
 

 

博士論文 
 

 

 

 

 

 

 

 

Study on Statistical Inference for Unknown Sources of 

Atmospheric Pollutants in Urban Environment 

（都市環境における未知空気汚染発生源の 

確率的推定に関する研究) 

 

 

 

 

 

 

 

 

賈 鴻源 



 

 



Abstract of dissertation

 

 

i 

 

Abstract of dissertation 

 

This dissertation studies the statistical inference method for an unknown source of 

atmospheric pollutants in the complicated urban environment based on Bayesian inference. To 

enable the inference method to handle the characteristics of the urban area, the main works of 

the dissertation include: extending the inference’s ability to estimate the geometry of the 

unknown source; increasing the estimation accuracy by introducing a sophisticated dispersion 

model into the inference; proposing a sensor configuration optimization method to improve the 

quality of measurements and guide the sensor network design. 

 

Nowadays, a high level of urbanization results in a considerable amount of people 

gathering in the urban area, where a safe and healthy atmospheric environment has never been 

more important. However, unexpected atmospheric pollution emitted from unknown sources 

sometimes occurred because of terrorism, nuclear accidents, illegal industrial emission, and 

other emergencies, which is a serious threat to humankind and the earth’s environment. 

Therefore, it is important to identify the unknown source as soon as possible after these 

dispersion emergencies happened. Until now, intensive research has proposed various methods 

to realize source term estimation (STE). The basic framework of STE is using the estimation 

algorithm to find the true source based on the measurements obtained during the emergency 

and the source-receptor relationship (S-RR), which is the concentration prediction modeled in 

advance. However, the existing methods are still not capable enough of handling complex 

scenarios in the urban environment because of its unique features as follows. 

First of all, possible sources of pollutants are diverse in the urban environment. Although 

the previous research has considered mobile sources and multiple sources, their estimation 

algorithm always assumed that the unknown source is an ideal point without geometry. Actually, 

some sources have non-negligible shapes or volumes, which may fail the estimation based on 

the point assumption. It is important to extend the STE method for geometry estimation. 
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Besides, the dispersion mechanism of atmospheric pollutants is extremely complicated in 

the urban environment. The transportation of pollutants involves complex turbulence caused by 

buildings, equipment, moving objects, and heat discontinuity. However, the existing simulation 

techniques for S-RR are still limited in steady models and cannot accurately predict turbulent 

dispersion. Since STE relies on S-RR as the prior prediction of pollution dispersion, it is 

necessary to introduce a precise modeling technique for the S-RR in order to promise the 

accuracy of STE. 

What’s more, ideal concentration measurements are difficult to acquire in cities because 

of the dense building distributions and land property limitations. Sensor configurations used in 

real life are nearly random or empirical, but their effectiveness to all possible sources has no 

promise. Because the performance of STE is highly dependent on the quality of measurements, 

it is meaningful to develop a sensor configuration optimization method to guide the sensor 

deployment and provide high-quality measurements. 

Based on this research background, this dissertation aims to develop a statistical inference 

method for STE in the urban environment by dealing with 3 unsolved problems mentioned 

above. Because the complexity of real atmospheric pollution is out of the range of a single 

dissertation, the research subject is limited to one single source with constant emission strength 

and fixed location in a statistically steady turbulent flow field in a neighborhood-scaled urban 

area. The main research contents are summarized below. 

As a beginning, a new method was proposed to estimate the geometry of unknown sources 

based on the super-Gaussian function. The coefficients of this function can control its 

distribution to approximate common shapes: line, rectangular, and ellipse. These coefficients 

are added into Bayesian inference to realize the geometry estimation. The applicability of the 

proposed method was first confirmed using a numerical experiment of an ideal boundary layer. 

The method successfully inferred that the source is line-like without any prior knowledge. 

Based on this case, the effects of different sensor configurations on the line source estimation 

were discussed. Because the line source contained more geometric information than point 

sources, the conventional sensor configuration for the point source may fail in the line source 

estimation. It was found that the requirements on the sensor configuration become higher. Both 

the sensors near the source and null-measurement sensors are indispensable. 
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To examine the robustness of the proposed method against measurement and modeling 

errors, the second case of a simplified urban square with wind tunnel experiment measurements 

was conducted. The line source was successfully identified by the proposed method again. By 

comparing to the conventional STE method with ideal point assumption, it is confirmed that 

the proposed method can not only provide the geometry estimation but also reduce the inference 

errors caused by the point source assumption. Hence, it is important to include the geometry 

estimation when the geometry of the source has unignorable effects on the dispersion. 

Then, to improve the accuracy of STE in complex urban applications, large-eddy 

simulation (LES) was introduced to model the S-RR by unsteady adjoint equations. The LES 

of adjoint equations has rarely been conducted in the literature because the adjoint equation 

describes an inverse dispersion process. The time-series flow field data of the entire domain 

must be produced by forward simulation and stored in advance, thus the volume of data 

simulated with LES is too large for practical applications. This research proposed to use the 

wavelet-based compression method to mitigate the storage pressure. The LES flow field can be 

compressed into a portable database to make the simulation of unsteady adjoint equations easier. 

As the first step, to evaluate the accuracy of compression and usefulness of the compressed 

database, a turbulent flow field in a block-arrayed building group model was simulated by LES 

and compressed into a database by the wavelet-based compression method. The influence of 

compression on the quality of the data was checked from the perspectives of a single snapshot 

and time series. It was confirmed that about 100 times compression can still satisfy the 

requirement of flow field visualization and afterward simulation. Large-scaled turbulent 

structures were well preserved after compression, and the dispersion simulation can be reliably 

reproduced with compression data. Therefore, it is reasonable to expect that the unsteady 

simulation of adjoint equations can be realized based on the compression database. 

Afterward, the compression database above was used in the LES of adjoint equations to 

model S-RR, which was combined with Bayesian inference as a new STE method. The 

concentration measurements obtained from a wind tunnel experiment were applied to testify 

the performance of the proposed method. As a comparison, another STE was also conducted 

with a conventional method, where steady adjoint equations were simulated with the Reynolds-

averaged Navier-Stokes (RANS) model. The results showed that the modeling of S-RR and the 
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accuracy of STE were significantly improved by the LES of the adjoint equation. The 

complicated turbulent flows caused by buildings destroyed the reliability of the conventional 

RANS model. Although the proposed method needs more computational resources, to 

effectively perform STE in the complicated urban environment, it is valuable to apply LES for 

adjoint equation simulation. 

At last, a sensor configuration optimization method for STE was proposed by the design 

of an objective function and application of the simulated annealing method. The objective 

function was set as the information entropy of the spatial distribution of the adjoint 

concentration field. Its ability to represent the measurement ability of sensor configurations was 

proved from the views of mathematics and physical meanings. Simulated annealing was applied 

to find the optimal configuration which owns the largest value of the objective function. The 

proposed method was utilized to design an optimal sensor configuration for the block-arrayed 

building group model. The performance of the optimal configuration in STE was compared to 

uniform and random configurations through estimations for 25 unknown sources. The results 

revealed that the accuracy of STE is related to the entropy contained in the adjoint concentration 

of the configuration such that the design of the objective function is reliable. The optimal 

configuration outperforms the other two in STEs. It is valuable to use the proposed method to 

guide the configuration design in real applications. 
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Abbreviations 

 

CDF9/7 : Cohen–Daubechies–Feauveau 9/7 

CFD : computational fluid dynamics 

DNS : direct numerical simulation 

GDH : gradient diffusion hypothesis 

LES : large-eddy simulation 

MCMC : Monte-Carlo Markov chain 

MHMC : Metropolis-Hastings within Gibbs algorithm 

PDF : probability density function 

PSD : power spectrum density 

RANS : Reynolds-averaged Navier-Stokes 

RHS : right hand side 

SA : simulated annealing 

SCO : sensor configuration optimization 

SGF : super-Gaussian function 

SGS : sub-grid scale 



Nomenclature   

 

2 

S-RR : source-receptor relationship 

STE : source term estimation 

UAV : unmanned aerial vehicle 

WCM : wavelet-based compression method 

WD : wavelet decomposition 

WTE : wind tunnel experiment 
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Abstract 

 

 

This dissertation studies about statistical estimation method for an unknown source of 

atmospheric pollutants in the complex urban environment based on Bayesian inference. This 

chapter is an introduction of the dissertation including the research background, objective, and 

its structure. 
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1.1 Research Background 

1.1.1 Atmospheric pollution in the urban environment 

With the quick development of urbanization, the population is shifting from rural to urban 

areas. Until 2020, more than half of people in the world, over 4 billion, are living in urban areas 

(Fig. 1.1). Under this circumstance, it is important to keep a healthy atmospheric environment 

for such a massive population in urban areas. Meanwhile, the situation that massive population 

gathers in limited urban lands with extremely complicated infrastructures just causes frequent 

air pollution. 

 

Figure 1.1 The trend of the number of people living in urban and rural areas from 1960 to 

2020. (Data source: https://ourworldindata.org/urbanization) 

Some air pollutants are well-known by people due to media promotion. For example, 

carbon dioxide is a famous greenhouse pollutant for its leading effects on global warming. 

Sulfur oxides produced by various industrial processes often cause consideration environmental 

damages like acid rain. With the popularity of auto-mobile, nitrogen oxides get the public’s 

attention and become one of the main factors to the atmospheric pollution. The sources of these 

pollutants are known but are numerous or even infinite. They exist all around people in daily 

life. In recent years, with international consensus, people are dealing with these pollutants by 
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technological innovation, legal restriction, and pollution treatment. It has been reported that 

most pollutions are improving due to these actions.  

In contrast, another kind of pollution has different characteristics: (1) the source is single 

or finite but unknown; (2) the source does not commonly exist in the atmosphere but suddenly 

appears due to accidents and emergencies. This pollution is caused by the unexpected 

dispersion of atmospheric pollutants. Although the occurrence is relatively low, people still 

need a comprehensive countermeasure system to handle it owing to its high level of danger.  

1.1.2 Unexpected dispersion of atmospheric pollutants 

Unexpected dispersion of atmospheric pollutants jeopardizes the safety of humankind and 

the earth’s environment. These kinds of emergencies can be caused by terrorism. On 20 March 

1995, the most severe terrorism attack in Japan, the Tokyo subway sarin incident happened in 

the central districts of the city. The toxic gas killed 14 people and injured over 6000 people to 

varying degrees. Nuclear accidents also caused harmful unexpected dispersion. From 11 March 

2011 to 15 March 2011, the explosion of 4 reaction units in the Fukushima Daiichi Nuclear 

Power Plant released a large amount of radioactive contamination into the atmosphere and 

ocean. The harm caused by this dispersion accident is immeasurable and is still ongoing. 

Besides, illegal industrial emission also needs special attention. In the spring of 2019, Seoul 

suffered from its worst-ever atmospheric pollution that the concentration of PM2.5 reached 

almost 4 times the South Korean standard. The reason was found to be the illegal industrial 

emission of LG Chem and Hanwha Chemical, which has continued for over 4 years until the 

investigation. Apart from these remarkable emergencies, relatively small-scaled accidents like 

gas leaks and fire in the common life may also result in severe damage and require attention. 

One of the most dangerous properties of unexpected dispersion is that the source of 

pollutants is unknown at the beginning. People cannot evaluate the emergency or take effective 

countermeasures until they gain enough information about the source, which often costs 

considerable time and allows the exacerbation of the emergency. Therefore, it is important to 

identify the unknown source as soon as possible after the dispersion emergencies happened. 

For the realization of this target, the available knowledge generally includes discrete 

concentration measurements provided by limited sensors, meteorological conditions like wind 

speed and direction, and geographic information of the incident site. The problem that 
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identifying the information of the unknown source by utilizing this information is called source 

term estimation (STE), which is an ill-posed inverse problem with high nonlinearity, strong 

dependence on input data, and non-single solutions. 

1.1.3 Source term estimation 

In recent years, intensive research efforts have been devoted to proposing solutions for 

STE (Hutchinson et al., 2017). Existed methods can be divided into 2 directions by the type of 

sensors they rely on: mobile sensors and stationary sensors. The development of robotics and 

unmanned aerial vehicles (UAVs) attributes to the appearance of STE with mobile sensors. 

People can deploy several sensors after the emergency, and sensors can automatically track 

down the boundaries or sources of the contaminants. This concept was inspired by biological 

behaviors like swarms of beetles. The mobile sensors can communicate and cooperate to realize 

the route planning during STE (Zarzhitsky and Spears, 2005). However, the main problem of 

this direction is the immature techniques of robots and UAVs, which still have a long way to 

go before real applications. Besides, its applicability is also doubtful considering the strict 

regulation of UAVs in urban areas. 

The other direction, stationary sensor, is more mature and practical. Many cities already 

deployed measurement stations at different positions as civil infrastructures. They can provide 

the basic measurement: the time-averaged concentration of a period. Some stations can also 

provide advanced information like the time series of concentration and eddy covariance 

(concentration flux). As a result, more STE methods are based on stationary sensors than mobile 

ones, and this dissertation also focuses on the STE with stationary sensors as below. 

1.1.4 Elements in source term estimation 

There are three basic elements in the STE: measurement, source-receptor relationship (S-

RR), and estimation algorithm. Measurement is the foundation of STE and is provided by 

sensors. It dominantly affects the accuracy of STE and is dependent on the sensing strategies, 

equipment, and techniques, which means sensing in the real application is a complicated task 

and inevitably involved uncertainties. In the previous research, uniform and random sensors 

configuration are commonly used to evaluate the performance of STE methods.  

S-RR describes the relationship between a source and a sensor. It predicts the 

concentration measurement of one sensor when a source with certain strength appears 
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somewhere before the emergency by computational methods. Popular methods include the 

Gaussian plume model, adjoint equation model, and Markov chain model. Because knowledge 

of sources before the emergency is unavailable, as a prior database, S-RR should be able to 

count in a large number of possible sources, which is a high requirement for the calculation cost 

of methods. Meanwhile, since accurate S-RR is critical to a successful STE, the prediction 

accuracy of computational methods should be promised. It should be able to capture the 

influence of meteorological conditions and terrain characteristics on the dispersion.  

Gaussian plume model and Markov chain model satisfy the first requirement. By assuming 

an ideal dispersion in a homogeneous flow field, the Gaussian plume model predicts the 

concentration of a sensor with an algebraic equation, which is easy and fast to calculate. 

However, its reliability is vulnerable to real dispersion fields like buildings immersed into a 

flow. Markov chain model assumes that movements of pollutants among different zones follow 

a probability matrix, which can be calculated by computational fluid dynamics (CFD) 

simulation. Although CFD can bring some inhomogeneous information of flow field, to keep 

the calculation speed, the probability matrix is set as unchanged, which means the turbulent 

dispersion cannot be properly predicted. Therefore, neither the Gaussian plume model nor the 

Markov chain model can maintain the prediction accuracy when it comes to complex urban 

applications. 

Considering the main research interest of the thesis is STE in the urban environment, the 

adjoint equation model is used here to calculate S-RR. This model indeed needs more 

calculation resources than the other two models, but its prediction accuracy is much higher 

because the dispersion process is described as partial differential equations, which can 

theoretically deal with turbulent dispersion. With the help of CFD techniques, adjoint equations 

can be simulated to predict S-RR for complicated urban flow fields. 

The estimation algorithm finds the most credible source as the estimation result based on 

the measurements and S-RR. Because the estimation algorithm is executed right after the 

emergency, both the speed and accuracy are important. Existing methods can be classified into 

two frameworks: optimization and statistics.  

The optimization framework applies the objective function to evaluate each candidate, 

find a candidate that minimizes the value of the objective function and regards it as a unique 

solution. Different designs of the objective function and plenty of algorithms for minimization 
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have been developed. Optimization methods are often less computationally expensive than the 

statistical framework, and their convergence speed is faster. Despite that, sometimes their 

performance is highly dependent on the initial guess, which may cause strong unsteadiness. 

More importantly, the estimation is limited to a single solution. In real applications, the 

inevitable measurements errors in the sensing and numerical errors of S-RR modeling degrade 

the reliability of the single solution. The optimization may be misled by errors, yield a wrong 

estimation and the truth is ignored.  

In contrast, the statistical framework calculates the probability of each candidate to 

produce a probability distribution, and consequently, the noise of measurements and 

simulations can be reflected. In this case, more information like confidence intervals will be 

provided, and the truth is more likely to be noticed. Most of the statistical methods are based 

on Bayesian inference, where the posterior probability can be estimated based on the prior 

information and measurements. Because Bayesian inference can reflect the influence of noise 

on the estimation results, it is probable to apply it to the STE in the complex urban environment. 

Therefore, the Bayesian inference is selected as the basic estimation algorithm of STE in the 

thesis. 

1.1.5 Difficulty of source estimation in the urban environment 

Although plenty of STE methods, which combine different choices for the above three 

elements, have been proposed, it is still difficult to claim that the existed methods can handle 

complex reality problems in the urban environment. In fact, there is still large room for further 

development of STE because of the features of the urban environment as follows. 

First, possible sources of pollutants are diverse in the urban environment. They can be a 

point or shaped, fixed or moving, single or multiple. In the beginning, the estimation algorithm 

can only deal with a point source at a fixed position. Afterward, advanced algorithms were 

proposed to manage moving sources and multiple sources. However, little research is concerned 

about the estimation of geometry information of the source, which is also valuable for risk 

management and evaluation of seriousness. 

Furthermore, the complicated turbulence field and dispersion phenomenon in the urban 

environment brought a challenge to the accuracy of S-RR simulation. The turbulent complexity 

of the atmospheric boundary layer is increased further by buildings, equipment, transportation 
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systems, and heat discontinuity after it reached the urban area. Therefore, modeling the 

turbulence flow field and pollutants dispersion in the urban environment is troublesome. In 

recent years, with the development of computers and numerical simulation techniques, 

sophisticated CFD models like the large eddy simulation are proposed to reproduce unsteady 

turbulence fields. However, models for S-RR are still limited that the most accurate solution till 

now is the steady Reynolds-averaged Navier-Stokes, which may fail to accurately predict the 

dynamic properties of dispersion behavior. Thus, it is necessary to upgrade the simulation 

method of S-RR and improve the STE performance. 

Last but not least, ideal concentration measurements are difficult to acquire in the urban 

environment. Even though the existed STE methods perform well with uniform sensor 

configurations in the previous research, it is impractical to deploy a uniform sensor network in 

the urban area due to the irregular building distributions and land property. Actually, 

measurement stations in reality are closer to a random configuration, which is a consequence 

caused by check and balance of deployment difficulty and sensing efficiency. However, 

considering that unknown sources may appear anywhere in the city, a random configuration 

may cause considerable errors in the measurements of certain sources. It is meaningful to 

develop a sensor configuration optimization method to guide the sensor deployment. Thus, no 

matter where the unknown source of emergencies appears in the target area, the optimum sensor 

configuration can provide high-quality concentration measurements that help STE effectively 

identify the source, and consequently is an important part of the atmospheric pollution detection 

system. 

 

1.2 Research objective 

According to the introduction above, in order to protect the atmospheric quality and 

strengthen the defense ability of urban areas against dispersion emergencies caused by 

unknown sources, it is necessary to improve the performance of the current STE for the urban 

environment. It should be noted that this target cannot be accomplished only by one research 

given the extreme complexity of the urban environment. As one step of this process, this 

research mainly tried to realize three terms as follows: 

a) Extend the estimation algorithm’s ability to estimate the geometry information of common 



Chapter 1   

 

11 

sources in the urban area: point, line, rectangular, and ellipse.  

b) Apply large eddy simulation in the S-RR simulation and evaluate its effectiveness in STE. 

c) Develop a sensor configuration optimization method independent of the prior knowledge 

of unknown sources. 

Concentrating on the statistical STE problem, the above three improvements are made 

based on three elements as shown in Fig. 1.2.  

 

Figure 1.2. The relationship between basic statistical STE methodology and the research 

contents of the dissertation. 

 

1.3 Research problem 

The dispersion phenomena of pollutants are affected by many factors, including but not 
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limited to unsteady meteorological conditions, coupling of multiple sources, sources’ 

movement, fluctuating emission strength, and chemical reactions. Thereby, a comprehensive 

STE for the urban environment needs the efforts of a wide range of research. Considering that 

it is impossible to solve all these issues by single research, to focus on the current target and 

keep the conciseness, the author needs to limit the range of this thesis by some basic 

assumptions. The research problem is assumed to be the identification of one single source with 

constant emission strength and fixed location in a statistically turbulent flow field in a 

neighborhood-scaled urban area. The emitted pollutants are regarded as passive scalars that will 

not react with other substances. These assumptions also have been widely used in the previous 

STE research. 

 

1.4 Structure of the thesis 

The thesis consists of 7 chapters as shown in Fig. 1.3. The content of each chapter is as 

follows: 

◼ Chapter 1 introduces the research background, objective, and structure of the thesis. 

◼ Chapter 2 gives a short review of previous STE research and explains the basic framework 

of the Bayesian inference STE method. 

◼ Chapter 3-6 are the main content of this research. Chapter 3 proposes a new method to 

estimate the geometry information of the unknown source in STE.  

◼ Chapters 4 & 5 apply large eddy simulation to model S-RR and compare its performance 

with conventional methods.  

◼ Chapter 6 develops an entropy-based sensor configuration optimization method and 

evaluates its effectiveness in an ideal urban model. 

◼ Chapter 7 is the concluding remark for this research. The future research plan based on the 

current progress is also discussed. 
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Figure 1.3. The structure of the dissertation. 
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Abstract 

 

 

In this chapter, the basic methodology for source term estimation is introduced from the 

view of three elements: measurements, estimation algorithm, and source-receptor relationship. 

In each part, a short literature review about recent progress will be provided first. Then, for 

complicated urban applications, appropriate methods for each element are selected and 

described in detail. 
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2.1 Problem definition 

The source term estimation (STE) problem is defined to identify unknown sources of 

pollutants in the urban environment. The focus is specified as the atmospheric pollutants here. 

Even so, the range of STE is still wide in the reality. It may involve different types of sources: 

single or multiple, fixed or mobile, point sources, or sources with geometry (volume). The 

emission patterns are also diverse. Some sources release the pollutants with constant strength, 

while some sources with varying strength. Besides, the properties of pollutants matter in STE. 

The inert gas can be regarded as the passive scalar which is easy to deal with, but some 

pollutants may be chemically active that they will react with other gases during dispersion. 

What’s more, the pollution particles could experience buoyance, condensation, collision, and 

other phenomena during the dispersion. In addition, the meteorological condition is important 

to STE. In real applications, the incoming wind in the urban areas is unsteady. The wind speed 

and directions may fluctuate or even suddenly change during the dispersion emergency. It is 

inevitable to consider this possibility. 

Therefore, STE is an inter-disciplinary research problem including numerous targets and 

complex dispersion situations. Each possible STE target mentioned above needs a series of 

research to solve, and even though intense research efforts have been devoted to STE, some 

issues remain unresolved. For instance, the forward modeling of pollution dispersion with 

chemical reaction is still in the early stage, let alone the STE for such pollution, which needs 

inverse simulation of such dispersion. Obviously, it is reasonable to infer that plenty of research 

is still necessary to comprehensively realize general STE in the future. 

Since it is almost impossible to cover the total range of STE in a single research, and the 

current thesis is part of a series of studies to realize STE in the urban environment, it is 

necessary to limit the range of STE here by some assumption in order to focus on the main 

research target. 

Considering that STE research is still rudimentary in the urban environment, estimations 

for multiple sources and mobile sources are too early. The STE target is limited to a single 

source 𝒔 located at a fixed position 𝒙𝑠. Here, 𝒔 is a vector describing the information of the 

unknown source. 𝒙𝑠 is the time-independent coordinate of the source in the domain. Because 

the source can have a geometry to estimate (Chapter 3), 𝒙𝑠 includes all the coordinates that 

the source has. 
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 As for the emission state, it is assumed that the pollutants are constantly released from 

the source with unchanged strength 𝑞𝑠. The temporal fluctuations of emission strength will not 

be considered here. After the emission, the pollutant is regarded as the passive scalar in the 

dispersion modeling. As mentioned before, the precise modeling techniques incorporating 

chemical reactions and other physical mechanisms are immature, which hinders STE for such 

pollution.  

The meteorological condition also needs some limitations. Since the wind flow in the real-

life cannot get rid of turbulence, turbulent inflow is taken into consideration. Meanwhile, it is 

expected that STE should be realized in a short time after the dispersion emergency happened. 

During this short time, it is appropriate to assume that the meteorological condition is 

statistically steady, which means that the wind direction will not change and the incoming 

turbulence owns a constant statistical property that can be described by several profiles. 

 According to these assumptions, the target is limited to a single source located at a fixed 

position in a statistically stationary flow field with a constant release strength, which can be 

described by a vector 𝒔: 

 𝒔 = (𝒙𝑠, 𝑞𝑠) (2.1) 

 

2.2 Measurement 

After the pollutants were emitted from the source 𝒔, the sensor network can monitor the 

information about the concentration and provide the measurement data. One of the most basic 

and common data types is the mean concentration over a certain period, which can be provided 

by low-cost sensors. In real applications, the time scale of averaging operation is influential to 

the measurements. At the beginning of the dispersion, because the spatial concentration 

distribution is developing, mean concentration may strongly fluctuate with the averaging time 

scale and start point. To avoid this, it is effective to start the averaging after the dispersion 

reached to statistically steady state and make sure the time scale is long enough. 

With the development of sensing techniques, more information can be measured by 

sensors like time-series data and eddy covariance. Time series data can reflect the temporal 

change of concentration caused by multiple sources, moving sources, or unsteady emission 
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strength. Therefore, it is valuable in these scenarios. For instance, Wang et al. (2021) proposed 

a method for multi-point source identification based on the correlation of time-series 

measurements. Apart from that, eddy covariance measurement is also becoming a monitoring 

exercise rather than a purely scientific activity (Aubinet et al., 2012). The concentration flux 

can reveal the coupling effects of source and flow field on the sensor, which is valuable 

complementary information for STE. The flux has been well used in the modeling of the 

sensor’s footprint (Hellsten et al., 2015), whose meaning is similar to S-RR which represents 

the measurement ability of the sensor and relationships between possible sources and a certain 

sensor. Thus, it is reasonable to deduce that the accuracy of STE could be improved further by 

adding flux measurements. However, it is necessary to predict flux measurements in advance 

in the source-receptor relationship (S-RR), which needs complicated simulation models. It still 

needs further research in the future. 

Because the analysis of advanced measurement data is out of the interest of the thesis, the 

measurement data here is the time-averaged concentration data, which can be obtained by most 

sensors. The measurements provided by 𝑛 sensors can be represented by a 𝑛 elements vector 

𝑫. 

 

2.3 Estimation algorithm 

In the next step, it is necessary to estimate the source terms based on the measurements 

𝑫 . The estimation algorithms based on static sensors can be divided into two frameworks: 

optimization and statistics. 

2.3.1 Optimization framework 

The optimization framework relies on a kernel objective function, which is constructed 

based on the difference between 𝑫 and modeled concentration 𝑹. The most common form is 

the residual sum square between 𝑫  and 𝑹 . The true source is believed to be the one that 

minimizes the objective function in the vector space of 𝒔 . To effectively find the target, 

different types of methods are proposed for searching.  

a. Gradient-based algorithm 

The gradient-based methods find the optimal solution by decreasing the value of the 
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objective function. The descending direction is determined by the gradient of the objective 

function, which is approximated by the partial derivatives of the objective function over the 

source’s parameters. Li and Niu (2005) used the gradient method to estimate the emission of 

volatile organic compounds in dry building materials. Sharan et al. (2012) applied the least 

square method to identify single and multiple point sources based on synthetic measurements 

and real measurements. 

An extension of this method is called re-normalization (Issartel, 2003), which is a linear 

approximation for source terms based on measurements. It used the inverse linear relationship 

to estimate the source. To avoid artifacts generation in the inversion process, a renormalized 

weight function was introduced to limit the search space and can be updated in each iteration 

(Issartel, 2005a). The effectiveness of renormalization in STE was demonstrated in Kumar et 

al. (2015), where a point source in an urban-like environment was successfully reconstructed.  

Overall, one drawback that needs to be noted in the gradient-based method is that the 

performance is vulnerable to the initial guess, and the optimization process may be stuck in a 

local minima without global searching.  

b. Heuristics algorithm 

Another searching strategy is the heuristics algorithms. Unlike gradient-based strategy, 

heuristics methods directly start searching without prior mathematical processing of objective 

function. They sacrifice precision or completeness for speed when there is no traditional way 

to efficiently find an accurate solution. The common heuristics searching methods in STE are 

pattern search, simulated annealing, and genetic algorithm. 

Pattern search firstly defines the initial values for source parameters. Then, the algorithm 

changes each parameter by specified step length, which is called axis exploration, and the 

objective function value is calculated once again. The new value and original value are 

compared to decide whether a new estimation is accepted. If the objective value keeps 

unchanged in all directions, the step size is adjusted for new exploration, which is called pattern 

move. Zheng and Chen (2010) applied this method to locate a point source in a field experiment 

and found that it is limited to the local search, which needs to be improved. 

Simulated annealing analogies the optimization process to the cooling process of a 

material, where the objective function is regarded as the thermodynamic energy of the system. 
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It also starts from an initial guess and generates new estimations by random disturbances. The 

special feature is that the cooling process analogy brings the concept of the temperature, which 

is used to adjust the acceptance probability of the new estimation. This feature enables the 

algorithm to jump out from the local minima and conduct a global search. More details can be 

found in Chapter 6. Thomson et al. (2007) used this method to locate an unknown point source 

in a desert environment. 

Genetic algorithm is another popular global search method in engineering. At the 

beginning of the genetic algorithm, not a single guess but a random population of candidates 

are initialized. The most important feature is that the genetic algorithm focuses on the 

population rather than the parameter. It is inspired by the natural genetic evolution and finishes 

the optimization by selection, crossover, and mutation. Selection is to pick up the high-quality 

candidates to construct a gene pool by their values of the objective function. Crossover is to 

change part of the parameters of candidates in the pool to create the next generation. Mutation 

means that parameters may have random disturbances during the crossover to realize global 

search. The applications of the genetic algorithm in STE can be found in Allen et al. (2007) and 

Wang et al. (2018). 

It is worth mentioning that the convergence of heuristic algorithms cannot be promised 

owing to their direct search property. It is difficult to judge whether the solution found by the 

heuristic is the global optimal or just a local peak. Many modifications have been proposed to 

improve its credibility like hybrid algorithms and combination with a good initial guess, but the 

effectiveness still needs more validations of real applications. 

c. Limitation of optimization methods 

Optimization methods frequently appear in the STE research, which demonstrates their 

effectiveness to the inverse problem. However, no matter in gradient-based algorithms or 

heuristic algorithms, only a single estimate, the final result, is provided to users. The complex, 

unavoidable noise in the real world cannot be separated from the result for further analysis. The 

substantial noise may make the optimization result totally deviate from the truth, thus users fail 

to identify the source. 
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2.3.2 Statistical framework 

A better way to evaluate the noise in real applications is solving STE in a statistical 

framework, which estimates the probability of all candidates rather than a single result. The 

most popular statistical STE method is Bayesian inference. It treats each source term as an 

independent random variable. The posterior probabilities of these variables can be calculated 

by updating prior probabilities with sensor observations. Then stochastic sampling methods are 

used to attain the probability density function (PDF) of posterior probability for each parameter. 

As a result, users can obtain more information from PDF like the most probable estimate, the 

mean estimate, and credible interval when compared to optimization results. The uncertainty or 

noise during STE is reflected in PDFs. Keats et al. (2007) successfully identified a point source 

in a complex urban environment using Bayesian inference. Since their study, this method has 

been extended to estimate multiple point sources (Wade and Senocak, 2013a; Yee, 2012), 

mobile sources (Kopka et al., 2016). 

Seeing that complex noise is inevitable in STE for the urban area, the Bayesian inference 

is selected as the main methodology in the thesis. Here a brief introduction is given. 

a. Bayes’ theorem and problem formulation 

The definition of Bayes’ theorem is: 

 𝑝(𝐴|𝐵) =
𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
  (2.2) 

where 𝐴  and 𝐵  are events and 𝑝(𝐵) ≠ 0 . 𝑝(𝐴|𝐵)  is a conditional probability called 

posterior probability, which is the probability of event 𝐴  occurring given that 𝐵  is true. 

𝑝(𝐵|𝐴) is called likelihood function, which has the similar probability meaning with 𝑝(𝐴|𝐵). 

Following the Bayes’ theorem, the posterior probability that 𝒔  is the true source given 

measurements 𝑫 can be written as: 

 𝑝(𝐬|𝑫, 𝐼) =
𝑝(𝑫|𝐬, 𝐼)𝑝(𝐬|𝐼)

𝑝(𝑫|𝐼)
  (2.3) 

Here, 𝐼  is the background information, including meteorological and geographical data. 

𝑝(𝑫|𝐬, 𝐼)  is the likelihood function. 𝑝(𝐬|𝐼)  is the prior probability. 𝑝(𝑫|𝐼)  is called the 

evidence. According to the definition of conditional probability, it is the probability of 𝑫 can 

be measured given the background information. In this case, 𝑝(𝑫|𝐼) is independent of sources 
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and can be assumed as a constant when a certain 𝐼 was imposed. It acts as a normalizing factor 

in Eq. (2.3), which does not affect the posterior probability distribution. Therefore, the posterior 

distribution can be estimated using a likelihood function and prior probability: 

 𝑝(𝐬|𝑫, 𝐼)  ∝  𝑝(𝑫|𝐬, 𝐼)𝑝(𝐬|𝐼) (2.4) 

b. Likelihood function 

A likelihood function represents the probability that measurements, 𝑫, can be obtained 

when the source is 𝒔. This probability is evaluated based on the difference between the real 

measurements, 𝑫, and the modeled concentration, 𝑹, resulting from source 𝒔. Considering 

the inevitable errors caused by measurement processes and modeling, the true concentration 

𝑫𝑡𝑟𝑢𝑒, 𝑫, and 𝑹 exhibit the following relationship: 

 𝑫 = 𝑫𝑡𝑟𝑢𝑒 + 𝒆𝑑 

𝑹 = 𝑫𝑡𝑟𝑢𝑒 + 𝒆𝑚 

(2.5) 

Here, 𝒆𝑑 is the measurement error and 𝒆𝑚 is the modeling error. In real-world applications, 

these errors play an important role in STE, though they are difficult to quantify (Yee et al., 

2014). In the previous research (Keats et al., 2007a; Xue et al., 2017, 2018a), it is common to 

assume that the errors of each sensor follow Gaussian distributions with means of zero and 

variances of 𝜎𝑑,𝑖
2  and 𝜎𝑚,𝑖

2 , where 𝑖 is the index for the sensors. In this case, the likelihood 

can be calculated as: 

 𝑝(𝑫|𝑫𝑡𝑟𝑢𝑒 , 𝐼)  ∝ exp [−
1

2
∑

(𝑫 − 𝑫𝑡𝑟𝑢𝑒)
2

𝜎𝑑,𝑖
2 ] (2.6) 

 𝑝(𝑫𝑡𝑟𝑢𝑒|𝒔, 𝐼)  ∝ exp [−
1

2
∑

(𝑫𝑡𝑟𝑢𝑒 − 𝑹(𝒔))2

𝜎𝑚,𝑖
2 ] (2.7) 

 𝑝(𝑫|𝒔, 𝐼) = ∫𝑝(𝑫|𝑫𝑡𝑟𝑢𝑒 , 𝐼)𝑝(𝑫𝑡𝑟𝑢𝑒|𝒔, 𝐼)𝑑𝑫𝑡𝑟𝑢𝑒 

∝ exp [−
1

2
∑

(𝑫 − 𝑹(𝒔))2

𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2 ] 

(2.8) 

c. Prior probability 

A prior probability 𝑝(𝐬|𝐼) sets the probability distribution of source parameters before 
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the inference. The prior knowledge of an unknown source can be contained to make the 

inference faster or more certain. However, it is usually difficult to acquire credible information 

just after the emergency. It is usually assumed that no information except for the measurements 

was available before the inference. Therefore, the source can appear anywhere within the target 

domain and with any strength. Additionally, the source parameters are independent of each 

other, meaning that a uniform distribution was imposed on the prior probability. 

