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1.1 Social context of tachyarrhythmia research 
 Heart is the organ that beats by electrical excitation that propagate throughout the organ. 
The electrical excitation originates from the sinoatrial node and propagates to the atrioventricular 
node, hiss bundle, Purkinje fibers, and finally to the entire ventricular muscle (Figure 1.1) [1]. 
The term “arrhythmia” is used to refer to any disturbance in the normal propagation of electrical 
excitation, and there are extrasystoles, where the heartbeat becomes irregular, bradyarrhythmias, 
where the beat slows down, and tachyarrhythmias, where the beat speeds up. Among the above-
mentioned arrhythmias, tachyarrhythmia is a disease with high morbidity and lethality, yet no 
reliable treatment has been established. For this reason, research on tachyarrhythmia is becoming 
increasingly important. The following are two typical cases of tachyarrhythmia and an overview 
of them. 
 

  

Figure 1.1 Electrical conduction during sinus rhythm [1] 
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§ Ventricular fibrillation 
 Ventricular fibrillation (VF) is a tachyarrhythmia that occurs in the ventricles. VF causes a 
rapid decrease in the blood pumping function of the heart, which leads directly to sudden cardiac 
death. When VF occurs, it is known that the patient generally loses consciousness within a few 
seconds and the brain and other tissues of the body begin to die within a few minutes. The VF is 
a cause of sudden cardiac death, accounting for approximately 300,000 to 450,000 deaths 
annually in the United States alone [2]. 

 
§ Atrial fibrillation 
 Atrial fibrillation (AF) is a tachyarrhythmia that occurs in the atria. AF is the most prevalent 
clinical tachyarrhythmia, and it is estimated that 1–2% of people are affected worldwide [3]. 
Since AF does not impair the pumping function of the heart, it is not lethal itself, but AF increases 
the risk of stroke, leading to higher mortality rates in AF patients [4]. Moreover, AF is associated 
with deterioration of quality of life [5], cognitive impairment [6], and high treatment costs [7]. 
In addition, AF is a common disease in the elderly, and approximately 10-17% of people aged 
over 80 years are expected to have AF [8]. Therefore, with the aging of the world population, the 
number of AF patients has been increasing and is expected to increase further in the future 
(Figure 1.2) [9]. 
  

Figure 1.2 Number of AF patients by age group [9] 
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1.2 Electrophysiology of the heart and mechanism of arrhythmias 
1.2.1 Cardiomyocytes and myocardial tissue 
 Cardiomyocytes are the building blocks of cardiac tissue, and their excitation is mediated 
by the movement of ions through ion channels, and pumps. These ion channels and pumps are 
large proteins that penetrate the lipid bilayer of the cell membrane and can selectively move 
specific ions into and out of the cell through the pores of the proteins [10]. Ion channels and 
pumps with selective ion permeability generate differences in ion concentrations inside and 
outside the cell, resulting in the generation of potential differences inside and outside the cell. 
This potential difference is called the membrane potential. 
 The potential changes in cardiomyocytes are related to the movement of various ions. 
Figure 1.3 shows typical membrane potential changes in ventricular cardiomyocytes and 
sinoatrial node, and the flow of various ions involved in these changes [1]. In the resting state, 
the ion concentrations inside and outside the cell differ greatly, and the overall membrane 
potential is negative. The membrane potential in this state is called the resting membrane 
potential, which is usually about -90 mV. When the surrounding cells are excited or external 
stimuli occur, the inward sodium ion channel opens and sodium ions flow (INa) into the 
cardiomyocytes. This INa causes a rapid increase in the membrane potential, called depolarization. 
After depolarization, inward calcium ion channel (ICaL) and outward potassium ion channels (Ito, 
IKs, IKr, IK1) follow to open and cancel each other's effects, resulting in a plateau phase in which 
the membrane potential does not change significantly. After that, the outward delayed rectifier 
potassium current is activated, and the membrane potential returns to the resting membrane 
potential. This process is called repolarization. A series of membrane potential changes is called 
an action potential (AP). 
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 It is known that cardiomyocytes are not re-excited by new stimuli when the excitation has 
not cooled down sufficiently, and this characteristic is called the refractory period. This is 
because, as mentioned above, the INa responsible for AP depolarization are in the process of 
being inactivated, and it takes time for them to be reactivated. There are two types of refractory 
periods: an absolute refractory period (ARP) in which no AP is generated even when a strong 
stimulus is applied, and a relative refractory period (RRP) in which a different waveform is 
generated depending on the timing of a stimulus [11]. This refractory period allows excitation to 
propagate through the heart without backflow and allows the heart to repeatedly contract and 
relax without keeping contract, even with frequent stimulation.  

Figure 1.3 Representative cardiac action potential waveforms and ion currents [1] 
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 Myocardial tissue is the physical assembly of cardiomyocytes that are electrically joined 
together. In myocardial tissue, cardiomyocytes are electrically connected to each other by a 
channel structure called a gap junction, that allow rapid diffusion of ions. Cardiomyocytes have 
an elongated structure, and it is known that cardiac fibers are composed of these cardiomyocytes 
connected via intercalated disks in the longitudinal direction (Figure 1.4) [12]. The gap junction 
is known to be unevenly distributed in the intercalated disk, and thus myocardial tissues exhibit 
high conductivity in the direction of the myocardial fibers and are known to have electrical 
anisotropy. 
 

 
 When a cardiomyocyte in the myocardial tissue is excited, ion influx into the adjacent 
cardiomyocyte occurs via the gap junction described above, causing a slight increase in the 
membrane potential of the adjacent cardiomyocyte. This increase triggers the sodium ion current 
of the adjacent cardiomyocyte to respond, resulting in depolarization. The chain of action 
potentials in neighboring cells causes excitation waves to propagate throughout the myocardial 
tissue. 
 In normal heart organ, only the sinoatrial node functions as a pacemaker, and the other 
cardiomyocytes only passively propagate action potentials generated by the sinoatrial node. In 
this way, excitation is propagated in an orderly fashion, and the heart pumps blood as described 
in Section 1.1.   

Figure 1.4 Cardiac muscle fibers and gap junctions [12] 

Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction 
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1.2.2 Mechanism of arrhythmia 
 The occurrence of arrhythmias is a complex process involving a variety of factors (Figure 
1.5) [13]. The genetic factors and environmental stress are thought to cause structural and 
electrical remodeling of the heart, resulting in arrhythmias. In addition, the occurrence of 
arrhythmia is thought to spur further remodeling [14], and treatment is needed to break out of 
this vicious cycle. 
 

 
 The following is a list of typical arrhythmia phenomena and their mechanisms of occurrence 
[15]. 
 
§ Abnormal automaticity 
 Abnormal automaticity is a condition in which the resting membrane potential of a 
myocardial cell becomes shallow, from the normal level of -90 mV to around -50 mV, due to 
factors such as hypokalemia, myocardial ischemia, or degeneration, and is thus susceptible to 
spontaneous depolarization via calcium ion channels. Normal cardiac excitation is caused by the 
propagation from the sinoatrial node, but in hearts with abnormal automaticity, spontaneous 
excitation from sources other than the sinoatrial node also occurs, and this is known to cause 
tachycardia in general. 

Figure 1.5 Determinants of cardiac arrhythmias [13] 
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§ Triggered activity 
 Triggered activity is a phenomenon in which a spontaneous action potential triggers an 
abnormal excitation called afterdepolarization, which is followed by depolarization of the cell 
membrane. The cause is thought to be an abnormality in the calcium ion control mechanism []. 
 
