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Abstract

In recent years, a number of space robot/spacecraft missions such as on-orbit construc-

tion/repair, on-orbit refueling and debris removal have been proposed. For such advanced

space missions, future free-flying robots are expected to have more versatility, adaptability, and

dexterity. One promising solution to the future demand is free-flying space robots with highly

redundant actuatable joints Such a redundant robot can be adaptive and versatile by morphing

into various structure on-orbit and can be dexterous using multiple manipulators simultane-

ously. However, when a space robot reconfigures its structure, its final attitude depends on its

body reconfiguration procedure due to nonholonomy. Motion planning in nonholonomic system

is difficult because it is proved that any time-invariant continuous feedback control is impos-

sible to stabilize the system. Therefore, there is no general solution to the inverse problem of

obtaining the body reconfiguration procedure that achieves arbitrary body configuration and

attitude simultaneously.

Many researchers investigated the attitude dynamics of the free-flying space robots, but

most of them only dealt with simple systems such as planar-restricted systems and a canonical

chained/power system. Therefore, little research has been done to construct a motion planning

method that can handle general robot models and general three-dimensional rotation.

The purpose of this study is to construct a simultaneous body reconfiguration and attitude

reorientation method that is applicable to arbitrary free-flying robots without angular momen-

tum, which is named as nonholonomic reorienting transformation, or NRT by the author. In

order to derive the widely applicable control law, a kinematics equation that preserves Lie-group

structure is adopted to describe the attitude motion. Owing to its mathematical structure, the

attitude motion is analytically expressed with the Magnus expansion, and some of them are

approximately integrable. In particular, a rectilinear solution is focused on, in which joints are

actuated along a rectilinear path in joint angle space. This rectilinear solution is simple but

powerful tool for motion planning and induces two different types of motion planning meth-

ods: 1) rectilinear transformation planning, and 2) rectilinear invariant manifold method. The

former method generates consecutive rectilinear path in joint angle space whereas the latter

method asymptotically attracts the state to a fiber bundle of invariant manifold growing from

the target state. Numerical simulations for both methods demonstrated that body reconfigura-

tion and attitude reorientation is accomplished regardless of model of the robot and dimension

of the motion.

In addition, singularity analysis is provided for both methods. The analysis is discussed

by analogy with control moment gyros and robotic manipulators, and an effective singularity-

robust steering method is imported to the proposed methods.
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Finally, as an example of practical applications, an orbital station keeping with a trans-

formable solar sail is presented. The constructed NRT maneuvers enable the solar sail to

change its equilibrium attitude and to reorient to the equilibrium attitude simultaneously,

which greatly enhances solar sailing ability. As a promising example of orbits, an artificial

small-amplitude periodic orbit around SEL1/L2 is designed. The designed artificial orbit is an

ideal platform that provides stationary thermal/geometrical environment, whereas the entire

orbit and attitude maneuver do not consume any propellant.

The ability to simultaneously achieve a target body configuration and attitude means that

geometry of all body components of the free-flying space robot can be arbitrarily reconfigured,

which contributes to various applications. Therefore, the motion planning methods developed

in this study are expected to be a fundamental technology for advanced future space robot

missions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Growing Demand for Space Robots

In recent years, space activities have been further expanding. In particular, many space robot

missions such as on-orbit satellite construction/repair, on-orbit refueling, and debris removal

have been proposed recently [1]. For example, OSAM-1 mission by NASA will attempt on-orbit

refueling and assembly in 2024 [2](Fig. 1.1), the Robotic Servicing of Geosynchronous Satellites

(RSGS) program of DARPA will attempt on-orbit satellite repair and orbit correction in 2023

with Northrop Grumman [3] (Fig. 1.2), and ClearSpace-1 by ESA will demonstrate debris

removal with robotic manipulators by no later than end of 2025 [4] (Fig. 1.3). Such missions

indicate a growing demand for space robots that can perform more complicated tasks than

conventional manipulation. Under this circumstance, future space robots (including spacecraft

in a broad sense) will need to be more autonomous, more intelligent, more adaptive, more

dexterous, and more economical.

In this context, a highly redundant free-flying space robot that has large degrees of freedom

of active joints can be a promising solution in the following aspects:

• the robot can be adaptive by reconfiguring itself into multiple different morphologies,

• the robot can be dexterous by manipulating multiple instruments leveraging its redun-

dancy, and

• the robot can be economical by saving fuel owing to its nonholonomic reorientation tech-

nique.

We refer to such robots as a transformable free-flying space robots. A typical example of such

a transformable free-flying space robot is Transformer spacecraft under consideration mainly

by JAXA since 2019. This spacecraft is designed to be able to flexibly adapt to multiple situa-

tions by reconfiguring itself into several operation modes. For example, the principal operation

modes are a stowed/half-deployment mode in the launch phase, a solar sailing mode used in

orbital station keeping phase, and an observation mode used in scientific observation phase
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Fig. 1.1: OSAM-1 and Landsat-7, with SPIDER shown on the right [2]

Fig. 1.2: RSGS by DARPA [5] Fig. 1.3: ClearSpace-1 with VESPA adapter [4]

[6]. In solar sailing phase, the spacecraft can economically maintain its nominal orbit around

the sun-earth L2 using solar radiation pressure [7]. Moreover, by using redundant degrees of

freedom of actuatable joints, the system is expected to achieve multi-tasking, such as pointing

the telescope toward the target object and simultaneously carrying out solar sailing by pointing

a reflective surface toward the sun. The key technology of JAXA Transformer is simultaneous

body reconfiguration and attitude reorientation, which is referred to as nonholonomic reorient-

ing transformation or NRT for short [8], which is described in the next section.

Many science fictions have illustrated such ”Transformable” fighter robots travelling in space,

and some researchers have discussed its feasibility in engineering aspects [9, 10, 11]. Although

it might be further behind their ideals, the JAXA Transformer can be a first step of such future

advanced space robots.
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Fig. 1.4: JAXA Transformer, left) observation mode, right) solar sailing mode (credit: Transformer
working group)

1.1.2 Nonholonomy of Attitude Motion

The attitude motion of a transformable free-flying robot is governed by the angular momen-

tum conservation law if no external force/torque is exerted. Due to this dynamic constraint,

when a part of the body is actuated, the attitude of the remainder of the body is reactively

reoriented. The mechanics has been studied extensively for a long time, mainly regarding

space manipulators [12, 13]. These studies have numerically solved a forward problem in which

attitude motion is computed under the given joint actuation procedure. Such investigations

have also revealed that this attitude motion is nonholonomic. Since the moment of inertia of a

transformable robot is not constant when reconfiguring its body, the angular momentum con-

servation law becomes a non-integrable differential constraint, i.e., a nonholonomic constraint.