 𝑝(𝐬|𝐼) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.9) 

d. Posterior probability 

The posterior probability can be obtained by combining Eq. (2.4), (2.8), and (2.9), as 

follows: 

 𝑝(𝒔|𝐷, 𝐼)  ∝  𝑝(𝑫|𝒔, 𝐼)𝑝(𝒔|𝐼)  ∝ exp [−
1

2
∑

(𝑫 − 𝑹(𝒔))2

𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2 ] (2.10) 

The only unknown information in Eq. (2.10) is the modeling concentration, 𝑹, of source 𝒔.  

e. Sampling method 

Although the target distribution can be explicitly formulated as Eq. (2.10), it is still difficult 

to determine its shape because the PDF lies in a multidimensional space composed of the 

elements of 𝒔 . Many solutions have been proposed to sample posterior distributions in 

Bayesian inference, among which the most commonly employed is the Monte-Carlo Markov 

chain (MCMC). However, the conventional MCMC often suffers a large rejection ratio in the 

high dimensional sampling, which diminishes the efficiency. In recent years, a hybrid MCMC 

method, the Metropolis–Hastings-within-Gibbs algorithm (MHMC) (Gilks et al., 1995; 

Hastings, 1970), was widely applied during the sampling process. MHMC introduces a 

statistical acceptance ratio adjustment based on the current sampling to mitigate this problem. 

This algorithm includes the following steps: 

 

Step1 : Propose an initial guess of the source: 𝒎1 

 For i=1:n 

    Step 2 : Generate a new estimate 𝒎̃ by a proposal distribution 𝑞(∙): 𝒎̃ ~ 𝑞(𝒎̃|𝒎𝑖) 
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    Step 3 : Evaluate the MH acceptance probability: 

    Set 𝛼 = 𝑚𝑖𝑛 [1,
𝑃(𝒎̃|𝐷, 𝐼)𝑞(𝒎̃|𝒎𝑖)

𝑃(𝒎|𝐷, 𝐼)𝑞(𝒎𝑖|𝒎̃)
] 

    Step 4 : Update the Markov Chain according to acceptance or rejection: 

  𝒎𝑖+1 = {
𝒎̃      𝑖𝑓 α ≥ 𝑁[0,1];
𝒎𝑖          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 

 End For 

 

Here 𝑁[0,1] represents the uniform distribution bound between 0 and 1, and n is the sampling 

number.  

On the other hand, some methods also have been proposed to accelerate MCMC with more 

complicated techniques, such as the application of variational inference (de Freitas et al., 2013), 

resampling (Gelfand and Sahu, 1994), and subspace construction (Constantine et al., 2016). 

However, their efficiency and robustness still need testification by practical applications. Heavy 

tails and local peaks may appear in the complex sampling process (Vrugt et al., 2009). Therefore, 

this thesis employed MHMC for the balance between speed and steadiness. The creditability of 

this method has been proved in the previous research of STE (Keats et al., 2007a; Xue et al., 

2018a). 

For each case in the dissertation, the Markov chain starts from an initial guess that is far 

enough from the true source. The total sampling number is set to 5.0 × 106, in which the first 

5.0 × 105 samplings are discarded for the burn-in process. The rest 4.5 × 106 samplings are 

used to estimate the PDF of the posterior probability. 

 

2.4 Source-receptor relationship 

As shown in Eq. (2.10), the modeling concentration, 𝑹, of each sensor corresponding to 

each possible source, 𝒔, is needed to evaluate the posterior probability distribution. Apparently, 

it is necessary to calculate 𝑹 for all possible sources and construct a database, which is exactly 

the S-RR. Because the number of possible combinations of parameters in vector 𝒔 is so large, 

special simulation techniques including the Gaussian puff model, Markov chain method, and 

adjoint equation method have been proposed. 
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2.4.1 Gaussian puff model 

One popular forward calculation method is the Gaussian puff model. The concentration 

distribution for the continuous release is formulated as Zheng and Chen (2010): 

 𝑅(𝑥, 𝑦, 𝑧) =
𝑞𝑠

2𝜋𝑢𝜎𝑦𝜎𝑧
𝑒𝑥𝑝(−

𝑦2

2𝜎𝑦
2) × 

{𝑒𝑥𝑝 (−
(𝑧 − 𝐻𝑒)

2

2𝜎𝑧
2 ) + 𝑒𝑥𝑝 (−

(𝑧 + 𝐻𝑒)
2

2𝜎𝑧
2

)} 

(2.11) 

Here, 𝑅(𝑥, 𝑦, 𝑧)  is the modeling concentration at the location (𝑥, 𝑦, 𝑧)  in the downwind 

direction from the source following Cartesian coordinate. 𝑢 is the wind speed. 𝜎𝑦 and 𝜎𝑧 

are the dispersion coefficients for each direction. 𝐻𝑒 is the effective height of the source.  

It can be seen that Eq. (2.11) is an algebraic model. Given the source terms and sensor’s 

position, the modeling simulation can be quickly calculated. In this case, even with a large 

number of possible sources, S-RR still can be easily constructed. However, the simplicity also 

brings with an important flaw that it can only describe an ideal dispersion in a homogenous 

flow field. Its accuracy cannot be promised when an obstacle appears in the domain. Until now, 

the literature using this model (Cui et al., 2019; Kormi et al., 2018; Ma et al., 2017; Wade and 

Senocak, 2013b; Wang et al., 2018; Zheng and Chen, 2010) also focus on the homogenous 

dispersion in the open field. As a result, the applicability of the Gaussian model in the urban 

environment is limited. 

 

2.4.2 Markov chain model 

Markov chain model is another forward calculation technique that was first proposed to 

solve indoor contaminant transport by Nicas (2000). The basic idea is to divide the dispersion 

domain into 𝑛 zones or cells, and the concentration distribution of these zones is called states 

related to time. After the source appears at a certain state, the pollutant of each zone will move 

to an adjacent zone or remain still in the next step. Then, the transport behavior can be driven 

by a transition probability matrix: 
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𝑷 = (𝑝𝑖,𝑗)(𝑛×𝑛) = [

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑛
𝑝2,1 𝑝2,2

⋮
𝑝𝑛,1

⋮
𝑝𝑛,2

⋯ 𝑝2,𝑛

⋯
⋯

⋮
𝑝𝑛,𝑛

] (2.12) 

In this matrix, 𝑝𝑖,𝑖 is the probability that the pollutant will stay in the original cell, and 

𝑝𝑖,𝑗 represents the probability that pollutant will move from cell 𝑖 to cell 𝑗 in the next step. 

According to the research of Chen et al. (2015), the probability matrix can be calculated by the 

computational fluid dynamics (CFD) simulation of airflow. The concentration distribution at 

any time step is the result of iterating multiple of 𝑷 to the initial state.  

There are two drawbacks in this model. To decrease the computational burden, 𝑷 is often 

kept constant or owns limited patterns. This treatment is acceptable when the flow field and the 

turbulent diffusion are steady. If strongly fluctuating turbulence exists in the target domain, the 

statistical properties of the flow field are difficult to be described only by several patterns. 

Furthermore, the number of divided cells or elements in 𝑷 cannot be too large, which means 

the resolution of simulation and STE is restricted. As a result, the best application scenario of 

this method is the place where the flow field is almost unchanged and the low-resolution is 

allowable, such as a small indoor space with a fixed ventilation pattern (Li et al., 2020). Its 

applicability in the large-scaled outdoor space is in doubt and related literature is sparse. 

 

2.4.3 Adjoint equation method 

It can be stated that the accuracy of the two methods above is not enough in the complex 

urban area despite their computational simplicity. Speaking of accuracy, with the development 

of CFD techniques and high-performance computers, the dispersion behavior of atmospheric 

pollutants can be well predicted using turbulence models and transport equations. The related 

contents about turbulence modeling and CFD simulation of dispersion of atmospheric pollution 

are introduced in detail in Appendix. A. Some representative literature about applications in 

the urban environment can be referred to (Branford et al., 2011a; Coceal et al., 2014a; Tominaga 

and Stathopoulos, 2011a, 2013).  

However, the forward CFD dispersion method needs massive computation cost and long 

calculation time, it is almost impossible to directly predict the dispersion of all possible sources. 
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To overcome this problem, Pudykiewicz (1998) introduced the adjoint equation method into S-

RR simulation to decrease the extreme computational costs. This approach enables users to 

construct S-RR from the perspective of sensors using inverse simulations, rather than from 

possible sources via forward simulation. Since the number of sensors is finite, the use of adjoint 

equations makes the construction of S-RR much more convenient. A brief introduction of the 

adjoint equation is given below. 

a. Adjoint equation theory 

For any source, 𝒔, that releases a passive scalar value in a spatiotemporal domain with a 

strength of 𝑞𝑠 and location of 𝒙𝑠, the conservation equation of passive scalar transport can be 

written as (also Eq. (A.3) in Appendix. A): 

 
𝜕𝐶

𝜕𝑡
+

𝜕𝑢𝑗𝐶

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
) = 𝑞𝑠𝛿(𝒙 − 𝒙𝑠) (2.13) 

with the boundary conditions: 

 𝛻𝒏𝐶 = 0 at ∂Ω 

𝐶(𝒙, 𝑡 = 0) = 0 

(2.14) 

Here, 𝐶 is the concentration function of the passive scalar in a spatial domain of 𝛺 and time 

of [0, 𝕋], 𝐷𝑚 is the mass diffusivity, 𝛿(∙) is the Dirac delta function, and 𝛻𝒏 is a directional 

derivative normal to the boundary. The left-hand side (LHS) of Eq. (2.13) can be regarded as 

the resultant transformation of linear operator 𝑳(∙) on function 𝐶 in a Hilbert space, where 

𝑳(∙) is defined as: 

 𝑳(∙) ≡
𝜕(∙)

𝜕𝑡
+

𝜕(𝑢𝑗 ∙)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕(∙)

𝜕𝑥𝑗
) (2.15) 

and Eq. (2.13) turns into: 

 𝑳(𝐶) = 𝑞𝑠𝛿(𝒙 − 𝒙𝑠) (2.16) 

Then, we introduce the conjugate concentration field 𝐶∗  and consider the following 

spatiotemporal integration. 
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 〈𝐶∗𝑳(𝐶)〉 = ∫ ∫ (𝐶∗ ∙ 𝑳(𝐶))
Ω

𝑑𝒙𝑑𝑡
𝑇

 (2.17) 

For convenience, the spatiotemporal integration is expressed as 〈∙〉. If we expand the LHS of 

Eq. (2.17), we have 

 

〈𝐶∗𝑳(𝐶)〉 = 〈𝐶∗ {
𝜕(𝐶)

𝜕𝑡
+

𝜕(𝑢𝑗𝐶)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
)}〉

= 〈𝐶∗
𝜕(𝐶)

𝜕𝑡
+ 𝐶∗

𝜕(𝑢𝑗𝐶)

𝜕𝑥𝑗
− 𝐶∗

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
)〉

= 〈
𝜕(𝐶∗𝐶)

𝜕𝑡
− 𝐶

𝜕(𝐶∗)

𝜕𝑡
+

𝜕(𝐶𝐶∗𝑢𝑗)

𝜕𝑥𝑗
− 𝐶𝑢𝑗

𝜕(𝐶∗)

𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝐶∗𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
) + 𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗

𝜕𝐶∗

𝜕𝑥𝑗

〉

= 〈
𝜕(𝐶∗𝐶)

𝜕𝑡
− 𝐶

𝜕(𝐶∗)

𝜕𝑡
+

𝜕(𝐶𝐶∗𝑢𝑗)

𝜕𝑥𝑗
− 𝐶𝑢𝑗

𝜕(𝐶∗)

𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
(𝐶∗𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
) +

𝜕

𝜕𝑥𝑗
(𝐶𝐷𝑚

𝜕𝐶∗

𝜕𝑥𝑗
)

− 𝐶
𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶∗

𝜕𝑥𝑗
)〉

= 〈
𝜕(𝐶∗𝐶)

𝜕𝑡
〉

+ ⟨−𝐶
𝜕(𝐶∗)

𝜕𝑡
− 𝐶𝑢𝑗

𝜕(𝐶∗)

𝜕𝑥𝑗
−𝐶

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶∗

𝜕𝑥𝑗
)⟩

+ ⟨
𝜕(𝐶𝐶∗𝑢𝑗)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐶∗𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
)+

𝜕

𝜕𝑥𝑗
(𝐶𝐷𝑚

𝜕𝐶∗

𝜕𝑥𝑗
)⟩ 

(2.18) 

If the integration happened at the time when 𝐶  and 𝐶∗  reach steady state or the 

integration was conducted following the periodicity of 𝐶 and 𝐶∗, the first term is 0. According 

to the divergence theorem, the last term can be transferred into the surface integration of the 

space, which is called the boundary term. If the spatial integration is conducted in the space far 

away from the source, the boundary terms are almost 0. Therefore, Eq. (2.18) changes into 



Chapter 2   

 

29 

 〈𝐶∗𝑳(𝐶)〉 = ⟨−𝐶
𝜕(𝐶∗)

𝜕𝑡
− 𝐶𝑢𝑗

𝜕(𝐶∗)

𝜕𝑥𝑗
−𝐶

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶∗

𝜕𝑥𝑗
)⟩ = 〈𝑳∗(𝐶∗)𝐶〉 (2.19) 

Here, 𝑳∗ is the adjoint operator of 𝑳, 

 𝑳∗ ≡ −
𝜕(∙)

𝜕𝑡
− 𝑢𝑗

𝜕(∙)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕(∙)

𝜕𝑥𝑗
) (2.20) 

Similarly, the transformation of 𝑳∗(∙) in 𝐶∗ can be regarded as the governing equation 

of an adjoint tracer dispersion equation, which can be expressed as: 

 𝑳∗(𝐶∗) = 𝑞𝑚𝛿(𝒙 − 𝒙𝑚) (2.21) 

with the boundary conditions: 

 𝛻𝒏𝐶∗ = 0 at ∂Ω 

𝐶∗(𝒙, 𝑡 = 𝕋) = 0 

(2.22) 

In contrast to the dispersion behavior of source 𝒔, where the passive scalar is transported 

by  𝒖(𝒙, 𝑡)  from time 0 to time 𝕋 , the physical meaning of Eq. (2.21) is the dispersion 

transported by −𝒖(𝒙, 𝑡) from time 𝕋 to time 0, where the source is located at 𝒙𝑚 and has 

the strength of 𝑞𝑚. The importance of the adjoint equation can be revealed after Eq. (2.16) and 

Eq. (2.21) are substituted into Eq. (2.19): 

 𝑞𝑠〈𝐶
∗(𝒙𝑠)〉 = 𝑞𝑚〈𝐶(𝒙𝑚)〉 (2.23) 

If we impose the location of a sensor to 𝒙𝑚 and unit to 𝑞𝑚, the right-hand side (RHS) of 

Eq. (2.23) is the modeling concentration 𝑹 of the sensor, which is equal to the LHS, and the 

time-averaged concentration of tracers at source 𝒔 emitted from the sensor. Therefore, in this 

method, the number of dispersion equations that must be solved declines remarkably from the 

number of possible sources, 𝒔, to the number of sensors applied. Owing to the convenience of 

this calculation, adjoint equations have been applied to model S-RR in several previous studies 

(Efthimiou et al., 2018a; Kumar et al., 2015a; Rajaona et al., 2015; Xue et al., 2017, 2018a) for 

outdoor STE. 
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b. Simulation of the adjoint equation 

According to Eq. (2.23), the modeling concentration 𝑹 can be obtained after the adjoint 

concentration field 𝐶∗ was calculated. Because Eq. (2.21) is in the form of a partial differential 

equation like the transport equation of Eq. (2.13), it can be solved by numerical simulation. In 

the previous research, it was commonly simulated by Reynolds averaged Navier-Stokes model 

based on the Reynolds-averaged form. 

 −𝒖̅
𝜕(𝐶∗̅̅ ̅)

𝜕𝒙
−

𝜕

𝜕𝒙
([𝐷𝑡 + 𝐷𝑚]

𝜕(𝐶∗̅̅ ̅)

𝜕𝒙
) = 𝑞𝑚𝛿(𝑿 − 𝑿𝑚) (2.24) 

where 𝒖̅ is the mean velocity field obtained from forward simulation and 𝐶∗̅̅ ̅ is the simulated 

mean distribution of the adjoint concentration. 𝐷𝑡 is the turbulent diffusivity used to model 

the turbulent scalar fluxes, which is an extra term produced by Reynolds averaging. The 

molecular diffusion coefficient 𝐷𝑚  was set as 1.5 × 10−5𝑚2/𝑠  in this thesis, which 

corresponds to the diffusion of C2H4, a common gas used in the dispersion experiment. It is true 

that different gases have different 𝐷𝑚 values, but most of them lies in the range of 10−6 to 

10−5𝑚2/𝑠 (Wilke and Lee, 1955). When compared with the 𝐷𝑡, this small order difference 

would not cause too much effects on the dispersion behaviors. 

Meanwhile, the wind speed determines the Reynolds number of the flow field in the 

domain. For the flow field with a high Reynolds number, which is common in the atmospheric 

boundary layer, the turbulence is well-developed, and its effects on the dispersion are large 

enough to make the molecular diffusion neglectable. Therefore, in the microscale or mesoscale 

of the atmospheric environment, where the ratio between the wind speed and diffusion 

coefficient is relatively large, the dispersion is dominated by turbulence rather than molecular 

diffusion. 

Furthermore, for a certain dangerous pollutant with a special diffusion coefficient that 

needs attention, the adjoint equation can be specially simulated with this coefficient to build 

the S-RR, which would be applied later in the Bayesian inference when sensors monitor this 

pollutant. 

Before the simulation of Eq. (2.24), a forward numerical simulation is necessary to obtain 

the mean velocity field 𝒖̅ of the target domain. One of the important factors in this forward 

simulation is the inflow boundary condition for 𝒖̅, which should correctly reflect the wind 
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characteristics of the dispersion emergency. It was assumed that the coming wind is statistically 

stationary during the dispersion process of pollutants. In fact, because adjoint concentration 

databases can be constructed long before emergencies, there is enough time to simulate them 

with different wind speeds and directions to cover the possible meteorological situations of the 

target domain. When the dispersion emergencies happen, as important meteorological 

information for STE, the properties of wind can be measured and included in the prior 

information. Then, the adjoint concentration corresponding to the wind properties would be 

selected for the Bayesian inference. In this case, because the adjoint equation was simulated 

under the same inflow as reality, the wind effects on the source-receptor relationship can be 

correctly built in the proposed method. 

Because the simulation of the adjoint equation requires a preparatory forward simulation 

for the flow field information, theoretically, its calculation cost is a little bit higher than the 

Gaussian puff model and Markov chain model. Despite that, the complex turbulence dispersion 

is included in the adjoint equation to realize much higher accuracy, it is the most promising 

method for S-RR simulation in the outdoor STE among these three and consequently is applied 

in this thesis. 

 

2.5 Conclusion 

In this chapter, three core parts of STE: measurements, estimation algorithm, and S-RR 

were introduced. The commonly used methods in three parts were reviewed first. Then, 

considering the characteristics of STE in the urban environment, suitable methods for the thesis 

were selected to construct the basic structure of STE. The measurements are time-averaged 

concentrations measured by discrete sensors. These measurements are inputted into Bayesian 

inference to estimate posterior probability distributions of source parameters based on the 

comparison with modeled concentrations. The adjoint equations are used to predict the modeled 

concentrations before emergencies. In the following chapters, all the improvements and STEs 

will be conducted based on this basic structure. 
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Symbols 

𝐶 : the concentration distribution caused by a source 

𝐶∗ : adjoint concentration distribution 

𝑫 : measurements vector 

𝐷𝑚 : the mass diffusivity of the pollutant (1.5 × 10−5𝑚2/𝑠) 

𝐷𝑡 : turbulent diffusivity 

𝑫𝑡𝑟𝑢𝑒 : the true concentration at the sensor 

𝒆𝑑 : measurement error of the sensor 

𝒆𝑚 : modeling errors in the modeled concentration 

𝐻𝑒 : effective height of the source 

𝐼 : background information for Bayesian inference 

𝑳(∙) : linear operator for the conservation equation of passive scalar transport 

𝑳∗(∙) : the adjoint operator of 𝑳(∙) 

𝒎𝑖 : the 𝑖th sampling in the MHMC 

𝑚𝑖𝑛[a, b] : the minimum value between a and b 

𝑁[a, b] : the uniform distribution bound between a and b 

𝑝(𝐴) : the probability of event 𝐴 

𝑝(𝐴|𝐵) : conditional probability of event 𝐴 occurring given that 𝐵 is true 

𝑷 : transition probability matrix in the Markov chain dispersion model 



Chapter 2   

 

33 

𝑝𝑖,𝑗 : the probability that pollutant will move from cell 𝑖 to cell 𝑗 in the next 

step 

𝑞𝑚 : release strength of the sensor in the adjoint equation 

𝑞𝑠 : release strength of the source 

𝑹 : modeled concentration vector 

𝑅(𝑥, 𝑦, 𝑧) : the modeling concentration at the location (𝑥, 𝑦, 𝑧) in the downwind 

direction from the source following Cartesian coordinate in the Gaussian 

puff model 

𝒔 : a vector representing the unknown source 

𝑡 : time from 0 to 𝕋 

𝒖 : wind velocity 

𝑢𝑗 : wind velocity in 𝑗 direction 

𝒙𝑚 : coordinates of the sensor 

𝑥𝑗 : coordinate in 𝑗 direction 

𝒙𝑠 : coordinates of the source 

α : acceptance probability for a new sampling in MHMC 

𝛿(∙) : Dirac delta function 

𝜎𝑑,𝑖
2  : the variance of error in the measurement of the sensor with index 𝑖 

𝜎𝑚,𝑖
2  : the variance of error in the modeling concentration for the sensor with 

index 𝑖 
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𝜎𝑦 : dispersion coefficients for 𝑦 direction in the Gaussian puff model 

𝜎𝑧 : dispersion coefficients for 𝑧 direction in the Gaussian puff model 

𝛻𝒏 : a directional derivative normal to the boundary 

𝛺 : a spatial domain for dispersion and adjoint dispersion 

〈∙〉 : spatiotemporal integration for domain 𝛺 and time 𝑡 

̅  : Reynolds average operator 
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 1 

 2 

 3 

 4 

 5 

Abstract 6 

 7 

 8 

This chapter tries to extend the standard statistical source term estimation method to be 9 

capable of line source estimation, which includes more geometric information. Firstly, the 10 

proposed solution based on the super-Gaussian function is introduced. To justify its 11 

effectiveness, it is applied to the estimation of a line source in an ideal urban boundary layer 12 

with simulated measurements. Based on the estimation results, the effects of different sensor 13 

configurations on results and special requirements of line source on the configuration are 14 

discussed. After that, the performance of the proposed method is confirmed further by 15 

identifying a line source in a complex urban square with measurements in a wind tunnel 16 

experiment. By comparing with the conventional point source estimation method, the necessity 17 

and effectiveness of the proposed method are demonstrated. 18 

  19 
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3.1 Introduction 1 

According to Chapter 1&2, most prior research aimed to estimate the parameters of a 2 

single point source, assuming that sources can be represented by a point without geometry; 3 

however, not all sources can be regarded as a point and most have shapes or volumes that cannot 4 

be neglected. The point assumption may result in noisy or even wrong estimation of these 5 

sources. Additionally, the source’s geometric information is important for risk management and 6 

evaluation of seriousness. The recent public controversy concerning the Amazon forest fire 7 

(BBC, 2019) is a typical result of a lack of geometric information. Therefore, extending the 8 

source term estimation (STE) method for the estimation of sources with geometry is meaningful. 9 

In addition, the line is a common and elementary geometry for pollution sources in the 10 

atmospheric environment (Gromke et al., 2008; Meroney et al., 1996; Salim et al., 2011a, 11 

2011b). Traffic pollution in a street canyon has been extensively studied as a typical line source. 12 

Ideally, a method of source estimation handling any geometry should be possible; however, 13 

owing to its complexity and the numerous different kinds of geometry, this would require a 14 

series of research beyond the scope of one thesis. Correctly estimating the line source terms, 15 

which are not only position and strength but also length, width, and inclined angle is a good 16 

starting point for research. 17 

The objective of this chapter is to extend the current STE method from point source 18 

estimation to line source estimation, which includes more geometric information. The basic 19 

structure is a combination of the super-Gaussian function for the source geometry and the 20 

Bayesian inference method. The method has the potential to estimate several common shapes: 21 

point, line, rectangular, and ellipse. The effectiveness of the method is evaluated by estimating 22 

a line source in two cases: an ideal urban boundary layer with simulated measurements and a 23 

complex urban square with discrete measurements, obtained via a wind tunnel experiment. The 24 

results of the new method are also compared with the conventional method’s performance with 25 

a point assumption in the second case to demonstrate the necessity of the proposed method and 26 

geometry estimation. 27 

 28 

3.2 Line source model 29 

Eq. (2.23) has been widely used in previous research for point source estimation due to 30 
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convenience. During the Bayesian inference calculation, the modeled concentration 𝑹 for any 1 

possible point sources 〈𝐶∗(𝒙𝑠)〉 can be picked up simply by their coordinates. However, the 2 

situation changes when the sources have various shapes or volumes instead of being a point. 3 

Considering the speed and efficiency of the sampling algorithm, the shape estimation of sources 4 

should be realized not by combining points randomly, but by some controllable functions that 5 

can be adjusted directly with several coefficients. For line source estimation, this chapter 6 

proposes that SGF is a good choice. This section introduces the super-Gaussian function as 7 

below. 8 

3.2.1 Ordinary Gaussian function 9 

A general format of the multivariate Gaussian (or normal) function is 10 

 𝑓𝒙(𝑥1, … , 𝑥𝑚) =
1

√(2𝜋)𝑚|𝚺|
exp [−

1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁)] (3.1) 

where 𝚺 is the covariance matrix of variable 𝒙, and 𝝁 is the mean value matrix of variable 11 

𝒙. When 𝑚 = 3, this function corresponds to any ellipsoid or sphere in a given 3-dimensional 12 

space by changing the correlation coefficients in 𝚺  and mean value in 𝝁 . Without loss of 13 

generality, the bivariate case can be transformed to a more intuitive format: 14 

 𝑓(𝑥, 𝑦) = 𝐴 exp[−(𝑎(𝑥 − 𝑥0)
2 + 2𝑏(𝑥 − 𝑥0)(𝑦 − 𝑦0) + 𝑐(𝑦 − 𝑦0)

2)] (3.2) 

where 15 

 

𝑎 =
cos2𝜃

2𝜎𝑋
2 +

sin2𝜃

2𝜎𝑌
2  

𝑏 = −
sin2𝜃

4𝜎𝑋
2 +

sin2𝜃

4𝜎𝑌
2  

𝑐 =
sin2𝜃

2𝜎𝑋
2 +

cos2𝜃

2𝜎𝑌
2  

(3.3) 

𝐴 is a normalized factor. In this case, the Gaussian function can be adjusted directly through 16 

five coefficients: 𝑥0, 𝑦0, 𝜃, 𝜎𝑋 , 𝜎𝑌 , which determine the geometric shape independently. If 17 

we let the ratio 𝜎𝑋 /𝜎𝑌  become very large or very small, the shape is very close to a line as 18 

shown by Fig. 3.1(a). Meanwhile, (𝑥0, 𝑦0) is the coordinate of the middle point of the line, 𝜃 19 

represents the inclined angle, 2𝜎𝑋  and 2𝜎𝑌  are the width and length of the line.  20 
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More importantly, this method is not limited to the line source only. It also has the potential 1 

to estimate sources with shapes of ideal point, ellipse, and rectangular. During the STE process, 2 

the Bayesian inference will tune the coefficients automatically according to the measurement 3 

information to find the most appropriate shape: very small 𝜎𝑋  and 𝜎𝑌  when the source is a 4 

point, a large ratio 𝜎𝑋 /𝜎𝑌  when the source is a line and normal 𝜎𝑋 , 𝜎𝑌  when the source is 5 

ellipsoid or rectangular. In other words, it is not necessary to know the shape of the source 6 

beforehand, which is impossible in practical application. This model can estimate the 7 

approximate shape using measurement information only, as long as the source’s shape is close 8 

to a sphere, ellipse, and line. If the source is an ideal point like the previous research, this 9 

method will regress into the conventional process automatically and yield the same result. 10 

  

(a) Horizontal plane (ordinary, 𝜆 = 1) (b) 3-D view (ordinary, 𝜆 = 1) 

  

(c) Horizontal plane (Super, 𝜆 = 8) (d) 3-D view (Super, 𝜆 = 8) 

Figure 3.1. Schematic of ordinary and super Gaussian function 
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 1 

 

Figure 3.2. The shape of the super-Gaussian function with different powers 

 2 

3.2.2 Super-Gaussian function 3 

Nonetheless, the ordinary Gaussian function may not be the most appropriate one because 4 

of nonuniformity and tail error. Simply, if we use a one-dimensional normal distribution with 5 

the variance 𝜎𝑋
2 to approximate the target line segment, it can be obviously noticed that the 6 

shape deviates from the target since the value is not uniform in the middle area (in Fig. 3.2). 7 

Besides, there are residual errors in the two tails where the value should be 0. Thereby, this 8 

model will bring extra error, unwanted in the inference. To minimize this error, this paper 9 

applied the super-Gaussian function (Parent et al., 1992) instead of the ordinary one. 10 

 𝑓𝒙(𝑥1, … , 𝑥𝑚) = 𝐴 exp [−(
1

2
(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁))

𝜆

] (3.4) 

This equation modifies the shape with a flat-top and Gaussian fall-off by raising the 11 

content of the exponent to a power 𝜆. It can be observed in Fig. 3.2 that when 𝜆 increases, the 12 

slope becomes precipitous and the flat top becomes longer, which makes the shape closer to the 13 

target shape. In this research, 𝜆  was set to eight to balance between error control and 14 

calculation simplicity. The two-dimensional super-Gaussian function is  15 
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 𝑓(𝑥, 𝑦) = 𝐴 exp[−(𝑎(𝑥 − 𝑥0)
2 + 2𝑏(𝑥 − 𝑥0)(𝑦 − 𝑦0) + 𝑐(𝑦 − 𝑦0)

2)𝜆] (3.5) 

and the shape is shown in Fig. 1(c)(d). 1 

In real urban areas, most line sources can be regarded as a line in the horizontal plane, 2 

which is close to the surface. Moreover, the right-hand side of Eq. (2.23) involves huge matrixes 3 

product in the numerical calculation, if the position of the line source has no restraint. Therefore, 4 

this paper only deals with a line source in a horizontal plane with a fixed height above the 5 

surface. The height of the line is included in the background information 𝐼 and does not need 6 

to be estimated, due to which Eq. (3.5) is adequate for this research. In spite of that, it is worth 7 

mentioning that this does not mean that the super-Gaussian function is incapable of estimating 8 

the height or vertical inclined angle of other lines. In fact, that kind of estimation can be 9 

acquired quickly by increasing the dimension 𝑘  to three and adding two more correlation 10 

coefficients in 𝚺. Hence, the parameters vector of the line sources can be written as 11 

 𝒔 = (𝑥𝑠, 𝑦𝑠, 𝜃, 𝜎𝑋 , 𝜎𝑌 , 𝑞𝑠) (3.6) 

In the application, these six parameters will be estimated. 12 

 13 

3.3 Case I: numerical experiment of urban boundary layer 14 

To evaluate the applicability of the proposed method, this case uses it to estimate the 15 

parameters of a line source in a simple urban area, based on computational fluid dynamics (CFD) 16 

simulation data. One of the most elementary dispersion cases, a steady-state urban boundary 17 

layer without obstacles on the ground, is analyzed. This setting is appropriate to explore the 18 

basic properties of the proposed method. 19 

 20 

3.3.1 Numerical simulation 21 

It is necessary to run a forward CFD simulation first to synthesize the measurements, then 22 

adjoint equation simulation is run based on the forward flow field. 23 

The calculation domain of the forward simulation, with a size of 1500 𝑚(𝑥) ×24 

1000 𝑚(𝑦) × 500 𝑚(𝑧) , is shown in Fig. 3.3. In the x and y directions, the cubic grid is 25 
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uniform, with 10 m length. To ensure that the line source has a sufficiently high resolution in 1 

the vertical direction and to simulate the dispersion behavior precisely near the bottom surface, 2 

the finest mesh is generated from the bottom, with a 0.2-m length. The mesh becomes rougher 3 

along with the height at a 1.02 ratio. To generate the effects of the urban boundary layer, a half 4 

channel flow is produced by mapping the flow properties of the outlet to the inlet. After each 5 

step, the pressure gradient is adjusted to keep the mass flow rate constant, at 𝑈̅ = 4 m/s. At 6 

the bottom wall, the wall function proposed by Blocken et al. (2007) is applied. 𝑘𝑠 is set as 7 

45 m, which corresponds to a Davenport roughness of 1.5 m, a common case for urban areas. 8 

The turbulence is modeled via a standard 𝑘 − 𝜀 model. The details of other configuration are 9 

listed in Table 3.1. 10 

Table 3.1. Numerical schemes and boundary conditions for Case I 

Time marching 
Steady state, Semi-Implicit Method for Pressure-Linked Equations 

(SIMPLE) method. 