§ Reentry 
 The electrical excitation of normal cardiomyocytes disappears after each cycle. However, 
under certain conditions, the excitation wave of the heart may return to the area that was once 
excited and re-excite that area. Such excitation wave is called reentry. Reentries are classified 
into anatomical reentries mediated by anatomical structures and functional reentries. As typical 
clinical cases of anatomical reentry, atrioventricular nodal reentrant tachycardia (AVNRT), 
paroxysmal supra-ventricular tachycardia (PSVT) associated with WPW syndrome are widely 
known. Functional reentry, on the other hand, has been described using the concept of spiral 
wave (SW) in a nonlinear excitation medium since the 1990s. In the spiral wave, the excitation 
front, which is the line of depolarization, curves convexly toward the direction of wave 
propagation, causing the spiral excitation (Figure 1.6) . The behavior of spiral waves is known 
to be complex, including meandering, pinning, and splitting. 
 
 

Figure 1.6 Waveform during spiral excitation 
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1.3 Conventional treatments for tachyarrhythmias 
1.3.1 Drug therapy 
 Antiarrhythmic drugs are used to suppress arrhythmias by acting on cardiac cells 
electrophysiologically and pharmacologically. The antiarrhythmic agents were categorized 
according to their individual electrophysiological and pharmacological actions [16], [17]. 
 Drug therapy, which is mostly administered orally, has the advantage of being minimally 
invasive, but on the other hand, its effects are temporary and cannot fundamentally treat 
arrhythmia. In addition, some antiarrhythmic drugs have a proarrhythmic side effect due to the 
nature of its action on ion channels, and analysis of the pharmacological mechanism of effect is 
being conducted to prevent the induction of arrhythmias by antiarrhythmic drugs [18]. 
 
1.3.2 Electrical cardioversion 
 Electrical cardioversion is also a temporary treatment for tachyarrhythmia in which a strong 
electrical stimulus is applied to the heart to reset or change the cardiac excitation and restore 
normal heartbeat. Electrical defibrillation can be divided into two main types. 
 
§ Automated External Defibrillator: AED 
 An AED is a therapeutic device that delivers an electric shock to the heart in ventricular 
fibrillation (VF) using an external stimulator. The lifesaving rate of patients with ventricular 
fibrillation decreases with the delay between cardiopulmonary arrest and defibrillation, and 
AEDs are installed in public and commercial facilities to prepare for emergencies. 

 
§ Implantable Cardioverter Defibrillator: ICD 
 An ICD is a therapeutic device that detects the occurrence of ventricular arrhythmia by 
means of an electrode implanted in the body, and automatically defibrillates the patient by means 
of electrical stimulation from a point electrode. 
 
 However, some adverse effects also exist with these defibrillation therapies, such as 
myocardial damages [19], increase in pacing threshold [20], mechanical dysfunction [21], 
increased risk of sudden cardiac death [22], and mental disorders [23].  
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1.3.3 Catheter ablation therapy 
 Ablation surgery is often used in addition to pharmacotherapy, especially for chronic 
patients with frequent arrhythmias. The ablation surgery attempts to block abnormal excitations 
that drive arrhythmias by regionally ablating some area of the heart. In this surgery, it is common 
to insert an ablation catheter through the femoral vein into the cardiac cavity. Although various 
types of energies are used for ablation. Radiofrequency (RF) ablation, in which cardiac tissue is 
ablated by Joule heating using radiofrequency current from electrodes, is the most common. In 
recent years, other types of energies such as freezing and laser is sometime used for some cases. 
 Catheter ablation is the only therapy with the aim of treating arrhythmias from its source, 
whereas the other therapies mentioned in Subsection 1.3.1 and 1.3.2 are treatments that 
temporarily suppress the arrhythmia. Therefore, the ablation therapy has attracted much attention 
among arrhythmia treatment methods. 
 However, catheter ablation is not a complete cure for arrhythmia. For example, a survey on 
the results of catheter ablation for 150 patients of persistent AF reported that arrhythmia-free 
survival rates after a single catheter ablation procedure were 35.3%±3.9%, 28.0%±3.7%, and 
16.8%±3.2% at 1, 2, and 5 years, respectively, and arrhythmia-free survival rates after the 
multiple ablation procedures (mean 2.1±1.0 procedures) were 89.7%±2.5%, 79.8%±3.4%, and 
62.9%±4.5%, at 1, 2, and 5 years, respectively [24]. This study indicates that the treatment effect 
is not sufficient, and further optimization of catheter ablation therapy is needed for better 
therapeutic effect of AF. 
 

 

 

 

 



	

 11 

1.4 Previous related research 
1.4.1 Heuristic ablation strategies  
 In order to improve the therapeutic effect of ablation therapy, various studies have been 
conducted in the last few decades. There are two main approaches for the treatment using catheter 
ablation: anatomical approaches [25]–[27] and functional approaches [28]–[31]. 
 
§ Anatomical approaches 
 The most common anatomical approach is pulmonary vein isolation (PVI), which targets 
the pulmonary veins, which is known as the main cause of paroxysmal AF (Figure 1.7) [32]. The 
PVI is widely accepted as the standard treatment for paroxysmal AF [33], [34]. However, PVI 
has not been shown to be effective in the treatment of chronic AF. In fact, it is reported that only 
60% of patients with chronic AF remained asymptomatic without antiarrhythmic drugs after 
PVI at 11±8 months of follow-up, and another report said that 5 months after PVI only 22% of 
patients with chronic AF were free of symptoms [32], [34], [35].  
 
 

 
 
 
 
 
 
 

  

 

 

 

 

 

 

 

 
Figure 1.7 Electroanatomical image of PVI surgery (red circles: ablated region) [33] 
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 Other ablation strategies that focus on anatomical structures include linear ablation [36]–[38]. 
In this approach, linear ablation across the roof of the left atrium, the mitral valve isthmus, and 
cavotricuspid isthmus is performed [38]. However, in previous research comparing the treatment 
effect of PVI alone and combination of PVI and linear ablation, it was reported that linear ablation 
did not significantly improve the treatment effect [39]. 

§ Functional approaches  
 In recent years, many studies have been conducted to improve the therapeutic efficacy for 

non-paroxysmal AF, and the functional approach, which identifies the substrate causing abnormal 
cardiac excitation by measuring extracellular potentials with electrodes and targets it for ablation, 
has been proposed. 

 CFAE mapping proposed by Nademanee et al. is a typical example of a functional approach 
[28]. They proposed an ablation strategy that targets complex fractionated atrial electrograms 
(CFAEs) based on the previous finding that CFAE was observed in functional substrates such as 
conduction delayed regions in the heart [40]. Ablation of CFAEs was expected to eliminate 
substrates that drive arrhythmias (Figure 1.8) [28], but a meta-analysis found no significant 
difference in treatment efficacy between PVI and PVI+CFAE [41]. 

  

  

 

 

 

Figure 1.8 Activation map and CFAE [29] 
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 Furthermore, more recently, a method has been proposed to measure spatial potential changes 
in the heart using a mapping catheter with multiple electrodes and identify the substrate. 

 The pioneer of ablation based on multiple electrode mapping is FIRM mapping proposed by 
Narayan et al [29]. In their method, an atrial-sized basket catheter with 64 electrodes was used to 
measure extracellular potentials at multiple sites throughout the atrial wall, and the excitation 
pattern of the entire atrium was estimated based on the measured signals (Figure 1.9). They 
reported that ablation based on the FIRM mapping improved the efficacy of treatment for 
persistent AF [42]. However, it has been reported that about half of the measuring electrodes used 
in FIRM mapping were not able to measure interpretable atrial electrograms due to poor contact 
to the atrial surface [43], and the measurement instability is also responsible for the lack of 
sufficient therapeutic efficacy in multicenter clinical trials [44]. 

  

 
Figure 1.9 Visualization of intracardiac excitation by FIRM mapping [30] 
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 On the other hand, a local mapping-based ablation strategy using high-density electrodes has 
been proposed in recent years to avoid poor diagnostic accuracy because of poor electrode contact. 

