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ABSTRACT

In deep space exploration with micro/nano-spacecraft, the relatively high cost of trajectory

correction and orbit determination is an important issue. In this study, a method is proposed

to optimize the scheduling of the trajectory correction and the orbit determination in an in-

tegrated manner to minimize the amount of control required for trajectory correction. The

problem is formulated by using the stochastic trajectory optimization technique. The stochas-

tic trajectory optimization problem is converted into a deterministic optimization problem by

parameterizing the probability distribution, and the optimization is solved numerically. The

coupling effect between the true and estimated values of the state is considered, and both

of them are defined together as augmented state values. The probability distribution of the

augmented state is parameterized, and the propagation of the parameters is formulated. It

is shown that the parameters depend on the trajectory correction time and the orbit deter-

mination time. The objective function and constraints are evaluated from those parameters,

and the trajectory correction time and orbit determination time are optimized. The errors of

uncertainty propagation methods were evaluated in the dynamics of two-body and circular re-

stricted three-body problems. The optimization problem was solved for the Hohmann transfer

trajectory in the two-body problem and the nominal trajectory of the micro-deep space probe

PROCYON in a more realistic problem. These numerical simulations show the validity of the

proposed method.
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Chapter 1

Introduction

That’s one small step for [a] man,

one giant leap for mankind.

Neil Armstrong

1.1 Background

With the development of micro/nano-satellite technology, deep space exploration mis-

sions using micro/nano-spacecraft have been proposed in recent years. In 2014, the

world’s first micro-deep space probe, PRoximate Object Close flYby with Optical

Navigation (PROCYON), was launched with Hayabusa-2, demonstrating deep space

exploration with micro-deep space probes.[1] In 2018, Mars Cube One (MarCO),

which is the world’s first deep-space CubeSat, was launched with Insight.[2] The

Artemis program plans to launch as many as 10 CubeSats into deep space.[3]-[9] In

the future, deep space exploration using micro deep space probes is expected to be

carried out at low cost and high frequency.

There are two important issues in the trajectory problem of micro deep space mis-

sions (of course, these issues are also important for some deep space missions using

large spacecraft): the first is the high importance of trajectory correction maneuvers

(TCMs), and the second is the cost of orbit determination.

As for the first issue, the portion of TCMs in ∆V budget is relatively large for

micro deep space missions. Nominal trajectories requiring little control and long time
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of flight are often chosen such as low-energy transfer orbits for micro deep space mis-

sions because micro spacecraft do not have high orbit control capability. In addition,

this is because micro/nano-spacecraft are often launched with large spacecraft to re-

duce launch costs and indirect trajectories are often chosen to reach the destination.

For such trajectories, the ratio of fuel required for trajectory correction is relatively

high compared to the fuel required for the nominal orbit control, and reduction of fuel

for TCMs is significant.

The second issue is related to the cost of operation. In order to guide the trajectory

of a spacecraft with high accuracy, it is necessary to improve the accuracy of orbit de-

termination. In order to improve the accuracy of orbit determination, it is required to

use a high-precision orbit determination method such as Delta Differential One-way

Range (DDOR), or to increase the number of orbit determination. However, using a

highly accurate orbit determination method or increasing the number of orbit determi-

nation will lead to an increase in the cost of operation. Therefore, with a fixed number

of orbit determination, it is necessary to increase the number of orbit determination

times when high-precision orbit determination is required and to decrease the number

instead when it is not required.

Furthermore, the current technology used for deep space orbit navigation is based

on radio navigation, which is heavily dependent on deep space ground stations such as

Deep Space Network and Misasa Deep Space Station. The cost of using deep-space

ground stations is high and the same for micro/nano-spacecraft as for large space-

craft, and thus operating them in the same way as large spacecraft would be a major

impediment to cost reduction. Normally, the operation timing of deep space probes

is heuristically determined, and few studies have focused on the optimization of orbit

determination operations. In order to reduce the cost of navigation, unnecessary op-

erations should be avoided and orbit determination operations should be performed at

efficient times.

In addition, these two problems are deeply related. If the accuracy of the orbit

determination is insufficient, the guidance accuracy of the TCM will deteriorate, and

extra TCM must be performed to correct it. In order to minimize the fuel used for

2



TCM while satisfying the required guidance accuracy, it is necessary not only to op-

timize the TCM but also to optimize the orbit determination strategy.

In this study, an integrated optimization method for TCM and orbit determina-

tion is proposed in order to minimize the fuel required for TCM while maintaining

the required guidance accuracy. The optimization method is based on the stochastic

trajectory optimization technique, which has attracted much attention in recent years,

and takes into account the probability distribution of state quantities. In order to op-

timize the orbit determination, a novel stochastic trajectory optimization framework

that can take into account the orbit determination error, which is not often considered

in the field of stochastic trajectory optimization, is also proposed. The concept of

the method used in this study can be applied not only to the integrated optimization

of TCM and orbit determination, but also to the integrated trajectory optimization of

guidance, navigation, and control, including nominal trajectory design.

1.2 Related Work

1.2.1 Related Work of Trajectory Correction Optimization

As for the optimization of trajectory correction, research that optimizes the time of

TCM has been done for a long time. Breakwell (1960) and Breakwell (1962) pro-

posed a method for calculating the optimal trajectory correction maneuver time ana-

lytically called the Spacing Rule. [10][11] Kawaguchi and Matsuo (1996) proposed

the Extended Spacing Rule, which is an extension of the Breakwell’s Spacing Rule,

and it showed that there are regions where Breakwell’s method can be applied and

regions where a new rule is required.[12] By using Spacing Rule, the optimal TCM

timings are easily computed by analytical equations. In these studies, however, var-

ious approximations are used to derive analytical solutions, and the solution of them

is different from the true optimal solution.

Serban, et al. (2002) and Gomez, Marcote, and Masdemont (2005) developed

optimal TCM for transfer trajectories from Earth to libration orbits.[13][14] They used

the trajectory optimization approach for designing TCMs. However, they consider

3



initial insertion error only and cannot handle other errors like orbit determination

error and dynamical disturbances.

Formulations in the previous studies are not modern stochastic trajectory opti-

mization, and they cannot handle numerical optimization that takes into account prob-

abilistic distributions of uncertainties and constraints about state quantity. Kakihara et

al. (2020) proposed a method to numerically optimize the trajectory correction time,

but the formulation regarding the orbit determination error is not yet complete.[15]

1.2.2 Related Work of Orbit Determination Optimization

Not much research has been done on the optimization of orbit determination, and it

is a field that has only begun to be studied with the advent of the micro/nano-satellite

era. Gentile et al. (2019) proposed a method to optimize the orbit determination

method and timing using the genetic algorithm to solve this problem. [16] However,

in the previous study, only the optimization of orbit determination is considered, and

it is not the optimization in conjunction with trajectory control.

1.2.3 Related Work of Stochastic Trajectory Optimization

In recent years, the study of stochastic trajectory optimization considering uncer-

tainty has attracted much attention.[18]-[23] In stochastic trajectory optimization,

unlike conventional deterministic trajectory design, uncertainties are taken into ac-

count like orbit insertion error, dynamics disturbances, and orbit determination error.

The method of stochastic trajectory optimization can be used to efficiently design ro-

bust trajectories even in such uncertain situations. The state and control quantities

of the trajectory are treated as random variables, and their probability distributions

and means are used as objective functions and constraints for the optimization. These

problems can be converted into deterministic optimization problems by parameteriz-

ing the probability distribution and solved numerically.

Ozaki, Campagnola, and Funase (2020) proposes robust trajectory optimization in

non-linear system using stochastic trajectory optimization theory.[18] The constrained
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stochastic trajectory optimization problem is converted into the deterministic trajec-

tory optimization problem and solved by common trajectory optimization methods

like Differential Dynamic Programming. Oguri and McMahon (2021) and Ridder-

hof, Pilipovsky, and Tsiotras (2020) also propose methods to design robust guidance

strategies under uncertainty.[19][20][21] In these researches, the problems are formu-

lated by the stochastic optimal control approach with chance constraints and solved

by convex optimization. However, all of the researches do not consider orbit determi-

nation error and cannot handle it adequately.

Zavoli and Federici (2021) proposes a robust trajectory design method using rein-

forcement learning and considers orbit determination error.[22] In the study, however,

the formulation of uncertainties is simplified and the applicability of that formulation

is limited.

Greco, Campagnola, and Vasile (2020) introduces belief space into stochastic tra-

jectory optimization.[23] Belief space is a posterior probability of state vector and

represents orbit determination uncertainty. The method in the research can handle

orbit determination error adequately, but it requires the Monte Carlo simulations to

express belief space and much computational cost.

1.3 Proposed Method

In this study, the problem of optimizing the trajectory correction is extended to the

problem of optimizing the orbit determination as well. There has been no such study

that has taken both of these factors into account in optimization, and solving the prob-

lem is the novelty of this research.

The problem is formulated as a stochastic trajectory optimization problem, where

the expected value of ∆V required for TCM and the guidance accuracy at the final time

are expressed as a function of TCM time and orbit determination time. Orbit insertion

error, dynamics error, control error, and orbit determination error are considered as

uncertainties. To handle the orbit determination error, both the true and estimated

values of the state quantities are considered and treated as augmented state quantities.
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The probability distributions of the state and control quantities are parameterized,

and the parameters of the state and control at any time can be calculated from the

initial values of them, the parameters of the uncertainties, the TCM time, and the

orbit determination time. The objective function and constraints are calculated from

the parameters of the probability distribution at each time, and the relationship with

the TCM time and orbit determination time is expressed. The formulated optimization

problem is optimized numerically using mathematical programming techniques.
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Chapter 2

Optimization of Trajectory Correction

Maneuver

Then promise me. Swear you’ll come

back. We will meet again. I know it.

Nao Tomori (Charlotte)

In deep space exploration, the trajectory of a spacecraft is planned before launch.

After launch, however, the actual orbit deviates from the nominal trajectory due to

orbit injection errors, orbit control errors, and external disturbances. Trajectory cor-

rection maneuver (TCM) is often performed to correct this deviation and return the

trajectory to the nominal trajectory.

The size of the control required for TCM is determined by the sensitivity of the

control to the orbital state and the degree of deviation from the desired trajectory. The

sensitivity of the control depends on the nature of the dynamics itself as a function

of time. The deviation from the desired trajectory is a value that can be controlled in

stochastic trajectory design, but it also depends on the strategy of TCM. Therefore,

by optimizing the TCM strategy, it is possible to minimize the fuel required for TCM.

In this chapter, TCM is formulated, the factors that affect its magnitude are dis-

cussed, and a quantitative discussion on the optimization of the TCM is provided.
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2.1 Formulation of Trajectory Correction Maneuver and Guid-

ance Accuracy

In this study, the Fixed Time-of-Arrival (FTA) Guidance is discussed as a method of

TCM, which is controlled to aim at the nominal position at a fixed final time.[11]

BUk = Fk, f

(
X∗f − BδV f

)
− X̂−k . (2.1)

Linearizing this around the nominal trajectory leads to the following equation

uk = −Φ−1
rv, f ,kΦrr, f ,k̂r−k − û−k (2.2)

= −
[
Φ−1

rv, f ,kΦrr, f ,k I
]

x̂−k (2.3)

Φ f ,k =

 Φrr, f ,k Φrv, f ,k

Φvr, f ,k Φvv, f ,k

 . (2.4)

Therefore, it is the sensitivity of the control,
[
Φ−1

rv, f ,kΦrr, f ,k I
]
, and the deviation

from the nominal trajectory, x̂−k , that affect the magnitude of the TCM. The amount of

control can be reduced if TCM is performed at a timing with large control sensitivity

or if the deviation of the trajectory at the TCM time can be reduced.

In addition, if the true state after TCM is propagated until the final time,

x f =Φ f ,k
(
x−k + Buk + Bδuk

)
+ Γδw f ,k (2.5)

=Φ f ,k
((

x−k − x̂−k
)
+

(
x̂−k + Buk

)
+ Bδuk

)
+ Γδw f ,k (2.6)

=Φ f ,k
((

x−k − x̂−k
)
+ Bδuk

)
+ Γδw f ,k +

 O(
Φvr, f ,k − Φvv, f ,kΦ−1

rv, f ,kΦrr, f ,k

)
r̂−k

 . (2.7)

Therefore, it is the sensitivity of the dynamics, Φ f ,k, the orbit determination error at

the TCM time, x−k − x̂−k , the control error, Bδuk, and the disturbance until the final
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time, Γδw f ,k, that affect the guidance accuracy at the final time. In order to improve

the guidance accuracy of position at the final time, the orbit determination and control

errors should be reduced, or the time between the TCM time and the final time should

be shortened to reduce the sensitivity and disturbance of the dynamics.

2.2 Effect of Trajectory Correction Maneuver Timing

Depending on the timing of the TCM, the expected value of the required ∆V and the

guidance accuracy will change. Usually, TCM is performed multiple times, but for

simplicity, a single TCM is discussed first.

In general, although it depends on the dynamics, the earlier the time is, the greater

the sensitivity of the control to the state at the final time. For example, the state

transition matrix of constant velocity linear motion is

Φ f ,k =

 I
(
t f − tk

)
I

O I

 , (2.8)

and TCM is calculated from the equation as follows.

uk = −
[

1
t f−tk

I I
]

x̂−k . (2.9)

Therefore, the expected value of ∆V required for TCM can be reduced by performing

TCM at an earlier time when the sensitivity of the control to the state at the final time

is larger, and vice versa. In addition, since the initial launch error increases with time

because of dynamics and perturbations, the expected value of ∆V required for the

TCM can be reduced by performing the TCM at an earlier timing for canceling the

state deviations of the initial error.