Nonholonomy appears as an accumulation of nonlinear effects along a trajectory in state space.

In particular, this effect is distinctly confirmed by an indirect, detour path in state space.

For example, a vehicle cannot directly move in lateral direction, but going back and forth with

proper handling can produce net displacement in the lateral direction due to nonholonomy (Fig.

1.5). In the case of a transformable free-flying robot, such a control corresponds to designing

a proper indirect path in joint angle space that achieves a target final body configuration and

final attitude.

Due to this nonholonomy, the attitude of the free-flying robot depends on its joint actuation

procedure, and thus can be reoriented by properly actuating its body [14, 15]. This attitude

reorientation maneuver is induced only by internal torque and, therefore, does not consume any

propellant in principle. In addition, this maneuver does not cause momentum accumulation of

reaction wheels, which leads to propellant consumption in saturation. These characteristics are

preferable to elongate the life-span of the space robots. However, in order to solve the inverse

problem of designing the joint actuation procedure that achieves the target body configuration

and attitude, the following three issues must be resolved:

• In a non-holonomic system, state variables cannot be stabilized by time-invariant contin-

uous feedback control (proved by the negative aspect of Brockett’s theorem [16]).
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Parking 
lot

Cannot directly move 
in lateral direction

CAN move laterally 
along an indirect path

Fig. 1.5: Example of nonholonomic effect in vehicle parking

• The attitude equation of a transformable free-flying robot cannot be transformed into a

canonical form, such as a chained form, and therefore cannot be controlled by common

methods that are effective for canonical systems.

• In the case of general three-dimensional attitude motion, an angular velocity vector be-

comes non-integrable, and therefore, additional nonholonomy needs to be taken into ac-

count as well as the nonholonomy derived from the angular momentum conservation law.

In this study, the former nonholonomy is referred to as kinematic nonholonomy, the latter

nonholonomy is referred to as momentum nonholonomy, and the combination of the two

types of nonholonomy is referred to as hybrid nonholonomy (see Section 2.3).

Most previous studies do not deal with the second and third problem for the sake of simplicity

by assuming a system transformable into the canonical system, or assuming planar motion in

which the angular velocity is integrable (See Section 1.1.3 in detail). In contrast, this study

tackles all the above three problems, which adds to the value of this study.

1.1.3 Overview of Related Studies

Study on nonholonomic system has a long history. The comprehensive survey can be found

in the textbook such as Bloch’s [17]. The central subject of this field had been motion of rolling

or sliding rigid bodies, such as a skidding knife-edge [18, 19, 20], and a wheeled vehicle moving

on the ground [21, 22]. In particular, the system that can be transformable into a canonical

form has been well investigated, and a lot of research on control of such canonical systems has

been conducted [23, 24, 25]. For detail, please refer to Section 2.2.

As for the mechanics of free-flyers, one of the most widely known nonholonomic problem is

the falling-cat phenomenon (Fig. 1.6). This is a phenomenon in which a cat can always land

in an upright attitude by twisting its body in the air, even when dropped in an upside-down

attitude. There have been many studies to elucidate the dynamics of this phenomenon [26, 27]

and to apply the attitude maneuver of this phenomenon to free-flying robots [28, 29, 30, 31,

32, 33].
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Fig. 1.6: Falling cat photographed by Etienne-Jules Marey in 1984 (Public domain) [34]

In the 1980s, since numerous space robots were proposed to construct space stations [35,

36], more studies focused on the dynamics of free-flying robots. The related formulations

are roughly classified into two types: Euler-Lagrange formulation and Kane’s formulation. The

Euler-Lagrange formulation is energy-based and systematic but has difficulty in handling three-

dimensional attitude motion because a generalized coordinate cannot be defined for angular

velocity due to its non-integrability. On the other hand, Kane’s formulation is based on the

Newton-Euler formulation. The Newton-Euler formulation generally has difficulty in handling

the constraint forces, but Kane solved this problem by performing a mathematical operation

that prevents the constraint forces from appearing in the equations. Therefore, in general,

Kane’s method is suitable for dealing with the three-dimensional attitude motion of free-flying

robots. The fundamental equations in the present study are based on Kane’s formulation.

The principal task of a space manipulator is to control the position and attitude of the end-

effector, and the reaction of attitude is canceled by thrusters or reaction wheels conventionally

[37, 38, 39]. However, some researchers proposed actively using the attitude reaction when

actuating its manipulator. In the case of planar motion, several attitude reorientation methods

have been proposed that leverage the nonholonomy of the attitude motion [40, 41, 42, 43, 44].

However, since the angular velocity is integrable in planar motion (i.e., the angular velocity

can be expressed as time derivative of the azimuthal angle), the kinematic nonholonomy is not

taken into account in these studies. Therefore, these methods cannot be directly applied to

general three-dimensional attitude control. On the other hand, some research focused on the

system with only kinematic nonholonomy. The typical example is a rigid spacecraft equipped

with two reaction wheels [45, 46, 47]. Such systems with either momentum nonholonomy or

kinematic nonholonomy can be handled by simple geometrical strategies.

A combined system, i.e., a three-dimensional nonholonomic attitude control system of free-

flying robot is one of the most difficult fields, and thus few studies actively use the nonholonomic
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properties. The hierarchical Lyapunov method proposed by Nakamura and Mukherjee[15] is

one of the few examples by which to achieve the desired end-effector trajectory under some

joint constraints using its nonholonomy. In this method, the first-priority Lyapunov function is

constructed to obtain the target end-effector state and the second-priority Lyapunov function

is constructed to satisfy the constraints on the state space. However, it is known that the

constraints of the second Lyapunov function are not always satisfied, and convergence to the

target is not always guaranteed in this method. Another example is the method of using

sinusoidal input in joint actuation [48, 49, 50]. This method can achieve arbitrary attitude

reorientation by repeating sinusoidal joint actuation. However, the applicability of this method

is limited because the input is restricted to sinusoids. In addition, this method is not agile

because the attitude is gradually shifted to the target by repeating sinusoidal actuation. In

addition, none of these methods cover transfiguration of robots that dramatically changes its

structure and even its function. Thus, although the dynamics of transformable free-flying

robots has been studied for a long time, a method by which to achieve a target morphology

and attitude simultaneously has not been sufficiently studied.