 A typical example of a local mapping-based ablation strategy is ExTRa Mapping proposed 
by Ashihara et al [31]. This method is expected to improve the contact stability of the electrodes 
and may allow us to estimate the excitation pattern with higher resolution in the measurement area 
(Figure 1.10), and in ex vivo experiments using rabbit hearts, it has been confirmed that ExTRa 
Mapping can accurately estimate the direction of propagation of the excitation wavefront and the 
presence of spiral reentry excitation in the measurement area [45]. It is expected to improve the 
treatment of chronic AF, but clinical study in a multicenter trial has not yet been reported. 

 

  

 Although various strategies have been proposed as described above, these strategies have not 
shown sufficient therapeutic efficacy in clinical studies, or their therapeutic efficacy has not been 
sufficiently confirmed. In addition, they were basically devised subjectively based on the prior 
knowledge and clinical experience of the proposer, and there is still much discussion about the 
optimal ablation strategy [46]–[49]. In order to put an end to this discussion, it is necessary to 
optimize the ablation strategy objectively and quantitatively. 

  

Figure 1.10 ExTRa Mapping [32] 
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1.4.2 Application of deep neural network 
 In recent years, deep learning has been applied to a variety of fields. This approach has 
attracted much attention because of the influence of AlphaGo, which is Go Agent trained in 
simulator [50]. In optimizing the behavior of a Go agent, Silver et al. succeeded in constructing 
an agent that can beat a human European Go champion by using deep reinforcement learning 
(Figure 1.11). The example of AlphaGo made a huge impact by showing the possibility of 
optimization that surpasses human knowledge by deep neural network models instead of 
imitating human experts. 
 

  
 The application of deep neural network has also spread to the medical field, especially for 
computer-aided diagnosis. For example, there have been many reports of its application to the 
early diagnosis of cancer [51]–[54], and in the diagnosis of arrhythmia, a model for diagnosing 
arrhythmia diseases from ECG has been reported [55]. These studies have shown that deep neural 
network models have the potential to replace the time-consuming diagnoses previously made by 
doctors and are expected to make a significant contribution to improving efficiency in medicine. 

Figure 1.11 How AlphaGo determines its next move [51] 
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 On the other hand, in the medical field, in addition to improving the efficiency of diagnosis, 
there is also the issue of improving the sophistication of diagnosis, and the application of deep 
neural network is beginning to expand for this improvement. For example, there is an application 
of reinforcement learning to control the dosage of sedative drug, and it has been shown that 
agents trained on pharmacokinetics models can efficiently control the drug dosage [56]. The 
optimization of the above-mentioned ablation strategy is no exception, and there are previous 
studies that have attempted to optimize it using deep neural network. For example, Muffoletto 
et al. built a simple simulation model which had the pulmonary veins and fibrotic regions, and 
then attempted to build a deep neural network model to select an appropriate ablation strategy 
from three heuristic ablation strategies, using anatomical information such as the location and 
size of the pulmonary veins and fibrotic regions in the cardiac tissue model as input [57]. 
Specifically, they first performed three candidate ablation strategies (PVI, fibrosis-targeted 
ablation, rotor ablation) on each cardiac tissue model in advance and created a dataset of 
anatomical information of cardiac tissue models and the ablation strategies that had the best 
probability of stopping spiral excitations (Figure 1.12). Then, the dataset was used for 
supervised learning to select an appropriate ablation strategy. From this study, they claimed that 
ablation strategies can be optimized by their proposed method, but their method only selects the 
better strategy among the three heuristic ablation strategies, and the ablation strategies that 
cannot be expressed by heuristic ablation are not included in the scope of optimization. 
Therefore, it cannot be said that this study objectively optimizes the ablation strategy itself. 
  

Figure 1.12 Simulations and label assigned for each 2D cardiac tissue model [58] 

© 2011 IEEE 
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 in silico learning, in which reinforcement learning is performed on a computer simulation 
to optimize the agent’s behavior, as in the case of AlphaGo, is one possible means of objectively 
optimizing the ablation strategy, but this also has its challenges. The biggest challenge is the 
high computational cost of the cardiac electrophysiology simulator. As described in Section 1.2, 
the electrophysiological simulator for cardiac tissue is a kind of reaction-diffusion system in 
which cardiomyocytes, each of which exhibits nonlinear behavior, are electrically connected 
and interact with each other. To simulate the phenomena in the reaction-diffusion system, it is 
necessary to perform iterative calculations with very small time steps to avoid destabilizing the 
simulation, and to solve differential equations with a large number of variables, which generally 
increases the computational cost. Therefore, in silico learning has not been applied to the control 
of cardiac tissues because reinforcement learning using a cardiac electrophysiology simulator 
does not allow for sufficient trial and error. In fact, although Gadaleta et al. have reported that 
they achieved to control the heartbeat of a single cardiomyocyte by in silico reinforcement 
learning (Figure 1.13) [58], there have been no studies for control of excitation on cardiac tissue, 
which is a collection of cardiomyocytes. 
 

 

Figure 1.13 Heartbeat control by reinforcement learning [59] 
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1.5 Objective 
 In this chapter, an overview of tachyarrhythmia, its current clinical treatment and remaining 
issues for better treatment have been provided. If the in silico learning described above can be 
applied to the optimization of the ablation strategy, it may be possible to establish an objective 
and quantitative ablation strategy without being influenced by any electrophysiological prior 
knowledge that is distinct from the ablation strategies proposed in previous studies, which are 
based on the prior knowledge and experience of the surgeon. The objective of this study is to 
optimize the ablation strategy in an objective and quantitative way by applying in silico learning 
to the optimization problem for the better treatment of tachyarrhythmia. 
 The following thesis is structured as follows (Figure 1.14). Chapter 2 will cover in silico 
learning for optimizing the ablation site. This will be conducted as a proof of concept for 
optimization of the ablation strategy by in silico learning. Chapter 3 will present the construction 
of an experimental system that enables measurement of membrane potential distribution and 
implementation of ablation for validation experiment using in vitro tissue. In chapter 4, an 
attempt to stop the spiral excitation in human induced pluripotent stem cell cardiac tissue sheets 
will be presented. A general discussion, including the overview of the results presented, the 
significance of this study, limitations, and future works will be covered in chapter 5. Finally, this 
research will be concluded in chapter 6. 