Spatial discretization Advection term: total variation diminishing (TVD) scheme; 

Inlet 
𝑈, 𝑘, 𝜀, 𝐷𝑡: mapped Outlet; 

C: constant (= 0); C*: zero-gradient 

Outlet 
Flow: zero-gradient; 

C: zero-gradient; C*: constant (= 0) 

Top wall Slip; 

Bottom wall 

Flow: generalized logarithmic law; 

Roughness height: 1.5 m Davenport Roughness; 

C, C*: zero-gradient 

Source C, C*: Constant injection rate (= 1 1/s) 

 11 
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The 100√2-m-long line source is settled on the horizontal plane, 10 m above the bottom 1 

wall. The coordinate of the middle point is (750 m, 500 m, 10 m). The inclined angle is π/4 2 

from the positive x- and z-axes directions. In the numerical simulation, this line source is 3 

resolved by discrete cells that are connected along the vertical edge. With the increase of 4 

iterations, the boundary layer gradually became steady. The wind profile along the vertical edge 5 

in the middle of the outlet settled down eventually after 90000 iterations as shown in Fig. 3.4. 6 

In this research, the data of iteration 130000 is used to make sure the flow is in a steady state. 7 

The steady dispersion field of the line source is presented in Fig. 3.5. It can be confirmed from 8 

the concentration profile that the influence of the dispersion reaches up to 200 m height in the 9 

boundary layer. 10 

  

Figure 3.4. Profile along the vertical line in the middle of the outlet 

(k: turbulent energy) 

 

Figure 3.3. The calculation domain and boundary condition of the numerical simulation in 

Case I 
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 1 

  

The dispersion field in the horizontal 

plane (height = 10 m) 

The concentration profile along the vertical 

line in the middle of the outlet 

Figure 3.5. Steady dispersion field of the line source 

For the sensor configuration, a common setting in STE research is the uniform distribution 2 

in the domain (Keats et al., 2007b; Xue et al., 2018b). However, the distribution of stationary 3 

sensors cannot be uniform among complicated urban terrain in real life. Therefore, a random 4 

walk was added to the location of each sensor with a uniform configuration (Fig. 3.6); this 5 

could also test the robustness of the proposed method. The coordinate was changed from 6 

(𝑥𝑚, 𝑦𝑚)  to (𝑥𝑚 + 10 × ⌊𝑁[−10, 10]⌋, 𝑦𝑚 + 10 × ⌊𝑁[−5, 5]⌋) . 𝑁[a, b]  represents the 7 

uniform distribution bound between a and b. The sensor heights are also different to simulate 8 

the real application. The adjoint concentration field was calculated in the same domain with a 9 

reverse velocity field for each sensor. One particular adjoint transport field from a sensor is 10 

shown in Fig. 3.7. 11 

The simulated concentration at each sensor is regarded as measurement 𝑫 in this case. 12 

As these concentrations are synthesized via the simulation, random noises 𝑁[−0.5, 0.5] × 𝐷𝑖 13 

are added to them to ensure that this case study is closer to reality. 14 



Chapter 3   

 

45 

 1 

 2 

 

Figure 3.6. The sensor configuration in Case I 

 

Figure 3.7. Adjoint transport field from a sensor in a horizontal plane (height = 10 m) 
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3.3.2 Bayesian inference settings 1 

Bayesian inference was conducted after the simulation, as described in Chapter 2. In this 2 

process, one of the most critical factors is the error variance 𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2  in Eq. (2.8). The value 3 

of this factor subtly affects the effectiveness and accuracy of the estimation procedure. 4 

Conversely, the optimal value of this factor is difficult to determine and still in controversy. 5 

Keats et al. (2007b) assigned the values manually for each sensor, according to the observed 6 

trends. These values lie between 10% and 270% of the mean measurements. Xue et al. (2018b) 7 

applied the variance of the measurements of each sensor. Since the determination of this factor 8 

still requires further study and is not the core part of this paper, this research assigns values in 9 

the same way as Keats et al. (2007b); the values lie between 10% and 250% of the mean forward 10 

measurements. Meanwhile, because a minor variance could cause unsteadiness in the 11 

calculation of Eq. (2.8), the variances of the sensors that could barely measure concentration 12 

were assigned a fixed value. The Bayesian inference of STE was executed with MATLAB on a 13 

personal computer with Intel® CoreTM i7-6700 CPU @ 3.4GHz and 16GB of RAM. The averaged 14 

computational time for estimating one source is about 42 min. 15 

 16 

3.3.3 Estimation results 17 

Fig. 3.8 shows the estimation results as the marginal probability distribution of each term. 18 

When the sensor measurements are combined with the super-Gaussian function, Bayesian 19 

inference can provide an ideal estimation for the line source, regardless of the initial guess 20 

provided to the Markov chain. All the parameters are correctly estimated. The coordinates, 21 

length, and strength estimations agree well with the true values. The peak value of width is no 22 

more than 20 m from the true value. Considering that the resolution of the simulation data is 10 23 

m rough, the proposed method is considerably accurate. The discrepancy for the angle is also 24 

smaller than 10 degrees. Considering that the posterior probability density functions (PDFs) in 25 

the results are usually highly skewed, like Fig. 3.8(d), only one estimator may not be able to 26 

objectively represent the distribution of estimations, we select both the 50th percentile and 27 

standard mean values of PDFs as the parameter estimators, the comparison between the true 28 

values and estimations are summarized in Table 3.2.  29 

 30 
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x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.8. Posterior PDFs of source parameters in Case I (dotted line: true value) 

The expectation of line source geometry ∫𝑝(𝒔|𝑫, 𝐼) × 𝑓(𝑥, 𝑦|𝒔)𝑑𝒔 is shown in Fig. 3.9. 1 

It can be confirmed that the proposed method restricts the estimation results to a small area 2 

around the true line. The shape of the contour is also an ellipse, with a similar line source angle. 3 

Therefore, it can be concluded that under ideal conditions, without measurement and modeling 4 

errors, the proposed method successfully identifies the line source information. 5 
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 1 

 

Figure 3.9. The expectation of line source geometry ∫𝑝(𝒔|𝑫, 𝐼) × 𝑓(𝑥, 𝑦|𝒔)𝑑𝒔 estimated 

by the proposed method in Case I. (red patch: true line source) 

 2 

Table 3.2. Summarized estimation results of the proposed method 

Method 𝑥𝑠(m) 𝑦𝑠(m) length(m) width(m) angle strength(1/s) 

True value 750 500 100√2 10√2 π/4 1 

Estimations  

(50th percentile) 
765 496 142 25 π/4.7 0.99 

Estimations 

(standard mean) 
764 496 142 26 π/4.7 0.99 

 3 

3.4 Discussion about sensor configuration 4 

Sensor configuration is crucial for all STE methods as sensor measurements are essentially 5 

the only information on which the STE method is based. Considering that there are limited 6 

discussions concerning the sensor configuration for line source estimation in the literature, it is 7 
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necessary to study the basic properties of the line source’s dispersion. Furthermore, the author 1 

wants to analyze the success and errors of line source estimation using different sensor 2 

configurations based on Case I. Notably, the contents in this section apply to all the line source 3 

identification methods based on stationary sensors, rather than to a specific design for the 4 

current method. 5 

 6 

3.4.1 Uniform sensor configuration 7 

In previous research regarding STE methods for point sources, a regular sensor network 8 

downstream of the source has commonly been used, yielding successful estimations. However, 9 

the situation has entirely changed in estimating the line source as it is more concerned with 10 

geometric information, which makes STE more difficult with a conventional sensor 11 

configuration. 12 

In the first configuration, the sensor network is like the conventional ones used for the 13 

point source estimation in previous research studies (Keats et al., 2007b; Kumar et al., 2015b; 14 

Xue et al., 2018b). Only one sensor is in front of the source and all the others are at the 15 

downstream with regular positions. The schematic diagram is in Fig. 3.10. 16 

 

Figure 3.10. Schematic of uniform sensor configuration. (red patch: true line source) 

Fig. 3.11 shows the marginal parameter distributions of the posterior probability. It can be 17 

noted that the estimation of the middle point coordinate, strength, and length is proper with 18 

small discrepancies from the true value. There is only one peak in each histogram. On the other 19 

hand, the angle and width results are totally distorted. It seems that the sampling algorithm 20 
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randomly travels in the width space, losing the ability to identify the true value. The accuracy 1 

is even worse in the angle estimation, in which the result is totally opposite to the true value. In 2 

consequence, the proposed method, coupled with the conventional sensor set, fails to estimate 3 

all the parameters of the line source, especially in estimating the angle and width. 4 

 

x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.11. Posterior PDF of source parameters with uniform sensor configuration. 

(dotted line: true value) 
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Since the conventional configuration has been proved effective enough by previous 1 

research studies, and the proposed method has successfully identified the line source in Section 2 

3.3, the problem should be in the different properties between the point source and line source. 3 

Actually, if we check the results of the conventional configuration in Fig. 3.11, even though the 4 

angle and width estimations are completely wrong, the coordinates of the middle point are still 5 

correctly estimated. This fact implies that the conventional configuration is capable of locating 6 

the position of the source, which is enough for a point source estimation. If geometric 7 

information is needed, like the inclined angle of the line, the conventional set cannot be relied 8 

on anymore. This can be illustrated by the three different line sources located at the same 9 

position as shown in Fig. 3.12. Although these three line sources are distinct from each other, 10 

their dispersion fields, caused by the same flow and the influence on the sensor downstream, 11 

are similar to a high degree. The only difference that can be captured by the downstream sensors 12 

is the concentration discrepancy in the span-wise direction, which is vulnerable under the noise 13 

of the model and measurement. Therefore, the inclination angle of the line source cannot be 14 

estimated through the measurement of the regular sensor configuration downstream of the 15 

source. For the same reason, the width is also free to change and is thus impossible to estimate. 16 

Accordingly, the estimation of the line source requires more geometric knowledge, which can 17 

be provided only by the sensors close to the circular area, whose diameter is the same as the 18 

length of the line source.  19 

 

Figure 3.12. Three different line sources with similar concentration fields (areas with 

different colors) 

The inclination angle and width were successfully estimated in Case I. It is reasonable to 20 

believe that the sensors around the line source (No. 9, 14, 15, 16) are the key factor. During the 21 

inference, the information provided by these sensors prevents the generated source from over-22 
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rotating or expanding in width. Despite of that, the sources generated during sampling still 1 

fluctuated to some degree because the density of sensors is not high enough. It can be observed 2 

in Fig. 3.8 that second peak appeared in the posterior PDF of width, and the estimation of angle 3 

also has a deviation. It means that a wider line source with smaller inclined angle would have 4 

similar impacts on the current sensor configuration, which is intuitively shown in Fig. 3.9. 5 

 6 

3.4.2 Importance of null measurements 7 

Apart from these indispensable sensors near the source, the effects of the “region of 8 

influence” should also be considered. This concept was proposed by Keats et al. (2007b), 9 

emphasizing the importance of sensors with null measurements to the point source estimation. 10 

The estimation of the line source has the same requirements. Considering the case shown in 11 

Fig. 3.13, whereby 9 sensors are used to estimate the red line source, the incorrect estimation, 12 

i.e., the green line, will destroy the inference because the red and green lines have almost equal 13 

influence on the sensors. The failure is essentially due to the lack of sensors in the upper-right 14 

area; although sensors in this area will measure none of the true red line, only the null 15 

measurement informs the inference of the length of the source and excludes the possibility that 16 

the green line is the true source. According to Keats et al. (2007b), this kind of sensor should 17 

also be classified in the ‘region of influence’. 18 

 

Figure 3.13. Diagram of typical estimation error caused by the lack of null measurement 

This characteristic can be better demonstrated by the following trial with Case I. This 19 
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sensor configuration is totally produced by randomness. The horizontal distribution of sensors 1 

for the trail is shown in Fig. 3.14. The configuration has several sensors around the line source, 2 

which should improve the estimation accuracy when compared to the uniform configuration. 3 

 

Figure 3.14. Schematic of sensor configuration (totally random) 

The estimation result is shown in Fig. 3.15. From the first look, all the parameters are 4 

almost correctly estimated. The accuracy of the coordinates, length, and strength is the same or 5 

even better than that of conventional configuration. More importantly, the inference 6 

successfully narrows the width scale to under 25 m. Similarly, the estimation of the angle is 7 

improved significantly using the measurements from this configuration. The inference 8 

eliminates the possibilities of other angles and gathers only around the true value. It is 9 

reasonable to believe that the sensors around the line source (No. 3, 5, 7, 8) cause the 10 

improvement. During the inference, the information provided by these sensors prevents the 11 

generated source from rotating too much or expanding the width. 12 

Despite this advancement over the conventional configuration, the Bayesian inference will 13 

be found unsteady and sensitive to the initial guess if different Markov chains with different 14 

start points are tested. Although for most of the time, the estimations are similar to the one in 15 

Fig. 3.15, one particular error in Fig. 3.16 will appear repeatedly from time to time. In this 16 

particular error, wrong peaks show up in the x coordinate as well as the length and dominate 17 

over the true peak, which is unacceptable in practical use. Hence, the measurements provided 18 

by this configuration are still not enough to reach a steady and accurate inference. 19 



Chapter 3   

 

54 

 

x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.15. Posterior PDF of source parameters with sensor configuration of Fig. 3.14. 

(dotted line: true value) 

 1 



Chapter 3   

 

55 

 

x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.16. Posterior PDF of source parameters with sensor configuration of Fig. 3.14. 

(a particular wrong example) (dotted line: true value) 

The failure of the length estimation is mainly caused by the lack of sensors at the upper 1 

right corner downstream to the line source. In this case, the line source can extend freely in that 2 

direction without significantly changing the influence on each sensor. One particular error is 3 

shown in Fig. 3.17. Consequently, apart from the sensors near the line source, we still need 4 
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some null-measurement sensors to prevent the error extension.  1 

In Section 3.3, the length was well reconstructed. The zero measurements provided by 2 

sensors No. 1, 4, 5, 8, and 12 prevent error extension. Otherwise, the difference between the 3 

measured and modeled values would become significant, and the sampling algorithm (MHMC 4 

in Chapter 2) would abandon the sampling. 5 

 

Figure 3.17. Wrong estimation with sensor configuration of Fig. 3.14. 

(red patch: line source; blue line: wrong estimation) 

 6 

3.4.3 Necessary sensors for line source estimation 7 

It is natural to ask how can we know a set of sensors is enough for the estimation or not? 8 

Or, what is the minimum number of the necessary sensors for the line source estimation? Based 9 

on the analysis above, it is proposed here that at least six sensors located appropriately are 10 

enough for the purpose. The schematic diagram is in Fig. 3.18. Among them, three sensors 11 

around the source are mainly for the angle and width estimation. The upper one and lower one 12 

in the downstream can restrain the length. It does not mean that each sensor is only in charge 13 



Chapter 3   

 

57 

of the estimation of one parameter. In fact, all the sensors are helpful to the estimation of several 1 

parameters, but certain sensors are more important to the estimation of certain parameters. 2 

 

Figure 3.18. Schematic of the necessary sensors for the line source estimation 

In order to prove the correctness of the proposal above, six sensors (No. 1, 3, 4, 9, 15, 16) 3 

are picked out from the configuration of Case I in Section 3.3 according to Fig. 3.18 to conduct 4 

a new STE. The results are summarized in Fig. 3.19. Apparently, the accuracy is almost 5 

consistent with that of Case I in Fig. 3.8. All the parameters are successfully estimated with 6 

tolerable error. Without a doubt, the samplings in Fig. 3.8 gathered tightly around the true value 7 

while in Fig. 3.19 more residual probability appears at wrong values. The redundant 10 sensors 8 

in Case I infuse more information to the inference so that the true value is captured effectively. 9 

This fact is also well illustrated by the cumulative probability density of six sensors in Fig. 3.20. 10 

Thereby, we can conclude that, in order to estimate the line source term, both for position and 11 

geometry, six sensors with proper location are indispensable. Any sensor network including 12 

these six sensors can perform well in line estimation cooperated with the super-Gaussian 13 

function method. Apart from these six sensors, the more sensors we have, the more effective 14 

and accurate will the inference be. 15 

 16 
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x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.19. Posterior PDF of source parameters (selected 6 sensors from Case I). 

(dotted line: true value) 
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Figure 3.20. The joint posterior probability density distributions 𝑃(𝑥𝑠, 𝑦𝑠, 𝜃, 𝜎𝑋 , 𝜎𝑌 |𝐷, 𝐼) 

of selected 6 sensors. (red patch: true line source) 

 1 

3.5 Case II: wind tunnel experiment of the urban square model 2 

After the success with the elementary case presented above, it is necessary to examine the 3 

robustness of the proposed method under the complicated measurement and modeling errors 4 

within the practical case. Although the line source’s dispersion has been frequently studied in 5 

the literature, there are very few experimental databases accessible online for validating the 6 

inversion methodology. Balczó and Lajos (2015) measured the dispersion of a line source in a 7 

simplified urban square, as shown in Fig. 3.21(a). Their case includes buildings of different 8 

sizes, and the configuration is representative of real urban neighborhoods. In addition, they 9 

performed a comprehensive measurement in the space between buildings, which makes the 10 

STE possible. Hence, we demonstrate the feasibility and necessity of the proposed method 11 

based on this practical case. 12 

Meanwhile, to illustrate the necessity of geometry estimation, we also conducted the STE 13 

via the conventional method, with the ideal-point assumption. The results are compared with 14 

those obtained using the proposed method. 15 

 16 
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3.5.1 Wind tunnel experiment for measurements 1 

In this case, measurements 𝑫 were obtained via the wind tunnel experiment in Balczó 2 

and Lajos (2015), conducted in an Eiffel-type wind tunnel with a closed test section of 3 

0.5 𝑚 × 0.5 𝑚. All buildings had the same height. The model had a scale of 1:650, which means 4 

the building height was 𝐻 = 30 m  at full scale and ℎ = 46 mm  at the model scale. The 5 

turbulent boundary inflow generated by roughness moved from left to right (Fig. 3.22). The 6 

reference velocity 𝑈𝑟 was measured at the building height. 7 

The line source was located on the bottom wall in the upper part of the building area, as 8 

shown in Fig. 3.21(a). The gas emitted from the line source was measured using slow flame 9 

ionization detector sensors located at 35 positions in a horizontal plane with a height of 𝐻/10. 10 

The measured concentration was non-dimensionalized via the reference concentration 𝐶̅ =11 

𝑄

𝑈𝑟ℎ
2, where 𝑄[g/s] is the source strength. The non-dimensionalized concentration distribution 12 

in the horizontal plane of sensors is shown in Fig. 3.21(b). 13 

 
 

The basic settings for the simplified urban 

square model 

The measured distribution of concentration 

emitted from the line source in the WTE 
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 1 

3.5.2 Numerical simulation 2 

A CFD simulation was conducted to calculate the flow field and adjoint tracer field. The 3 

calculation domain was 26𝐻(𝑥) × 10.67𝐻(𝑦) × 6𝐻(𝑧). The building area was 10𝐻 away 4 

from the inlet and outlet and 5𝐻 from the top boundary. The experimental model was close to 5 

the side walls in the small wind tunnel and thus the distance between the building area and 6 

lateral boundaries was also set small, as 0.67𝐻, to simulate the effects of side walls. In the 7 

building area, the cubic mesh was uniform, with a 𝐻/18 (1.67 m) length in all directions, then 8 

expanded along with the coordinates at a 1.08 ratio. 9 

The boundary conditions were set according to the AIJ basic guidelines (Tominaga et al., 10 

2008b). The streamwise velocity and turbulence intensity profiles were prescribed on the inlet 11 

  

The simulated distribution of concentration 

emitted from the line source 

The simulated adjoint tracer field emitted 

from the No. 15 sensor 

Figure 3.21. Schematic of the wind tunnel experiment and simulation in Case II (horizontal 

plane with 𝑧 = 𝐻/10): (b) is referred to Balczó and Lajos (2015). 
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based on the experimental data, as shown in Fig. 3.22. At the bottom and side walls, a no-slip 1 

condition with the Spalding wall function was applied. The turbulence was modeled using the 2 

renormalization group 𝑘 − 𝜀 model (Yakhot et al., 1992). The details of other configurations 3 

are listed in Table 3.3. The adjoint transport field was calculated in the simulation domain, with 4 

a reverse velocity field for each sensor in the wind tunnel experiment. One adjoint transport 5 

field from the No. 15 sensor is shown in Fig. 3.21 (d). 6 

Table 3.3. Numerical schemes and boundary conditions for case II 

Time marching Steady state (SIMPLE method) 

Spatial discretization Advection term: TVD scheme; 

Inlet 

𝑈̅, 𝑘, 𝜀: experimental profile; 

Pressure: zero-gradient 

C: constant (= 0); C*: zero-gradient 

Outlet 

Flow: zero-gradient; 

Pressure: fixed value 0; 

C: zero-gradient; C*: constant (= 0) 

Top wall Slip; 

Bottom & side walls 

Flow: Spalding wall function; 

Pressure: zero-gradient; 

C, C*: zero-gradient 

Source C, C*: Constant injection rate 

In the numerical simulation, apart from the hypothetical tracers, the dispersion from the 7 

line source was also predicted to reveal the model error. A comparison between the 8 

measurements and simulation can be observed in Fig. 3.21(b) & (c). The general distribution 9 

was predicted accurately via simulation; the pollutant mainly accumulated in the upper part of 10 

the square, while the concentration in the lower part was very low. The high pollutant 11 

concentration downstream of the building area was not reflected in the measurement, owing to 12 

the limited number of sensors. One evident simulation error occurred in the wake region behind 13 
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the buildings in the upper part of the domain. The simulation failed to predict the convection of 1 

pollutants in this area, which may lead to noticeable modeling errors during Bayesian inference. 2 

This concentration underestimation was also noted by Balczó and Lajos (2015), suggesting that 3 

the steady simulation based on Reynolds averaged Navier-Stokes equations still needs 4 

improvement to accurately predict dispersion in complex urban areas. 5 

  

Streamwise velocity Turbulence intensity 

Figure 3.22. Vertical profiles of streamwise velocity and turbulence intensity for inflow in 

Case II 

3.5.3 Bayesian inference settings 6 

As in Keats et al. (2007b), the values of 𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2  lie between 10% and 250% of the 7 

mean sensor measurements in the wind tunnel experiment. The variance of the sensors with 8 

minimum concentrations was set as a small fixed value to maintain steady Bayesian inference. 9 

For prior information, this research applied a common assumption in STE that the source is in 10 

the main area 𝑥[−10𝑚, 190𝑚] × 𝑦[−150𝑚, 150𝑚] and will not appear in the buildings. 11 

 12 

3.5.4 Estimation results 13 

The estimation results of the proposed method for a single term are shown in Fig. 3.23. In 14 
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general, for each term, except length, the peak probability distribution value is close to the true 1 

value. The probability distribution for coordinate 𝑥0 of the middle point demonstrates that the 2 

reconstructed source moves unsteadily along the x direction. The result for 𝑦0 appears better 3 

as the bulk of the probability mass concentrates in several grid cells around the true source. The 4 

zero measurements provided by sensors No. 17 ~ 35 limit the sampling of 𝑦0  to move 5 

downward; if not, the difference in the measured and modeled value would be too large to 6 

invalidate the sampling. Samplings in 𝜃  tightly surround the true value, with small 7 

discrepancies. Besides, the peak value of the width is no more than 2 m away from the true 8 

value. Again, the estimation is considerably accurate since the resolution of the simulation data 9 

is approximately 1.67 m. The sensors around the line source (No. 3~9) help the algorithm 10 

successfully estimate the angle and width. 11 

There is a deviation in the estimation of source strength. It should be mentioned that the 12 

scale of the horizontal axis was set small in the results of width and strength to clearly show 13 

the distributions. Hence, the uncertainty seems to be amplified. The estimation for length has a 14 

wide distribution range, and the estimated peak value has a relatively large bias compared with 15 

the true value. Combining the fact that 𝑥0 estimation also moves along the x-direction, it can 16 

be concluded that the reconstructed source stretches and moves unsteadily in the x-direction 17 

during inference to find the most probable sampling. The reason for this behavior could be the 18 

lack of sensors along with the x-axis upstream and downstream of the source, which is exactly 19 

the null-measurements discussed in Section 3.5.2. These sensors are sensitive to the change in 20 

length; thus, their measurements can provide accurate information on length for the estimation 21 

process. 22 

Combining the estimation performance in two cases, it can be concluded that line source 23 

estimation has a stricter requirement for sensor configuration than point source estimation, to 24 

obtain the geometric information. Sensors near the source and sensors in the ‘region of 25 

influence’ with zero measurements are all necessary. As a result, in practical applications, the 26 

density of the sensors in urban areas should be high enough to capture all possible unknown 27 

line sources, which could appear anywhere. 28 

 Admittedly, the model error of steady CFD simulation for the source-receptor 29 

relationship, especially the concentration difference in the wake region behind buildings 30 

(sensors No. 1~4), affects the accuracy of estimation. Hence, it is necessary to improve the 31 
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adjoint concentration simulation to ensure that the STE method is accurate enough in 1 

complicated real applications. Even with model error, the proposed method restricts the 2 

sampling between 0.5 and 2 times the true value, which is acceptable. 3 

 

x-coordinate (middle point) 

 

y-coordinate (middle point) 

 

length of the line 

 

width of the line 

 

inclined angle of the line 

 

strength of the source 

Figure 3.23. Posterior PDF of source parameters estimated by the proposed method in 

Case II. 
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The power of the proposed method can be better illustrated by the estimated line source 1 

geometry expectation ∫𝑝(𝒔|𝑫, 𝐼) × 𝑓(𝑥, 𝑦|𝒔)𝑑𝒔 , as shown in Fig. 3.24 (a). Although the 2 

estimations for a single term are not perfect, the joint probability distribution clearly reflects 3 

that the target is a line-shaped source, with a geometry that is very similar to the actual geometry. 4 

The proposed method constricts the distribution into an area around the true line while the 5 

possibility of other areas is eliminated by inference. Therefore, it can be confirmed that the 6 

proposed method effectively estimates the geometry information of the source in this practical 7 

case. 8 

 9 

  

∫𝑝(𝒔|𝑫, 𝐼) × 𝑓(𝑥, 𝑦|𝒔)𝑑𝒔 obtained from 

the proposed method 

𝑝(𝑥𝑠, 𝑦𝑠|𝑫, 𝐼) obtained from conventional 

method with point assumption 

Figure 3.24. The estimation results of the proposed method and conventional method in 

Case II.  

 10 

(dotted line: true value) 
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3.5.5 Comparison to conventional method with point assumption 1 

To prove the necessity of geometry estimation in the proposed method, we also conducted 2 

STE using the conventional method introduced in Chapter 2, in which the source is always 3 

assumed to be an ideal point without any geometry. All the settings for Bayesian inference and 4 

measurement data are the same as those used above. 5 

 

x-coordinate  

 

y-coordinate 

 

strength of the source 

Figure 3.25. Posterior PDF of source 

parameters estimated by the conventional 

method with ideal point assumption in Case 

II. (dotted line: true value) 

The results are summarized in Fig. 3.25. Since the conventional method does not include 6 

the geometry estimation function, it can only provide the samplings for coordinate and strength. 7 

The coordinate estimation diverges from the true value of the middle point of the line source. 8 

Although the peak value of strength PDF coincides with the true value, it is notable that the 9 

sampling range spreads up to 25 times the true value while the proposed method constrains this 10 

range by a factor of less than 2. In actual applications, this wide range may confuse the risk 11 

management process. It is also possible that the complicated dispersion in real urban may 12 

produce a wider range or a wrong peak. Again, regarding the 50th percentile and standard mean 13 

values of PDFs as the parameter estimators, the comparison between the true values, 14 

estimations of the proposed method, and estimations of conventional methods are summarized 15 
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in Table 3.4. The proposed method can not only provide valuable information about the 1 

geometry of the unknown source but also perform better than the conventional method in the 2 

aspects of locations and strength. 3 

The joint posterior PDF 𝑝(𝑥𝑠, 𝑦𝑠|𝐷, 𝐼)  is shown in Fig. 3.24 (b). Compared with the 4 

results of the proposed method, the entire distribution is limited to a small area. The main body 5 

of the line source was excluded in the probability distribution. The result cannot provide enough 6 

information about the location or geometry of the target source, suggesting that the STE with 7 

the conventional method fails in estimating a source that is not an ideal point. 8 

Table 3.4. Summarized estimation results of the proposed method and conventional method 

Method 𝑥𝑠(m) 𝑦𝑠(m) length(m) width(m) angle strength(1/s) 

True value 90 82.5 140 6 0 1 

Estimations 

(proposed 

method) 

50th percentile 87 83 123 5 0 1.7 

standard mean 88 82 113 5.5 0 1.1 

Estimations  

(point 

assumption) 

50th percentile 103 89    5.7 

standard mean 100 88    7.5 

 9 

3.6 Conclusion 10 

In this Chapter, a method was proposed for the identification of a line source with the 11 

application of the super-Gaussian function. The main conclusions are as below. 12 

The applicability of the method was first evaluated through Case I: a numerical experiment 13 

involving an ideal urban boundary layer. The numerical measurements were simulated using 14 

the Reynolds averaged Navier-Stokes model. According to the estimation results, all the 15 

parameters were correctly identified with almost none or acceptable errors under ideal 16 

conditions, without measurements and modeling errors. The proposed method successfully 17 

inferred that the source’s shape is line-like, by automatically adjusting the coefficients in the 18 

super-Gaussian function, without any prior knowledge of the source geometry. 19 



Chapter 3   

 

69 

After that, the effects of different sensor configurations on the estimation results based on 1 

Case I were discussed to reveal the measurement requirements of a line source. Because the 2 

line source contained more geometric information (such as length, angle, and width) compared 3 

with the point source, it cannot be identified correctly by the conventional sensor network, in 4 

which all the sensors are placed regularly downstream. This chapter summarizes that, in order 5 

to collect enough information about the line source, at least six sensors are indispensable, which 6 

includes the sensors near the source and null-measurement sensors. In the real application, it 7 

was noted that the density of sensors should be sufficiently high to cover the “region of 8 

influence” and handle any possible unknown sources. 9 

Next, to examine the robustness of the proposed method under the complicated errors 10 

caused by measurements and numerical modeling, a published practical case of a simplified 11 

urban square was utilized. In this case, the measurements were obtained from discrete sensors 12 

in wind tunnel experiments rather than through simulation. The estimation results showed that, 13 

in the practical situation, the proposed method could still estimate the line source parameters 14 

efficiently, with few and simple coefficients that were tractable for Bayesian inference. More 15 

importantly, the estimation was accomplished without any prior geometric information. 16 

Furthermore, with the experimental measurements in Case II, the performance of the 17 

proposed and conventional methods with ideal points was compared. The results implied that 18 

the ideal point assumption makes the conventional method incapable of providing any 19 

information about the source geometry. This simplified assumption also resulted in significant 20 

errors while estimating location and strength. Consequentially, the ideal point assumption failed 21 

in estimating the unknown source with geometry, which is a common scenario in real life. The 22 

proposed method is an important improvement as it can estimate the geometry of the source 23 

and reduce the error caused by the point assumption. 24 

Admittedly, the current model may still bring a tail error into the length and width 25 

estimation as the super-Gaussian function cannot be the same as a line no matter what the value 26 

of 𝜆 is, though it has demonstrated that the error is acceptable. 27 

It should also be noted that this is an early trail to estimate an unknown source with 28 

geometry. Few related research, either the validation database or comparable algorithm, is 29 

available in the literature. Most of previous research still concentrates on the point source 30 

estimation. Therefore, in the following chapters, the focus will change from the geometry 31 
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estimation to point source estimation to utilize the existing database and benchmarks, and the 1 

super-Gaussian function will not be used. 2 

3 
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Symbols 1 

𝐴 : normalization factor of Gaussian function 

a, b, c : coefficients of Gaussian function 

𝐶 : the concentration distribution caused by a source 

𝐶∗ : adjoint concentration distribution 

𝑫 : measurements vector 

𝐷𝑖 : the measurement of the sensor with index 𝑖 

𝐷𝑡 : turbulent diffusivity 

𝑓𝒙 : the Gaussian function for variables 𝒙 

𝑓(𝑥, 𝑦) : the bivariate Gaussian function 

𝐻 : the building height in the real life of Case II 

ℎ : the height of the building model in the experiment of Case II 

𝐼 : background information for Bayesian inference 

𝐼𝑢 : the turbulence intensity in the streamwise direction 

𝑘 : turbulent kinematic energy 

𝑘𝑠 : roughness coefficient for the wall function applied in Case I 

𝑚 : the dimension of the Gaussian function 

𝑁[a, b] : the uniform distribution bound between a and b 

𝑝(𝐴|𝐵) : conditional probability of event 𝐴 occurring given that 𝐵 is true 
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𝑄 : the source strength in the experiment of Case II 

𝑞𝑠 : release strength of the source 

𝑹 : modeled concentration vector 

𝑈̅ : the spatially averaged wind velocity of the inlet in Case I (4 m/s) 

𝑈𝑟 : the reference velocity measured at the building height in the 

experiment of Case II 

𝑥0 : 𝑥 coordinate of the middle point of Gaussian function 

𝑥𝑚 : 𝑥 coordinate of the sensor 

𝑥𝑠 : 𝑥 coordinate of the middle point of line source 

𝑦0 : 𝑦 coordinate of the middle point of Gaussian function 

𝑦𝑚 : 𝑦 coordinate of the sensor 

𝑦𝑠 : 𝑦 coordinate of the middle point of line source 

𝚺 : the covariance matrix of variable 𝒙 in the Gaussian function 

𝝁 : the mean value matrix of variable 𝒙 in the Gaussian function 

𝜃 : inclined angle of the Gaussian function or the line source 

𝜎𝑑,𝑖
2  : the variance of error in the measurement of the sensor with index 𝑖 

𝜎𝑚,𝑖
2  : the variance of error in the modeling concentration for the sensor with 

index 𝑖 

𝜎𝑋 : the covariance of Gaussian function in the 𝑥 direction 
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𝜎𝑌 : the covariance of Gaussian function in the 𝑦 direction 

𝜆 : power coefficient of the super-Gaussian function 

𝜀 : turbulent energy dissipation 

 1 

 2 
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Chapter 4 9 

Construction of urban turbulent 10 

flow database by large-eddy 11 

simulation and wavelet-based 12 

compression method 13 

 14 

  15 
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Abstract 1 

According to Chapter 2, the prediction of the source-receptor relationship relies on the 2 

simulation of the adjoint equation, in which the hypothetical tracer emitted from each sensor is 3 

transported in the inverse spatiotemporal flow field. As shown in Chapter 3, an adjoint 4 

equation is a partial differential equation that is similar in form to a dispersion equation and can 5 

be simulated by computational fluid dynamics (CFD) model like Reynolds averaged Navier-6 

Stokes (RANS). However, the prediction accuracy of RANS models for the time-averaged flow 7 

fields around buildings has been shown to be insufficient when compared with the large eddy 8 

simulation (LES) model (Tominaga et al., 2008a). Besides, the turbulence diffusion is 9 

approximated based on the mean field in the RANS model. These limitations undermine the 10 

accuracy of adjoint equation simulations and source term estimation (STE) with RANS. It is 11 

believed that LES may improve the prediction accuracy of adjoint equation simulation and 12 

enhance the reliability of statistical STE in urban applications. 13 

Until now, the LES of the adjoint equation has been regarded as impractical because the 14 

time-series flow field data of the entire domain must be produced by forward simulation and 15 

stored in advance to realize the inverse simulation. One important challenge here is that the 16 

volume of data acquired by forward LES is too large for practical application. This research 17 

proposed to use the wavelet-based compression method to mitigate the storage pressure. The 18 