Research closely related to this study was conducted by Ohashi et al. [51, 52]. Their method

was motion-primitive based and took a comprehensive combination of joint actuation patterns.

They stored all results of the total attitude changes of the corresponding joint actuation pat-

terns. Figure 1.7 shows an example of their motion primitive databases plotting rotational

direction and its rotational efficiency for 3-panel model. In this method, the number of com-

binations increases exponentially with the increase in the number of joints. Therefore, their

control method cannot fully make use of the attitude reorientation ability of the highly re-

dundant free-flying robot. In addition, they solved the attitude motion of the robot by using

numerical integration, which cannot extract any differential information to solve the inverse

problem, which limited their method to a brute-force search. Moreover, Ohashi et al. used a

heuristic or meta-heuristic algorithm, such as a genetic algorithm to solve the inverse problem,

but this requires a huge calculation for each attitude reorientation planning task. Figure 1.8

summarizes the relationship among the related studies.

1.2 Purpose and Contributions

The purpose of this study is to construct motion planning methods for free-flying space robots

that simultaneously performs body reconfiguration and nonholonomic attitude reorientation (or

NRT), and to propose its applicability in space missions. In particular, the methods have two

noticeable characteristics: 1) they deal with multi-degree-of-freedom transfiguration that dra-

matically change the robot structure, and 2) they assume general non-planar attitude motion.

To this end, contributions of this research are as follows:

Derivation of an approximate analytical solution In order to solve the inverse problem

in a nonholonomic system, it is necessary to systematically understand the motion of the

system and design an appropriate indirect detour path in state space (see Fig. 1.5 for ref-

erence). To this end, we derive an approximate analytical solution of the attitude motion
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Fig. 1.7: Ohashi’s motion primitive database of rotational direction and its rotational efficiency for 3-
panel model [52]

during body reconfiguration. The solution analytically provides information on sensitivity

of final attitude with respect to the detour of body reconfiguration. Conventional numer-

ical integration method for solving attitude motion cannot extract information on such

attitude sensitivity. Therefore it requires brute force computations and cannot handle

large degrees-of-freedom system. Compared to the conventional method, the proposed

method is able to handle highly redundant, large degrees-of-freedom system. Among

integrable analytical solutions, the rectilinear solution is used throughout this thesis, in

which joints are actuated along a line segment in joint angle space.

Design of motion planning methods Using the derived rectilinear solution, we can design

a motion planning method that simultaneously achieves body reconfiguration and atti-

tude reorientation. There are two main methods proposed in this study. One is rectilinear

transformation planning, which achieves the target morphology and attitude by a consec-

utive line segment paths in joint angle space. In this method, the joint actuation law is

simple and the singularity can be easily avoided by increasing the number of waypoints.

The second method is rectilinear invariant manifold method, which designs a bundle of

manifolds growing from a target state. The motion planning is completed in two phases:

1) asymptotic approaching to one manifold in the bundle, and 2) sliding on the manifold to

the target state. Figure 1.9 shows illustrations of the above two methods and correspond-

ing analogy with car parking problem. These two distinct methods are complementary

and both of them exhibit different characteristics depending on the situations.
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Background
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Cannot handle transfiguration

Some relevant research

Lead to combinatorial explosion

Fig. 1.8: Summary of related studies

Application to space missions In order to demonstrate the effectiveness of the proposed

methods, an application to a space mission is presented. As a typical application, a

propellant-free solar sailing method is introduced through a numerical example. The

simultaneous body reconfiguration and attitude reorientation allows a transformable solar

sail to change its equilibrium attitude under solar radiation pressure while orienting its

attitude to that equilibrium attitude simultaneously. This maneuver will greatly enhance

capability of solar sailing.

1.3 Organization

This thesis begins with overviewing preliminaries on dynamics of free-flying multi rigid bodies

(Section 2.1), fundamental knowledge about control of nonholonomic system (Section 2.2), and

introduction of kinematic nonholonomy and momentum nonholonomy (Section 2.3). These

preliminaries are bases of the discussion in the following chapters as well as supporting the

introductions mentioned in Chapter 1.

Chapter 3 describes the analytical solutions to the fundamental kinematics equation in Sec-

tion 2.1. The kinematics equation for direction cosine matrix preserves Lie-group structure of
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1. Manifold approachingConnect consecutive 
constant inputs

2. Manifold sliding

Joint angle space
(𝑚𝑚-dimensional)

Euler angle space
(3-dimensional)

Target body 
config. Target

attitude 

Rectilinear invariant manifold method

Joint angle space
(𝑚𝑚-dimensional)

Target body 
config.

Euler angle space
(3-dimensional)

Target attitude

Rectilinear transformation planning

Fig. 1.9: Illustration of the proposed methods and corresponding analogy with car parking problem; left)
rectilinear transformation planning, right) rectilinear invariant manifold method

three-dimensional rotation, and hence can be approximately solved by the Magnus expansion.

In addition, polynomial/rectilinear solution and sinusoidal solution are concretely displayed

as examples of analytically integrable solutions. Moreover, computational performance and

approximation accuracy of both solutions are investigated.

Chapter 4 describes one of the proposed motion planning methods, the rectilinear transfor-

mation planning. To derive the motion planning scheme, nonholonomic sensitivity tensor is

first derived. This tensor provides information on sensitivity of final attitude with respect to

intermediate joint trajectories, and hence is the important indicator for motion planning in

nonholonomic system. Next several sections are dedicated to describing initial guess search, a

path modification scheme with and without constraints. Finally, numerical simulations validate

effectiveness of the method.

Chapter 5 describes another proposed motion planning method, the rectilinear invariant man-

ifold method. In order to describe the geometrical structure of state space, the nonholonomic

system is reformulated in the context of sub-Riemannian geometry. In addition, we show all

possible rectilinear solution growing from a certain state constitutes a fiber bundle in multi-

dimensional space. Moreover, a control law to asymptotically attract state variables onto the

fiber bundle is derived and its sufficient condition of convergence is discussed with the Lyapunov



1.3 Organization 10

control theory. Numerical examples show the effectiveness of the method and some failure case

due to singularity.

