the impact 

pressure. 
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4.5 Comparison between the analytical solution of Cpw0 and existing studies 

 

In this section, I directly compare the theoretical value of the impact coefficient at the 

toe of the wall, Cpw0, provided by Equation (4.47), with the existing studies. The data 

collected from the laboratory works which have been demonstrated in a previous chapter 

are used again here, with the theory proposed by Cumberbatch (1960) and the formulas 

suggested by FEMA (2019) and ASCE (2017).  

 

    The theory derived by Cumberbatch (1960) assumed that the flow during the 

impingement is irrotational, and therefore, the velocity potential was used there. The 

velocity field and the shape of the free water surface were calculated in self-similarity 

forms, and a solution of Cp on the wall (X=0) was found to be 

 ( ) ( )
( )

2

1
0, , 1

2
p

Y
C Y f 



  
 = −     

 (4.49) 

which is called the “approximate solution”. Here, θ is the surge front angle that has 

appeared in a previous chapter. f (θ) is a specific function of θ and its value has to be 

determined numerically. Ι (θ) is the dimensionless water surface elevation on the wall 

which depends on θ. Comparing Equation (4.49) with Equation (4.44), we understood 

that both of them suggest a parabolic decreasing tendency of Cp in terms of Y. However, 

the “approximate solution” involves the surge front angle, while Equation (4.44) is 

independent of it. The main differences between the present theory and Cumberbatch 

(1960) are briefly summarized in Table 4.3. 
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Table 4.3 Differences between the present theory and Cumberbatch (1960) 

 Fluid motion Applicability Considered factor  Water surface 

Present theory Rotational Near the bed U Not considered 

Cumberbatch (1960) Irrotational Entire region U, θ Wedge 

 

It could be understood that the advantages of the present theory over Cumberbatch (1960) 

are (i). the fluid motion is no more assumed irrotational, and this is consistent with the 

physics; (ii). the free water surface is excluded from the formulations, highly simplifying 

the boundary value problem. Moreover, as demonstrated in a previous chapter, in 

Equation (4.49), when , 0Y  → , the value of Cp turns to 1/2 which is the value of steady 

flow condition. As mentioned in Section 4.4, this is an awkward conclusion as the surge 

impact is a highly transient phenomenon where the impact pressure should by no means 

be equivalent to the steady pressure. On the other hand, Equation (4.44) indicates that the 

unsteady effect never fades away even for very “flat” incident surges. The reason for this 

difference is considered to be the usage of the irrotational flow assumption.  

 

The way of calculating the surge impact pressure suggested by FEMA (P-646, 8.6.4, 

Aug. 2019) is that “The impulsive force is taken as 1.5 times the hydrodynamic force for 

the same element, and acts on members at the leading edge of the tsunami bore.” On the 

other hand, FEMA (2019) also suggests calculating the hydrodynamic force using the 

formula proposed by ASCE 7-16 (4.10.2.3, 2017):  

 2

1 22 2

1 1
    ,    

2

i w
p w tsu s d

s

p F
C F I U bh C

U U bh
  

 

 
= = =  

 
 (4.50) 

where 
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1

: Impact pressure

: Hydrodynamic force

: Width of the vertical wall

: height of the surge front

: Tsunami importance factor, 1.0

: Drag coefficient, 2.0 for vertical wall

:Safety coefficient for 

i

w

s

tsu

d

p

F

b

h

I

C



=

=

2

impact pressure, =1.5

:Safety coefficient for hydrodynamic force, =1.5

 

Since Equation (4.50) only gives the hydrodynamic force applied on the wall and there is 

no description of the pressure distribution on the wall could be found in ASCE (2017), I 

here simply calculate the impact coefficient as 

 0 1 2

1
2.25

2
pw tsu dC I C = =  (4.51) 

It could be seen that the value of Cpw0 suggested by FEMA (2019) is obviously larger than 

the results of Equation (4.47) and (4.49) (at least for “flat” surges). However, as a practical 

guideline for actual engineering works, FEMA (2019) is able to fairly describe the 

maximum value of the Cpw0 of the laboratory data, given that Cpw0 is a highly stochastic 

parameter.  