Figure 1.14 Thesis outline 
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2.1 Objective 
 In the background chapter, the current status of ablation therapy for tachyarrhythmia was 
described, and it was confirmed that an appropriate optimization method for ablation strategy 
has not been proposed, and it is limited to optimization among the ablation strategies that have 
been proposed so far. If in silico learning is applied to the optimization of the ablation strategy, 
it may be possible to achieve objective and quantitative optimization that is not constrained by 
conventional methods. However, due to the high computational cost of the cardiac 
electrophysiological simulator, it may not be possible to obtain a sufficient number of trials for 
optimization, and the application of in silico learning has not been considered so far. In this 
chapter, a simple two-dimensional cardiac tissue simulation environment was constructed in 
order to reduce computational cost, and the possibility of optimizing the ablation sites by in silico 
reinforcement learning was investigated on the environment. 
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2.2 Method 
2.2.1 Overview of reinforcement learning scheme 
 There are various degrees of freedom in the optimization of the ablation strategy: location 
to be ablated, time-sequence of ablation points, and degree of tissue damage, etc. However, if all 
these degrees of freedom were to be optimized, the search space would become too large, and 
the convergence of reinforcement learning might be worsened. Therefore, the optimization target 
was limited in this case. Among the degrees of freedom in the ablation procedure, the spatial 
arrangement of the ablation site is considered to be the most dominant in controlling the abnormal 
excitation in cardiac tissue, and only this ablation pattern was considered for optimization in this 
study. 
 Reinforcement learning methods can be broadly classified into value-based algorithms, 
which estimate the value !(#, %) of taking action % for state #, and policy-based algorithms, 
which directly optimize a policy. Value-based algorithms, such as Q-learning and SARSA, have 
the advantage of being able to optimize for arbitrary policies, but they are known to be unsuitable 
for optimization of problems with large action spaces. On the other hand, the policy-based 
algorithm is supposed to be suitable for optimization problems with large action spaces, so the 
value-based algorithm and the policy-based algorithm need to be chosen appropriately according 
to the type of optimization problem. If the action space of the ablation pattern is considered, the 
degree of freedom of the ablation pattern for ' × ℎ candidates is 2!	×	$. For example, if the 
ablation candidates are 10 × 10, the action space is about 1.3 × 10%&. Due to the large action 
space of the ablation pattern, a policy-based algorithm was considered appropriate as the 
reinforcement learning method to be used in this study.  
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 The policy-based reinforcement learning scheme used in this study is shown in Figure 2.1. 
First, various spiral reentry excitations were prepared in cardiac simulator and used as an input 
for a deep neural network-based ablation model (DAM) as shown in red section of Figure 2.1. 
The DAM was designed to input the movie of the spiral excitation and output preferability of 
ablation at ablation point candidates. An ablation pattern was generated based on the output of 
the DAM, and the effect on the spiral excitation by the proposed ablation was evaluated using 
cardiac simulator (green section of Figure 2.1). Finally, a label was defined based on the 
simulation results, loss between the DAM output and the label was calculated, and the DAM was 
updated (blue section of Figure 2.1). By repeating this process of observation, action, and 
feedback for various spiral excitations, the DAM is expected to learn ablation patterns that 
effectively stops the spiral excitation.  
 
 

  

Figure 2.1 Schematic diagram of proposed in silico learning scheme. 
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2.2.2 Components of the proposed learning scheme 
2.2.2.1 Cardiac electrophysiological simulator 
 A cardiac electrophysiological simulator was used as a virtual environment for in silico 
learning. As a cardiac simulator, a mathematical model that simulates the behavior of a single 
cardiac cell and the excitation of a cardiac tissue in which multiple cardiac cell models are 
electrically connected is commonly used. Therefore, a cardiac tissue model that simulates the 
action potentials of cardiac cells and their connections was also used in this study. The details of 
cardiac cell model and cardiac tissue model used in this study are shown below. 
 
§ Cardiac cell model 
 The basis of the mathematical model of cardiomyocytes is the membrane potential model 
of the nerve axon of the squid called Hodgkin-Huxley model established in 1952 [59]. Based on 
this mathematical model, the electrophysiological model of cardiac cells has been continuously 
improved, and the Luo-Rudy model is representative as a cardiac cell model [60]. Even after the 
Luo-Rudy model, based on experimental facts, the mathematical modeling for the behavior of 
ion channels has been improved and cardiomyocyte models for various animal species have been 
proposed [61]–[64]. In this study, the Courtemanche cardiac cell model was used to simulate the 
action potential of human atrial cells [61]. The time derivative of the membrane potential is given 
by Equation 2.1. /'() and /*+ are the total ion current and stimulus current flowing across the 
membrane, and 0,  is the total membrane capacitance. The ion channels and pumps in the 
Courtemanche model are shown in Equation 2.2 and Table 2.1. The more details about 
mathematical modeling in Courtemanche model were described in Appendix A.1. 
 
 

 
12,
13 = 	−(/'() + /*+)0,

 (2.1) 

 
 

/'() = /-. + //0 + /+( + //12 + //2 + //* + /3.,5 + /6,3. + /-./
+ /-.3. + /7,-. + /7,3. (2.2) 
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Table 2.1 Ion currents used in Courtemanche model and their definition 

Symbol Definition 
  

/-. Fast Na+ Current 
//0 Time-Independent K+ Current 
/+( Transient Outward K+ Current 
//12 Ultrarapid Delayed Rectifier K+ Current 
//2 Rapid Delayed Outward Rectifier K+ Current 
//* Slow Delayed Outward Rectifier K+ Current 
/3.,5 L-Type Ca2+ Current 
/6,3. Ca2+ Pump Current 
/-./ Na+ - K+ Pump Current 
/-.3. Na+ / Ca2+ Exchanger Current 
/7,-. Background Current for Na+ 
/7,3. Background Current for Ca2+ 
/289 Ca2+ Release Current From Junctional sarcoplasmic reticulum (JSR) 
/+2 Transfer Current From Network sarcoplasmic reticulum (NSR) to JSR 
/16 Ca2+ Uptake Current by the NSR 
/98.: Ca2+ Leak Current by the NSR 

 
 
§ Cardiac tissue model 
 When a cardiomyocyte in a cardiac tissue is depolarized, a membrane current is generated, 
which changes the intracellular and extracellular potential of the surrounding cardiomyocytes. 
This change in potential further depolarizes the surrounding cardiomyocytes, and propagation of 
excitation occurs. Cardiac tissue models simulate the interaction between cardiomyocytes in 
cardiac tissue, and there are two types in cardiac tissue model: bidomain model and monodomain 
model. 
 In the Bidomain model, domains with different potentials and conductivities are defined in 
the inner and outer membranes of cardiomyocytes, respectively, and both the intracellular 
potential and the extracellular potential changes are calculated numerically (Equation 2.3, 2.4). 
Here, 8'  and 88  are the intracellular and extracellular potentials, 9;  and 9<  are the 
intracellular and extracellular conductivity tensor, := is the surface-to-volume ratio, and /'8>+ 
and /88>+ are the external stimulus currents inside and outside the cell.  
 

 ; ∙ 9;;8' =	:=/'() 	− 	 /'8>+ (2.3) 

 
 ; ∙ 9<;88 =	−:=/'() 	+ 	 /88>+ (2.4) 
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 The monodomain model, on the other hand, is a simple model in which the extracellular 
domain is not defined and only the intracellular domain is calculated. The monodomain model 
equation is shown in Equation 2.5. 
 

 ; ∙ 9;8 = 	:=/'() 	− 	 /8>+ (2.5) 

 While the bidomain model is a two-variable equation of 8'  and 88 , the monodomain 
model is a one-variable equation, and it is known that the computational cost can be greatly 
reduced by the monodomain equation. On the other hand, the monodomain model does not 
define the extracellular domain, so it is known that it cannot accurately reproduce excitation 
phenomena such as those caused by extracellular electrical stimulation [65]–[67]. Therefore, the 
monodomain model was used to reduce computational cost in this study, which is not intended 
to simulate phenomena that are strongly influenced by extracellular domain, such as 
extracellular current stimulation. Table 2.2 lists the material constants and the electrical 
parameters of the monodomain model. The monodomain equation was solved using the finite 
difference method. If the time step of the finite difference method is too small, the number of 
iterations increases and the computational cost becomes high, and if it is too large, the 
computation becomes unstable. In this study, the time step was empirically set to 100 µs to 
reduce the number of iterations as much as possible without making the calculation unstable. As 
a boundary condition, the no-flux Neumann boundary condition was used to simulate the 
electrically insulating region present in the heart. The spatial resolution of the simulator was set 
to 0.15 mm/pixel, referring to the size of cardiomyocytes, and the membrane potential value of 
each pixel was sampled at 1 kHz.  
 

Table 2.2 Material constants and electrical parameters of the cardiac tissue model 

Parameter (Unit) Symbol Value 
   

Membrane capacitance (?@ A??⁄ ) 0, 1.0 
Surface to volume ratio (A?@0) := 1400 

Conductivity along fiber (?: A?⁄ ) C'5 1.74 
Conductivity across fiber (?: A?⁄ ) C'A 0.225 
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 As mentioned in subsection 1.2.2, a cardiac tissue is known to have strong anisotropy 
depending on the direction of the myocardial fibers, and this anisotropy is one of the factors that 
complicate cardiac excitation. For this reason, myocardial fiber orientation was introduced into 
the cardiac tissue simulator by changing the conductivity tensor 9. The details of the design of 
fiber orientation are shown in Figure 2.2. The curved fiber orientation was introduced referring 
to a previous study by Skoubine et al [68]. The curve of fiber orientation was set from an ellipse 
shape with a long axis-short axis ratio of 4:3, centered 15 mm below the simulation area of 60 
mm square. On this simulator, the original spiral excitation was induced and used to generate the 
dataset for in silico reinforcement learning. 