The guidance accuracy at the final time, however, becomes worse when the TCM

is performed earlier. Due to the estimation error of the state used to plan the TCM and

the control error of the TCM, the trajectory still deviates from the nominal position at
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the final time even after the TCM is performed. This deviation increases with time as a

property of dynamics, and disturbances accumulate with time (Eq. (2.7)). Therefore,

if TCM is performed earlier, the guidance accuracy at the final time becomes lower.

Based on the above discussion, there is a trade-off between the guidance accuracy

at the final time and the ∆V required for TCM, and the TCM time must be determined

to minimize the required ∆V while satisfying the guidance requirement at the final

time.

The same discussion can be made when multiple TCMs are performed. When

performing a TCM that cancels out the error left by the previous TCM, performing

the TCM at an earlier time can reduce the ∆V required for that. However, if the TCM

is performed earlier, the error that cancels out in the next TCM will increase and

the ∆V required for the next TCM will become larger. Therefore, when performing

multiple TCMs, there is a trade-off between the ∆V of one TCM and the ∆V of the

next TCM, and the time of each TCM must be determined to minimize the sum of

the all. The guidance accuracy at the final time depends on the last TCM, and the last

TCM must be planned at a time that satisfies the guidance accuracy at the final time.

2.2.1 Spacing Rule

The Spacing Rule has been studied for a long time in TCM optimization.[10][11][12]

In these studies, the accuracy of orbit determination is assumed to be constant, and

only the optimization of the TCM time is considered for simplicity. By using the

spacing rule, the relationship between the optimal TCM times can be expressed as a

simple ratio, which makes it possible to easily determine the optimal TCM time.

However, Spacing Rule is a theory from a time when stochastic trajectory opti-

mization and numerical optimization were not developed enough, and as mentioned

above, it does not take into account the optimization of orbit determination, various

approximations are made to solve it analytically, and it does not take into account the

probability distribution. In this study, the optimization of TCM is formulated in the

framework of modern stochastic trajectory optimization, which enables us to solve
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problems where Spacing Rule cannot be applied.

2.3 Effect of Orbit Determination Accuracy

From Eq. (2.7), it can be seen that the orbit determination error has a significant

effect on the guidance accuracy at the final time. The effect of orbit determination

error on the magnitude of TCM is also discussed when multiple TCMs are performed.

Equation (2.3) can be transformed as follows.

uk+1 = −
[
Φ−1

rv, f ,k+1Φrr, f ,k+1 I
]

x̂−k+1 (2.10)

= −
[
Φ−1

rv, f ,k+1Φrr, f ,k+1 I
] (

x̂−k+1 − x−k+1 + x−k+1
)

(2.11)

= −
[
Φ−1

rv, f ,k+1Φrr, f ,k+1 I
] (

x̂−k+1 − x−k+1 + Φk+1,k
((

x−k − x̂−k
)
+

(
x̂−k + Buk

)
+ Bδuk

)
+ Γδwk+1,k

)
.

(2.12)

In the equations,

[
Φ−1

rv, f ,k+1Φrr, f ,k+1 I
]
Φk+1,k

(
x̂−k + Buk

)
(2.13)

=Φ−1
rv, f ,k+1

[
Φrr, f ,k+1 Φrv, f ,k+1

]
Φk+1,k

 I

Φ−1
rv,k+1,kΦrr, f ,k

 r̂−k (2.14)

=Φ−1
rv, f ,k+1

[
Φrr, f ,k+1 Φrv, f ,k+1

]  Φrr,k+1,k − Φrv,k+1,kΦ
−1
rv, f ,kΦrr, f ,k

Φvr,k+1,k − Φvv,k+1,kΦ
−1
rv, f ,kΦrr, f ,k

 r̂−k (2.15)

=Φ−1
rv, f ,k+1

(
Φrr, f ,k − Φrv, f ,kΦ

−1
rv, f ,kΦrr, f ,k

)
r̂−k (2.16)

=0. (2.17)

.

The transformation of the last equation is from the propoerty of state transitiom
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matrix,

Φ f ,k = Φ f ,k+1Φk+1,k (2.18)

Φrr, f ,k = Φrr, f ,k+1Φrr,k+1,k + Φrv, f ,k+1Φvr,k+1,k (2.19)

Φrv, f ,k = Φrr, f ,k+1Φvr,k+1,k + Φrv, f ,k+1Φvv,k+1,k. (2.20)

Finally, the formulation of TCM is as follows.

uk+1 = −
[
Φ−1

rv, f ,k+1Φrr, f ,k+1 I
] (− (

x−k+1 − x̂−k+1
)
+ Φk+1,k

((
x−k − x̂−k

)
+ Bδuk

)
+ Γδwk+1,k

)
.

(2.21)

From the formulation of TCM, it can be seen that there is an increase in the control

due to the orbit determination error at TCM, x−k+1− x̂−k+1. In addition, the trajectory de-

viation caused by the orbit determination error at the previous TCM time and control

error, Φk+1,k

((
x−k − x̂−k

)
+ Bδuk

)
, increases the TCM control at the next time. There-

fore, in order to reduce the ∆V required for TCM, it is necessary to improve the orbit

determination accuracy at the TCM time.

In order to reduce the orbit determination error, it is necessary to use an observa-

tion method with high accuracy such as Delta Differential One-way Range (DDOR)

measurement or to perform orbit determination multiple times. In addition, the ac-

curacy of orbit determination may vary depending on the timing as a property of

dynamics and observation methods. Therefore, it is desirable to reduce the orbit de-

termination error by optimizing the timing of the orbit determination within the range

of resources to reduce the ∆V of TCM.
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2.4 Integrated Optimization of Trajectory Correction Maneuver

Timing and Orbit Determination Accuracy

From Eq. (2.7), the guidance accuracy at the final time is determined by the orbit

determination accuracy at the time of the last TCM and the disturbance that accumu-

lates between that time and the final time. If the orbit determination accuracy can

be improved, the magnitude of the disturbance, i.e. the time between the last TCM

time and the final time, can be increased. Thereby, the sensitivity of the control at

the last TCM time can be extended, and the required ∆V can be reduced. In the case

other than the last TCM, if the orbit determination accuracy is high, the portion of

the trajectory deviation to be canceled in the next TCM that comes from the orbit

determination error can be reduced, and the TCM time can be advanced to reduce

the ∆V required for that TCM. Therefore, if the orbit determination accuracy can be

improved, it will be possible to reduce the ∆V required for the TCM by both the ef-

fect of the sensitivity of dynamics and the effect of the orbit determination accuracy

itself. The above discussion shows that in TCM optimization, both TCM time and or-

bit determination accuracy have a significant effect on the ∆V and guidance accuracy

required for TCM, and both of them need to be optimized in an integrated manner.

Especially in the case of missions where the cost of orbit determination is limited, a

major issue is how much resource of orbit determination to allocate to which timing.
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Chapter 3

Stochastic Trajectory Optimization Problems

God does not play dice with the

universe.

Albert Einstein

In this chapter, stochastic trajectory optimization is explained. First, an ordinary

deterministic trajectory optimization problem is formulated, and then a stochastic tra-

jectory optimization problem is formulated by defining the state and control quantities

as stochastic processes. A method of solving the stochastic trajectory optimization

problem by converting it into a deterministic trajectory optimization problem by pa-

rameterizing the probability distribution is introduced, and issues to be considered in

the formulation of the problem in this study are discussed.

3.1 Deterministic Trajectory Optimization Problems

Although there are various expressions for the deterministic trajectory optimization

problem depending on the assumptions of the problem, the deterministic trajectory

optimization problem with fixed initial time, final time, initial state quantity, and final

state quantity in the discrete-time dynamical system can be expressed by the following

equation.
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minimize
Mi

Ni∑
i

Ji (Xi, Ui) (3.1)

subject to Xi = Fi,i−1 (Xi−1) + BUi−1 (3.2)

Ui = Mi
(
X−i

)
(3.3)

X0 = X0 (3.4)

X f = X f (3.5)

Ci (Xi, Ui) ≤ 0. (3.6)

Equation 3.1 represents the objective function, which is the sum of the cost func-

tions at each time. Equation 3.2 represents the transition of the state quantity due

to dynamics and control. Equation 3.3 represents the control strategy based on state

quantities, which consists of feed-forward control, which is a function of time only,

and feed-back control based on time and state quantities. Equations 3.4 and 3.5 repre-

sent the initial and final values of the state quantity, respectively. Equation 3.6 shows

the constraints of the state and control quantities at each time.

Although many methods have been proposed to solve the deterministic trajectory

optimization problem, such as the direct method, indirect method, shooting method,

collocation method, etc., it is basically converted into a numerical optimization prob-

lem and solved using numerical optimization methods.

3.2 Stochastic Trajectory Optimization Problems

It is necessary to solve stochastic trajectory optimization problems in order to account

for uncertainties in state quantities, control errors, stochastic disturbances, etc. In the

stochastic trajectory optimization problem, the state and control quantities are defined

as stochastic processes, and the state and control quantities at each time are random

variables.
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3.2.1 Stochastic Trajectory Optimization Problems with Perfect Information

When the information of the state quantity to be used for feedback control is com-

pletely known, the stochastic trajectory optimization problem can be expressed by the

following equation.

minimize
Mi

E

 Ni∑
i

Ji (Xi, Ui)

 (3.7)

subject to Xi = Fi,i−1 (Xi−1) + B (Ui−1 + δUi) + Γδwi,i−1 (3.8)

Ui = Mi
(
X−i

)
(3.9)

p (X0) = p
(
X0

)
(3.10)

P (Ci (Xi, Ui) ≤ 0) ≥ 1 − ∆i. (3.11)

Equation 3.7 represents the objective function, which is expressed as the expected

value of the sum of the cost functions at each time. Equation 3.8 represents the transi-

tion of state quantities due to dynamics, control, and stochastic disturbances. Equation

3.9 represents a control strategy similar to the deterministic trajectory optimization

problem. Equation 3.10 shows the initial distribution of the state quantities. Equa-

tion 3.11 shows the constraints on the state and control quantities at each time. In

stochastic trajectory optimization problems, these constraints are expressed as chance

constraints.[17][19]

3.2.2 Stochastic Trajectory Optimization Problems with Imperfect Informa-

tion

In the real situation, the information on the state quantity used for feedback control

will never be completely known, and the control will be based on the estimated value.

In this case, Equation 2.9 is changed as follows to control based on the estimated

value.

Ui = Mi

(
X̂−i

)
. (3.12)
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Various methods to obtain the estimated values have been studied, and batch fil-

ters and Kalman filters are often used.[30] In addition, there is an error between the

estimated state value and the true state value, and the estimation error changes the

control quantity and affects the uncertainty of the true state value. How to deal with

the estimation error is a major issue in stochastic trajectory optimization. In this study,

this problem is solved by introducing an augmented state quantity that combines the

true state value and the estimated state value.

3.2.3 Solving Method of Stochastic Trajectory Optimization Problems

Like the deterministic trajectory optimization problem, the stochastic trajectory opti-

mization problem also needs to be converted into a numerical optimization problem

and solved using a numerical optimization method. Various methods have been pro-

posed to solve the problem, but the most common method is to parameterize the

probability distribution of state and control quantities and convert the problem into a

deterministic trajectory optimization problem with respect to the parameters. Once

the deterministic trajectory optimization problem for the parameters of the probabil-

ity distribution is formulated, it can be solved using numerical optimization methods

similar to those used for ordinary deterministic trajectory optimization problems.

Parameterization of the probability distribution is done by approximating the prob-

ability distribution of the state and control quantities represented by a certain param-

eter, as follows.

p(X) ≈ fX (X, θX) (3.13)

p(U) ≈ fU (U, θU) . (3.14)

This makes it possible to express the probability distributions of the state and control

quantities at each time as parameters rather than functions. Various methods have

been proposed for parameterizing probability distributions and propagating these pa-

rameters.

The probability distribution is parameterized and the deterministic trajectory op-
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timization problem with respect to it is expressed by the following equations.

minimize
Mi

Ni∑
i

Ji
(
θX,i, θU,i

)
(3.15)

subject to θX,i = Fi,i−1
(
θX,i−1

)
(3.16)

θU,i =Mi

(
θ−X,i

)
(3.17)

θX,0 = θX,0 (3.18)

Ci
(
θX,i, θU,i

) ≤ 0. (3.19)

Equation 3.15 is the objective function transformed into a function of the param-

eters of the probability distribution. Equation 3.16 is the propagation equation of the

parameters of the probability distribution of the state quantity. Equation 3.17 is a

formula for obtaining the probability distribution of a control quantity by using the

parameters of the probability distribution of the state quantity and the control strat-

egy. Equation 3.18 is the initial value of the parameter of the probability distribution

of the state quantity. Equation 3.19 is the chance constraint converted to a function of

the parameters of the probability distribution.

3.3 Formulation of Problem

In this section, the optimization problem to be solved in this study is formulated. The

problem of optimizing the TCM time and orbit determination time is solved so as to

minimize the expected value of ∆V required for TCMs while satisfying the required

guidance accuracy at the final time. Uncertainties to be considered include orbit inser-

tion error, orbit determination error, control error, and dynamics error, whereby state

and control quantities are considered as stochastic processes.