 

   Figure 4.8 and 4.9 show the comparisons among the laboratory data of the present 

study (at P0 and P1), and the results of Equation (4.47), (4.49) and (4.51). It could be 

confirmed that Equation (4.47) describes the median (non-exceedance probability of 50%, 

Equation (3.5)) of the laboratory data quite well, while the non-exceedance probability of 

Equation (4.49) is around 8%. Equation (4.51) succeeds in predicting the maximum value 

(non-exceedance probability of 95%, Equation (3.6) or Equation (4.48)) of the laboratory 

data, except for several extremely large plots.  
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Fig. 4.8 Comparison among the laboratory data of Cpw0 at P0, with Equation (4.47), 

(4.49), (4.51), (3.5) and (3.6) 

 

Fig. 4.9 Comparison among the laboratory data of Cpw0 at P1, with Equation (4.47), 

(4.49), (4.51), (3.5) and (3.6) 
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  Up to here, I have presented the solutions of the velocity and pressure field for the 

initial-boundary value problem proposed in Section 4.2. The physical assumptions made 

in the derivations are summarized in the following table.  

 

Table 4.4 Assumptions used in the derivations 

 Assumptions 

Water Inviscid, Incompressible, No aeration, Free from surface tension 

Wall Vertical, Rigid, Impermeable, Fixed 

Bed Horizontal, Hydraulic smooth, Impermeable 

Kinematics Uniform incident flow 

 Water surface not influential to the bed ∂u/∂y=0 

Vorticity exists 

Dynamics Finite speed of pressure wave (influences of the wall) 

Hydrostatic outside the impact region 

Mathematics All derivatives converge (except t=0) 

Self-similarity 

 

 

4.6 A brief discussion on viscosity 

 

Although I did not involve viscosity in the analytic solution, it is meaningful to 

confirm the possible effect it may bring to the system. In this section, I directly use the 

solution of F (X) and G (X, Y) to investigate the viscous effect. Although it is not 

mathematically rigorous to apply the solutions obtained from the Euler’s equation to the 
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discussion of viscosity, I could still obtain an intuitive qualitative evaluation of the 

viscous effect.  

 

The flow above the boundary layers near the solid surfaces is considered here. The 

Navier-Stokes equation on the horizontal direction could be written in the self-similarity 

form: 

 
2

2

0

1

Re

pCdF dF d F
X F

dX dX X dX


− + + =


 (4.52) 

where 

 
( )

0Re
U Ut Ul

L 
= =  (4.53) 

is defined as the Reynold’s number in this self-similarity system, and ν is the kinematic 

viscosity. As it is intentionally expressed in Equation (4.53), l(t) is regarded as the 

representative length in this self-similarity system. l(t) represents the range that the 

impingement event could influent, and its scale is proportional to time t. Therefore, from 

Equation (4.52), it could be understood that the viscosity term leads the pressure gradient 

to infinity when ( ) 0l t →  but it will rapidly fade away when l(t) becomes large. The 

kinematic viscosity is a small constant number for many fluids, including water (at the 

order of 10-6 m2/s). Therefore, if the magnitude of U2t is significantly larger than the order 

of ν, the viscous effect could be neglected. In many laboratory experiments and 

engineering works, the magnitude of U is usually larger than 100 m/s. It means that if the 

order of t is larger than 10-5 s, the value of Re0 will become small enough to annihilate 

the influences from viscosity. Numbers of authors have reported that the impact pressure 

peak generated by a water surge usually occurs at the order of 10-3 s after the first contact. 
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Accordingly, it could be said that the impact pressure is not governed by viscosity but by 

the advective terms in the Euler’s equation.  

 

Here, I have to emphasize that the above discussion is barely based on the analytic 

solutions obtained from the simplified Euler’s equation, and it is by no means a rigorous 

quantitative investigation on the viscous effect. However, under the assumption that 

XXF    for any 0L X  , it still proved that the viscosity term does not significantly 

affect the impact pressure. 
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Chapter 5 

Numerical verifications 

 

 

5.1 Introduction 

 

  This chapter provides us with some numerical verifications on the results obtained in 

Chapter 3 and 4, using a reliable CFD (Computational Fluid Dynamic) software.  

 

  In Chapter 3 and 4, I have investigated the stochastic characteristics of surge-induced 

impact pressure by laboratory experiments and have proposed an analytic solution for the 

physics of the surge impact phenomenon. However, as the surge impact is a highly 

transient process, a number of the results obtained from the analytic solution could not be 

easily verified by laboratory works, especially in the vicinity of the wall. Besides, due to 

this transient nature of surge impact, I was also unable to investigate the complex 

turbulent flows combined with the effects of viscosity in laboratory works.  