 The dataset was generated by cutting out 38.4 mm square regions from the original spiral 
excitation generated in the 60 mm square simulation region. By altering the translation, rotation, 
flipping, and timing of the region to be cut, more diverse data was generated. The time duration 
of the membrane potential movie input to the deep neural network model must be set 
appropriately, because too long time duration increases the computational cost, and too short 
time duration may not provide enough information to understand the excitation state. In this 
study, the simulation time was set to 512 ms because it includes several spiral turns and is a 
power of two, which makes easier the convolution operation in the deep neural network model, 
which will be mentioned later. The generated data, with the exception where spiral excitation 
spontaneously terminated within 512 ms, were divided into training and test data. Overall, there 

Figure 2.2 Myocardial fiber orientation implemented in cardiac simulator 
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were a total of 120 and 360 data sets for training and test purposes, respectively, and 20 of the 
test samples were used as validation data to check the learning progress. 
 Ablation in the cardiac tissue model was simulated by setting the conductivity in the ablated 
area to zero and setting the membrane current of ablated cell to zero. To validate the effect of the 
proposed ablation, cardiac excitation after the proposed ablation was simulated. The simulation 
time for training and validation data was set to 512 ms, which is consistent with the time scale 
of the input movie.  
 
2.2.2.2 Deep neural network model 

 A deep neural network model was used to determine the location of the ablation from the 
excitability of the heart. Detailed structure of a deep neural network-based ablation model 
(DAM) is shown in Figure 2.3. The model was based on 3D U-net, a type of convolutional neural 
network developed for 3D segmentation tasks [69]. Each box in Figure 2.3 is a shape of the 
processed data (the number of channels, frames, x pixels, and y pixels) converted by the model. 
The DAM output the ablation preferability from the membrane potential movie by performing 
3D convolution, max pooling, and transformation by activation function. The spatio-temporal 
resolution of the input membrane potential movie was reduced to 0.60 mm/pixel and 4 ms/frame, 
respectively, in aim to reduce the computational cost. The resized input was 64 pixels ́  64 pixels 
´ 128 frames, which represents 38.4 mm ´ 38.4 mm ́  512 ms cardiac excitation. The output size 
was 8 pixels ́  8 pixels. The ReLU was basically used as the activation function, and the Sigmoid 
function was used only in the final layer to set the output value from 0 to 1. 
 

 
 

Figure 2.3 Structure of a neural network model 
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2.2.2.3 Ablation pattern generator 
 The spatial ablation pattern was generated from the output of the DAM. As mentioned above, 
the output of the DAM is ranged between 0 and 1 by the sigmoid function, and ablation points 
were defined as the points where the output value was greater than 0.5. Figure 2.4 shows the 
design of ablation pattern. The 8 pixels ´ 8 pixels ablation candidate points were evenly 
distributed over the entire simulation area, with a spacing of 4.5 mm between each point. The 
shape of the ablation area from each point was circular in consideration of the thermal diffusion 
that occurs during ablation. To ensure that adjacent ablations were spatially contiguous, the size 
of each ablation was 9 mm in diameter, twice the distance between ablation points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2.4 Label generator 
 In order to learn effective ablation sites, it is necessary to design reward function to reward 
ablations that can stop the spiral excitation effectively and do not reward or punish ablations that 
fails. In this study, labels were defined to be compared with the output of the DAM based on the 
time taken to stop the spiral excitation. Figure 2.5 shows how the labels were defined. The time-
sequence of the membrane potential after the proposed ablation by DAM was used to judge the 
termination of spiral excitations, and the timing of termination was defined as the time point at 
which the maximum membrane potential value in simulation area fell below -40 mV. If the spiral 
excitation was terminated by the proposed ablation within 384 ms, which accounts for 75% of 
the simulated time, the ablation points obtained by binarizing the output of the DAM were 
defined as the label. On the other hand, if the proposed ablation failed to terminate spiral 

Figure 2.4 Details of ablation pattern design 
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excitation within 512 ms, the proposed ablation site was inverted and defined as the label. If the 
spiral excitation was terminated between 384 ms and 512 ms, a label that changed continuously 
from the proposed ablation points to the inverted ablation points was defined depending on the 
termination time. By setting labels in this way, when the DAM output is compared with the labels, 
it is expected that the loss will be smaller for ablations that successfully stops the spiral excitation 
and larger for ablations that fails to stop, allowing trial and error for appropriate ablation sites.  
 

 
2.2.3 Learning conditions 
 By comparing the above labels with the output of the DAM, it may be possible to learn the 
ablation sites to stop the spiral excitation, but on the other hand, if the optimization is conducted 
to minimize only this comparison, the strategy to ablate the entire area will be a different optimal 
solution. However, in the treatment of cardiac ablation, a small ablated area is preferable because 
it is known that an excessively large ablated area can lead to a decrease in cardiac function. 
Therefore, the loss function was designed not only to stop the spiral excitations but also to keep 
the ablated area small. 
 The mean absolute error (MAE) between the model output and the corresponding label and 
the L1 norm of the model output were used as the loss function for training (Equation 2.4). The 
MAE was used to measure the difference between the model output and label, i.e., for repeating 
a successful ablation pattern. The L1 norm was set to reduce the sum of the DAM output and to 
keep the ablated area small. 
 

 D = 1
64 G HI(J, K) − IL(J, K)H +	 M64

B

',CD&,&
G HIL(J, K)H
B

',CD&,&
 (3) 

 
Here, D is the loss, IL(J, K) is the output of the DAM at point (J, K), I(J, K) is the label value at 
point (J, K), and M is the regularization parameter, which determines the ratio of the two types 
of loss functions. In this study, regularization parameter was set to 0.25, 0.4, 0.5, and 1.0. Adam 

Figure 2.5 Labels based on simulation result of proposed ablation 
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optimizer with a learning rate of 0.001 was used as an optimization function. Batch size was set 
to 5, and the number of epochs was set to 2000. To speed up the learning process, the five 
simulations in the mini-batch were run in parallel. All experiments were performed in Python 
using Pytorch [70] on a Linux Server (Ubuntu 18.04.3 LTS) with 5 GPUs (NVIDIA GeForce 
RTX 2080). 
 
2.2.4 Evaluation method 
 To evaluate the DAMs obtained by training, evaluation experiments were conducted using 
340 test data cases. As the trained DAM, the model with the smallest loss to the validation data 
was basically used. However, if the model with the smallest loss chose not to ablate anywhere, 
to evaluate the performance of the ablation proposed by the model, DAMs in previous epochs 
were checked. Among the models which chose to perform ablation, the one at the closest epoch 
to the epoch of the model with the smallest loss was used as the trained DAM. 
 Two other ablation strategies were used for comparison with the trained DAM: random 
ablation (RND) and rotor ablation (ROT). In RND, a random value array comprising 8 pixels ´ 
8 pixels was first generated, and the random ablation pattern was determined. This was 
performed by selecting the same number of points as the trained DAM ablation from the pixels 
with the highest value. ROT is an ablation strategy to target the center of spiral excitation and is 
often used in clinical practice [71]. In this study, the position of the spiral center was 
quantitatively detected using an analysis called phase variance [72]. The ablation area was then 
determined by thresholding the time average of the phase variance of the spiral excitation before 
ablation, which has the characteristic of being higher in the spiral center. The value of the time 
average of the phase variance ranges from 0 to 1. The threshold value used to detect the spiral 
center was experimentally set to 0.5 in this study to be equivalent to the ablation size of the 
trained DAM. 
 For these three ablation strategies, the excitation after ablation for 1000 ms on 340 cases of 
test data were simulated. As in training, the termination of the spiral excitation was judged by 
whether the maximum value of the membrane potential in the simulation area was below -40 
mV, the ratios of spiral termination of the three different ablation strategies were compared. 
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2.3 Results 
2.3.1 Model transition during learning process 
 Figure 2.6, 2.7, and 2.8 show the results for the transition of the ablation strategy when 
training with the regularization parameter λ = 0.5. First, Figure 2.6 shows the ablation by the 
DAM at the end of 10 epochs for the three cases in the validation data. The number in the lower 
right corner of each image indicates the time that has elapsed since the ablation was performed. 
As can be seen from the figure, the model at the beginning of learning ablated almost the entire 
region, regardless of the excitation mode, and stopped the spiral excitation. 
 