Chapter 6 focuses on singularity analysis of the proposed two motion planning methods. The

singularity analysis is largely based on the singularity analysis of control moment gyro (CMG)

and robotic manipulator following the result of previous studies. We show that escapable null

motion and singularity robust steering law successfully works for our motion planning methods.

Chapter 7 introduces solar sailing technique using NRT maneuver as one practical applica-

tion of the proposed method. With the aid of simultaneous body reconfiguration and atti-

tude reorientation, the equilibrium attitude and reorientation to it arbitrarily accomplished,

which enhances solar sailing ability. Since the NRT neither consumes any propellant nor ac-

cumulate momentum of reaction wheels, the transformable solar sail can achieve completely

propellant-free orbital maneuver, which can be a promising astrodynamics technique in future

space missions.
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Chapter 2

Preliminaries

2.1 Dynamics of Free-flying Space Robot

In this section, attitude motion of a transformable free-flying robot is formulated. The nomen-

clature of body components and their positions are shown in Fig. 2.1. In this representation,

an entire spacecraft is divided into a main body, assigned to index k = 0, and some other

branches growing from the main body. Here, for convenience of formulation, we assume that

each branch has no loop structure. This assumption assures one-directional index assignment

from the main body (innermost, root) to the tip of each branch (outermost, tip). Body indices

in each branch are allotted sequentially from an inner body to an outer body. The hinge joint

component connecting the k-th body and its inside neighbor is labeled as a k-th joint, and a

set of all bodies outside of the k-th joint are labeled as k̂, which is referred to as a k-th outer

group. (From the above definitions, all indices in the outer group k̂ are larger than k.) This k̂

grouping contributes to simple formulations because all bodies in the k-th outer group move in

the same manner with respect to the main body when the k-th joint is actuated. The rotational

degrees of freedom of each hinge joint is set to be 1, and the rotational angle of the k-th joint

is described as θk. Any joint rotation can be expressed by a combination of 1-dimenional rota-

tions, and hence this assumption does not lose generality. The body frame is fixed to the main

body (k = 0) and its origin is at the center of mass (CoM) of the main body. Thus, attitude of

the entire multi body system is represented by the attitude of the main body hereafter. Note

that the position of the CoM of an entire robot is not constant in the body-fixed coordinate as

the robot changes its body configuration.

We use Kane’s formulation in the present paper, which is, in general, suitable for handling

three-dimensional attitude motion [12, 13]. A general form of the dynamics equation can be

described as follows: 
Mvv Mvω Mvθ

Mωv Mωω Mωθ

Mθv Mθω Mθθ



wv

wω

wθ

+


dv

dω

dθ

 =


τv

τω

τθ

 (2.1)
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Inertial frame

𝑘𝑘-th outer group (subscript �𝑘𝑘)

Hinge joint of 𝑘𝑘-th body
(subscript h𝑘𝑘)

CoM of 𝑘𝑘-th body
(subscript 𝑘𝑘)

𝑹𝑹c 𝑹𝑹𝑘𝑘

𝒓𝒓𝑘𝑘

𝑹𝑹0

CoM of 
whole bodies

Fig. 2.1: Nomenclature of body components and their positions

or for short,

Mw + d = τ (2.2)

The corresponding generalized velocities are the translational velocity of the CoM of the entire

spacecraft vv, the angular velocity of the main body vω, and the joint actuation speed vθ, which

are all expressed in the body frame:

vv = vc =


vc,x

vc,y

vc,z

 ∈ R3 vω = ω0 =


ω0,x

ω0,y

ω0,z

 ∈ R3 vθ = θ̇ =


θ̇1

θ̇2
...

θ̇m

 ∈ Rm (2.3)

An explicit description of the components in Equation (2.1) is given in Appendix A. In partic-

ular, Mωω and Mωθ are important in the following discussion because these values provide the

relationship between joint actuation and attitude motion:

Mωω = Ic

Mωθ,j =
(
Iĵ −mĵr

×
ĵc
r×
ĵhj

)T

λj

(2.4)

where Mωθ,j indicates the j-th column of Mωθ. With these expressions, total angular momen-

tum hc around the centroid of the entire spacecraft can be represented as follows:

hc =Mωωvω +Mωθvθ (2.5)

In the present paper, we focus on attitude motion in which the total angular momentum

is always zero. Applying this assumption to Equation (2.5) yields the following kinematic
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relationship:

vω = ω0 = −M−1
ωωMωθvθ = −M−1

ωωMωθ θ̇ (2.6)

Now, we use a rotational matrix (i.e., direction cosine matrix) C to express the attitude of the

main body. This is because the rotational matrix is the most natural expression of the Lie

group structure of three-dimensional rotation, which helps to analytically solve the differential

equation. Substituting Equation (2.6) into the equation of a rotational matrix, we obtain

Ċ = −ω×
0 C =

(
M−1

ωωMωθ θ̇
)×
C = (g(θ)u)

×
C (2.7)

where g(θ) = M−1
ωωMωθ ∈ R3×m, and control input u = θ̇ ∈ Rm. In the present research, the

joint actuation speed θ̇ is regarded as control input, rather than joint actuation torque. This is

because the angular momentum conservation law is expressed in integral form, and, therefore,

the kinematics level equation can appropriately grasp the characteristics of the dynamics when

there is no external force or torque. This equation expresses the relationship between attitude

change and hinge joint actuation and has two important features:

1. Equation (2.7) is a nonholonomic constraint (or non-integrable differential constraint).

Although the system is underactuated because the attitude (3 DoF) + body configuration

(m DoF) is controlled by m-dimensional control input u = θ̇ ∈ Rm, the nonholonomy

practically provides extra degrees of freedom in control space and therefore enables the

underactuated system to be controllable (locally, at least).

2. The function g(θ) is independent of attitude C, and therefore, in this equation, we can in-

dependently handle kinematic nonholonomy (induced by the non-integrability of a three-

dimensional angular velocity vector) and momentum nonholonomy (induced by the change

in the moment of inertia).

In Chapter 3, Equation (2.7) is further investigated in order to obtain an approximate analytical

attitude solution.