 

  The issues above-mentioned have to be handled with numerical methods. As 

introduced, with the increasing capability of computers, many powerful CFD tools have 

been developed to evaluate the fluid-induced impact pressure onto solid surfaces under 

various physical conditions. In this chapter, I use a reliable commercial CFD tool, Flow-

3D 10.3, to investigate the velocity and pressure fields in the vicinity of the wall with a 

dam-break model. I rebuild the flume used in Chapter 3 with the exact same scale in Flow-

3D and involve viscosity and turbulence into the calculations. With the results of the 
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numerical computations, I could verify the soundness of the discussions written in 

Chapter 3 and 4. 

   

  Section 5.2 introduces some basic information about Flow-3D. As it is a commercial 

software, some detailed mathematical formulations and computational codes are not open 

to users. However, there are still many general descriptions of the computation process 

provided by the producer. Section 5.3 presents the comparisons between the numerical 

data with the results of the velocity and pressure fields obtained from Chapter 4 in inviscid 

flows. The soundness of the self-similarity method is carefully verified, showing that this 

method could yield reasonable results which generally agree with the numerical data. 

Section 5.4 presents the numerical calculations where viscosity and turbulences are 

involved. The comparisons between inviscid and viscous flows are demonstrated, and the 

applicability of the theory proposed in Chapter 4 is revisited there.   
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5.2 General descriptions of the numerical tool 

 

Flow-3D is known as one of the CFD models for calculating small-scaled fluid motions, 

and it is used in the present study to simulate dam-break flow and the impact pressure it 

induces on a vertical wall in a small flume. This CFD model is produced and distributed 

by Flow Science Inc., and it includes various physical models, e.g., shallow water model, 

turbulence, cavitation, viscosity, homogeneous and adiabatic bubbles, porous media, 

sediment scour, and surface tension. In Flow-3D model, water surface is simulated by the 

VOF (Volume of Fluid) method. Flow equations are solved numerically using finite-

difference (or finite-volume) scheme. The computation area in Flow-3D is subdivided 

into fixed rectangular meshes.  

 

One of the most attractive characteristics of Flow-3D is the so-called FAVORTM 

(Fractional Area-Volume Obstacle Representation) model used for constructing meshes 

near the solid boundary. This particular model became the main reason why I chose to 

apply this CFD tool to the present study. It has been shown that using Cartesian meshes 

for the sharply curving solid boundaries can result in a substantial loss of momentum in 

transient flow (Mampaey and Xu 1995). In the present study, as I consider the surge-

induced impact pressure near the toe of a vertical wall where the solid boundary abruptly 

changes its direction, it is reasonable to ask if Flow-3D suffers from numerical flow losses 

too. The answer turns to be no. The FAVORTM model eliminates sharp direction changes 

by smoothly blocking out fractional portions of grid cell faces and volumes. It also has a 

collection of special algorithms for computing interfacial areas, evaluating wall stresses, 

enhancing numerical stability, and for computing advection along solid boundaries. 
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Therefore, it could be said that Flow-3D is an appropriate tool to investigate the velocity 

and pressure fields in the vicinity of the wall. 

 

  According to the user manual, the general forms of mass conservation law and 

momentum conservation law in a Cartesian coordinate system (x1, x2, x3) used in Flow-3D 

are written as 

 ( ) 0i i

i

u A
x


=


 (5.1) 
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 (5.2) 

where ui and uj are the velocity components in the i and j directions. Ai and Aj are the 

fractional areas open to flow in the i and j directions. VF is the volume fraction of fluid in 

each mesh. gi is the gravitational force in the i direction. fi is the diffusion term in the i 

direction. The equations of fluid motion are closed with the standard two-equation model 

(k-e model) or the LES (Large Eddy Simulation) model for turbulence closure.  

 

  Some representative parameters of the water used in the numerical calculations are 

listed in Table 5.1. Note that I here assume that all of these parameters are constant during 

the entire dam-break and impingement processes. Water is regarded as an incompressible 

fluid here due to the existence of free water surface.  

 

Table 5.1 Representative parameters of water used in numerical calculations 

Temperature (K) Density (kg/m3) Dynamic viscosity (mPa・s) Surface tension (mN/m) 

293.2 998.2 1.002 72.75 
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5.3 Verifications of the analytic solution  

 

In order to directly compare the numerical results with laboratory data and the theory, 

I rebuild the flume used in Xie and Shimozono (2022) with the same scale in the Flow-

3D. Four experimental cases considered in the laboratory works are then simulated 

numerically. The Euler’s equation has been selected as the governing equation as I need 

to compare the numerical data with the theoretical solutions of the velocity and the 

pressure fields.  