Figure 2.6 Ablation example for validation data (after 10 epochs) 
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 Figure 2.7 shows the ablation proposed by DAM after 1000 epochs for the same validation 
data as Figure 2.6. From this result, it was found that the DAM chose not to ablate for the 
validation data 2, and that the other two cases were ablated in a single vertical line to stop the 
spiral excitation. 
 
 

 
 
 

Figure 2.7 Ablation example for validation data (after 1000 epochs) 
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 Finally, here is the ablation results by a model after 2000 epochs learning. It was found that 
the trained DAM stopped the spiral excitations with only one or two points of ablation. These 
figures indicate that the DAM may be able to stop the spiral excitation with fewer cauterization 
points with learning process. 
 
 

  

Figure 2.8 Ablation example for validation data (after 2000 epochs) 
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2.3.2 Comparison of ablation strategies 
 Figure 2.7 and Figure 2.8 shows two examples of the ablation results using three different 
ablation strategies. In these figures, time-series images of membrane potentials during spiral 
excitation without ablation, and after ablation by RND, ROT, DAM are shown, and fiber 
orientation and ablated area (black circles) is overlayed. The time shown in the lower left corner 
of each image indicates the time elapsed since the ablation was performed. For example, from 
top panel of Figure 2.7, there was one clockwise spiral excitation near the center of the simulated 
region. The result showed that RND was unable to affect the original spiral excitation, and a 
phenomenon called anatomical reentry, in which spiral excitation moves around the ablated area, 
occurred in ROT, while only DAM swept the spiral excitation toward the boundary of simulated 
area and stopped it. Figure 2.8 shows an example of relatively complex excitation with two spiral 
excitations, but as in Figure 2.7, only ablation proposed by DAM could stop the spiral excitations. 
These two typical cases indicate that DAM ablation may be superior to the two ablation strategies 
compared in terms of spiral termination. 
 

 

Figure 2.9 Comparison of the three ablation strategies (single spiral excitation) 
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 Next, an analysis was performed to quantitatively evaluate the effects of the three ablation 
strategies. In order to compare the effects of ablation quantitatively, the changes in cardiac 
excitation caused by ablation were classified into three categories: ‘no effect’, ‘anatomical 
reentry’, and ‘termination’. Figure 2.9 shows typical isochronal maps and the time series of the 
membrane potential for the three phenomena. As shown in this example, the case in which the 
spiral reentry remained in the same place even after ablation was classified as 'no effect', and the 
case in which the spiral excitation circles around the ablated area was classified as 'anatomical 
reentry'. In the case of ‘Termination’, the spiral excitation was swept to the boundary of the 
simulated area.  

Figure 2.10 Comparison of the three ablation strategies (double spiral excitations) 
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 Based on the classification mentioned above, a quantitative comparison of the effects of the 
three ablation strategies on the 340 test data cases is shown in Figure 2.10. In the analysis, DAM 
trained with λ = 0.5 was used as trained DAM. Accordingly, in RND, the most common category 
was ‘no effect,’ with a percentage of 64.4%. In ROT, ‘anatomical reentry’ was observed in 90.6% 
of cases, and in DAM, ‘termination’ was observed in 75.6%. In RND and ROT, spiral excitation 
was terminated in 12.6% and 8.5% of cases, respectively.  
 

  

Figure 2.11 Classification of ablation effect 

Figure 2.12 Effect of each ablation strategy 
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 On the other hand, the ablation area of RND, ROT, and the DAM were calculated as 7.0 ± 
2.8%, 12.5 ± 5.7%, and 6.5 ± 2.4%, respectively (Figure. 2.11). From these results, it was clear 
that the ablation by DAM achieved a higher termination rate of spiral excitations in a comparable 
ablation area size compared to the other two ablation strategies. 
 

 
 
 
 Next, the spatial bias of the ablated area by the three ablation strategies is visualized in 
Figure 2.12. From the result, it appeared that RND showed uniform ablation over the entire 
region, while ROT showed frequent ablation in the center of the simulation region except for the 
boundary, and conversely, ablation tended to be performed near the boundary in DAM. In order 
to quantitatively evaluate the bias of the ablated area, the (8 pixels ´ 8 pixels) candidate ablation 
points were divided into four regions as shown in the left figure of Figure 2.13, and the 
percentage of ablating each region was calculated. This result quantitatively showed that RND 
ablated the four areas almost equally, while ROT had a small percentage of region 1, which is 
near the boundary of the simulation area, and the DAM had a large percentage of region 1. 
 
 
 
 
 
 

Figure 2.13 Ablation area percentages of three ablation strategies 
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Figure 2.15 Spatial bias of the ablated points by three ablation strategies 

Figure 2.14 Quantitative evaluation of spatial bias of ablated area 
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 Figure 2.14 shows a histogram of the minimum distance between the trajectory of the spiral 
center and the center of each ablation point. In the ROT, which aims to ablate near the spiral 
center, the position of the ablation points and the center of rotation were very close. However, in 
the trained DAM, the distribution had a peak at approximately 5 mm, and in the RND, the 
distribution appeared relatively even with no apparent peak. 

  

Figure 2.16 Comparison of distance from ablation points to spiral center 
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2.3.3 Difference in learning result by regularization parameter 
 Figure 2.15 shows an example of ablations by DAMs trained with various regularization 
parameters. From this figure, it was apparent that the model trained with M set to 0.25 ablated 
almost the entire region and terminated the spiral excitation at approximately 128 ms after the 
ablation. In the model with M set to 1.0, the left side of region was ablated, but the original spiral 
excitation was sustained. On the other hand, although the trained model with M set to 0.5 ablated 
only two points, the proposed ablation successfully terminated the spiral excitation at around 400 
ms after ablation.  
 

  

Figure 2.17 Example of ablation proposed by DAMs trained with 

different regularization parameters 
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 Moreover, from Figure 2.16, it was found that the regularization parameter appeared to 
influence the learning results, and the spiral termination rate tended to increase when the ablation 
area was increased. The ablation ratio of each regularization parameter (0.25, 0.4, 0.5, and 1.0) 
was 84.1%, 16.2%, 6.5%, and 21.4%, respectively, and termination rate was 99.1%, 59.7%, 
74.1%, and 37.4%, respectively. 
 