LES flow field can be compressed into a portable database for later usages like adjoint equation 19 

simulation, new dispersion simulation, and validation for new models.  20 

Before the detailed introduction of LES for adjoint equation and STE in Chapter 5, this 21 

chapter constructed a compression turbulent flow database for a block-arrayed building group 22 

model simulated via LES. The objective has three aspects: (1) Evaluate the accuracy of 23 

compression and the applicability of compressed database; (2) Construct a compressed database 24 

for the adjoint equation simulation in Chapter 5; (3) Prepare a raw dispersion field for the STE 25 

in Chapter 6. 26 

More details of the last two aspects can be found in their own chapters. This chapter 27 

focuses on the compression method and database construction. The compression performance 28 

was analyzed from two viewpoints: single snapshot and time-series data. 29 

  30 
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4.1 Introduction 1 

In environmental flow simulations, pollutant dispersions in complicated urban areas are 2 

often simulated together with the flow fields by computational fluid dynamics (CFD). To 3 

simulate complex flow fields accurately, sophisticated numerical models, such as large eddy 4 

simulation (LES) and direct numerical simulation (DNS), have been developed, and refined 5 

grids are involved. With the help of supercomputers or clusters of workstations, most of the 6 

details needed in different scales can be simulated by proven techniques with sufficient 7 

calculation time. For example, Kikumoto and Ooka (2012) simulated air pollutant dispersion 8 

with bimolecular chemical reactions in a street canyon by LES. Coceal et al. (2007), Jacob and 9 

Sagaut (2018) explored a dynamic wind environment in a real and an idealized urban area with 10 

LES and DNS. These cases often require more than a hundred calculation hours, even if the 11 

simulations are conducted in parallel by dozens of cores. However, when new sources and 12 

questions arise, these massive simulations have to be repeated many times. A more economical 13 

way is to construct a flow field database with accurate simulation. It can be used to simulate 14 

new dispersion cases and validate new simulation methods. One example is the Johns Hopkins 15 

Turbulence Database (http://turbulence.pha.jhu.edu) for DNS simulations of turbulence. This 16 

database has been used, fully or partially, in several research projects, contributing to more than 17 

40 publications (Kanov et al., 2015). For instance, Graham et al. (2016) used this database to 18 

validate a new wall model for LES. 19 

However, another issue has been brought to the attention of researchers by this trend: the 20 

resultant data of a highly resolved flow simulation by LES or DNS has an enormous volume 21 

(gigabytes or more) per time step. The handling of such big data has challenged the limitations 22 

of the storage space and I/O speed of computers. To alleviate the pressure on storage and 23 

promote sharing, new calculation, and postprocessing of databases, an appropriate data 24 

compression method is necessary. In addition, considering that there are strong correlations in 25 

turbulent structures, temporally and spatially, the information of the flow could be represented 26 

by fewer data given that some data can be reconstructed by others with these correlations. 27 

Consequently, the compression of CFD data is theoretically realizable. 28 

Generally, there are two kinds of compression methods: lossless and lossy. Lossless 29 

compression methods are developed for situations in which any difference between the 30 

decompressed and original data cannot be tolerated. One important application is text 31 

http://turbulence.pha.jhu.edu/
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compression, where even a different character from the original text may change the meaning 1 

completely. Compression of confidential data, such as financial records, also requires strict 2 

accuracy. In this case, because all the data need to be preserved rigorously, lossless compression 3 

methods, such as the Lempel–Ziv–Markov chain algorithm, can reduce the file size to less than 4 

20% (Hadjidoukas and Wermelinger, 2019). 5 

However, data loss is allowed in lossy compression, so the compression ratio is 6 

correspondingly higher. It happens that most CFD data have robustness, to some extent, against 7 

proper loss. It is a common practice to save the data with lower accuracy than full precision 8 

considering that numerical error makes saving with full precision meaningless. Moreover, as 9 

discussed above, some data can be deleted in the compression and reconstructed later by 10 

physical correlations. Hence, lossy compression methods with a high compression ratio seem 11 

feasible. Still, it is worth mentioning that, since the compression is based on the correlated 12 

turbulence structures, for small turbulence that is highly random with minimum correlation, the 13 

effective application of compression still needs confirmation. Despite that small-scale 14 

turbulence seems vulnerable to even small errors, it is reasonable to believe that the compressed 15 

data is applicable when this small turbulence is not the dominant part. 16 

One popular direction in the field of fluid mechanics is mode decomposition, in which the 17 

nonlinear, complicated flow field is decomposed into different modes and can be approximated 18 

by the reconstruction of a limited number of dominant modes. Several methods, such as proper 19 

orthogonal decomposition (Berkooz et al., 1993) and dynamic mode decomposition (Schmid, 20 

2010), have been invented and have achieved success in application. These methods can be 21 

naturally utilized as lossy compression methods where the original time-series data are 22 

represented by the dominant modes and corresponding mode-temporal coefficients, whose 23 

volume is much smaller. Meanwhile, a loss is caused by neglecting the nondominant modes. 24 

The main drawback of these methods is that the decomposition process always involves 25 

convoluted eigen-calculation of a huge matrix. If a database involves with long time series and 26 

large number of grids, the matrix will occupy a massive memory space that is difficult to 27 

process for a common computer. The requirements of calculation ability and the time history 28 

of the flow confine their general application as compression tools. However, its merit is the 29 

convenience of decompression. Once the modes and coefficients are successfully decomposed, 30 

the reconstruction only needs simple algebraic operation, which is fast. 31 
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In contrast, another decomposition method, wavelet decomposition (WD), can produce a 1 

set of bases for the fluid with a much lighter calculation burden. Furthermore, it can be applied 2 

to one single snapshot without time history. The only demand for achieving a high compression 3 

ratio is that the data must change smoothly in the space (Schmalzl, 2003), which is guaranteed 4 

by the diffusion term in the governing equations of the flow field. Therefore, wavelet-based 5 

compression is a probable choice for CFD data. Zubair et al. (1992) introduced this idea first to 6 

decompose and compress turbulent signals. Wilson (2002) applied wavelets to compress the 7 

turbulent simulation data, and the compression ratio reached 256 for the maximum. Schmalzl 8 

(2003) pointed out that the existing image wavelet compression method provides an available, 9 

easily adopted tool for CFD data. The efficiency of different compression schemes, such as 10 

JPEG and MPEG, were evaluated. Sakai et al. (2013) combined the WD with quantization and 11 

entropy encoding to construct the basic structure of the wavelet-based compression method 12 

(WCM) and increased the compression ratio further. They verified the WCM by simulation data 13 

in a structured Cartesian mesh, which is a common situation in CFD. Following that method, 14 

Kolomenskiy et al. (2018) proposed an empirical equation for error control, which makes the 15 

WCM more controllable and user-friendly. They also implemented the method in different 16 

simulation cases with different scales and resolutions. The wavelet-based method has shown a 17 

high compression ratio and accurate decompression in general. Therefore, it is a promising 18 

solution to construct a small-sized CFD database by the WCM. 19 

However, to the authors’ knowledge, the WCM has not been applied to construct a CFD 20 

database including both the spatial distribution and time-dependent dynamics. In previous 21 

research, the verification of the WCM was limited to the compression of a single snapshot of 22 

the flow field. The major concern was the effects of compression of a snapshot on the 23 

postprocessing or restarting simulation from that snapshot, but the cumulative effects resulting 24 

from compression of time series data have not been reported. It is not clear whether the 25 

dispersion simulation can proceed successfully with such a compressed database. Moreover, 26 

studies from the perspective of the limitation of the compression ratio and source of errors have 27 

been few. There is little research in which the feasibility of compression in complicated flow 28 

field simulation, such as building clusters in urban areas, has been addressed. These aspects 29 

should be investigated further before the construction of the CFD database with WCM and 30 

applying it for inverse simulation later. 31 

In this chapter, a small urban flow database was constructed by using the WCM, and the 32 
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applicability was verified. The original data for the database were obtained from an LES 1 

simulation of a block-array urban area. The LES data were compressed with different specified 2 

errors by the WCM to construct the database. The relationship between compression error and 3 

the compression ratio, as well as the limitation of the compression, are demonstrated. 4 

Furthermore, the effects of compression on a single snapshot and time-series data are discussed. 5 

To confirm the usability of the compressed database, it was used to re-simulate the dispersion 6 

of a passive scalar, which is compared with the dispersion field of the original LES and wind 7 

tunnel experiment.  8 

 9 

4.2 Compression methodology 10 

First of all, the compression method is introduced briefly. The basic idea of using WD to 11 

realize data compression for the CFD simulation was proposed by (Zubair et al., 1992) for 12 

turbulent signals. Subsequent research (Sakai et al., 2013; Schmalzl, 2003; Wilson, 2002) 13 

enriched the idea by adjusting the algorithm for general cases and combining it with other data 14 

compression concepts. Kolomenskiy et al. (2018) proposed an empirical formula for error 15 

control of the WCM and verified its accuracy in several possible application scenarios. 16 

 

Figure 4.1. The structure of the compression method 

Here, the method proposed by Kolomenskiy et al. (2018) was applied exactly because the 17 

structure of this method is relatively complete and, more importantly, the error control is 18 

explicit. There are three steps in this compression method: WD, quantization, and entropy 19 

encoding (Fig. 4.1). Decomposition can be simply realized through the inverse of the process. 20 

In the following, these three steps are introduced. The original data are assumed to constitute a 21 

three-dimensional scalar field obtained from the Cartesian indexing mesh grid {𝑓𝑖,𝑗,𝑘} . The 22 
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index 𝑖, 𝑗, 𝑘 indicates the coordinate of a grid in the 𝑥, 𝑦, 𝑧 directions. 1 

 2 

4.2.1 Wavelet decomposition 3 

WD is popular in the engineering field and has shown its power in signal processing (Rioul 4 

and Vetterli, 1991), noise control (Qiu et al., 2016), and image compression (Usevitch, 2001). 5 

The essence of the WD is to decompose the original data into the approximation part with low 6 

frequency and the detailed part with high frequency. On the one hand, for the flow field, most 7 

of the energy is contained in the low-frequency structures, which means the decomposition 8 

coefficients are large for the approximation part and small for the detailed part. On the other 9 

hand, the approximation part only occupies part of the original saving space. Because the WD 10 

can be implemented on the decomposed one repeatedly, the resulting approximation part uses 11 

quite a small space to represent most of the information. 12 

A two-dimensional WD was used as an example. Fig. 4.2a is an averaged streamwise 13 

velocity field around an isolated building on a horizontal plane. This flow field was decomposed 14 

once to yield Fig. 4.2b using the Cohen–Daubechies–Feauveau 9/7 (CDF9/7) (Daubechies and 15 

Sweldens, 1998) wavelet. It indicates that the decomposed flow field consists of four parts, 16 

which correspond to the low-low frequency part (1), high-low frequency part (2), low-high 17 

frequency part (3), and high-high frequency part (4), respectively, transformed by the wavelet 18 

in the horizontal and vertical directions. In the decomposition, wavelets work as a filter to 19 

convert the flow field to the wavelet coefficients. Large filters can extract large structures and 20 

small filters can extract small structures. The filtering process is conducted in each axis 21 

separately. In this 2-dimensional example, the horizontal decomposition puts the coefficients 22 

obtained from the large filters to the left and coefficients of small filters to the right. Similarly, 23 

the vertical decomposition puts the coefficients of large filters to the up and coefficients of 24 

small filters below. Therefore, the coefficients at the top-left are the ones corresponding to the 25 

large filters in both horizontal and vertical directions, representing the large-scale structures 26 

with low frequencies in both directions, and labeled with “low-low”. The other parts are labeled 27 

in the same way. 28 
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Figure 4.2. A 2-dimensional example of wavelet decomposition of flow field: (a) is the 

original mean streamwise velocity field around a building; (b) is the magnitude of wavelet 

coefficients obtained from one-time decomposition of (a); (c) is the magnitude of wavelet 

coefficients obtained from two-times decomposition of (a). 

(parts 1 and 1-1 are the approximation parts and use the same color bar in (a), and others are 

detailed parts using the logarithm color bar to show the coefficients clearly) 
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Among these four parts, only the coefficients in part (1) have the same order of magnitude 1 

as the original field, which means this is the approximation part with the most energy. In 2 

contrast with part (1), the order of coefficients in the other three detailed parts is extremely 3 

small. These coefficients can be approximated to reduce the volume of the data considerably if 4 

the minor energy is not in the scope of interest. Another advantage of WD is that it can be 5 

repeated several times on the decomposed field. Fig. 4.2c shows the further decomposed field 6 

from Fig. 4.2b. In the second transform, parts (2)–(4) are kept unchanged while part (1) is 7 

further decomposed into four smaller parts. Similar to the first transform, these four parts 8 

represent different frequencies. Part (1-1) is the approximation part with major energy, while 9 

parts (1-2), (1-3), and (1-4) are the detailed parts with a small order of magnitude. After WD is 10 

done several times, the approximation part containing the dominant information occupies a 11 

limited storage volume in the upper left corner, while the rest of the detailed parts can be 12 

approximated further. 13 

 14 

In this research, a three-dimensional CDF9/7 WD was performed four times on the original 15 

data. It was confirmed that CDF9/7 can reach a higher compression ratio than other low-order 16 

wavelets, such as Haar, Daubechies, and Symlets (Kolomenskiy et al., 2018). The basic wavelet 17 

like Haar is the low-order orthogonal type, i.e. the basis functions of wavelet are orthogonal to 18 

each other and have zero inner product. Although it is simple to use, it may produce too many 19 

wavelet coefficients, which are unfavorable to the compression. Therefore, the image 20 

processing community suggests the use of biorthogonal wavelets, which can transform the 21 

image into fewer coefficients because there is more flexibility to design and optimize the basis 22 

functions (Li, 2015). Among the biorthogonal wavelets, CDF 9/7 is confirmed to be the best 23 

one for image processing (Villasenor et al., 1995) and employed as the default wavelet in the 24 

JEPG2000 (Skodras et al., 2001). However, it has also been pointed out that the input 25 

coefficients of CDF 9/7 need more hardware resources and processing time because they are 26 

irrational and need high precision representation in the computer (Martina and Masera, 2005; 27 

Naik and Holambe, 2014). Several methods have been proposed by them to improve this point 28 

and their effects on turbulence compression still need further tests. Meanwhile, according to 29 

the author’s knowledge, research about the relationship between turbulence and wavelet 30 

compression is very limited. Systematic research concerning the best wavelets for turbulence 31 

decomposition is still in need. Therefore, in the current research, the most popular wavelet CDF 32 
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9/7 is utilized. The wavelet coefficients {𝐹𝑖,𝑗,𝑘} are processed further in the next two steps. 1 

 2 

4.2.2 Quantization 3 

Considering that most of the wavelet coefficients {𝐹𝑖,𝑗,𝑘} have a small order of magnitude, 4 

one brute-force compression algorithm changes all the detailed parts with 0 and only keeps the 5 

approximation part. Although this algorithm can ensure a high compression ratio, the resultant 6 

accuracy may be too poor because there are still relatively large coefficients in the detailed parts 7 

that are removed directly. Moreover, there is no selection leeway for users to control the error 8 

margin of the compression. Only one choice remains because all the details are abandoned. A 9 

better algorithm is quantization, in which the user can specify how much of the detail should 10 

be removed to satisfy the application requirements and error control. 11 

In the computer system, eight 1-byte memory spaces are commonly used to represent the 12 

double-precision floating number {𝐹𝑖,𝑗,𝑘} in a lossless manner, in which one bit represents the 13 

sign, 11 bits represent exponent and 52 bits represent the fraction. To achieve a high 14 

compression ratio, one must quantize {𝐹𝑖,𝑗,𝑘} with fewer 1-byte memory spaces and accept the 15 

inevitable truncation errors 𝜀𝐹 . In the quantization system, the bits do not function in the 16 

conventional way but only create positions to quantize {𝐹𝑖,𝑗,𝑘}. The algorithm will scan all 17 

{𝐹𝑖,𝑗,𝑘} to pick up the maximum and minimum values, and assign the minimum value to the 18 

first bit array and maximum value to the last bit array. The positions in the middle represent the 19 

values with an even difference between the maximum and minimum. In this case, if one 20 

allocates 𝑁 1-byte spaces for the quantization, there are 28𝑁
= 256𝑁 positions, and the data 21 

{𝐹𝑖,𝑗,𝑘} should be assigned to the corresponding positions. The true value is replaced by the 22 

rounded one nearest it, and the differences lying in the gap of the truncation error 𝜀𝐹 =23 

max(𝐹)−min (𝐹)

256𝑁  are removed. In this case, the algorithm can control the width of the gap 𝜀𝐹 to 24 

decide how much of the detailed part in the wavelet coefficients is contaminated. Furthermore, 25 

the value with a large order of magnitude is added to the truncation error instead of being 26 

dumped directly. In the algorithm, the number of 1-byte memory spaces 𝑁 was calculated by 27 

the truncation error 𝜀𝐹. 28 
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 𝑁 = 𝑙𝑜𝑔256(
max(𝐹) − min (𝐹)

𝜀𝐹
) (4.1) 

Meanwhile, it is obvious that  1 

 𝜀𝐹 ≈ max|𝐹 − 𝐹̌| (4.2) 

where 𝐹̌ is the quantized wavelet coefficients. 2 

However, this truncation error is not directly correlated with the original data {𝑓𝑖,𝑗,𝑘} but 3 

rather with the wavelet coefficient {𝐹𝑖,𝑗,𝑘} . It is necessary to figure out the effects of the 4 

truncation error on the original data to control the compression process effectively. 5 

Kolomenskiy et al. (2018) proposed that 𝜀𝐹 and the user-specified error ε for the original 6 

data have following relationship: 7 

 𝜀𝐹 =
𝜀 × max|𝑓|

𝜂
=

max|𝑓 − 𝑓|

𝜂
 (4.3) 

Here, 𝜂 is an empirical coefficient. Hence, in the compression process, the user can specify 𝜀 8 

according to the requirement. The algorithm calculates the truncation error 𝜀𝐹 and necessary 9 

memory spaces 𝑁 through Eqs. (4.1) and (4.3) for the quantization, which can ensure that the 10 

real compression error metric 𝜀𝑟 =
max|𝑓−𝑓̌|

max|𝑓|
  is almost the same as 𝜀 . Moreover, 𝜂  is 11 

proposed to be approximately 1.75 to realize the relationship according to several numerical 12 

cases. This value was examined also in this study.  13 

According to the definition of 𝜀𝑟  and 𝜀 ≈ 𝜀𝑟 , if 𝜀  is larger than 1, the largest 14 

compression error would be even larger than the largest flow field data, which makes the 15 

compression data too inaccurate. Meanwhile, if 𝜀  is too small, the compression ratio is so 16 

small that the compression is meaningless. Therefore, 𝜀  should be appropriately specified 17 

between 0 and 1. The attained coefficients 𝐹̌ are input in the entropy encoding. 18 

 19 

4.2.3 Entropy encoding 20 

Entropy encoding is a lossless compression technique to reduce the storage volume by 21 

representing subsequences of data with different symbols according to the times of their 22 
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appearance (Song, 2008). Although quantization does compress the data significantly, there is 1 

still redundancy in the data because the output of quantization does not occur with equal 2 

probability. This redundancy can be optimally removed by entropy encoding (Ruttimann and 3 

Pipberger, 1979). Specifically, in the algorithm, the appearance times of each value in the input 4 

data arrays are counted first. Then, values with large appearance times are represented by short 5 

symbols, while ones with small times are represented by long symbols, which reduces the 6 

volume of the input data further. In this research, the entropy encoding method called “range 7 

coding” developed by Martin (1979) was employed. The quantized wavelet coefficients are 8 

represented by different symbols and saved eventually. 9 

 10 

4.3 Case description 11 

In this part, the WCM is used to construct a compression database based on LES raw data. 12 

The details of the study case are as below. 13 

 14 

4.3.1 Production of raw data with large-eddy simulation 15 

The time series raw data for the database was first produced by CFD. To evaluate the 16 

compression ability of the WCM, the simulation case should have complicated flow fields and 17 

turbulence structures. Meanwhile, as a database for later source identification, the case should 18 

represent the common situation for dispersion in the urban area. In recent years, as a 19 

theoretically representative form of a real urban area, the block-arrayed idealized urban model 20 

has been widely used to investigate the wind field (Abd Razak et al., 2013; Ikegaya et al., 2017), 21 

pollutant dispersion (Branford et al., 2011b; Coceal et al., 2014b), and thermal effects (Uehara 22 

et al., 2000). Hence, the simulation case was set as regular building arrays.  23 

LES was applied to simulate the turbulence flow because it can resolve most of the details 24 

of the flow. Its reliability and accuracy of simulating both the time-dependent dynamics and 25 

spatial distribution in wind engineering have been confirmed by multiple research (Blocken, 26 

2018). The flow was simulated with a finite volume method implemented in OpenFOAM v1906. 27 

The standard Smagorinsky model was adjusted with the Smagorinsky constant 𝐶𝑠 = 0.12 , 28 

which has been confirmed in previous work (Tominaga et al., 2008a) for the flow past buildings. 29 
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The geometry of the calculation domain is shown in Fig. 4.3. The settings are the same as 1 

the wind tunnel experiment conducted at Tokyo Polytechnic University. The experimental data 2 

are open in the AIJ database (https://www.aij.or.jp/jpn/publish/cfdguide/index_e.htm). All 3 

blocks are the same cubes with edges 𝐻 = 60 mm . They were arranged uniformly with a 4 

distance 𝐻 between each other. The domain size was set as 16𝐻 (𝑥) × 14𝐻(𝑦) × 4𝐻(𝑧). For 5 

the simulation of block-arrayed urban flow, Coceal et al. (2006) has explored the influence of 6 

domain height on the simulation with 4𝐻, 6𝐻 and 8𝐻. It was found that although 4𝐻 is too 7 

small to capture the largest turbulence structures, like the long streaky one, the differences in 8 

mean and turbulence statistics were negligible except in the vicinity of the top. Considering the 9 

calculation burden and the fact that flow around blocks is the main target, several research (Abd 10 

Razak et al., 2013; Claus et al., 2012; Ikegaya et al., 2017; Xie and Castro, 2006) applied 4𝐻 11 

as domain height. Therefore, we set the same height following these research. Uniform 12 

structured meshes with a medium size (𝐻/20) were applied. In previous research (Ikegaya et 13 

al., 2019; Xie and Castro, 2006), it was reported that the medium-sized mesh is sufficiently 14 

reliable to reproduce the mean flow distribution, turbulent kinematic energy, and large-scale 15 

flow dynamics. The total number of mesh cells was approximately 6.9 million. The bottom side 16 

of the domain and the surfaces of all blocks were defined as a nonslip boundary with a Spalding 17 

wall function. At the top of the domain, a free slip condition was imposed for velocity, and the 18 

zero-gradient Neumann condition was imposed for pressure. The four sides of the domain were 19 

all periodic boundaries. The turbulent inflow was generated by coupled inlet and outlet and was 20 

driven by a pressure gradient, which was adjusted at each step to ensure a fixed flux through 21 

the outlet. 22 

The free stream speed 𝑢𝑟 was measured at (x, y, z) = (0, 7𝐻, 3.33𝐻) in both simulation 23 

and the experiment. The inflow moves along the positive x axis. The Reynolds number based 24 

on 𝑢𝑟  and 𝐻  is 1.68 × 104 . The friction speed 𝑢∗  was calculated by 0.07𝑢𝑟 , which was 25 

proposed in previous work (Cheng and Castro, 2002). Approximately a 200𝑇  (𝑇 = 𝐻/𝑢∗ ) 26 

calculation time was spent for initialization to ensure that the simulation converges to a 27 

statistically steady state. Then, the time series data of 240𝑇 at all grid points were compressed 28 

and saved to construct the database. Each time step was 0.00075 s (approximately 𝑇/240).  29 

https://www.aij.or.jp/jpn/publish/cfdguide/index_e.htm
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4.3.2 Method to verify the compression database 1 

Commonly, databases should satisfy usages in two time scales. The single snapshot is used 2 

to visualize the instantaneous flow fields and turbulent structures. The time-series data can 3 

provide statistical information and be applied later for inverse simulation or dispersion 4 

simulation of new sources. The compression should not affect these applications to protect the 5 

quality of databases.  6 

Correspondingly, in this research, the instant effects on the single snapshot and cumulative 7 

effects on the time-series data of the compression process are confirmed. The spatial 8 

distribution of the flow field in one snapshot and statistics at several points in the compression 9 

database are analyzed in detail. To confirm that whether the compression database can be used 10 

for the dispersion simulation, the dispersion of the passive scalar emitted by the same source 11 

was simulated with both compressed databases and raw LES data. The original concentration 12 

distribution field of passive scalar was simulated online together with the raw LES while the 13 

concentration field of the same source transported by the compressed flow field was simulated 14 

 

Figure 4.3. Schematic of simulation domain and the block-arrayed model. 



Chapter 4   

 

88 

offline after the compression databases were constructed. The source was arranged at (x, y, z) 1 

= (4𝐻, 7𝐻, 0) with the same injection speed in the wind tunnel experiment. The simulated 2 

concentrations in different cases are compared. 3 

The governing equation for the transportation of the passive scalar in the LES can be 4 

expressed as 5 

 
𝜕𝐶

𝜕𝑡
+

𝜕𝑼𝐶

𝜕𝒙
= 𝑆 +

𝜕

𝜕𝒙
(𝐷𝑒

𝜕𝐶

𝜕𝒙
) (4.4) 

where 𝐶 is the concentration in the grid scale, 𝑼 is the velocity in the grid scale, 𝑆 is the 6 

source term, and 𝐷𝑒 is the effective diffusion coefficient including the molecular diffusivity 7 

𝐷𝑚  and the sub-grid scale (SGS) turbulent diffusivity 𝐷𝑠𝑔𝑠 . Here, 𝐷𝑚  is a parameter 8 

dependent on temperature and does not change in this simulation. Its value was given in 9 

Chapter 2. 𝐷𝑠𝑔𝑠 is modeled as 𝐷𝑠𝑔𝑠 = 𝜈𝑠𝑔𝑠/𝑆𝑐𝑠𝑔𝑠. Here, the SGS turbulent Schmidt number 10 

𝑆𝑐𝑠𝑔𝑠 is assigned as 0.7, and 𝜈𝑠𝑔𝑠 is the eddy viscosity coefficient at the SGS. During the 11 

simulation, 𝑼  and 𝐷𝑠𝑔𝑠  are time-dependent. The database compressed these two fields at 12 

each time step with different error control 𝜀 : 10−5 , 10−4 , 10−3 , 10−2 , 10−1 , and 100 . 13 

Then, the dispersion fields were repeatedly simulated with the decompressed 𝑼̌  and 𝐷𝑠𝑔𝑠
̌  14 

data. The calculations restarted from the same time step in which the simulation reached 15 

statistical steadiness. A snapshot of each component of velocity field or effective diffusion 16 

coefficient field is about 100MB. The original data size of 240𝑇 sampling time is about 24 TB. 17 

In this research, the implementation of WCM can be divided into the following procedures: 18 

 19 

⚫ LES: the raw data of 𝑼 and 𝐷𝑠𝑔𝑠 were produced at each timestep using OpenFOAM, 20 

and the original concentration field of passive scalar was calculated simultaneously. 21 

⚫ Compression: At each timestep, the raw data of 𝑼  and 𝐷𝑠𝑔𝑠  were inputted into 22 

WCM to be compressed and stored to construct the database. 23 

⚫ Decompression: The database was decompressed by WCM into 𝑼̌ and 𝐷𝑠𝑔𝑠
̌  data for 24 

each timestep. 25 

⚫ Dispersion analysis: OpenFOAM read 𝑼̌  and 𝐷𝑠𝑔𝑠
̌   to calculate the concentration 26 

field of passive scalar for each case. 27 

⚫ Post-processing and Comparison. 28 

 29 
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The compression source code is exactly the same one which is opened in Kolomenskiy et 1 

al. (2018). A script was made by the author to enable it to process the output of OpenFOAM in 2 

each processor in parallel automatically. 3 

 4 

4.4 Results and discussion 5 

The quality of the compressed database was examined by analyzing the effects of 6 

compression on the spatial distribution of the flow field in one snapshot and time-series 7 

statistics at several points. The compression ability of WCM was also examined in terms of the 8 

compression ratio and compression limitation. All the velocity results were nondimensionalized 9 

by 𝑢𝑟, and the concentration results were nondimensionalized by the standard concentration 10 

𝐶𝑟 = 𝐶gas𝑞/(𝑢𝑟ℎ𝑟
2). Here, 𝐶gas is the emission strength of the source in the simulation and 11 

concentration of the source in the experiment, 𝑞 is the gas flow rate, and ℎ𝑟  is the reference 12 

height 3.33𝐻. 13 

 14 

4.4.1 Validation of large-eddy simulation 15 

First of all, the raw data of LES results are validated in Fig. 4.4 & 4.5. Because the flow 16 

field is regular in the spanwise direction, we validated two rows in the streamwise direction: the 17 

profiles in the wake region of buildings (y=7H) and profiles in the open street region (y=6H). 18 

Samplings for 240𝑇 are used for the validation. It can be confirmed that the simulated flow field 19 

and concentration agree well with the experimental measurements. The mean, standard deviation of 20 

streamwise velocity, and the turbulent kinetic energy agreed well in most places. 21 



Chapter 4   

 

90 

 

Figure 4.4. Validation of the velocity and concentration fields predicted by LES based on the 

experimental measurements in the open street region (y = 6H). (a) Time-averaged streamwise 

velocity; (b) standard deviation of streamwise velocity; (c) time-averaged concentration; (d) 

standard deviation of concentration; and (e) turbulent kinetic energy. 
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Figure 4.5. Validation of the velocity and concentration fields predicted by LES based on the 

experimental measurements in the wake region (y = 7H). (a) Time-averaged streamwise 

velocity; (b) standard deviation of streamwise velocity; (c) time-averaged concentration; (d) 

standard deviation of concentration; and (e) turbulent kinetic energy. 
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4.4.2 Compression ability 1 

The compression ability of the WCM was explored. All the following discussions in this 2 

section are based on the compression result of the effective diffusion coefficient 𝐷𝑒 in a single 3 

snapshot. The velocity field compression has similar results and is discussed later.  4 

First, it is necessary to determine whether 𝜂 = 1.75  in Eq. (4.3), proposed by 5 

Kolomenskiy et al. (2018), is an appropriate empirical coefficient for the error control. It is 6 

indicated in Fig. 4.6 that the prescribed error control 𝜀 and resultant real error 𝜀𝑟 =
max|𝑓−𝑓̌|

max|𝑓|
 7 

are almost the same in the compression method using 𝜂 = 1.75 . Only a small discrepancy 8 

appears after 𝜀 is larger than 10−1. The reason why the error control fails afterward is the 9 

limitation of the compression algorithm, which is addressed specifically later in this section. As 10 

a consequence, the error control with the empirical coefficient is accurate for complicated urban 11 

flow. 12 

 

Figure 4.6. Relationship between the error control 𝜀 and real error 𝜀𝑟: the red dotted 

line is the ideal one where 𝜀 = 𝜀𝑟, and the blue line is the real situation (compression of 

effective diffusion coefficients) 

Fig. 4.7 shows the relationship between the compression ratio 𝑟 = 𝑉𝑜/𝑉𝑐 (where 𝑉𝑜 is 13 

the storage volume of the original data, and 𝑉𝑐 is the storage volume of the compressed data) 14 

and the error control 𝜀 . When 𝜀  is set small, 𝑟  increases with 𝜀  exponentially. After 𝜀 15 
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reaches approximately 10−0.8, the increasing tendency starts to change. Large oscillations of 1 

the compression ratio appear in the red area, which indicates the compression limitation of the 2 

WCM. It is shown that 𝑟 reaches its largest value when 𝜀 is larger than 1, where the largest 3 

compression error is almost the same as the largest value in the original field. The dotted line 4 

denotes the compression ratio realized by a conventional compression method, in which the 5 

flow data was represented by single-precision numbers and then compressed with the standard 6 

ZIP algorithm. It can be confirmed that the current method outperforms the conventional one 7 

in the compression ratio and provides error control to users. 8 

 

Figure 4.7. Relationship between the error control 𝜀 and the compression ratio 𝑟 

(compression of effective diffusion coefficients). The dotted line marked the compression 

ratio realized by a conventional method: single-precision representation + standard ZIP. 