 

I conduct the calculations in the x – y plane without considering the third dimension 

(by setting only one mesh in the third dimension). The mesh size on the x – y plane is set 

to 0.5 × 0.5 mm (the discussion on if this mesh size is small enough is provided in 

Appendix C). The calculation time step is shorter than 
54 10− s (for the impingement 

process, it is no more than 
52 10− s), and the output time step is 0.001 s for all cases. The 

following Figure 5.1 presents the typical dam-break flow generated by the present 

numerical model (H=12 cm), where the color shade represents the magnitude of the 

horizontal velocity component.  
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Fig. 5.1 Fluid motion of inviscid dam-break flow (H = 12 cm) 0.033 s, 0.133 s, 0.233 s, 

0.333 s, 0.367 s, 0.433 s and 0.467 s after the water column starts collapsing (from top 

to bottom). Lengths are in m and velocity in m/s. 

 

Compared with Figure 3.3, it could be understood that the surge front presented in Figure 

5.1 obviously travels at a higher speed than the actual dam-break flow. This is due to the 

absence of viscosity and other dissipative factors. This issue will be discussed in a later 

section. However, we could still use the numerical data obtained from this inviscid dam-

break flow to verify the soundness of the analytic solution proposed in Chapter 4, as all 
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the physical parameters evaluated here will be presented in their dimensionless forms. 

Having said this, I have to remark here that Figure 5.1 has proved that the inviscid flow 

is not a reasonable approximation for describing the propagation of dam-break flows, 

although there is still a possibility that it could be utilized to evaluate the physics during 

a localized impingement event.  

 

 

5.3.1 Velocity field 

 

To verify Equation (4.22) and the self-similarity assumption, I obtain the numerical 

data of the velocity field right after the arrival of surge on the wall (from t=0.003 s) near 

the bed. The following figures show the comparison between numerical results and the 

theoretical curves provided by Equation (4.22) in different cases.   
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Fig. 5.2 Comparison between numerical data of ( )F X  and the theoretical results 

(from top to bottom, H=8 cm, 10 cm, 12 cm and 14 cm)  
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In Figure 5.2, the plots end at the locations where the differences of F(X) are less than 

1 % between a plot and the one on its left-hand side. I accordingly regard the values of X 

of these locations as L here. In Figure 5.2, the plots tilt upward when t becomes large. 

The value of L also shrinks with the increment of t. It is expected that for large t, the area 

S mentioned in Equation (4.45) will decrease to zero eventually. In other words, the 

magnitude of Cpw (t) would approach 0.5 which is the well-known value for steady flow. 

The obvious difference between the impact pressure and the steady pressure proved that 

it is indeed necessary to take the unsteady term into account when considering this 

transient problem.  

 

On the other hand, the theoretical curves provided by Equation (4.22) succeeded in 

predicting the basic tendency of the plots, especially near the wall where the plots 

perfectly satisfy ( )0 2F  = −  in each case (see Figure 5.3 and also refer to Equation 

[4.18]). This fact implies that the self-similarity assumption is reasonable when solving 

this impingement problem without considering the effects of viscosity and gravity. 

However, it could also be seen that there are apparent differences between the theory and 

the plots near X=L. One of the straightforward reasons is that the surge velocity at X=L is 

not simply a constant number, but gradually changes along the surge. Therefore, a theory 

using constant incident surge velocity will inevitably generate errors when predicting the 

velocity field near X=L. Moreover, as mentioned in Chapter 4, I only applied the boundary 

conditions for ( )F X  and ( )F X  on X=L. This also significantly affects the accuracy 

of the theory there.  
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Fig. 5.3 Comparison between numerical data of ( )F X  and the theoretical results 

(H=8 cm, 10 cm, 12 cm and 14 cm, t=0.003 s) 

 

  Figure 5.4 and 5.5 present the numerical calculation results of horizontal velocity 

component G (X, Y) and total velocity V (X, Y) for the case where H=8 cm when t=0.003 

s, combined with the theoretical curves of them provided by Equation (4.34) and (4.35). 

Figure 5.4 clearly demonstrates that the theoretical curves of G (X, Y) fit the numerical 

data quite well near the wall but generate some errors near X=L for the same reason 

explained in the discussion of F (X). In Figure 5.5, we could see that the theoretical curves 

clearly illustrate the tendency of the numerical data, that is, the magnitude of V (X, Y) 

decreases at first near X=L but increases near the wall. These two figures proved that the 

analytic solution proposed in Chapter 4 is not only applicable to the region infinitely close 

to the bed ( 0Y → ), but also, to a certain extent, valid for finitely small Y.  
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Fig. 5.4 Comparison between the numerical data of G (X, Y) and the theoretical curves 

provided by Equation (4.34), H=8 cm 

 

 

Fig. 5.5 Comparison between the numerical data of V (X, Y) and the theoretical curves 

provided by Equation (4.35) 
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  Figure 5.6 presents the dimensionless vorticity distribution, which is defined as 

 
F G

t
Y X


 

 = − =
 

 (5.3) 

for the case where H=8 cm near the bed. It could be understood that, as predicted in 

Chapter 4, the vorticity holds very large value near the wall during the impingement. 