The optimization problem is described in terms of stochastic trajectory optimiza-

tion. The expected value of ∆V required for trajectory correction is minimized. The

propagation of the probability distribution of the augmented state, which is a combi-
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nation of the true and estimated state, is considered. Constraints on the augmented

states and optimization variables are placed as chance constraints. The optimization

variables are the trajectory correction maneuver time tk and the orbit determination

time tl. Therefore, the optimization problem to be solved in this study is as follows.

minimize
tk∈Tk , tl∈Tl

E

 Nk∑
k

∥Uk + δUk∥2
 (3.20)

subject to p(Zi) = Fi,i−1 (p (Zi−1)) (3.21)

p (Z0) = p0 (Z0) (3.22)

p (Uk) =Mk
(
p
(
Z−k

))
(3.23)

P (Ci (Zi) ≤ 0) ≥ 1 − ∆i ti ∈ T (3.24)

C (tk, tl) ≤ 0, (3.25)

where F is an operator of time propagation of p (Z) derived from F,M is an operator

calculating p (Uk) from p
(
Z−k

)
derived from M, and T is a possible range of time.

It is difficult to solve this optimization problem directly considering the proba-

bility, and thus it is necessary to formulate the problem to be optimized numerically.

In this research, the probability distribution of the state quantity is parameterized by

the Gaussian approximation method or the Monte Carlo method. By formulating the

propagation equation of the augmented state, the propagation of the probability distri-

bution can be derived. The probability distribution of the control is also parameterized

in the same way, and its parameters are calculated from the control law and the prob-

ability distribution of the state. The chance constraint on the state quantity is also

formulated so that it can be calculated from the parameters of the probability distribu-

tion of the state. With this formulation, the objective function and all constraints can

be calculated as a function of the trajectory correction time and orbit determination

time, and optimization can be performed using numerical optimization algorithms.
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3.4 Issues to Solve Stochastic Trajectory Optimization Problems

From the formulation in the previous section, the following issues exist in order to

solve stochastic trajectory optimization problems, and they need to be formulated

appropriately for the problem so that they can be solved as numerical optimization

problems. The formulation of issues in this study will be explained in detail in Chapter

4.

1. Formulation of estimation of state and handling of estimation errors

2. Parameterization of probability distributions of state quantities, control quanti-

ties, and uncertainties

3. Propagation of parameters of probability distributions of state quantities

4. Computation of parameters of probability distributions of control quantities

5. Calculation of objective function based on parameters of the probability distri-

bution of state and control quantities

6. Formulation of chance constraints

7. Selection of numerical optimization method
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Chapter 4

Formulation of Optimization Problem

He who would learn to fly one day

must first learn to stand and walk

and run and climb and dance; one

cannot fly into flying.

Friedrich Wilhelm Nietzsche

In this chapter, the optimization problem presented in the previous chapter is for-

mulated. The probability distribution of state and control is parameterized. The objec-

tive function and constraints of the optimization problem are formulated as functions

of the parameters of the probability distribution of state and the control variables, and

the stochastic optimization problem is converted into the deterministic optimization

problem to be solved by numerical optimization algorithms.

4.1 Propagation of State

This section describes how the probability distributions of the true and estimated state

quantities of a spacecraft are propagated under uncertainty such as errors in dynam-

ics, control, and observation. Under the uncertainty, the state quantities related to

the trajectory of the spacecraft can be considered as a stochastic process, and if the

probability distribution can be calculated, it is possible to calculate the accuracy of

the trajectory guidance required for the success of the mission and the expected value

of the ∆V required for the trajectory correction.
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There are two types of state quantities: the true state, which we cannot know,

and the estimated state, which can be estimated by orbit determination. The former

is related to the success or failure of the mission, but we can only use the latter for

orbit control. These state quantities are considered to influence each other and are

coupled. Figure4.1 shows the coupling between the true state and the estimated state

The true state performs motions according to the natural dynamics, and the trajectory

control that affects the true state is planned according to the estimated state. On the

other hand, the estimated state is transitioned by an estimation algorithm such as the

Kalman filter and updated based on the observables generated from the true state.

Therefore, except in special problem settings, these cannot be considered separately.

In this research, the problem using augmented state quantities is formulated, which

are a combination of these two. The concept of augmented state is often used in linear

covariance analysis of rendezvous problems, where the dynamics is linear, but in this

study, the formulation is applicable to nonlinear dynamics problems and stochastic

trajectory optimization.[25]-[28]

Figure 4.1: Coupling between the true state and the estimated state.

When the algorithms for trajectory correction and orbit determination are fixed,

the formulation of the propagation of augmented state quantities makes it possible to

calculate the probability distribution of state quantities at all times from the proba-

bility distribution of the initial state and the timing of trajectory correction and orbit

determination.
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4.1.1 Stochastic Differential Equation

In this study, it is assumed that the motion of the spacecraft follows a stochastic dif-

ferential equation. The stochastic differential equation is expressed by the following

equation.[29]

dX = F (X, t) dt + Γ (X, t) dw. (4.1)

It is difficult to obtain analytical solutions for nonlinear stochastic differential equa-

tions.

Solutions to ordinary differential equations, which ignores the Brownian motion

term, can be obtained by numerical integration or mathematical analysis. The solution

of nonlinear ordinary differential equation,

dX = F (X, t) dt, (4.2)

is

X = Ft,t0
(
Xt0

)
. (4.3)

In addition, the solution of linear stochastic differential equations can be solved

analytically. The solution to the linear stochastic differential equation with lineariza-

tion around a reference trajectory and assumption of Γ (X, t) = Γ,

dx = A (t) xdt + Γdw, (4.4)

is as follows

x = Φt,t0 x0 + Γδwt,t0 , (4.5)
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where δwt,t0 is a random variable that follows a Gaussian distribution,

δwt,t0 ∼ N
(
0,Qt,t0

)
(4.6)

Qt,t0 =

∫ T

t0
Φt,τQΦT

t,τdτ (4.7)

Q = ΓΓT. (4.8)

Actually Γ = I, and it is unnecessary for representation, but it is left in for compati-

bility with common expressions.

As mentioned above, it is difficult to obtain analytical solutions to nonlinear stochas-

tic differential equations, and the computation becomes complicated when the cou-

pling between the disturbance term and the dynamics is considered. In this study,

therefore, the solution of the nonlinear ordinary differential equation, that is the dy-

namics without the Brownian motion term, plus the disturbance term obtained as the

solution of the linear stochastic differential equation, is treated as an approximation

of the solution of the nonlinear stochastic differential equation.[19]

X = Ft,t0
(
Xt0

)
+ Γδwt,t0 . (4.9)

4.1.2 Control and Control Error

In this study, the control is assumed to be an impulsive feedback control based on an

estimated state value.

Uk = Mk

(
X̂−k

)
. (4.10)

For modeling of control error, Gate’s model has been proposed.[40][41] In this

study, the following model consisting of two types of control error is considered for

simplicity: one that is constant regardless of the magnitude of control, and one that is

proportional to the magnitude of control.
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δUk ∼ N
(
0, S 0,k + c2UkUT

k

)
, (4.11)

where S 0,k is the fixed control error and c is the coefficient of proportional control

error.

4.1.3 Propagation of True States

First, the propagation of the true state is discussed. It is assumed that the true state is

propagated according to the dynamics and stochastic disturbances.

Xi = Fi,i−1 (Xi−1) + Γδwi,i−1. (4.12)

At the timing of the trajectory correction, the control is added based on the esti-

mated state at orbit determination timing tl propagated to the current time. Consid-

ering the control law and the control error, the propagation of the true state can be

expressed as follows.

Xk = Fk,l(k)
(
Xl(k)

)
+ B (Uk + δUk) + Γδwk,l(k) (4.13)

Uk = Mk

(
X̂−k

)
(4.14)

= Mk

(
Fk,l(k)

(
X̂l(k)

))
. (4.15)

At the timing of the orbit determination, the true state is not affected by it, and

thus the propagation is the same as Eq. (4.12).

Xl = Fl,l−1 (Xl−1) + Γδwl,l−1. (4.16)

4.1.4 Propagation of Estimated States

In this study, an estimated state value is defined as a conditional expectation about the

observed value of a state quantity. Using Bayesian estimation, the estimated value is
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expressed as a random variable with conditional probability about the observed value.

X̂ ∼ p (X | {Y1...Yl}) . (4.17)

The feedback control law treated in this research does not use all the information

of the probability distribution, but defines one estimated value and performs control

based on that estimated value. In this case, an estimate that minimizes the mean

square of the estimation error is used generally, which is the conditional expectation

of the observed value of the state quantity.

X̂ = E [X | {Y1...Yl}] . (4.18)

The Kalman filter is an algorithm that can compute the conditional expectation of

the observed values of state variables in a sequential manner.[30] In this study, the

Extended Kalman Filter (EKF) is adopted, which is extended to nonlinearity, as a

method to compute the estimated values. It is also possible to use other estimation

algorithms like Unscented Kalman Filter (UKF).[31]-[33]

X̂i = Fi,i−1

(
X̂i−1

)
(4.19)

Pi = Φi,i−1Pi−1Φ
T
i,i−1 + ΓQi,i−1Γ

T (4.20)

Φi,i−1 =
∂Fi,i−1

∂Xi−1

∣∣∣∣∣
X̂i−1

. (4.21)

At the timing of the trajectory correction, the control is added, and the control

error is taken into account for the propagation of P.

X̂k = Fk,l(k)

(
X̂l(k)

)
+ BUk (4.22)

Pk = Φk,l(k)Pl(k)Φ
T
k,l(k) + BS kB + ΓQk,l(k)Γ

T (4.23)

Φk,l(k) =
∂Fk,l(k)

∂Xl(k)

∣∣∣∣∣∣
X̂l(k)

. (4.24)
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At the timing of the orbit determination, the observation update is performed based

on the observation generated from the true state and the observation error.

X̂l = Fl,l−1

(
X̂l−1

)
+ Kl

(
Yl − Ŷl

)
(4.25)

Yl = G (Xl) + εl (4.26)

Ŷl = G
(
X̂l

)
(4.27)

Kl = Pl|l−1HT
l

(
HlPl|l−1HT

l + Rl

)−1
(4.28)

Hl =
∂G
∂Xl

∣∣∣∣∣
Fl,l−1

(
X̂l−1

) (4.29)

Pl|l−1 = Φl,l−1Pl−1Φ
T
l,l−1 + ΓQl,l−1Γ

T (4.30)

Pl = (I − KlHl) Pl|l−1. (4.31)

4.1.5 Propagation of Augmented States

The discussion in the previous section shows that the propagation of the true state

value and the estimated state value are coupled to each other. These couplings cannot

be ignored except in special situations where the Separation Principle is valid. There-

fore, the propagation of the augmented state is considered, which combines the true

state value and the estimated value state together.

Z =

 X

X̂

 (4.32)

In fact, the covariance matrix in the EKF is also a quantity that should be treated

as an augmented state. However, since the covariance matrix of the Kalman filter in

linear dynamics is not a variable that can be distributed as a quantity that depends

on the true state, the estimated state (mean), or observed value, it is not included in

the augmented state when using the Gaussian approximation method described later.

In this case, the covariance matrix is calculated around the nominal trajectory, and

is treated as a quantity independent of the true or estimated state. If Monte Carlo

approximation is used for propagation, the covariance matrix can be calculated at
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each point.

From Eqs. (4.12) to (4.31) the propagation equation of the augmented state is

 Xi

X̂i

 =
 Fi,i−1 (Xi−1) + Γδwi,i−1

Fi,i−1

(
X̂i−1

)
 (4.33)

Pi = Φi,i−1Pi−1Φ
T
i,i−1 + ΓQi,i−1Γ

T. (4.34)

At the timing of the trajectory correction,

 Xk

X̂k

 , =
 Fk,l(k)

(
Xl(k)

)
+ Γδwk,l(k) + B (Uk + δUk)

Fk,l(k)

(
X̂l(k)

)
+ BUk

 (4.35)

Uk = Mk

(
Fk,l(k)

(
X̂l(k)

))
(4.36)

Pk = Φk,l(k)Pl(k)Φ
T
k,l(k) + BS kB + ΓQk,l(k)Γ

T (4.37)

and at the timing of the orbit determination,

 Xl

X̂l

 =
 Fl,l−1 (Xl−1) + Γδwl,l−1

Fl,l−1

(
X̂l−1

)
+ Kl

(
Yl − Ŷl

)
 (4.38)

Yl = G (Xl) + εl (4.39)

Ŷl = G
(
X̂l

)
(4.40)

Kl = Pl|l−1HT
l

(
HlPl|l−1HT

l + Rl

)−1
(4.41)

Pl|l−1 = Φl,l−1Pl−1Φ
T
l,l−1 + ΓQl,l−1Γ

T (4.42)

Pl = (I − KlHl) Pl|l−1. (4.43)

4.1.6 Propagation of Targeting States

In this section, targeting states X′ is proposed, which are not directly related to the

optimization formulation but are useful for the quantitative analysis of TCM. The

propagation equation of targeting states is as follows.

The targeting states are propagated by state equation without stochastic distur-

28



bance,

X′i = Fi,i−1
(
X′i−1

)
. (4.44)

At the timing of the trajectory correction, the targeting state value is initialized by

the estimated state value,

X′k = X̂k. (4.45)

When the FTA Guidance introduced in Chapter 2 is adopted for the TCM control

law, the propagated position of the targeting states until the final time coincides with

the position of the nominal trajectory.