The reason for the appearance of the limitation was studied here. Because the compression 9 

method in this research retains all the wavelet coefficients for the quantization and the entropy 10 

encoding causes no error, the main error results from the truncation in the quantization process. 11 

Fig. 4.8 shows the probability density function of the wavelet coefficients {𝐹𝑖,𝑗,𝑘} of the 𝐷𝑒 12 

field in one snapshot compression. Although the coefficients ranged to more than 3 × 10−3, 13 

most of the information lies in the area between −1 × 10−4  and 1 × 10−4 . Because the 14 
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coefficient difference that is smaller than the truncation error 𝜀𝐹  is discarded in the 1 

quantization process, if 𝜀𝐹 is larger than 2 × 10−4 in this case, the main information is lost, 2 

and the whole structure of the wavelet coefficient is destroyed. In Eq. (4.3), if 𝜀𝐹  equals 3 

2 × 10−4 and the true value of 𝑚𝑎𝑥|𝑓| is substituted, the limitation of the user-specified error 4 

𝜀 can be calculated as 5 

 𝜀 ≈
0.0002×1.75

0.00029
= 1.2  (4.5) 

This value is close to the one where the compression ratio confronted the limitation. 6 

Consequently, the main reason for the compression limitation is that the truncation error is too 7 

large so that most wavelet coefficients are removed by the quantization. Although the error 8 

control 𝜀 that reaches the limitation of the compression method can change for each case, it is 9 

approximately 1 in the condition of this study. There is no universal value suitable for all cases, 10 

but the limitation can be calculated by the range of the wavelet coefficient to ensure that the 11 

core information is not damaged. 12 

 

Figure 4.8. Distribution of wavelet coefficients of effective diffusion coefficients in one 

snapshot 
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4.4.3 Compression effects on a single snapshot 1 

In this section, the focus is on the compression effects on a single snapshot, which is 2 

important for the postprocessing and flow visualization with the database. Because the WCM 3 

compressed each timestep independently, a snapshot was arbitrarily selected and analyzed.  4 

Fig. 4.9 compares the instantaneous streamwise velocity field Ux in the vertical plane in 5 

the middle of the y direction between the original LES and compressed databases. The 6 

difference between these fields can be checked in Fig. 4.10. When the error control 𝜀  is 7 

smaller than 10−1, the compression effects are so small that the visualization cannot identify 8 

the difference. When 𝜀  reaches 1 (100), the situation changes so that discrete large values 9 

appear and mottle the velocity field. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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(a) Original LES 

 
(b) Compression database with 𝜀 = 10−5 

 
(c) Compression database with 𝜀 = 10−1 

 
(d) Compression database with 𝜀 = 100 

Figure 4.9. Streamwise velocity field in a vertical plane (y = 7H) 

 1 
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(a) Difference between original LES and compression database with 𝜀 = 10−5 

 

(b) Difference between original LES and compression database with 𝜀 = 10−1 

 

(c) Difference between original LES and compression database with 𝜀 = 100 

Figure 4.10. Streamwise velocity difference field between original LES and compression 

databases in a vertical plane (y = 7H) 

 1 
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(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 

 

(c) Compression database with 𝜀 = 10−1 

 

(d) Compression database with 𝜀 = 100 

Figure 4.11. Vorticity field of spanwise direction in a vertical plane (y = 7H) 

 1 
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(a) Difference between original LES and compression database with 𝜀 = 10−5 

 

(b) Difference between original LES and compression database with 𝜀 = 10−1 

 

(c) Difference between original LES and compression database with 𝜀 = 100 

Figure 4.12. Spanwise vorticity difference field between original LES and compression 

databases in a vertical plane (y = 7H) 

 1 
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As for the vortex structures, the vorticity field in the spanwise direction of the same plane 1 

in Fig. 4.11 shows the same results. The difference fields between the original LES and 2 

compression databases can be checked in Fig. 4.12 in the supplementary material. When 𝜀 is 3 

smaller than 1, the vorticity field is well maintained in the compressed database. The separation 4 

region and wake vortex are clearly seen. While 𝜀 = 1, many small vorticities are produced in 5 

the whole plane by the compression error, contaminating the original field. 6 

A comparison of the velocity and vorticity field reveals that the compression database with 7 

𝜀 = 10−1 can be applied for the postprocessing and visualization of a single snapshot because 8 

the compression error effects are relatively small. In this case, the compression ratio can reach 9 

approximately 100 times according to Fig. 4.7. However, when 𝜀 = 1 , the compression 10 

reaches the threshold where significant errors appear. This threshold where most information 11 

in the wavelet coefficients has been removed by the quantization process was confirmed in 12 

Section 4.4.2. In this case, the decompression cannot reconstruct the flow field properly. 13 

Considering that 𝜀 ≈
max|𝑓−𝑓̌|

max|𝑓|
, the largest compression error is almost the same as the largest 14 

value at this threshold. Hence, there are many discontinuous large values in the velocity field, 15 

further resulting in unphysical, small vortexes, as shown in the vorticity field. 16 

Another important issue about the velocity field is continuity, which is one of the most 17 

fundamental properties in fluid mechanics. Since the simulation case here is incompressible 18 

flow, the divergence of the velocity field in one snapshot is a suitable metric. In the ideal status, 19 

the divergence should be 0 everywhere in the flow when the continuity is promised, but the 20 

value will not be 0 in one snapshot of the numerical simulation due to the differential process 21 

and truncation error. Fig. 4.13 compares the probability density functions of divergence of the 22 

velocity of all cells in a snapshot between original LES and three compression cases. Because 23 

the curves are too close to the original LES when 𝜀 < 10−2, they are not shown here. The 24 

interpolation scheme was set as Gauss Linear in the OpenFOAM. As a reference, the average 25 

of the absolute value of velocity divergence in the original LES case is about 10(1/s). 26 
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Figure 4.13. Comparison of probability density functions of velocity divergence in one 

snapshot between original LES and several compression databases: 𝜀 = 10−2, 10−1, 100 

From Fig. 4.13 it can be observed that the curve of the compression database with 𝜀 =1 

10−2 is similar to that of the original LES, where the divergence concentrates near 0. The 2 

continuity only suffers small damage due to the compression. As 𝜀 becomes larger, the curve 3 

becomes wider and lower, which means the continuity in more areas was disturbed. When the 4 

compression error 𝜀  is imposed to the value 10−1 , the standard deviation of the velocity 5 

divergence changes from 17 (1/s) to 31 (1/s) holding the same mean value compared with the 6 

original LES. It is important to note that the cure changes significantly when 𝜀 turns to 100. 7 

The flattening curve with a large range shows that the continuity of the whole field has been 8 

corrupted. This result agrees well with the above one that the compression reaches its threshold 9 

when 𝜀 = 1. 10 

 11 

4.4.4 Compression effects on time-series data 12 

The cumulative effects of compression on the database were investigated from the 13 

viewpoint of the velocity field and concentration of the simulated passive scalar. 14 

First, the power spectrum densities (PSDs) of velocities at two points located at the canyon 15 

region behind the buildings (x = 6H, y = 7H, z = 0.5H) and the open street region between the 16 
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rows of blocks (x = 6H, y = 6H, z = 0.5H) were compared for the original LES, compression 1 

database with 𝜀 = 10−5, and compression database with 𝜀 = 10−1. The results in Fig. 4.14 2 

show that the PSD curves of the three cases are almost the same when the frequency is relatively 3 

small, indicating that large-scale vortex structures are well preserved in the compression. For 4 

the high-frequency area, the larger 𝜀, the larger the difference between the compressed and 5 

original data. This phenomenon can be explained by the principles of the WCM. WD 6 

decomposes the flow field into an approximation part with low frequency and a detailed part 7 

with high frequency. Because the truncation error in the quantization mainly deals with the 8 

detailed part whose wavelet coefficients are much smaller than those of the approximation part, 9 

after the compression, the high-frequency structures are highly coupled with truncation errors, 10 

which are manifested as white noise in the PSD. For the same reason, the compression data 11 

with 𝜀 = 10−5 coincide with the original data longer and more closely than the data with 𝜀 =12 

10−1 because the truncation error is set smaller. Additionally, for the point in the open street 13 

region, these three curves are closer than that in the wake region. The reason is that the velocity 14 

value is higher in this area, so the effects of compression error are weaker. 15 

The probability density functions of the velocity at the same two points are summarized 16 

in Fig. 4.15. At both points, the velocity distribution of case 𝜀 = 10−5 coincides well with the 17 

original data. As for 𝜀 = 10−1, the distribution deviates at the place where the velocity is near 18 

0 for the point in the canyon region. These small velocities are mainly contributed by a high-19 

frequency small vortex, which suffers from the damage from the compression process to some 20 

degree. It is reasonable to conclude that the compression barely disturbs the occurrence 21 

probability distribution of the velocity field. 22 

 23 
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(a) Point at canyon region (x = 6H, y = 7H, z = 0.5H) 

  

(b) Point at open street region (x = 6H, y = 6H, z = 0.5H) 

Figure 4.14. Comparison of the PSD of velocity (streamwise and spanwise) at two points in 

three cases: original LES, compression database with 𝜀 = 10−5 (dec_e-5), and compression 

database with 𝜀 = 10−1 (dec_e-1) 

 1 
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(a) Point at canyon region (x = 6H, y = 7H, z = 0.5H) 

  

(b) Point at open street region (x = 6H, y = 6H, z = 0.5H) 

Figure 4.15. Comparison of probability density functions of velocity at two points in three 

cases: original LES, compression database with 𝜀 = 10−5 (dec_e-5), and compression 

database with 𝜀 = 10−1 (dec_e-1) 

The effects of compression on the higher order statistics (variance and covariance of 1 

velocity fluctuations) are also checked. The distributions of variance < Ux
′Ux

′ >, < Uy
′ Uy

′ >, 2 

< Uz
′Uz

′ >, < Ux
′ Uz

′ >, < Ux
′Uy

′ > and < Uy
′ Uz

′ >in the middle vertical plane are presented 3 

in Fig. 4.16 ~ 4.21. Here, x, 𝑦, 𝑧 denote the three components of the velocity field, ′ means 4 

the fluctuations, and <•>  is the time-averaged operator. It is shown that the 100 times 5 

compression preserves the second order statistics as well as the instantaneous flow field. Both 6 

the magnitude and shapes are almost the same as the original LES. The dominant co-variance 7 

structures caused by the separation and wake of the buildings are completely maintained. 8 
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(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 

 

(c) Compression database with 𝜀 = 10−1 

Figure 4.16. The distribution of < Ux
′ Ux

′ > of different cases in a vertical plane (y = 7H) 
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 1 

 

(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 

 

(c) Compression database with 𝜀 = 10−1 

Figure 4.17. The distribution of < Uy
′ Uy

′ > of different cases in a vertical plane (y = 7H) 

 2 
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(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 

 

(c) Compression database with 𝜀 = 10−1 

Figure 4.18. The distribution of < Uz
′Uz

′ > of different cases in a vertical plane (y = 7H) 
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 1 

 

(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 

 

(c) Compression database with 𝜀 = 10−1 

Figure 4.19. The distribution of < Ux
′ Uz

′ > of different cases in a vertical plane (y = 7H) 

 2 
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(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 
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(c) Compression database with 𝜀 = 10−1 

Figure 4.20. The distribution of < Ux
′Uy

′ > of different cases in a vertical plane (y = 7H) 

 1 
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(a) Original LES 

 

(b) Compression database with 𝜀 = 10−5 
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(c) Compression database with 𝜀 = 10−1 

Figure 4.21. The distribution of < Uy
′ Uz

′ > of different cases in a vertical plane (y = 7H) 

 1 

4.4.5 Dispersion simulation with compression database 2 

Then, the re-simulation of the passive scalar dispersion was evaluated with the compressed 3 

database. Comparisons between the wind tunnel experiment, original LES, and compressed 4 

databases at four representative locations — the canyon region near the source (x = 6H, y = 5 

7H), street region near the source (x = 6H, y = 8H), canyon region away from the source (x = 6 

10H, y = 7H), and street region away from the source (x = 10H, y = 8H) — can be observed in 7 

Fig. 4.22. The original LES basically predicted the concentration distribution in accordance 8 

with the experiment. At the location in the open street region near the source, LES slightly 9 

overestimated the turbulent scalar flux. Because a method to simulate accurately the scalar 10 

dispersion in the complicated building blocks is still being researched (Tominaga and 11 

Stathopoulos, 2012) and was not the concern of this study, the overestimation was not analyzed 12 

in detail. 13 

Meantime, the concentration of the original LES was successfully reproduced by the 14 
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compressed data, among which the smallest data volume was only approximately 1% of the 1 

original one (compression database with 𝜀 = 10−1). At the point in the canyon region near the 2 

source, the concentration of the compressed database had a small deviation near the ground. 3 

The velocity at this height was somewhat small, indicating that it is vulnerable to compression 4 

error. Given that the concentration flux is rather strong near the source, a slightly different 5 

velocity can result in a different concentration distribution and cause this kind of deviation. At 6 

the places that were relatively far from the source, the effects of compression became almost 7 

unnoticeable. Generally, not only the mean concentrations but also the standard deviation of all 8 

the simulations of the compressed database were close to that of the original LES results. 9 

  

(a) x = 6H  y = 7H 

  

(b) x = 6H  y = 8H 
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(c) x = 10H  y = 7H 

  

(d) x = 10H  y = 8H 

Figure 4.22. Comparison of the concentration at different locations in four cases: wind 

tunnel experiment, original LES, compression database with 𝜀 = 10−5 (dec_e-5), and 

compression database with 𝜀 = 10−1 (dec_e-1) — left: time mean concentration; 

right: standard deviation of concentration 

When the compressed database with 𝜀 = 100  was used, the statistical result of 1 

concentration totally collapsed within only 1s (approximately 5𝑇) simulation time, while the 2 

other cases remained stable (Fig. 4.23). As a consequence, the concentration simulation was 3 

insensitive to the compression error under the threshold. When 𝜀  was loosened to 1, an 4 

enormous error appeared. Once again, the reason was that the truncation error in the 5 

compression was so large that the main information in the wavelet coefficients was removed; 6 



Chapter 4   

 

115 

therefore, the flow structures were damaged, and the reconstructed flux could no longer 1 

transport the passive scalars correctly. 2 

  

x = 4.5H  y = 6H 

Figure 4.23. Comparison of the concentration sampled in a short time in seven cases: 

original LES and all the compression cases — left: time mean concentration; right: 

standard deviation of the concentration 

To sum up, the dispersion of passive scalars can be obtained later, as in the original LES 3 

simulation with a compressed database with 𝜀 = 10−1, whose volume was approximately 1% 4 

of the original one according to Fig. 4.7. 5 

 6 

4.5 Conclusions and discussions 7 

4.5.1 Conclusions 8 

The feasibility of constructing a small urban flow database by compressing the original 9 

CFD data with the WCM was investigated. The original data were flow fields in a block-arrayed 10 

urban area simulated by the LES model. Several compressed databases were constructed with 11 

different error controls 𝜀: 10−5, 10−4, 10−3, 10−2, 10−1, and 100. 12 

The compression method was based on WD, quantization, and entropy encoding. The 13 

original data were first transformed by WD to the approximate part with a small volume and 14 

detailed parts with a large volume. The quantization process decided the proportion of detailed 15 

parts that should be retained according to the user-specified error control 𝜀 and caused the 16 
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truncation error 𝜀𝐹. Finally, entropy encoding was implemented to compress the data further.  1 

The compression ability of the WCM was studied. The empirical formula for error control 2 

guarantees that the prescribed error is exactly realized in the compression. The compression 3 

ratio increases with 𝜀 exponentially until it reaches the compression limitation, approximately 4 

1000 times in this study, where 𝜀 = 100 is so large that most of the wavelet coefficients are 5 

deeply stained. It was found that, although the error control that can reach this compression 6 

limitation is found according to each case, it can be calculated from the distribution of the 7 

wavelet coefficient in advance. 8 

The influence of compression on the quality of the database was checked from two 9 

viewpoints: single snapshot and time-series data. On one hand, for a single snapshot used in 10 

postprocessing and visualization, the velocity and vorticity fields are almost the same as long 11 

as 𝜀  is less than the threshold of 100 , which means that the compression database with 12 

approximately 1% of the volume of the original data is sufficient for visualization. When 13 

compression reaches the threshold, a considerable number of unphysical large values in velocity 14 

and small vorticities appear, and the flow structures are highly contaminated. On the other hand, 15 

the cumulative effects were inspected by comparing the velocity field and different dispersion 16 

results re-simulated with the compressed database to the original LES results. According to the 17 

PSD velocity results, the large-scale vortex structures with low frequencies are well preserved 18 

in the compression. The compression errors function as white noise superimposed on the high-19 

frequency structures. Moreover, the dispersion re-simulation is insensitive to the compression 20 

error below the compression limitation. The dispersion process can be reproduced closely, even 21 

by rough compressed data with approximately 1% of the original volume. A considerable 22 

discrepancy appears near the compression limitation where the flow field can no longer be 23 

reconstructed properly. 24 

Overall, the results in this chapter show that WCM is a powerful tool to construct a 25 

portable flow database. The possible applications of a database, such as visualization of a single 26 

snapshot and re-simulation with time-series data, can be appropriately realized, even under 27 

approximately 100-times compression. Therefore, in the next chapter, the unsteady adjoint 28 

equation will be simulated by the compression database constructed here, and the performance 29 

in source identifications will be checked. 30 

 31 



Chapter 4   

 

117 

4.5.2 Method limitation and future research 1 

It has to be admitted that this chapter is one of the early attempts of a compressed 2 

turbulence database focusing on a complicated urban environmental flow, more situations in 3 

other areas should be examined before the general application of WCM. The current method 4 

still has some limitations which can be improved in future research. Since the method consists 5 

of three steps: WD, quantization, and entropy encoding, a brief discussion about method 6 

limitation and possible future research plans is conducted in these three aspects. 7 

The first one is WD. In the current method, all the wavelet coefficients are passed exactly 8 

to quantization, which means it is lossless and unrelated to compression error control. The 9 

improvement strategy should focus on the calculation speed and coefficients production. The 10 

core part of WD is the wavelet kernel function. The kernel function that requires less calculation 11 

resource and yields fewer coefficients is favorable to the compression process. However, it 12 

seems that these two properties are contradictory to each other. Although the current kernel 13 

CDF9/7 performs well in the coefficients production, it is one of the most complicated kernels 14 

because of its irrational decomposition coefficients. It is worthwhile to testify the performance 15 

of other improved kernels based on CDF9/7 in the future. Meanwhile, even though CDF9/7 is 16 

highly recommended in image compression, it cannot be simply asserted to be the best one for 17 

turbulence compression. After all, image compression focuses on the visual effects to 18 

humankind, in which the low-frequency domain is the most important part, while turbulence 19 

focuses on the physical information, which is contained in different scales structures with a 20 

large range of frequency. Deeper research is necessary to decide the most appropriate kernel 21 

for turbulence decomposition. 22 

The only step concerning error control is quantization. The main limitation of the method 23 

is the way to control compression error. According to the definition of the error metric 𝜀𝑟 =24 

max|𝑓−𝑓̌|

max|𝑓|
, the error control is closely related to the maximum value of the flow field data and 25 

maximum compression error rather than the spatial mean value or the range of all values. 26 

However, the place where the maximum compression error happens is not promised to be the 27 

place where the flow field takes the maximum value. In other words, the situation of all places 28 

in the field cannot be independently determined by the current error metric so that someplace 29 

may suffer unexpected errors resulting from the maximum field data. For example, if the inflow 30 
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speed is increased in the case of this paper, the maximum velocity in the high place will increase 1 

correspondingly. It is possible that the compression error of the low velocity area near walls 2 

will be increased even if the compression algorithm is set with the same 𝜀 and yields a close 3 

compression ratio. Therefore, it has to be very cautious to apply this method to compress the 4 

flow field with a wide range of values. In the common urban flow simulation, the range of 5 

physical values is mild and high Reynolds number flow is the main concern, author is optimistic 6 

about the application of the current method. However, special attention needs to be paid to when 7 

both the low and high Reynolds number turbulence matters. 8 

Entropy encoding is a lossless compression algorithm that is also included in other 9 

compression methods like JPEG2000 as a standard process. It is reasonable to say that the 10 

effectiveness of this step would not be changed by different application scenarios of turbulence 11 

compression. 12 

 13 

  14 
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Symbols 1 

𝐶 : the concentration distribution  

𝐶𝑟 : standard (reference) concentration 

𝐶𝑠 : Smagorinsky constant for LES model (=0.12) 

𝐶gas : the emission strength of the source 

𝐷𝑒 : effective diffusion (𝐷𝑚 + 𝐷𝑠𝑔𝑠) 

𝐷𝑚 : molecular diffusivity 

𝐷𝑠𝑔𝑠 : sub-grid scaled turbulent diffusivity 

𝐷𝑠𝑔𝑠̌ : decompressed sub-grid scaled turbulent diffusivity 

𝑓𝑖,𝑗,𝑘 : the original data of a three-dimensional scalar field in the Cartesian 

indexing mesh grid 

𝑓 : the decompressed flow field data 

𝐹𝑖,𝑗,𝑘 : the wavelet coefficients obtained from the wavelet decomposition of 

raw data 𝑓𝑖,𝑗,𝑘 

𝐹̌ : the wavelet coefficients reconstructed from quantization results 𝑄 

𝐻 : the edgy length of blocks in the simulation (=60 mm) 

ℎ𝑟 : reference height 

𝑁 : the number of 1-byte memory spaces 

𝑞 : the gas flow rate at the source 
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𝑄 : the results produced by quantization operation 

𝑟 : the compression ratio 

𝑆 : source term in the transport equation 

𝑆𝑐𝑠𝑔𝑠 : sub-grid scaled turbulent Schmidt number 

𝑇 : standard time-scale of LES simulation 

𝑢𝑟 : reference speed  

𝑢∗ : friction speed 

𝑈𝑥, 𝑈𝑦, 𝑈𝑧 : streamwise, spanwise, and vertical velocity 

𝑼 : velocity field 

𝑼̌ : decompressed velocity field 

𝑉𝑜 : storage volume of raw data 

𝑉𝑐 : storage volume of compressed data 

𝜀𝐹 : truncation errors between 𝐹  and 𝐹̆  caused by quantization 

operation  

𝜀 : user-specified allowable error for the WCM 

𝜀𝑟 : real compression error metric between 𝑓 and 𝑓 

𝜂 : empirical coefficient for error control of WCM (=1.75) 

𝜈𝑠𝑔𝑠 : eddy viscosity coefficient at the sub-grid scale 

𝜎(∙) : standard deviation 
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(⋅)′ : fluctuation value with time 

<•> : time-averaged operator 

 1 

 2 
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Chapter 5 9 

Source term estimation with 10 

unsteady adjoint equations 11 

modeled by large-eddy simulation 12 

and compression database 13 

  14 
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 5 

Abstract 6 

 7 

 8 

This chapter tries to develop a new source term estimation (STE) method in which the unsteady 9 

simulation of adjoint equations is embedded via large eddy simulation (LES) into a Bayesian 10 

inference framework. The LES of adjoint equations is based on the compression database 11 

constructed in Chapter 4. The performance of the proposed model is validated using a point source 12 

dispersion case in a regular, block-arrayed, urban model wind tunnel experiment. To clarify the 13 

effects of different computational fluid dynamics models on the simulation of adjoint equations and 14 

the accuracy of STE, an existing (Xue et al., 2018b) Reynolds averaged Navier-Stokes model using 15 

a time-averaged LES flow field is selected for comparison.  16 

  17 
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5.1 Introduction 1 

An adjoint equation is a partial differential equation that is similar in form to a dispersion 2 

equation and can be simulated by computational fluid dynamics (CFD) models. Among them, two 3 

popular methods are the Reynolds averaged Navier-Stokes (RANS) model and large eddy 4 

simulation (LES). The main difference between these models is the way in which turbulent diffusion 5 

is simulated. The RANS model is based on an ensemble-averaged governing equation and 6 

approximates fluctuations in the turbulent flux using a mean field according to the gradient diffusion 7 

hypothesis (GDH), which assumes that turbulent diffusion is proportional to the gradient of the 8 

mean concentration field. Meanwhile, an LES explicitly resolves most turbulent effects using a fine 9 

mesh. The RANS model has been frequently used to simulate adjoint equations (Efthimiou et al., 10 

2018b; Keats et al., 2007b; Kumar et al., 2015b) and is capable of providing more accurate 11 

dispersion predictions than a Gaussian dispersion model, with a mild increase in computational 12 

resources. However, the prediction accuracy of RANS models for the time-averaged flow fields 13 

around buildings has been shown to be insufficient when compared with LES (Tominaga et al., 14 

2008a), which undermines the accuracy of their adjoint equation simulations and source term 15 

estimation (STE). Xue et al. (2018b) noticed this defect and suggested that the coupling of a RANS-16 

like simulation of adjoint equations with the time-averaged flow of LES can improve the accuracy 17 

of STEs. In these RANS and RANS-like simulations, turbulent diffusion is always modeled 18 

according to the GDH, regardless of whether the mean flow field was produced by a RANS model 19 

or LES. However, the validity of the GDH on dispersion remains unclear, especially across complex 20 

urban terrains. 21 

It has been confirmed that the dispersion prediction accuracy of RANS models operating 22 

according to the GDH is limited when compared with that of explicit models with LES (Tominaga 23 

and Stathopoulos, 2012, 2011b). Until now, the LES of adjoint equations has been regarded as 24 

impractical because the embedded adjoint equation represents an inverse dispersion process, such 25 

that the time-series flow field data of the entire domain must be produced by forward simulation 26 

and stored in advance to realize the unsteady simulation. One important challenge is that the volume 27 

of data acquired by LES seems too large for practical application. Nevertheless, this problem can 28 

be solved by the application of the compression method. It has been shown in Chapter 4 that the 29 

wavelet-based compression method can now compress data to ~100 times their original size, while 30 

simultaneously conserving their accuracy. 31 
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Another limitation is the heavy calculation burden brought by LES of highly-complicated real 1 

urban areas and data compression. Considering that the source-receptor relationship can be 2 

constructed as databases long before the emergent injection of hazardous materials into the 3 

atmosphere, the requirement for more calculations caused by this method is not a problem. Indeed, 4 

it enables the real-world application of the LES of adjoint equations. Therefore, this chapter 5 

evaluates the applicability of STE with LES of the adjoint equation in an urban-like experiment. 6 

 7 

5.2 Simulations for adjoint equation 8 

Before the Bayesian inference, it is necessary to clarify the difference between RANS and LES 9 

of adjoint equation simulation. 10 

5.2.1 Reynolds averaged Navier-Stokes simulation of the adjoint equation 11 

The RANS simulation for the adjoint equation has been introduced in Chapter 2. It can be 12 

noticed that Eq. (2.24), RANS form of the adjoint equation, only explicitly resolves the mean flow 13 

advection, so the effects of turbulent diffusion, 𝒖′𝐶∗′̅̅ ̅̅ ̅̅ ̅ (where ′ denotes the temporal fluctuations 14 

of variables) must be modeled by the mean field. One simple way of achieving this is through the 15 

GDH (Combest et al., 2011): 16 

 𝒖′𝐶∗′̅̅ ̅̅ ̅̅ ̅ = −𝐷𝑡

𝜕(𝐶∗̅̅ ̅)

𝜕𝒙
= −

𝜈𝑡

𝑆𝑐𝑡

𝜕(𝐶∗̅̅ ̅)

𝜕𝒙
 (5.1) 

where 𝐷𝑡 is the turbulent diffusivity, 𝜈𝑡 is the eddy viscosity, which can be estimated based on 17 

the mean velocity and Reynolds stresses, and 𝑆𝑐𝑡 is the turbulent Schmidt number. However, there 18 

are at least three problems in this GDH approximation. First, it assumes that the turbulent scalar 19 

flux is aligned with the mean scalar gradient, which is invalid under anisotropic turbulence. 20 

Secondly, 𝜈𝑡  is estimated by the mean velocity and Reynolds stresses predicted by the RANS 21 

model, which has been shown to inaccurately predict reality (Tominaga et al., 2008a). Finally, 𝑆𝑐𝑡 22 

is usually set as a global constant in the domain for simplicity, but it actually spans a large range of 23 

spatial differences (Combest et al., 2011; Tominaga and Stathopoulos, 2012). Thus, there remains 24 

no satisfactory way to model the spatial distribution of 𝑆𝑐𝑡. 25 

Following Tominaga and Stathopoulos (2012), who clarified that accurate predictions of mean 26 

flow fields can improve the estimation of 𝜈𝑡 and further improve RANS predictions of dispersion 27 

fields, Xue et al. (2018) conducted LES-based forward simulations to obtain a time-averaged 28 
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velocity field and used it in a RANS-like (hereafter, RANS) simulation for adjoint equations. In this 1 

case, the eddy viscosity was calculated as: 2 

 𝜈𝑡 = −
∑ 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗𝑖,𝑗

∑ 2𝑆𝑖𝑗
2

𝑖,𝑗

 (5.2) 

where 𝑆𝑖𝑗 is the main strain rate: 3 

 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅

𝜕𝑥𝑖
) (5.3) 

The mean velocity, Reynolds stresses, and strain rate were obtained by the forward LES. The 4 

accuracy of STE was confirmed to have improved because LES can predict the mean flow field in 5 

urban areas more accurately than RANS models. Despite this, the RANS simulation of adjoint 6 

equations is still imperfect due to the existence of the other two problems related to the GDH. In 7 

real applications, this simplification may cause significant errors in the modeling concentration, 𝑹, 8 

especially in complex urban areas with many buildings.  9 

 10 

5.2.2 Large eddy simulation of the adjoint equation 11 

In contrast, LES appears to be a promising choice since it can explicitly resolve most of the 12 

turbulent diffusion with the following adjoint equation. 13 

 −
𝜕(𝐶 ∗̃)

𝜕𝑡
− 𝒖̃

𝜕(𝐶∗̃)

𝜕𝒙
−

𝜕

𝜕𝒙
([𝐷𝑠𝑔𝑠 + 𝐷𝑚]

𝜕(𝐶∗̃)

𝜕𝒙
) = 𝛿(𝒙 − 𝒙𝑚) (5.4) 

Here 𝐶 ∗̃  represents the grid-scale value of the variables. The sub-grid scale (SGS) turbulent 14 

diffusion is modeled by: 15 

 𝒖′𝐶∗′̃ = −𝐷𝑠𝑔𝑠

𝜕(𝐶 ∗̃)

𝜕𝒙
= −

𝜈𝑠𝑔𝑠

𝑆𝑐𝑠𝑔𝑠

𝜕(𝐶∗̃)

𝜕𝒙
 (5.5) 

where 𝜈𝑠𝑔𝑠 is the SGS eddy viscosity and 𝑆𝑐𝑠𝑔𝑠 is the SGS turbulent Schmidt number. When the 16 

grid is fine enough, most of the turbulent diffusion is directly calculated and the modeled SGS is 17 

very small. Compared with RANS models, LES can more accurately simulate adjoint equations. 18 

The main limitation to the practical application of LES is that since the adjoint tracer dispersion 19 

field is a reverse simulation with −𝒖̃(𝒙, 𝑡), simulating the unsteady dispersion field requires saving 20 

all of the 𝒖̃(𝒙, 𝑡)  and 𝐷𝑠𝑔𝑠  data for the entire domain and across all timesteps in advance. 21 
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Furthermore, LES always requires a fine mesh and short timesteps to ensure the accuracy and 1 

convergence of simulations, meaning that the data saved for the LES of adjoint equations require 2 

such massive storage volumes that it renders the method impractical. As a proposed solution, the 3 

compression database in Chapter 4 is used for an LES of adjoint equations.  4 

 5 

5.3 Case description 6 

As for the study case, the block-arrayed urban model in Chapter 4 is applied to represent the 7 

geometry of a real urban neighborhood. This model has been frequently used in previous studies on 8 

airflow (Cheng and Castro, 2002; Uehara et al., 2000; Xie and Castro, 2006) and the dispersion 9 

characteristics of atmospheric pollutants (Branford et al., 2011b; Coceal et al., 2014b; Tominaga 10 

and Stathopoulos, 2012) in urban areas. It includes complicated unsteady turbulent structures that 11 

challenge the robustness of STE methods. Moreover, there is an open WTE database with the same 12 

model that can be used as the measurements of concentration 𝑫. 13 

A forward simulation with an LES model was utilized to predict the unsteady flow field, which 14 

was compressed and stored in each time step. The source–receptor relationship was then obtained 15 

by the unsteady simulation of adjoint equations using compressed flow data. To evaluate the 16 

improvement made to the estimation accuracy of the proposed method, the RANS simulation of 17 

adjoint equations was also performed with the time-averaged flow field of the LES. Bayesian 18 

inference of the source was conducted twice based on the RANS and LES models. 19 

 20 

5.3.1 Wind tunnel experiment 21 

In the wind tunnel experiment, a continuously releasing point source (a hole with a diameter 22 

of 2 mm) was placed at the ground with coordinates of (4H, 7H, 0). Pure ethylene gas (C2H4) was 23 

released at a flow rate of 𝑄= 0.216 L/min from the source. Because the gas was released in the 24 

wake region of one block and transported downstream via complex turbulence, the setting was 25 

identified as a difficult scenario for the STE. 26 

Velocities and concentrations were measured at different heights (H/15, H/6, H/2, 5H/6, 7H/6) 27 

following the same symmetrical horizontal sensor configuration shown in Fig. 5.1. The wind 28 

velocity was measured with split-film probes and the concentration was measured with a rapid-29 
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response flame ionization detector. The measurements were sampled every 120 s in the frequency 1 

of 1000 Hz. Here, considering the symmetrical characteristics of the sensor configuration and the 2 

calculation burden of simulating adjoint equations, the time-averaged measurements of only 16 3 

sensors in the horizontal plane with a height of 0.5H were used to construct the vector D (solid 4 

cycles in Fig. 5.1). 5 

 6 

 7 

Figure 5.1. Schematic of sensor configuration (horizontal plane with z = H/2). 8 

 9 

5.3.2 Simulation settings 10 

In order to evaluate the improvements on STE accuracy brought by LES of the adjoint equation, 11 

two inferences based on RANS and LES of the adjoint equation are conducted and compared. One 12 

of the databases in Chapter 4 for which the data volume was compressed 10 times to ensure the 13 

error 
max|𝑓−𝑓̃|

max|𝑓|
< 10−5 is selected. The original volume of 240T data was ~24 TB. The compression 14 

reduced this size significantly to ~2.4 TB, which made it much easier to handle, even with a portable 15 
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hard disk. 1 

The RANS simulation of adjoint equations followed Eqs. (2.24, 5.1-5.3) with a global turbulent 2 

Schmidt number 𝑆𝑐𝑡 = 0.7. All time-averaged values were obtained from the 240T original LES. 3 

The simulated ensemble-averaged concentration of the adjoint tracer was regarded as the modeling 4 

concentration 𝑹. The unsteady adjoint concentration distribution was predicted by LES according 5 

to Eq. (5.4-5.5), where 𝒖̃ and 𝐷𝑠𝑔𝑠 were the instantaneous values of the compressed LES flow 6 

field at each time step and 𝑆𝑐𝑠𝑔𝑠  was set as 0.7 for the entire domain. Of the total 240T of 7 

compressed flow field data, the first 120T were used to initialize the simulation of the adjoint 8 

equation. The time-averaged 𝐶∗ distribution of the second 120T was then sampled as the modeling 9 

concentration 𝑹. 10 

 11 

5.3.3 Bayesian inference settings 12 

Bayesian inference was implemented twice based on the different modeling concentrations, 𝑹, 13 

obtained from the RANS and LES models of adjoint equations. The measurements, 𝑫 , were 14 

collected in the wind tunnel experiment. The variance of errors is set as 𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2 = 𝑟 ∗ 𝐷𝑖, where 15 

𝑟 = 0.2. Other settings are the same as inference introduced in Chapter 2. 16 

 17 

5.4 Results and discussions 18 

Here, all the results were nondimensionalized. The coordinate and length values were 19 

nondimensionalized by H. The velocity results were nondimensionalized by Ur. The concentration 20 

results were nondimensionalized by the standard concentration 𝐶𝑟 = 𝐶gas𝑄/(𝑈𝑟ℎ𝑟
2). Here, 𝐶gas is 21 

the concentration of gas in the injected flow from the source in the wind tunnel experiment, 𝑄 is 22 

the injected flow rate, and ℎ𝑟 is the reference height, which was set as 3.33𝐻. 23 

 24 

5.4.1 Flow fields of forward simulations 25 

In the LES flow fields of the forward simulations, the velocity results were nondimensionalized 26 

by the reference velocity, Ur. The mean velocity fields in several planes are shown in Fig. 5.2. The 27 

horizontal velocity distribution shows the symmetry caused by the regular block-arrayed 28 
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configuration. The most dominant velocity is the streamwise velocity in open street areas and the 1 

separation between the windward sides of buildings and circular vortices in wake regions can be 2 

distinguished through the spanwise velocity distribution. Apart from this, the spanwise velocity in 3 

most areas is nearly zero. In the vertical plane of open street regions (y = 6H, Fig. 5.2(c, d)), the 4 

mean velocity is layered such that the streamwise velocity at the same height does not change with 5 

the x-coordinate and the vertical velocity is nearly zero. There is essentially no momentum exchange 6 

in the vertical direction. This averaged flow field was used in the RANS simulation of adjoint 7 

equations for all sensors as the conventional method. 8 

  

(a) (b) 

  

(c) (d) 

Figure 5.2. Mean flow fields produced by the forward LES. (a) streamwise velocity in a horizontal 

plane; (b) spanwise velocity in a horizontal plane; (c) streamwise velocity in a vertical plane; (d) 

vertical velocity in a vertical plane. Horizontal: z = H/20; vertical: y = 6H. 

The validation profiles of the streamwise velocity can be checked in Fig. 4.4 & 4.5. Since the 9 

compression error was very limited in this study, it is reasonable to assume that the velocity field in 10 
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the LES of adjoint equations does not contribute greatly to the overall modeling error. 1 

 2 

5.4.2 Comparison of adjoint concentration 3 

The adjoint concentration fields simulated by RANS and LES models are compared. Fig. 5.3 4 

shows the mean distribution of the adjoint tracer released from sensor No. 1, which was located in 5 

the open street region between buildings (x = 4H, y = 6H, z = 0.5H). The horizontal plane is shown 6 

as the lowest plane in the domain, which contains the true source and can demonstrate its adjoint 7 

concentration. The vertical plane contains the sensor. 8 

  

  

Figure 5.3. Mean adjoint concentration field of sensor No. 1 located in the open street region 

simulated by different methods: (left) LES and (right) RANS. (Top) Distribution in the 

horizontal plane (z = H/20); (bottom) distribution in the vertical plane (y = 6H). 