Therefore, we can conclude from this figure that the velocity potential theory is not 

applicable for surge impingement, even when the viscosity is neglected. The vorticity 

fades to zero for X=L, showing that the incident dam-break flow is truly irrotational and 

the vorticity is assuredly generated by the vertical wall.  

 

 

Fig. 5.6 Distribution of dimensionless vorticity with H=8 cm 

 

  In this sub-section, I compared the theoretical solution of F (X), G (X, Y) and V (X, Y) 

with the numerical data provided by Flow-3D using Euler’s equation as the governing 

equation. The assumption of self-similarity has been proven reasonable for inviscid surge 

impingement. I have also rebutted the usage of velocity potential in the surge 
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impingement problem by investigating the vorticity distribution near the wall. Generally, 

the theory agreed with the numerical data quite well near the wall but deviated from the 

numerical plots near X=L. This is mainly due to the boundary conditions used in the 

analytic solution and the variation of the incident surge front velocity. Nevertheless, the 

viscosity and turbulence were neglected in this sub-section, and their effects will be 

studied in a later section.    

 

5.3.2 Pressure field 

 

  In this sub-section, I extract the numerical pressure fields when the peak pressures 

appeared at the wall from Flow-3D. For the four selected cases in the present study, the 

following Figure 5.7 demonstrates the numerical results of Cp (X) for  ,0X L  and the 

theoretical curve provided by Equation (4.44) (the location of L follows the same 

definition described in the previous sub-section). 
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Fig. 5.7 Comparison between the numerical data of Cp (X) and the theoretical curve 

provided by Equation (4.44) 

 

It could be understood from Figure 5.7 that the theoretical curve predicts the basic 

tendency of pressure field over [L, 0], although it slightly underestimates the magnitude 

of the pressure in general. The horizontal gradient of Cp (X) at the wall is found to be zero 

both in the numerical plots and the theoretical curve. On the other side, X=L, the 

horizontal gradient of pressure also turns to zero. These are the expected results of 

Equation (4.44). The underestimation of the theory is a consequence of the previously 

mentioned mismatches in the velocity field discussion (refer to Figure 5.2). As for the 

impact coefficient on the wall, although the numerical plots still scattered around 0.8~1.0, 

Equation (4.44) (or simply Equation [4.47]) agreed with them with errors of around 10%. 

The numerical results of the Cpw0 are located between the median and the third quartile in 

Table 3.1 for P0. The theoretical value is also located in this interval. 
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5.4 Effects of viscosity and turbulence 

 

  Flow-3D allows users to apply various turbulence models to the simulations. In this 

section, I apply the standard two-equation model (k-e model) to induce turbulence into 

the viscous fluid motions, taking the case of H=8 cm as an example. The parameters listed 

in Table 5.1 are used here. The mesh size and time steps are the same as used in Section 

5.3. The bed and the walls of the flume are assumed to be smooth enough, although the 

non-slip boundary condition is applied there.  

 

Figure 5.8 (1) and (2) show the typical dam-break flow generated under this viscous 

model (H=12 cm here for the comparison with the laboratory records) where the color 

shade represents the magnitude of horizontal velocity component in Figure 5.8 (1), and it 

represents the turbulence energy distribution in the flow in Figure 5.8 (2). Compared with 

Figure 5.1, it could be easily understood that (i) there is an evolving turbulent region 

generated by the viscous shear flow near the solid surfaces (see Figure 5.8), and (ii) the 

viscous surge front velocity of is obviously slower than the inviscid one. From the view 

of the arrival time of surge front on the wall, it could be said that the viscous flow is closer 

to the actual surge-like flow generated in the laboratory works (refer to Figure 3.3). 