 

 
 

Figure 2.18 Termination percentage and ablation area of DAMs 

trained with different regularization parameters 
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2.4 Discussion 
2.4.1 The possibility of optimizing the ablation strategy 

 In this chapter, an in silico reinforcement learning scheme for optimizing the ablation sites 
has been constructed and experiments have been conducted for proof of concept. First, when 
comparing the trained DAM with the RND and the ROT, it was found that the trained DAM 
achieved ablation area percentage of 6.5 ± 2.4% and spiral termination percentage of 75.6%, and 
the termination percentage was superior to the other two ablation strategies (RND: 12.6%, ROT: 
8.5%) as shown in Figure 2.10 and Figure 2.11. By comparing the ablation patterns of each 
ablation strategy, it can be seen that the trained DAM tended to ablate the area around the tissue 
boundary (Figure 2.12 and Figure 2.13). Moreover, although not as much as the ROT, compared 
to RND, the trained DAM tended to ablate the area near the center of the spiral excitation (Figure 
2.14). Comparing the learning results with different regularization parameters M, it was clear 
that the performed ablation and the respective effects varied greatly depending on the parameter 
(Figure 2.15 and Figure 2.16). These results suggested that, although some adjustment of the 
regularization parameter is essential for proper learning, it is thought that the trained DAM 
adaptively determined the appropriate ablation points for terminating the spiral excitation 
according to the excitation pattern. Therefore, it can be said that in silico learning showed the 
possibility of optimizing the ablation sites through trial and error without relying on prior 
knowledge. 

 
2.4.2 Interpretation of obtained ablation strategy 
 By comparing three ablation strategies, it was clear that ablations proposed by the trained 
DAM tended to be located near the spiral center and around the tissue boundary (Figure 2.12, 
Figure 2.13, and Figure 2.14). Here, the electrophysiological interpretation of ablation strategies 
obtained by in silico learning will be discussed. 
 There have been many previous study to effectively move and stop the spiral excitations, 
especially for low-energy defibrillation using electrical current stimulation, and the mechanism 
of the movement has previously been discussed [66], [73]. In these studies, they found that it is 
necessary to generate new spiral excitations and interfere with the original spiral wave to 
effectively shift the spiral wave. On the other hand, it is widely accepted that a discontinuity in 
the wavefront causes a phenomenon called wavebreak, which leads to new spiral excitations [74] 
and the wavebreak was also observed around the ablated area in our simulation. Therefore, 
ablating near the spiral excitation is expected to generate wavebreak-derived spiral excitations, 
and these are expected to shift the original spiral excitation through interference. Figure 2.17 
shows a schematic diagram of cardiac excitation when ablation is performed near the spiral 
center. As shown in Figure 2.17a, the case where there is a clockwise spiral excitation and 
ablation is conducted near the spiral center is considered. It is thought that wave break generates 
two spiral excitations when the excitation wavefront enters the ablated area (Figure 2.17b), and 
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one of them annihilates the original spiral excitation (Figure 2.17c), causing the clockwise spiral 
excitation to appear to move into the ablated region (Figure 2.17d). 
 

 
 On the other hand, a schematic diagram of clockwise spiral excitation when ablation is far 
from the original spiral excitation is shown in Figure 2.18. In this case, as in the case of ablation 
near the spiral center, the wave break occurs and generates two spiral excitations (Figure 2.18b). 
However, if the original spiral excitation is not sufficiently close to the ablated area, the newly 
generated spiral excitations may annihilate each other (Figure 2.18c), and the original spiral 
excitation may itself persist (Figure 2.18d). The above discussion suggests that ablation near the 
spiral center is essential for shifting the spiral excitation. 
 

 
 Nevertheless, ablation near the spiral center does not necessarily terminate the spiral 
excitation. In fact, termination rate of the ROT, which targets the spiral center, was 8.5%, and 
90.5% of the test data resulted in anatomical reentry after the ROT, as seen in Figure 2.7 and 
Figure 2.8. This failure can be solved by connecting the ablation region to the tissue boundary, 
because in anatomical reentry, spiral excitation moves around the ablated region. Hence, if the 
tissue boundary is in the middle of the path, the spiral excitation cannot be sustained. These 
considerations suggest that it is also important to connect the ablation area to the tissue boundary 

Figure 2.19 Schematic diagram of changes in cardiac excitation 

after ablation near the spiral center 

Figure 2.20 Schematic diagram of changes in cardiac excitation 

after ablation far from the spiral center 
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to terminate the spiral excitation, and it is likely that the DAM had acquired the knowledge of 
connecting the ablated area to the boundary from the in silico reinforcement learning. 
 The ablation strategy obtained in this study may be similar to those proposed in previous 
studies. In fact, the ablation strategy obtained in this study can be classified as linear ablation, 
and it has also already been proposed to connect linear ablation to the tissue boundary, as 
described in Introduction. On the other hand, it is of high interest that the reinforcement learning 
method, which is not bound by prior knowledge, selected a similar ablation strategy from a huge 
number of ablation pattern candidates. In addition, while conventional linear ablation mainly 
focuses on anatomical features to determine the ablation site, the findings of this study suggest 
that the ablation should be performed near the spiral center. Therefore, it can be said that the 
excitability of the heart, including the location of the spiral excitation, should be considered to 
improve the therapeutic effect of tachyarrhythmia. 
 
2.4.3 Failed cases of spiral termination 
 As shown in Figure 2.10, the learned DAM with M = 0.5 achieved spiral termination rate 
of 75.6% (257/340), meaning that the trained DAM failed to terminate spiral excitations in 24.4% 
of the test data (83/340). Figure 2.19 shows the results of classifying the failed examples. There 
were cases where the ablation area was far from the rotation center and did not affect the spiral 
excitation (Fig. 2.19A), cases where the ablation was near the rotation center but not connected 
to the boundary (Fig. 2.19B), and cases where the ablation could not terminate one of the two 
spiral excitations (Fig. 2.19C). The ratio of each unsuccessful case was 34.9% (29/83), 22.9% 
(19/83), and 42.2% (35/83), respectively. Therefore, in approximately half of the failed cases 
(48/83), ablation from near the spiral center to the tissue boundary was not achieved. The reason 
for this failure could be the small number of training datasets and insufficient tuning of the 
hyperparameters. In this study, the number of spiral excitations used for training was limited to 
120 cases to reduce the learning cost, but this number of training data may have been insufficient 
to acquire sufficient generalization performance. In addition, only four regularization parameters 
were considered in this study, but there is a possibility that even better DAM can be acquired by 
tuning these hyperparameters as well. The other half of the failed cases (35/83) had complex 
excitation patterns with multiple spiral excitations present. This may be due to the complexity of 
the data used for training. In fact, out of the 120 spiral excitations in the training data, there were 
27 cases with multiple spirals, and the rest were relatively simple excitation patterns with a single 
spiral excitation. Therefore, to improve the termination percentage for more complex excitations, 
it is necessary to increase the number of complex excitations in the training data. 
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Figure 2.21 Example of a trained DAM failing to stop spiral excitation 
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2.4.4 The effect of regularization parameter 
 As shown in Figure 2.15 and Figure 2.16, the learning results highly depended on the value 
of the regularization parameter. These results can be explained by considering the effect of the 
regularization parameter on the loss. As shown in Equation 2.4, regularization parameter M is 
the parameter that determines the balance between the MAE and the L1 norm.  
 For example, when the regularization parameter is small, the MAE had a relatively larger 
impact on the loss compared to the L1 norm. In this instance, terminating the spiral excitation 
became a higher priority than keeping the ablation area small. According to Figure 2.16, when 
the model was trained with M = 0.25, the spiral termination rate was 99.1% while the ablation 
area percentage was also 84.1%. This indicated that the objective of keeping the ablation area 
small was not achieved. 
 On the other hand, when the regularization parameter is large, the DAM would prioritize 
L1 norm reduction over MAE reduction, resulting in convergence to a strategy of no ablation at 
all. In fact, Figure 2.20, which indicates the transition of the termination rate of spiral excitation 
and the ablation percentage during learning process, shows that these two values converge to 0%, 
that means the converges to no ablation. In Figure 2.16, the ablation rate of the DAM trained 
with λ = 1.0 was about 20%, but this may be due to the fact that the DAM that always performed 
ablation was selected as a trained model. As a result of adopting the output of a DAM which did 
not learn sufficiently, the ablation area percentage was approximately 20% and the spiral 
termination rate was approximately 40%.  
 