2.2 Fundamentals of Nonholonomic System

2.2.1 Controllability of Nonholonomic System

A nonholonomic system is a system in which non-integrable differential constraints are im-

posed. Comprehensive survey can be found in the textbook such as Bloch’s [17]. The theory

of the nonholonomic system has a long history and especially in the field of mechanics, motion

of a rolling or sliding rigid body has been extensively studied as a typical subject [53]. Preva-

lent problems are motion of a knife-edge skidding on a plane, known as a Chaplygin sleigh

[18, 19, 20], or a vehicle moving on the ground with non-sliding rolling wheels [21, 22]. Since

non-integrable differential constraints cannot be expressed as constraints on the state variables,

the constraints do not reduce some dimensions of the system. It means that the reachable
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space of the state variables is not directly constrained in the nonholonomic system, whereas

the instantaneous velocity is constrained. In the field of control theory, this fact means that we

can control more state variables than degrees of freedom of control input, i.e., it has a potential

to control an underactuated system.

Unlike linear systems, we cannot generally guarantee the controllability of nonholonomic

systems. This is because in a nonlinear system ẋ = f(x)+g(x)u, distribution of singular points

is determined by the specific form of f(x) and g(x), which makes it difficult to discuss its

controllability in general situation [54]. However, for a symmetrically affine system ẋ = g(x)u,

local controllability can be examined by Chow’s theorem [55, 56]. In order to state the Chow’s

theorem, we define a distribution C(x) as follows:

Definition. For nonholonomic system ẋ =
∑m

k=1 gk(x)uk, (x, gk ∈ Rn), the distribution C(x)
at x = x0 is defined as:

C(x0) = span(∆κ) (2.8)

where κ is a degree of nonholonomy and the ∆i is recursively defined as follows:

∆1 = span{g1(x0), g2(x0), · · · , gm(x0)}

∆i+1 = ∆i + [∆1,∆i]

where [∆1,∆i] = span{[g, h] : g ∈ ∆1, h ∈ ∆i}

(2.9)

Degree of nonholonomy κ is defined as the smallest integer such that the rank ∆k is equal to

that of ∆k+1 [56]. [f, g] is a Lie bracket or a commutator, which is defined as:

[g, h] = g ◦ h− h ◦ g (2.10)

where ◦ signifies a product defined for X such that g, h ∈ X. In particular, for vector fields,

this is written as follows:

[g, h] =
∂h

∂x
g − ∂g

∂x
h (2.11)

Based on this definition, Chow’s theorem is stated as follows:

Theorem (Chow’s theorem). The symmetrically affine system ẋ =
∑m

k=1 gk(x)uk is locally

controllable at x = x0 if and only if rank C(x0) = n

For the problem of simultaneously controlling body configuration and attitude, the system

dimension is n = m + 3 where m is the degree of freedom of joint control input and 3 is the

dimension of three-dimensional attitude motion. If rank C(x0) = m+3, a free-flying robot can

achieve arbitrary body configuration and attitude at least in the neighborhood of x = x0.

However, even for the locally controllable nonholonomic system, the state cannot be asymp-

totically stabilized by a time-invariant continuous feedback control. This fact is proved by the

negative aspect of Brockett’s theorem [16]. The Brockett’s theorem states the necessary condi-

tion of asymptotic stabilizability for a nonlinear system, but the underactuated nonholonomic
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system does not satisfy the necessary condition. Therefore, in order to achieve a target state

in the nonholonomic system, time-variant feedback or discontinuous feedback control must be

designed. This is the background reason the proposed motion planning method in this study

uses multiple-stage, discontinuous control scheme.

2.2.2 Chained System and Power System

Nonholonomic constraints appear in a wide variety of mechanical systems. Among the sys-

tems, a chained system and a power system are known as the most mathematically structured

(canonical) system and therefore, a lot of effective control laws are proposed. The chained

system is the system defined as follows [57, 54]:

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1

...

żn = zn−1v1

(2.12)

And the power system is the system defined as:

ż1 = v1

ż2 = v2

ż3 = z1v2

ż4 =
1

2
z21v2

...

żn =
1

(n− 2)!
zn−2
1 v2

(2.13)

Khennouf proposed a method to use an invariant manifold around a target state for the chained

system with n = 3 [23], and Luo extended the Khennouf’s method to n-dimensional power

system [24]. The another important method is a feedforward based method in which sinusoidal

input is applied for a chained system [25]. Other methods can be found in [58].

Some control system can be converted into the chained system or the power system. Murray

proved that all symmetrically affine system with state dimension n = 3 or 4 and control

dimension m = 2 can be converted into the chained system [59]. For example, the planar

three-link free-flying robot is a typical system that can be converted into the chained form

(Fig. 2.2). This system has three-dimensional state variables [x y θ]T and two-dimensional
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control input u = [ψ1 ψ2]
T. However, a general three-dimensionally rotating free-flying robot

cannot be converted into the chained system, which is the control target in this study.

𝑥𝑥, 𝑦𝑦

𝜃𝜃

𝜓𝜓1

𝜓𝜓2

Fig. 2.2: Example of a planar three-link free-flying robot

2.3 Kinematic Nonholonomy and Momentum Nonholonomy

Kinematic nonholonomy and momentum nonholonomy are terminologies the author de-

fined. They indicate distinct nonholonomic effects concerned with three-dimensional rotation

of a free-flying space robot. The kinematic nonholonomy is derived from non-integrability

of three-dimensional angular velocity, whereas momentum nonholonomy is derived from non-

integrability of the angular momentum conservation law when the moment of inertia of the

robot is not constant. These two types of nonholonomy are distinct and can be solely induced.

For example, in Fig. 2.3, a person seated in a rotary chair alternately bends and stretches

his legs and twists his upper body, resulting in net attitude rotation due to the intermediate

difference in the moment of inertia. In this example, the effect of kinematic nonholonomy is

zero because the axis of rotation is always in the same direction, and therefore the effect of mo-

mentum nonholonomy is purely produced. On the other hand, Fig. 2.4 shows an example of a

spacecraft with only two reaction wheels. Owing to the kinematic nonholonomy, this spacecraft

can rotate around the third axis by alternating rotations with two wheels. In this example,

the effect of momentum nonholonomy is zero because the moment of inertia of the spacecraft

is fixed, and the effect of kinematic nonholonomy is purely produced.