F f ,i
(
X′i

)
= X∗f − BδV f . (4.46)

Therefore, the difference between the true state and the targeting state is an indication

of the guidance error, especially when the propagation is done after the last TCM

until the final time, which is consistent with the final guidance error. The difference

between the true state and the targeting state corresponds to the orbit determination

error and control error at the TCM time, and increases thereafter as the characteristics

of the dynamics and disturbance accumulation.

The difference between the estimated state and the targeting state is directly related

to the magnitude of the TCM. Considering the linearized system as in Chapter 2,

the following equation shows that the TCM is affine to the difference between the

estimated state and the targeting state.
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uk = −
[
Φ−1

rv, f ,kΦrr, f ,k I
]

x̂−k (4.47)

= −
[
Φ−1

rv, f ,kΦrr, f ,k I
] (

x̂−k − x′−k + x′−k
)

(4.48)

= −
[
Φ−1

rv, f ,kΦrr, f ,k I
] (

x̂−k − x′−k + Φk,k−1 x̂k−1
)

(4.49)

= −
[
Φ−1

rv, f ,kΦrr, f ,k I
] (

x̂−k − x′−k
)
. (4.50)

Therefore, the difference between the estimated state and the targeting state is an

approximate amount of the size of the TCM when the TCM is planned at that time.

If the orbit determination error is ignored, the difference between the true state and

the targeting state also corresponds to it. This means that the TCM except for the first

TCM is planned to cancel out the error accumulated after the previous TCM. Since the

orbit determination error depends on the timing or method of the orbit determination,

the difference between the true state and the targeting state is a quantity that is not

affected by it. Thus, the difference between the true state and the targeting state can

be treated as an indication when analyzing the effect of uncertainties except for orbit

determination error on the magnitude of TCM.

Of course, the targeting state is coupled with the true state and the estimated state,

so when performing analysis using the targeting state, it is necessary to add the tar-

geting state to the augmented state for propagation.

4.2 Parameterization of Probability Distributions

With the presence of uncertainty, the true state and the estimated state become ran-

dom variables. There are various methods for parameterization of the probability

distribution of the augmented state p (Z). Although any formulation method can be

used in this study, the two most commonly used methods for parameterization of the

probability distributions are the Gaussian approximation method and the Monte Carlo

method.
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4.2.1 Gaussian Approximation Method

The Gaussian approximation regards the probability distribution at each time as a

Gaussian distribution. The parameters are the mean µ and covariance matrix Σ.

Z ∼ N (µZ,ΣZ) (4.51)

p(Z) ≈
exp

(
−1

2 (Z − µZ)TΣZ
−1(Z − µZ)

)
√

(2π)d|ΣZ |
(4.52)

θZi =
[
µZi ΣZi

]
, (4.53)

where d is the dimension of agumented state vector.

The Gaussian approximation method is a very popular method due to its ease of

theoretical handling. However, since the Gaussianity is lost due to the propagation

of the probability distribution under nonlinear dynamics, there is a problem that the

approximation accuracy deteriorates for problems with strong nonlinearity.

4.2.2 Monte Carlo method

The Monte Carlo method is a method of approximating a probability distribution as a

collection of particles Z(n). The parameters are the state vectors of the particles Z(n).

p(Z) ≈ 1
N

N∑
n=1

δ
(
Z − Z(n)

)
(4.54)

θZi =
[
Z(1)

i Z(2)
i · · · Z(N)

i

]
, (4.55)

where δ (·) is the Dirac delta distribution.

Since this method directly approximates the probability distribution, it can be ap-

plied to general probability distributions other than the Gaussian distribution.
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4.3 Formulation of Uncertainty Propagation

By using methods introduced in the previous section, the propagation of the param-

eters of the probability distribution can be formulated with their initial values as fol-

lows.

θZi = Fi,i−1
(
θZi−1

)
(4.56)

θZ0 = θZ0 , (4.57)

where F is a function of time propagation of θZ derived from F and θ̄Z0 is the initial

value of θZ0 .

4.3.1 Gaussian Approximation Method

Linear approximation is often used for propagation of µ and Σ because of its short

computation time. Unscented Transform or cubature rules, which are useful for highly

nonlinear problems, can also be used.[31]-[34]

The propagation equations for the mean and covariance matrices in the linear ap-

proximation are as follows (see Appendix A). At the control time,

µZk =

 I Ck

O I +Ck


 Φk,l(k) O

O Φk,l(k)

µZl(k) (4.58)

ΣZk =

 I Ck

O I +Ck


 Φk,l(k) O

O Φk,l(k)

ΣZl(k)

 Φk,l(k) O

O Φk,l(k)


T  I Ck

O I +Ck


T

+

 B

O

 S k

 B

O


T

+

 ΓO
 Qk,l(k)

 ΓO


T

(4.59)

Ck = B
∂Mk

∂Xk

∣∣∣∣∣
Fk,l(k)

(
X∗l(k)

) , (4.60)
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and at the orbit determination time,

µZl =

 I O

KlHl I − KlHl


 Φl,l−1 O

O Φl,l−1

µZl−1 (4.61)

ΣZl =

 I O

KlHl I − KlHl


 Φl,l−1 O

O Φl,l−1

ΣZl−1

 Φl,l−1 O

O Φl,l−1


T  I O

KlHl I − KlHl


T

+

 ΓO
 Qk,l(k)

 ΓO


T

+

 O

Kl

 Rl

 O

Kl


T

. (4.62)

In the above equations, since the control error represented in the equation does not

follow a Gaussian distribution, the following approximation is placed to perform the

calculation.

δUk ∼ N (0, S k) (4.63)

S k = S 0,k + c2ΣUk (4.64)

= S 0,k + c2 ∂Mk

∂Xk

∣∣∣∣∣
Fk,l(k)

(
X∗l(k)

)
[

O Φk,l(k)

]
ΣZl(k)

[
O Φk,l(k)

]T ∂Mk

∂Xk

∣∣∣∣∣T
Fk,l(k)

(
X∗l(k)

) .
(4.65)

The accuracy becomes worse when the true probability distribution moves away

from the Gaussian distribution due to the strong nonlinearity of the dynamics. How-

ever, when considering a problem such as the one in this study, in which the states

are guided to a certain point, the probability distribution is often close to the Gaussian

distribution, making it applicable to a wide range of problems.

4.3.2 Monte Carlo method

Each of the particles Z(n) is propagated by state quantity propagation equations (Eqs.

(4.12) to (4.31)). It requires a large number of particles to accurately approximate the

probability distribution, and the computational cost is much higher than that of the

Gaussian approximation method. In order to reduce the computational cost, instead
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of using the equation for propagation of random variables, a method of propagation

using a surrogate model such as Polynomial Chaos Expansion (PCE) or State Transi-

tion Tensor (STT) has been proposed.[35]-[39]

4.3.3 Initial Distribution

In this research, there are two ways of assuming the initial distribution depending on

the phase of solving the problem. In this section, the Gaussian approximation method

is used as an example for explanation.

Z0 ∼ N


 µX0

µX̂0

 ,
 ΣX0 O

O ΣX̂0


 . (4.66)

The first is the case where the optimization problem is solved before launch. In

this case, the distributions of the true and the estimated state are assumed to follow

the initial distribution according to the launch error, respectively.

µX0 = µX̂0
= µ0 (4.67)

ΣX0 = ΣX̂0
= Σ0. (4.68)

The second case is to optimize the problem again after the spacecraft is launched

and the orbit determination is conducted. In this case, the initial estimated state is

considered to be a non-distributed quantity that is uniquely determined by the outcome

of the orbit determination. The initial true state is considered to be a quantity that is

distributed according to the belief of the orbit determination result.
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µX0 = µX̂0
= X̂0 (4.69)

ΣX0 = P0 (4.70)

ΣX̂0
= O. (4.71)

4.4 Computation of parameters of probability distributions of con-

trol

Like the state quantity, the probability distribution of control quantity can also be pa-

rameterized using Gaussian approximation or the Monte Carlo method. The parame-

ters of the probability distribution are a function of the parameters of the probability

distribution of the state quantity before control.

θUk =Mk

(
θ−Zk

)
, (4.72)

where M is a function calculating θUk from θ−Zk
derived from M.

Although there are variations in the form of M depending on the parameterization

method, the same method as uncertainty propagation described in the previous section

can be used.

4.5 Objective Functions

The objective function (Eq. (3.20)) is the expected value of ∆V needed for the tra-

jectory correction. Even if the Gaussian approximation method is used, the expected

value of the 2-norm of the control vector cannot be calculated analytically from the

parameters. Therefore, it is necessary to approximate the objective function, and there

are two main possible methods to approximate the objective function.
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4.5.1 Jensen’s Inequality

When the probability distribution of the control quantity is given by the Gaussian

approximation method, the upper bound on the objective function can be calculated

by using Jensen’s inequality, and this method uses that upper bound as the objective

function.

Jensen’s inequality holds for convex function f (x),

f (E [x]) ≤ E [
f (x)

]
. (4.73)

When f (x) = x2 and x = ∥Uk + δUk∥2, this inequality become

(E [∥Uk + δUk∥2])2 ≤ E
[
(∥Uk + δUk∥2)2

]
(4.74)

E [∥Uk + δUk∥2] ≤
√
E

[
(∥Uk + δUk∥2)2

]
=

√
(∥E [Uk + δUk] ∥2)2 + tr (V [Uk + δUk]).

(4.75)

Therefore, in this method, the right-hand side of the equation is regarded as a

new objective function to be minimized. This objective function is computationally

inexpensive and can be handled easily. It is a good method to obtain an approximate

solution for the true optimization, but since it does not minimize the true objective

function, a better calculation method is necessary to obtain the true optimal solution,

as explained in the next section.

4.5.2 Monte Carlo method

Monte Carlo methods are used to directly approximate the true objective function.

It can calculate the true objective function more accurately than the upper bound of

Jensen’s inequality.

E [∥Uk + δUk∥2] ≈ 1
N

N∑
n=1

∥U(n)
k + δU

(n)
k ∥2. (4.76)
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For the Gaussian approximation method, the method is to generate samples from

the probability distribution of Uk + δUk and to calculate the mean of the 2-norm of the

values of the samples. This method requires a large number of samples to improve

the accuracy, but even with a large number of samples, it can be computed relatively

fast by parallel computing using graphical processing units.

When the Monte Carlo method is employed for propagating the probability distri-

bution, it is possible to directly approximate the probability distribution of ∥Uk+δUk∥2

and thus calculate the objective function.

4.6 Constraints

4.6.1 Chance Constraint on State

The chance constraint on state quantities is formulated as a function of the parameters

of the probability distribution.

CZ
(
θZi

) ≤ 0. (4.77)

The method of the formulation depends on the chance constraints themselves, and

it is necessary for them to be formulated accordingly.

An example of a chance constraint is that the probability of a state quantity being

within a certain region is greater than a certain value.[42]-[48]

P (X ∈ S ) ≥ 1 − ∆. (4.78)

This chance constraint can be transformed into the following condition when X

follows a Gaussian distribution, X ∼ N (µX,ΣX), and S is affine to X, S = {X |

aTX + b ≤ 0}.

aTµX + b + Ψ (1 − ∆)
√

aTΣX a ≤ 0. (4.79)

37



where Ψ (·) is the inverse function of the standard Gaussian cumulative distribution

function.

When the Monte Carlo method is adopted, the chance constraint is formulated that

the percentage of particles that satisfy the constraint is larger than the threshold.

N∑
n=1

δ(n)

N
≥ 1 − ∆ (4.80)

δ(n) =


1 X(n) ∈ S

0 otherwise
(4.81)

In addition to the single chance constraint, the joint chance constraint can also be

considered.

P
(
∧ jX ∈ S j

)
≥ 1 − ∆. (4.82)

For all individual constraints, the following inequality is assumed.

P
(
X ∈ S j

)
≥ 1 − ∆ j (4.83)

⇔P
(
X < S j

)
≤ ∆ j. (4.84)

By using Boole’s inequality,

P
(
∨ jX < S j

)
≤

∑
j

P
(
X < S j

)
≤

∑
j

∆ j. (4.85)

Therefore, if
∑

j ∆ j ≤ ∆ holds,

P
(
∧ jX ∈ S j

)
= 1 − P

(
∨ jX < S j

)
≥ 1 −

∑
j

∆ j ≥ 1 − ∆. (4.86)

4.6.2 Terminal Constraint on Final State

The constraint on the guidance accuracy for the state at the final time can be set in the

chance constraint, but, in this study, it is assumed to be the condition on the mean and
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the covariance matrix of the final state, referring to the Covariance Control.[42]

E
[
X f

]
= X∗f (4.87)

V
[
X f

]
⪯ ΣX f (4.88)

4.6.3 Constraint on Optimization Variables

Examples of constraints about optimization variables, trajectory correction and orbit

determination timings, are the minimum intervals between orbit determination tim-

ings and the fixed cut-off time of orbit determination before trajectory correction,

tl − tl−1 ≥ δtod (4.89)

tk − tl(k) = δtc f (4.90)

tl ≤ tl(k) − δtod or tl ≥ tk + δtod, (4.91)

where δtod is the minimal interval of the orbit determination. Equation (4.91) can be

converted into the following equation of a nonlinear constraint.

min
(
tl −

(
(tl(k) − δtod

)
, tk − tl

) ≤ 0. (4.92)

4.7 Numerical Optimization Algorithm

In the formulation of this study, the numerical optimization algorithm to be used is

constrained nonlinear programming. Sequential Quadratic Programming (SQP), Gen-

eralized Pattern Search (GPS), and Genetic Algorithm (GA) are used in the simulation

of this study.[49]

SQP is an optimization method that solves quadratic programming subproblems

iteratively. SQP requires that the objective function and the constraints are twice

continuously differentiable. However, since the objective function in this research is

discontinuous when the TCM timings change over the orbit determination timings be-

cause of an instant change of covariance matrix of Kalman Filter, SQP cannot handle
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such a change of TCM timings.