Figure 2.22 transition of the termination rate and ablation percentage (λ = 1.0) 
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 When M = 0.4, as in the case of M = 0.5, the learning was continued without getting 
interrupted by the local solution. Both the ablation area percentage and spiral termination rate 
were not as positive as the learning results of M = 0.5. Considering the above points, some 
adjustment of the regularization parameter is necessary for proper learning, and effective 
hyperparameter tuning for the regularization parameter needs to be considered. 
 
2.4.5 Limitations 
 The optimization of the ablation sites were attempted by in silico learning, but there are still 
limitations to apply the in silico learning scheme to actual clinical practice. 
 The first limitation is the complexity of the electrophysiology simulator used in this study. 
In order to demonstrate the proof of concept of the proposed method, a simple 2D cardiac 
simulator was used to reduce the calculation time for each simulation. However, it is clear that 
cardiac excitation is more complex due to anatomical and electrophysiological heterogeneity, 
which is caused factors such as the variation in myocardial thicknesses [75], the presence of 
curvatures [76], and fibroblast expression [77]. Therefore, 2D tissue with uniform myocardial 
properties used in this study can reproduce relatively simple spiral excitations, but cannot 
adequately simulate the complex excitation phenomena such as ectopic activity and multiple 
wavelet reentry, which are known to occur in cardiac tissue [78]. 
 The second limitation is the degree of freedom of ablation. In this study, in order to control 
the search space for optimization, the sequence of ablation points was not optimized, and the all 
ablations are performed simultaneously. Simultaneous ablation is equivalent to optimizing the 
modification of excitable media to prevent sustained spiral reentry excitation, which is important 
in terms of controlling the myocardial tissue to prevent recurrence of the spiral excitation. On 
the other hand, in the clinical ablation procedure, it is difficult to ablate multiple points at the 
same time, and it is necessary to ablate each point in turn. When performing ablation at each 
location, the excitatory state may change with each ablation, and depending on the order of 
ablation, the excitatory state may become unexpectedly complicated. For this reason, the 
sequence of ablation points should also be optimized for clinical application. Furthermore, in 
this study, ablation was modeled as a complete death of cardiomyocytes, but in actual ablation 
procedures, the degree of ablation may also be a variable and may be subject to optimization. 
By including the degree of ablation in the optimization target, it may be possible to establish a 
better ablation strategy. However, in order to optimize the degree of ablation by in silico learning, 
it is necessary to reproduce the continuous degeneration of cardiomyocytes during ablation on 
a simulation model. The electrophysiological changes of cardiomyocytes during the process of 
ablation have not been well studied so far, so it is necessary to model the behavior of 
cardiomyocytes during ablation and incorporate the cell model into the cardiac simulator for 
optimizing the degree of ablation. 
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2.5 Summary 
 In this chapter, an in silico reinforcement learning was applied for optimization of ablation 
strategy, and as a proof of concept, in silico learning using 2D cardiac simulator was conducted. 
 The deep neural network-based ablation model (DAM) was designed to input a membrane 
potential movie and output an ablation preferability. As a virtual environment for in silico learning, 
a 2D monodomain cardiac tissue model, which has relatively low computational cost than 
bidomain model was constructed and used. In order to learn ablation sites that effectively stop 
spiral excitation with small ablated area, the sum of the mean absolute error between the DAM 
output and the label and L1 norm of the DAM output was used as the loss function, and the DAM 
was trained. After training, the trained DAM was compared with two different strategies: the 
random ablation strategy (RND) and the rotor ablation strategy (ROT).  

 The results showed that the percentages of ablation areas of RND, ROT, and best trained 
DAM were 7.0±2.8%, 12.5±5.7%, and 6.5±2.4%, respectively, and the termination rates of spiral 
excitation were 12.6%, 8.5%, and 74.1%, respectively. After evaluating the ablation strategy 
obtained by learning, the DAM learned to effectively terminate spiral excitations by ablating the 
area from near the spiral center towards the tissue boundary without any prior knowledge. 
Although the obtained ablation strategy as the in silico learning was similar to the linear ablation 
already proposed, it is of high interest that the reinforcement learning method, which is not bound 
by prior knowledge, selected a similar ablation strategy from a huge number of ablation pattern 
candidates. Furthermore, although conventional linear ablations were based on anatomical 
information, this study showed that linear ablation that takes into account the excitability of the 
heart, including the location of the spiral excitation may be effective. 

 Although some limitations remain, such as the complexity of the cardiac simulator and the 
degree of freedom of the ablation, this chapter showed the possibility that in silico learning can 
be used to optimize the ablation pattern for effective termination of the tachyarrhythmia. 
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5.2 Limitations 
 The optimization of the ablation sites were attempted by in silico learning, but there are still 
limitations to apply the in silico learning scheme to actual clinical practice. 
 
5.2.1 Complexity of the cardiac simulator 
 In order to demonstrate the proof of concept of the proposed method, a simple 2D cardiac 
simulator was used to reduce the calculation time for each simulation. However, it is clear that 
cardiac excitation is more complex due to anatomical and electrophysiological heterogeneity, 
which is caused factors such as the variation in myocardial thicknesses [Augustin 2020], the 
presence of curvatures [Song 2018], and fibroblast expression [Tanaka 2007]. Therefore, 2D 
tissue with uniform myocardial properties used in this study can reproduce relatively simple 
spiral excitations, but cannot adequately simulate the complex excitation phenomena such as 
ectopic activity and multiple wavelet reentry, which are known to occur in cardiac tissue [Nattel 
2008]. 
 On the other hand, in recent years, the use of personalized models, which include not only 
the structure of cardiac tissue but also the distribution of fibroblasts, has become the mainstream 
methodology of in-silico research [Aronis 2019]. By using such a complex and life-like cardiac 
simulator that takes into account structural and electrophysiological heterogeneities, it is possible 
to obtain membrane potential information of complex cardiac excitations with high 
spatiotemporal resolution. The problem of using a personalized model is that it is expected to 
increase the computational cost. However, there have been many studies on speeding up 
computer simulations in recent years [], and it is not impossible to perform in silico learning 
using a complex and life-like cardiac simulator by applying such techniques. 
 
5.2.2 Degree of freedom of ablation 
 In this study, in order to control the search space for ablation site optimization, the sequence 
of ablation points was not optimized, and the all ablations are performed simultaneously. 
Simultaneous ablation is equivalent to optimizing the modification of excitable media to prevent 
sustained spiral reentry excitation, which is important in terms of  controlling the myocardial 
tissue to prevent recurrence of the spiral excitation. On the other hand, in the clinical ablation 
procedure, it is difficult to ablate multiple points at the same time, and it is necessary to ablate 
each point in turn. When performing ablation at each location, the excitatory state may change 
with each ablation, and depending on the order of ablation, the excitatory state may become 
unexpectedly complicated. For this reason, the sequence of ablation points should also be 
optimized to make the proposed method applicable to clinical practice. 
 Furthermore, in this study, ablation was modeled as a complete death of cardiomyocytes, 
but in actual ablation procedures, the degree of ablation may also be a variable and may be 
subject to optimization. However, in order to optimize the degree of ablation by in silico learning, 
it is necessary to reproduce the continuous degeneration of cardiomyocytes during ablation on 
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a simulation model. The electrophysiological changes of cardiomyocytes during the process of 
ablation have not been well studied so far, so it is necessary to model the behavior of 
cardiomyocytes during ablation and incorporate the cell model into the cardiac simulator for 
optimizing the degree of ablation. 
 
5.2.3 Improvement of ablation system 
This item was excluded because it is expected to be published in the future. 



    

 

Chapter 6 Conclusion  
This item was excluded because it is expected to be published in the future.  
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