In the RANS simulation of adjoint equations, it was confirmed that the dispersion area in the 9 

horizontal plane was limited within 5H in width, which is less than that of the LES results. Most of 10 

the adjoint tracers were clustered along the open street where the sensor is located. The GDH in the 11 

RANS model makes the turbulent diffusion proportional to the gradient of the mean concentration, 12 
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which is only true for small turbulent structures that can be simplified as isotropic. However, 1 

according to the mean flow shown in Fig. 5.2, the advection of the tracers was dominated by the 2 

streamwise velocity and separation flow, which constructed large-scale flow structures stretched in 3 

the streamwise direction. The strong anisotropy of the flow fields invalidated the efficiency of the 4 

GDH, making the turbulent diffusion also follow this large structure and causing simulation errors 5 

in the adjoint equations. 6 

As most tracers are transported along the streamwise direction, dispersion in the spanwise 7 

direction is very weak. Even though the separation flow caused by the front walls of blocks can suck 8 

tracers into the wake region in the reverse flow, its strength is limited when compared with the 9 

streamwise velocity. The asymmetry of wake flow structures prevents the dispersion from 10 

expanding into the other half of the wake. Moreover, the mean velocity field is layered in the vertical 11 

direction, so the transport of the adjoint tracer in this direction can only rely on the GDH and 12 

molecular diffusion. Hence, in the vertical plane, the concentration distribution of the RANS model 13 

demonstrated a higher level of isotropy than the LES, where the distribution was stretched more in 14 

the streamwise direction and squeezed downward. Consequently, fewer tracers were moved to the 15 

bottom boundary in the RANS simulation. When the source was far away from a sensor in the 16 

spanwise direction or they were at different heights, it would not be notably impacted from the tracer 17 

and the adjoint relationship would be incorrectly constructed. In contrast, the situation changed in 18 

the LES of adjoint equations. Because most of the turbulent diffusion was explicitly resolved, the 19 

dispersion of adjoint tracers was wide throughout the domain in both the horizontal and vertical 20 

directions. Instantaneous turbulent flows carried the tracers emitted from the sensor across several 21 

wake regions. 22 

Fig. 5.4 shows the mean distribution of the adjoint tracer released from sensor No. 4 in the 23 

wake region behind a building (x = 6H, y = 5H, z = 0.5H). In the RANS model, compared with the 24 

sensor in the open street area, the dispersion area widened and the concentration in the lowest 25 

horizontal plane increased. The time-averaged flow structures in the wake region were more 26 

effective for dispersion than the layered flow in the open street region. Nevertheless, the dispersion 27 

was not able to expand across two wake regions in the spanwise direction; instead, it clustered 28 

around the blocks in the same row as the sensor. Thus, the prevention of dispersion caused by 29 

asymmetric wake flows remained. As before, in the LES, the adjoint tracers were transported over 30 

a larger area by the explicit turbulent diffusion. 31 
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Figure 5.4. Mean adjoint concentration field of sensor No. 4 located behind a building 

simulated using different methods: (left) LES and (right) RANS. (Top) Distribution in the 

horizontal plane (z = H/20); (bottom) distribution in the vertical plane (y = 5H). 

The measurements, 𝑫 , from the wind tunnel experiment are compared with the modeling 1 

concentration, 𝑹, of the RANS and LES models in Fig. 5.5. According to the adjoint relationship 2 

shown in Eq. (2.23), the 𝑹 of each sensor in Fig. 5.5 is the nondimensionalized concentration of 3 

adjoint tracers emitted by that sensor at the true source’s location. We confirmed that the LES 4 

modeling concentration was closer to the experimental data than that in the RANS model because 5 

most of the adjoint tracers were transported along the streamwise direction and the spanwise 6 

diffusion was insufficient in the latter model. For the sensors placed at large distances from the true 7 

source in the y-direction, the RANS model underestimated the concentration measurements. 8 

Meanwhile, for sensors placed in the same row as the true source, concentrations were 9 

overestimated due to the over-concentration of the adjoint tracers. Therefore, regardless of whether 10 

the sensor was in an open street or wake region, simulating turbulent diffusion is critical to 11 

dispersion. 12 
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 1 

Figure 5.5. Comparison between the measurements, 𝑫, in the wind tunnel experiment (WTE) and 2 

modeling concentration, 𝑹, of the RANS and LES models. Error bars denote the standard 3 

deviation of 𝑫 in the WTE. 4 

The numerical model employed to simulate adjoint equations requires special attention for 5 

complex urban areas, as in the case study. In general, the LES performed better than the RANS 6 

model for most sensors even though there were also discrepancies when compared to the 7 

experimental data. One possible reason for this result could be due to the fact that the RANS 𝑆𝑐𝑡 8 

was still set as a global constant and 𝜈𝑡 was modeled under the assumption of isotropic turbulence 9 

in the current case. Thus, deeper research is still needed to advance the modeling of 𝑆𝑐𝑡 and 𝜈𝑡. 10 

 11 

5.4.3 Source term estimation results 12 

We compared the estimation results of Bayesian inference using the modeling concentrations, 13 

𝑹, of the RANS and LES models of adjoint equations. Fig. 5.6 presents the marginal probability 14 

distribution of each source parameter. In the results of the proposed method based on the LES of 15 

adjoint equations, the estimation of each parameter was accurate. The peak values of the x- and y-16 

coordinates were close to the true ones and the deviations were smaller than 0.5H. The strength of 17 

the source was also well-defined since the peak value was almost the same as the true one, and the 18 



Chapter 5   

 

135 

probability density function (PDF) was concentrated around the true value, similar to a normal 1 

distribution with a small standard deviation. 2 

  

(a) 

  

(b) 

  

(c) 

Figure 5.6. Marginal probability distributions of single-source parameters (a: x-coordinate; b: y-

coordinate; c: strength) estimated by Bayesian inference using different adjoint concentration 

fields: (left) LES and (right) RANS. The dashed line represents the true value. 

The estimation performance with RANS modeling of the adjoint equations was worse than that 3 

of the LES. The PDFs of the x- and y-coordinates greatly deviated from true values. The zero 4 
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probability of estimating the true value indicates that the Markov chain did not explore this area or 1 

did not credit it after exploration; both situations mean that the probability of the true value was too 2 

low because the difference was too great between the modeling concentration and measured value. 3 

The estimated PDF of the strength revealed even more limitations of the conventional method. In 4 

spite of the fact that the peak value was close to the true strength, the distribution was so wide that 5 

it rendered the estimate invalid. There was also a second peak in the distribution far from the true 6 

value. In a real-world application, with more complicated measurement noise, it is possible that the 7 

width of the distribution would increase and the wrong peak would be identified as the dominant 8 

one, which may hinder subsequent risk management. 9 

The main reason for the estimation failure of the RANS model was attributed to the inaccurate 10 

prediction of adjoint concentration fields, where the turbulent diffusion was modeled according to 11 

the GDH. The difference between the measurements and modeling concentrations made it difficult 12 

to identify the true parameters via Bayesian inference. It is worth noting that, although the RANS 13 

modeling concentration errors may seem tolerable when compared with the variance within the 14 

measured values, the resulting estimation error is considerably larger. The reason for this is that in 15 

sampling the posterior distribution, the modeling concentration is coupled with the inference input 16 

coefficient, 𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2  . As the optimal selection of this variance remains unknown, this 17 

amplification could be inefficient in practical applications. For modeling concentrations that are not 18 

accurate enough, the inference is vulnerable to the selection of the input coefficient. When 19 

confronting complex measurements in reality, establishing an accurate modeling concentration is 20 

key to effective STE before systematic research into the selection of the input coefficient is 21 

completed. 22 

The improvements made to the accuracy of the STE yielded by the proposed model is better 23 

demonstrated by the joint probability distribution, 𝑝((𝑥, 𝑦)|𝐷, 𝐼), of the two methods (Fig. 5.7). We 24 

confirmed that the estimated source locations based on the LES model were very close to that of the 25 

true source. The inference narrowed the probability into the same wake region and the distance 26 

between the estimated location and the true one was smaller than 0.5H. In contrast, the estimation 27 

based on the RANS model was inaccurate. The joint probability clustered around a small area that 28 

was approximately two columns away from the true location, which suggests the limited credibility 29 

of the conventional RANS-based method. 30 
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Figure 5.7. Joint probability distribution of source locations estimated by Bayesian inference using 

different adjoint concentration fields: (left) LES and (right) RANS. The red point represents the true 

source. 

To quantify the improvement to STE achieved by the LES modeling of adjoint equations, we 1 

selected the 50th percentile values of the PDFs shown in Fig. 5.6 as the estimated results of the two 2 

methods and defined the following two indices. 3 

The location error 𝐸𝑑  is defined as the expectation of the Euclidian distance between the 4 

estimated location and the true location, which was calculated using the following equation: 5 

 𝐸𝑑 = ∫∫𝑝(𝑥,  𝑦|𝑫, 𝑰)√(𝑥 − 𝑥𝑠)2 + (𝑦 − 𝑦𝑠)2𝑑𝑥𝑑𝑦 (5.6) 

where (𝑥𝑠, 𝑦𝑠) is the true location of the source. 6 

The strength error 𝐸𝑞 is the expectation of the normalized difference between the estimated 7 

strength and true strength, which is expressed as follows: 8 

 𝐸𝑞 = ∫𝑝(𝑞|𝑫, 𝑰)
|𝑞 − 𝑞𝑠|

𝑞𝑠
 𝑑𝑞 (5.7) 

where 𝑞𝑠 is the true strength of the source. 9 

These indices are summarized in Table 5.1. We found that the LES model reduced the errors 10 

of location and strength estimates by 89% and 99%, respectively, when compared with the RANS 11 

model. 12 



Chapter 5   

 

138 

 1 

5.5 Conclusions 2 

In this chapter, to improve the accuracy of STE in complex urban applications, a new method 3 

was developed based on Bayesian inference coupled with unsteady adjoint equation modeling via 4 

LES. The performance of the proposed method was evaluated through a regular, block-arrayed 5 

urban model with the continuous dispersion of a point source in the wind tunnel experiment. The 6 

LES approach was applied to predict the flow fields of the urban model and the full spatial 7 

distribution and time-dependent dynamics were saved for the simulation of adjoint equations. To 8 

relieve the pressure imposed by storing such a large amount of data, the wavelet-based compression 9 

method was employed to compress the original data to 10% of its original volume. The source-10 

receptor relationship obtained from the LES model of the adjoint equations and the measurements 11 

from 16 sensors in the wind tunnel experiment were used as inputs for Bayesian inference to 12 

calculate the posterior distribution of the source term. To clarify the improvements made to the 13 

accuracy of STE using the proposed method, an existing RANS-based method of simulating adjoint 14 

equations with a time-averaged LES flow field was conducted for comparison. 15 

The results showed that the modeling of the adjoint equation was significantly improved by 16 

the new LES model. The proposed method reflected the crucial effects of an explicit resolution of 17 

turbulent diffusion with time-series data. The modeling concentration, 𝑹, of the LES model was 18 

closer to the measurements, 𝑫 , than that of the RANS model. Since turbulent diffusion was 19 

modeled by the GDH in the RANS method, the adjoint concentration predicted with the mean flow 20 

field did not reflect the true source-receptor relationship well. The different degrees of accuracy of 21 

the modeling concentrations between the two methods further resulted in different estimated 22 

Table 5.1. Summarized estimation results of the RANS and LES models. 

Method Location Strength 

True value 
(𝑥𝑠, 𝑦𝑠) 𝐸𝑑 𝑞𝑠 𝐸𝑞 

(4H, 7H)  1  

Steady adjoint equation 

(RANS) 
(0.21H, 5.46H) 4.09H 2.5 1.5 

Unsteady adjoint equation 

(LES) 
(4.38H, 6.78H) 0.44H 0.98 -0.02 
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posterior probabilities of the source parameters. For the RANS model, neither the coordinates nor 1 

the strength of the point source was successfully identified. In contrast, the LES model provided 2 

much more accurate estimates, which were robust to variations in noise, and the estimated location 3 

was in the same wake region of the true source. The errors in estimates of location and strength were 4 

reduced by 89% and 99%, respectively, using the LES model of adjoint equations when compared 5 

with the RANS approach. 6 

It must be noted that the regular, block-arrayed model employed in this chapter is an idealized 7 

scenario of real urban geometry. Even in this simple case, the difference between the adjoint tracer 8 

concentration predicted by the RANS and LES models was large enough to significantly affect the 9 

STE results. The critical factor was the simulation of dispersion in the adjoint equations. Even 10 

though the RANS model imposed lower computational costs, it was demonstrated that the GDH 11 

could not satisfy the accuracy requirements in strongly anisotropic flow fields. In real urban areas, 12 

the situation is much more complicated because of the diverse geometries and configurations of 13 

buildings and equipment. Hence, to effectively perform STE, it is beneficial to spend more time 14 

explicitly resolving turbulent diffusion for the source–receptor relationship via LES until more 15 

accurate numerical models for turbulent diffusion are proposed. 16 

Even though unsteady LES of adjoint equation was realized in the current research, the time-17 

averaged adjoint relationship was used in the inference instead of time-series data. The reason is 18 

that only time-averaged measured concentration data is available in the case study. Besides, 19 

advanced measurement equipment that can record concentration in a time-series form is still 20 

unpopular due to high cost. Existing research in the literature is still mainly based on mean 21 

concentration measurement. Hence, for the convenience of comparison, this research also used time-22 

averaged simulated results. Although it seems to be a waste of calculation resources to only use 23 

mean value of unsteady simulation, it was confirmed that mean results of the unsteady simulation 24 

outperform that of the steady simulation.  25 

However, it must be admitted that time-series data contains much more useful information to 26 

STE than time-averaged data. The performance of STE will be improved if the time-series data can 27 

be effectively utilized, which is also helpful to estimations considering multiple source or response 28 

time. Therefore, it is necessary to develop appropriate ways to fully use unsteady adjoint 29 

relationships. 30 

  31 
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Symbols 1 

𝐶 : the concentration field  

𝐶∗ : the adjoint concentration field  

𝐶𝑟 : standard (reference) concentration 

𝐶gas : the emission strength of the source 

𝑫 : the measurements vector 

𝐷𝑖 : the measurement of the sensor with index 𝑖 

𝐷𝑚 : molecular diffusivity 

𝐷𝑠𝑔𝑠 : sub-grid scaled turbulent diffusivity 

𝐷𝑡 : turbulent diffusivity 

𝐸𝑑 : the expectation of the Euclidian distance between the estimated 

location and the true location 

𝐸𝑞 : the expectation of the normalized difference between the estimated 

strength and true strength 

𝑓 : the original data of a three-dimensional scalar field in the Cartesian 

indexing mesh grid 

𝑓 : the decompressed flow field data 

𝐻 : the edgy length of blocks in the simulation (=60 mm) 

ℎ𝑟 : reference height 

𝐼 : the background information for Bayesian inference 
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𝑝(𝐴|𝐵) : conditional probability of event 𝐴 occurring given that 𝐵 is true 

𝑄 : the gas flow rate at the source 

𝑞 : strength samplings produced in MCMC for the point source 

𝑞𝑠 : the true strength of the point source 

𝑟 : the ratio between the specified error covariance in the Bayesian 

inference and the measurements 

𝑆𝑖𝑗 : mean strain rate of 𝑖 and 𝑗 directions 

 𝑆𝑐𝑠𝑔𝑠 : sub-grid scaled turbulent Schmidt number 

𝑆𝑐𝑡 : turbulent Schmidt number 

𝑇 : standard time-scale of LES simulation 

𝑈𝑟 : reference speed  

𝒖 : velocity field 

𝒙𝑚 : coordinates of sensors 

(𝑥, 𝑦) : location samplings produced in MCMC for the point source 

(𝑥𝑠, 𝑦𝑠) : the true location of the point source 

𝛿(∙) : Dirac delta function 

𝜈𝑠𝑔𝑠 : eddy viscosity coefficient at the sub-grid scale 

𝜈𝑡 : eddy viscosity  

𝜎𝑑,𝑖
2  : the variance of error in the measurement of the sensor with index 𝑖 
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𝜎𝑚,𝑖
2  : the variance of error in the modeling concentration for the sensor with 

index 𝑖 

𝜎(∙) : standard deviation 

(⋅)′ : fluctuation value with time 

̅  : Reynolds average operator 

̃  : filtering operator in LES 

 1 

 2 
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Chapter 6 9 

Sensor configuration optimization 10 

for source term estimation based 11 

on the entropy of adjoint equation 12 

  13 
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 4 

 5 

Abstract 6 

 7 

 8 

Until now, few studies have developed sensor configuration optimization methods aiming to 9 

ensure good source term estimation (STE) performance in the monitoring area, such that the 10 

posterior probability could aggregate around the truths while addressing most sources. This chapter 11 

proposes a method by designing an objective function and applying a simulated annealing algorithm. 12 

The objective function is set as the information joint entropy of the adjoint concentration. The 13 

performance of the proposed method was assessed by Bayesian inference STE for 25 unknown 14 

sources based on the obtained optimal configuration in a regular block-arrayed building group 15 

model. The STE results were compared with those of uniform and random configurations. 16 

  17 
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6.1 Introduction  1 

Source term estimation (STE) has three critical factors: measurements, source-receptor 2 

relationship, and estimating algorithm. In the previous research, most efforts have been devoted to 3 

the source-receptor relationship modeling and estimating algorithms. Many methods have been 4 

proposed to accurately simulate the predicted concentration and accelerate the estimation algorithm, 5 

while measurements have been neglected for a long time, and the related research is sparse. However, 6 

measurements are the foundation of STE. Theoretically, all STE methods would be useless if sensors 7 

could not efficiently measure the concentration information (Keats et al., 2010). In Chapter 3, it 8 

has been confirmed that some configurations may not provide sufficient measurement information 9 

for the STE of the line source, and the resultant estimations are inaccurate. In addition, the uniform 10 

and random sensor configurations used in wind tunnel experiments or field tests in previous research 11 

are impractical because of the irregular building distribution and the limitation of deployment cost 12 

in real applications. Random configuration may also cause considerable errors in the measurements 13 

of certain sources, which may be dominant over the truth. 14 

Most existing research on sensor configuration optimization (SCO) design is still insufficient 15 

because of the special requirements of STE applications. Several studies used the difference between 16 

measurements and simulated concentrations to evaluate the sensor configuration. For example, a 17 

sensor network has been designed to monitor nuclear power stations in France (Abida et al., 2008; 18 

Saunier et al., 2009). Kouichi et al., (2019) proposed an optimization method to reduce the existing 19 

sensors for an urban model area. However, the simulated concentration in these methods needs prior 20 

knowledge of sources in advance, which is unavailable in STE applications. Other published SCO 21 

methods aim to monitor specific atmospheric pollutants such as ozone, rather than a specific source 22 

(Araki et al., 2015; Fuentes et al., 2007; Wu and Bocquet, 2011). Sources emitting ozone are too 23 

numerous to effectively identify, so their target is to estimate the global distribution using several 24 

point measurements. Keats et al. (2010) proposed a design method related to STE, but the research 25 

problem is to place an additional sensor as a supplementary for a fixed configuration after the 26 

dispersion emergency. The method cannot be used in the preparatory sensor configuration design 27 

before the emergency. Until now, one of the most applicable SCO methods for STE was proposed 28 

by Ngae et al. (2019), in which the sensor configuration is evaluated based on the entropic criterion 29 

of measurement information provided by sensors (Issartel, 2005b) without the prior knowledge of 30 

sources. However, this method has a deep relationship with the renormalization inversion theory, 31 

which belongs to the deterministic STE category. It is still necessary to develop other SCO methods 32 
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from the view of stochastic STE theory. 1 

Therefore, in this chapter, an SCO method for the stochastic STE is proposed. This method has 2 

the same basic idea as Ngae et al. (2019) that evaluates the quality of sensor configuration based on 3 

the information entropy contained in sensors’ measurements. Despite that, these two methods use 4 

totally different ways to calculate the information entropy. Ngae et al. (2019) obtained the entropy 5 

by the determinant of the weighted Gram matrix (Issartel, 2005b), which is an important element 6 

transformed from adjoint concentration field in the renormalization inversion theory, while our 7 

method calculated the entropy with the spatial distribution of adjoint concentration, which is 8 

expected to be more intuitive and easy to understand. Besides, because entropy is an important 9 

concept in stochastic theory, its physical meaning is closely related to stochastic STE and is 10 

interpreted in this chapter. 11 

The application scenario is assumed to be that a point source with constant release strength 12 

may appear anywhere in the target domain with a statistically steady flow field. To monitor the 13 

target area, the proposed method finds a user-specified number of sensors among candidates to 14 

construct an optimal configuration. Regarding stochastic STE, the Bayesian inference method in 15 

Chapter 2 is applied. In an accurate Bayesian STE, the probability mass in the posterior probability 16 

distribution should concentrate around the true value with a narrow distribution width. The optimal 17 

configuration and resultant estimations are expected to be superior to others such as uniform, 18 

random, and experience-based configurations.  19 

 20 

6.2 Entropy-based configuration optimization 21 

In this section, the proposed SCO method is introduced. It consists of two parts: the objective 22 

function to evaluate the rank of any configuration and the simulated annealing (SA) algorithm to 23 

efficiently identify the optimal configuration. 24 

 25 

6.2.1 Objective function 26 

The objective function is used to evaluate the measurement ability and steadiness of each 27 

sensor configuration. It is proposed that all configurations can be ranked by the joint entropy of the 28 

spatial probability distribution of adjoint concentration fields of their sensors. The optimal 29 



Chapter 6   

 

147 

configuration should have the largest entropy. The author first proves this mathematically and then 1 

explains its physical meaning. 2 

a. Mathematical explanation 3 

Here is the definition of the information entropy of a probability distribution, 𝑝(𝑥) (Cover 4 

and Thomas, 2006). 5 

 𝐻(𝑥) = −∫𝑝(𝑥) 𝑙𝑜𝑔 𝑝(𝑥)𝑑𝒙 (6.1) 

In the statistics, entropy represents the information or uncertainties of 𝑝(𝑥). A distribution with a 6 

narrow spread and a sharp peak possesses small entropy, meaning that the uncertainty of the 7 

objective or information contained in the distribution is small. Similarly, a distribution with a wide 8 

spread and slight slope has a large entropy. Naturally, a uniform distribution has the largest entropy, 9 

information, and uncertainty (Fuentes et al., 2007). 10 

For any unknown source 𝒔, if we only have background information 𝐼 without any sensors, 11 

the prior probability distribution of the unknown source parameter is 𝑝(𝐬|𝐼). When we have 𝑛 12 

sensors to monitor an area with the measurement vector 𝑫 = (𝐷1, 𝐷2, 𝐷3, … , 𝐷𝑛), after the Bayesian 13 

inference, the posterior probability distribution of the unknown source parameter becomes 14 

𝑝(𝐬|𝑫, 𝐼). The information about unknown sources provided by these sensors can be quantified by 15 

mutual information 𝐼𝑚, which is defined as 16 

 𝐼𝑚(𝒔; 𝑫|𝐼) = 𝐻(𝒔|𝐼) − 𝐻(𝒔|𝑫, 𝐼) (6.2) 

where 𝐻(𝐬|𝐼) = −∫𝑝(𝐬|𝐼) log 𝑝(𝐬|𝐼) 𝑑𝒔  and 𝐻(𝐬|𝑫, 𝐼) = −∫𝑝(𝐬|𝑫, 𝐼) log 𝑝(𝐬|𝑫, 𝐼) 𝑑𝒔  are 17 

the entropies of the corresponding probability distributions. The optimum sensor configuration 18 

should provide the largest information 𝐼𝑚(𝒔;𝑫|𝐼) , which means it should minimize 𝐻(𝒔|𝑫, 𝐼) 19 

because 𝐻(𝒔|𝐼)  is constant before and after measurement. According to the properties of the 20 

entropy definition, 𝐻(𝒔|𝑫, 𝐼)  becomes smaller when 𝑝(𝐬|𝑫, 𝐼)  has a narrower distribution. 21 

Therefore, the minimum 𝐻(𝒔|𝑫, 𝐼)  denotes the posterior probability density function (PDF) of 22 

unknown source 𝑝(𝐬|𝑫, 𝐼) concentrates around a certain value, which is expected to be close to 23 

the true value when the Bayesian inference is sufficiently accurate. 24 

To find 𝑫, which minimizes 𝐻(𝒔|𝑫, 𝐼), let’s start with a simple scenario. Imagine the situation 25 

that we determine (randomly or by experience) first as 𝑛 − 1  sensors, fix them, and find the 26 
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optimal position for the next sensor 𝑒 . The measurement vector can be divided into 𝑫 =1 

(𝑫𝑛−1, 𝐷𝑛). The probability that sensor 𝑒 can provide the measurement 𝐷𝑛 is denoted as 2 

 𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼) = ∫𝑝(𝐷𝑛|𝒔, 𝑫𝑛−1, 𝐼)𝑝(𝒔|𝑫𝑛−1, 𝐼)𝑑𝒔

= ∫𝑝(𝐷𝑛|𝒔, 𝐼)𝑝(𝒔|𝑫𝑛−1, 𝐼)𝑑𝒔 
(6.3) 

When we assume that the measurement of each sensor is only determined by source 𝒔 and would 3 

not be affected by other sensors, 𝑫𝑛−1 can be removed from 𝑝(𝐷𝑛|𝒔, 𝑫𝑛−1, 𝐼) on the right-hand 4 

side (RHS). This probability contains the real measurement error and the posterior guess of the 5 

source using the known data 𝑫𝑛−1 . The optimal selection of 𝑒  should minimize the entropy 6 

𝐻(𝒔|𝑫, 𝐼) as follows: 7 

𝐻(𝒔|𝑫, 𝐼) = 𝐻(𝒔|𝑫𝑛−1, 𝐷𝑛, 𝐼) = −∫𝑝(𝐬|𝑫𝑛−1, 𝐷𝑛, 𝐼) log 𝑝(𝐬|𝑫𝑛−1, 𝐷𝑛, 𝐼) 𝑑𝒔 (6.4) 

Because 𝐷𝑛  also has uncertainty, as shown in Eq. (6.3), the expectation of 𝐻(𝒔|𝑫, 𝐼)  can be 8 

evaluated by 9 

𝐸[𝐻(𝒔|𝑫𝑛−1, 𝐷𝑛, 𝐼)] = ∫𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼)𝐻(𝒔|𝑫𝑛−1, 𝐷𝑛, 𝐼)𝑑𝐷𝑛 (6.5) 

The joint entropy has a chain rule (Cover and Thomas, 2006): 10 

 𝐻(𝑋, 𝑌|𝑍) = 𝐻(𝑋|𝑍) + 𝐻(𝑌|𝑋, 𝑍) = 𝐻(𝑋|𝑍) + ∫𝑝(𝑥)𝐻(𝑌|𝑥, 𝑍)𝑑𝑥 (6.6) 

If we let 𝑋 = 𝒔 , 𝑌 = 𝐷𝑛 , 𝑍 = (𝑫𝑛−1, 𝐼)  and notice that neglecting 𝑍  in the equation for a 11 

moment for simplicity would not change the final result because it appears in each term, we have: 12 

 𝐻(𝒔,𝐷𝑛) = 𝐻(𝒔) + ∫𝑝(𝒔)𝐻(𝐷𝑛|𝒔)𝑑𝒔 (6.7) 

By switching the position of 𝒔 and 𝐷𝑛, we can further obtain: 13 

 𝐻(𝒔,𝐷𝑛) = 𝐻(𝐷𝑛) + ∫𝑝(𝐷𝑛)𝐻(𝒔|𝐷𝑛)𝑑𝐷𝑛 (6.8) 

The second term on the RHS of Eq. (6.8) is the same as the RHS in Eq. (6.5), the expectation of 14 

𝐻(𝒔|𝑫, 𝐼), and RHS of Eq. (6.8) also equals the RHS of Eq. (6.7). Then, we return 𝑍 = (𝑫𝑛−1, 𝐼) 15 

to obtain 16 
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𝐸[𝐻(𝒔|𝑫𝑛−1, 𝐷𝑛, 𝐼)] = ∫𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼)𝐻(𝒔|𝑫𝑛−1, 𝐷𝑛, 𝐼)𝑑𝐷𝑛

=  𝐻(𝒔|𝑫𝑛−1, 𝐼) + ∫𝑝(𝒔|𝑫𝑛−1, 𝐼)𝐻(𝐷𝑛|𝒔, 𝑫𝑛−1, 𝐼)𝑑𝒔

−  𝐻(𝐷𝑛|𝑫𝑛−1, 𝐼) 

(6.9) 

In the RHS of Eq. (6.9), the first term is the entropy of the posterior PDF of the STE by 𝑫𝑛−1. 1 

Because these sensors are fixed, the value is constant and independent of 𝐷𝑛. The second term 2 

describes the influence of measurement noise on the data. 𝐻(𝐷𝑛|𝒔,𝑫𝑛−1, 𝐼) means the uncertainty 3 

contained in the measurement signals when a source 𝒔  and a No. n sensor are selected. This 4 

uncertainty is usually affected only by the measurement noise since both source and sensor are fixed. 5 

If we assume that the noise is independent of the measurement location, the second term is also 6 

constant (Loredo, 2004). Therefore, to minimize the left-hand side of Eq. (6.9), the third term must 7 

be maximized. 8 

Before further derivation, we first check the meaning of the third term 𝐻(𝐷𝑛|𝑫𝑛−1, 𝐼), which 9 

is the entropy of probability 𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼) . According to Eq. (6.3), 𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼) =10 

∫𝑝(𝐷𝑛|𝒔, 𝐼)𝑝(𝒔|𝑫𝑛−1, 𝐼)𝑑𝒔 . 𝑝(𝒔|𝑫𝑛−1, 𝐼)  indicates that measurements 𝑫𝑛−1  constrain the 11 

estimation of an unknown source in a limited parameter space 𝕍 with certainty. When the unknown 12 

source is located at different places in 𝕍, it may cause different concentration measurements 𝐷𝑛 13 

at sensor e, which is the meaning of the first term 𝑝(𝐷𝑛|𝒔, 𝐼).  14 

Assuming that the adjoint equation is accurately simulated, according to the adjoint 15 

relationship between the source and sensor, as shown in Eq. (2.24), we obtain: 16 

 𝐷𝑛 = 𝐶𝒔(𝑒)̅̅ ̅̅ ̅̅ ̅ = 𝑞𝒔𝐶𝑒
∗(𝒔)̅̅ ̅̅ ̅̅ ̅ (6.10) 

Therefore, 𝑝(𝐷𝑛|𝒔, 𝐼) = 𝑝(𝐶𝒔(𝑒)̅̅ ̅̅ ̅̅ ̅|𝒔, 𝐼) = 𝑝(𝑞𝒔𝐶𝑒
∗(𝒔)̅̅ ̅̅ ̅̅ ̅|𝒔, 𝐼).  17 

To maximize 𝐻(𝐷𝑛|𝑫𝑛−1, 𝐼), 𝑝(𝐷𝑛|𝑫𝑛−1, 𝐼) should have as wide a distribution as possible; 18 

consequently, 𝑝(𝐷𝑛|𝒔, 𝐼) or 𝑝(𝑞𝒔𝐶𝑒
∗(𝒔)̅̅ ̅̅ ̅̅ ̅|𝒔, 𝐼) should be wide, since 𝑝(𝒔|𝑫𝑛−1, 𝐼) has been fixed 19 

in Eq. (6.3). In the Bayesian inference for STE, 𝑞𝒔 is sampled by the MCMC with a uniform prior 20 

distribution. Meanwhile, in the process of location optimization for sensor e, changing the location 21 

of e would only affect 𝐶𝑒
∗(𝒔)̅̅ ̅̅ ̅̅ ̅, the spatial distribution of adjoint concentration corresponding to 𝕍. 22 

The wider this spatial distribution is, the wider 𝑝(𝑞𝒔𝐶𝑒
∗(𝒔)̅̅ ̅̅ ̅̅ ̅|𝒔, 𝐼)  becomes. In other words, the 23 

uncertainty that the unknown source causes different measurements in sensor e can be transferred 24 

to the uncertainty of the spatial adjoint concentration resulting from e. 25 
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Returning to the optimal process, we use the chain rule of joint entropy (Eq. (6.6)) once more 1 

to obtain 2 

 𝐻(𝑫|𝐼) = 𝐻(𝑫𝑛−1, 𝐷𝑛|𝐼) = 𝐻(𝑫𝑛−1|𝐼) + 𝐻(𝐷𝑛|𝑫𝑛−1, 𝐼) (6.11) 

Because the first term on the RHS of Eq. (6.11) is fixed and our target is to maximize the 3 

second term in the RHS, 𝐻(𝑫|𝐼) must be maximized. It is the joint entropy of probability of all 4 

measurements at fixed sensors (if 𝑒 has been decided) caused by different sources 𝒔. According 5 

to the discussion on the adjoint relationship above, this joint probability can be transferred to the 6 

joint spatial probability of adjoint concentrations at different places 𝑝(𝑹|𝐼) resulting from each 7 

sensor. Therefore, we find a sensor location 𝑒 that makes the spatial distribution 𝑝(𝑹|𝐼) as wide 8 

as possible, and the corresponding entropy 𝐻(𝑹|𝐼) or 𝐻(𝑫|𝐼) is maximized. 9 

In the above content, we proved the theorem that when 𝑛 − 1  sensors are fixed, the best 10 

location of the remaining sensor should be the one that makes the entropy 𝐻(𝑹|𝐼) larger than the 11 

other places. Now we can say that the configuration which owns the maximum 𝐻(𝑹|𝐼)  is the 12 

optimized one. If it is not, we have to adjust the sensors’ locations to improve it further. However, 13 

for each sensor, no matter where we move it, 𝐻(𝑹|𝐼) will decrease since the original one has the 14 

maximum value. According to the above theorem, the new configuration is worse than the original 15 

one. There is no more space for further improvement. Therefore, it is reasonable to set our objective 16 

function as 𝐻(𝑹|𝐼)  to evaluate the efficiency of the sensor configuration. The optimal 17 

configuration should have the largest 𝐻(𝑹|𝐼) values. In the designing process, we simultaneously 18 

determine the locations for all sensors to maximize 𝐻(𝑹|𝐼). 19 

b. Physical explanation 20 

The reason the optimal configuration should have the largest 𝐻(𝑹|𝐼)  can be intuitively 21 

explained by Fig. 6.1. An unknown source, the red star, appeared in the target domain. To facilitate 22 

understanding, it is assumed in this example that the strength of the source 𝑞𝑠 is already limited in 23 

a small interval and the STE is operated in a two-dimensional space, which indicate that we only 24 

need to estimate its position in a plane here. 25 

If we do not have any sensors, nothing is known. After we deployed one sensor, it can provide 26 

measurements 𝐷1, and the corresponding adjoint concentration field 𝑅1 can also be simulated, as 27 

shown in Fig. 6.1. According to the adjoint relationship in Eq. (2.24), it is reasonable to believe that 28 
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𝑅1 at the source should be close to 𝐷1. The Bayesian inference evaluates the probability of each 1 

possible source at different locations using Eq. (2.10). based on the difference between the 2 

measurement 𝑫 and the adjoint concentration 𝑹. The probability is large when the difference is 3 

small. According to the adjoint concentration distribution of sensor No. 1 in Fig. 6.1, values of 𝑅1 4 

in the red potential area is similar to that of the true source because they have the same color bar. In 5 

this case, the posterior probability of the potential area is similar to that of the true source. The 6 

estimation result will show that the source may locate at anywhere in the potential area. Therefore, 7 

the estimation results based on one sensor are not accurate. It is still impossible to infer the true 8 

parameters of an unknown source. 9 

Then, we can supplement another sensor to improve the estimation. Naturally, we can obtain a 10 

measurement vector 𝑫 = (𝐷1, 𝐷2) , and each place has an adjoint concentration vector 𝑹 =11 

(𝑅1, 𝑅2). Owing to the information provided by sensor No. 2, the potential area estimated by one 12 

sensor rapidly shrinks because the adjoint concentration 𝑅2 of most parts does not agree with the 13 

𝑅2 of the source or measurement 𝐷2. After removing these areas, the results of Bayesian inference 14 

become much better than before that the potential area tightly concentrated around the true source. 15 

A statistical perspective highlights that two sensors collect much more information about the 16 

dispersion of the unknown source than one sensor. Hence, the resultant estimations contain 17 

considerably fewer uncertainties. The increase in the measured information can be represented by 18 

the entropy of the spatial probability distribution of the adjoint concentration in the target domain. 19 

When compared with one sensor, two sensors complicate the adjoint concentration field by adding 20 

 

Figure 6.1. Diagram of the proposed objective function 𝐻(𝑹|𝐼). Left: Adjoint concentration field 

of sensor No. 1; Right: Adjoint concentration fields of sensor No. 1 & 2. 
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one dimension in 𝑹 , making the spatial probability distribution wider, and increasing the 1 

corresponding entropy. For this reason, there are significantly fewer areas owning a similar adjoint 2 

concentration vector with the true source, which can then be successfully identified. 3 

If we want to re-deploy the second sensor, the location of sensor No. 1 should not be considered. 4 

Under such circumstances, the adjoint concentration field of sensor No. 2 is the same as that of 5 

sensor No. 1, which means that sensor No. 2 will fail to measure any new information regarding 6 

pollutant dispersion. Equally, the spatial probability distribution, entropy of the adjoint 7 

concentration field, and potential area remain unchanged. The estimation of the STE would not be 8 

improved. As a result, it is always desirable for the new sensor to increase the entropy of adjoint 9 

concentration; in other words, fewer points have the same adjoint concentration vector as the true 10 

source. Moreover, because the unknown source can appear anywhere in the target area, the ideal 11 

state is that each place can own a unique adjoint concentration vector in which the spatial probability 12 

distribution is close to a uniform distribution and the entropy reaches the maximum value. In other 13 

words, the physical meaning of the maximum entropy of spatial distribution of adjoint concentration 14 

is that the sensor configuration has unique relationship with all possible sources. When any source 15 

appears, the measured concentration vector and the adjoint concentration vector are special enough 16 

to eliminate all other options and make sure the STE can identify the true source. Hence, when the 17 

number of sensors is fixed and limited, we can find the sensor configuration with the largest entropy 18 

of adjoint concentration, which is expressed by the objective function. 19 

 20 

6.2.2 Simulated Annealing 21 

After determining the objective function to rank each sensor configuration, it is necessary to 22 

quickly finish the optimization process and determine the best configuration with the largest 23 

𝐻(𝑹|𝐼). However, the optimization design for a large number of candidates is troublesome because 24 

of the heavy calculation burden. If we want to select j sensors out of n candidates to construct the 25 

network, the number of possible combinations is 𝐶𝑛
𝑗
=

𝑛!