GPS is an optimization method that does not require information on the gradi-

ent of the objective function. The objective function can be discontinuous and non-

differentiable, and it can handle linear and non-linear constraints on the optimization

variables. Because of the discontinuity of the objective function in this study, GPS

can be suitable as the optimization method. However, GPS requires much computa-

tional time and function evaluation, it is not appropriate for optimizing local change

of which SQP is good at optimization. Therefore, it seems that a combination of GPS

and SQP would be a good idea.

In particular problems, GA can be useful in terms of global optimization. When

the number of optimization variables is large, the calculation of GA takes a lot of time.

In this study, since both the TCM time and the orbit determination time are optimized,

the number of optimization variables is large, which makes the use of GA difficult.

However, it is possible to reduce the number of optimization variables by, for example,

assuming that the orbit determination time is placed with a fixed time interval just

before the orbit determination, and using the number of orbit determination just before

each TCM as the optimization variable instead of the orbit determination time. Since

GA can also handle mixed-integer programming, applying GA to the optimization

problem with the TCM time and the corresponding number of orbit determination

can be considered.

4.8 Transcription of Deterministic Optimization Problem

In summary, the stochastic optimization problem (Eqs. (3.20) to (3.25)) can be trans-

formed into the following deterministic optimization problem. This optimization

problem is solved by using the numerical algorithm.
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minimize
tk∈Tk , tl∈Tl

1
N

Nk∑
k

N∑
n=1

∥U(n)
k + δU

(n)
k ∥2 (4.93)

subject to θZi = Fi,i−1
(
θZi−1

)
(4.94)

θZ0 = θ̄Z0 (4.95)

θUk =Mk

(
θ−Zk

)
(4.96)

CZ
(
θZi

) ≤ 0 ti ∈ T (4.97)

C (tk, tl) ≤ 0. (4.98)
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Chapter 5

Numerical Simulations

Knowledge is of no value unless you

put it into practice.

Anton Chekhov

In this chapter, the validity of the proposed method was demonstrated by numer-

ical simulations. First, the methods of uncertainty propagation were compared for

various trajectories. Next, the optimization was performed for a simple problem of

Hohmann Transfer trajectory in the two-body problem. Finally, the proposed method

was applied to the real problem about the nominal trajectory of PROCYON.

5.1 Assumptions

The assumptions in the numerical simulation are explained in this section.

5.1.1 State Variables

In the numerical simulation of this study, the position and velocity of the spacecraft

were considered as state quantities.

X =
[
RT VT

]T
(5.1)

X̂ =
[
R̂T V̂T

]T
(5.2)

Z =
[
XT X̂T

]T
. (5.3)
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5.1.2 Control Strategy

The control law for trajectory correction was FTA guidance law as stated in Chapter

2. The control was applied to the orbit determination value at the trajectory correction

time, and the control was such that the position of the orbit determination value coin-

cides with the position of the nominal trajectory when it was propagated to the final

time.

5.1.3 Dynamics and Observation

The dynamics used in the numerical simulations were the two-body problem (TBP),

the circular restricted three-body problem (CRTBP), and the n-body problem with

ephemeris. MATLAB ode113 was used for propagation of the TBP and CRTBP, and

jTOP propagator was used for propagation of the n-body problem.[50] In the n-body

problem, solar radiation pressure was also taken into account.

The observational model is assumed to acquire the whole state quantities directly

for simplicity’s sake.

G (Xl) = Xl. (5.4)

5.1.4 Probability Distribution of Errors

The following Gaussian distribution was assumed for the initial state, dynamics, ob-

servation, and control errors. These errors were assumed to be independent of each

other.

Z0 ∼ N


 µX0

µX̂0

 ,
 ΣX0 O

O ΣX̂0


 (5.5)

δwi,i−1 ∼ N
(
0,Qi,i−1

)
(5.6)

εl ∼ N (0,Rl) (5.7)

δUk ∼ N (0, S k) . (5.8)
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5.1.5 Dynamics Error

The dynamics error was an equation that is a solution of a linear stochastic differential

equation as discussed in Chapter 4. In the equation, the calculation of the time integral

of the state transition matrix (STM) is complicated.

One approximation method is to divide the integration time and assume that the

dynamics are time-invariant at that time.[21]

Qi,i−1 =

∫ ti

ti−1

Φti,τQΦ
T
ti,τdτ (5.9)

=

N−1∑
j=0

Φti,ti, j+1

(∫ ti, j+1

ti, j
Φti, j+1,τQΦ

T
ti, j+1,τ

dτ
)
ΦT

ti,ti, j+1

(
ti,0 = ti−1, ti,N = ti

)
. (5.10)

Between ti, j and ti, j+1, the linearized dynamics is assumed as time-invariant,

dx = Axdt (5.11)

Φt,τ = exp (A (t − τ)) (5.12)

ΦT
t,τ = exp

(
AT (t − τ)

)
(5.13)

A = A
(
ti, j

)
. (5.14)

And here, we have the following theorem [52]

exp


 A Q

O −AT

 t′

 =
 exp (At′) G (t′)

O exp
(
−ATt′

)
 (5.15)

G (
t′
)
=

∫ t′

0
exp

(
A

(
t′ − s

))
Qexp

(
−ATs

)
ds, (5.16)
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and substituting t′ = ti, j+1 − ti, j and s = τ − ti, j, then,

G j =

∫ ti, j+1

ti, j
exp

(
A

(
ti, j+1 − τ

))
Qexp

(
AT

(
ti, j − τ

))
dτ (5.17)

=

∫ ti, j+1

ti, j
Φti, j+1,τQΦ

T
ti, j,τdτ, (5.18)

and

∫ ti, j+1

ti, j
Φti, j+1,τQΦ

T
ti, j+1,τ

dτ = G jΦ
T
ti, j+1,ti, j . (5.19)

Therefore, the dynamics error can be calculated as follows.

Qi,i−1 ≈
N−1∑
j=0

Φti,ti, j+1

(
G jexp

(
A

(
ti, j

)T (
ti, j+1 − ti, j

)))
ΦT

ti,ti, j+1
. (5.20)

Another simple approximation method is that the STM of constant velocity linear

motion is used instead of the exact STM.

Φi,τ ≈

 I (ti − τ) I

0 I

 (5.21)

Qi,i−1 ≈


1
3 (ti − ti−1)3 Q′ 1

2 (ti − ti−1)2 Q′

1
2 (ti − ti−1)2 Q′ (ti − ti−1) Q′

 (5.22)

Q =

 O O

O Q′

 . (5.23)

5.1.6 Constraints

The constraints on the final guidance accuracy, the trajectory correction time, and

orbit determination time were the Eqs. (4.89), (4.90), and (4.92).
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5.2 Numerical Simulations of Uncertainty Propagation

5.2.1 Conditions

Three different propagation methods were applied to the two trajectories, and the

magnitudes of the mean and covariance of the state quantities and ∆V were evaluated

and compared. The propagation methods were linear approximation, the Monte Carlo

method with PCE (100,000 samples), and the ordinary Monte Carlo method (100,000

samples). The number of samples used for the evaluation of the objective function at

the linear approximation method was 10,000,000. The two types of trajectories are

shown in Table 5.1 and 5.2. Case 1 is a TBP with an Earth-Mars Hohmann trans-

fer trajectory, and case 2 is a CRTBP of the Saturn-Titan system with a swing-by

trajectory to Titan.

Table 5.1: Simulation parameter settings for case 1.
Variables Values

R∗0, µR0 , µR̂0
[0.00, -1.49e8, 0.00]T km

V∗0, µV0 , µV̂0
[0.00, 32.7, 0.00]T km/s

dynamics Two-Body
µtbp 1.327e11 km3/s2

t f 258.9 days
ΣR0 , ΣR̂0

(1σ) 1000 km
ΣV0 , ΣV̂0

(1σ) 1.00e-3 km/s
Nk 4
tk [11.57 92.59 173.31 254.63] days

S 0 (1σ) 2.00e-5 km/s
Q (1σ) 1.26e-14 km2/s3

δtod 7 days
RR (1σ) 100.0 km
RV (1σ) 1.00e-4 km/s

5.2.2 Results

The simulation results are shown in Figs. 5.1, 5.2, 5.3, and , 5.4 and Table 5.3 and

5.4. The ratio of the standard deviation of the position and velocity and the mean

and standard deviation of ∆V are shown when compared to the usual Monte Carlo

method.
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Table 5.2: Simulation parameter settings for case 2.[51]
Variables Values

R∗0, µR0 , µR̂0
[3.19e5, -6.97e5, -1.86e4]T km

V∗0, µV0 , µV̂0
[3.74, 3.47, -0.253]T km/s

dynamics CRTBP
µcrtbp 2.366e-4

t f 19 days
ΣR0 , ΣR̂0

(1σ) 100 km
ΣV0 , ΣV̂0

(1σ) 1.00e-4 km/s
Nk 6
tk [4.0 6.8 9.6 12.4 15.2 18.0] days

S 0 (1σ) 2.00e-5 km/s
Q (1σ) 1.26e-14 km2/s3

δtod 0.5 days
RR (1σ) 100.0 km
RV (1σ) 1.00e-6 km/s

Figure 5.1: Ratio of the standard deviation of true position and velocity compared to
normal Monte Carlo at case 1.

Table 5.3: Ratio of ∆V mean compared with Monte Carlo of case 2.
Method TCM1 TCM2 TCM3 TCM4

Lin 0.9992 0.9957 0.9996 0.9981
PCE 0.9977 0.9974 0.9994 0.9973
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Figure 5.2: Ratio of the mean and standard deviation of ∆V compared to normal
Monte Carlo at case 1.

Figure 5.3: Ratio of the standard deviation of true position and velocity compared to
normal Monte Carlo at case 2.
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Table 5.4: Ratio of ∆V mean compared with Monte Carlo of case 2.
Method TCM1 TCM2 TCM3 TCM4 TCM5 TCM6

Lin 0.9650 0.9987 0.9993 0.9994 0.9921 0.9987
PCE 0.9977 0.9989 0.9998 0.9997 0.9982 0.9990

Figure 5.4: Ratio of the mean and standard deviation of ∆V compared to normal
Monte Carlo at case 2.

5.2.3 Discussion

The simulation results show that for the TBP (case 1), there was almost no difference

between the linear approximation and the PCE, and both results were in good agree-

ment with the usual Monte Carlo method and their difference were less than 1%. The

reason for the small error is that the two-body problem is weakly nonlinear, and the

deviation of state was sufficiently small for the scale of the trajectory.

For the CRTBP (case 2), the error in the linear approximation was quite large for

position and velocity, while the error of PCE was sufficiently small. As for ∆V, while

the error for the first time was large in the linear approximation, it was as small as

PCE after the second time. The reason why the error of ∆V was smaller than that of

the state is that the error of the state in the direction of the maximum principal axis,
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which has a large impact on the error of ∆V, was smaller than that in other principal

axes.

The reason why the error of the first ∆V was large and became small after the

second ∆V is thought to be that at the time of the first ∆V, the error increased due

to the swing-by and the distribution of the state and control deviated greatly from

the Gaussian distribution, but after the second ∆V, the distribution became closer to

the Gaussian distribution because later TCMs was planned to cancel relatively small

errors of dynamics error, orbit determination error, and control error as discussed in

Chapter 2. Figure 5.5 shows the distribution of the control at the time of the first and

sixth TCM for the normal Monte Carlo method. As shown in Fig. 5.5, at the time of

the first TCM, the distribution deviated from the Gaussian distribution.

Figure 5.5: Result of normal Monte Carlo simulation of case 2. The left and right
figure show the control vector of the first and sixth control, respectively.

These results indicate that a highly accurate approximation method is necessary

for trajectories with strong nonlinearity, such as swing-by trajectories in the CRTBP.

However, because of the effect that the TCMs prevent deviation of trajectory, a linear

approximation would be sufficient for a wide range of problems.

5.3 Numerical Simulations of Optimization Case 1: Two-Body

Problem

As an example of optimization simulation, a simple case of a two-body problem was

solved. First, various methods of the optimization algorithm were tested and com-
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pared. Next, a sensitivity analysis was performed to investigate the effects of varying

various uncertainty parameters on the optimization variables and objective function.

5.3.1 Conditions

The table 5.5 shows the simulation parameters. The optimization method is shown in

Table 5.6.

Table 5.5: Simulation parameter settings for optimization case 1.
Variables Values

R∗0, µR0 , µR̂0
[0.00, -1.49e8, 0.00]T km

V∗0, µV0 , µV̂0
[0.00, 32.7, 0.00]T km/s

dynamics Two-Body
µtbp 1.327e11 km3/s2

t f 258.9 days
ΣR0 , ΣR̂0

(1σ) 1000 km
ΣV0 , ΣV̂0

(1σ) 1.00e-3 km/s
Nk 6
Nl 18
δRth, f 120 km

S 0 (1σ) 2.00e-5 km/s
c 0.01

Q (1σ) 1.26e-14 km2/s3

RR (1σ) 100.0 km
RV (1σ) 1.00e-4 km/s

Table 5.6: Optimization Methods.
Opt. Method No. Algorithm Opt. Variables Remarks

1 SQP tk tl is fixed.
2 GPS tk tl is fixed.
3 SQP tk and tl

4 GPS tk and tl

5 GPS and SQP tk and tl

6 SQP tk Nod,k is fixed.
7 GA tk and Nod,k

8 SQP tk and Nod,k Nod,k is changed in outer loop.

In optimization methods 1 and 2, only the TCM time was optimized. Optimization

methods 3, 4, and 5 optimize both TCM time and orbit determination time. In opti-

mization method 5, optimization was done by GPS and then by SQP. In optimization

method 6, only the TCM time was optimized, assuming that it was optimal for the or-

bit determination time to come just before the TCM time. In this method, the number
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of orbit determination to be performed just before each TCM was fixed. Optimization

methods 7 and 8 optimize the TCM time and the number of orbit determination im-

mediately before each TCM. In optimization method 7, both of them were combined

and optimized by GA. In optimization method 8, the optimization was divided into

an outer loop that changes the number of orbit determination and an inner loop that

optimizes the TCM time. The inner loop was consistent with the optimization method

6.