Most previous research dealt with each nonholonomy solely; attitude control of planar free-

flyers is the typical example for the pure momentum nonholonomy [40, 41, 42, 43, 44], and

two-wheel control of a rigid spacecraft is the typical example for the pure kinematic non-

holonomy [45, 46, 47]. Such systems with single nonholonomy let the nonholonomic effect be

expressed with global geometrical relationship. For example, the linear and angular momentum

conservation law of a planar free-flying space robot shown in Fig. 2.5 are expressed as [60]:

msxs +mhxh = 0, msys +mhyh = 0

Isθ̇s +ms(xsẏs − ysẋs) +mh(xhẏh − yhẋh) = 0
(2.14)
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① ② ③

④⑤

Fig. 2.3: Example of momentum nonholonomy

Fig. 2.4: Example of kinematic nonholonomy

where I, m, (x, y) are respectively moment of inertia, mass, and position of CoM, and subscript

s and h express the space robot main body and the manipulator hand. Cancelling xs and ys
results in the following relationship:

θ̇s = a(xhẏh − yhẋh), a = −mh(ms +mh)

msIs
(2.15)
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By using Stokes’ theorem, attitude difference ∆θs when the hand is actuated along a closed

trajectory ∂D can be described as follows:

∆θs =

∫
∂D

a(xhdyh − yhdxh) = 2a

∫
D

dxh ∧ dyh (2.16)

where ∧ is a wedge product. Thus, the effect of momentum nonholonomy is globally associated

with area of the closed trajectory of the hand for the planar free-flyer. As for the kinematic

nonholonomy, the amount of third-axis rotation in two-wheel control is similarly expressed

as area on unit sphere swept by the third axis (generally known as the coning effect [61]).

Therefore, their motion planning can be handled with purely geometrical operations.

In a general three-dimensional attitude motion of the free-flying space robot, however, these

two nonholonomic effects are combined, resulting in a complex attitude behavior. Its nonholo-

nomic effect can no longer be associated with a simple global geometry. This study aims to

generally handle the case with which two types of nonholonomy are involved, which we refer

to as a hybrid nonholonomic system. Mathematical analysis of the combined nonholonomy is

provided based on parallelogram actuation.

mass 𝑚𝑚s

mass 𝑚𝑚h

𝑥𝑥h 𝑦𝑦h

𝑥𝑥s 𝑦𝑦s

𝜃𝜃s

𝑥𝑥

𝑦𝑦

Fig. 2.5: Example of a planar space robot model (replication of a figure in [60] by the author)

2.4 Model Definition of JAXA Transformer

As mentioned in Section 1, the proposed methods are effective for a robot with highly redun-

dant, large degrees-of-freedom joints. As a typical example of such a robot, this study uses a

model of JAXA Transformer in most numerical examples [6]. As shown in the left of Fig. 2.6,

the spacecraft consists of 27 bodies and 18 rotational actuators. This figure shows the fully

deployed body configuration, in which all joint angles are set to 0 degree. The local body-fixed

coordinate attached to each body is defined such that they correspond to the x-y-z coordinates

in this fully deployed body configuration. As mentioned in Section 2.1, attitude of the robot
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is represented by the attitude of the body-fixed coordinate attached to the body #0. The

non-actuatable joints (#4,5,14,15,23,24,25,26) are rigidly fixed at 0 degree, and thus the model

is equivalently regarded as 19 rigid bodies and 18 rotational actuators. Thus the joint angle

vector θ ∈ Rm contains angles of the 18 actuatable joints. The mass and dimensions of each

body are according to Table 2.1. All bodies are defined as cuboids and the corresponding side

lengths are Lx, Ly, and Lz. The definitions of pk, pk, and λk in Table 2.1 are shown in the right

of Fig. 2.6, where the subscript k indicates the inside neighbor of the k-th body (definition of

the term inside here follows Section 2.1). The values of pk in Table 2.1 is expressed in the local

body-fixed coordinates of the k-th body, and pk and λk are expressed in the local body-fixed

coordinates of the k-th body. The angle limit of each joint is −π/2 ≤ θk ≤ π/2. The maximum

joint speed is set to be 10 deg/s, and the joint actuation speed in each stroke is normalized

such that the fastest joint is actuated at 10 deg/s. However, joint actuation speed does not

affect the following result as far as the total angular momentum is zero.

0
1

2

3
4

5
6 7

8 9
10
1112

13
14

15
1617

1819
20
21 22

23

24
26

25

Actuatable joints
𝑥𝑥

𝑦𝑦

𝑧𝑧

𝜆𝜆𝑘𝑘𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘

𝑅𝑅𝑘𝑘
𝑅𝑅h𝑘𝑘 𝑅𝑅𝑘𝑘

Reference 
frame

Fig. 2.6: Model definitions: left) Body connection map of JAXA Transformer, right) Definitions of some
parameters

Figure 2.7 and 2.8 show the deployed configuration and the observation configuration re-

spectively. Joint angles of the deployed configuration are all zero, whereas joint angles of the

observation configuration are listed in Table 2.2. These configurations are frequently used in

simulations throughout this thesis.
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Table 2.1: Mass and dimension properties of JAXA Transformer

Body # Mass [kg] Lx × Ly × Lz [mm] pk [mm] pk [mm] λk
0 7.0 1400× 600× 90 - - -
1 7.0 1400× 600× 90 [0, 400, -50] [0, 400, 50] [1, 0, 0]
2 7.0 1400× 600× 90 [0, -400, 50] [0, -400, -50] [1, 0, 0]
3 7.0 1400× 600× 90 [800, 0, 70] [800, 0, -70] [0, 1, 0]
4 5.0 1400× 600× 10 [0, 340, 60] [0, 340, -15] [1, 0, 0]
5 5.0 1400× 600× 10 [0, -340, 50] [0, -340, -5] [1, 0, 0]
6 10.0 600× 600× 90 [800, 0, 50] [400, 0, -50] [0, 1, 0]
7 10.0 600× 600× 90 [400, 0, -50] [400, 0, 50] [0, 1, 0]
8 10.0 600× 600× 90 [0, 400, 50] [0, 400, -50] [1, 0, 0]
9 10.0 600× 600× 90 [400, 0, -50] [400, 0, 50] [0, 1, 0]