(𝑛−𝑗)!𝑗!
 . When j is 8 and n is 100, as a 26 

common example, the total number of combinations reaches over one thousand billion. It is 27 

impossible to directly calculate the objective function for each combination and select the optimum 28 

function. Therefore, this research applied the SA algorithm (Kirkpatrick et al., 1983), which is a 29 

heuristic method inspired by the process of cooling a liquid to the lowest possible energy state. The 30 
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detailed steps of the SA are as follows:  1 

 2 

Initialization: Randomly select j sensors to form the first sensor network 𝒎1 and calculate its joint 3 

entropy of adjoint concentration 𝐻(𝑹1|𝐼) 4 

For k = 2 to N: 5 

 Randomly change a sensor in 𝒎𝑘−1 to generate a new network 𝒎𝑘. Calculate 𝐻(𝑹𝑘|𝐼). 6 

 If 𝐻(𝑹𝑘|𝐼) > 𝐻(𝑹𝑘−1|𝐼) 7 

  Accepted 8 

 Else 9 

  If N [0,1]< 𝑒𝑥𝑝 (−

𝐻(𝑹𝑘−1|𝐼)−𝐻(𝑹𝑘|𝐼)

𝐻(𝑹𝑘−1|𝐼)

𝑇𝑘
) 10 

   Accepted 11 

  Else 12 

   Rejected; 𝒎𝑘 = 𝒎𝑘−1, 𝐻(𝑹𝑘|𝐼) = 𝐻(𝑹𝑘−1|𝐼) 13 

 End if 14 

End if 15 

End For 16 

 17 

In this algorithm, N is the specified loop number for the stop criterion. N [0,1] is a random 18 

variable with a uniform distribution between 0 and 1, which means that the new configuration has 19 

a certain possibility to be accepted even if its entropy is smaller. This setting enables the 20 

optimization process to jump out from the local maximum. The critical factor 𝑇𝑘  is a virtual 21 

temperature defined by 𝑇𝑘 = 𝑇0 × 𝑎𝑘 , where 0 < 𝑎 < 1  is the cooling coefficient. In the 22 

beginning, when 𝑇𝑘 is large, the probability of jumping to an inferior configuration is higher, and 23 

the algorithm is flexible for exploring the entire parameter space. As k increases, 𝑇𝑘 tends to 0, 24 

making it almost impossible to move to an inferior configuration even if the difference is quite small. 25 
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𝑇𝑘 adjusts the balance between local and global exploration, thereby affecting the efficiency of the 1 

optimization process. Because 𝑇𝑘 is closely related to the value of the objective function case by 2 

case, there is no general way to set the value of 𝑇𝑘. In this research, 𝑇0 was imposed as 1 and 𝑎 3 

as 0.9, which is similar to previous research (Fuentes et al., 2007). To remove the influence of the 4 

initialization point, eight SA optimization chains were run in parallel with N = 5000. The sensor 5 

configuration with the largest entropy among the eight chains was regarded as the optimal 6 

configuration. 7 

 8 

6.2.3 Calculation of 𝐻(𝑹|𝐼) 9 

During SA optimization, 𝐻(𝑹|𝐼) needs to be calculated for each configuration. It is the joint 10 

entropy of probability 𝑝(𝑹|𝐼) , where 𝑹 = (𝑅𝑖,𝑗) , 𝑅𝑖,𝑗 = 𝑞𝑠,𝑖𝐶𝑗
∗(𝒙𝑠,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑖  is the index for all 11 

possible sources, and 𝑗  is the index for sensors. In this definition, 𝐶𝑗
∗̅̅ ̅  is a three-dimensional 12 

adjoint concentration function of sensor No. j. Assume that there are m possible sources in total and 13 

we have n sensors to form a configuration, 𝑹 can be expressed as: 14 

 𝑹 =

[
 
 
 
 
 
𝑅1,1 𝑅1,1 ⋯

𝑅2,1 ⋱

⋮ 𝑅𝑖,𝑗

𝑅1,𝑛

⋮

𝑅𝑚,1 ⋯
⋱

𝑅𝑚,𝑛]
 
 
 
 
 

 (6.12) 

Here 𝑚 ≫ 𝑛 . Each column represents the adjoint concentration of a sensor No. j 15 

corresponding to all possible sources. Each row represents the adjoint concentrations of all sensors 16 

for a single source No. i. Because the sensor configuration is designed for all possible sources 𝒔 in 17 

the target domain, all rows are included in 𝑝(𝑹|𝐼). In this case, we regard each row as a vector, and 18 

calculate the probability distribution of these vectors, which is 𝑝(𝑹|𝐼). 19 

Each 𝑅𝑖,𝑗 is a multiple of source strength and adjoint concentration of a spatial point. However, 20 

the source strength is unavailable when the sensor configuration is designed. It could have a wide 21 

range, which makes 𝑚 in Eq. (6.12) huge and calculation cost of 𝑝(𝑹|𝐼) heavy. To decrease this 22 

cost, we notice that in the Bayesian inference for STE, 𝑞𝒔 is sampled by the MCMC with a uniform 23 

prior distribution. Meanwhile, in the process of location optimization for sensors, changing the 24 

location of e would only affect 𝐶𝑗
∗̅̅ ̅, so the entropy 𝐻(𝑹|𝐼) mainly depends on the 𝐶𝑗

∗̅̅ ̅. Hence, in 25 

the case study of Section 6.3, we calculate 𝐻(𝑪∗̅̅ ̅|𝐼)  instead of 𝐻(𝑹|𝐼)  and assume that larger 26 
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𝐻(𝑪∗̅̅ ̅|𝐼) is equivalent to larger 𝐻(𝑹|𝐼). In the following content, 𝐻(𝑹|𝐼) means 𝐻(𝑪∗̅̅ ̅|𝐼). In this 1 

case, 𝑚 in Eq. (6.12) equals to the number of spatial grids of the adjoint concentration field 𝐶𝑗
∗̅̅ ̅.  2 

Future research is still necessary to clarify the effects of this calculation method on the final 3 

result. It is still recommended that a wide range of discrete 𝑞𝒔 should be multiplied with the adjoint 4 

concentration if enough calculation resources is available. 5 

 6 

6.2.4 Limitation of the method 7 

Because this method was proposed based on several assumptions, there are some limitations 8 

that need to be noted. First of all, this method corresponds with the statistical STE problem of a 9 

point source in the target area with stationary meteorological situations. Its effectiveness cannot be 10 

ensured when applied to other environmental monitoring. More research is still necessary to 11 

evaluate its performance in real urban applications with complex meteorology. However, because 12 

numerical simulations of adjoint concentration include the information of meteorology, it is 13 

reasonable to say that the proposed method has the potential ability in such scenarios. 14 

Besides, during the mathematical proof, one requirement is that the adjoint concentration 15 

should be accurately simulated to ensure that Eq. (2.24) is satisfied. As a result, the performance of 16 

this proposed method may depend on the quality of adjoint concentration simulation. What’s more, 17 

it is useful to note that there is no guarantee that SA would converge at the global optimal, however, 18 

it is likely that a ‘near optimal’ can be obtained (Altinel et al., 2008). Considering the complicated 19 

errors in real applications, this imperfection is considered to be acceptable here. 20 

 21 

6.3 Case study 22 

To verify the performance of the proposed method, it is used to design an optimum sensor 23 

configuration for an ideal urban area: a regular block-arrayed building group model, just the one in 24 

Chapter 4. 25 

To comprehensively evaluate the quality of the sensor configurations, it is necessary to identify 26 

different sources based on the configuration and check the corresponding STE performance. 27 

However, it is troublesome to measure the concentrations of many sources in the wind tunnel 28 

experiment, let alone that measurements of several sensor configurations are needed, and it is almost 29 
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impractical to employ the experiment or field test in this evaluation. Moreover, LES is increasingly 1 

gaining credit in the prediction of urban flow fields and dispersion of pollutants (Kikumoto and 2 

Ooka, 2012). Some research also relies on the simulation data for sensor network design (Abida et 3 

al., 2008) or STE method verification (Mons et al., 2017). As a result, the well-validated LES 4 

database produced in Chapter 4 is applied for the evaluation of sensor configurations.  5 

 6 

6.3.1 Numerical simulation 7 

The statistical data of the LES are validated in Chapter 4 in Fig. 4.4 & 4.5. It can be confirmed 8 

that the simulated flow field and concentration agree well with the wind tunnel experiment 9 

measurements. Therefore, using the LES results as concentration measurements would not damage 10 

the credibility of the research. 11 

 12 

6.3.2 Unknown sources 13 

A red area is set as the target monitoring domain where an unknown source may appear, as 14 

shown in Fig. 6.2. The target area is smaller than the entire calculation domain because the 15 

measurement information around the outer bounds could be valuable, especially downstream 16 

measurements. If the target domain is the same as the calculation domain, the source is difficult to 17 

estimate with most sensor configurations when it is on the streamwise boundary. 18 

Then, some sources are set in the target domain to evaluate the quality of each sensor 19 

configuration through the STE. It is difficult to obtain the concentration fields of many sources, 20 

regardless of experiments or simulations. Because the block configuration is regular in the current 21 

case, the concentration field of one point source located at (4H, 7H, 0) simulated in Chapter 4 was 22 

used and copied for the other 24 sources, as shown in Fig. 6.2. All these sources are located in the 23 

middle of the wake region, where the unsteady turbulent flow is strong, posing a challenging STE 24 

problem for sensor configurations. Note that the concentration simulation was well-validated, and 25 

the creditability of the concentration database was maintained. 26 
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 1 

6.3.3 Sensor candidates 2 

In this part, a number of sensor candidates are prepared, from which the optimization process 3 

can select part of sensors to construct the sensor configuration. In real applications, considering the 4 

deployment limitation of the stationary sensors and complex terrain in the urban areas, most places 5 

cannot be used for reasons like space is not enough or the land property problems. It is more practical 6 

to conduct optimization among the candidates than from all positions. Meanwhile, in the proposed 7 

method, the adjoint concentration fields of all sensor candidates have to be simulated in advance. If 8 

there are too many candidates, the computational cost is very large, and a huge database has to be 9 

saved for the entropy calculation later. Therefore, it is difficult to regard all the places as the location 10 

candidates. In the previous research, the design is usually selected from the sensor candidates 11 

prepared in advance (Kouichi et al., 2019; Ngae et al., 2019). The distribution of the sensor 12 

candidates in this case study is illustrated in Fig. 6.3. A total of 113 sensors were located on the 13 

horizontal plane with z = H/2. The objective of the optimization is to select the eight best sensor 14 

 

Figure 6.2. Target monitoring domain (red area) and distribution of unknown sources 
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combinations among these candidates. 1 

Because the objective function is based on the entropy of the adjoint concentration, the heaviest 2 

calculation burden is the adjoint equation simulation of all sensors. Once again, the advantage of a 3 

regular flow field is used and the adjoint concentration fields for only three sensors (a, b, and c in 4 

Fig. 6.3) are simulated. The fields of the other sensors are obtained by copying these three fields.  5 

In Chapter 5, the performance of Reynolds averaged Navier-Stokes (RANS) and large-eddy 6 

simulation (LES) of adjoint equations has been compared and discussed. Although LES has been 7 

confirmed to be more accurate, to balance accuracy and calculation costs, the approach proposed by 8 

Xue et al. (2018b) is still adopted here, in which the adjoint equation was simulated by a RANS-9 

like model based on the mean velocity field predicted by LES in the forward simulation. It should 10 

be noted that this method will bring some modeling errors into the adjoint concentration field and 11 

SCO. The obtained optimal configuration may not be the theoretically best one. Meanwhile, the 12 

simulated adjoint concentrations are also used in the following STE for all configurations, so it is 13 

believed that the modeling errors of adjoint equations simulation will not affect the ranking of 14 

different configurations.  15 

 

Figure 6.3. Distribution of sensor candidates 
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Figure 6.4. Simulated adjoint concentration distribution of sensors a, b, and c in Fig. 6.3. 

(Horizontal plane with z = 0; From top to bottom: sensor a, b, c) 
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 1 

 

 

Figure 6.5. Comparison configurations: uniform (top) and random (below) 
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The adjoint concentration fields of three sensors are shown in Fig. 6.4. 1 

 2 

6.3.4 Comparison configurations 3 

To demonstrate the advantage of the optimum sensor configuration, two comparison 4 

configurations that were commonly used in previous STE research are selected, namely, the uniform 5 

configuration and random configuration (Fig. 6.5). The STE results of these two configurations are 6 

compared with those of the optimal configuration.  7 

 8 

6.4 Results and Discussion 9 

6.4.1 Optimum sensor configurations 10 

The proposed method is applied to determine the optimum sensor configuration. The value of 11 

the objective function of each of the eight sensor combinations 𝐻(𝑹|𝐼) was calculated, and the SA 12 

quickly adjusted the configuration to reach a larger value. Fig. 6.6 illustrates the changing process 13 

of the objective function value during the eight SA searching chains. Seven chains are 14 

transparentized to emphasize the one whose final objective function value is the maximum. The 15 

logarithmic horizontal axis was used to clearly illustrate the search process. The SA optimization 16 

algorithm was run in MATLAB on a personal computer with Intel® CoreTM i7-6700 CPU @ 3.4GHz 17 

and 32GB of RAM. The averaged computational time for one SA chain with 5000 optimization 18 

steps is about 180s. 19 

The changing patterns of the eight chains were similar. Initially, because the SA chain started 20 

from a random configuration, the entropy was small. Before approximately 100 steps, SA moved to 21 

a smaller entropy rather than a larger one several times. At this moment, the virtual temperature 𝑇𝑘 22 

still has a large value, making the SA flexible to jump into the inferior configuration for global 23 

exploration. After, the inferior jumping became strict, and the chain only moved to a larger entropy. 24 

Meanwhile, the rate of increase also decreased because it became increasingly difficult to find a 25 

better configuration. Finally, the value of the objective function remained unchanged for 26 

approximately 1500 steps, yielding the largest value of 11.21 and the corresponding configuration.  27 

As a comparison, the 𝐻(𝑹|𝐼) values of the random and uniform configurations are 6.35 and 28 

9.06, respectively. It can be confirmed that 6.35 is almost the smallest value in the chain, which 29 
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means that the random configuration is ineffective for measurements. This may challenge the 1 

robustness of STE methods and, consequently, should not be used in real applications. The uniform 2 

configuration is located at the intermediate level of the chain, with a value of 9.06. It should be 3 

noted that the regular block distribution provides some merits to the uniform configuration. Whether 4 

the performance can be maintained in a real urban area with a complicated terrain remains unclear. 5 

The obtained optimum sensor configuration is shown in Fig. 6.7. This configuration has several 6 

interesting characteristics. First, the configuration is not symmetric as the calculation domain. This 7 

could result from the simulation errors of the adjoint equation because the simulated adjoint 8 

concentration fields in Fig. 6.4 were also slightly skewed. It is probable that the optimization result 9 

is sensitive to the adjoint concentration field, so the accurate simulation of the adjoint equation is 10 

important to the proposed method. From a good perspective, the proposed optimization method 11 

captures the information contained in the adjoint concentration field well, which further indicates 12 

that the source-receptor relationship is well considered.  13 

 

Figure 6.6. Variation in 𝐻(𝑹|𝐼) among eight SA chains. The red line indicates the chain 

whose final objective function value is the maximum. The other chains are shown with faded 

colors. 
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Second, most sensors were located in the downstream area of the target domain. This 1 

distribution coincides with the intuitive decision that people usually tend to arrange all sensors 2 

downstream of sources based on empiricism. If the wind direction is constant, the adjoint 3 

concentration fields of these downstream sensors cover a sizable part of the target area, indicating 4 

a strong measurement capability. Although the logic seems obvious, it is difficult to quantize it for 5 

decision-making in the optimization algorithm. The produced optimal configuration implies that the 6 

entropy-based objective function in the proposed method is an appropriate solution.  7 

Moreover, there is one characteristic beyond empiricism that not all sensors gather downstream. 8 

The algorithm detected that the downstream area was already crowded with six sensors. It is 9 

ineffective to add more sensors there in terms of cost performance because the adjoint concentration 10 

field of the new sensor would nearly overlap with existing ones, and the new source–receptor 11 

information is limited. Consequently, two sensors were arranged in the middle of the target domain 12 

to distinguish the front and back parts of the domain. The importance of these two sensors is easy 13 

to ignore when the sensor configuration is designed based on the human experience. The proposed 14 

method can deepen the insights from the entropy of the adjoint concentration. 15 

 

Figure 6.7. Optimum sensor configuration produced by the proposed method 
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According to the discussion above, the chosen optimum sensor configuration is reasonably 1 

designed and seems capable of satisfying the STE performance. We employed this configuration as 2 

well as random and uniform configurations to estimate 25 unknown sources. In the Bayesian 3 

inference, the variance of errors is set as 𝜎𝑑,𝑖
2 + 𝜎𝑚,𝑖

2 = 𝑟 ∗ 𝐷𝑖, where 𝑟 = 0.3. The results are as 4 

follows. 5 

 6 

6.4.2 Estimation results of one source 7 

First, we present the STE results of one source located at (2H, 7H, 0) based on the 8 

measurements of the three sensor configurations. The Bayesian inference of STE was executed with 9 

MATLAB on a personal computer with Intel® CoreTM i7-6700 CPU @ 3.4GHz and 32GB of RAM. 10 

The averaged computational time for estimating one source is about 11s. Fig. 6.8 summarizes the 11 

posterior joint probability distribution 𝑝(𝑥,  𝑦|𝑫, 𝐼), which represents the location estimation of the 12 

true source. Fig. 6.9 shows the posterior marginal probability distribution for the strength estimation. 13 

The optimal configuration produced the best estimations among the three. In Fig. 6.8(a), most 14 

of the probability mass is concentrated around the true source. Only a fraction deviates from the 15 

truth, and the distance is constrained to approximately 2H. The accuracy is better than the STE in 16 

Chapter 5 with the same adjoint equation simulation method. Possible reasons could be that the 17 

optimal sensor configuration is more informative. Besides, it can be noticed that the downstream 18 

distance between source and sensors is larger than that in Chapter 5. According to the previous 19 

research (Xue et al., 2017), the simulated adjoint concentration distribution tends to be a narrower 20 

plume compared with that in the real scenario. Therefore, a smaller distance may result in a larger 21 

difference between 𝑫 and 𝑹. 22 

In addition, the emission strength was also well identified, as shown in Fig. 6.9(a). All 23 

probability masses lie between 0 and 2. Although the peak value does not perfectly agree with the 24 

truth, the error is acceptable. This estimation error mainly results from the simulation method of the 25 

adjoint equation. The LES model could effectively mitigate this problem and further improve the 26 

STE accuracy. Because this is not relevant in the current study, the details are not expanded upon 27 

here. 28 
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Figure 6.8. Posterior joint probability distribution 𝑝(𝑥,  𝑦|𝑫, 𝑰) obtained by three sensor 

configurations: (a) optimum; (b) uniform; and (c) random. Red point: true source. 
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 1 

The uniform configuration failed to provide estimations with comparable accuracy to that of 2 

the optimal configuration. Although the true location has a distribution peak, many probability 3 

masses diverge broadly. This divergence represents redundant uncertainties caused by low-quality 4 

measurements, which is insufficient for STE sampling to firmly adhere to the truth. The same 5 

situation can also be confirmed in the strength estimation shown in Fig. 6.9(b). Although the width 6 

and the general shape are similar to those of the optimal configuration, more probability masses 7 

move from the truth to the wrong peak. In short, the STE estimation contains more noisy 8 

 

Figure 6.9. Posterior probability distribution 𝑝(𝑞|𝑫, 𝑰) obtained by three sensor configurations: 

(a) optimum; (b) uniform; and (c) random. Dotted line: true value 
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uncertainties than that of the optimal configuration because the measurements of this source 1 

provided by the uniform configuration are less informative. 2 

The performance of the random configuration was the worst. All probability mass in Fig. 6.8(c) 3 

departs from the true source, which reveals that the STE broke down. The information measured by 4 

the random configuration cannot support the STE in identifying the true source. Similarly, severe 5 

unsteadiness was observed in the strength estimation. Although the peak is close to the truth, the 6 

width of the distribution spreads over 100 times, as shown in Fig. 6.9(c). In this case, the estimations 7 

have little reliability for risk management. 8 

In general, the performance of these three configurations has the same order as their entropy 9 

values, which proves that the objective function design in the proposed method is reasonable. 10 

 11 

6.4.3 Estimation results of all sources 12 

To avoid the contingency in STE for only one source, we conducted STE for all 25 sources 13 

based on the three configurations. Considering the length of the thesis, it is difficult to present all 14 

posterior PDFs here. Two indices 𝐸𝑑,𝑚  and 𝐸𝑞,𝑚  introduced by Eq. (5.6 & 5.7) are used to 15 

quantify the estimation accuracy of STE for all unknown sources based on the three sensor 16 

configurations. 𝑚 is the index for source 𝑁𝑜.𝑚 17 

Accurate STE always has smaller 𝐸𝑑,𝑚  and 𝐸𝑞,𝑚 . Because the posterior PDFs are often 18 

highly skewed, 𝐸𝑑,𝑚  and 𝐸𝑞,𝑚  are first-order statistical moments and cannot comprehensively 19 

reflect real situations. The two PDFs may be different, even if their expectations are the same. In 20 

the Bayesian inference STE, it is expected that the probability mass is concentrated around the true 21 

value with limited distribution rather than a uniform distribution with too many uncertainties. As a 22 

result, we introduced the third index to evaluate the concentration degree of the posterior PDF: the 23 

joint entropy 𝐻(𝑥, 𝑦, 𝑞)  of 𝑝(𝑥, 𝑦, 𝑞|𝑫, 𝑰) . A PDF with a small 𝐻(𝑥, 𝑦, 𝑞)  and small 𝐸𝑑,𝑚  & 24 

𝐸𝑞,𝑚 indicates a good estimation that most probability is close to the truth. 25 

The values of the three indices for STE based on the three configurations are summarized in 26 

Table 6.1. All values were averaged for 25 unknown sources. The optimal configuration has the 27 

smallest values for all three indices. The location error of 2.83H and strength error of 1.5 are at the 28 

normal level for STE with a steady simulation of the adjoint equation, which has been confirmed in 29 

Chapter 5 with 16 sensors. When the sensor configuration becomes uniform, the estimation 30 
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accuracy becomes inaccurate according to the three indices. The location error increased by 1 

approximately 65%, and the strength error significantly increased by approximately 25 times when 2 

compared with that of the optimal configuration. The limited amplification of 𝐻(𝑥,  𝑦, 𝑞) 3 

demonstrated that considerable deviation was caused in 𝐸𝑞,𝑚  by ineffective measurements of 4 

uniform configuration while the concentration rate of PDF was less damaged. However, the random 5 

configuration thoroughly eroded the estimation accuracy in terms of deviation and concentration 6 

rate in the PDF. The location error, strength error, and 𝐻(𝑥,  𝑦, 𝑞) increased by more than 80%, 7 

7300%, and 47%, respectively, compared with the optimal configuration. It should be mentioned 8 

that most sensors in the random configuration were located in the upper-left area. When the source 9 

appears at the lower right corner, only one or two sensors can measure the concentration changes, 10 

which is obviously too insufficient and results in STE failures. 11 

Consequently, the efficiency of the optimum sensor configuration in STE was confirmed. The 12 

performance of the configurations is positively proportional to the joint entropy of adjoint 13 

concentrations 𝐻(𝑹|𝐼). Among these three indices, the strength error is the most sensitive to the 14 

measurement quality of the sensor configuration. During the Bayesian inference, the exploration 15 

space of the location is limited in the current case (approximately 12H for x and 10H for y), while 16 

the sampling range is infinite for strength. When the measurements are not sufficient for source 17 

identification, Bayesian inference would prefer to adjust the strength rather than the location 18 

parameter to meet the gap between the measurements and simulated concentrations. Once a 19 

probable parameter combination was found, most sampling would occur in that combination. As a 20 

consequence, 𝐸𝑑𝑖  and 𝐻(𝑥,  𝑦, 𝑞)  were not promoted comparably to 𝐸𝑞𝑖  in the random 21 

configuration. 22 

Table 6.1. Summarized estimation indices of three sensor configurations 

 
Mean 𝐸𝑑,𝑚 Mean 𝐸𝑞,𝑚 Mean 𝐻(𝑥,  𝑦, 𝑞) 

Optimal configuration 2.83H 1.54 12.23 

Uniform configuration 4.67H 39.54 14.17 

Random configuration 5.17H 112.53 18.01 
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 1 

6.5 Conclusions 2 

This chapter proposes an SCO method for identifying an optimum sensor configuration that 3 

can provide informative concentration measurements for STE, regardless of where the unknown 4 

source appears in the target domain. When compared with other configurations, it is expected that 5 

Bayesian inference STE can produce better estimations based on measurements of the optimal 6 

configuration, in which the probability mass in the posterior PDF gathers around the true value with 7 

a narrow distribution. 8 

The proposed method is composed of an objective function and an SA algorithm. The objective 9 

function was set as the joint entropy of the spatial probability distribution of the adjoint 10 

concentration of a configuration to evaluate its measurement ability. The reasonability of this setting 11 

was explained from mathematical and physical perspectives. The value of the objective function 12 

represents the uncertainty about the source that can be measured by the sensor configuration. If 13 

more uncertainty has been measured, less probability divergence would appear in the posterior PDF, 14 

and the probability mass could concentrate around the truth. Therefore, the optimum sensor 15 

configuration should have the largest objective function value. SA was applied to quickly find the 16 

optimal configuration using the objective function value among countless possible combinations.  17 

To evaluate the performance of the proposed method, 25 unknown point sources in the regular 18 

block-arrayed building group model were estimated based on measurements of optimum, random, 19 

and uniform configurations. According to the results, it was found that the main calculation cost in 20 

the proposed method results from the adjoint equation simulations for all sensor candidates. By 21 

comparing the STE performance of the three configurations, it was proved that the estimation 22 

accuracy is positively correlated with the objective function value such that the optimal 23 

configuration is the best, the uniform configuration is less accurate, and the random one is the least 24 

accurate. Hence, the objective function is appropriately selected. In the presented posterior PDFs 25 

for the STE of one source, the probability mass settled around the truth with a limited spread in the 26 

optimal configuration, while the estimations totally deviated in the random configuration. This 27 

finding was confirmed again when the STE results of 25 unknown sources were quantized using 28 

three indices. The average estimation errors of the optimal configuration were limited. The location 29 

and strength estimation errors increased by approximately 80% and 7300%, respectively, when the 30 

configuration changed from optimum to random.  31 
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The measurements in the case study were synthesized from a well-validated LES simulation. 1 

Future research with complicated urban terrain and real measurements is necessary to verify the 2 

robustness of the proposed method. Besides, the meteorological condition was set stationary by 3 

constant inflow boundary in adjoint equation simulation. The optimal sensor configuration may 4 

change with different wind directions/speeds. However, it has been presented that the adjoint 5 

concentration simulation is able to include the effects of terrain geometry, meteorological situations, 6 

and building structures. It is reasonable to expect that the proposed method can be extended to real 7 

urban applications with variable conditions. 8 

 9 

  10 
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Symbols 1 

𝐶 : the concentration field  

𝐶𝒔 : the concentration field of source 𝒔 

𝐶𝑒
∗ : the adjoint concentration field of sensor 𝑒 

𝐶𝑛
𝑗
 : the number of possible 𝑗 combinations out of a set with 𝑛 elements  

𝑫 : the measurements vector 

𝐷𝑖 : the measurement of the sensor with index 𝑖 

𝑒 : the selected sensor for further optimization when other sensors are 

fixed 

𝐸𝑑,𝑚 : the expectation of the Euclidian distance between the estimated 

location and the true location of source 𝑁𝑜.𝑚 

𝐸𝑞,𝑚 : the expectation of the normalized difference between the estimated 

strength and true strength of source 𝑁𝑜.𝑚 

𝐻 : the edgy length of blocks in the simulation (=60 mm) 

𝐻(𝑥) : the information entropy of a probability distribution 𝑝(𝑥) 

𝐼 : the background information for Bayesian inference 

𝐼𝑚(𝒔;𝑫|𝐼) : the mutual information representing the information about the source  

𝐬 provided by sensors with measurements 𝑫 

𝒎𝑖 : the 𝑖th searching in the Simulated Annealing 

N : the specified number of searching steps in Simulated Annealing 
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𝑁[a, b] : the uniform distribution bound between a and b 

𝑝(𝑥) : the probability of event 𝑥 occurring 

𝑝(𝐴|𝐵) : conditional probability of event 𝐴 occurring given that 𝐵 is true 

𝑄 : the gas flow rate at the source 

𝑞 : strength samplings produced in MCMC for the point source 

𝑞𝑠 : the true strength of the point source 

𝑟 : the ratio between the specified error covariance in the Bayesian 

inference and the measurements 

𝑹 : adjoint concentration fields 

𝒔 : a vector representing the unknown source 

𝑇0 : the initial virtual temperature for Simulated Annealing 

𝑇𝑘 : the virtual temperature of the system at the 𝑘th step in Simulated 

Annealing 

𝕍 : a parameter space where the unknown source is possibly located 

(𝑥, 𝑦) : location samplings produced in MHMC for the point source 

(𝑥𝑠, 𝑦𝑠) : the true location of the point source 

𝑎 : the cooling coefficient in the Simulated Annealing 

𝜎𝑑,𝑖
2  : the variance of error in the measurement of the sensor with index 𝑖 

𝜎𝑚,𝑖
2  : the variance of error in the modeling concentration for the sensor with 

index 𝑖 
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̅  : Reynolds average operator 

 1 

 2 
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7.1 Conclusions 1 

This thesis develops a statistical estimation method for an unknown source of atmospheric 2 

pollutants in the complicated urban environment based on Bayesian inference. The main 3 

conclusions of each chapter are as follows. 4 

Chapter 1 introduces the research background, objective, and structure of the thesis. 5 

Dispersion emergencies caused by unknown sources occurred in the urban area from time 6 

to time and may cause considerable damage to people and the environment. It is necessary to 7 

estimate the source parameters as soon as possible after the emergencies happen. Dealing with 8 

the characteristics of source term estimation (STE) applications in the urban environment, this 9 

thesis proposed three improvements for the statistical STE to realize better estimation 10 

performance, and evaluate their effectiveness by a series of case studies. 11 

Chapter 2 provided a short review of the recent progress in STE of atmospheric pollutants, 12 

and the basic methodology used in the thesis is introduced. 13 

STE consists of three basic elements: measurements, estimation algorithm, and source-14 

receptor relationship. Different methods for these elements have been proposed in the previous 15 

research. Considering the applications in the urban environment, in this thesis, the time-16 

averaged concentrations which can be measured by most sensors are the measurements; the 17 

Bayesian inference is selected as the estimation algorithm to assess the noise in STE; the adjoint 18 

equation method is applied for the source-receptor relationship simulation to deal with the 19 

complicated dispersion phenomenon in the built area. 20 

Chapter 3 proposed a line source estimation method by combining the basic methodology 21 

with the super-Gaussian function.  22 

The coefficients of the super-Gaussian function were added into Bayesian inference to 23 

realize the geometry estimation. The applicability was first confirmed by a numerical 24 

experiment of an ideal urban boundary layer. The proposed method successfully inferred that 25 

the source is line-like without any prior knowledge. Based on this case, the effects of different 26 

sensor configurations on the line source estimation were discussed. Because the line source 27 

contained more geometric information than point sources, the requirements on the sensor 28 

configuration become higher that both sensors near the source and null-measurement sensors 29 

are indispensable. The conventional sensor configuration may fail in the line source estimation. 30 
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To examine the robustness of the proposed method against measurement and modeling 1 

errors, the second case of a simplified urban square with wind tunnel experiment measurements 2 

was conducted. The line source was successfully identified by the proposed method again. By 3 

comparing to the conventional method with ideal point assumption, it is confirmed that the 4 

proposed method can not only provide the geometry estimation but also reduce the inference 5 

errors caused by the point source assumption. It is meaningful to include the geometry 6 

estimation into STE. 7 

Chapter 4 constructed a compression database by wavelet-based compression method for 8 

the turbulent flow field of a block-arrayed building group model based on large eddy simulation 9 