In all cases, Jensen’s inequality was used as the objective function of the optimiza-

tion to speed up the computation, and the Monte Carlo method (10,000,000 samples)

was used in the evaluation of the optimal solution.

5.3.2 Results

Figure 5.6 shows the TCM time in each optimization result. Figure 5.7 and Table 5.7

show the ∆V required for TCM in each case.

Figure 5.6: TCM timing of optimization results.
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Figure 5.7: Expected value of ∆V of optimization results.

Table 5.7: Expected value of ∆V of optimization results [m/s].
Opt. Method No. TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total

1 2.1518 0.3908 0.4123 0.4477 0.5466 2.6351 6.5842
2 1.6451 0.5902 0.9904 0.6461 0.3429 0.8182 5.0329
3 1.6028 0.5855 0.6744 0.5893 0.4572 0.3375 4.2467
4 1.6019 0.6904 0.8085 0.4725 0.5368 0.2148 4.3250
5 1.6032 0.6691 0.7588 0.6240 0.4800 0.1698 4.3049
6 1.6028 0.5857 0.6743 0.5892 0.4572 0.3375 4.2467
7 1.6079 0.6303 0.6972 0.5470 0.4345 0.3216 4.2385
8 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371

5.3.3 Discussion

As for the TCM times, the overall trend was similar except for case 1. In those cases,

TCM1 to cancel the initial error and TCM6 to satisfy the terminal constraint were

almost the same time. This indicates that although the large TCM1 was done at a

time with large sensitivity and TCM6 was done at a time that satisfies the terminal

constraint, the other TCMs have various local solutions that are similar but different

in the balance of ∆V required for each TCM.
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For optimization of TCM time only (case 1 and 2), GPS performed better than

SQP. This is because SQP assumes the second-order differentiability of the objective

function and the constraints on the TCM time and orbit determination time prevent

the TCM time from changing beyond the orbit determination time. In contrast, since

GPS can be applied to discontinuous objective functions, it was possible to change

the TCM time beyond the orbit determination time and to search for a better solution

that cannot be explored by SQP.

From the optimization results, it is found that the objective function can be signif-

icantly reduced by optimizing not only the TCM time but also the orbit determination

time. This is evidence that the orbit determination accuracy has a significant impact

on the size of the TCM.

In cases 3, 4, and 5, the solution using only SQP performed better. The difference

between the case using only SQP and the case using both GPS and SQP is that in the

former case, the number of orbit determination between TCM times does not change,

while in the latter case, it may change. The reason why the former gave better results

can be attributed to the fact that under the conditions of the present simulation, the

SQP case happened to have a better distribution of orbit determination times in the

initial solution, while the GPS case converged to a solution with a worse distribution

of orbit determination times. Therefore, the superiority of these methods depends on

the initial value, and it is difficult to make a general discussion. It is suggested that

the use of GPS does not necessarily lead to a good solution in terms of varying the

allocation of the number of orbit determination.

In cases 3, 4, and 5, almost all of the orbit determination were performed just

before the TCM time. This is because it is more efficient to collect the orbit determi-

nation just before the TCM in order to reduce the navigation error at the TCM time.

This result supports the assumption that the orbit determination time is placed just

before the TCM time in cases 6, 7, and 8. Also, the results of case 3 and case 6 are

consistent.

Among cases 6, 7 and 8, case 8 gave the best results. In case 7, due to the nature of

GA, the solution is dominated by stochastic factors such as initial population and mu-
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tation, and there is a possibility that the global minimum cannot be reached. In case 8,

since the search for the number of orbit determination is a strategy that changes in the

local direction, there is also a possibility that the global minimum cannot be reached

depending on the problem, but the best results were obtained under the simulation

conditions. The difference between the two cases is quite small and is not considered

to be a major problem in practical use. However, these methods assume that the orbit

determination time is placed just before the TCM time, and it cannot be easily applied

when considering problems that place constraints on state deviations and orbit deter-

mination errors in the middle of the trajectory. It is better to use optimization methods

such as case 3 and case 5 for such problems.
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5.3.4 Sensitivity Analysis on Orbit Insertion Error

Conditions

In order to perform sensitivity analysis on the orbit insertion error, simulations using

the optimization method 8 were performed by varying the orbit insertion error. The

conditions other than the initial error were the same as in the table, with ΣR0 set to

800 km, 600 km, 400 km, 200 km, and 100 km, and ΣV0 set to 0.8 m/s, 0.6 m/s, 0.4

m/s, 0.2 m/s, and 0.1 m/s. In all cases, Jensen’s inequality was used as the objective

function of the optimization to speed up the computation, and the Monte Carlo method

(10,000,000 samples) was used in the evaluation of the optimal solution.

Results

Figures 5.8 and 5.9 show the TCM time in each optimization result. Figures 5.10 and

5.11 and Table 5.8 show the ∆V required for TCM in each case. Table 5.9 shows the

number of orbit determination for each TCM.

Figure 5.8: TCM timing of optimization results when initial position error was
changed.
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Figure 5.9: TCM timing of optimization results when initial velocity error was
changed.

Table 5.8: Expected value of ∆V of optimization results when initial error was
changed [m/s].
ΣR0 and ΣV0 TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total

1000km, 1m/s 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371
800km, 1m/s 1.5443 0.5632 0.6547 0.5966 0.4637 0.3726 4.1950
600km, 1m/s 1.4852 0.5627 0.6568 0.6027 0.4687 0.3763 4.1523
400km, 1m/s 1.4243 0.5619 0.6592 0.6101 0.4748 0.3808 4.1111
200km, 1m/s 1.3598 0.5613 0.6621 0.6196 0.4826 0.3867 4.0720
100km, 1m/s 1.3261 0.5610 0.6638 0.6256 0.4877 0.3904 4.0545

1000km, 0.8m/s 1.3507 0.5645 0.6495 0.5828 0.4525 0.3643 3.9644
1000km, 0.6m/s 1.1065 0.5661 0.6442 0.5705 0.4425 0.3568 3.6866
1000km, 0.4m/s 0.8822 0.5687 0.6346 0.5507 0.4265 0.3451 3.4078
1000km, 0.2m/s 0.7173 0.5788 0.6187 0.5196 0.4064 0.3046 3.1453
1000km, 0.1m/s 0.6778 0.5817 0.6039 0.5000 0.3910 0.2924 3.0469

Discussion

Table 5.9 shows that the initial error has little effect on the orbit determination strategy.

Figure 5.8 shows that when the initial error of the position becomes small, the
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Figure 5.10: Expected value of ∆V of optimization results when initial position error
was changed.

Figure 5.11: Expected value of ∆V of optimization results when initial velocity error
was changed.

58



Table 5.9: Number of orbit determination of optimization results when initial error
was changed.

ΣR0 and ΣV0 TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
1000km, 1m/s 3 2 2 3 3 5
800km, 1m/s 3 2 2 3 3 5
600km, 1m/s 3 2 2 3 3 5
400km, 1m/s 3 2 2 3 3 5
200km, 1m/s 3 2 2 3 3 5
100km, 1m/s 3 2 2 3 3 5

1000km, 0.8m/s 3 2 2 3 3 5
1000km, 0.6m/s 3 2 2 3 3 5
1000km, 0.4m/s 3 2 2 3 3 5
1000km, 0.2m/s 3 2 2 3 4 4
1000km, 0.1m/s 3 2 2 3 4 4

TCM time is brought forward. This is probably because the effect of the dynamics

error in TCM1 becomes relatively larger as the initial error becomes smaller, and the

time of TCM1 is moved forward to make TCM1 as small as possible. By bringing

forward TCM1, TCM2 and subsequent TCMs are also brought forward, increasing

the time interval between TCMs and thus increasing the ∆V of TCM2 and subsequent

TCMs. However, since the effect of reducing the size of TCM1 is greater than that

effect, the optimal strategy is to move TCM1 forward.

In contrast, as the initial error in the velocity becomes smaller, the TCM time is

pushed back overall in Fig. 5.9. This is because the effect of the smaller initial error

of velocity is considerably larger than the effect of the dynamics error in TCM1, and

the strategy is to delay the overall TCM to make it smaller after TCM2.

From the above, it is found that the initial error has little effect on the strategy

for orbit determination, and the optimal strategy for TCM time is different due to

the difference in sensitivity between position and velocity in the initial error. The

contrasting strategies may be determined by the magnitude of the impact of the initial

error on TCM1.
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5.3.5 Sensitivity Analysis on Dynamics Error

Conditions

In order to perform sensitivity analysis on the dynamics error, simulations using the

optimization method 8 were performed by varying the dynamics error. The conditions

other than the dynamics error were the same as in the table, with Q set to 3.15e-

15km2/s3, 2.02e-15km2/s3, 1.14e-15km2/s3, 5.05e-16km2/s3, and 1.26e-16km2/s3.

In all cases, Jensen’s inequality was used as the objective function of the optimization

to speed up the computation, and Monte Carlo method (10,000,000 samples) was used

in the evaluation of the optimal solution.

Results

Figure 5.12 shows the TCM time in each optimization result. Figure 5.13 and Table

5.10 show the ∆V required for TCM in each case. Table 5.11 shows the number of

orbit determination for each TCM.

Figure 5.12: TCM timing of optimization results when dynamics error was changed.
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Figure 5.13: Expected value of ∆V of optimization results when dynamics error was
changed.

Table 5.10: Expected value of ∆V of optimization results when dynamics error was
changed [m/s].

Q TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total
1.26e-14km2/s3 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371
3.15e-15km2/s3 1.5903 0.2545 0.3013 0.3050 0.2758 0.2413 2.9683
2.02e-15km2/s3 1.5896 0.2005 0.2362 0.2488 0.2359 0.2138 2.7248
1.14e-15km2/s3 1.5894 0.1547 0.1752 0.1917 0.1933 0.1842 2.4884
5.05e-16km2/s3 1.5895 0.1181 0.1225 0.1374 0.1501 0.1461 2.2638
1.26e-16km2/s3 1.5901 0.0901 0.0814 0.0902 0.1025 0.1171 2.0713

Table 5.11: Number of orbit determination of optimization results when dynamics
error was changed.

Q TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
1.26e-14km2/s3 3 2 2 3 3 5
3.15e-15km2/s3 4 2 2 2 3 5
2.02e-15km2/s3 4 2 2 2 3 5
1.14e-15km2/s3 4 2 2 2 3 5
5.05e-16km2/s3 5 2 2 2 3 4
1.26e-16km2/s3 6 2 2 2 2 4
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Discussion

Figure 5.12 shows that TCM6 can be brought forward due to the smaller dynamics

error. Correspondingly, TCM2 to TCM5 are also brought forward. As the dynamics

error becomes smaller, the error accumulated between each TCM becomes smaller,

and the ∆V required for each TCM, except for TCM1, is greatly reduced. The impact

of the decrease in the dynamics error is small for TCM1 because the initial error has

a large impact.

Since the influence of TCM1 in the whole becomes relatively larger as the dy-

namics error becomes smaller, the strategy of orbit determination is to concentrate the

orbit determination just before TCM1 so that the orbit determination error at TCM1

becomes smaller.
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5.3.6 Sensitivity Analysis on Observation Error

Conditions

In order to perform sensitivity analysis on the observation error, simulations using

the optimization method 8 were performed by varying the observation error. The

conditions other than the observation error were the same as in the table, with RR set

to 80 km, 60 km, 40 km, 20 km, and 10 km, and RV set to 0.08 m/s, 0.06 m/s, 0.04

m/s, 0.02 m/s, and 0.01 m/s. In all cases, Jensen’s inequality was used as the objective

function of the optimization to speed up the computation, and the Monte Carlo method

(10,000,000 samples) was used in the evaluation of the optimal solution.

Results

Figures 5.14 and 5.15 show the TCM time in each optimization result. Figures 5.16

and 5.17 and Table 5.12 show the ∆V required for TCM in each case. Table 5.13

shows the number of orbit determination for each TCM.

Figure 5.14: TCM timing of optimization results when observation error about posi-
tion was changed.
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Figure 5.15: TCM timing of optimization results when observation error about veloc-
ity was changed.

Table 5.12: Expected value of ∆V of optimization results when observation error was
changed [m/s].