Compared with the kinetic energy of the mainstream (which is proportional to U2), the 

turbulent kinetic energy is one order smaller.   
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Fig. 5.8 (1) Fluid motion of viscous dam-break flow (H = 12 cm) 0.033 s, 0.133 s, 0.233 

s, 0.333 s, 0.433 s and 0.467 s after the water column starts collapsing (from top to 

bottom). Lengths are in m and velocity in m/s. 
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Fig. 5.8 (2) Fluid motion of viscous dam-break flow (H = 12 cm) 0.033 s, 0.133 s, 0.233 

s, 0.333 s, 0.433 s and 0.467 s after the water column starts collapsing (from top to 

bottom). Lengths are in m and turbulent energy in m2/ s2. 

 

 

5.4.1 Velocity field  

 

Figure 5.9 presents a comparison of the distribution of the horizontal velocity 

component near the bed right before the impact (H=8 cm) in inviscid and viscous flows. 

The data of the viscous flow is obtained at the location y right above the bottom boundary 

layer following the so-called “95% rule”, that is, 
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where yi is the value of y at i-th cell above the bottom for a specific x. In the present case, 

we have i=2 or 3 almost everywhere for the viscous flow. It could be understood that the 

water particle velocity in inviscid flow is quite close to the theoretical value proposed by 

Ritter (1892), and the difference is due to that we do not have a water column with infinite 

length at the initial stage (especially on the left-hand side of Figure 5.9). The surge front 

velocity of the viscous flow is, in contrast, significantly below the theoretical value, but 

it is close to the experimental results described in Section 3.3.3. Therefore, it is proved 

again here that the viscous flow in the present study is a more reasonable approximation 

of the actual dam-break flows in laboratory works, while the theory and the inviscid 

numerical results overestimate the velocity of water particles in the surge.   

 

 

Fig. 5.9 Particle velocity near the bed in inviscid and viscous flows right before the 

impact, combined with the solution of Ritter (1892)  

 

Figure 5.10 shows the comparison between the velocity fields under inviscid and 

viscous flow conditions in the case of H=8 cm, right after the impact (from t=0.003 s). 
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The velocity fields of the viscous flow were obtained outside the bottom boundary layer 

following the “95% rule”. From Figure 5.10, we can confirm a profound tendency in the 

numerical data. The X-F curves of the viscous flow do not tilt up like those curves of 

inviscid flow. At first (t=0.003 s), the velocity fields of inviscid and viscous flows are 

quite close to each other, showing that the viscosity and turbulence have not brought 

significant affections at this stage. However, with t increases, the curves behave in 

different ways. The curves for viscous flow present a notable long-life self-similarity, 

even compared to the curves of inviscid flow. This fact implies that it might also be 

possible to derive a self-similarity solution for the velocity field when viscous terms are 

considered in the governing equation. 

 

 

Fig. 5.10 Comparison between the numerical data of F (X) in viscous and inviscid 

flows during the impingement 
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  In this sub-section, I have compared the velocity fields between viscous and inviscid 

flows. It has been shown that the viscosity and turbulence significantly affected fluid 

motion. Therefore, the comparison of the pressure field has also become necessary.  

 

 

5.4.2 Pressure field 

 

Figure 5.11 presents the comparisons of Cp (X) between the viscous and the inviscid 

flows. The figure clearly demonstrates that although viscosity and turbulence largely 

suppressed the magnitude of impact pressure in the viscous flow, the values of Cp (X) 

agreed quite well under the two flow conditions. However, in Figure 5.12, compared with 

the laboratory data, the numerical value of the impact pressure on the wall, ρU2Cpw0, is 

obviously larger than the median value (even larger than the 95% percentile suggested by 

Equation (3.6)) in the inviscid flow. On the other hand, the impact pressure obtained in 

viscous flow matches the laboratory data more reasonably. As it is proved in Appendix A, 

the laboratory data obtained in the laboratory works only contain minor errors. Therefore, 

the pressure evaluations of Flow-3D involving viscosity and turbulence have better 

consistency with reality.  
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Fig. 5.11 Comparison between the numerical data of Cp (X) in inviscid and viscous 

flows, with the theoretical curve provided by Equation (4.44) 

 

 

Fig. 5.12 Comparison between the numerical data of impact pressure in inviscid and 

viscous flows, with the theoretical curve provided by Equation (4.44).  
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  In this Chapter, I verified the results obtained from previous chapters and presented 

some very rudimentary investigations on the effects of viscosity and turbulence using a 

CFD tool, Flow-3D.  

 

For the inviscid simulations, although the fluid motions are different from what have 

been observed in laboratory works, I utilized the dimensionless forms of the numerical 

data to conduct some verifications. The results of the velocity field supported the self-

similarity assumption used in Chapter 4, which consequently resulted in pressure fields 

being consistent with Equation (4.44). The impact coefficient on the vertical showed the 

validity of Equation (4.47).  