10 30.0 600× 600× 600 [0, -400, 50] [0, -400, -300] [1, 0, 0]
11 10.0 600× 600× 90 [0, -300, 400] [0, -400, 50] [1, 0, 0]
12 10.0 600× 600× 90 [-400, 0, 50] [-400, 0, -50] [0, 1, 0]
13 7.0 1400× 600× 90 [-800, 0, -50] [-800, 0, 50] [0, 1, 0]
14 5.0 1400× 600× 10 [0, 340, 60] [0, 340, -15] [1, 0, 0]
15 5.0 1400× 600× 10 [0, -340, 50] [0, -340, -5] [1, 0, 0]
16 10.0 600× 600× 90 [-800, 0, 70] [-400, 0, -70] [0, 1, 0]
17 10.0 600× 600× 90 [-400, 0, -50] [-400, 0, 50] [0, 1, 0]
18 10.0 600× 600× 90 [0, 400, -50] [0, 400, 50] [1, 0, 0]
19 10.0 600× 600× 90 [-400, 0, 50] [-400, 0, -50] [0, 1, 0]
20 30.0 600× 600× 600 [0, -400, -50] [0, -300, -400] [1, 0, 0]
21 10.0 600× 600× 90 [0, -400, 305] [0, -400, -50] [1, 0, 0]
22 10.0 600× 600× 90 [400, 0, -50] [400, 0, 50] [0, 1, 0]
23 5.0 1400× 600× 10 [0, 340, -50] [0, 340, 5] [1, 0, 0]
24 5.0 1400× 600× 10 [0, -340, 50] [0, -340, -5] [1, 0, 0]
25 5.0 1400× 600× 10 [0, 300, 5] [0, 300, -5] [1, 0, 0]
26 5.0 1400× 600× 10 [0, -300, -5] [0, -300, 5] [1, 0, 0]

Table 2.2: List of joint angles in observation configuration (non-actuatable joints are embraced by a
bracket)

Joint 1–13 Joint 14–26
i θi i θi

1 -20 (14) 0
2 20 (15) 0
3 10 16 -80
(4) 0 17 -80
(5) 0 18 0
6 80 19 10
7 80 20 -30
8 0 21 0
9 -10 22 0
10 20 (23) 0
11 0 (24) 0
12 0 (25) 0
13 -10 (26) 0
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Fig. 2.7: Deployed configuration of JAXA Transformer
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Fig. 2.8: Observation configuration of JAXA Transformer
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Chapter 3

Analysis of Attitude Kinematics

Equation

The contents in this chapter is omitted in this version for future publications.
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Chapter 4

Rectilinear Transformation Planning

In the previous chapter, we showed that the rectilinear solution can handle body reconfigura-

tion with less computational cost among the derived approximate analytical solutions. In this

chapter, we address the main issue of this research: motion planning of the simultaneous body

reconfiguration and nonholonomic attitude reorientation, i.e., nonholonomic reorienting trans-

formation (NRT). This problem can be interpreted as the problem of searching for a trajectory

in joint angle space joining the initial point and the target point, such that the final attitude

reaches the target. In particular, this chapter constructs a method to use consecutive line seg-

ments to connect the two points in joint angle space with the rectilinear solution. We refer to

the method as rectilinear transformation planning in this research. In this motion planning,

we first give an initial solution of the path in joint angle space, and then modify the path so

that the target attitude is achieved. Using line segments for the trajectory reduces the prob-

lem to distribution of intermediate waypoints of the trajectory. The rectilinear transformation

planning constructed in this chapter has the following characteristics:

• The method can handle a complex attitude motion with succession of simple control

inputs.

• The method can handle arbitrary number of waypoints, which enhances performance of

singularity avoidance.

• Violation of joint angle limits can be easily detected only by checking terminal conditions.

• The control law provides a long-range trajectory in feedforward form.
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Chapter 5

Rectilinear Invariant Manifold

Method

In this chapter, we derive a two-stage control using an invariant manifold which achieves

simultaneous body reconfiguration and attitude reorientation. There have been various pre-

vious studies on discontinuous control in nonholonomic systems. In particular, a number of

control methods have been proposed for canonical forms such as the chained system and power

system described in Section 2.2.2. For example, Khennouf proposed a method for constructing

an invariant manifold for n = 3 chained system [23]. Luo extended the Khennouf’s method

that is effective for n-dimensional power system [24]. Ikeda applied variable constraint control

to n-dimensional (n− 1)-input system such as planar free-flying space robot [62]. The advan-

tage of the Ikeda’s method is that the system does not need to be transformed into a chained

system, thus avoiding singularities due to the transformation of equations. Another example

of discontinuous control in nonholonomic systems is sliding mode control. For example, sliding

mode control is applied to trajectory tracking of wheeled mobile vehicle and stabilization of

nonholonomic systems [63, 64, 65, 66]. Sliding mode control is equivalent to generating an arti-

ficial manifold by providing high-frequency control input, but it potentially has the chattering

problem.

In this section, we focus on an invariant manifold generated by the rectilinear solution derived.

If a trajectory in joint angle space is restricted in the rectilinear form, motion of its state is

constrained on 1-dimensional manifold. We refer to this manifold as a rectilinear invariant

manifold, and propose a two-stage control method using it: asymptotic approach to the manifold

and control constrained on the manifold. The characteristics of this method are as follows:

• In the asymptotic control to the invariant manifold, the control law is described in feed-

back form. Therefore, robustness against several types of disturbance can be expected.

• Unlike most manifold-based methods for chained/power systems, the proposed control

law is valid for a general free-flying robot, that is, it can control a general n-dimensional

m-input non-canonical system.

• The control law can be simply formulated since it is based on the rectilinear solution.



Rectilinear Invariant Manifold Method 25

In particular, the first characteristic is a major difference from the rectilinear transformation

planning, which only provides a feedforward control law. The robustness is a great advantage

of the invariant manifold method.
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Chapter 6

Singularity Analysis

This chapter mainly discusses controllability of the system and singularity of the proposed two

control method: rectilinear transformation planning and rectilinear invariant manifold method.

Similar singularity analysis is often discussed in other fields of control. One common research

subject is control moment gyro (CMG) of spacecrafts. CMG is an internal-force attitude con-

trol device which exchanges angular momentum with a spacecraft. In particular, single-gimbal

CMG has significant advantages of mechanical simplicity and high torque amplification, but has

intrinsic singularity issue. Margulies had provided general framework of mathematical formula-

tion and singularity analysis for single-gimbal CMG [67]. In particular, intensive investigations

are performed on a pyramid-type CMG composed of 4 single-gimbal CMG distributed in a

pyramid configuration [68, 69, 70, 71, 72, 73, 74, 75]. These works reported that the singular

states are classified into two types, saturation singularity and internal singularity. In addition,

the internal singularity is further classified into elliptic singularity and hyperbolic singularity.