RR and RV TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total
100km, 0.1m/s 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371
80km, 0.1m/s 1.6025 0.5628 0.6596 0.5849 0.4534 0.3606 4.2239
60km, 0.1m/s 1.6024 0.5582 0.6556 0.5823 0.4486 0.3616 4.2087
40km, 0.1m/s 1.6024 0.5648 0.6541 0.5775 0.4412 0.3531 4.1931
20km, 0.1m/s 1.6022 0.5674 0.6558 0.5760 0.4370 0.3312 4.1696
10km, 0.1m/s 1.6021 0.5671 0.6535 0.5712 0.4322 0.3131 4.1393

100km, 0.08m/s 1.6023 0.5601 0.6466 0.5777 0.4417 0.3487 4.1772
100km, 0.06m/s 1.6025 0.5572 0.6416 0.5664 0.4284 0.3248 4.1208
100km, 0.04m/s 1.6024 0.5541 0.6360 0.5550 0.4137 0.3115 4.0728
100km, 0.02m/s 1.6024 0.5478 0.6279 0.5455 0.4079 0.3040 4.0355
100km, 0.01m/s 1.6024 0.5463 0.6254 0.5430 0.4060 0.2990 4.0221

Discussion

As the observation error about the position becomes smaller, the error caused by

the orbit determination error in the guidance accuracy at the final time can be made
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Figure 5.16: Expected value of ∆V of optimization results when observation error
about position was changed.

Figure 5.17: Expected value of ∆V of optimization results when observation error
about velocity was changed.

65



Table 5.13: Number of orbit determination of optimization results when observation
error was changed.

RR and RV TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
100km, 0.1m/s 3 2 2 3 3 5
80km, 0.1m/s 3 2 3 3 3 4
60km, 0.1m/s 3 2 3 3 3 4
40km, 0.1m/s 3 3 3 3 3 3
20km, 0.1m/s 4 3 3 3 3 2
10km, 0.1m/s 4 3 3 3 3 2

100km, 0.08m/s 3 2 2 3 3 5
100km, 0.06m/s 2 2 2 3 4 5
100km, 0.04m/s 2 2 2 3 4 5
100km, 0.02m/s 2 1 2 2 5 6
100km, 0.01m/s 2 1 1 2 6 6

smaller. Therefore, the TCM6 can be brought forward due to the smaller observation

error in position, which results in a smaller TCM6. Since the effect on the guidance

accuracy is reduced, the concentration of orbit determination on TCM6 is reduced,

and it is thought that orbit determination is performed evenly. It can also be seen that

the magnitude of TCM4 to TCM6 is reduced as the orbit determination error becomes

smaller.

When the observation error related to velocity is changed, the guidance accuracy

at the final time is not improved much, and rather the orbit determination is concen-

trated just before TCM5 and TCM6. It is thought that the improvement in the accuracy

of the orbit determination with respect to velocity reduces the number of orbit deter-

mination required in the first half of the TCM, and the strategy of concentrating the

orbit determination just before later TCMs is applied in order to accelerate the time

of TCM6.

For the cases changing observation error, the strategy of TCM was the same for

both the improvement of position error and velocity error, but the difference was ob-

served in the strategy of orbit determination. It is interesting to note that the strategy

is different for position error and velocity error as in the case of initial error, but the

difference is in the strategy of TCM for initial error, while the difference is in the

strategy of orbit determination for observation error. The reason for this difference

may be that the initial error has a large impact on TCM1, while the observation error

66



has a large impact on the guidance accuracy and the TCM6 to achieve it. Of course,

this is because the initial error is canceled out by TCM1 and affects the TCM strategy,

while the observation error has a direct effect on the orbit determination accuracy.
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5.3.7 Sensitivity Analysis on Control Error

Conditions

In order to perform sensitivity analysis on the control error, simulations using the opti-

mization method 8 were performed by varying the control error. The conditions other

than the control error were the same as in the table, with fixed error set to 1e-5km/s,

8e-6km/s, 6e-6km/s, 4e-6km/s, and 2e-6km/s, and proportional error coefficient set

to 0.008, 0.006, 0.004, 0.002, and 0.001. In all cases, Jensen’s inequality was used

as the objective function of the optimization to speed up the computation, and the

Monte Carlo method (10,000,000 samples) was used in the evaluation of the optimal

solution.

Results

Figures 5.18 and 5.19 show the TCM time in each optimization result. Figures 5.20

and 5.21 and Table 5.14 show the ∆V required for TCM in each case. Table 5.15

shows the number of orbit determination for each TCM.

Table 5.14: Expected value of ∆V of optimization results when control error was
changed [m/s].

S TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total
2e-5km/s, 0.01 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371
1e-5km/s, 0.01 1.6023 0.5616 0.6502 0.5871 0.4531 0.3608 4.2152
8e-6km/s, 0.01 1.6022 0.5613 0.6500 0.5866 0.4524 0.3598 4.2123
6e-6km/s, 0.01 1.6022 0.5612 0.6497 0.5682 0.4518 0.3590 4.2101
4e-6km/s, 0.01 1.6022 0.5610 0.6496 0.5860 0.4515 0.3584 4.2085
2e-6km/s, 0.01 1.6022 0.5609 0.6495 0.5858 0.4511 0.3580 4.2075

2e-5km/s, 0.008 1.6025 0.5637 0.6526 0.5911 0.4592 0.3691 4.2383
2e-5km/s, 0.006 1.6025 0.5636 0.6525 0.5910 0.4591 0.3690 4.2378
2e-5km/s, 0.004 1.6025 0.5636 0.6525 0.5909 0.4590 0.3689 4.2374
2e-5km/s, 0.002 1.6025 0.5636 0.6524 0.5908 0.4590 0.3689 4.2371
2e-5km/s, 0.001 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371

Discussion

From the results, it can be seen that the control error has little effect on the objective

function, TCM, and orbit determination strategy under the conditions of the present
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Figure 5.18: TCM timing of optimization results when fixed control error was
changed.

Figure 5.19: TCM timing of optimization results when proportional control error was
changed.
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Figure 5.20: Expected value of ∆V of optimization results when fixed control error
was changed.

Figure 5.21: Expected value of ∆V of optimization results when proportional control
error was changed.
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Table 5.15: Number of orbit determination of optimization results when control error
was changed.

S TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
2e-5km/s, 0.01 3 2 2 3 3 5
1e-5km/s, 0.01 3 2 2 3 3 5
8e-6km/s, 0.01 3 2 2 3 3 5
6e-6km/s, 0.01 3 2 2 3 3 5
4e-6km/s, 0.01 3 2 2 3 3 5
2e-6km/s, 0.01 3 2 2 3 3 5

2e-5km/s, 0.008 3 2 2 3 3 5
2e-5km/s, 0.006 3 2 2 3 3 5
2e-5km/s, 0.004 3 2 2 3 3 5
2e-5km/s, 0.002 3 2 2 3 3 5
2e-5km/s, 0.001 3 2 2 3 3 5

simulation. This is probably because in the nominal case, there is almost no effect of

control error on the objective function, and even if it is changed, there is little effect

on the whole. However, in the case where a controller with a large control error is

used, the increase in TCM due to the control error cannot be ignored and is expected

to become important.
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5.3.8 Sensitivity Analysis on Guidance Accuracy

Conditions

In order to perform sensitivity analysis on the guidance accuracy, simulations using

the optimization method 8 were performed by varying the final state constraint. The

conditions other than the final state constraint were the same as in the table, with the

final state constraint set to 200km, 400km, 600km, 800km, and 1000km. In all cases,

Jensen’s inequality was used as the objective function of the optimization to speed up

the computation, and the Monte Carlo method (10,000,000 samples) was used in the

evaluation of the optimal solution.

Results

Figure 5.22 shows the TCM time in each optimization result. Figure 5.23 and Table

5.16 show the ∆V required for TCM in each case. Table 5.17 shows the number of

orbit determination for each TCM.

Figure 5.22: TCM timing of optimization results when final state constraint was
changed.
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Figure 5.23: Expected value of ∆V of optimization results when final state constraint
was changed.

Table 5.16: Expected value of ∆V of optimization results when final state constraint
was changed [m/s].

δRth, f TCM1 TCM2 TCM3 TCM4 TCM5 TCM6 Total
120km 1.6025 0.5636 0.6524 0.5908 0.4589 0.3688 4.2371
200km 1.6015 0.5040 0.5997 0.5569 0.4345 0.3391 4.0358
400km 1.6011 0.5065 0.5935 0.5496 0.4319 0.0884 3.7710
600km 1.6004 0.4531 0.5379 0.5211 0.4129 0.0859 3.6113
800km 1.6001 0.4154 0.4987 0.4991 0.3995 0.0845 3.4973
1000km 1.5999 0.3853 0.4686 0.4809 0.3892 0.0837 3.4077

Discussion

From the results, it can be seen that TCM6 can be brought forward significantly due

to the relaxation of the terminal constraint. In the case of 400 km or more, TCM5 and

TCM6 are performed consecutively, indicating that TCM6 is no longer necessary. By

bringing forward TCM6, TCM2 to TCM5 can also be brought forward, leading to

a decrease in ∆V for each TCM. However, since the main factor for TCM1 is the

73



Table 5.17: Number of orbit determination of optimization results when final state
constraint was changed.

δRth, f TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
120km 3 2 2 3 3 5
200km 3 2 3 3 3 4
400km 4 3 3 3 4 1
600km 4 3 3 3 4 1
800km 4 3 3 3 4 1

1000km 4 3 3 3 4 1

initial error, the effect on TCM1 is hardly seen. In addition, the number of orbit

determination used in TCM6 appears to decrease as the final constraint is relaxed, but

since TCM5 and TCM6 are integrated in the case of 400 km or more, the strategy

seems to be to make orbit determination evenly when TCM6 is excluded.
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5.3.9 Sensitivity Analysis on Total Orbit Determination Number

Conditions

In order to perform sensitivity analysis on the total orbit determination number, sim-

ulations using the optimization method 8 were performed by varying the total orbit

determination number. The conditions other than the final state constraint were the

same as in the table, with the total orbit determination numbers set to 12, 18, 24,

and 30. In all cases, Jensen’s inequality was used as the objective function of the

optimization to speed up the computation, and the Monte Carlo method (10,000,000

samples) was used in the evaluation of the optimal solution.

Results

Figure 5.24 shows expected value of ∆V of optimization results with respect to the

total number of orbit determination.

Figure 5.24: Expected value of ∆V of optimization results when total orbit determi-
nation number was changed.
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Discussion

From the results, it can be seen that there is a trade-off between the total number

of orbit determination and the ∆V required for TCM. This is because the more the

total number of orbit determination is increased, the smaller the orbit determination

error during TCM becomes, and the deviations that need to be corrected in TCM

decrease. Although the total number of orbit determination cannot be changed in the

optimization formulation of this study, it can be changed outside the optimization, and

useful information about trade-offs against ∆V can be provided to mission designers.

5.3.10 Difference between Objective Functions

Conditions

The simulations so far in this section have used Jensen’s inequality as the objective

function in order to reduce computational cost. In order to check the difference be-

tween the Jensen’s inequality and the Monte Carlo method, the problem was opti-

mized using the Monte Carlo method as the objective function. In this simulation, the

initial guess was the result of optimization case 8.

Results

Figure 5.25 and 5.26 show expected value of ∆V and TCM time of optimization

results. The expected value of ∆V was 4.267 m/s for the Jensen’s inequality case

and 4.2404 m/s for the Monte Carlo method case.

Discussion

The results show that using the Monte Carlo method as the objective function gives a

better solution because the actual optimization problem is not solved when Jensen’s

inequality is used as the objective function. As for the TCM time, the time for TCM6

remains the same, but the time for TCM is shifted backward when using the Monte

Carlo method compared to when using Jensen’s inequality with TCM1-3 increasing

instead of TCM4-6 decreased. However, the difference between results was not large,
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Figure 5.25: TCM timing of optimization results when the objective function was
changed.

Figure 5.26: Expected value of ∆V of optimization results when the objective function
was changed.
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and it may be a good strategy to use Jensen’s inequality to reduce the computation

time and search for a wide range of solutions, and then re-optimize using the Monte

Carlo method.

5.3.11 Overall Discussion

From the sensitivity analysis, it is found that the magnitude of the various uncertain-

ties has a significant effect on the ∆V required for the TCM, the guidance accuracy

at the final time, the optimal TCM time, and the number of orbit determination. It is

also found that the each uncertainty complexly affects TCMs and the effect is differ-

ent depending on the role of the TCM, i.e., whether the TCM is used to cancel the

initial error, to cancel various errors during the TCM, or to ensure the final guidance

accuracy.

The fact that the various uncertainties also have a significant impact on the orbit

determination strategy suggests the importance of optimization of orbit determination,

which has not received much attention so far. The integrated optimization of TCM

and orbit determination strategy, focusing on such various uncertainties, cannot be

handled by the conventional method called Spacing Rule, and is a problem that can

be solved by using the proposed method in this study.
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5.4 Numerical Simulations of Optimization Case 2: PROCYON

Trajectory

The optimization of the trajectory correction time and orbit determination time for the

nominal orbit of PROCYON was performed as an example of optimization.[50]

5.4.1 Conditions

The simulation conditions are shown in Table 5.18. The gravity of the Sun, Earth,

Moon, and Mars and solar radiation pressure were considered as dynamics. The co-

ordinate system was ECJ2000 and the center was the Solar System barycenter.

Table 5.18: Simulation parameter settings for the optimization at PROCYON nominal
trajectory.