 

 

However, the calculations using viscous flow showed that the effects of viscosity and 

turbulence are possibly not negligible when discussing the actual fluid motions. The 

simulation results of the viscous dam-break flow were generally consistent with the 

laboratory records in terms of fluid motions. On the other hand, although the viscous flow 

demonstrated velocity fields that were significantly different from those of inviscid flows, 

the distribution of Cp (X) under these two flow conditions was very similar. 
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Chapter 6 

Conclusion 

 

 

To sum up the main results obtained in the present study, the following concluding 

remarks can be made.  

 

1. The laboratory experiments and a stochastic analysis were conducted to evaluate 

the impact pressure generated by water surge impingement onto a vertical wall. The 

impact coefficient on the wall, a highly stochastic parameter, was reasonably 

modeled by the Fréchet distribution. A predictive formula was proposed for the 

stochastic distribution of the impact coefficient on the wall, which involved only 

the surge front velocity right before the impact as the governing factor. The surge 

front slope was proved not to have significant affection on the impact pressure near 

the bed. 

 

2. An analytic solution was proposed to elucidate the physics of surge impact. A well-

posed physical model was built with reasonable initial and boundary values. Under 

the assumption of self-similarity, an analytic solution of the velocity field near the 

bed was derived. The pressure field in the vicinity of the wall was then studied, and 

the impact coefficient on the wall, which is a finite constant number, was explicitly 

calculated. It was shown that the surge front velocity is theoretically the governing 

factor, and the predicted value of the impact pressure is consistent with the 

laboratory data and an engineering guidebook.  
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3. Numerical evaluation for the process of surge impact was carried out with a CFD 

software, Flow-3D. Under the inviscid mode, the numerical results of the velocity 

and pressure fields agreed with the analytic solution quite well, suggesting that the 

self-similarity assumption is reasonable for studying surge impact for inviscid flow. 

Under the viscous mode, the effects of viscosity and turbulence were investigated. 

The simulation results were consistent with the laboratory records. It was also 

found that although the velocity field in viscous flow was quite different from the 

one in inviscid flow, the impact coefficients showed a good agreement.  

 

There are some recommended future works based on this study. (1) In the present study, 

impact pressure is the main topic. However, in actual engineering works, impact force 

(the integral of pressure over a certain area) is also a significant physical parameter which 

has to be evaluated. Furthermore, the impact force could generate tremendous bending 

moment on the structure. This is another important issue in structure designs. (2) As 

mentioned in Chapter 5, it is worth attempting to propose a self-similarity solution for the 

impact pressure considering viscous and turbulent terms. (3) Aeration in the incident flow 

is frequently observed in the surge flow generated by wave breaking. Therefore, 

laboratory experiments on the aerated surge impact might be fruitful.  
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Appendix A 

Variability of the measured impact pressure by the sampling rate  

 

 

In Chapter 3, I used pressure sensors to measure the impact pressure on the vertical 

panel. The sampling rate of the pressure measurement was set to 500 Hz, which was 

relatively low compared to previous studies. Here, I investigate how the sampling rate 

affects the impulsive parameter using available data from a previous study. I used a 

pressure dataset obtained by Lobovský et al., (2014) with a sampling rate of 20,000 Hz. 

The dataset consists of repeated pressure time series of 100 runs measured on a vertical 

panel under a similar experimental setup to mine (H = 0.3 m). I re-sampled the dataset at 

500 Hz and compared the stochastic characteristics of the impact pressure between the 

original and re-sampled datasets. Figure A.1 plots the cumulative percentile distributions 

of the impact pressure, and Table A.1 summarizes representative statistic parameters.  

 

   

Fig. A.1 Comparison of the cumulative percentile distribution of impact pressure 

between the original data of Lobovský et al. (2014) and the re-sampled data using a 

sampling rate of 500 Hz 
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Table A.1 Comparison of percentiles of impact pressure between the original data of 

Lobovský et al. (2014) and the re-sampled data using a sampling rate of 500 Hz 

Percentiles Lobovský et al. (2014) (kPa) Re-sampled data (kPa) 

5% 7.617 7.588 

25% (first quartile) 8.669 8.531 

50% (median) 9.110 8.954 

75% (third quartile) 9.753 9.348 

95% 11.54 10.71 

 

These results suggest that although some extremely large peaks were not captured with 

the sampling rate of 500 Hz (less than 5%), the difference between the two distributions 

was lower than 5% in the lower percentile range. Also, the fat-tailed effect was commonly 

observed in the two distributions (according to the 5%, 50%, 95% percentiles of the data). 