The hyperbolic singularity is possible to be escaped; the singular CMG configuration can be

reconfigured into non-singular configuration by null motion. The elliptic singularity is the most

difficult singularity because the null motion is trapped around the singular state, and thus

impossible to be escaped by null motion. Another field in which the singularity is intensively

discussed is control of robotic manipulators [76, 77, 78, 79, 80, 81, 82]. A lot of researchers

investigated the singularity of robotic manipulators. Some control methods are shared with the

CMG control.

The control methods proposed in Chapter 4 and 5 have common kinematic structures with

the control of CMG and robotic manipulators. The analogies among those four systems are

shown in Figure 6.1. In this figure, control inputs of the system are colored in blue, intermediate

trajectories are colored in green, and target variables expressed by the sum of the green-colored

trajectories are colored in magenta. The kinematic differential equation in these systems are

commonly described as (derivatives of target variables) = (Jacobian) × (control inputs), and

the singularity of the system is evaluated by the Jacobian; the system is singular if rank of the

Jacobian becomes less than dimension of the target variables.
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Fig. 6.1: Analogies among CMG, manipulator, and two proposed methods
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Chapter 7

Application to Solar Sailing

This section provides an example of applications of the proposed NRTmethods. NRT achieves

arbitrary body reconfiguration and attitude reorientation, and thus a free-flying robot can

arbitrarily reconfigure the geometry of all body components with respect to inertial frame

as far as the order of body connection is fixed. This generic interpretation opens up many

possibilities of applications. Figure 7.1 shows possible applications of the proposed methods and

corresponding missions planned by JAXA Transformer [6]. Each category in the applications

is described as follows:

• Reorienting transformation: Changing entire structure of a robot while enabling arbitrary

reorientation of the terminal attitude. Robots can be more adaptive by mutating into

multiple different space robots.

• Transforming flight control : Controlling external force exerted on a robot by changing its

structure. The external force includes solar radiation pressure (SRP), air drag, magnetic

torque, gravity gradient torque etc. Active use of external force contributes to saving fuel

consumption, and hence robots can be more sustainable.

• Multiple manipulation: Manipulating multiple instruments using redundant degree of

freedom of joint angles. Attitude requirements imposed on instruments such as cameras,

antennas, and end-effectors are simultaneously satisfied. Robots can be more versatile

and dexterous by operating multiple instruments simultaneously.

The rectilinear transformation planning and the rectilinear invariant manifold method both

plays an essential role for the above all functions. In addition, these methods are formulated

in generic form and hence widely applicable to a variety of free-flying robots.

In particular, this chapter provides an example of solar sailing applications. Solar sailing is

an orbital maneuver which leverages solar radiation pressure (SRP) to propel a spacecraft. The

concept had been proposed for a long time [83, 84], and recently several solar sail missions have

been successfully accomplished. IKAROS (Interplanetary Kite-craft Accelerated by Radiation

Of the Sun) by JAXA first successfully accomplished all nominal missions in 2010, in which

acceleration by solar radiation pressure is confirmed on orbit [85]. A CubeSat solar sail, Light-

Sail 2 by the Planetary Society was successfully launched in 2019 and reoriented its attitude

with respect to the sun, finally confirming desired photonic acceleration [86].
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Fig. 7.1: Possible applications of the proposed motion planning methods and corresponding missions of
JAXA Transformer

Theoretically, solar sailing does not require any expendable propellant as long as the attitude

against the sun is properly controlled. However, it even consumes propellant to control attitude

with respect to the sun. If a solar sail can perform NRT, the problem is expected to be overcome.

Figure 7.2 shows dynamics relationship among SRP, body configuration, attitude motion and

orbital motion. Supposing that a free-flying robot can control its body configuration and

attitude, it can arbitrarily change the equilibrium attitude under SRP and simultaneously can

be reoriented to the equilibrium attitude. Moreover, if the attitude is reoriented so that SRP

propels the robot in a desired direction, the robot can also control orbital motion by photonic

acceleration. The entire maneuver does not consume any propellant including attitude control,

which can greatly enhance the ability of solar sailing. The concept of this transformable solar

sail has been proposed by JAXA Transformer working group [6, 7].

The contents in this chapter are largely based on the master thesis by the author [87].
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Chapter 8

Conclusions

This thesis has addressed simultaneous body reconfiguration and nonholonomic attitude re-

orientation of a free-flying space robot, which is referred to as nonholonomic reorienting trans-

formation (NRT) by the author. In Chapter 2, some preliminaries are formulated and the

author has pointed out that the attitude motion of free-flying space robots exhibit two distinct

types of nonholonomy: kinematic nonholonomy and momentum nonholonomy. In Chapter 3,

the approximate analytical solution was derived for kinematics equation of a direction cosine

matrix. The Lie-group structure preserved in the kinematics equation helped to solve the equa-

tion with the Magnus expansion. Among the integrable solutions, the rectilinear solution was

shown to be most useful tool for NRT in our interest, and Chapter 4 and 5 used the solution

to construct two NRT methods: the rectilinear transformation planning and the rectilinear

invariant manifold method. The rectilinear transformation planning provides consecutive rec-

tilinear joint actuations to achieve the target body configuration and attitude simultaneously.

The rectilinear invariant manifold method provides two-stage control law with feedback of the

current state. The characteristics and effectiveness of each methods were revealed through

some numerical examples. The final chapter provided one example of practical applications:

solar sailing using NRT. It demonstrated that completely propellant-free station-keeping using

solar radiation pressure owing to the proposed NRT methods. Remarkable contributions of this

study are:

1. Unlike most related studies on nonholonomic motion planning, the proposed method

can handle general three-dimensional attitude motion with arbitrary number of body

components.

2. The newly derived analytical solution enables to handle large-degree-of-freedom system,

which was impossible with a brute-force numerical search by previous research.

3. Simultaneous body reconfiguration and attitude reorientation indicates that geometries of

all body components can be arbitrarily reconfigured. It can greatly enhance performance

of free-flying space robots in terms of adaptability, versatility, dexterity, and sustainability.
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