Variables Values
R∗0, µR0 , µR̂0

[-5.68e6, 1.52e8, -6.75e6]T km
V∗0, µV0 , µV̂0

[-29.0, 1.20, -3.32]T km/s
dynamics gravity of 4 bodies and SRP

t0 2014 Dec. 25 09 : 45 : 00
t f 2016 May 12 18 : 29 : 49

ΣR0 , ΣR̂0
(1σ) 1000 km

ΣV0 , ΣV̂0
(1σ) 1.00e-4 km/s

Nk 6
Nl 39
δRth, f 110 km

S (1σ) 2.00e-5 km/s
Q (1σ) 1.26e-14 km2/s3

RR (1σ) 100.0 km
RV (1σ) 1.00e-4 km/s

The trajectory of PROCYON is shown in the Fig. 5.27. After departing from the

Earth, the nominal trajectory is controlled by ion thrusters for the first 6.5 months,

and then after that, PROCYON performs an Earth gravity assist at an altitude of about

500,000 km. The spacecraft arrives at the asteroid about five months after the Earth

gravity assist.[50]

In this optimization, trajectory correction was planned for the ballistic trajectory

from the end of the control by ion thruster to the final time, and the time of TCM

was optimized. Orbit determination was available for the entire period of the trajec-
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Figure 5.27: PROCYON nominal trajectory.

tory, and optimization of the timings of orbit determination was performed as well.

The number of trajectory correction and orbit determination was constant. One orbit

determination was always performed one day before the trajectory correction.

Optimization of trajectory correction time only and optimization of both trajectory

correction time and orbit determination time were performed and compared. SQP and

GPS were used for optimization algorithms, and the results were compared. Uncer-

tainty propagation was done by linear approximation, and the number of samples used

for the evaluation of the objective function was 10,000,000. Using the solution of the

optimization, the approximation error was calculated from the ratio of the results of

the linear approximation to those of the normal Monte Carlo method (9,000 samples).

5.4.2 Results

Figure 5.28 illustrates the trajectory correction and orbit determination time before

and after optimization. Also shown in the Fig. 5.29 are the mean of ∆V for each

trajectory correction before and after optimization. Figure 5.30 shows the cumulative
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distribution function of the total ∆V for each optimization case, and Table 5.19 also

shows the mean and 99% value of the total ∆V. The time series of the standard de-

viation of true position and velocity at the optimization of both timing using GPS is

illustrated in Figs. 5.31 and 5.32. Figures 5.33 and 5.33 and Table 5.20 show the ratio

of the standard deviation of position and velocity and the mean of ∆V compared to

the Monte Carlo results at the optimization of both timings using SQP.

Figure 5.28: Timing of trajectory correction and orbit determination of the initial
guess and optimized values.

Figure 5.29: Mean of ∆V of each trajectory correction of the initial guess and opti-
mized values.
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Figure 5.30: Cumulative distribution function of total ∆V of the initial guess and
optimized values.

Table 5.19: Mean of ∆V and 99% ∆V of the initial guess and optimized values [m/s].
Mean 99%

Inital Guess 13.2 28.4
Optimized (TCM, SQP) 12.4 27.5
Optimized (TCM, GPS) 11.5 26.5

Optimized (TCM&OD, SQP) 10.7 25.7
Optimized (TCM&OD, GPS) 10.5 25.4

5.4.3 Discussion

From the simulation results, as with the optimization in the two-body problem, a

better solution was obtained by optimizing both times than by optimizing only the

TCM time. In addition, although the objective function in this simulation is the mean

of ∆V, the value of 99% ∆V was also reduced by the optimization, and the result was

Table 5.20: Ratio of ∆V mean compared with Monte Carlo for the optimized solution
of the optimization of both timing.

TCM1 TCM2 TCM3 TCM4 TCM5 TCM6
0.9897 0.9978 1.0034 0.9939 1.0070 0.9934
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Figure 5.31: Standard deviation of true position for the optimized solution of the
optimization of both timing using GPS. Black and red vertical lines represent the time
of TCMs and Earth gravity assist respectively.

not such as to cause a practical problem where the value of 99% ∆V was increased

instead of the mean ofΔV being reduced.

In the case of optimizing only the TCM time, the optimized solution using SQP

does not result in overcoming the orbit determination time; in the case of using GPS, it

does result in overcoming the orbit determination time and a better solution is reached.

This result really shows the difference in the characteristics of optimization methods.

When both the TCM time and the orbit determination time are optimized, TCM2

and TCM3 are combined when SQP is used. On the other hand, when GPS is used,

TCM3 is performed after Earth gravity assist. This is probably because it is difficult

to overcome sensitive dynamics such as Earth gravity assist when using SQP, and as a

result, TCM2 and TCM3 converge to the optimal time before Earth gravity assist. In

the case of GPS, it is possible to change TCM and orbit determination time under the

presence of sensitive dynamics, and at the present simulation conditions, GPS gives a

better solution than SQP.
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Figure 5.32: Standard deviation of true velocity for the optimized solution of the
optimization of both timing using GPS. Black and red vertical lines represent the time
of TCMs and Earth gravity assist respectively.

In the case of optimizing only the TCM time, the trajectory correction was always

done immediately before or after the orbit determination. In the case of optimization

for both times, there was a tendency for the orbit determination to be concentrated

just before the trajectory correction. This is because if a correction is planned based

on an inaccurate estimate, the guidance error at the final time will be large and the ∆V

required for the succeeding maneuvers will increase in order to cancel that error in-

crease. Therefore, the orbit determination was concentrated just before the trajectory

correction to improve the accuracy of the orbit determination during the correction.

According to the Figs. 5.31 and 5.32, the movement of the probability distribution

changed precipitously at the time of the TCMs and the Earth gravity assist. In partic-

ular, at the total covariance of the positions, the trend of decreasing standard deviation

changed before and after the Earth swing-by, and the nature of the problem seems to

separate before and after this. At the final time, the covariance was converged and the

constraint on the guidance accuracy was satisfied.
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Figure 5.33: Ratio of the standard deviation of true position compared to normal
Monte Carlo for the optimized solution of the optimization of both timing using GPS.

Figure 5.34: Ratio of the standard deviation of true velocity compared to normal
Monte Carlo for the optimized solution of the optimization of both timing using GPS.
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In Figs. 5.33 and 5.34 and Table 5.20, the error between the linear approximation

and the Monte Carlo method was within a few percent, and for the objective function,

it was less than approximately 1%, which indicates that the linear approximation is

sufficient for this simulation.

In order to investigate the effect of each orbit determination time on the objective

function, the objective function was evaluated by deleting one of each orbit determi-

nation time from the optimal solution to see how much the amount of ∆V changes

in each TCM. The simulation was conducted for the optimized results of both timing

optimization using GPS. the results are shown in Fig. 5.35. From the results, it can

be seen that ODs at times closer to each TCM time have a greater impact on ∆V than

those at the farther time except for those near TCM time once before the TCM. This

is because the ∆V of the TCM increases to correct the increase of the guidance error

due to the deterioration of the OD accuracy at TCM once before the TCM. Taking this

effect into account, it can be inferred that the orbit determination closer to each TCM

time has a larger impact than those that do not.

According to the above discussion, it seems that all the orbit determination should

be placed just before the trajectory correction, but the simulation results do not nec-

essarily show this. This may be because the time of orbit determination which is less

sensitive to the objective function than the accuracy of the objective function cannot

be optimized in the numerical optimization algorithm. In particular, the orbit deter-

mination up to the fourth time, whose effect was almost non-existent less than 10−6,

was performed at a timing that was not immediately before the trajectory correction

in Fig. 5.28.

In conventional deep space missions, orbit determination is performed with high

accuracy by taking a long arc and using the information on dynamics. In the sim-

ulation results of this study, the accuracy of the orbit determination is improved by

concentrating the orbit determination, which seems to be counter-intuitive. The rea-

son for this seems to be that the observability of the observation equations in this study

is extremely high, and the nature of the system is different from that of an estimation

system where the orbit determination is based on partial observations and dynamics

86



Figure 5.35: Effect on the objective function of each orbit determination. Orbit deter-
mination after each trajectory correction is not shown because their effect is zero.

information. In addition, the dynamics error is set to be large in this study, and the

larger the observation interval, the more the dynamics error accumulates. Therefore,

it is thought that the orbit determination is concentrated in order to suppress the dy-

namics error. Based on the discussion in Chapter 2 and the simulation results of this

chapter, it is important to reduce the orbit determination error at the TCM time, and

that the result with long orbit determination intervals will be obtained from the opti-

mization if the problem is such that the orbit determination accuracy can be improved

by increasing the time interval of the orbit determination.

From the above discussion, it can be basically concluded that the trajectory cor-

rection time is determined to minimize ∆V, and that the orbit determination is planned

to sufficiently increase the orbit determination accuracy at the TCM time. At the op-

timization of the TCM time only, the possible TCM time is limited due to the fixed

orbit determination time, and thus optimization of both trajectory correction and orbit

determination time can generate superior results. In addition, the proposed method
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does not seem to be able to optimize the orbit determination time which has low sen-

sitivity to the objective function, and this point is left as a future problem. Although

the number of TCMs or ODs is not changed in this study, a method to reduce the

operational cost by removing the orbit determination time with low sensitivity would

be a future work.
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Chapter 6

Conclusion

That’s all.

Momo Asakura

In deep space exploration by micro/nano-spacecraft, the fuel required for trajec-

tory correction and the cost required for orbit determination are important problems.

In this study, in order to solve these problems, a method is proposed to optimize the

scheduling of the trajectory correction maneuver (TCM) and the orbit determination

to minimize the ∆V required for TCM.

The TCM is formulated, and it is shown that the factors affecting the magnitude

of the TCM include various uncertainties and the sensitivity of the control depending

on the dynamics. The factors include the orbit determination error, and it is shown

that the ∆V required for the TCM can be reduced by optimization of the orbit deter-

mination.

The optimization problem is formulated by using stochastic trajectory optimiza-

tion formulation. The propagation of the probability distribution of the true and es-

timated states is formulated as the propagation of the parameters of the probability

distribution. The true and estimated states are combined as the augmented state be-

cause of the coupling effect of the true and estimated states. It is proved that the

objective function and constraints of the optimization problem can be calculated from

the parameters, and that they can be calculated once the trajectory correction time and

orbit determination time are determined. The optimization problem is formulated to
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be solved numerically by using numerical optimization algorithms.

The validity of the proposed method has been confirmed by numerical simula-

tions. The Hohmann transfer trajectory in the two-body problem was taken as an

example and optimized by various optimization methods. The results show that opti-

mizing both the TCM time and the orbit determination time gives better results than

optimizing only the TCM time. Also, assuming that the orbit determination is con-

ducted just before the TCM, an optimization method is proposed in which the TCM

time and the number of orbit determination are varied, and it gives the best results.

Sensitivity analysis was performed by changing the magnitude of various uncertain-

ties, and it was confirmed that the magnitude of uncertainty has a significant impact

on the objective function, optimal TCM time, and orbit determination strategy.

Taking the nominal trajectory of PROCYON as an example, a more practical prob-

lem was optimized. It is also shown that the ∆V required for TCM is smaller when

both times are optimized than when only the TCM time is optimized. In addition,

in order to improve the accuracy of orbit determination at the TCM time, the orbit

determination time tends to be gathered just before the TCM, but this is not always

the case for the orbit determination time with low sensitivity to the objective function

because of the limitation of the numerical algorithm.

Through the analysis and numerical simulation in this study, it is shown that not

only control but also navigation plays a significant role in stochastic trajectory design

that considers uncertainty, especially orbit determination error, and that optimization

of not only control but also navigation is important. In this study, the analysis is

focused on the optimization of TCM, but the future work is to apply it to a broader

range of trajectory planning, including the optimization of nominal trajectories.
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Appendix A

Derivation of Uncertainty Propagation in

Linear Approximation Method

When the state, observation, and control are linearized around a reference trajectory,

the propagation equations of states are as follows.

For the true state, Eqs.(4.13), (4.15), and (4.16) are linearized as

xk = Φk,l(k)xl(k) + B (uk + δUk) + Γδwk,l(k) (A.1)

uk =
∂Mk

∂Xk

∣∣∣∣∣
Fk,l(k)

(
X∗l(k)

)Φk,l(k) x̂l(k) (A.2)

xl = Φl,l−1xl−1 + Γδwl,l−1, (A.3)

and for the estimated state, Eqs.(4.22), (4.25), (4.26), and (4.27) are linearized as

x̂k = Φk,l(k) x̂l(k) + Buk (A.4)

x̂l = Φl,l−1 x̂l−1 + Kl
(
yl − ŷl

)
(A.5)

yl = Hlxl + εl (A.6)

ŷl = Hl x̂l. (A.7)

Thus, the mean and covariance matrices of the augmented state are propagated as

follows.
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At the control time,

µZk =

 I Ck

O I +Ck


 Φk,l(k) O

O Φk,l(k)

µZl(k) (A.8)

ΣZk =

 I Ck

O I +Ck


 Φk,l(k) O

O Φk,l(k)

ΣZl(k)

 Φk,l(k) O

O Φk,l(k)


T  I Ck

O I +Ck


T

+

 B

O

 S k

 B

O


T

+

 ΓO
 Qk,l(k)

 ΓO


T

(A.9)

Ck = B
∂Mk

∂Xk

∣∣∣∣∣
Fk,l(k)

(
X∗l(k)

) , (A.10)

and at the orbit determination time,

µZl =

 I O

KlHl I − KlHl


 Φl,l−1 O

O Φl,l−1

µZl−1 (A.11)

ΣZl =

 I O

KlHl I − KlHl


 Φl,l−1 O

O Φl,l−1

ΣZl−1

 Φl,l−1 O

O Φl,l−1


T  I O

KlHl I − KlHl


T

+

 ΓO
 Qk,l(k)

 ΓO


T

+

 O

Kl

 Rl

 O

Kl


T

. (A.12)
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