From this comparison, we could say that the sampling rate of 500 Hz was able to capture 

the basic stochastic characteristic of the impact pressure, although the measured data tend 

to underestimate extremely large peaks.  

 

Additionally, Figure 3.16 showed that the empirical stochastic distribution agreed with 

the data collected from various literature quite well. Many of the authors used very high 

sampling rates to record impact pressure peaks. This fact also supports that the validity 

of the impact pressure distribution obtained in the present study.  
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Appendix B 

Relationships between the impact pressure  

and the correlation coefficients 

 

 

In this appendix, the correlations between the time history curves presented in Figure 

3.6 and 3.7 will be discussed in detail. As mentioned in Chapter 3, the curves agree each 

other in terms of the general shape. However, quantitative evaluations have to be carried 

out to ensure that these curves assuredly have good correlations, in order to ensure the 

reliability of the data. Two significant physical parameters, Cp and tanθ, have been mainly 

discussed in this thesis. Therefore, the relationships between the correlation coefficients 

among the data curves and these two parameters are investigated here. Through this 

appendix, we could understand that Cp is more significant than tanθ even in terms of the 

entire time history span.  

 

Figure B.1 and B.2 present the relationship between Cp and the correlation coefficient 

2

pCR for P0 and P1. Here, the definition of 
2

pCR  is that: the correlation coefficient between 

an arbitrary time history curve and the curve which provides the median value of Cp, 

within the range of Figure 3.6 and 3.7 (in practices, I use the curve of 52% percentile). 

From this comparison, we could clearly figure out how influential the Cp to the entire 

time span.  
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Fig. B.1 Relationship between Cp and 
2

pCR at P0 (H=8, 10, 12 and 14 cm)  

 

 

Fig. B.2 Relationship between Cp and 
2

pCR at P1 (H=8, 10, 12 and 14 cm)  

 

From these figures, it could be understood that, both at P0 and P1, the values of 
2

pCR  

decrease slightly when Cp increase. This means that a larger impact coefficient could 

influence the entire time history curve, driving it deviate from the curve which provides 

the median value of Cp. One of the possible reasons is that a large impact pressure triggers 
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a high splash in the run-up water. The significant difference in the fluid motion after the 

impact will influence the pressure evolution after the impact pressure peak, until the run-

up water is yanked back by gravity.  

 

  Figure B.3 and B.4 present the relationship between tanθ and the correlation 

coefficient 2

tanR   for P0 and P1. Here, the definition of 2

tanR    is that: the correlation 

coefficient between an arbitrary time history curve and the curve which provides the 

median value of tanθ, within the range of Figure 3.6 and 3.7 (similar to 
2

pCR , I use the 

curve of 52% percentile). From this comparison, we could clearly figure out that tanθ has 

no significant influence from the view of the entire time span.  

 

 

Fig. B.3 Relationship between tanθ and 
2

tanR   at P0 (H=8, 10, 12 and 14 cm) 
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Fig. B.4 Relationship between tanθ and 2

tanR   at P1 (H=8, 10, 12 and 14 cm) 

 

From Figure B.3 and B.4, we could not see any conspicuous correlation between tanθ and 

2

tanR   as the plots are almost horizontally distributed in the figures. The reason is that 

although the slope of the incident surge front could slightly affect the impact pressure 

peaks (as discussed in Chapter 3), it could not affect the pressure evolution during the 

run-up process. The dominant factors of the run-up pressure are the velocity of the 

subsequent surge flow and the water depth there.  

All in all, we could say that the experimental data have agreed each other well and the 

repeatability is satisfactory, as the values of the correlation coefficients are generally quite 

high throughout Figure B.1-B.4. This fact suggests that the data collected in the laboratory 

works are reliable in terms of repeatability.  
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Appendix C 

Verification of the mesh size used in the numerical calculations 

 

 

Figure 11 demonstrates the numerical results of the velocity field using mesh size of 

0.5 ×0.5 mm and 1.0×1.0 mm at t=0.003, 0.006 and 0.010 s with H=8 cm. This 

comparison shows that the choice of mesh size brought no significant difference here, 

ensuring that the mesh size of 0.5 × 0.5 mm was a reasonable choice for the calculations, 

given that the mesh size is needed to be tiny enough to describe an impingement event.  

 

 

Fig. C.1 Comparison between the velocity fields using mesh sizes of 0.5 ×0.5 mm and 

1.0×1.0 mm with H=8 cm 
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