(LES) raw data. It is a prerequisite content for Chapters 5 & 6. 10 

 The compression ability and error control of the wavelet-based compression method was 11 

analyzed. The influence of compression on the quality of the data was checked from a single 12 

snapshot and time-series perspectives. In the case study, it was found that about 100 times 13 

compression can satisfy the requirement of flow field visualization, large-scale turbulent 14 

structure preservation, and afterward dispersion simulation. Therefore, it is reasonable to say 15 

that the wavelet-based compression method is a powerful tool to construct a portable flow 16 

database. The unsteady simulation of the adjoint equation can be realized based on a 17 

compressed flow field. 18 

In Chapter 5, to improve the accuracy of STE in complex urban applications, a new method 19 

was developed based on Bayesian inference coupled with unsteady adjoint equation modeling 20 

via LES. 21 

The performance of the proposed method was evaluated in the block-arrayed urban model 22 

with the wind tunnel experiment measurements of continuous dispersion of a point source. The 23 

LES of the adjoint equation for the source-receptor relationship was realized based on the 24 

compressed flow field constructed in Chapter 4. As a comparison, another STE was also 25 

conducted with a conventional method, where steady adjoint equations were simulated with 26 

Reynolds averaged Navier-Stokes (RANS) model. The results showed that the modeling of the 27 

adjoint equation and STE were significantly improved by the LES. The complicated turbulent 28 

flows caused by buildings destroyed the reliability of the gradient diffusion hypothesis in the 29 

conventional RANS simulation of the adjoint equation. Although the proposed method needs 30 

more computational resources, to effectively perform STE in the complicated urban 31 
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environment, it is valuable to apply LES to adjoint equation simulation. 1 

Chapter 6 proposed a sensor configuration optimization method for STE by the design of 2 

an objective function and application of the simulated annealing algorithm. 3 

The objective function was set as the information entropy of the spatial distribution of the 4 

adjoint concentration field. Its ability to represent the measurement ability of sensor 5 

configurations was proved from the views of mathematics and physics. Simulated annealing 6 

was applied to find the optimal configuration which owns the largest value of the objective 7 

function. 8 

The proposed method was utilized to design an optimal sensor configuration for the block-9 

arrayed urban model in Chapter 4. The performance of the optimal configuration in STE was 10 

compared to uniform and random configurations through estimations for 25 unknown sources. 11 

The results revealed that the accuracy of STE is related to the entropy contained in the adjoint 12 

concentration of the configuration such that the design of the objective function is reliable. The 13 

optimal configuration outperforms the other two in STEs. It is valuable to use the proposed 14 

method to guide the configuration design in real applications. 15 

 16 

7.2 Future research 17 

Although some progress has been achieved in this thesis, there are still several limitations 18 

in the statistical STE method which need to be noticed. To ultimately realize effective STE for 19 

the urban environment, here are future research summarized based on the author’s knowledge. 20 

Firstly, more advanced measurements should be utilized in STE. In all STEs in the thesis 21 

as well as a considerable amount of previous research, only the time-averaged concentration of 22 

pollutants was used as measurements. Although this information is the simplest and most basic 23 

data to measure for sensors, if other advanced measurements can be accounted in, the accuracy 24 

of STE could be improved further following the measured information entropy in Chapter 6. 25 

For instance, adding the turbulent flux into measurements is likely to better distinguish the 26 

wrong estimations and reduce errors in STE further. Research using time-series measurements 27 

in STE is still sparse until now. It is believable that much more information can be dug out from 28 

time-series data than average value, thus more efforts should be devoted to how to use it in STE. 29 
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More importantly, the main limitation of time-averaged concentration is that it should be 1 

measured after the dispersion has reached into the statistically steady state by a large enough 2 

averaging time scale. It means that plenty of time is cost by measurement before the STE, which 3 

potentially brings more risk due to the continuous dispersion of unknown sources during this 4 

time. It is meaningful to develop a technique which can identify the unknown source faster 5 

based on the sudden change of concentration or time lags between sensors. 6 

Secondly, the estimation target is assumed to be a single source. It means that the proposed 7 

methods may suffer from identifying multiple sources that the accuracy cannot be promised 8 

any more. Since dispersion emergency with multiple sources is a possible scenario in the real 9 

applications, it is necessary to extend the proposed methods to handle with them in the future. 10 

Thirdly, the simulation method for adjoint equations can be improved further. Although 11 

the proposed LES of adjoint equations realized accurate prediction of source-receptor 12 

relationship, its calculation cost is still large for real applications. Methods with better cost-13 

performance ratios should be developed in the future. According to the results in Chapter 4, the 14 

decompressed flow fields only persevering large-scaled turbulent structures can yield almost 15 

the same prediction accuracy for the dispersion simulation. It is possible that the unsteady 16 

simulation of adjoint equations could be successfully driven only by large-scale turbulent 17 

structures. Under such circumstances, bridging models between RANS and LES like unsteady 18 

RANS, partially-averaged Navier-Stokes, or detached eddy simulation have the opportunities 19 

to simulate adjoint equations. About the data storage for the inverse simulation, apart from the 20 

wavelet-compression method in the thesis, the large-scaled turbulent structures can also be 21 

stored by low-dimensional modes like proper orthogonal decomposition or dynamic mode 22 

decomposition. 23 

Furthermore, the case study in the thesis is a regular block-arrayed building group model, 24 

which is an ideal situation for dispersion in the urban environment. Dense buildings with 25 

diverse geometries and irregular distribution may cause an unexpected challenge to STE. The 26 

moving objects like automobiles, trains, and people will make the source-receptor relationship 27 

more complicated to predict in the neighborhood scale. Their influence on the accuracy of STE 28 

should be addressed in the future, and if the influence was unignorable, it is also necessary to 29 

study how to model them in the source-receptor relationship. 30 

Another critical factor to source-receptor relationship modeling is the meteorological 31 
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condition, which was assumed to be stationary during the dispersion emergency in the thesis. 1 

However, in the reality, meteorological conditions like wind speed and directions are unsteady 2 

at different times. It is likely that the inflow condition would suddenly change during the 3 

dispersion emergency. Hence, it is valuable to extend the current method to handle unsteady 4 

dispersions. 5 

Meanwhile, the mechanisms of pollutants’ dispersion are extremely complicated. The 6 

particles may go through processes like collision, sediment, condensation, and so on. Some 7 

toxic gases may also react with other gases during the dispersion. For these pollutants, the 8 

current method may totally fail because of the passive scalars assumption. Even the model for 9 

forward simulation is still on research to predict this kind of complicated dispersion. It is a huge 10 

challenge for STE to cover a comprehensive dispersion mechanism. 11 

Last but not least, the proposed methods in the thesis have not been testified by field test. 12 

In fact, available databases of field experiments are limited in the literature. Most STE research 13 

used the data from wind tunnel experiments or numerical experiments, which are relatively 14 

ideal compared to real scenarios. One of the most famous field tests is the Mock Urban Setting 15 

Test, where the containers are regularly placed in an open area to design an ideal urban model. 16 

However, the field experiment with dispersion in the real urban area is far too sparse, even 17 

though it is beneficial to future research like new method development, validation, and noise 18 

analysis for STE. It is expected that such a field test database could be built. 19 

The above is a brief description of possible research contents to develop a more effective 20 

STE method for the urban environment in the future.  21 

 22 

 23 
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Appendix A. Numerical simulation for turbulence and 

dispersion of pollution 

 

A.1 Fluid and turbulence 

Atmospheric pollution is caused by the dispersion of pollutants in the air, which is a mass 

transfer behavior in fluids. Fluids like gases and liquids are defined as substances that cannot 

permanently keep their shapes under certain stress. Fluids also do not have a definite shape. 

They can be divided into Newtonian or non-Newtonian based on the relationship between the 

shear stress and shear rate. Most gases are Newtonian whose relationship is linear with the slope 

of molecular viscosity. Hence, only the Newtonian fluids are discussed in what follows. 

Fluid flow has two states: laminar and turbulent. According to the fluid experiments, a key 

factor to decide the state of the fluid is Reynolds number 𝑅𝑒 =
𝑈𝐿

𝜈
. Here 𝜈 is the dynamic 

viscosity coefficient. 𝑈 is the standard velocity of the flow. 𝐿 is the standard length of the 

flow. Hence, 𝑅𝑒 measures the relative power of inertia forces and viscous force on the state 

of fluids. In fact, for each kind of fluid, there exists a critical Reynolds number 𝑅𝑒𝑐. When 𝑅𝑒 

is smaller than 𝑅𝑒𝑐, the flow is smooth and adjacent parts slide past each other in order. If the 

boundary condition of the flow does not change with time, the flow will keep the steady state 

everywhere in the domain and it is called laminar flow. If 𝑅𝑒  gradually increases after it 

reaches 𝑅𝑒𝑐 , the laminar flow will go through an important state called transition, where 

complicated events happen to change the flow into turbulence. In this state, turbulent structures 

with different sizes appear spatially and temporally. They include the information of nonlinear 

correlation among a certain space of the flow. This nonlinearity is mathematically represented 

by the advection term (see Eq. (A.2)). However, if a single point was monitored, the flow 

velocity there is totally random and chaotic. It is difficult to build a physical system for such a 

flow and find the mathematical description of it. 

From a microcosmic point of view, fluid is a system consisting of numerous small 

molecular even though it is a continuum in the human’s eyes. In order to describe the system in 
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mathematics, Eulerian and Lagrangian approaches were used. In the Lagrangian approach, the 

fluid system is divided into small fluid parcels. When the system is changing through space and 

time, the location and velocity of each parcel are followed to describe the system. In contrast, 

the Eulerian approach focuses on the properties of specific locations in the domain. Its view 

will not follow any fluid parcels, but it cares about the flow velocity somewhere as time changes. 

Although the two approaches are based on totally different concepts, they are both effective in 

the mathematical description of fluids. In this thesis, fluids are processed from the Eulerian 

view, and the corresponding theories are briefly introduced here. 

A.2 Governing equations for fluid and dispersion 

In this study, the dispersion of pollution is assumed to occur in an incompressible, 

isothermal fluid flow. Besides, the pollutants are assumed as the passive scalar which will not 

affect the behavior of fluids. Under this circumstance, the Eulerian descriptions of the fluids 

and the dispersion are the following three equations: continuity equation, momentum equation 

(or Navier-Stokes equation), and transport equation. 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 (A.1) 

 
𝜕𝑢𝑖

𝜕𝑡
+

𝜕𝑢𝑗𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
{𝜈 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)} (A.2) 

 
𝜕𝐶

𝜕𝑡
+

𝜕𝑢𝑗𝐶

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶

𝜕𝑥𝑗
) + 𝑆 (A.3) 

Here, 𝑢𝑖 is the instantaneous velocity in the 𝑥𝑖 direction. 𝜌 is the constant density of fluids. 

𝑝 is the instantaneous pressure. 𝜈 is the dynamic viscosity coefficient. 𝐶 is the concentration. 

𝐷𝑚 is the molecular diffusion coefficient. 𝑆 is the source term of the passive scalar. Eq. (A.1) 

follows the conservation rule of mass. Eq. (A.2) follows the conservation rule of momentum. 

Eq. (A.3) describes the transport process of passive scalar released from the source. 

Although the governing equations for fluids and dispersion have been established, and the 

number of unknown variables equals that of available equations, it is still one of the most 

challenging mathematical problems to find the analytical solution for them. The reason is that 

Navier-Stokes equation is a non-linear partial differential equation. The second term in the left 

hand side of Eq. (A.2), which is called as advection term, represents the nonlinear coupling of 

velocities in two directions.  
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In this case, a compromise approach is to solve it by a numerical method like the finite 

volume method. In this method, the calculation domain is subdivided into finite small, discrete 

volumes by meshing, then these partial differential equations are transferred into a huge set of 

algebraic equations by integration for each volume. The numerical solutions can be calculated 

by simultaneously solving this set of equations for a short time step with time marching. It is 

straightforward to notice that the success of numerical simulation needs a considerable amount 

of computational resources for the iterative calculation of algebraic equations.  

In recent years, the development of high performance computers makes numerical 

simulation realizable. The computational fluid dynamics (CFD) technique has become a 

powerful tool in industrial applications and research of fluid mechanisms. Therefore, this thesis 

models the source-receptor relationship and pollution dispersion by CFD. 

In theory, CFD can provide a nearly perfect solution for Eqs. (A.1-A.3), and such 

technique does exist with a name of direct numerical simulation (DNS). However, the reality is 

not so easy.  

On the one hand, in the turbulent flow field of the atmospheric environment, the range of 

sizes of turbulence structures is considerably wide. During the movement of the flow field, the 

large turbulence will break into smaller turbulence. The kinetic energy is also transferred into 

smaller turbulence, which is called the energy cascade. This process will continue to pass the 

energy to smaller turbulence until it reaches the smallest size and eventually dissipates in the 

form of thermal energy caused by the molecular viscosity. Therefore, in order to completely 

simulate the turbulence flow, it is necessary to reproduce all the structures from the largest ones 

to the smallest ones.  

On the other hand, in CFD, the partial differential equations are integrated into algebraic 

equations for each mesh (volume). In this case, the turbulence structures smaller than the mesh 

cannot be simulated. The mesh should be made extremely fine to capture all the structures. 

According to the previous research, the mesh number needs to have the order of 𝑅𝑒9/4 . A 

common case in wind engineering can be checked here. If the flow field around a building with 

𝐿 = 15𝑚 height caused by a coming flow with 𝑈 = 1𝑚/𝑠 is simulated by DNS, with the 

dynamic viscosity coefficient of air 𝜈 = 1.5 × 10−6𝑚2/𝑠 , 𝑅𝑒  is 106  and the number of 

mesh astonishingly becomes about 3.1 × 1013 . The resultant calculation burden is 

unaffordable even with the most advanced computers right now. Therefore, DNS has only been 
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used to simulate the flow field with a small Reynolds number. Most engineering simulations 

are constrained.  

Since a complete simulation of all turbulence structures with CFD is almost impossible 

for high Reynolds number, in order to realize the CFD for engineering applications, alternative 

approaches have been developed by researchers. One common method is that rather than all 

turbulence, only the turbulence of interest with relatively large sizes are explicitly simulated, 

while the small turbulence are modeled. This is so-called turbulence modeling. In the past 

decades, among plenty of modeling methods, two popular turbulence models are the Reynolds 

averaged Navier-Stokes (RANS) model and the large-eddy simulation (LES) model. These two 

models are also used in this thesis and will be introduced in the following contents. 

A.3 Large eddy simulation 

A.3.1 Filtering process 

The principal idea behind LES is to reduce the computational cost by modeling the small 

turbulence structures, which are the most computationally expensive to resolve, via low-passing 

filtering of the Navier-Stokes equations. In other words, for any wanted physical variables 

𝑓(𝑥, 𝑡) , LES will decompose it into the grid scale (GS) component 𝑓(𝑥, 𝑡)  which can be 

explicitly resolved by the mesh, and the sub-grid scale (SGS) component 𝑓′′(𝑥, 𝑡) which is 

filtered out and implicitly modeled. 

 𝑓(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝑓′′(𝑥, 𝑡) (A.4) 

The separation for GS and SGS components is operated by filter function 𝐺(𝜉), which is 

defined by: 

 
𝑓(𝑥, 𝑡) = ∫ 𝐺(𝜉)𝑓(𝑥 − 𝜉)

∞

−∞

𝑑𝜉 (A.5) 

The filter function has to satisfy the following requirements: 

 lim
𝜉→±∞

𝐺(𝜉) = 0 (A.6) 
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∫ 𝐺(𝜉)

∞

−∞

𝑑𝜉 = 1 (A.7) 

Common filter functions in LES include top hat filter, Gaussian filter, and sharp cut-off 

filter. After the filtering, the filtered momentum equation becomes: 

 𝜕𝑢𝑖̃

𝜕𝑡
+

𝜕𝑢𝑖𝑢𝑗̃

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝̃

𝜕𝑥𝑖
+

1

𝜈

𝜕2𝑢𝑖̃

𝜕𝑥𝑗𝑥𝑗
 (A.8) 

A.3.2 Sub-grid scaled stress modeling 

The form of Eq. (A.8) is different from that of Eq. (A.2) because the filtered product 𝑢𝑖𝑢𝑗̃  

is different from the product of the filtered velocity 𝑢𝑖̃𝑢𝑗̃. The difference is the residual-stress 

tensor defined by 

 𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̃ − 𝑢𝑖̃𝑢𝑗̃ (A.9) 

This tensor is also called the SGS stress tensor. In this research, it is modeled by the standard 

Smagorinsky SGS model, according to which, the SGS tensor is split into an isotropic part 

1

3
𝑇𝑘𝑘𝛿𝑖𝑗 and an anisotropic part 𝑇𝑖𝑗 −

1

3
𝑇𝑘𝑘𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the Kronecker delta. 

 𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗̃ − 𝑢𝑖̃𝑢𝑗̃ 

=
1

3
𝑇𝑘𝑘𝛿𝑖𝑗 + (𝑇𝑖𝑗 −

1

3
𝑇𝑘𝑘𝛿𝑖𝑗) 

≈
1

3
𝑇𝑘𝑘𝛿𝑖𝑗 − 2𝜈𝑠𝑔𝑠𝑑𝑒𝑣(𝐷̃)𝑖𝑗 

=
2

3
𝑘𝑠𝑔𝑠𝛿𝑖𝑗 − 2𝜈𝑠𝑔𝑠𝑑𝑒𝑣(𝐷̃)𝑖𝑗 

(A.10) 

Here 𝜈𝑠𝑔𝑠 is the SGS eddy viscosity. The resolved-scale strain rate tensor 𝐷̃𝑖𝑗 is defined as 

 𝐷̃𝑖𝑗 =
1

2
(
𝜕𝑢̅𝑖

𝜕𝑥𝑗
+

𝜕𝑢̅𝑗

𝜕𝑥𝑖
) (A.11) 

The SGS kinetic energy 𝑘𝑠𝑔𝑠 is 

 𝑘𝑠𝑔𝑠 =
1

2
𝑇𝑘𝑘 =

1

2
(𝑢𝑖𝑢𝑗̃ − 𝑢𝑖̃𝑢𝑗̃) (A.12) 
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The Smagorinsky SGS model is based on two elementary assumptions: eddy viscosity 

approximation and local equilibrium. In the first assumption, the anisotropic part in equation 

(A.10) is approximated by relating it to the resolved rate of the strain tensor 𝐷̃𝑖𝑗. 

 𝑇𝑖𝑗 −
1

3
𝑇𝑘𝑘𝛿𝑖𝑗 ≈ −2𝜈𝑠𝑔𝑠𝑑𝑒𝑣(𝐷̃)𝑖𝑗 (A.13) 

The SGS scale viscosity is computed as: 

 𝜈𝑠𝑔𝑠 = 𝐶𝑘∆√𝑘𝑠𝑔𝑠 (A.14) 

Here 𝐶𝑘 is a model constant with a default value of 0.094. ∆ is the cubic root of the cell 

volume that defines the sub-grid length scale. 

In the second assumption about local equilibrium, there is a balance between the sub-grid 

scale energy production and dissipation. The SGS kinetic energy 𝑘𝑠𝑔𝑠 is calculated by this 

assumption. 

 𝐷̃: 𝑇𝑖𝑗 + 𝐶𝑒

𝑘𝑠𝑔𝑠
1.5

∆
= 0 

𝐷̃: (
2

3
𝑘𝑠𝑔𝑠𝐼 − 2𝜈𝑠𝑔𝑠𝑑𝑒𝑣(𝐷̃)) + 𝐶𝑒

𝑘𝑠𝑔𝑠
1.5

∆
= 0 

𝐷̃: (
2

3
𝑘𝑠𝑔𝑠𝐼 − 2𝐶𝑘∆√𝑘𝑠𝑔𝑠𝑑𝑒𝑣(𝐷̃)) + 𝐶𝑒

𝑘𝑠𝑔𝑠
1.5

∆
= 0 

√𝑘𝑠𝑔𝑠 (
𝐶𝑒

∆
𝑘𝑠𝑔𝑠 +

2

3
𝑡𝑟(𝐷̃)√𝑘𝑠𝑔𝑠 − 2𝐶𝑘∆(𝑑𝑒𝑣(𝐷̃): 𝐷̃)) = 0 

𝑎𝑘𝑠𝑔𝑠 + 𝑏√𝑘𝑠𝑔𝑠 − 𝑐 = 0 

𝑘𝑠𝑔𝑠 = (
−𝑏 + √𝑏2 + 4𝑎𝑐

2𝑎
)2 

(A.15) 

The operator : is a double inner product of two second-rank tensors which is the sum of the 9 

products of the tensor components. 𝐼 is the identity matrix. In Eq. (A.15), 
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 𝑎 =
𝐶𝑒

∆
 

𝑏 =
2

3
𝑡𝑟(𝐷̃) 

𝑐 = 2𝐶𝑘∆(𝑑𝑒𝑣(𝐷̃): 𝐷̃) 

(A.16) 

In the case of incompressible flow, which is the same as this research, the Equation (A.16) 

reduces to 

 𝑏 =
2

3
𝑡𝑟(𝐷̃) = 0 

𝑐 = 2𝐶𝑘∆(𝑑𝑒𝑣(𝐷̃): 𝐷̃) = 𝐶𝑘∆|𝐷̃|
2
 

(A.17) 

where 

 |𝐷̃| = √2𝐷̃: 𝐷̃ (A.18) 

By substituting the Eq. (A.17) into Eq. (A.15), we have: 

 𝑘𝑠𝑔𝑠 =
𝑐

𝑎
=

𝐶𝑘∆2|𝐷̃|
2

𝐶𝑒
 (A.19) 

The following expression can be obtained for the SGS eddy viscosity in the case of 

incompressible flows by substituting the Equation (A.19) into the Equation (A.14). 

 𝜈𝑠𝑔𝑠 = 𝐶𝑘√
𝐶𝑘

𝐶𝑒
∆2|𝐷̃| (A.20) 

In the literature, the SGS eddy viscosity is commonly expressed as below. 

 𝜈𝑠𝑔𝑠 = (𝐶𝑠∆)2|𝐷̃| (A.21) 

We can get the relation between the Smagorinsky constant 𝐶𝑠 and other coefficients. 

 
𝐶𝑠

2 = 𝐶𝑘√
𝐶𝑘

𝐶𝑒
 (A.22) 

The default value of the Smagorinsky constant is 0.173. For the flow field around the solid 

structure, this constant is commonly set to 0.10~0.15. In this research, it was set as 0.12. 
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A.3.3 Van driest damping function 

In the simulation, if the boundary condition is the non-slip wall, there should be no 

turbulence at the boundary. However, in the standard SGS model, the eddy viscosity is nonzero, 

which is contrary to reality. To fix this problem, one way is to add a Van Driest damping 

function into the length scale. The SGS eddy viscosity changes to: 

 𝜈𝑠𝑔𝑠 = (𝐶𝑠𝑓𝑠∆)2|𝐷̅| (A.23) 

Here, the 𝑓𝑠 is the Van Driest damping function. 

 𝑓𝑠 = 1 − 𝑒𝑥𝑝
−𝑦+

𝐴+
 (A.24) 

Here, 𝐴+ is the Van Driest constant, which is set to 26 in this research. 𝑦+ = 𝑦𝑢𝜏/𝜈 is 

the non-dimensional wall unit. 𝑢𝜏  is the shear velocity. In other words, the characteristic 

spatial length of the filter in the turbulent boundary layer is not necessarily related to the mesh 

size, but the minimum value between ∆ and the one obtained from the damping function in 

equation (A.24) is locally adapted in space and time. 

A.3.4 Dispersion equation for passive scalar 

After the filtering and modeling for the momentum equation, the transport equation for 

passive scalar in LES can be dealt with in a similar way. By filtering operation, Eq. (3) becomes: 

 𝜕𝐶̃

𝜕𝑡
+

𝜕𝑢𝑗𝐶̃

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶̃

𝜕𝑥𝑗
) + 𝑆 (A.25) 

The SGS turbulent diffusion term caused by filtering will also appear as: 

 
𝑢𝑖

′′𝐶′′̃ = 𝑢𝑖𝐶̃ − 𝑢𝑖̃𝐶̃ (A.26) 

One of the most common ways to model this term is relating it to the gradient of GS 

concentration: 

 
𝑢𝑖

′′𝐶′′̃ ≈ −𝐷𝑠𝑔𝑠

𝜕(𝐶̃)

𝜕𝑥𝑗
≈ −

𝜈𝑠𝑔𝑠

𝑆𝑐𝑠𝑔𝑠

𝜕(𝐶̃)

𝜕𝑥𝑗
 (A.27) 
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where 𝑆𝑐𝑠𝑔𝑠 is the SGS turbulent Schmidt number. When the grid is fine enough, most of the 

turbulent diffusion is directly calculated and the modeled SGS is limited. 

A.4 Reynolds averaged Navier-Stokes model 

A.4.1 Reynolds average 

Another turbulence model RANS can also be regarded as a filtering approach, but unlike 

LES where the filtering will change with the mesh size, the filtering in RANS is the ensemble 

average, which is constant in the space. The physical variable of flow 𝑓 can be divided into 

ensemble-averaged component 𝑓 ̅ and fluctuation component 𝑓′. 

 𝑓(𝑥, 𝑡) = 𝑓̅(𝑥, 𝑡) + 𝑓′(𝑥, 𝑡) (A.28) 

Meanwhile, for the convenience of mathematical processing, it is required that  

 𝑓̅̅ = 𝑓̅, 𝑓 ′̅ = 0, 𝑓′𝑓̅̅̅ ̅̅̅ = 0 (A.29) 

The ensemble average that satisfies the above relationships is called as Reynolds average. 

If Reynolds average is operated on the continuity equation and momentum equation, they 

change to 

 
𝜕𝑢𝑖̅

𝜕𝑥𝑖
= 0 (A.30) 

 
𝜕𝑢𝑖̅

𝜕𝑡
+

𝜕𝑢𝑗̅𝑢𝑖̅

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
{𝜈 (

𝜕𝑢𝑖̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅

𝜕𝑥𝑖
)} −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (A.31) 

The extra term 𝜏𝑖𝑗 is the Reynolds stress resulting from the Reynolds average. 

 𝜏𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ̅ = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢𝑗̅𝑢𝑖̅ (A.32) 

It can be noticed that in order to simulate Eq. (A.30 & A.31) without closure problem, the 

Reynolds stress needs to be modeled, which is similar to the SGS stress tensor. Several 

approaches have been developed to model Reynolds stress under the RANS framework, as an 

instance, here one of the most used models standard 𝑘 − 𝜀 model is introduced. 

A.4.2 Standard 𝒌 − 𝜺 model 
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The Standard 𝑘 − 𝜀 model is based on the assumption that there is an analogy between 

viscous stress and Reynold stress. In 1877, Boussinesq proposed that the Reynolds stress could 

be expressed as stress that is proportional to the mean rate of deformation. 

 𝜏𝑖𝑗 = 𝜈𝑡 (
𝜕𝑢𝑖̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗 (A.33) 

where 𝜈𝑡  is the dynamic turbulent viscosity coefficient. 𝑘  is the turbulent kinetic energy 

defined as 
1

2
(𝑢𝑥

′2̅̅ ̅̅ ̅̅ + 𝑢𝑦
′2̅̅ ̅̅ ̅̅ + 𝑢𝑧

′2̅̅ ̅̅ ̅̅ )  or 
1

2
𝜏𝑖𝑖 . In the next step, it is necessary to provide the 

modeling expression for 𝜈𝑡 and 𝑘. 

In fact, the governing equation for 𝑘 can be derived. First, we multiple the Navier-Stokes 

equation Eq. (A.2) with the fluctuation velocity components and add them together. Then, the 

same process can be repeated again on the averaged equations Eq. (A.31). At last, we subtract 

the resultant two summed equations. Because the process is too long, only the final result is 

presented here: 

 𝜕𝑘

𝜕𝑡
+

𝜕𝑢𝑗̅𝑘

𝜕𝑥𝑗
= 𝑃𝑖𝑗 − 𝜀𝑖𝑗 + 𝕋𝑖𝑗𝑘

𝑝
+ 𝕋𝑖𝑗𝑘

𝑣 + 𝕋𝑖𝑗𝑘
𝑅  (A.34a) 

 
𝑃𝑖𝑗 = 𝜏𝑖𝑗 ∙ 𝑆𝑖𝑗 (A.34b) 

 
𝜀𝑖𝑗 = 𝜈𝑠𝑖𝑗

′ ∙ 𝑠𝑖𝑗
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (A.34c) 

 
𝕋𝑖𝑗𝑘

𝑝
= −

1

𝜌
(𝑝′𝑢𝑖

′̅̅ ̅̅ ̅̅ 𝛿𝑗𝑘 + 𝑝′𝑢𝑗
′̅̅ ̅̅ ̅̅ 𝛿𝑖𝑘) (A.34d) 

 
𝕋𝑖𝑗𝑘

𝑣 = 𝜈
𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
 (A.34e) 

 
𝕋𝑖𝑗𝑘

𝑅 = −𝑢𝑖
′𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (A.34f) 

 
𝑆𝑖𝑗 =

𝜕𝑢𝑖̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅

𝜕𝑥𝑖
, 𝑠𝑖𝑗 =

𝜕𝑢𝑖
′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖
 (A.34g) 
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Here, 𝑃𝑖𝑗  is the rate of production of 𝑘 . 𝜀𝑖𝑗  is the rate of dissipation of 𝑘 . 𝕋𝑖𝑗𝑘
𝑝

  is the 

transport of 𝑘  by pressure. 𝕋𝑖𝑗𝑘
𝑣   is the transport of 𝑘  by viscous stresses. 𝕋𝑖𝑗𝑘

𝑅   is the 

transport of 𝑘 by Reynolds stresses. 

As for 𝜈𝑡, it was modeled based on the dimensional analysis. 

 𝜈𝑡 = 𝐶𝜇

𝑘2

𝜀
 (A.35) 

where 𝐶𝜇 is a dimensionless constant. 

Noticing that 𝑘 =
1

2
𝜏𝑖𝑖 and using Eq. (A.33), the production term for 𝑘 can be expressed 

as: 

 
𝑃𝑖𝑗 = 2𝜈𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 (A.36) 

Besides, the transport effects of pressure and Reynolds stresses can be approximated 

together by 

 
𝕋𝑖𝑗𝑘

𝑝
+ 𝕋𝑖𝑗𝑘

𝑅 =
𝜈𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
 (A.37) 

Substituting Eq. (A.36 & A.37) into Eq. (A.34a), the governing equation for 𝑘 changes to 

𝜕𝑘

𝜕𝑡
+

𝜕𝑢𝑗̅𝑘

𝜕𝑥𝑗
= 𝑃𝑖𝑗 − 𝜀𝑖𝑗 +

𝜕

𝜕𝑥𝑗
{(𝜈 +

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
} (A.38) 

The dissipation term 𝜀 in the above equation represents the energy-flow rate from the 

large turbulence to small turbulence in the cascade, which means it is mainly determined in the 

large-scale motion. The governing equation of 𝜀 can also be derived for numerical simulation. 

However, the derivation process is based on the dissipative range which represents the smallest 

scale of motion in the flow field. As a result, it is recommended to check this equation from the 

empirical view that it follows a similar transport form of Eq. (A.38). 

𝜕𝜀

𝜕𝑡
+

𝜕𝑢𝑗̅𝜀

𝜕𝑥𝑗
= (𝐶𝜀1𝑃𝑖𝑗 − 𝐶𝜀2𝜀)

𝜀

𝑘
+

𝜕

𝜕𝑥𝑗
{(𝜈 +

𝜈𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
} (A.39) 
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In fewer words, the RANS model uses Eq. (A.35, A.38, A.39) to calculate the turbulent 

viscosity coefficient, and substitute it into Eq. (A.33) to model the Reynolds stress, which 

satisfies the closure requirement of Eq. (A.30 & A.31). In these equations, in total five 

dimensionless coefficients exist to tune the performance of RANS. Their standard values are 

set by Launder and Sharma (1974) by data fitting for different turbulent flows. 

 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3 (A.40) 

A.4.3 Dispersion equation for passive scalar 

The Reynolds average can also be operated to passive scalar transport equation, Eq. (A.3) 

changes to 

 𝜕𝐶̅

𝜕𝑡
+

𝜕𝑢𝑗̅𝐶̅

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝐷𝑚

𝜕𝐶̃

𝜕𝑥𝑗
) + 𝑆 −

𝜕𝑢𝑗
′𝐶′̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
 (A.41) 

The extra term 𝑢𝑗
′𝐶′̅̅ ̅̅ ̅̅ ̅  is the Reynolds average of turbulent diffusion term which needs 

modeling. The most common way in RANS is the gradient diffusion hypothesis, which assumes 

that the turbulent diffusion is proportional to the gradient of the averaged concentration field. 

  𝑢𝑗
′𝐶′̅̅ ̅̅ ̅̅ ̅ = −𝐷𝑡

𝜕𝐶̅

𝜕𝑥𝑗
= −

𝜈𝑡

𝑆𝑐𝑡

𝜕𝐶̅

𝜕𝑥𝑗
 (A.42) 

where 𝐷𝑡 is the turbulent diffusivity, and 𝑆𝑐𝑡 is the turbulent Schmidt number. 

A.5 Comparisons of two turbulence model 

As two of the most popular approaches for turbulence modeling, RANS and LES have 

distinguishing features.  

RANS focuses on the mean flow due to the Reynolds averaging processing. The unsteady 

effects of turbulent flow are also removed out from the averaging and approximated by the 

mean physical quantities. Therefore, the computational cost of RANS is mild and makes RANS 

widely used in engineering applications for the past decades. Despite that, its disadvantage is 

also obvious that the unsteady turbulence is unavailable. More importantly, since the effects of 

turbulence on the mean flow are also implicitly modeled, the accuracy of mean flow is not good 

enough in the flow fields like strong separation from the corner of the building.  
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In contrast, LES focuses on the relatively large-scaled turbulent structures with filtering 

techniques. It only models the SGS behavior of turbulence flow. As a result, when the mesh is 

fine enough, most dominant turbulence structures can be accurately and explicitly captured, 

which brings a more reliable simulation of the flow field than RANS. The corresponding cost 

is the high requirement on the computational resources. In order to promise the performance of 

LES, the mesh should be carefully designed with fine resolution, which needs additional 

resources apart from that for unsteady simulation caused by time marching. Meanwhile, due to 

a large amount of mesh, the storage pressure of LES results is also much heavier than RANS. 

Nowadays, with the development of high performance computers and semiconductor 

products, the calculation burden of LES becomes lighter and the importance of accuracy 

becomes more desired. This is the reason that more and more engineering applications start to 

switch from RANS to LES, and the application of LES in the adjoint equation simulation is 

also part of the main work of this dissertation. 
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